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Introduction

Extracting fiqures® from scanned
electronic theses and dissertations

Figure
- Vast majority of published @ :> extraction®
research is in PDF. |

- Downstream tasks rely on

accurate figure extraction Scientific
search and
information
extraction

Image sources:

[1] https://pxhere.com/en/photo/1451109

[2] https://pixabay.com/illustrations/pdf-logo-adobe-filetype-mime-type-3383632/
[3] hitps://commons.wikimedia.ora/wiki/File:Exclamation_Circle_Red.svg % . . .
[4] https://commons.wikimedia.org/wiki/File:Data_types_-_en.svg Refers to both f'gure and table extraction in the rest
[5] https://pxhere.com/en/photo/1565521 of the presentation.
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Introduction

Extracting fiqures from scanned

electronic theses and dissertations.

Image sources:

[1] Simon Barthelmé, Hans Trukenbrod, Ralf Engbert, and Felix Wichmann.2012. Modelling fixation locations using spatial point processes. (2012). arXiv:stat.AP/1207.2370 http://arxiv.ora/abs/1207.23701 (Page no. 7)

re 3: An image from the dataset of Kienzle et al. (2009), along with ¥
according to the Itti-Koch model (Itti and Koch, 2001; Walther and Koch, 2
: on is not easily answered
by eye, but may be given a more precise meaning in the context of spatial processes.

31

To be able to move beyond the basic statement that local image cues somehow correlate with fixation locations, it
is important that we clarify how covariates could enter into the latent intensity function. There are many different
ways in which this could happen, with important consequences for the modelling. Our approach is to build a model
gradually, starting from simplistic assumptions and introducing complesxity as needed.

begin with we imagine that local contrast is the only cue that matters. A very unrealistic but drastically simple
model assumes that the more contrast there is in a region, the more subjects’ attention will be attracted to it. In our
framework e could specify this model as:

Und ding the role of iates in ining fixated locations

nl,y) = Fo+ Buelr,y)

However, surely other things besides contrast matters - what about average luminance, for example? Couldn't
brighter regions attract gaze?

“This would lead us to expand our model to include luminance as another spatial covariate, so that the log-intensity
function becomes:

n(z,y) = Bo + Pre(x, v) + Bal(z, y)
inwhich () sands orlocalluminance. But perhaps edes matte,so why o include another covariate cores-
ponding to the output of a local edge detector «(, y)? This result

1(2,) = Bo + Brelz, ) + Bal(x,y) + Baelz, )

It s possible to go further down this path, and add as many covariates as one sees fit (although with too many
covariates, problems of variable selection o arise, see Hastie et al., 2003), but to make our lives simpler we can also
rely on some prior work in the area and use pre-existing, off-the-shelf image-based saliency models (Fecieau and Munoz,
2006). Such models combine many local cues into one interest map, which saves us from having to choose a set of

covariates and th ng their relative weight (although see Vincent et al., 2009 for work in a related direction).
Here we focus on the perhaps most well-known among these models, described n It and Koch (2001) and Walcher
and Koch (2006), although other P! (e.g., Bruce and Tsotsos, 2009, Zhao and Koch,

2011, or Kienzle et al., 2009).
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Introduction

Extracting figures from scanned
electronic theses and dissertations.

e dataset of Kenzle et al. (2009), along with an “interest map"”
(i and Koch, 2001; Walther and Koch, 2006).

Born digital PDF files:

Contain the complete description to
render its elements (text, fonts, vector
graphics, raster images, etc.)

Scanned PDF files:

Originally handwritten or typed using a
typewriter.

Later digitized using scanning devices.

