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Abstract

With increasing public sensitivity and concern on environmental issues, huge amounts of spatial data have
been collected from location based social network applications to scientific data. This has encouraged for-
mation of large spatial datasets and generated considerable interests for identifying novel and meaningful
patterns. Allowing correlated observations weakens the usual statistical assumption of independent obser-
vations, and complicates the spatial analysis. This research focuses on the construction of efficient and
effective approaches for three main mining tasks, including spatial outlier detection, robust inference for
spatial dataset, and spatial prediction for large multivariate non-Gaussian data.

spatial outlier analysis, which aims at detecting abnormal objects in spatial contexts, can help extract im-
portant knowledge in many applications. There exist the well-known masking and swamping problems in
most approaches, which can’t still satisfy certain requirements aroused recently. This research focuses on
development of spatial outlier detection techniques for three aspects, including spatial numerical outlier
detection, spatial categorical outlier detection and identification of the number of spatial numerical outliers.

First, this report introduces Random Walk based approaches to identify spatial numerical outliers. The
Bipartite and an Exhaustive Combination weighted graphs are modeled based on spatial and/or non-spatial
attributes, and then Random walk techniques are performed on the graphs to compute the relevance among
objects. The objects with lower relevance are recognized as outliers. Second, an entropy-based method
is proposed to estimate the optimum number of outliers. According to the entropy theory, we expect that,
by incrementally removing outliers, the entropy value will decrease sharply, and reach a stable state when
all the outliers have been removed. Finally, this research designs several Pair Correlation Function based
methods to detect spatial categorical outliers for both single and multiple attribute data. Within them, Pair
Correlation Ratio(PCR) is defined and estimated for each pair of categorical combinations based on their
co-occurrence frequency at different spatial distances. The observations with the lower PCRs are diagnosed
as potential SCOs.

Spatial kriging is a widely used predictive model whose predictive accuracy could be significantly compro-
mised if the observations are contaminated by outliers. Also, due to spatial heterogeneity, observations are
often different types. The prediction of multivariate spatial processes plays an important role when there are
cross-spatial dependencies between multiple responses. In addition, given the large volume of spatial data,
it is computationally challenging. These raise three research topics: 1).robust prediction for spatial data sets;
2).prediction of multivariate spatial observations; and 3). efficient processing for large data sets.

First, increasing the robustness of spatial kriging model can be systematically addressed by integrating
heavy tailed distributions. However, it is analytically intractable inference. Here, we presents a novel
Robust and reduced Rank spatial kriging Model (R3-SKM), which is resilient to the influences of outliers and
allows for fast spatial inference. Second, this research introduces a flexible hierarchical Bayesian framework
that permits the simultaneous modeling of mixed type variable. Specifically, the mixed-type attributes are
mapped to latent numerical random variables that are multivariate Gaussian in nature. Finally, the knot-
based techniques is utilized to model the predictive process as a reduced rank spatial process, which projects
the process realizations of the spatial model to a lower dimensional subspace. This projection significantly
reduces the computational cost.
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Chapter 1

Introduction

Recent advances in Geographical Information Systems (GIS) and Global Positioning Systems (GPS) enable

accurate geocoding of locations where scientific data are collected. This has encouraged formation of large

spatial datasets in many fields and has generated considerable interest in statistical modeling for such data.

Modeling large spatial data sets have received much attention in the multiple research areas. Illustrative ap-

plications include climate prediction [76, 153], environmental monitoring [86], molecular dynamical pattern

mining [172], and infectious disease outbreak prediction [103].

Meanwhile, with the ever-increasing volume of spatial data, identifying hidden but potentially interesting

patterns of anomalies has attracted considerable attentions, particularly from the areas of data mining experts

and geographers. For example, environmental scientists may want to identify abnormally behaving water

monitoring sensors; a customs agent may want to discover anomalies among cargo shipments with RFID

tags, to identify potentially deviant shipments even before they cross the border; city officials may want to

identify threats or malfunctions based on numerous sensors placed around a metropolitan area in subways

and tunnels, etc.

1.1 Features of spatial data and spatial prediction

A primary feature driving many methods of spatial analysis is described by Tobler’s “First Law of Geog-

raphy”: “Everything is related to everything else, but near things are more related than far things” [37].

Statistically, Tobler’s “law” refers to positive spatial autocorrelation in which pairs of observations taken

nearby are more alike than those taken farther apart. Allowing correlated observations weakerns the usual

statistical assumption of independent observations and complicates analysis in several ways. If we assume

1
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independent observations, any observed spatial patterns can be modeled as a spatial trend in the expected

values of the observations. If we allow correlation, observed spatial patterns may be due to a trend in ex-

pected values, correlation among observations with the same expectation, or some combination of the two.

In georeferenced studies, data are always collected at particular locations whether these be in a forest, at

a particular street address, in a laboratory, or in a particular position on a gene expression array. In many

cases, the location may provide additional insight into circumstances associated with the data item, in short

“where” we collect a measurement may inform on “what” or “how much” we measure. The field of spatial

statistics involves statistical methods utilizing location and distance in inference.

Spatial statistics in the collection of statistical methods in which spatial locations play an explicit role in the

analysis of data. Most often, spatial statistics are used to detect, characterize, and make inferences about

spatial patterns, primarily in ecology and geography. Spatial statistical methods may be classified by the

inferential questions of interest. These questions are motivated by application and often fall into categories

based on the type of data available. Cressie [39] provides three useful categories of spatial data that also

serve to categorize both inferential questions and inferential questions and inferential approaches. Here

present these in order of data complexity.

First, consider spatial point process data consisting of a set of observed locations in a defined study area. We

consider the locations themselves as the realization of some random process and seek inference regarding

the properties of this process. Examples include the locations of trees in a forest, neurons in the brain, and

galaxies in the universe. Questions of interest include:

• Are observations equally likely at all locations? If not, where are observations more or less likely?

• Are there (spatially-referenced) covariates that drive the probability of observations occurring at par-

ticular locations?

• Does the presence of an observation at a particular location either encourage or inhibit further obser-

vations nearby?

• If observations do impact the probability of nearby observations, what is the range of influence of

observations?

Much of the literature on spatial point processes involves modeling of stochastic processes, and comparison

of competing models describing observed spatial patterns. Statistical questions address estimation of model

parameters and assessment of fit of various models.

Next, suppose we have geostatistical data consisting of a set of measurements taken a fixed set of locations,

e.g., ozone levels measured at each of a set of monitoring stations. In this case, the locations are set by
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design and not random. An inferential question of interest is prediction of the same outcome at locations

where no measurement was taken. Examples of such prediction appear each day in weather maps of current

temperatures interpolated from a set of official monitoring stations The literature on spatial prediction builds

from a fairly simple concept: spatial correlation suggests that one should given more weight to observations

near the prediction location than to those far away. Spatial prediction theory explores how to optimally set

these weights based on estimates of the underlying spatial autocorrelation structure.

Finally, we may observe data from a set of regions partitioning the study area. Such data are referred to

as lattice data by Cressie [39] and regional data by Waller and Gotway [44]. Lattices may be regularly

or irregularly spaced, for example pixels in an image or counties within a state, respectively, so we use the

“regional” to avoid confusion with literature that assumes the term “lattice” implies a regular lattice. regional

data generally involve summary measures for each region, e.g. number of residents in an enumeration

district, average income for residents of the region, or number of items delivered within a postal delivery

zone. Inferential questions often involve accurate estimation of summaries from regions with small sample

sizes (“small area estimation”), or regression or generalized linear modeling linking outcomes and covariates

measured on the same set of regions. In the first case, statistical methods involve how best to “borrow

strength” from other regions in order to improve estimates within each region. In the second, methods

involve accurate estimation of model parameters with adjustment for spatial correlation between nearby

regions.

Since the inferential questions vary with data type, the models for each data type are designed separately

normally.

1.2 Tasks of Spatial Anomaly Detection

Spatial anomaly analysis, which aims at detecting abnormal objects in spatial context, has been informally

defined as detection of observations in the data set which appear to be inconsistent with the neighborhoods,

or which deviate so much from neighborhoods so as to arouse suspicions that they were generated by a

different mechanism. The abnormal behaviors represent locations that are significantly different from their

neighborhood even though they may not be significantly different from the entire population[144]. Iden-

tification of spatial outliers can lead to the discovery of unexpected, interesting, and implicit knowledge,

such as local instability. It has a number of practical applications such as : 1) detection of an anomalous

sensor, environment[145] and traffic [144] ones; 2) detection of a location with unusual number of dis-

ease cases, like West Nile virus[29] or influenza[159]; 3) detection of anomalous spatial weather patterns,

like hurricanes[145] and tornadoes[175]; 4) detection of crime hotspot[58, 159]. The importance of spatial

anomaly detection is due to the fact that outliers in data translate to significant information in a wide va-



Xutong Liu Chapter 1. Introduction 4

riety of domains. For example, an inconsistent traffic measurement could mean the occurrence of unusual

situation. An anomalous hotspot in the meteorological image may indicate a severe weather events, like

a hurricane at the gulf. Similarly, irregular temperature measurements and /or precipitation measurements

could indicate the effects of E1 Nino and La Nina. The hotspot identification of Asiatic Cholera in London

help make decisions how to stop the epidemic[146].

Spatial objects are associated with both spatial and non-spatial attributes. Existing spatial outlier detection

approaches first define a neighborhood, and then perform the outlier detection in it. The outlier detection is

performed by identifying the difference (using some distance metric) of an object with other objects in the

neighborhood, by considering its non-spatial attribute(s). If this difference is unusual, the object is labeled

as an outlier. The process of identification of neighborhood for performing spatial outlier detection must

consider spatial auto-correlation, that is, spatial objects are under the influence of nearby spatial objects

such that behavior is auto-correlated. Therefore, spatial outliers are the observations in spatial database that

do not conform to a well-defined notion of normal behavior. Figure 1.1 illustrates anomalies in a spatial

data set. The data has around five normal regions, since most observations in these five areas have common

local non-spatial attributes. Points that are significantly far away from the regions, e.g., points s1, s2 and s3

are anomalous.

Figure 1.1: Example of spatial outliers[32]: X and Y coordinates denote the spatial locations and
Z coordinate represents the value of non-spatial attribute

An important aspect of spatial outlier techniques is the nature of the desired spatial outlier. Spatial outliers

can be classified into the following two categories:
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• Point outliers. If an individual data instance can be considered as anomalous with respect to its

spatial neighbors, then the instance is termed as a point outlier. This is the simplest type of anomaly

and is the focus of majority of research on anomaly detection. For example, in Figure 1.1, points s1

and s2 are point anomalies since they are different from their corresponding neighbors.

• Region outliers. If a collection of spatial-closed data instances are anomalous with respect to their

common spatial neighbors. The individual data instances in a region outlier may not be anomalies

by themselves, but their occurrence together as a collection is anomalous. An typical example is the

crime hotspot, which denotes a collection of anomalies because the same outlying value exists.

Another important aspect for spatial outlier detection techniques is the way in which the spatial outliers are

output. Generally, the output generated by spatial outlier techniques is one of the following two types:

• Outlierness. Outlierness-based approaches assign an outlier score to each observation depending

on the local differences between itself and its spatial neighbors. Thus the output of such type of

techniques is a ranked list of anomalies. The analyst may choose to either analyze top few anomalies

or use a cut-off threshold to select the anomalies.

• Labels. The approaches belonging to such categories assign a label (normal or anomalous) to each

test instance. It can be controlled indirectly through parameter choices within each method.

Spatial outliers might be induced in the data set for a variety of reasons, such as the occurrence of unusual

events, e.g., disease breakout, traffic accident and severe weather, but all of the reasons have a common

characteristic that they are interesting to the analysis. The “interestingness” of real outliers is a key feature

of spatial outlier detection.

As introduced by Chandola and Kumar[26], spatial outlier detection is distinct from noise removal[154] ,

which deals with unwanted noise in the data set. Noise can be defined as a phenomenon in data which is

not of interest to the analyst, and noise removal is driven by the need to remove the unwanted objects before

any analysis is performed on the data.

1.3 Research Issues

A commonly used observation model in the Gaussian process (GP) is the Normal distribution. This is

convenient since the inference is analytically tractable up to the covariance function parameters. However,

a known limitation with the Gaussian observation model is its non-robustness, and replacing the normal

distribution with a heavy-tailed one, such as the Student-t distribution, can be useful in problems with
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outlying observations. In both the prior and the likelihood are Gaussian, the posterior is Gaussian with mean

between the prior mean and the observations. In conflict this compromise is not supported by either of the

information sources. Thus, outlying observations may significantly reduce the accuracy of the inference.

For example, a single corrupted observation may pull the posterior expectation of the unknown function

value considerably far from the level described by the other observations. (See Figure (1.2)) A robust,

or outlier-prone, observation model would, however, weight down the outlying observations the more, the

further away they are from the other observations and prior mean.

Spatial prediction is the process of estimating the values of a target quantity at a target quantity at unvisited

locations, based on the observed measures at sampled ones. Due to spatial heterogeneity, observations are

often of different types, such as continuous, ordinal, and binary, each of which conveys important infor-

mation. For example, in economics studies, the living area (continuous variable), the age of the dwelling

(ordinal variable), and an indicator that shows if the dwelling is located in a certain county (binary variable),

are usually measured when characterizing the sale prices of houses. This raises three research challenges:

1).Modeling corss-spatial dependencies between Gaussian and non-Gaussian variables; 2). Prediction of

multivariate spatial observations; and 3). Efficient processing for large data sets.

(a) Gaussian observation model (b) Student-t observation model

Figure 1.2: An example of regression with outliers by Neal [112]. On the left Gaussian and on the
right the Student-t observation model. The real function is plotted with black line.

At an abstract level, a spatial outlier is defined as a spatial observation that does not conform to expected

normal behavior based on its spatial neighborhood[168]. A straightforward spatial outlier detection ap-

proach, therefore, is to define areas representing normal behaviors and declare any observations which does

not belong to this normal areas as an spatial outlier. However, the following issues make this apparently

simple idea very challenge.

• Defining a normal area which encompasses very possible normal behavior is very difficult. In addi-

tion, the boundary between normal and anomalous behavior is often not precise. Thus an anomalous
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observation which lies close to the boundary can actually be normal, and vice-versa.

• In some spatial domains, normal behavior keeps evolving and a current notion of normal behavior

might not be sufficiently representative in the future.

• The occurrence of outliers which deviate strongly from the others may incur the failure of mea-

surement process of normal behavior. Given the large volume of spatial data, it is computationally

challenging to apply traditional prediction methods in either an allowable memory space limit or an

acceptable time limit, even in data mining fields.

• The exact notion of an anomaly is different for different application domains. For example, in the

numerical domain, an obvious deviation from its neighbors might be an anomaly, while similar devi-

ation in categorical domain might be considered as normal. Thus, applying a technique developed in

numerical domain to another is not straightforward.

• Availability of labeled data for training/validation of models used by anomaly detection techniques is

usually a major issue.

• Often, the number of spatial outlier is unknown, and most of existing approach need to pre-define

value before the identification work.

• Most of existing research works has been usually to model one variable at a time, with the anomaly

detection using the data from the same type of sampled locations. However, most spatial data sets

consists of different types of attributes, continuous and discrete.

Due to the above challenges, the problem of spatial outlier detection, in its most general form, is not easy to

solve. The objective of this report is to investigate and develop approaches to addressing parts of the above

issues. The major research issues are stated as follows:

Identification of Spatial Numerical Outliers. Normally, a Spatial Numerical Outlier (SNO) is defined as

a spatial observation which is significantly different with those of its spatial neighbors. Although numerous

traditional outlier detection algorithms have been proposed during the past decades, most of them can’t be

satisfactory with the spatial context since traditional outlier is determined by global differences which do not

consider spatial relationship when identifying anomaly patterns. As the geographic rule of thumb, “Nearby

things are more related than distant things” requires more considerations on spatial auto-correlation in spatial

analysis. Recently, some SNOD approaches have been proposed. However, most of them have three issues:

masking problem in which the normal objects may be misclassified as outliers; swamping problem in

which some true outliers may be missed, and incorrect ranking list which is estimated due to the incorrect

outlierness computation. Accurately identifying relevance spatial objects is one of the fundamental building

blocks to resolve these three issues. Among several approaches to the problem of computing the relevance
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scores, Random Walk(RW) based algorithms have been proven very effective. RW based techniques have

been widely used for varieties of data mining tasks, including clustering and outlier detection. In this

research, we investigate the benefits of RW techniques on spatial outlier detection and design two novel

SNOD methods.

Identification of Spatial Categorical Outliers. Actually, in real world, the non-spatial attributes of spatial

data are usually category-typed, where attributes have no intrinsic order information. A typical example is

Rock whose values include Igneous, Sedimentary, and Metamorphic, etc. The special properties make the

task of anomaly detection in spatial categorical domain seem more complicated than that of numerical data.