Image sources:

[1] Simon Barthelmé, Hans Trukenbrod, Ralf Engbert, and Felix Wichmann.2012. Modelling fixation locations using spatial point processes. (2012). arXiv:stat.AP/1207.2370 http://arxiv.ora/abs/1207.23701
(Page no. 7)

[2] Walter Douglas Chiles. 1935. Effect of service on automobile crankcase oils. Ph.D. Dissertation. Virginia Agricultural and Mechanical College and Polytechnic Institute. http://hdl.handle.net/10919/56159
[3] hitps://www.123rf.com/photo_78921823 modern-desktop-pc-computer-isolated-.html

[4] https://www.brandeps.com/logo/M/Microsoft-Word-01

[5] https://i.stack.imgur.com/zHFFO.png

[6] https://www.vectorstock.com/royalty-free-vector/the-old-portable-typewriter-vector-226 13165

[7] https://images.techhive.com/images/article/2016/01/flatbed-scanner-stock-100636615-large.jpa

This 18 = small portable machine employing a i-in,
drillerod journal snd a d-in, split bushing made of
8,448, 2316 coldedrswn stesl, The jourmal is polished
and the bushing after splitting s grownd on the bearing
surfase with a form grinding wheel. A olesrance of 0,007
inch 18 provided between the jownal snd the normal
@lemetor of the bushing, Pressure is applied to the
‘bushing by means of & hydraulic and mechanicsl losding
system, The friction torque developed is indicated through
& sesond hydraulic system %o a Bourdon Gage, In
oondusting a test the oil containmer is first filled with
o1l to be testod; submerging the test journal, The meshine
s then sterted and rum for 50 seconds ot mo losd to insure
thorough lubrication of the jourhal and bushing, The load
13 then applied st the rate of 2 1b, overy ten seconds
until selsure oecurs, or witil 30 1b, heve boen applied,
The spoed of votation i3 600 ».p,m, Wor timing the application
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Introduction

Extracting figures from scanned
electronic theses and dissertations.

This work focuses on ETDs, which are
longer, book-length documents.

But can possibly be extended to other
scientific documents.

ETD=Electronic Theses and Dissertations
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Research questions

RQ1: How well can existing methods perform figure extraction from scanned
ETDs?

RQ2: Can this performance be improved by using simple data augmentation
techniques and weight initialization from the original pre-trained model?

RQ3: Can this performance be improved by training on manually labelled data?

RQ4: Can this performance be improved by using transfer learning techniques?
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Related work - Deepfigures

Physics Computer science

\

/

Download LaTeX files from arXiv
dataset - from 900K documents.

e T

Quantitative biology others...

Noah Siegel, Nicholas Lourie, Russell Power, and Waleed Ammar. 2018. Extracting Scientific Figures with Distantly Supervised Neural Networks. CoRR abs/1804.02445 10
(2018). arXiv:1804.02445 Retrieved October 9, 2019 from http://arxiv.org/abs/1804.02445



\usepackage{color}
\usepackage{floatrow}
\usepackage{tcolorbox}

\DeclareColorBox{figurecolorbox}{\fcolorbox{red}{white}}
\DeclareColorBox{tablecolorbox}{\fcolorbox{yellow}{white}}

\floatsetup[figurel{framestyle=colorbox,
colorframeset=figurecolorbox, framearound=all,
frameset={\fboxrulelpt\fboxsep@pt}?}

\floatsetup[table]{framestyle=colorbox,
colorframeset=tablecolorbox, framearound=all,

LaTeX source

code of a paper

v

Add markup for figure
boundaries
Y
Compile to PDF and Compile to PDF and
and render each page and render each page
of PDF to image of PDF to image

frameset={\fboxrulelpt\fboxsep@pt}}

Y

Find differences between corresponding pages from both

lists of page images

\

Obtain bounding boxes from connected components

Towards model

training

Image sources:

[1] Noah Siegel, Nicholas Lourie, Russell Power, and Waleed Ammar. 2018. Extracting Scientific Figures with Distantly Supervised Neural Networks. CoRR abs/1804.02445 (2018). arXiv:1804.02445 Retrieved October

9. 2019 from http://arxiv.org/abs/1804.02445
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Related work - Deepfigures

Connected Component Labelling Algorithm: Assume that
region pixels have the value 0 (black) and that background pixels
have the value 255 (white).

1. Scan the image to find an unlabeled 0 (pixel and assign it a
new label L.

2. Recursively assign a label L to all of its 0 neighbors.

3. Stop if there are no more unlabeled 0 pixels.

4. Gotostep 1.

[1] https://en.wikipedia.org/wiki/Connected-component_labeling
[2] https://www.cse.unr.edu/~bebis/CS791E/Notes/ConnectedComponents.pdf

4-connectivity

8-connectivity
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Related work - Deepfigures

The input page of the PDF
(converted to an image 640x480)

The Resnet-101 model .

R

Model CS-Large PubMed

Deepfigures 0.849 0.806

F1-scores of Deepfigures on manually labelled datasets!" of
born-digital documents.

[1] Noah Siegel, Nicholas Lourie, Russell Power, and Waleed Ammar. 2018. Extracting Scientific Figures with Distantly Supervised Neural Networks. CoRR abs/1804.02445

(2018). arXiv:1804.02445 Retrieved October 9, 2019 from http://arxiv.org/abs/1804.02445

Page Image
(640x480x3)

Resnet-101

“Bottleneck”
Building Block

3x3 max pool, stride 2

L "

7x7 conv, stride 2,
64 filters

1x1 conv, 64 filters

. Residual
3x3 conv, 64 filters Connection

1x1 conv, 256 filters

&

Spatial Features
(20x15x1024)

m ’ 1x1 conv, 1 fitter |

(]
Softmax

Predicted Figure
Coordinates
(20x15x4)

Confidences
(20x15x1)

‘ Predicted Box 1?
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Feature distributions (Born-digital vs. scanned)

Features:
Font, line spacing, content
layout, scanner noise, etc.

Goal:
To make the first document
look like the second.

Image sources:

Figure 3: An image from the dataset of Kienzle et al. (2000), along with an “interest map” - local saliency computed
according to the Iti-Koch model (Itti and Koch, 2001; Walther and Koch, 2006). Fixations made by the subjects are
overlaid in red. How well does the interest map characterise this fixation pattern? This question is not easily answered
by eye, but may be given a more precise meaning in the context of spatial processes.

3.1 Understanding the role of covariates in determining fixated locations

To be able to move beyond the basic statement that local image cues somehow correlate with fixation locations, it
is important that we clarify how covariates could enter into the latent intensity function. There are many different
ways in which this could happen, with important consequences for the modelling. Our approach is to build a model
gradually, starting from simplistic assumptions and introducing complexity as needed.

“To begin with we imagine that local contrast is the only cue that matters. A very unrealistic but drastically simple
model assumes that the more contrast there is in a region, the more subjects’ attention will be attracted to it. In our
framework we could specify this model as:

n(x,9) = Bo+ Bie(z, y)
However, surely other things besides contrast matters - what about average luminance, for example? Couldn't
brighter regions attract gaze?
“This would lead s to expand our model to include luminance as another spatial covariate, so that the log-intensity
function becomes:

n(z,4) = Bo + Brc(z, ) + Bol(z, y)

in which {(z, y) stands for local luminance. But perhaps edges matter, so why not include another covariate corres-
ponding to the output of a local edge detector (. y)? This results in:

n(z,y) = Bo + Bie(z,y) + Bal(z,y) + Bae(x,y)

It is possible to go further down this path, and add as many covariates as one sees fit (although with too many
covariates, problems of variable selection do arise, see Hastie et al., 2003), but to make our lives simpler we can also
rely on some prior work in the area and use pre-existing, off-the-shelf image-based saliency models (Fecteau and Munoz,
2006). Such models combine many local cues into one interest map, which saves us from having to choose a set of
covariates and then estimating their relative weight (although see Vincent et al., 2000 for work in a related direction).
Here we focus on the perhaps most well-known among these models, described in Itti and Koch (2001) and Walther
and Koch (2006), although many other interesting options are available (e.g., Bruce and Tsotsos, 2009, Zhao and Koch,
2011, or Kienzle et al., 2000).