Currently, there is a lack of Spatial Categorical Outlier Detection (SCOD) approaches. When encounter-

ing categorical data set, some introduce Spatial Numerical Outlier Detection(SNOD) methods by directly

mapping the categorical attributes to continuous ones. However, there are several critical issues: 1) mis-
application. Statistically, the definition of Spatial Categorical Outlier(SCO) is different with that of Spatial

Numerical Outlier(SNO). Although both of them take focuses on the identification of abnormal behaviors,

SCO is determined by the co-occurrence infrequency with regard to its neighbors, while SNO takes focuses

on the differences; 2) mapping function; The mapping process is absolutely not straightforward, espe-

cial for nominal attributes; 3) swamping and masking problems; Without estimating outlierness correctly,

some true outliers may be missed and normal ones misclassified as outliers. Among several approaches to

capturing the co-occurrence frequency, Pair Correlation Function(PCF) measurement have been proven very

effective. The benefits of PCF techniques on SCOD are investigated and the related algorithms are designed

to identify SCOs with single or multiple attributes.

Identification of Number of Spatial Numerical Outliers Currently, most of spatial outlier detection algo-

rithms suffer from the limitation that the number of outliers are specified by a human user. This parameter

varies from one data set to another. In spatial analysis, the best estimate of the number of spatial outliers

determines effect on the outlier detection results. This parameter is typically either l, the number of out-

liers to return, or some other parameter that indirectly controls the number of outliers to return, such as

an error threshold. Setting these parameters requires either detailed pre-existing knowledge of the data, or

time-consuming trail. The latter case still requires that the user has sufficient domain knowledge to show

what is the appropriate value. It is often impractical to expect a human with sufficient domain knowledge to

be available to select the number of spatial outliers. Till now, there is no convincingly acceptable solution

to the best number of spatial outliers. In this report, we tackle this problem by designing an entropy based

algorithm that can efficiently determine a reasonable number of spatial outliers to return from any SNOD

algorithm.

Robust Prediction and Outlier Detection for Spatial Data sets. In the Gaussian process regression, the

observation model is commonly assumed to be Gaussian, which is convenient in computational perspective.

A commonly used observation model is the Normal distribution. This is convenient since the inference is
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analytically tractable up to the covariance function parameters. However, a known limitation with the Gaus-

sian observation model is non-robustness. That is, the predictive accuracy of the model can be significantly

compromised if the observations are contaminated by outliers. A robust observation model, such as the

Student-t distribution, reduces the influence of outlying observations and improve the spatial prediction and

anomaly detections. Outlier The problem, however, is the analytically intractable inference. This report

discusses the properties of a Gaussian process linear model with the Student-t likelihood and utilize the

Laplace approximation for approximate inference.

Spatial Prediction of Large Multivariate Non-Gaussian Data Spatial prediction is the process of estimat-

ing the values of a target quantity at unvisited locations, based on the observed measures at sampled ones.

Due to the spatial heterogeneity, observations are often of different types, such as continuous, ordinal, and

binary, each of which conveys important information. As most georeferenced data sets are multivariate and

concern variables of different types, spatial mapping methods must be able to deal with such data. This

raises two difficulties: predicting multivariate discrete random fields and modeling the dependence between

continuous and discrete spatial processes. The report presents a new hierarchical Bayesian approach that

permits simultaneous modeling the dependent Gaussian, count, and ordinal spatial fields.

1.4 Contributions

The major proposed research contributions can be stated as follows:

Identification of Spatial Numerical Outliers

1. Model of two different weighted graphs based on spatial and/or non-spatial attributes. The

benefits of Random Walk(RW) techniques are investigated on identifying spatial numerical outliers.

Two weighted graphs, a BiPartite(BP) graph and an Exhaustive Combination(EC) graph, are modeled

based on the spatial and/or non-spatial attributes of the spatial objects. BP is a bipartite graph in which

two independent sets of vertices correspond to spatial objects and clusters generated from their non-

spatial attributes. EC consists of all the spatial objects and the edges among them, and each edge

value is computed by the spatial and non-spatial attributes.

2. Design of two RW based SOD algorithms.Within these two frameworks, RW-BP(Random Walk

based on BiPartite) and RW-EC(Random Walk based on Exhaustive Combination) are designed to

accurately identify the local differences of spatial objects by operating the RW techniques on the

weighted graphs. And, the top k objects with higher difference scores are identified as SNOs.

3. Extensive experiments to validate the effectiveness and efficiency. RW-BP and RW-EC methods

were applied to hundreds of synthetic data sets and one real data set in which the experiment results
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demonstrated their effectiveness.

Identification of Spatial Categorical Outliers

1. Definition of Spatial Categorical Outlier. A Spatial Categorical Outlier(SCO) is defined as a spatial

observation which occurs infrequently with regards to its spatial neighbors.

2. Design of Pair Correlation Function based Spatial Categorical Outlier Detection approach. The

capabilities of PCF(Pair Correlation Function) techniques is investigated to estimate the relevance

among categories with regards to different spatial distances. PCF based approach is designed to

identify SCOs in single attribute domain.

3. Design of kNN(k Nearest Neighbor)based Spatial Categorical Outlier Detection approaches.

kNN based schemes are the approximations of PCF based method. Two nearest neighbor based

estimators are proposed to approximate the Pair Correlation Relevance(PCR) values in single and

multiple attribute domain, respectively. They allow for more efficient SCOD when memory and

processor resources are issues.

4. Extensive experiments to validate effectiveness. PCF series of algorithms were applied in synthetic

and real data sets to demonstrate their effectiveness and/or efficiencies.

Identification of Number of Spatial Numerical Outliers

1. Definition of Spatial Local Contrast Entropy. Spatial Local Contrast Entropy(SLCE) is the mea-

sure of the Spatial Local differences in the whole data set. It is motivated by the fact that the spatial

local differences of outliers are higher than those of other normal data points. And, an outlier point

significantly contributes to the SLCE since its spatial local difference is higher.

2. Design of SLCE approach (Entropy based approach) to identifying the number of spatial nu-
merical outliers.. The fundamental idea of SLCE algorithm determines that when spatial outliers

are incrementally removed from the data set, the SLCE value will be continuously decreased until it

reaches a stable state when all the outliers have been removed.

3. Extensive experiments to validate effectiveness. SLCE based approach was applied in real data

sets by integrating with existing popular SNOD approach to demonstrate the effectiveness itself.

Robust Prediction and Outlier Detection for Spatial Data sets.

1. Formulation of the R3-SKM model. A Robust and Reduced Rank Spatial Kriging Model is pro-

posed in which the measurement error is modeled by a heavy tailed distribution, and a Bayesian

hierarchical framework is integrated to support priors on model parameters.
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2. Design of an approximate algorithm for robust parameter estimation. The posterior distribution

of latent variables conditional on parameters and observations is estimated via Gaussian approxima-

tion. Furthermore, the posterior distribution of parameters conditional on observations is estimated

via Laplace approximation. It has time complexity of O(n).

3. Development of robust inference algorithms. R3-SP (Robust and Reduced Rank Spatial Predic-

tion) and R3-SOD (Robust and Reduced Rank Spatial Outlier Detection) algorithms are proposed to

perform robust spatial prediction and spatial outlier detection. Their time complexities are analyzed,

which scale linearly.

4. Comprehensive experiments to validate the robustness and efficiency of the proposed tech-
niques. The R3-SKM was evaluated by the extensive experiments on simulated and real data sets.

The results demonstrated that the three algorithms based on R3-SKM outperformed existing repre-

sentative techniques, when the data were contaminated by outliers.

Spatial Prediction of Large Multivariate Non-Gaussian Data

1. Design of a spatial multivariate non-Gaussian hierarchical framework. The spatial model is

based on a hierarchical framework and is specifically designed to take account of mixed type random

variables.

2. Model of a multivariate reduced-rank predictive process. This is the first work that applies both

knot-based and Laplace Approximation techniques to multivariate non-Gaussian data sets. The knot-

based technique is utilized to model the predictive process as a reduced-rank spatial process, which

projects the process realizations of the spatial model to a lower dimensional subspace. This projection

significantly reduces the computational cost.

3. Design of an efficient spatial prediction algorithm. By integrating the Laplace approximation,

our approach efficiently makes approximations to the posterior marginal of latent variables for the

predictive process, and performs accurate spatial prediction.

4. Performance analysis and experiment evaluation. Theoretical analysis and extensive experiments

on both simulations and real data sets have been conducted to demonstrate the performance of the

proposed hierarchical mixed model. The data sets and the implementation of our model, as well as

seven state-of-the-art comparison approaches.
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1.5 Organization of This Dissertation

The remainder of this Ph.D. dissertation is organized as follows. Chapter 2 describes the fundamental

concepts used in this dissertation for robust reference and anomaly detection in spatial dataset. Chapter 3

presents the random walk based framework for spatial numerical outlier detection. Chapter 4 proposes an

entropy based estimation of the number of spatial numerical outliers in the data set. Chapter 5 describes

the proposed Pair Correlation Function based techniques for spatial categorical outlier detection. Chapter 6

discusses an robust and reduced rank spatial kriging model for executing accurate parameter estimation and

spatial prediction efficiently. Chapter 7 designs a spatial multivariate non-Gaussian hierarchical framework

to efficiently make approximations to the posterior marginal of latent variables for the predictive process,

and performs accurate spatial prediction. Chapter 8 concludes the research achievement of this dissertation,

together with current publications and discussing future directions.



Chapter 2

Theoretical Foundations

In this chapter we describe the fundamental concepts of spatial data mining, including random walk, pair

correlation function, kriging model, heavy tail distribution and integrated nest laplace approximation, etc.

In , we discuss their relation with our proposed anomaly detection and prediction schemes.

2.1 Random Walk with Restarts

A random walk is a finite Markove chain that is time-reversible and allow weighted edges. Pan et al. [126]

defined “random walk with restart” as follows: considering a random observation that starts from the node

A. The observation iteratively transmits to its neightborhood with the probability that is proportional to their

edge weights. Aslo at each step, it has some probability c to return to the node A. The relevance score of

node B with respect to A is defined as the steady-state probability rA,B that the particle will finally stop at

node B.

To compute the steady-state probability, let A be the query observation. An random walk can be operated

from node a, and further the steady state probability vector ~rA = ( ~rA(1), ..., ~rA(N)) is computed which

records the related scores of the rest of points with regard to point A. Let ~eA record the start state of the

query point. It is a column vector with all its N elements zero, except for the entry that corresponds to itself

which is set as 1.

The computateion of vector ~rA utilizes the matrix multiplication. Let W be the adjacent matrix which stores

the weight values of any two observations. Then we make a column-normalized operation on it.

~rA = cW ~rA + (1− c) ~eA (2.1)

13
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where c records the probability of restarting the random walk from A. Equation (2.1) describes the compu-

tation of the Steady-state vector, where ~rA is determined by

~rA = (1− c)(I − cW )−1 ~eA (2.2)

where I is theN×N identify matrix. The relevance score defined by random walk with restarts can better ex-

tract the relationships than pair-wise metrics and other traditional traph distances. It first captures the global

structure of the graph, and further it can capture the multi-facet relatiohship between two observations.

Random walk with restart has been receiving increasing interest from both the application and the theoretical

point of view, since it provides a good estimation of relevance among objects in a weighted graph. Defin-

ing the differences between two observations is one of the fundamental building block in spatial anomaly

detection. Random walk techniques can be utilized in the anomaly detection in spatial domain.

2.2 Pair Correlation Function

In statistical mechanics, the pair correlation function in a system of particles describes how density varies as

a unction of distance from a reference particle. It is related to the probability of finding an paricle in a shell

dr at the distance r of another particle chosen as a reference point.

By dividing the space volum into shells dr, it is possible to compute the number of particles dn(r) at a

distance between r and r + dr from a given point. And pair correlation function( PCF), g(r), is defined as

the observed probability of finding an object at a given distance, r, from a fixed reference particle [133]. The

mathematical definition of g(r) is

g(r) =
dn(r)/N

dv(r)/V
=
dn(r)

dv(r)
· V
N

=
dn(r)

4πr2dr
· V
N

(2.3)

Where N and V denote the number of units and the volume of the entire system, respectively; dn(r) and

dv(r) represent those in the shell-region; r is the distance from reference unit to the shell of interest.

The volume of the shell is give by

V =
4

3
π(r + δr)3 − 4

3
πr3 ≈ 4πr2δr (2.4)

For short distances, pair correlation function is related to how the particles are packed together. As shown

in Fig. (2.1), consider hard spheres. The particles can’t overlap, so the closest distance two centers can be is

equal to the diameter of the particles. However, few particles can be touching one particle, then a few more

can form a layer around them, which have higher pair correlation probabilities. Further away, these layers
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Figure 2.1: PCF using a spherical shell of
thickness dr

Figure 2.2: Pair Correlation Function g(r)
vs r

get more diffuse. For larger distances ,the probability of finding two particles is essentially constant.

Figure (2.2) shows pair correlation function calculated for a simple simulation in Figure (2.1) of two-

dimension space. The function is calculated based on all pairs of particle. Note that g(r) continuously

decreases just as the distances between particles increases. The pair correlation function is almost uniform

for this distribution of particles. Because the particles are randomly located and not tight packed, g(r) is

zero for r < radius because the particles have radius and they are not allowed to overlap. The pair corre-

lation function shows some structure for distances close to the reference particle. The higher density forces

them to take on some short-range structure as they try to fit in the square without overlapping.

2.3 Spatial Prediction and Kriging

Spatial prediction is the predictive process that incorporates spatial dependence. It has multiple applications,

including petroleum exporatio, mining, and water pollution analysis, etc. Spatial prediction is the process of

estimating the values of a target quantity at unvisited locations. Development of generic and robust spatial

interpolation techniques has been of interest for quite some time []. As geographic information system

(GIS) and modelling techniques are becoming powerful tools in natural resource management and biological

conservation, Kriging and its variants are widely recognised as primary spatial prediction techniques from

the 1970s. And, Kriging is a generic name for a family of generalized least-squares regression algorithms.
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2.3.1 Problem Formulation of Spatial Prediction

The general formulation of the spatial interpolation problem can be defined as follows: Given the N values

of a studied phenomenon zi, j = 1, ..., N measured at discrete locations si within a certain region of a

d-dimensional spaces, find a function Z(s) which passes through the given points, that means, fulfils the

condition

Z(si) = zi, i = 1, ..., N (2.5)

Finding appropriate interpolation methods for GIS applications poses several challenges. The modelled

fields are usually very complex, data are spatially heterogeneous. In addition, datasets can be very large,

originating from various sources with different accuracies. Reliable interpolation tools, suitable for GIS

applications, should therefore satisfy several important demands: accuracy and predictive power, robustness

and flexibility in describing various types of phenomena and applicability to large datasets.

In recent years, GIS capablities for spatial interpolation have improved by integration of advanced methods

with GIS. Typical examples are conditions based on geostatistical concepts (Kriging). The principles of

geostatistics and interpolation by Kriging are described in a large body of literature (e.g. [23, 39, 43, 78, 82,

119]). It is based on a concept of random functions: the surface or volume is assumed to be one realisation

of a random function with a certain spatial covariance [82, 106].

2.3.2 Semivariance and Variogram

The empirical variogram provides a description about how the data are correlated with distance. Semivari-

ance and Variogram are two preliminary concepts for the kriging estimator. The concepts semivariance

and variogram are often used interchangeably. Be definition, γ(h) is the semivariance and the variogram is

2γ(h) Semivariance (γ) of Z between two dataobjects is defined as:

γ(si, sj) = γ(h) =
1

2
var[Z(si), Z[sj ]] (2.6)

where h is the distance between observation si and sj and γ(h) is the semivariogram (commonly referred

to as variogram)[]. Fig. 2.1 displays several important features by ploting γ(si, sj) againt h. The first is the

“nugget”, a positive value of γ(si, sj) when h close to 0. It is the residual reflecting the variance of sampling

errors and the spatial variance at shorter distance than the miminum sample spacing. The “range” is the

distance at which objects are not longer autocorrelated. The “range” is a value of distance at which the “sill”

is reached. Observations discreted by a distance larger than the range are recognized as independent because

the estimated semivariance of differences will be invariant with sample discretion distance. Hartkamp et al.

[66] pointed that most of the variability is non-spatial when the ratio of sill to nugget is 0. The range provides
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Figure 2.3: A generic variogram showing the sill, and range parameters along with a nugget effect

the information about the size of a search window used in the spatial prediction methods [23].

We can use the following way to estimate the semivariance

γ̂(h) =
1

2n

n∑
i=1

(z(si)− z(si) + h)2 (2.7)

where n is the number of pair objects whose spatial distance is h.

For the sake of kriging, the empirical semivariance is replaced with an acceptable semivariogram mode. Be-

lows are the general shapes and the equations of the mathematical medels used to describe the semivariance.

Spherical Semivariogram Model

γ(h) =

 c0[
3

2

h

a0
− 1

2
(
h

a0
)3], for h ≤ a0

a0, for h > a0, (2.8)

Gaussian Semivariogram Model

γ(h) = c0[1− exp(−h
2

a2
0

)], (2.9)
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Figure 2.4: Example of three commonly used variogram models

The Exponential Semivariogram Model

γ(h) = c0[1− exp(− h

a0
)], (2.10)

where a0 represents the range, h the lag distance, and c0 the sill. The sperical model actualy reaches the

specified sill value, c0, at the specified range a0. The exponential and Gaussian approach the sill asymptoti-

cally, with a0 representing the practical range, the distance at which the semivariance reaches 95% of the sill

value. The Gaussian model, with its parabolic behavior at the orgin, represents very smoothy varying prop-

erties. The spherical and exponential models exhibit linear behavior the origin, appropriate for representing

properties with a higher level of short-range variability.