(28)

Figure 7.
This 1s » small portable machine employing a 3-in,

drill-rod journal and a §-in, split bushing made of

8,448, 2318 coldedrawn stesl, The journal is polished

and the bushing after splitting is ground on the bearing
surfece with & form grinding wheel, A olearance of 0,007
ineh is provided between the jowrnal and the normal
diameter of the bushing, Pressure is applied to the
busiing by means of a hydraulie snd mechanical losding
system, The friction torque developed i3 Indiecated through
a second hydrauliec system %o a Bourdon Gage, In

eonducting a test the oll container is first filled with
oil to be tested, submerging the test journal, The machine
i1a then started and rum for 50 seoonds et no loed to insure
thorough lubrication of the jourhal and bushing, The losd
4s then applied at the rate of 2 1b, overy tcn seconds
until seizure ocours, or until 30 1b, have been applled,
The speed of rotation 13 600 »r,p.m, For timing the application

[1] Simon Barthelmé, Hans Trukenbrod, Ralf Engbert, and Felix Wichmann.2012. Modelling fixation locations using spatial point processes. (2012). arXiv:stat.AP/1207.2370 http:/arxiv.ora/abs/1207.23701 1 5

(Page no. 7)

[2] Walter Douglas Chiles. 1935. Effect of service on automobile crankcase oils. Ph.D. Dissertation. Virginia Agricultural and Mechanical College and Polytechnic Institute. http://hdl.handle.net/10919/56159
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Data augmentation

The overall pipeline along with the data
augmentation steps.

LaTeX source
code of a paper

Add markup for LaTeX
augmentations

v

Add markup for figure
boundaries

Y

Y

Compile to PDF and
and render each page
of PDF to image

Compile to PDF and
and render each page
of PDF to image

l A/

Find differences between
corresponding pages from both
lists of page images

!

Obtain bounding boxes from
connected components

.

v

Apply image-based augmentations using ImgAug

v

Towards model
training




Data augmentation

Image-based data augmentatigrs

Random affine rotation (limited-to6 +/- 5 de
Additive Gaussian noise
Salt-and-pepp_
Gaussian blur

Linear contrast

Perspective transform \

S o

Low Contrast Image High Contrast Image

17



Data augmentation

LaTeX-based data augmentations

1.

Following line was replaced:
\documentclass[sigconf]{acmart}
\documentclass[sigconf,12pt]{acmart}
Following code added at the beginning:
\renewcommand\ttdefault{cmvtt}
\renewcommand{\familydefault}{\ttdefault}
\linespread{1.5}

18



Data augmentation

Figure 3: An image from the dataset of Kienzle et al. (2000), along with an “interest map” - local saliency computed
according to the Iti-Koch model (itti and Koch, 2001; Walther and Koch, 2006). Fixations made by the subjects are
overlaid in red. How well does the interest map characterise this fixation pattern? This question is not easily answered
by eye, but may be given a more precise meaning in the context of spatial processes.

lccordmg to the lm -Koch mod-l (o

3.1 Understanding the role of covariates in determining fixated locations

To be able to move beyond the basic statement that local image cues somehow correlate with fixation locations,
is important that we clarify how covariates could enter into the latent intensity function. There are many differe

. by cyn but may be g:un & mom puclu mnmng i :M mrml of ty:ua! prm.‘ul

ways in which this could happen, with important consequences for the modelling. Our approach is to build a moder
gradually, starting from simplistic assumptions and introducing complexity as needed.

“To begin with we imagine that local contrast is the only cue that matters. A very unrealistic but drastically simple
model assumes that the more contrast there is in a region, the more subjects’ attention will be attracted to it. In our
framework we could specify this model as:

n(x,9) = Bo+ Bie(z, y)
However, surely other things besides contrast matters - what about average luminance, for example? Couldn't
brighter regions attract gaze?
“This would lead us to expand our model to include luminance as another spatial covariate, so that the log-intensity
function becomes:

n(z,4) = Bo + Brc(z, ) + Bol(z, y)

in which I(z, y) stands for local luminance. But perhaps edges matter, so why not include another covariate corres-
ponding o the output of a local edge detector (. y)? This results in:

n(z,y) = Bo + Bie(z,y) + Bal(z,y) + Bae(x,y)

It is possible to go further down this path, and add as many covariates as one sees fit (although with too many
covariates, problems of variable selection do arise, see Hastie et al., 2003), but to make our lives simpler we can also
rely on some prior work in the area and use pre-existing, off-the-shelf image-based saliency models (Fecteau and Munoz,
2006). Such models combine many local cues into one interest map, which saves us from having to choose a set of
covariates and then estimating their relative weight (although see Vincent et al., 2000 for work in a related direction).
Here we focus on the perhaps most well-known among these models, described in Itti and Koch (2001) and Walther
and Koch (2006), although many other interesting options are available (e.g., Bruce and Tsotsos, 2009, Zhao and Koch,
2011, or Kienzle et al., 2000).
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Pigure 7.
This 1s » small portable machine employing a 3-in,

drill-rod journal and a §-in, split bushing msde of

8,448, 2318 coldedrawn stesl, The journal is polished

and the bushing after splitting is ground on the bearing
surfece with a form grinding wheel, A olearance of 0,007
inch is provided between the journal and the normal
diameter of the bushing, Pressure is applied to the
busiing by means of a hydraulie snd mechanical losding
system, The friction torque developed i3 Indiecated through
ond hydrauliec system to a Bourdon Gage, In

eonducting a test the oll container is first filled with

oil to be tested, submerging the test journal, The machine

i1a then started and rum for 50 seoonds et no loed to insure
thorough lubrication of the jourhal and bushing, The losd

4s then applied at the rate of 2 1b, overy tcn seconds

until seisure occurs, or until 30 1b, have been applied,

The speed of rotation 13 600 »r,p.m, For timing the application

Image sources:

[1] Simon Barthelmé, Hans Trukenbrod, Ralf Engbert, and Felix Wichmann.2012. Modelling fixation locations using spatial point processes. (2012). arXiv:stat.AP/1207.2370 http:/arxiv.ora/abs/1207.23701

(Page no. 7)
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[2] Walter Douglas Chiles. 1935. Effect of service on automobile crankcase oils. Ph.D. Dissertation. Virginia Agricultural and Mechanical College and Polytechnic Institute. http://hdl.handle.net/10919/56159
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Training at scale

We primarily use the arXiv dataset:

- Compressed size on disk: 1.3 TB.
- Divided into 2600 files of 500MB each.

- Each 500MB-file contains several hundred scientific documents along with
their LaTeX source code.

Training deep learning models on a huge dataset is logistically challenging:

- Not feasible to unzip and compile all LaTeX into PDFs before training.
- Computationally expensive to do using a single thread.

20



Disk

Worker 1 disk space

Worker 2 disk space

Worker N disk space

A

Y

CPU

Process 1

Process 2

Process N

Main process

GPU

PyTorch model instance
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Gold standard dataset

1. Since the labels of the arXiv dataset are self-generated, labels of the
augmented dataset cannot be considered as ground-truth.
2. Thus, an evaluation set labelled manually needs to be created.

Val set (50%) Test set (50%)
(used for selecting the best model out of all the (used for reporting the performance of the
model checkpoints) chosen best model)
_ J
Y

Gold standard

(70 ETDs, 10.1K pages, manually labelled, 3.3K figures)
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Gold standard dataset
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Gold standard dataset

Number of figures in gold standard vs. ETD handle

500

400

=) =3
<3 S
& 134

piepuess pjob ui sainbiy jo Jaquiny

100

25

ETD handle



Outline

Introduction
Research questions
Related work
Methodology

a. Data augmentation
b. Training at scale
c. Gold standard

5. Experiments
a. Experiments, results/discussion, answers to research questions.

6. Conclusions
7. Future work

BN~

26



Exp1: Proof of concept

1. Experimental setup
a. Model: Deepfigures
Weight initialization: Pre-trained weights from Deepfigures
c. Data: About 2% of the original arXiv data with all transformations applied. Evaluated on an old
scanned ETD from VTechWorks [1].
d. Duration: About 100K training steps.
e. Batch size: 1