2.3.3 Simple Kriging

“All kriging estimators are but variants of the basic linear regression estimator

Ẑ(s0)− µ(s0) =
n∑
i=1

λi[z(si)− µ(si)] (2.11)

”[59] where µ(s0) is the expected value (meand) of Ẑ(s0) and λi is the driging weight assigned to the

data si for estimation location s0 and the same data will receive different weight for different estimation

location. Ẑ(s) is treated as a random field with a trend component, µ(s), and a residual component, R(s) =
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Z(s)−µ(s). λi is large when |si−s0| is small. Kriging estimates residual at s as weighted sum of residuals

at surrounding data points. Kriging weights are derived from semivariogram, which should characterize

residual component.

Assume µ(s) and C(si, sj) known and take R(si) = Z(si)−µ(si). Best linear predictor is obtained (mean

squared prediction error minimized) by chossing

λ(s) = Σ−1c(s) (2.12)

where λ(s) is the vector of kriging weights λ(si) and c(s) is the vector of covariances C(s, si).

The minimized mean squared prediction error, or the kriging variance,

E[Ẑ(s)− Z(s)]2 = C(0)− c(sTσ−1c(s)). (2.13)

2.4 Robustness with Heavy Tailed Distributions

The heavy tailed distributions are distributions whose tails follow a power-law with low exponent, in con-

trast to traditional distributions (e.g., Gaussian, Exponential, Poisson) whose tails decline exponentially (or

faster). To define heavy tails more precisely, let X be a random variable with cumulative distribution func-

tion Fx) = P [X ≤ x] and its complement F̄ (x) = 1− F (x) = P [X > x]. We say here that a distribution

F (x) is heavy tailed if

F̄ (x) ∼ cx−α0 < α < 2 (2.14)

where c is a positive constant. In particular, when sampling random variables that follow heavy tailed

distributions, the prbability of very large observations occurring is non-negligible. Therefore, heavy tailed

distribution have infinite variance, reflecting the extremely high variability that they capture.

A commonly used observation model in kriging is the Gaussian distribution. It is convenient since the infer-

ence is analytically tractable up to the covariance function parameters. If both the prior and the likelihood

are Gaussian, the posterior is Gaussian with mean between the prior mean and the observations. Thus, out-

lying observations may significantly reduce the accuracy of the inference. For example, a single corrupted

observation may pull te posterior expectation of the unknown function value considerably far from the level

described by the other observations. A robust, or outlier-pron, data mldel would, however, weight down the

outlying objects the more, the further away they are from the other observation and prior mean.

Heavy-tailed distributions are often used to enhance the robustness of regression and classification methods
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to outliers. The idea of robust regression is not new. A robust data model can reduce the influence of outlying

behavior and improve the prediction. Student-t model with linear regression was studied already by West

[162] and O’Hagan [56], and Neal [113] introduced it for GP regression. Consider a kriging problem, where

the data comprise observations zi = x(si)+ηi(si)+εi at input location S = {si}ni=1, where the observation

errors η1, ..., ηn are zero-mean exchangeable random variables. The object of inference is the latent function

(f(si) = (x(si) + ηi(si)), which is given a Gaussian process prior. THis implies that any finite subset of

labent variables, f = {x(si) + ηi(si)}ni=1, has a mulivariate Gaussian distribution. In particular, at thge

observed input location S the latent variables have a distribution

π(f |S) = N (f |µ,Σ) (2.15)

where Σ is the covariance matrix and µ the mean function.

A formal definition of robustnes is given, for example, in terms of an outier-prone observation model. The

observation is defined to be outlier-prone of order n, if π(f |z1, ..., zn+1) → π(f |z1, ..., zn) as yn+1 → ∞.

That is, the effect of a single conflicting observation to the posterior becomes asympotically negligible as the

data approaches infinity. This contrasts heavily with the Gaussian observation model where each observation

influences the posterior no matter how far it is from the others. The zero-mean Student-t distribution

π(zi|fi, σ, ν) =
Γ((µ+ 1)/2)

Γ(µ/2)
√
µπσ

(1 +
(zi − fi)2

µσ2
)−

µ+1
2 (2.16)

where µ is the degress ofthe freedom and σ the scale parameter, is outlier prone of order 1, and it can reject

up to m outliers if there are at leaset 2m objects. The challenge with the Student-t model is the inference,

which is analytically intractable. Therefore, we discuss the properties of a Gaussian process regression

model with the heavy tailed distribution and utilize the Laplace approximation for approximate inference.

2.5 Maximum a Posteriori (MAP) Estimation

Let x = {x1, ..., xn} and y = {y1, ..., yn} be realization of discrete-time random processes X and Y ,

respectively. Their probabilities are p(x) and p(y). Let us assume that we are given an observed sequence y,

and we know the probabilities of p(y|x) and p(x). We do not know which specific sequence x geneared the

observation y. MAP offers a method for estimating the generating sequence x̂(y) on the ground of y: x̂ is

found by maximizing over x the posterior probability p(x|y) = p(y|x)p(x)/p(y). Since p(y) is independent

with x, we can equally minimize

−ln[π(y|x)π(x)] ≡ H(y, x) (2.17)
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Sometimes we have a priori information about predictive process whose parameters we want to estimate.

Such information can come from the correct scientific knowledge or from previous empirical evidence. Such

prior information can be encoded in terms of a PDF on the parameter to be estimated. The associated prob-

abilities π(θ) are called the prior probabilities. We refer to the inference based on such priors as Bayesian

inference. Bayes’ theorem shows the way for incorporating prior information in the estimation process. That

is, choose the model that maximizes the probability of the model given the data, π(θ|y) = π(y|θ)π(θ)/π(θ).

The term on the left hand side is called the posterior. On the right hand, the numerator is the product of the

likelihood term and prior term. The likelihood is the probability that this parameter would have produced

this dataset.It is high when the parameter is a good fit to the data, and it is low when it would have generate

different data. The denominatro serves as a normalization term so that the posterior integrates to unity. Thus,

Bayesian inference procudes the maximum a posterior (MAP) estimate

argmaxθπ(θ|y) = argmaxθπ(y|θ)π(θ) (2.18)

Given the MAP formuation, three key issues remain to be addressed: the choice of the prior distribution, the

specification ofthe parameters for the prior densities, and the evaluation of the MAP.



Chapter 3

Spatial Numerical Outlier Detection:
Random Walk Based Approaches

A Spatial Numerical Outlier(SNO) is a spatially referenced object whose non-spatial attributes are very

different from those of its spatial neighbors. Spatial Numerical Outlier Detection(SNOD) has been an im-

portant part of spatial data mining and attracted attention in the past decades. Numerous SNOD approaches

have been proposed. However, in these techniques, there exist the problems of masking and swamping. That

is, some spatial outliers can escape the identification, and normal objects can be erroneously identified as

outliers. In this paper, two Random walk based approaches, RW-BP (Random Walk on Bipartite Graph)

and RW-EC (Random Walk on Exhaustive Combination), are proposed to detect spatial outliers. First, two

different weighed graphs, a BP (Bipartite graph) and an EC (Exhaustive Combination), are modeled based

on the spatial and/or non-spatial attributes of the spatial objects. Then, random walk techniques are utilized

on the graphs to compute the relevance scores between the spatial objects. Using the analysis results, the

outlier scores are computed for each object and the top l objects are recognized as outliers. Experiments

conducted on the synthetic and real datasets demonstrated the effectiveness of the proposed approaches.

The chapter is organized as follows. Section 3.1 gives the background and motivation. Section 3.2 reviews

the related work on numerical outlier detection methods and data mining techniques with RW. Section 3.3

provides the detailed techniques for RW-BP. Section 3.4 studies the detailed techniques for RW-EC. Sec-

tion 3.5 evaluates the performance of the proposed approaches on synthetic and real datasets. Section 3.6

concludes our works.

22
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3.1 Background and Motivation

SNOs have been informally defined as observations in a dataset which appear to be inconsistent with their

spatial neighbors, or which deviate so much from them so as to arouse suspicions that they were generated

by a different mechanism. SNOD is one of the fundamental tasks in data mining, widely used in the discov-

ery of unexpected knowledge and has a number of practical applications in areas such as, meteorological

data, traffic control, satellite image analysis and hotspot identification. In contrast to Traditional Numerical

Outliers (TNO), SNOs are local anomalies that are extreme compared to their neighbors, but do not nec-

essarily deviate from the remainder of the whole dataset. Informally, spatial outliers can be called "local

outliers," because they focus on local differences, while traditional outliers can be called "global outliers,"

since they are based on global comparison.

During the past decades, numerous TNOD algorithms have been proposed[5, 21, 81, 87]. TNOs are deter-

mined by global differences which can’t be satisfactory with the spatial context. First, spatial objects have

more complex structures. Second, traditional approaches do not consider spatial relationship when iden-

tifying anomaly patterns. The special properties of spatial objects require more considerations on spatial

autocorrelation in spatial analysis. The outlier score of a spatial object can be evaluated by comparing the

non-spatial attribute values of this observation with those of its k-Nearest Neighbors(kNN). Recently,some

SOD approaches have been proposed[2, 7, 62, 90, 100, 101, 115, 143, 144, 150]. However, most of them

have three issues: 1) masking problems: the normal objects may be misclassified as outlier; 2) swamping
problem: some true outliers may be missed; and 3) ranking lists: without correct outlier scores, the outlier

list may not be identified correctly. Identifying the relevance score between two spatial objects is one of

the fundamental building blocks to resolve these three issues. Among several approaches to the problem of

computing the relevance scores, Random Walk (RW) based algorithms have been proven very effective.

RW based techniques have been widely used for varieties of data mining tasks, including clustering [61, 64]

and outlier detection[79, 111]. In this paper, we investigate the benefits of RW techniques on spatial outlier

detection and then propose two novel SNOD methods, RW-BP (Random Walk on Bipartite graph) and RW-

EC (Random Walk on Exhaustive Combination). Both these two approches consider using the concept

of RW to compute the similarities or differences among objects. First, two different weighted graphs, a

BP (Bipartite graph) and an EC (Exhaustive Combination), are constructed based on the spatial and/or non-

spatial attributes. Within the frameworks, RW techniques are utilized to compute outlierness (the differences

between spatial objects and their spatial neighbors) for each spatial object, and the top l objects with higher

scores are identified as the spatial outliers. The main contributions of the paper are as follows:

1. Model of two different weighted graphs based on spatial and/or non-spatial attributes. BP is

a bipartite graph in which two independent sets of vertices correspond spatial objects and clusters

generated from non-spatial attributes. EC consists of all the spatial objects and the edges among
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them, and each edge value is computed by the spatial and non-spatial attributes.

2. Design of two RW based SNOD algorithms. By operating the RW techniques on the weighted

graphs, RW-BP and RW-EC algorithms are designed to accurately identify SNOs.

3. Extensive experiments to validate the effectiveness and efficiency. RW-BP and RW-EC methods

were applied to hundreds of synthetic datasets (random generated) and one real dataset (US Housing

dataset). The experiment results demonstrated their effectiveness.

3.2 Related Works

In this section, we briefly review related works, which can be categorized into three classes: 1) TNOD (Tra-

ditional Numerical Outlier Detection) methods; 2) SNOD (Spatial Numerical Outlier Detection) methods;

3) RW (Random Walk) related methods.

TNOD methods. A TNO in a dataset can be thought of as an observation, which is very different from,

or inconsistent with the other observations. Many ways have been proposed to detect and subsequently,

predict such anomalies or outliers. These various methods can be divided into statistical/distribution-based

methods, distance based methods, density based methods, cluster-based methods.

The Distribution based or the Statistical based Outlier detection[120] attempts to fit the data to a stan-

dard distribution, like normal distribution, and then identifies the outliers with respect to the model using

Discordancy Tests. However, for this, the distribution of data needs to be known. In some cases the data

could follow multiple distributions and in many cases the distribution of the data may not be known.

Distance based outlier detection [87–89] proposes a unified notion of mining outliers which extends on

the statistical based outlier detection. It generalizes the notion of outliers provided by many of the discor-

dancy tests. They define outliers as those objects that do not have enough neighbors, here, neighbors are

defined based on distances from a given object. However, this approach has been mainly tested with Eu-

clidean distance, which does not scale well for high dimensional data. Moreover, it is not very efficient for

large data sets and is sensitive to input parameters. An extension of the Unified approach for mining outliers,

which is a modification for large datasets, especially for reducing passes over the data, has been proposed in

[6, 88]. However, it does not address the issue of high dimensional outlier discovery.

Density-based algorithms define outliers based on the local densities. OPTICS-OF[176] is a technique

to identify local outliers. It is an extension of OPTICS[42] which is a density based clustering algorithms. It

talks about outliers relative to their neighborhood. They assign each outlier a degree with which the object
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is an outlier in the local neighborhood. LOF[21] is an extension of OPTICS-OF, which proposes the setting

of bounds to the local outlier factor and measures the effect of changes in the parameter MinPts. Both these

approaches do not address a scenario where a small cluster itself could be outlying, as compared to the other

clusters. Secondly, they do not address high dimensional outlier discovery. [3] is one of the few approaches

which address this issue. It considers projects of the data and not the entire dataset to see the sparseness of

the data. This could lead to a possible loss of information. Moreover, it is very time consuming to find all

possible combinations of dimensions and projects.

TNOD method treats spatial and non-spatial attributes equally. However, these two types of attributes should

be considered separately in the spatial context. Therefore, TNOD may not be applicable to accurately pro-

cess spatial data.

SNOD methods. During the past decades, a number of algorithms have been proposed to identify out-

liers in the spatial databases[140, 141]. There are three basic categories, namely, visualization, statistic and

graph-based approaches.

Visualization-based approaches utilize visualization techniques to highlight outlying objects. Represen-

tative algorithms include scatterplot [62] and Moran scatterplot [7]. A scatterplot shows attribute values on

the X-axis and the average of the attribute values in the neighborhood on the Y-axis. Nodes far away from

the regression line are flagged as potential spatial outliers. A Moran scatter plot normalizes attribute values

against the neighborhood average of value.

Statistic-based approaches execute statistical tests to measure the local inconsistencies. Typical methods

include Z-value [143], Median-based and iterative-Z [100] approaches. z-value performs statistical tests to

discover local inconsistencies. z-value is the normalized difference between a spatial object and the average

of its spatial neighbors. The absolute z-value can determine the outlierness of an object where higher z-value

indicates higher likelihood that an object is a spatial outlier.

Graph-based approaches [90, 144] detect spatial outliers by designing a function to compute the differ-

ence between an observation and its neighboring points. Kou et al. [90] developed an approach based on

k-nearest neighbor relationship in spatial domain, which assigns the differences of non-spatial attribute as

edge weights, and continuously cuts high-weight edges to identify isolated pooints or regions that are much

dissimilar to their neighboring objects.

Other works study the special property of spatial data. Kou et al. [57] developed spatial weighted out-

lier detection algorithms which use properties such as center distance and common border length as weights
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when comparing non-spatial attributes. Zhao et al. proposed a wavelet-based approach to detecting region

outliers [175]. Cheng et al. [35] presented a multi-scale approach to detect spatial-temporal outliers [101].

Adam et al. proposed an algorithm which considers both spatial relationship among neighbors [2]. A local

outlier measure [150] was proposed by Sun and Chawla to capture the local behavior of data in their spatial

neighborhood. Liu and Jezek proposed a method for detecting outliers in an irregularly-distributed spatial

data set. The outlierness of an object o is measured by both the spatial interpolation residual and surface

gradient of its neighborhod. A number of algorithms have been developed to detect spatial anomalies in

meteorological images, transportation systems, and contagious disease data. An outlier detection method to

identify anomalies in transportation network is given by Shekhar et al. [144]. Their methods are based on

road network connectivity and temporal neighborhoods based on time series.

RW related techniques. Random walk technique is one of the important building blocks in many ap-

plications, including pagerank, keyword extraction, and content-based image retrieval. In these methods,

a graph is constructed to represent the data. And a random walk is performed along all the paths on the

graph to evaluate the relevance scores of each object. PageRank method [124] is based on the model where

a random walker traverses the hyperlinks of a Web graph. Keywords and sentence extraction [108] studies

a TextRank model to vote and recommend the important vetices. Recently, random walk method has been

explored in data mining research. Hagen et al. [61] proposed a random walk-based method to perform

circuit clustering in the netlist graph. Harel and Koren [64] proposed to decompose the data into arbitrarily

shaped clusters of different sizes and densities. Moonesinghe et al. [111] introduced an algorithm, called

Outrank, to detect outliers by random walk models. Sun et al. [149] constructed a bipartite graph based on

random walks with restart to address two issues: neighborhood formation and anomaly detection. Janeja

et al. proposed a random walk based Free-Form spatial scan statistic (FS3)[79] to construct a weighted

Delaunay Nearest Neighbor Graph (WDNN) to capture spatial autocorrelation and heterogeneity. These

applications of random walk methods showed that it can provide an accurate relevance scores between two

nodes in a weighted graph.

3.3 Random Walk on Bipartite Graph(RW-BP)

Intuitively, an SNO is an observation that is exceptionally different from its neighbors. One of the most

fundamental issues is how to accurately compute the relevance scores among the observations. In this

section, RW-BP method is designed to compute such scores by operating RW techniques on a weighted

bipartite graph. The main steps of RW-BP are described as follows.

1. Bipartite graph construction. The vertex sets in the bipartite graph correspond to the spatial objects
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Figure 3.1: Voronoi-based neighborhood formulation

and the clusters generated from the non-spatial attributes of the objects in the spatial database.