[1] Walter Douglas Chiles. Effect of service on automobile crankcase oils. PhD thesis, Virginia Agricultural and Mechanical College and
Polytechnic Institute, 1935. URL http://hdl.handle.net/10919/56159.
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Exp1: Proof of concept
Model TPs FPs FNs Precision Recall F1
Deepfigures 0 29 26 0 0 0
Ours (image-based transformations) 7 16 15 0.30 0.318 0.309
Ours (all transformations) 10 15 16 0.4 0.385 0.392
TP=True Positive, FP=False Positive, FN=False Negative

Observations:

1. Our models have a higher F1-score.
2. More augmentations result in a higher F1-score.

However:

1. This evaluation is only on a single ETD.
29

2. The TPs, FPs, FNs were manually calculated. We need better metrics.



Exp1: Proof of concept

@a)

Tis 10 o pheSoprapd Abivizg the dllusten wed

Original model (Ours) Model trained on image-based
transformations

ETD source: Walter Douglas Chiles. 1935. Effect of service on automobile crankcase oils. Ph.D. Dissertation.
Virginia Agricultural and Mechanical College and Polytechnic Institute. http://hdl.handle.net/10919/56159

(Ours) Model trained on all
transformations
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Exp2: Evaluate Deepfigures on gold standard

Better metric for TPs, FPs and FNSs.
True Positive: IOU >=0.8
False Positive: IOU < 0.8

False Negative: Ground truth exists
but prediction is missing.

IOU=Intersection Over Union

Image sources:
[1] https://www.pyimagesearch.com/wp-content/uploads/2016/09/iou_equation.png

Intersection over Union=
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Exp2: Evaluate Deepfigures on gold standard

1. Experimental setup:
a. Model: Deepfigures.

b. Weight initialization: Pre-trained weights from Deepfigures.
c. Data: Gold standard dataset. Used for evaluation.
d. 10U thresh: 0.8.



Exp2: Evaluate Deepfigures on gold standard

Model TPs FPs FNs Precision Recall F1

Deepfigures 1005 1227 1143 0.450 0.468 0.459

1. Results:
a. F1-score of 0.459.
b. This is the true performance of Deepfigures on scanned ETDs for figure extraction.

c. RQ1 answered: Existing methods for figure extraction from scanned ETDs perform with an
F1-score of 0.4509.
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Exp3: Ablation studies

1. 2”n combinations are possible for n transformations. (Enabled or disabled)
2. Leave-one-out ablation study:
a. train n separate models, where, for the n-th model, the n-th
transformation is disabled.
3. Doesn’t guarantee an optimal combination.
4. Could give a general idea.
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Exp3: Ablation studies

1.

Experimental setup

a.

Model: Deepfigures.

Weight initialization: Pre-trained weights from Deepfigures

Data: Trained on the entire arXiv dataset with n-th transformation disabled. Evaluated on
the gold standard (val split for choosing the best model, test split for reporting performance).
Duration: 24-hours. 16K steps.

Batch size: 1
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Learning rate (Additive Gaussian Noise excluded)

0.00100

0.00075

0.00050

0.00025

0.00000

502500

505000

507500

Training step

510000

512500

515000

37



F1-score (Additive Gaussian Noise excluded)

= F1 score (Additive Gaussian Noise Excluded) = Deepfigures
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Exp3: Ablation studies

Model TPs FPs FNs Precision Recall F1
Deepfigures 1005 1227 1143 0.450 0.468 |0.459
Ours (All enabled) 619 506 569 0.550 0.521 ]0.535
Ours (Additive Gaussian Noise) 561 465 668 0.547 0.456 |0.498
Ours (Affine) 577 530 587 0.521 0.496 |0.508
Ours (Gaussian Blur) 506 619 569 0.450 0.471 0.460
Ours (Linear Contrast) 630 498 566 0.559 0.527 ]0.542
Ours (Perspective Transform) 597 539 558 0.526 0.517 ]0.521
Ours (Salt and Pepper) 686 509 499 0.574 0.579 10.576
Ours (Line spacing 1.5) 614 737 343 0.454 0.642 [0.532
Ours (Typewriter font) 566 476 652 0.543 0.465 |0.504




Exp3: Ablation studies

1. Results:
a. F1-scores of almost all our models are higher than the original Deepfigures model. This
supports to answer RQ2 positively.
b.  Our model with Gaussian Blur disabled has F1-score close to the original Deepfigures model.
Indicates that Gaussian Blur could be the most "helpful’ transform.