2. Similarity computation between spatial objects. Random walk is performed on the bipartite graph

to compute the similarities of the non-spatial attributes between any pair of the spatial objects.

3. Neighborhood formulation and outlierness computation. The spatial neighbor sets for each object

can be formed using the Voronoi diagram or kNN method. And the outlierness for each object is

computed as the differences between itself and its neighborhood.

4. Outlier identification. Finally, the outliernesses are ranked in an ascending order and the top l objects

are identified as spatial outliers.

3.3.1 Modeling Weighted Bipartite Graph

In RW-BP method, the weighted bipartite framework is denoted as G = 〈P ∪ C,E〉, where P is the set of

spatial objects, C is the set of clusters generated from the non-spatial attributes of the spatial objects, and

E is the set of weighted edges between the spatial objects and the clusters. P and C are two independent

sets such that E only exists between them. Constructing such a weighted bipartite graph consists of three

fundamental steps. First, non-spatial attributes of the spatial objects are clustered using clustering method.

Second, the bipartite graph is constructed in which the left vertex set consists of the spatial objects and the

right one consists of the cluster sets. Finally, the edge value is computed based on the non-spatial attributes

of the spatial objects and the centroid values of the clusters.

Considering the sample spatial dataset with 18 spatial objects in Figure 3.1, the K value (i.e., the num-

ber of clusters) equals to 5. Therefore, the cluster set is C1(10), C2(20), C3(100), C4(200), C5(300). There

are 18 spatial objects and 5 separate clusters, and its bipartite graph can be constructed as shown in Figure
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Figure 3.2: Bipartite Framework. The two partitions correspond to spatial objects and clusters

3.2. In particular, the cluster sets are calculated using K-means method in the non-spatial attribute space.

The main disadvantage when using K-mean lies in the fact that the optimum K value must be pre-specified.

To address this issue, a practical approach proposed by Ray et al. [132] is used to experiment with differ-

ent values of K to identify the values that better suit the data set. To generate more accurate results, the

non-spatial attributes can be clustered h times. And the K value at each time is slightly different with that

of at the other time, i.e., K1,K2, · · · ,Kh. The final cluster set in the right part is the union of cluster sets

generated individually, i.e., C = 〈C1 ∪ C2 ∪ · · · ∪ Ch〉. Therefore, in the right part of the bipartite graph,

there are m(= (K1 + K2 + · · · + Kh)) clusters. For each spatial object pi in the left part, there will be m

edges that connect it with all clusters. In RW-BP method, the edge value in the bipartite graph is defined as

the similarities between the spatial object and the cluster, which is shown as follows.

E 〈Pi, Cj〉 =
1

e|Atr(Pi)−Ctr(Cj)|
α , 0 < α ≤ 2 (3.1)

where, Atr(Pi) is the non-spatial attribute of the spatial object and Ctr(Cj) is the centroid value of the

corresponding cluster. α helps compute more accurate edge value, and is decided by range distribution of

the non-spatial attribute values of the whole data set. Normally, when the data values are in a smaller range,

α has a larger value, and vice versa.

3.3.2 Similarity Computation Between Spatial Objects

To compute the similarities between spatial objects, RW techniques can be directly applied to the weighted

bipartite graph. A random walk means that it starts from node i, and iteratively transmits to its neighborhood

with certain probability. At each step, it has the probability c to return to the original node. Random walk
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with restarts can be defined as Equation(3.2)[127]:

~Sp = (1− c)Wp
~Sp + c~ep (3.2)

Where Wp is the NAM (Normalized Adjacency Matrix) of point p. ~ep is an (n+m)−by−1 starting vector.
~Sp is the steady-state probability vector which can describe the similarity scores between point p and the

other points in the data set. c is known as the damping factor and is normally predefined as 0.1. Based on

Equation (3.2), ~Sp can be computed as follows.

~Sp = (1− c)(I − cWp)
−1~ep (3.3)

Obviously, NAM is a critical factor to compute more accurate solution about vector ~Sp. In the following,

the procedures of NAM generation are studied step by step.

Normalized Adjacent Matrix (NAM) Construction

The information illustrated by the BP can be stored in a n−by−m matrix M , where each entry, M(i, j), is

the weight of the edge 〈i, j〉. The bipartite graph in Figure 3.2 can be represented as follows (α= 1/2).

M18×5 =



1 e−101/2 e−901/2 e−1901/2 e−2901/2

1 e−101/2 e−901/2 e−1901/2 e−2901/2

· · · · · ·

· · · · · ·

e−101/2 1 e−801/2 e−1801/2 e−2801/2

e−101/2 1 e−801/2 e−1801/2 e−2801/2

· · · · · ·

· · · · · ·

e−901/2 e−801/2 1 e−1001/2 e−2001/2

e−1901/2 e−1801/2 e−1001/2 1 e−1001/2

e−2901/2 e−2801/2 e−2001/2 e−1001/2 1


As shown in this matrix, the row nodes correspond to the spatial objects and the column ones to the clusters.

Intuitively, if two nodes always belong to the same clusters, they have higher similarities. Otherwise, they

are very different with each other. Based on the relationship matrix Mn×m, we can construct the adjacent
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matrix Mp, which is an (n+m)× (n+m)matrix for any spatial object p.

Mp =

MT
n×m 0m×m

0n×n M(n×m)

 (3.4)

10 20 100 200 300
10 1 0.7475 0.0091 1.250e-004 4.658e-006
20 0.7475 1 0.0098 1.305e-004 4.793e-004

100 0.0091 0.0098 1 0.0017 0.0017
200 1.250e-004 1.305e-004 0.0017 1 2.940e-005
300 4.658e-006 4.793e-004 0.0017 2.940e-005 1

Table 3.1: Similarity Computation in RW-BP

Object Similarities Rank
C 4.7251e-005 1
B 1.2772e-004 2
A 0.0091 3
... ... ...
... 0.0134 ...
... ... ...
... 1 18

Table 3.2: Outlier Rank in RW-BP

Suppose a walker visits the bipartite graph starting from a random spatial object pi, the probability of

traversing the edge < pi, pj > should be in direct proportion to the weight values of all the outgoing edges

originating from point pi. We use the Equation (3.5) to normalize it.

Wp(i, j) = Mp(i, j)/
m+n∑
k=1

Mp(k, i) (3.5)

After normalization, the sum of each column in ~Wp is equal to 1.

Similarity Computation

After constructing the NAM, vector ~Sp can be directly computed using Equation (3.3). Before that, we
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need to define the vector ~ep. Generally, it is constructed with 1 in the ith row and 0 in the others. Here p is

the ith spatial object in Mn×m matrix, then

~ep = 〈01, · · · , 1i, · · · , 0n, · · · , 0m+n〉T (3.6)

Here, the subscript character of each entry represents the location of the entry in the vector. For example, 01

means that the first entry of the vector is 0. Similarly, 1i represents that the ith entry of the vector is 1. For

the object p3 in the Figure 3.2, the corresponding starting vector ~e3 can be represented as

~e3 = 〈0, 0, 1, 0, · · · , 0n, · · · , 0m+n〉T

There, the relevance vector for any specified point pi can be computed by using the Equation(3.2)or (3.3),

that is ~Sp. After deriving the relevance vectors of all the points, we can compute the similarities between

any pair of spatial objects using Cosine correlation, as shown in Equation(3.7).

Sim(pi, pj) =
(~Spi ,

~Spj )√
(~Spi ,

~Spi) ·
√

(~Spj ,
~Spj )

(3.7)

3.3.3 Spatial Outlier Identification

Computing the outlier score of any spatial object is to identify the similarity between a specified object and

its neighbors. In the example in Figure 3.1, we use Voronoi diagram to determine the spatial neighborhood

for each object. Given a set of n points p1, p2, · · · , pn in the spatial dataset, the Voronoi diagram can be con-

structed such that each object in the region surrounding the specific object is the closest to that object than

any others. For example, for the query point, A, we only need to consider those points whose representative

regions border the region of A. Therefore, the neighborhood set ofA is {n1(10), n2(10), n3(10), n4(10), n10(20)}.
Using Equation (3.2) and (3.7), we can identify the similarity between each point and its neighbor. Finally,

we can use the geometric mean or arithmetic mean of all the similarity values as the outlier scores for each

spatial object. Consider the sample spatial dataset shown in Figure 3.1. Clearly, object A, B, and C are

outliers and the rest ones correspond to normal objects. Using RW-BP approach, the non-spatial similarities

between each pair of points can be computed. Table 3.1 shows the detailed results.

With the results in Table 3.1, we can determine the relevances(outlierness) between any object and its neigh-

borhood. For example, the outlierness of point C can be computed using the geometric mean value, shown
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as follows.

OutScore(C) = ((4.658e− 006)3 ∗ (4.793e− 004)3)1/6

= 4.7251e− 005

Repeatedly, we can compute the outlierness values for the other spatial objects. The final outlier scores and

the ranking list are described in Table 3.2.

3.3.4 RW-BP Algorithm

Based on the above proposed idea, we generalize the RW-BP algorithm to identify spatial outliers with

single attributes in a weighted bipartite graph. The proposed algorithm has 7 input parameters, which are

described in Table 3.3.

Parameter Description
X A dataset storing the spatial attributes.
Y A dataset storing the non-spatial attributes.
k The optimal number of clusters.
r The pre-defined number of requested outliers.
h The number of clustering operations on set Y .Generally, h ≤ 10.
n The number of spatial objects in the dataset.
c The damping factor.

Table 3.3: Main Parameters in RW-BP and RW-EC
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Algorithm 1 RW-BP SNOD Approach
1: for i = 1 to n do {Calculate the neighborhood for each object}
2: Neighbors(xi) = kNN(X,xi)
3: end for
4: for i = 1 to h do {Calculate the cluster sets of nonspatial attribute set Y}
5: Ci = K −mean(Y, ki)
6: end for
7: C =

⋃h
i=1Ci{Get the overall cluster sets.}

8: G = 〈X,C,E(X,C)〉{Construct Bipartite Graph}
9: for i = 1 to n do {Construct the relation matrix of the bipartite graph}

10: for j = 1 to |C| do
11: M(i, j) = 1/e|Yi−Ctr(Cj)|

α

12: end for
13: end for

14: M =

(
MT
n×m 0m×m

0n×n M(n×m)

)
{Construct adjacent matrix}

15: W(n+m)×(n+m) = ColumnNorm(M(n+m)×(n+m)){Normalize the adjacent matrix}
16: for i = 1 to n do {Compute similarity vector for each object}
17: ~Si = (1− c)(I − cW(n+m)×(n+m))

−1~ei
18: end for
19: for i = 1 to n do {Compute the relevance scores between specified object and its neighbors}
20: for j = 1 to k do
21: nb = Neighbor(i, j) {Get Current Neighbor}

22: Sim(i, nb) = (~Spi ,
~Spnb)/(

√
(~Spi ,

~Spi) ·
√

(~Spnb ,
~Spnb))

23: end for
24: end for
25: for i = 1 to n do {Compute the Outlierness for each spatial object}
26: OutScoresi = f(Simn×n, Neighbors(X,xi))
27: end for
28: RankList = RankQueue(OutScores){Rank the objects with the similarities}
29: Or = MaxOutlier(RankList, r){Mark the outliers}

For each data object xi, the first step is to identify its spatial neighbors, Neighbors(X,xi). Next, us-

ing K-means method, we conduct several clustering on the set of Y . At each loop, we get correspond-

ing cluster set Ci. The overall cluster set is the union of cluster sets, C. We construct a bipartite graph,

G =< X,C,E(X,C) >, between the spatial datasets and the cluster sets. The edge values between them

are computed by the non-spatial attributes and the centroid values of the clusters. With the relationship

matrix corresponding to the bipartite graph, we deduce the normalized adjacent matrix which is used in

Equation (3.2) to compute the similarity matrix. Cosine similarity equation is also used to compute the final

relevance scores between any pair of spatial objects. Finally, outlierness scores OutScores are computed

as the differences between the specified objects and their neighbors and the top r objects with the lowest
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values are detected as the outliers.

Time Complexity. To form the neighborhood, it will take O(NlogN) for Voronoi diagram and O(logN)for

kNN(Space partitioning). When we conduct the clustering on the non-spatial attributes, the time complexity

of K-mean method is linear in all relevant parameters: iterations H, number of clusters M, and number of

spatial objects N, i.e., O(IMN). Constructing the normalized adjacent matrix has time complexity of O(NM).

Calculating the relevance vector for each spatial object costs O(NlogN). Finally, computing the similarity

between specified object and its neighbor costsO(kN2). In summary, assuming N>>M, N>>k and N>>I,

the total time complexity of RW-BP approach isO(N2)(=O(logN)(or O(NlogN))+O(IMN)+O(NM)+O(NlogN)+

O(kN2)).

3.4 Random Walk on Exhaustive Combination (RW-EC)

RW approach is an efficient graph-based technique. It is very powerful to identify the relationship among

the points once the graph is well-constructed. In this section, we continue investigating the benefits of RW

techniques on spatial outlier detection. Using the spatial and non-spatial attributes of points, we propose

another different graph, EC (Exhaustive Combination). The operation of RW techniques on EC constructs

another different algorithm, RW-EC (Random Walk on Exhaustive Combination) to identify the spatial

outlier. The main steps of RW-EC are described as follows.

1. Construction of the weighted EC graph. In EC graph,the vertex set composes of all the spatial

objects in the dataset and there is an edge between each pair of spatial objects.

2. Similarity computation between spatial objects. Random walk is performed on the EC graph to

compute the similarities between any pair of the spatial objects.

3. Neighborhood formulation and outlierness computation. Similarly, the spatial neighbor sets are

formed by the Voronoi diagram or kNN method. And the outlierness for each object is computed as

the similarities between itself and its neighborhood.

4. Outlier identification. Finally, the top k objects in the ranked-outlierness list are identified as the

spatial outliers.

Actually, RW-EC and RW-BP methods are both the application of RW techniques on the spatial outlier

detection based on different weighted graph.They share the same idea. In the following, we introduce the

different steps: modeling of the weighted EC graph and construction of normalized adjacent matrix (NAM).
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3.4.1 Modeling Weighted EC graph

Given a spatial dataset, the EC graph is constructed with the information of the spatial and non-spatial

attributes. For any pair of objects, there is one edge which connects them and the edge value can be computed

using Equation(3.8).

E 〈Pi, Pj〉 =
1

e|Atr(Pi)−Atr(Pj)|
α ∗

1

dist(Pi, Pj)

0 < α ≤ 2 and i 6= j (3.8)

Normally, dis(Pi, Pj) is decided by the Euclidean Distance. If there is a very large data set, we can consider

10 ... 20 ... 100 200 300
10 1 ... 0.5207 ... 0.7629 0.6200 0.5363
10 0.9076 ... 0.5213 ... 0.7624 0.6204 0.5367
... ... ... ... ... ... .... ...
20 0.5207 ... 0.5213 ... 0.7924 0.6477 0.5596
20 0.5131 ... 0.5213 ... 0.7888 0.6452 0.5574
... ... .. ... ... ... .... ...

100 0.7629 ... 0.0.7924 ... 1 0.7808 0.6759
200 0.6200 ... 0.6477 ... 0.7808 1 0.9332
300 0.5363 ... 0.5596 ... 0.6759 0.9332 1

Table 3.4: Similarities Computation in RW-EC

Object Similarities Rank
C 0.5478 1
B 0.6337 2
A 0.7687 3
... ... ...
... 0.8756 ...
... ... ...
... 0.9180 18

Table 3.5: Outlier Rank in RW-EC

only construct partial edges for the sake of efficiency (like 20%× |E|).
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3.4.2 Normalized Adjacent Matrix Construction

In RW-EC method, adjacent matrix is an n−by−n matrix, where each entry, M(i, j), is the weight of the

edge E 〈pi, pj〉. pi and pj are two spatial objects. For example, the first row of the adjacent matrix for the

EC graph can be represented as follows (α= 1/2).

M1,1 =



0

(1/dis(2, 1))

...

...

(e−(101/2)/dis(10, 1))

...

...

e−(901/2)/dis(16, 1))

e−(1901/2)/dis(17, 1))

e−(2901/2)/dis(18, 1))



T

In the adjacent matrix in RW-EC, both the row and column nodes correspond to the spatial objects. The

NAM is an n−by−n matrix and directly constructed by column-normalizing the adjacent matrix.

In the same way, we use Equation (3.2) to compute the similarity vector for each object and then use

Equation (3.7) to get the final outlier scores for all spatial objects. Given the same example, the similarities

matrix and outlierness vector computed by RW-EC method are given in Table 3.4 and 3.5.

3.4.3 RW-EC Algorithm

RW-EC algorithm is generated in this part and its main input parameters are illustrated in Table 3.3.

In RW-EC algorithm, we compute each edge value during forming the kNN neighbors (linear search). And

then, the adjacent matrix is constructed based on the edge values. Actually, if the size of the dataset is very

large, we can only consider 20 − 50% × |E| edges. That is, the weights of the first 20 − 50% neighbors

are still decided by the spatial and non-spatial attributes, but that of the rest edges is all defined as 0. After

normalizing the adjacent matrix, we use the RW techniques to derive the relevance vector for each objects on

which the similarities between specified object and its neighbors are computed using the Cosine Similarity.

Finally, ranking the outlierness help generate the top r outliers.
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Algorithm 2 RW-EC SNOD Approach
1: for i = 1 to n do {Construct the EC Graph and Calculate the neighborhood}
2: for j = 1 to n do
3: E(i, j) = 1/e|Yi−Yj |

α

∗ 1/dis(Xi, Xj)
4: end for
5: Neighbors(xi) = kNN(X,xi)
6: E
7: end for
8: for i = 1 to n do {Construct the relation matrix of the EC graph}
9: for j = 1 to n do

10: M(i, j) = E(i, j)
11: end for
12: end for
13: Wn×n = ColumnNorm(Mn×n){Normalize the adjacent matrix}
14: for i = 1 to n do {Compute similarity vector for each object}
15: ~Si = (1− c)(I − cWn×n)−1~ei
16: end for
17: for i = 1 to n do {Compute the relevance scores between specified object and its neighbors}
18: for j = 1 to k do
19: nb = Neighbor(i, j) {Get Current Neighbor}

20: Sim(i, nb) = (~Si, ~Snb)/(
√

(~Spi ,
~Spi) •

√
(~Snb, ~Snb))

21: end for
22: end for
23: for i = 1 to n do {Compute the Outlierness for each spatial object}
24: OutScores(i) = f(Simn×k, Neighbors(X,xi))
25: end for
26: RankList = RankQueue(Sim(X)){Rank the objects with the similarities}
27: Or = MaxOutlier(RankList, r){Mark the outliers}

Time Complexity. To form the neighborhood, it will take O(N2)for kNN(Linear search, which helps con-

struct the EC graph). Constructing the normalized adjacent matrix has the time complexity of O(N). Calcu-

lating the relevance vector for each spatial object costs O(NlogN). Finally, computing the similarity between

specified object and its neighbor costs O(kN2). In summary, assuming N>>k,the total time complexity of

RW-EC approach is O(N2)(=O(N2)+O(N)+O(NlogN)+ O(kN2)).

3.5 Experiment Results and Analysis

We conducted an extensive simulation and real datasets to compare the performance among the proposed

RW-BP, RW-EC methods, and other related SOD methods proposed in [7, 62, 90, 143, 150].
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3.5.1 Simulations

This section studies the extensive simulations to compare the performance between the RW based methods

and other related SOD methods. The experimental study followed the standard statistical approach for eval-

uating the performance of 7 kinds of SOD methods.

Simulation Settings.

Data Set: The simulation data were generated based on a standard statistical model [137] with the de-

composition form:

Z(s) = β + ω(s) + ε(s) (3.9)

where β ∼ N(0, 1), ω(s) refers to a Gaussian random field with covariogram model C(h; θ), and ε(s) refers

to measurement error or white noise variation. We considered a popular exponential covariogram model.

The exponential model is defined as

C(h; b, c) =


b if x ≥ 0

b(1− exp(−h
c )) if 0 < h ≤ c

0 if h > c

where h refers to the spatial distance between two sample objects si and sj , the parameter b refers to a con-

stant variance for each Z(s), and c refers to a valid distance range for nontrivial dependence (or covariance).

For the white noise component, we employed the following standard model[39]:

ε(s) ∼

 N(0, σ2
0) with probability 1− α

N(0, σ2
C) with probability α

There are three related parameters σ2
0 , σ2

C and α. σ0
2 is the variance of a normal white noise, σ2

C is the vari-

ance of contaminated error that generates outliers, and α is used to control the number of outliers. Note that

it is possible that the distribution N(0, σC
2) generates some normal white noises. All true outliers must be

only identified based on standard statistical test by calculating the conditional mean and standard deviation

for each observation[137]. In the simulations, we tested several representative settings for each parameter,

which were summarized in Table 3.6.

Outlier detection methods
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Variable Settings
N N ∈ 100, 200. Randomly generate n spatial lo-

cations si(i ∈ [1,N])in the range [0,25]× [0,25]
b,c b=5; c =5,15,25
β β1 N(0,1) and βi = 0, i = 2, ..., 5

σ0, σC σ0
2 = 2, 10;σC

2 = 20
α α = 0.05, 0.10, 0.15
K K = 5, 10

Table 3.6: Combination of Parameter settings

We compared our methods with the state of the art local based SOD methods, including Z-test [143],

Scatterplot[62], MoranScatterplot[7], SLOM-test[150]and POD[90] approach. Our proposed methods are

identified as RW-BP and RW-EC approach. The implementations of all existing methods are based on their

published algorithm descriptions. Performance metric: We tested the performance of all methods for every

combination of parameter setting in Table 3.6. For each specific combination, we ran the experiments ten

times and then calculated the mean of accuracy for each method. To compare the accuracies of each method,

we used the standard ROC curves. For RW-BP approach, the non-spatial attribute set was clustered 6 times

(k=6,7,8,9,10,11, respectively). The dumping factor c was set as 0.9 and α was set as 2 in both RW-BP and

RW-EC.

Detection Accuracy
We compared the outlier detection accuracies of different methods based on different combinations of pa-

rameter settings as shown in Table 3.6. Six representative results are displayed in Figure 3.3. Obviously,

RW-EC and RW-BP have very preceding performance increases. RW-based methods achieved 20-30 %

improvement over POD and SLOM methods, 40-50 % over Moran-Scatterplot method and 60-70 % over

Scatterplot method. Compared with RW-EC, RW-BP is slightly more outperforming.

Meanwhile, Z-value test has also very impressive performance on the simulation. Z-value is under the null

hypothesis stating that the data fits a normal distribution. It computes the mean and standard deviation of

the entire dataset to compute the outlierness for each object. As mentioned above, since our simulation data

is just generated from standard normalized distribution, there is no doubt that Z-value is one of the most

appropriate methods for the simulation data. Figure 3.3 depicts that ROC curves derived from RW-based

methods have very similar trend with that of Z-value method. In a sense, RW based approach can accurately

detect the outliers in the dataset with normal distribution although they don’t make such hypothesis.

When being utilized into a real dataset with unknown distribution, Z-value may not shown such outper-

forming performance since many datasets do not conform to normal distribution. By contrast, RW based
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technique is more practical since it doesn’t need to assume any distribution of the data. Its effectiveness

has been shown in varieties of real applications [61, 64, 79, 108, 111, 124, 149]. In the following, we will

demonstrate their competitive performances by applying them into a real dataset.

3.5.2 Experiments on Real Dataset

In this section, we present the experimental results on the real datasets to further demonstrate the accuracy

of the proposed RW-based approaches.

The Real Dataset: The Fair Market Rents data was used for outlying objects identification, which we aimed

to find counties whose rental prices were very different from counties in its neighborhood. The Fair Market

Rents data was provided by the Policy Development and Research, U.S. Department of Housing and Urban

Development (PDR-DHUD). It included the rental prices for apartments of different kinds varying from

one-bedroom to four-bedroom apartments in 3000+ counties of the US. The location of each county was

determined by the longitude and latitude of its center. The neighboring counties were determined by the

kNN method.

Parameter Setting in RW-BP approach: The dataset was clustered for 6 times (h = 6) with six different

k values: 8, 10, 12, 14, 16 and 18, respectively. The dumping factor (c) was set to 0.9, a value which was

commonly used by other approaches [108, 124, 149], and α was set to 1/2.

Z-Value SLOM ScatPlot M-ScaPlot POD RW-BP RW-EC
Nantucket(MA) Blaine(ID) KingGeorge(VA) Blaine(ID) Blaine(ID) Blaine(ID) Nantucket(MA)

Pitkin(CO) Teton(WY) Plymouth(MA) Teton(WY) Teton(WY) Summit(UT) Blaine(ID)
Summit(UT) Lubbock(TX) Blaine(ID) Elbert(CO) Summi(UT) Teton(WY) Suffolk(MA)
Orange(CA) Summit(UT) Caroline(VA) Surry(VA) Suffolk(MA) Suffolk(MA) Teton(WY)
Blaine(ID) Pennington(SD) Howard(MD) LaPaz(AZ) Coconino(AZ) Fairfield(CT) Fairfield(CT)
Clarke(VA) Hughes(SD) Kern(CA) Kanabec(MN) Fairfield(CT) Coconino(AZ) Summit(UT)

Suffolk(MA) Dane(WI) Teton(WY) Dorchester(MD) Nantucket(MA) Nantucket(MA) Mono(CA)
Frederick(MD) Boone(MO) Summit(UT) Sumter(FL) Dane(WI) Pitkin(CO) St.Mary’s(MD)
Coconino(AZ) Yellowstone(MT) SanJoaquin(CA) Blanco(TX) Pitkin(CO) Dane(WI) Coconino(AZ)
Ventura(CA) Codington(SD) Worcester(MA) Sussex(VA) Eagle(CO) Rockingham(NH) SanBenito(CA)

Table 3.7: Top 10 spatial outliers with single attribute detected by seven different approaches

Detection of spatial outliers. We applied seven different algorithms to the Fair Market Rent data, including

Z-Value, Scatterplot, Moran-Scatterplot, POD, SLOM and RW-EC, RW-BP approaches. For all the methods,

k was set to 10 to compute the neighborhoods. Table 3.7 depicts the top ten outlying counties based on the

one-bedroom rent in 2005.

As shown in Table 3.7, POD, RW-BP and RW-EC outperform other approaches. They identify the true

outliers (like Blaine(ID), Fairfield(CT), Summit(UT), etc) although the outliers are not ranked in the same

order. Compared with these three methods, Z-value tends to miss some true outliers, like ST.Mary’s(MD)(as

shown in Table 3.8) and FairField(CT), etc.
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Figure 3.3: Outlier ROC Curve Comparision (the same setting; n =100, b=5, c=5)
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CountyName Rent Latitude Longitude
St.Mary’s(MD) 702 -76.5976 38.2939
Calvert(MD) 1045 -76.5177 38.5061

Westmoreland(VA) 496 -76.8321 38.1556
Richmond(VA) 496 -76.733 37.9266
Charles(MD) 1045 -76.9723 38.5221

Northumberland(VA) 496 -76.3721 37.8674
Essex(VA) 496 -76.9066 37.9162
King(VA) 611 -77.1525 38.2918

Lancaster(VA) 496 -76.4502 37.6974
Dorchester(MD) 451 -75.9839 38.5466

King(VA) 496 -76.8984 37.7005

Table 3.8: ST.Mary’s county

ST. Mary’s (MD) is identified as the 8th outlier by RW-BP. Table 3.8 gives the rental prices of the county

and its neighbors. As we can see, the rents of some neighbors (such as, Calvert(1045) and Charles(1045))

are much higher and the others(Westmoreland(496),Richmond(196), Northumberland(496), etc) are much

lower. Intuitively, the rent in ST.Mary’s is very different with those of its neighbors. However, such outly-

ing behavior cannot be detected by Z-Value, SLOM, scatterplot and Moran scatterplot. This is due to their

intrinsic properties when identifying the outlying behavior. For example, Z-Value identifies the outliers

by normalizing the difference between a spatial object and the average of its spatial neighbors. Moran

scatterplot detects the spatial outliers by normalizing the attribute values against the average values of the
corresponding neighborhood. Averaging the rents of the neighbors neutralizes such significant differ-

ences. RW-based approaches address this issue since they accurately compute the similarities among spatial

objects on which the outlierness is identified. SanBenito(CA) being identified as the 10th by RW-EC and

Rockingham being identified as the 10th by RW-BP are the same case and the information is shown in Table

3.9 and 3.10.

RW based methods can also avoid identifying the false outliers. As can be seen from Table 3.7, 80 % outliers

identified by RW-BP and RW-EC are also identified by other approaches. Put differently, what RW based

methods identified are true outliers. On the contrary, SLOM, Scatterplot and Moron-Scatteplot not only miss

some true outliers, but incorrectly recognize some not very outlying points as true outliers. For example,

Yellowstone(MT) (Table 3.11) by SLOM approach and Dorchester(MD) (Table 3.12) by Moran-Scatterplot

approach.
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CountyName Rent Latitude Longitude
SanBenito(CA) 824 -121.2888 36.7458
Monterey(CA) 931 -121.529 36.4507

Santa(CA) 1111 -121.9738 37.0023
Merced(CA) 536 -120.6741 37.2458
Santa(CA) 1107 -121.9128 37.3065

Stanislaus(CA) 645 -120.9588 37.6138
San(CA) 635 -121.2813 37.946

Alameda(CA) 1132 -122.0962 37.7167
Madera(CA) 556 -120.0324 37.0351

San(CA) 1305 -122.3319 37.531
Fresno(CA) 556 -119.9035 36.6384

Table 3.9: SanBenito county

CountyName Rent Latitude Longitude
Rockingham(NH) 750 -71.0776 42.9629

Strafford(NH) 648 -70.9761 43.2583
Essex(MA) 878 -70.9708 42.6355

Hillsborough(NH) 605 -71.5827 42.8956
Middlesex(MA) 884 -71.2756 42.4591

Suffolk(MA) 1120 -71.0735 42.3349
York(ME) 577 -70.6632 43.4458

Merrimack(NH) 624 -71.6373 43.2777
Belknap(NH) 592 -71.4361 43.5152
Norfolk(MA) 914 -71.1544 42.1992
Carroll(NH) 564 -71.1816 43.8226

Table 3.10: Rockingham county

Taking county Dorchester(MD) as an example, most of its neighbors have nearer value. Therefore, it should

not be identified as a spatial outlier.It is identified as outlier by Moran-Scatterplot approach mainly because

Calvert(MD), one of its neighbors, has higher rent {1045} and significantly raises the average rent of the

neighborhood. Random walk based method can avoid such problem since it considers not only the relation-

ship with neighborhood when generating the relevance vectors, but the non-spatial attribute distribution of

the whole dataset.

Another important issue of existing approaches is the way of identifying the outlierness. They compute the

inconsistencies between each object and its neighbors without considering the values of identified object
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CountyName Rent Latitude Longitude
Yellowstone(MT) 452 -108.4607 45.8165
Musselshell(MT) 398 -108.3922 46.5546

Carbon(MT) 405 -109.0876 45.3132
Golden(MT) 398 -109.1253 46.3904

Stillwater(MT) 398 -109.3663 45.6301
Big(MT) 398 -107.4838 45.5101

Petroleum(MT) 398 -108.2901 47.0005
Treasure(MT) 398 -107.2915 46.2544

Big(MT) 417 -108.0671 44.5374
Park(MT) 428 -108.999 44.569

Sweet(MT) 398 -109.9178 45.8554

Table 3.11: Yellowstone county

CountyName Rent Latitude Longitude
Dorchester(MD) 451 -75.9839 38.5466

Talbot(MD) 575 -76.1138 38.769
Caroline(MD) 513 -75.8308 38.8752

Wicomico(MD) 576 -75.5945 38.3773
Somerset(MD) 460 -75.7688 38.1057

Queen(MD) 750 -76.0995 39.0478
Calvert(MD) 1045 -76.5177 38.5061
Sussex(DE) 548 -75.3423 38.6514

St.Mary’s(MD) 702 -76.5976 38.2939
Kent(DE) 598 -75.5603 39.0927
Kent(MD) 558 -76.0537 39.2605

Table 3.12: Dorchester county

and its neighbors, which may lead to an inaccurate ranking list. The typical method is POD approach

which first constructs a graph by assigning the non-spatial attribute differences as edge weights, and then

continuously cuts high-weight edges to identify isolated points. Figure 3.4 depicts such issue by comparing

two county Eagle(CO) and St.Mary’s(MD). Actually, St.Mary’s(MD) is ranked as 17th by POD. If we

evaluate their outliernesses only by considering the direct differences between the detected object and its

neighbors as POD method does, county Eagle will have a little more higher value than county St.Mary’s

since [Diff(Eagle) = Avg(117 + 366 + 262 + 199 + 295 + 250) = 256] > [Diff(St.Mary′s) =

Avg(343 + 206 + 206 + 206 + 206 + 191) = 226]. However, intuitively, county St.Mary’s is more outlying

since most non-spatial attributes of itself and its neighbors are not high ([400, 750]). By contrast, those

of Eagle is higher ([600, 950]). The difference around 200 makes St.Mary’s more outlying and it should
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be ranked higher than county Eagle. This issue may also result in identifying false outliers sometimes. In

Figure 3.4: Example of two spatial objects

this regard, RW based approaches do better than other methods, including POD. This is because they utilize

the Cosine similarity to identifying the outlierness, which means it takes the relationship between these two

points and all other points into consideration. Actually, RW-BP does even better than RW-EC since RW-BP

also integrates the relationship between any specified object and the clusters into the construction of adjacent

matrix before deriving the relevance vector. Although POD performs as well as RW-BP and RW-EC in the

real data, the worse results influenced by such issue have been demonstrated by the simulations.

Figure 3.5: Case 1: Masking Problem incurred by SLOM

3.6 Conclusion

In this chapter, we propose two spatial outlier detection approaches based on RW techniques: RW-BP and

RW-EC approaches. In these methods, two kinds of weighted graphs, a Bipartite graph and an Exhaustive
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Figure 3.6: Case 2: Swamping Problem solved by RW-SNOD approach

combination, are constructed based on the spatial and/or non-spatial attributes of the spatial objects in the

dataset. Secondly, RW techniques are utilized on the graphs to compute the outlierness for each point. The

top l objects with higher outlierness are recognized as outliers. The proposed algorithms have three major

advantages compared with the existing SOD methods: capable of avoiding the masking and swamping

problems and detecting identifying more correct ranking lists. The experiments conducted on the synthetic

and real datasets demonstrated the RW based methods significantly outperformed other approaches.