2. However:

a. Since this is only a single set of observation, we conduct the next experiment to investigate
further.
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Exp4: Ablation studies - longer training

1.

Experimental setup

a.

Model: Deepfigures.

Weight initialization: Pre-trained weights from Deepfigures

Data: Trained on the entire arXiv dataset with n-th transformation disabled. Evaluated on the
gold standard (val split for choosing the best model, test split for reporting performance).
Duration: 72-hours.

Batch size: 1
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Exp4: Ablation studies - longer training

Model TPs FPs FNs Precision Recall F1
Deepfigures 1005 1227 1143 0.450 0.468 |0.459
Ours (All enabled) 604 482 608 0.556 0.498 |0.526
Ours (Additive Gaussian Noise) 613 448 633 0.578 0.492 |0.531
Ours (Affine) 589 407 698 0.991 0.457 10.516
Ours (Gaussian Blur) 642 510 542 0.557 0.542 |0.550
Ours (Linear Contrast) 602 460 632 0.567 0.488 0.524
Ours (Perspective Transform) 560 739 395 0.431 0.586 |0.497
Ours (Salt and Pepper) 6250 503 566 0.554 0.925 |0.539
Ours (Line spacing 1.5) 705 594 395 0.542 0.641 |0.588
Ours (Typewriter font) 641 386 667 0.624 0.490 |0.549




Exp5: Training Deepfigures on the gold standard

1. Experimental setup

Model: Deepfigures.

Weight initialization: Pre-trained weights from Deepfigures
Data: Gold standard dataset. 80-20 random train-test split.
Duration: 2 hours

Batch size: 1

© Qo0 oo
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Test accuracy vs. Training Step
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Exp6: Training Deepfigures on the
gold standard (some layers training)

1. Experimental setup

Batch size: 1
Method: Freeze the weights of the ResNet backbone. Train
only the last FC layers.

a. Model: Deepfigures.

b. Weight initialization: Pre-trained weights from Deepfigures

c. Data: Gold standard dataset. 80-20 random train-test split. T
d. Duration: 2 hours

e.

f.

Image sources:
[1] Noah Siegel, Nicholas Lourie, Russell Power, and Waleed Ammar. 2018. Extracting Scientific Figures with Distantly Supervised Neural Networks. CoRR abs/1804.02445
(2018). arXiv:1804.02445 Retrieved October 9, 2019 from http://arxiv.org/abs/1804.02445

Page Image
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Test Accuracy vs. Training Step
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Exp7: Training YOLOvVS on the gold standard

1. Experimental setup
a. Model: YOLOVS.
i.  You Only Look Once. A popular objector detection model.
ii. Released May 2020
iii.  Outperforms all previous YOLO versions.
Weight initialization: Random.
Data: Gold standard dataset. K-fold cross validation (K=8).
Duration: ~30 hours. 100 epochs.
Batch size: 8

© Qo T
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Exp7: Training YOLOvVS on the gold standard

Fold ID Mean IOU TP FP FN Prec Recall F1
0| 0.6282731795 298 100 45| 0.7487437186| 0.8688046647| 0.8043184885
1 0.6511308301 262 39 57| 0.8704318937| 0.8213166144| 0.8451612903
2| 0.5854548651 381 127 170 0.75| 0.6914700544| 0.7195467422
3| 0.8130208492 282 22 8| 0.9276315789| 0.9724137931 0.9494949495
4 0.7886945932 358 46 24| 0.8861386139( 0.9371727749| 0.9109414758
5| 0.7838215799 457 58 32| 0.8873786408| 0.9345603272| 0.9103585657
6| 0.7312581412 209 51 26| 0.8038461538( 0.8893617021 0.8444444444
7| 0.6920578815 261 43 19| 0.8585526316| 0.9321428571 0.8938356164

Mean 0.70921399 3135 60.75 47.625| 0.8415904039| 0.8809053485| 0.8597626966

Std. dev. 0.0833932069 79.90172535 34.92747588 51.72713435| 0.0665879393| 0.08999876353| 0.07326514907
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inlet relative velocity.