Future efforts could focus on extending this works on spatial categorical dataset and identifying the number

of anomalies by integrating the entropy theory.



Chapter 4

An Entropy-Based Method for Assessing the
Number of Spatial Numerical Outlier

As introduced by the above two chapters, detecting spatial outliers is an important topic in the field of spa-

tial data mining. A major limitation associated with the existing outlier detection algorithms is that they

generally require a pre-specified number of spatial outliers. Estimating an appropriate number of outliers

for a spatial data set is one of the critical issues for outlier analysis. This chapter proposes an entropy-based

method to address this problem in spatial numerical domain. Based on the relationship between outliers

and the overall entropy, that is, the data set with more outiers has a higher entropy value than that with less

outliers, we expect that, by incrementally removing outliers, the entropy value will decrease sharply, and

reach a stable state when all the outliers have been removed.

This chapter is organized as follows. Section 4.1 surveys the related work. Section 4.2 presents funda-

mental concepts, including the entropy and the characteristics of SNOs. Section 4.3 proposes an approach

to assessing the optimal number of SNOs. Section 4.4 presents experimental evaluation on a real dataset

by applying our method to the POD approach [91], and discusses the empirical results. Finally, section 4.5

provides some concluding remarks.

4.1 Backgrounds and related works

Recently, numerous SNOD approaches have been proposed. A major limitation associated with them is

that they all assume a pre-specified number of SNOs, typically 5% of the entire dataset. However, there

is a well-known problem of masking and swamping effects for SNOD. Masking occurs when true outliers

47
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are not accurately identified; swamping happens when some normal objects are erroneously flagged as

outliers [63]. This detrimental effects can be alleviated by determining an appropriate number of outliers.

In this regard, estimating an optimal number of SNOs has become one of the most essential issues in outlier

analysis. Recently, several works have been focused on assessing an appropriate number of clusters and

outliers. Celeux et al. proposed entropy-based criterion, Normalized Entropy Criterion (NEC), to estimate

the number of clusters associated to a mixture model [25]. This entropy criterion is derived from the relation

between the mixture model and cluster analysis. lu et al. introduced a new evolutionary algorithm for

identifying the optimal number of clusters [102]. They defined an entropy-based fitness function to measure

how ell the mixture model fits the data sample. Barbara et al. studied the connection between clusters

and the entropy, and concluded that the clusters with similar points have lower entropy values than those

with dissimilar ones [12]. They designed a clustering algorithm, named as COOLCAT, which groups points

within clusters by trying to minimize the expected entropy value of clusters. This algorithm can also be

utilized to identify the optimal number of clusters. Nikhil et al. proposed a new concept of probabilistic

entropy based on the exponential behavior of information gain [125]. Beghdadi et al. presented a nonlinear-

noise filtering method based on the entropy definition [13].

4.2 Preliminary Concept

This section introduces the theoretical concepts of the proposed approach, including entropy, spatial local

contrast, spatial local contrast probability, and spatial local contrast entropy.

Entropy: Entropy is the measure of information and uncertainty of a random variable[13, 139]. If X is

a discrete random variable, S(X) is the set of possible distinct value that X can take, and p(X) is the

probability function X , the entropy E(x) can be defined as follows:

E(X) = −
∑

X∈S(X)

p(X) log(p(X)) (4.1)

Spatial Local Contrast: The spatial local contrast can be viewed as the differences between an object and

its surrounding neighbors. Generally, it is directly related to its spatial outlierness. Given a point object i,

the center of an area Ai(Ai includes the point object and its surrounding k neighbors), its spatial outlierness

value can be represented by Oi. A spatial location contrast Di is the function of the outlierness Oi:

Di = f(Oi) (4.2)
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Spatial Local Contrast Probability: Based on the concept of “Spatial Local Contrast”, we define “Spatial

Local Contrast probability” as follows:

Pi =
Di∑n
i=1Di

=
f(Oi)∑n
i=1 f(Oi)

(4.3)

In Equation 4.3, n is the number of objects in the spatial dataset. A zero spatial local area, i.e., a homoge-

neous region, corresponds to a zero probability. Based on the definition of spatial local contrast probability,

spatial local contrast entropy can be computed.

Spatial Local Contrast Entropy(SLCE): Spatial local contrast entropy can be formalized as:

H = −
n∑
i=1

(
f(Oi)∑n
i=1 f(Oi)

log(
f(Oi)∑n
i=1 f(Oi)

)) (4.4)

Motivated by the fact that the spatial local contrast probabilities of outliers are higher than those of other data

points, we infer that an outlier point significantly contributes to the spatial local contrast entropy because its

spatial local contrast probability is high. The fundamental concept of the proposed technique is that when

spatial outliers are incrementally removed from the data set, the spatial local contrast entropy value will be

continuously decreased until it reaches a stable state when all the outliers have been removed.

4.3 Proposed Approach

Previous analysis shows that the spatial local contrast entropy will be zero when a dataset is homogeneous.

In contrast, the spatial local contrast entropy will be very high if there are a number of outliers in a data set.

The outlying objects substantially contribute to the spatial local entropy because the spatial local contrast

probabilities of outliers are high. Therefore, if we plot a figure in which the x-coordinate denotes the number

of removed outliers and the y-coordinate denotes the spatial local contrast entropy value, we expect a curve

which decreases quickly, and then reaches a point where the spatial local contrast entropy value is relatively

stabilized. This point is an appropriate estimate for the optimal number of spatial outliers.

4.3.1 The Sliding Window

Removing a point from the data sets will affect the spatial local contrast entropy. This is because the size

of the spatial data set has been changed. For example, if the original size is n, it will become (n − 1) after

removing one point. In this regard, the comparison of entropy values between the data sets of different size

is not legitimate.
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To address this issue, we introduce the concept of sliding window, which sets a fixed value for dataset

as m. That is, after removing one outlier, we compute the spatial entropy of the m point objects. Figure 4.1

shows the concept of applying the sliding window concept to our approach.

Figure 4.1: A sliding window

First, sort the data based on their outlierness values by a descending order. Suppose there are n data objects

in the entire data set. We set a sliding window with m point objects, which specifies the computation of the

spatial local contrast entropy.

Second, compute the spatial local contrast entropy from the 1st point to the mth point. The spatial local

Local Contrast Entropy(SLCE) is computed as follows:

H0 = −
m∑
i=1

Pi logPi (4.5)

After removing the first outlier whose outlierness value is the highest, we reorganize the strucuture of the

remaining dataset to reflect the neighborhood change due to the removal of the outlier. We then recompute

the spatial local contrasts and their corresponding spatial local contrast probabilities. The sliding window

is shifted by one object, that is, the current window is from the 2nd point to the (m + 1)th point. The

corresponding SLCE is calculated as follows:

H1 = −
m+1∑
i=2

Pi logPi (4.6)
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After removing the second outlier, the window is shifted again and the spatial entropy is computed from the

3rd point to the (m+ 2)th point:

H2 = −
m+2∑
i=3

Pi logPi (4.7)

Continue this procedure till the final spatial local entropy is aggregated from the (n−m+ 1)th point to the

nth point:

Hn−m = −
n∑

i=n−m+1

Pi logPi (4.8)

4.3.2 Algorithm description

This subsection introduces the proposed algorithm, named as SLCE, to compute the Spatial Local Contrast

Entropy, and discusses the major characteristics of our approach. The input and output of SLCE algorithm

are descried in Table 4.1. Algorithm 3 describes this approach as the following 4 steps.

Input
X A dataset storing spatial and non-spatial attributes.

points A dataset storing outlier values.
k The number of neighbors.
m the size of sliding windows.

kNN the set of the neighborhood relationship.
O(xi) An outlierness function

Output
H The sum of spatial entropy.

Table 4.1: Input and Output in SLCE
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Algorithm 3 Spatial Local Contrast Entropy (SLCE)

1: n = size(points); {Step 1: Sort spatial points in a dataset}
2: Y = sort(points)
3: for i = 1 to n−m do
4: outlierID = outliers(i, 1);{Retrieve the top outlier based on outlierness values}
5: ruleoutOutlier(outlierID); {Remove the outlier from kNN}
6: kNN = adjustNeighbors(kNN);{Step 2: Recompute the k nearest neighbor set}
7: for j = 1 to n− i do {Step 3: Calculate the spatial local contrast}
8: D(xj) = f(O(xj));
9: end for

10: for j = 1 to m do {Calculate the spatial local contrast probability}
11: P (xj) =

D(xj)
sum(D) ;

12: end for
13: while getNode(outlier, j,m) do {Step 4: Calculate the SLCE of the sliding window}
14: H(j) = H(j) + (−1) ˙log2(P (xj));{get the jthoutlierfromthedataset}
15: end while
16: end for
17: Output(H);

The outlierness function O(xi) is computed based on different approaches to identifying spatial outliers.

Given a spatial data set X = x1, x2, ..., xn, an outlierness function O(xi), two positive integer number k

(the number of neighbors) andm(the size of sliding window), the major steps in this algorithm are described

as follows:

Step 1:Sort spatial points based on outlierness values

Compute a data set Y = y1, y2, ..., yn by decendingly sorting spatial points based on their correspond-

ing outlierness values.

Step 2: Recompute the nearest neighbor set

Remove the top outlier from the current list, and for each spatial point xi, recompute the k nearest neighbor

set NNk(xi).

Step 3: Compute local contrast probability

Let D(xi) and P (xi) denote the spatial local contrast and spatial local contrast probability of a point xi,

respectively. They are both the functions of O(xi). That is, D(xi) = f(O(xi)), and P (xi) = O(xi)∑
f(O(xi))

for

i = 1, 2, ...,m.
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Step 4: Compute the spatial entropy

Using the getNode function, retrieve all the outliers in the sliding window. Based on the D(xi) and P (xi),

calculate the spatial local contrast entropy: SLCE = −
∑

( f(O(xi))∑
f(O(xi))

log2( f(O(xi))∑
f(O(xi))

)).

Step 5: Repeat step 2 to step 4 for (n−m) iterations.

From the original data set, we compute the spatial local contrast entropy H0, from the 1st point to the

mth point. After removing the first outlier, we reorganize the data set, and compute theNNk(xi) andO(xi)

for those points with neighborhood updates. We can then calculate the next spatial entropy H1 from the 2nd

point to the (m + 1)th point. We continue this procedure until the last spatial entropy Hn−m is computed

from (n −m + 1)th point to the nth point. Based on the set of SLCE values, we plot a curve in which the

number of removed outliers is denoted by the x-axis and the corresponding entropy value is denoted by the

y-axis. From this curve, we assess the cut-off point to estimate an optimal number of spatial outliers.

4.4 Experiment Results and Analysis

Figure 4.2: Single attribute, SLCE curve (k=8, m=50)

In this section, we present experimental results on a real data set, Fair Market Rents data, provided by the

PDR-DHUD(Policy Development and Research, U.S. Department of Housing and Urban Development).

The data set includes the rental prices for efficiencies, one-bedroom apartments, two-bedroom apartments,

three-bedroom apartments, and four-bedroom apartments in 3000+ counties of the U.S.. In the experiment,
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the outlierness function is defined by the POD method[91], which is a graph-based method to identify the

spatial outliers. Note that our method can also be applied to other spatial outlier detection methods. The

Figure 4.3: Single attribute, SLCE curve(k=10, m=100)

POD method first constructs a graph based on the k nearest neighbor relationship in the spatial domain,

assigns the non-spatial attributed differences as edge weighs, and then continuous cuts high weight edges

to identify isolated points or regions that are dissimilar to their neighboring objects as spatial outliers. The

experiment is composed of two components, including single attribute(the rental prices for one-bedroom

apartments) and multiple attributes (the rental prices for one-bedroom apartments, the rental prices for two-

bedroom apartments, the rental prices for three-bedroom apartments and the rental prices for four-bedroom

apartments).

4.4.1 Experiment on spatial dataset with single and multiple attributes

In the experiment in spatial dataset with single attribute, we set m, the size of the sliding window, as 50,

100 and 150, respectively, and k, the number of the nearest neighbors, as 8 and 10. Figures 4.2-4.4 shows

the generated curves by our algorithm for the single attribute dataset. As can be seen, the values of spatial

entropy decreases in the beginning and reaches a stable state at a certain point, which shows an estimate of

the optimal number of outliers is around 120. When considering the multiple attributes of the spatial objects,

the value of m is set as 50, 100 and 150, respectively, and k is equal to 10. Figures 4.5-4.7 were generated

by the SLCE algorithm for multiple attributes. We can observe a similar precipitating trend in which an

estimated outlier number is around 90.
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Figure 4.4: Single attribute, SLCE curve(k=10, m=150)

Figure 4.5: Multiple attributes, SLCE curve (k=10, m=50)

4.4.2 Analysis of Experiment Results

As shown in Figures 4.2-4.7, for both cases of single attribute and multiple attributes, the dominant patters

as exhibited in the experiment is consistent with the theoretical analysis discussed in Section 4.4. That is,

there does exist an “reflexion” point which corroborates the relationship between the spatial local contrast

entropy and the number of outliers removed. Because the object with the highest outlierness value will
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contribute most to the spatial local contrast entropy, we can greedily reduce the overall entropy value by

incrementally removing the outlying object, whose local inconsistence value is the highest. When all outliers

Figure 4.6: Multiple attributes, SLCE curve (k=10, m=100)

have been removed, if we continue to remove normal objects, the spatial local contrast entropy will not

change significantly. It is reasonable to assume that the outlierness values of normal objects are randomly

distributed. Then the removal of normal objects based on the ranks of their corresponding outlierness values

will not drastically disturb the background distribution. Therefore, the background of spatial local contrast

entropy will keep persistent. Take Figure 4.2 as an example, we can observe that the estimate of an optimal

number of outliers is around 120. When the number of candidate outliers removed is greater than 120, the

spatial local contrast entropy indicates a constant mean value around 0.25. The trembling of the curve is due

to a normal variance.

Ideally, the SLCE curve will monotonously decrease with a continuously decreasing slope until the spatial

local contrast entropy becomes stable when all the outliers have been removed. However, the outlierness

value of each object, which is approximated based on the POD method, may not be identical to the true

outlierness value. That is, during each incremental process, the object removed is not certainly to the most

“significant” outliers. Therefore, the slope will not monotonously decrease in strict relation to the number

of outliers removed. Considering the case of false positives, in which normal objects are misidentified as

outliers, potentially the ratio of outliers to normal objects will be erroneously increased, and hence will the

spatial local contrast entropy. As a result, the curve will not have the distinct characteristic of decreasing

monotonicity. It is reasonable that the SLCE curve may have some small jumps before the removal of all



Xutong Liu Chapter 4. An entropy-based method for assessing the number of spatial numerical outliers 57

Figure 4.7: Multiple attributes, SLCE curve (k=10, m=150)

outliers. As shown in Figure 4.4, when the number of outliers removed is around 22, the spatial local con-

trast entropy stops decreasing and incurs a small jump, but it quickly resumes the decreasing trend when the

number if larger than 25. This pattern reveals that, it is necessary to evaluate the curve entirely, in order to

estimate a close-to-optimal number of outliers.

4.5 Conclusion

Detecting spatial outliers is an important topic in the field of spatial data mining. The goal of identifying

such anomalies is to discover hidden but potentially useful knowledge. A major limitation of existing outlier

detection algorithms is that they generally require a pre-determined number of spatial outliers, which is

not suitable in real applications due to the well-known masking and swamping effects. In this paper, we

present an entropy-based approach to assess an optimal number of spatial outliers in a spatial data set.

Specifically, we define the formula of spatial local contrast entropy, analyze the theoretical characteristics

and foundataion, and propose an effective algorithm. Experiments were conducted on the cases of single

attribute and multiple attributes. The empirical results validate that our proposed approach can appropriately

reveal an “inflexion” point for the outlier number assessment.



Chapter 5

On Detecting Spatial Categorical Outliers

Spatial outlier detection is an important research problem that has received much attentions in recent years.

Most existing approaches are designed for numerical attributes, but are not applicable to categorical ones

(e.g., binary, ordinal, and nominal) that are popular in many applications. The main challenges are the

modeling of spatial categorical dependency as well as the computational efficiency. This paper presents

the first outlier detection framework for spatial categorical data. Specifically, a new metric, named as Pair

Correlation Ratio (PCR), is measured for each pair of category sets based on their co-occurrence frequencies

at specific spatial distance ranges. The relevances among spatial objects are then calculated using PCR

values with regards to their spatial distances. The outlierness for each object is defined as the inverse

of the average relevance between the object and its spatial neighbors. The objects with the highest outlier

scores are returned as spatial categorical outliers. Several algorithms are further designed for single-attribute

and multi-attribute spatial categorical datasets. Extensive experimental evaluations on both simulated and

real datasets demonstrated the effectiveness and efficiency of our proposed approaches, compared with the

existing ones.

The chapter is organized as follows. Section 5.1 gives the background and motivation. Section 5.2 provides

some critical definitions used in SCOD, and introduces a general SCOD framework. Section 5.3 presents

two SCOD approaches to identifying SCOs with single attribute, named PCF-SCOD and kNN-SCOD. kNN-

SCOD work is extended to detect the SCOs with multiple attributes in Section 5.4. Experimental evaluations

on both simulated and real life datasets are presented in Section 5.5. The paper concludes with a summary

of the research presented in Section 5.6.
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5.1 Background and Motivation

With the ever-increasing volume of spatial categorical data, identifying hidden but potentially interesting

patterns of anomalies has attracted considerable attentions, particularly from the areas of data mining experts

and geographers. Spatial Categorical Outlier (SCO) analysis, which aims at detecting abnormal objects in

spatial context, becomes one of the most important spatial data mining branches. The identification of SCOs

can help extract important knowledge in many applications, including geological data, meteorological data,

satellite image analysis, and hotspot identification.

During the past decades, numerous Traditional Categorical Outlier Detection (TCOD) algorithms [31, 40,

92] have appeared in some literatures. TCOD approaches can be categorized into four groups: rule based,

probability distribution based, entropy based and similarity based. Rule based approaches [4, 30, 70, 71,

121, 167] mine rules from the dataset, and observations which are significantly uncommon are recognized

as anomalies. Typical algorithms include LERAD[30], WSARE[167], FP-Outlier[71], etc. Distribution

based approaches[22, 40, 109, 128] model the normal data as a specific probability density distribution.

Each object that significantly deviates the normal distribution is identified as an outlier. Representative

models include Bayesian network and dependency trees, etc. Entropy based methods[68, 69] define TCOD

as an optimization problem. That is, identifying l objects such that after removing them, the expected

entropy of the rest of dataset is minimized. Similarity based approaches combine some typical TNOD

approaches[21, 130] with certain well-designed dissimilarity measures together to identify TCOs. Mean-

while, some research works focus on more efficiently identifying categorical outliers, including AVF[92]

and MapReduce AVF[93]. When encountering Spatial Categorical Outlier Detection(SCOD), TCOD ap-

proaches sometimes can’t be satisfactory with the spatial context. First, spatial objects have complex struc-

tures (e.g., points, lines, polygons and locations, etc.). Second, traditional approaches do not consider spatial

dependencies when identifying anomaly patterns. As the geographic rule of thumb, “Nearby things are more

related than distant things [155]" requires more considerations on spatial autocorrelation in spatial analysis.

Third, TCOD methods treat spatial and non-spatial attributes equally, which should be considered separately

for spatial anomaly identification.

Recently, a number of algorithms [2, 7, 32, 60, 150] have been proposed to identify outliers in spatial

databases [140, 142]. There are three basic classes, namely, visualization based, statistic based, and graph

based. Visualization based approaches utilize visualization techniques to highlight outlying objects. Rep-

resentative algorithms include scatterplot [62] and Moran scatterplot [7]. Statistic based approaches apply

statistical tests to measure the local inconsistencies. Typical methods include Z [143], median-based Z[100],

iterative-Z [100], and GLS-SOD [33] approaches. Graph based ones [90, 99, 144] detect spatial outliers by

designing a function to compute the difference between specific observation and its neighboring points.

Other works identified outliers by studying the property of specific spatial data. Zhao et al. proposed a
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wavelet-based method to detect region outliers [175]. Lu et al. presented a multi-scale approach to detect-

ing spatial temporal outliers [101]. Adam et al. introduced an approach that considers both the spatial and

semantic relationship among neighbors [2]. A local outlier measure [150] was proposed by Sun and Chawla

to capture the local behaviors of data in their spatial neighborhood. However, most of the aforementioned

techniques have only concentrated on continuous real-valued data attributes. There is no mechanism for

processing spatial categorical data with no implicit ordering.

Actually, in real world, the non-spatial attributes of spatial data are usually category-typed, where attributes

have no intrinsic order information. A typical example is Rock whose values include Igneous, Sedimen-

tary, and Metamorphic. The special property makes anomaly detection in spatial categorical domain more

complicated than that in numerical one. Currently, there is a lack of Spatial Categorical Outlier Detection

(SCOD) approaches. When encountering categorical dataset, some introduce Spatial Numerical Outlier De-

tection (SNOD) methods by directly mapping the categorical attributes to continuous ones. However, there

are several critical issues: 1)mis-utilization: statistically, the definition of an SCO is different with that of

a Spatial Numerical Outlier (SNO). Although both of them focus on the identification of spatial abnormal

behaviors, SCOD is determined by the co-occurrence infrequency, while SNOD focuses on the numerical

differences; 2)complicated function: the mapping process is not straightforward, especially for nominal

attributes; 3)swamping and masking problems: without estimating outlying degrees accurately, some true

outliers may be missed and normal ones misclassified as outliers.

Pair Correlation Function (PCF) has been proven very effective [77] to capture how observations are packed

together, which could be utilized to estimate the relevance among spatial categorical objects. It is a proba-

bility measure to find a unit at a distance of d away from a reference unit. PCF techniques have been widely

used to analyze the behavioral characteristics of the individual objects in a variety of natural systems, like

electrostatic, magnetic and biological application. This paper investigates the benefits of PCF techniques on

SCOD, and design algorithms for spatial datasets with single and multiple categorical attributes. First, PCF

techniques are utilized to measure the Pair Correlation Ratio (PCR) between any pair of category sets as

a function of spatial distances. And, the discrete relevance between a reference object and its neighbors is

fitted by the PCR function. Then, the outlying degree for each object is computed as the inverse of average

PCR between the object and its neighbors. Finally, the top l objects with higher outlierness are identified as

SCOs. The key contributions of this paper include:

• Formalization of the SCOD problem. This is the first work that specifically focuses on Spatial

Categorical Outlier Detection(SCOD). The SCOD problem is differentiated from the SNOD one:

an SCO is identified as a spatial observation which occurs infrequently with regard to its spatial

neighbors.

• Design of two SCOD algorithms for single attribute dataset. We first present a PCF-SCOD (Pair
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Correlation Function based Spatial Categorical Outlier Detection) algorithm to identify SCOs by

investigating the capability of PCF techniques of calculating the Pair Correlation Ratios (PCRs) for

each pair of categories at specific distances. Further, considering the computational cost of PCF-

SCOD, a kNN-SCOD(k Nearest Neighbor based Spatial Categorical Outlier Detection) approach is

proposed to approximate the outlier scores. It allows for more efficient SCOD when memory and

processor resources are issues.

• Design of one SCOD algorithm for multi-attribute dataset. The kNN-SCOD work is extended to

the SCOD issue in multi-attribute domain. By mapping the kNN relationship from the raw dataset

into a well-defined pair object dataset, the PCR of possible pair category sets is computed to capture

the relevance among objects which are spatial neighbors with each other.

• Comprehensive experiments to validate the effectiveness and efficiencies of the proposed tech-
niques. The proposed approaches were evaluated by the extensive experiments on simulated and real

datasets. The results demonstrated that PCF series of algorithms outperformed 14 existing techniques

for both single and multiple attribute dataset.

5.2 Preliminary Concept

This section introduces PCF techniques, summarizes some key notations used, and defines the SCOD prob-

lem. The deficiencies of existing methods are also examined.

5.2.1 Pair Correlation Function

In mathematical mechanics, PCF, g(r), is defined as the observed probability of finding an object at a given

distance, r, from a fixed reference particle [133]. The mathematical definition of g(r) is

g(r) =
dn(r)/N

dv(r)/V
=
dn(r)

dv(r)
· V
N

=
dn(r)

4πr2dr
· V
N

(5.1)

Where N and V denote the number of units and the volume of the entire system, respectively; dn(r) and

dv(r) represent those in the shell-region; r is the distance from reference unit to the shell of interest. Fig.

5.1 depicts the 2D-projection of a typical example which describes the PCF computation in Eq.(5.1). In this

paper, the relevances among spatial objects are determined by the frequency of co-occurrence of a pair of

categories at specific distances. PCF is capable of estimating how observations are packed together, which

could be utilized to capture the relationship among spatial categorical objects.
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Figure 5.1: PCF using a spherical shell of
thickness dr

Figure 5.2: An example of differentiating an
SNO and an SCO

5.2.2 Preliminary Definition

To formalize the SCOD framework, we need to understand some basic definitions.

Definition 1 (Spatial Categorical Dataset) Let s denote a spatial location on a domain S of the d dimen-

sional Euclidean space Rd. Let A1, · · · , Am be a set of categorical attributes and C1 ,· · · , Cm non-empty

sets over these attributes where Ci
⋂
Cj = φ for i 6= j.

A set D ⊆ S ×C1× · · · × Cm is called a spatial categorical dataset over the domains, S, C1, · · · , Cm. Each

record ri ∈ D (i ∈ 1, · · · , n) can be denoted as a vector (r.s, r.A1, · · · , r.Am)′, where r.Ai ∈ Ci. The

number of categorical attributes, m, is also referred as the dimensionality of the spatial dataset.

Categorical attributes can be classified into two types: ordinal and nominal ones. The key characteristic

of nominal attributes is that different values which a data takes in an attribute domain are absolutely not

inherently ordered, like the different colors. The issue of distance or dissimilarity for nominal data is not as

straightforward as for ordinal or numerical one. Thus it is difficult to directly compare two nominal values.

This paper is focused on such type of dataset as consists solely of nominal attributes. However, our approach

could be directly applied into spatial categorical dataset with ordinal attributes.

Informally, the anomalous behavior in spatial domain can be truly captured by the local difference, which

is determined by the irrelevance between a specific object and its spatial neighbors. In the paper, k-Nearest

Neighbor (kNN) is utilized to construct the neighborhood relationship.

Definition 2 (Spatial Neighborhood) Given a dataset D with n points and parameter k, for ri ∈ D, its

spatial neighborhood is constructed by the top k points according to its spatial Euclidean Distance vector

with the rest of observations in the dataset, such that ∀j ∈ 1, ..., n, j 6= i, rj ∈ kNN(ri) : dE(ri, rj) ≤
dEk (ri), where dEk (ri) represents the distance between ri and its kth spatial neighbor.

In numerical domain, an SNO is defined as the one whose non-spatial attributes are significantly different
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with those of its neighbors. Such definition is not applicable in categorical domain. For example, as shown

in Fig. 5.2, based on the idea of SNOD approaches, object A will be recognized as an outlier since it has

the categorical attribute, T, which is very different with its neighbors’, Fs. However, the contrary is the case

in categorical domain. This is because the pair of attributes, < T,F > or < F, T > occurs normally at the

spatial distance, d. Object A should be treated as a normal observation. In this sense, the definition of spatial

outliers in categorical domain is totally different with that of SNOs.

Definition 3 (SCO) Let ri be an observation inD, and ri_1,· · · , ri_k be its spatial neighbors. Its outlierness,

for k ≥ 1 ,is defined as

OutScore(ri) = −
∑k

j=1 PCR(ri.A, ri_j .A, d
E(ri, ri_j))

k
(5.2)

ri will be considered as an outlier ifOutScore(ri) > θ. Here, θ is a user-defined threshold. PCR(ri.A, ri_j .A, d
E(ri, ri_j)))

denotes the co-occurrence frequency of the pair category sets, < ri.A, ri_j .A >, of objects, ri and ri_j , at

the specified distance, dE(ri, ri_j).

In one word, an SCO is an observation which has lower co-occurrence frequency with its spatial neighbors.

PCF is capable of estimating such frequencies as how objects are packed together, which could be utilized

to calculate PCR, further OutScore(ri). Section 5.3 and 5.4 will discuss the PCR computation in spatial

categorical dataset with single and multiple attributes, respectively.

Based on the above definitions, the SCOD problem can be modeled as follows. Given:

• D is a set of spatial objects r1, ..., rn with single or multiple categorical attributes.

• k is an integer denoting the number of adjacent data objects which form the spatial neighborhood.

• l is the number of outliers to be identified, generally, l� n.

Objective:

• Design a mapping function f : D × D −→ R+, which estimates PCR for each pair of objects as a

function of spatial distances.

• Estimate the OutScore for each observation, and identify a set of O1, ..., Ol∈ D with higher values as

SCOs.
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5.3 Spatial Categorical Outlier Detection in Single Attribute
Dataset

Intuitively, given a spatial dataset, a normal observation is the one that behaves normally with regard to

its spatial neighborhood. In single categorical domain, this corresponds to the higher frequency of co-

occurrence of a pair of categories at a specified distance. The categorical outlier has rarely occurring cate-

gory attribute with regard to the ones of its neighborhood. This section presents two SCOD approaches to

detecting SCOs with single attribute, namely PCF-SCOD (Pair Correlation Function based Spatial Categor-

ical Outlier Detection) and kNN-SCOD-S (k Nearest Neighbor based Spatial Categorical Outlier Detection

in Single attribute dataset).

5.3.1 Pair Correlation Function based SCOD

In this section, we investigate the benefits of PCF techniques to capture the rare behaviors of SCOs. The

main components in PCF-SCOD are described as follows.

• PCR(Pair Correlation Ratio) estimation. PCR is defined to characterize the co-occurrence fre-

quency of each pair of categories at different specified distances. With the set of discrete points in a

2-D space, determined by PCR values against spatial distances, we can statistically learn a continuous

PCR function which can easily estimate the PCRs among spatial objects.

• Neighborhood formulation and outlierness computation. The spatial neighborhood for each object

can be formed using kNN. And the outlier degree for each object is computed by the mean of PCRs

between itself and its spatial neighbors.

• Outlier identification. Finally, the outer scores are ranked in an descending order and the top l

objects are identified as SCOs.

For the above components, the first one is extremely critical since it determines the estimation quality of

the relevances among observations. Section 5.1.1 introduces PCR computation in particular, and then PCF-

SCOD algorithm is described step by step in Section 5.1.2.
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Pair Correlation Ratio Computation

For each random variable r, r.A is a multilevel categorical variable taking values in C = A1, ..., AL. We

denote Eq.(5.3) as the frequency of observing category Al in the dataset,

Freq(Al) = P [A(ri.A) = Al] =
nA

l

n
(5.3)

where nA
l

represents the number of objects whose non-spatial attribute areAls, and n the number of objects

in the whole dataset. Fig. 5.3(a) depicts a small spatial categorical dataset which consists of 64 objects, of

which 37 ones take category “+", and 27 ones “-". With Eq.(5.3), we get Freq(+) = 37/64 and Freq(−) =

27/64.

Let SPF (< Al, Al
′
>, dE(ri.X, rj .X)) denote the Spatial Pair Frequency associated to two objects, ri and

rj , where ri.A = Al and rj .A = Al
′
. Then PCR can be defined as follows:

Definition 4 (Pair Correlation Ratio-PCR) Considering a spatial pair correlation process in which there

are two observations, ri, rj in D, each of them is tagged with one category, Al and Al
′
, respectively. The

PCR of ri,rj is defined as the normalized spatial pair frequency of the pair of categories, < Al, Al
′
>,

happen to occur at ri and rj .

The mathematical definition of PCR is

PCR(ri, rj) =
SPF (< Al, Al

′
>, dE(ri.S, rj .S))

Freq(Al) · Freq(Al′)
(5.4)

As shown in Eq.(5.4), the PCR value between two spatial objects, is only determined by the co-occurrence

frequency of categories they take and their spatial Euclidean Distance, not their specific spatial locations. In

the following, SPF computation is discussed step by step by utilizing the example shown in Fig. 5.3.

• Distance division. Compute the Euclidean distance for each pair of spatial objects, identify the

maximal and minimal ones, dEMax (as shown in Fig. 5.3(a)) and dEMin (set as 0), and divide the

distance into b small bins whose sizes are computed as:

d =
dEMax

b
(5.5)

As we know, it is common for spatial objects to be autocorrelated at shorter distances. It is not

necessary to take the pair correlation at longer distances into considerations. Simply, dEMax can be
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(a) An example dataset

(b) Dc identification w.r.t. ri

(c) Dc−+ identification w.r.t. ri

Figure 5.3: An example of identifying B-PD and B-PC-PD.
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approximated by

dEMax =
1

2
max{|max(Projx(ri.S))−min(Projx(ri.S))| ,

|max(Projy(ri.S))−min(Projy(ri.S))|}, i, j = 1, ..., n (5.6)

where Projx(·) and Projy(·) represent the projection operations of S location on X, Y coordinates,

respectively. It is reasonable for such approximation since SCOD focuses on the local relevance

estimation.

• Identification of Bin based Pair Dataset (B-PD). Based on the spatial distance, map each pair of

objects into their corresponding distance bin.

Dc = {< ri, rj >, (c− 1) · d ≤ dE(ri.S, rj .S) < c · d, c ∈ [1, b]} (5.7)

For example, for the reference object ri shown in Fig. 5.3, based on its spatial distances from others,

we can identify 30 objects, {rj}30
j=1, which make < ri, rj >∈ Dc since they satisfy the condition:

(c − 1) · d ≤ dE(ri.S, rj .S) < c · d. As depicted in Fig. 5.3(b), the 30 objects are contained in the

blue shaded circular ring.

• Identification of Bin and Pair Category based Pair Dataset (B-PC-PD). By scanning the identi-

fied B-PD, we map each pair of objects into its pair category based subset so that their categorical

attributes are just the specified pair of categories. That is, we can construct Dc
AlAl′

as follows:

Dc
AlAl′

= {〈ri, rj〉, [(ri.A == Al) & &(rj .A == Al
′
)]‖

[(ri.A == Al
′
) & &(rj .A == Al)], < ri, rj >∈ Dc, c ∈ [1, b]} (5.8)

In Fig. 5.3(b), in the identified objects {rj}30
j=1 with regard to reference object ri in Dc, we can map

11 pairs of {< ri, rj >}11
j=1 into Dc−−, and the other 19 pairs into Dc−+ based on their corresponding

categorical attributes. Fig. 5.3(c) depicts the pair objects in Dc−,+ with regard to the reference object

ri.