= blade cireunferential velocity.

1 = 2xial component of ¥y.
Wy = axial component of #,.
Yy = circurferential conponent of ¥,

Mgy % Gircunferential congonent of M.

ngle between the absolute velocity and the axial direction.

) = angle between the relative velosity and the axial direction.

From the figure, the following relations are obtained.

We, = W,siny 2-26
We = Vg W, cos ¥, 2-27
Vo, = W, ces¥ tan, 2-28

Substitute equations 2-23 to 2-28 into equation 2-22, which is now aoplied

20 the inlat to the rotor.
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Figure 4.9. The Simulation CDU

‘The CDU svas simulated by an IBM XT. s keyboard was compltely different from
the actual CDU, so color caded labels were placed over the special function ks

) Active Route Displayed

Note the arrow on the left side of the display. This pointer indicated which line would be
selected pressed. Headings and distances betwoen waypoints were
displayed on each line

b) Modified Route Displayed

Route discontinuities appear on 1}
EXECUTE? in 4 "

the CDU when a waypoint has been inscrted. Th
gl on and off when modifications were displayed.
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where

Equation 2-20 is used Tn describing the flow throush the rotor passage. For

inconpresstble flov, both I and [4]

are invarfant along a relative strean-

Tine. By enploying continuity conditions, we can write equation 2-20 as

s (s = 2l .o
(\N 2 (w " e [("ﬁ—"(, )
+ d(sin 2t~ sin2)] -]

Secause of the nozzle blades ehead of the rotor blades, there will be 2

ameise comporent of Vorticity, )", at the fnles to the rotor blades.
This nlet vorticity can be estimated by using the rotor-iniet velocity
eriangle. Consider
N Ll Debde + Dl v W
SR T "R 2-22
where r, 0, z, denote radial, circumferential and axial directions respec-
tivety. For axially symmetric flow, 1 there 15 radial equilibriun, the

components of vorticity are given by:
2-23

2-24
%-28

Consider an inlet-velocity triangle as shown on the next page.In the figure,

) = inlet sbsolute velocity.
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Answers to research questions

RQ1: How well can existing methods perform figure extraction from scanned ETDs?
Ans: Deepfigures is able to extract figures from scanned ETDs with an F1-score of 0.459.

RQ2: Can this performance be improved by using simple data augmentation techniques and weight initialization from the
original pre-trained model?

Ans: Yes. In general, the Deepfigures model trained on born-digital ETDs performs better when further trained on
augmented born-digital ETDs.

RQ3: Can this performance be improved by training on manually labelled data?

Ans: Using the Deepfigures model architecture and weight initialization, we did not see an improvement. However, by
training YOLOVS5 with random weight initialization on manually labelled data (gold standard), the performance improved to
an F1-score of 0.859 (std. dev. 0.07).

RQ4: Can this performance be improved by using transfer learning techniques?
Ans: Using transfer learning techniques on the pre-trained Deepfigures model, we did not see any improvement.
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Outline

Introduction
Research questions
Related work
Methodology

a. Data augmentation
b. Training at scale
c. Gold standard

5. Experiments
a. Experiments, results/discussion, answers to research questions.

6. Conclusions
7. Future work
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Conclusions

SRSl

In this thesis, we focus on extracting figures from scanned ETDs.

We describe the research problem, formulate RQs, and review related work.
We propose LaTeX and image-based transformations.

We describe our system to apply these transformations at scale.

We curate a gold standard dataset for evaluation.

Finally, we describe the various experiments we conducted.
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a. Data augmentation
b. Training at scale
c. Gold standard

5. Experiments
a. Experiments, results/discussion, answers to research questions.

6. Conclusions
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Future work

Hyper-parameter tuning.
Visual similarity metric for choosing transformations.

More ablation studies.
Pre-training for unsupervised visual representation learning, and then

fine-tuning using these visual representations.

BN~
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Thank you.

Questions are welcome.

Email: sampanna@vt.edu
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