• Spatial Pair Frequency computation. Therefore, the SPF of the pair of categories in the cth bin can

be computed by

SPF (〈Al, Al′〉, [(c− 1) · d, c · d]) =
|Dc

AlAl′
|

|Dc|
(5.9)

where |Dc
AlAl′
| and |Dc| represent the number of pair objects in Dc

AlAl′
and Dc, respectively. Over-

all, for each pair of 〈Al, Al′〉, we can estimate b pair frequency values corresponding with b bins.

Based on the b discrete points in a 2-D space, we can statistically learn a pair frequency function

SPF (〈Al, Al′〉, dE) by polynomial and curve fitting, subjecting to the following constraints:
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Table 5.1: Main parameters used in this paper

Parameters Description
S A dataset storing the spatial attributes
A A dataset storing the non-spatial categorical attributes
b The number of bins to divide the distance values
m The number of categorical attributes
n The number of spatial objects in the dataset
k The number of spatial neighbors
l The number of SCOs

1. SPF (〈Al, Al′〉, dE) = SPF (〈Al′ , Al〉, dE)

Proof.By definition, it is easy to prove this constraint.

2. SPF (〈Al, Al′〉, 0) =

 Freq(Al) Al = Al
′

0 Al 6= Al
′

Proof. IfAl = Al
′
, SPF (〈Al, Al′〉, 0)=

|D0

AlAl
′ |

|D0| =n
Al

n =Freq(Al), and ifAl 6= Al
′
, PF (〈Al, Al′〉, 0)=

|D0

AlAl
′ |

|D0| = 0
n=0.

3.
∑L

l′=1 SPF (〈Al, Al′〉, dE) = Freq(Al).

Proof. We can identifyDc
Al

asDc
Al

= {〈ri, rj〉, (ri.A == Al)&((c−1)·d ≤ dE(ri.S, rj .S) <

c · d), < ri, rj >∈ D, c ∈ [1, b]}.

There is a deduction as follows:∑L
l′=1 SPF (〈Al, Al′〉, dE) =

∑L
l′=1 |D

c

AlAl
′ |

|Dc| = nA
l

n = Freq(Al)

PCF-SCOD Algorithm

The proposed PCF-SCOD algorithm for single attribute domain has 6 input parameters, S, A, b, n, k and l,

which are described in Table 5.1. Algorithm 1 describes this approach as the following 4 critical steps.

Step-1(line:1-3) Formalization of spatial neighborhood. First, we construct distance matrix, Dismat, in

which the ith row records the spatial distances between ri and the rest of objects in the dataset. With it, the

spatial neighborhood matrix, Neighbor, can be identified for each spatial object.

Step-2(line:4-17) Computation of SPFs among spatial objects.

a. (line:4-5) Distance division. With the stored values in DisMat, identify its maximum and min-

imum values (0). Then, the size of unit bin, d, can be computed using Eq.(5.5).

b. (line:6) Computation of category frequency. We construct the frequency array, FreqA,

which records the occurrence frequencies for all the observing category, and the pair category array,
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Algorithm 4 PCF-SCOD-S Approach
1: for i = 1 to n do {Calculate the neighborhood and distance matrix}
2: [Neighbor(i, :), DistMat(i, :)] = kNN(S, ri.S, k)
3: end for
4: dEMax = max(DistMat);{Identify the maximum spatial distance}

5: d =
dEMax
b ;{Calculate the size of unit bin}

{Computation of category frequency, pair category array and its sizes.}
6: [FreqA, PC_Arr,Np] = CateFreq(A);
7: for c = 1 to b do {Identify B-PD}
8: Dc = B_PD_Iden(DistMa,Condd,c);
9: for p = 1 to Np do {Identify B-PC-PD}

10: AlAl
′

= PC_Arr(p);
11: Dc

AlAl′
= B_PC_PD_Iden(Dc, CondAlAl

′
);

12: SPF (Al, Al
′
, c · d) =

|Dc
AlAl

′ |
|Dc| {Calculate its corresponding spatial pair frequency.}

13: end for
14: end for
15: for c = 1 to Np do {Model continuous PCR function}
16: SPF (Al, Al

′
, dE) = FitModel({SPF (Al, Al

′
, [(c− 1) · d, c · d])}bc=1);

17: end for
18: for i = 1 to n do {Calculate PCR matrix between spatial object and its neighbors}
19: for j = 1 to k do
20: f = Neighbor(i, j);

21: PCRMat(i, j) =
SPF (ri.A,rf .A,DistMat(i,f))
|Freqri.A|·|Freqrf .A|

;

22: end for
23: end for
24: RelevanceArr = mean(PCRMat); {Compute relevances for spatial objects}
25: RankList = Rank(RelevanceMat, ascend); {Rank objects with ascending relevance values}
26: Ol = Outlier(RankList, 1 : l) {Mark the outliers}

PC_Arr, which stores all the possible pairs of categories (Np represents the number of possible pairs

of categories) in the dataset.

c. (line:7-14) SPF computation. This step includes three important procedures: bin based pair set

identification, bin and pair category based pair set identification and the discrete SPF computations.

At step 8, we use function, B_PD_Iden, extract all the pair objects forDc, which satisfy certain dis-

tance conditions, Condd,c (in Eq.(5.7)). At step 11, function B_PC_PD_Iden, is used to construct

Dc
AlAl′

by scanning the pair objects in Dc, which satisfy category attribute condition, CondA
lAl
′

(in

Eq.(5.8)). With the above two pair sets, the b discrete SPF values for each pair of categories can be

computed at step 12.

c. (line:15-17) Learn of continuous SPF function. With the above discrete SPF values against



Xutong Liu Chapter 5. On Detecting Spatial Categorical Outliers 70

b different distance range, we statistically learn a continuous SPF function for each pair of categories

using polynomial and curve fitting.

Step-3(line:18-24) Construction of PCR matrix. Utilizing Eq.(5.4), with SPF function, the relevance

scores (PCR) can be simply calculated for any pair of spatial objects. Furthermore, PCR matrix, PCRMat,

is constructed as the mean of the PCR values between the reference observation and its neighbors.

Step-4(line:25-26) Outlier identification. Finally, the objects are sorted with ascending PCR values, and

the l objects with lower relevance scores are recognized as outliers.

Computational Complexity. To form the distance and neighborhood matrices will take O(n2). It takes

O(n) to construct the category frequency array and pair category array. Identifying Dc and Dc
AlAl′

takes

around O(b · Np · |Dc| · n2). Finally, computing the PCR matrix costs O(k · n). In summary, assuming

n � k, n � b, n � Np and n � |Dc|. The total computational complexity of PCF-SCOD approach is

O(n2)=(O(n2)+O(n)+O(b ·Np · |Dc| · n2))+O(k · n)).

ID Attr.1 Attr.2 3NN
r1 T {T, P} r2 r3 r7

r2 F {F,Q} r1 r6 r7

r3 F {F, P} r1 r4 r7

r4 F {F,Q} r3 r5 r7

r5 T {T, P} r4 r6 r7

r6 F {F,Q} r2 r5 r7

r7 F {F, P} r1 r2 r6

Figure 5.4: A sample of spatial categorical dataset. (Attr.1 means the observed attributes in single
attribute domain, which is used in Section 5.2; Attr.2 means the observed attributes in multiple
attribute domain, which is used in Section 5.4.)

5.4 Spatial Categorical Outlier Detection in Multiple Attribute
Dataset

The work of kNN based PCR approximation can be easily extended to solve the SCOD issue in multi-

attribute domain. That is, given a spatial dataset, an outlying observation is the one whose non-spatial

attribute set occurs infrequently with regards to those of its spatial neighborhood. And, the calculation of

PCR is computed by the frequency of co-occurrence of a pair of category sets at a specific spatial distance.
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Since PCF based approach will be a time-consuming process, we only introduce how to compute PCR values

in kNN-SCOD-M (k Nearest Neighbor based Spatial Categorical Outlier Detection in Multiple attribute

dataset).

5.4.1 PCR Computation in Multi-Attribute Dataset

Similarly, kNN-SCOD-M approach first extracts the kNN relationship from the raw dataset D and maps it

into F k with 2m dimensions. In F k, each data frame contains the attribute set, A = {< A1, .., Am >,<

A1, ..., Am >}, Ai ⊆ Ci, i ∈ [1,m]. First, we need to learn two important concepts about attribute subset in

D and F k.

Table 5.2: Observations for PAS {<
A1, A2 >,< A1, A2 >} in F 3

Pair objects {< A1, A2 >,<
A1, A2 >}

< r1, r3 > < {T, P}, {F, P} >
< r1, r2 > < {T, P}, {F,Q} >
< r1, r7 > < {T, P}, {F, P} >
< r2, r6 > < {F,Q}, {F,Q} >
< r2, r7 > < {F,Q}, {F, P} >
< r3, r4 > < {F, P}, {F,Q} >
< r3, r7 > < {F, P}, {F, P} >
< r4, r5 > < {F,Q}, {T, P} >
< r4, r7 > < {F,Q}, {F, P} >
< r5, r6 > < {T, P}, {F,Q} >
< r5, r7 > < {T, P}, {F, P} >
< r6, r7 > < {F,Q}, {F, P} >

Table 5.3: PCR Computation

Pair Categories Freq. Prob. PCR

<
{T, P},{F,Q} >

3 0.25 2.00

<
{T, P},{F, P} >

3 0.25 2.00

<
{F,Q},{F,Q} >

1 0.083 0.99

<
{F,Q},{F, P} >

4 0.34 4.04

<
{F, P},{F, P} >

1 0.083 0.99

Freq({F, P})=0.29;Freq({F,Q})=0.29
Freq({T, P})=0.43

Definition 6(Attribute Subset-AS). Given a dataset D with m categorical attributes, A = {A1, .., Am},
Ai ⊆ Ci, its AS is defined as follows:

AS = {A∗, {A∗ = {Ax, ..., Ay}}, 1 ≤ x ≤ y ≤ m,Ai ⊆ Di, i ∈ [x, y]} (5.10)

Considering Attr.2 of the sample spatial dataset as shown in Fig. 5.4, there are two category attributes:

A1 = {T, F} and A2 = {P,Q}. By definition, we can easily generate all of its ASs:

AS: { {A1}, {A2}, {A1, A2} }.

Fig. 5.4 also describes the 3NN relationship among objects. By utilizing Definition 5, we can map it into a
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dataset set F 3 with 4-dimension attributes, as shown in Table 5.4.

Definition 7(Pair Attribute Subset-PAS). Given a dataset F k with 2m categorical attributes, A = {<
A1, .., Am >,< A1, ..., Am >}, Ai ⊆ Ci, its PAS is defined as follows:

PAS = {< A∗, A∗
′
>, {A∗ = {Ax, ..., Ay}}& &{A∗′ = {Ax, ..., Ay}}

& & {|A∗| == |A∗′ |}, 1 ≤ x ≤ y ≤ m,Ai ⊆ Ci, i ∈ [x, y]} (5.11)

Apparently, A∗ and A∗
′

always exist in pairs in PAS. They are originated from the same attribute domain in

datasetD. For pair attribute set A, there are (2m−1) pair subsets. Similarly, we can enumerate all the PASs

for the sample dataset in Fig. 5.4 as follows.

PAS: { {< A1 >,< A1 >}, {< A2 >,< A2 >}, {< A1, A2 >,< A1, A2 >}.

In this paper, we call AS and PAS observations as AS and PAS combinations which are generalized by the

following concepts .

Definition 8(AS Combination). Given a dataset D with m categorical attributes, A = {A1, .., Am},
Ai ⊆ Ci. Suppose for each attribute Ai, it takes value in Li={A1

i , ..., A
Li
i }. Therefore, an AS Combination

(ASC) is one of the possible category examples of existing attributes in the AS. The ASC of A∗ (defined in

Definition 7) is,

ASCA∗ = {A,A = {Alxx , ..., A
ly
y }, Alii ⊆ Li, i ∈ [x, y]} (5.12)

As we can see, each observation may take one of values {T, F} for A1, and {P,Q} for A2. {A1} is one of

its ASs, then ASCA1 = {{T}, {F}}. Similarly, ASC{A1,A2} = {{T, P}, {T,Q}, {F, P}, {F,Q}}.

Definition 9(PAS Combination). Given a dataset F k with 2m category attributes, A = {< A1, .., Am >

,< A1, ..., Am >}, Ai ⊆ Ci, i ∈ [1,m]. Similarly, it takes value in Li={A1
i , ..., A

Li
i }. Therefore, an PAS

Combination (ASC) is one of the possible pair category examples of existing attributes in the PAS. That is,

PASC<A∗,A∗′> = {< A,A′ >, {A = {Alxx , ..., A
ly
y }}& {A′ = {Alx′x , ..., A

ly′
y }}

&{|A| == |A′|}, 1 ≤ x ≤ y ≤ m,Alii , A
li′
i ⊆ Li, i ∈ [x, y]} (5.13)

For example, there are three possible PASCs: {< T >,< T >},{< T >,< F >} and {< F >,< F >}
for PAS {< A1 >,< A1 >} in F 3. And, all the observed PASCs for {< A1, A2 >,< A1, A2 >} in Fig.

5.4 are enumerated in the second column in Table 5.4.

We can compute the PCR value for each PASC of a specified PAS < A,A′ > by utilizing the following 5
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steps.

• Dataset identification for specific ASC. For a specific ASCA = {Alxx , ..., A
ly
y }, we scan the dataset

D and identify DA as follows.

DA = {ri, (ri.Ax = Alxx ) & · · ·& (ri.Ay = A
ly
y ), ri ∈ D, A

lj
j ⊆ Lj , j ∈ [x, y]} (5.14)

• Frequency computation of ASC. Calculate the frequency for DA using Eq.(4.18).

Freq(DA) =
|DA|
|D|

(5.15)

For ASC {T} in Fig. 5.4, DT = {r1, r5}, and its frequency is 2/7 = 0.29.

• Dataset identification for specific PASC. Suppose < A,A′ > =< {Alxx , ..., A
ly
y },

{Alx′x , ..., A
ly′
y } > is one of the PASCs of< A∗, A∗

′
>({A∗ = {Ax, ..., Ay}}, {A∗

′
= {Ax, ..., Ay}}).

Scan the whole set F k and identify all observations which satisfy the following conditions.

Fk{A,A′} = {fi, [(fi.A∗.Ax = Alxx ) & ...& (fi.A
∗.Ay = A

ly
y )}&

{(fi.A∗
′
.Ax = A

lx′
x ) & ...& (fi.A

∗′ .Ay = A
ly′
y )]||

[(fi.A
∗′ .Ax = Alxx ) & ...& (fi.A

∗′ .Ay = A
ly
y )}&

{(fi.A∗.Ax = A
lx′
x ) & ...& (fi.A

∗.Ay′y = A
ly′
y )], fi ∈ F k} (5.16)

In F k{A,A′}, it stores all pairs of objects which have the same PASC < A,A′ >.

• Frequency computation of PASC. Calculate the frequency for each PASC < A,A′ >.

Freq(< A,A′ >) =
|F k{A,A′}|
|F k|

(5.17)

For example, for PASC {< T,P >,< F, P >}, F3
{<T,P>,<F,P>}= {< r1, r3 >,< r1, r7 >,<

r5, r7 >}. Its frequency is equal to 3/12 = 0.25.

• PCR computation. Finally, PCR for a PASC can be calculated as Eq.(5.21).

PCRk(< A,A′ >) =
Freq(< A,A′ >)

Freq(DA) · Freq(DA′))
=

|F k{A,A′}|/|F
k|

(|DA| · |DA′ |)/|D|2
(5.18)

Therefore, we can compute PCR on {< T,P >,< F, P >} among object r1 and r3 as PCR(< r1, r3 >

) = 0.25/(0.29 ∗ 0.43) = 2.00. Table 5.5 shows all the PCR computation of all possible PASC for Fig. 5.4
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on the PAS {< A1, A2 >,< A1, A2 >}. In the same way, we can compute the PCR values of other PASCs

with regards to differnt PAS.

By scanning the dataset, we can determine, for each pair of spatial objects, there are at most 2m − 1 PCR

scores which correspond to 2m − 1 PASC. After that, we choose the smallest one as their final relevance

score. We identify relevances among objects in this way because, sometimes, an outlier only exists in the

subspace of multiple attributes. Exhaustively estimating outlier scores in different PASC will help identify

SCOs more effectively. With the smallest PCR vector, we can construct a PCR matrix (n-by-k). Further, the

outlierness value can be computed for each object using the mean of neighborhood relevances.

5.4.2 Algorithm of kNN-SCOD-M

In this part, we generalize the kNN-SCOD-M approach which is utilized to detect multi-attribute outliers.

There are 6 input parameters, S, A, n, k, m and l, which are described in Table 5.1. As shown in Algorithm

3, identifying SCOs with multiple attributes includes the following 5 steps.

Step-1(line:1-4)(Construction of spatial neighborhood and mapping process of kNN relationships).

For each data observation ri, identify its k spatial neighbors and map kNN relationship into F k.

Step-2(line:5-18). PCR computation.

a. (line:5) Identification of AS and PAS. Algorithm 4 describes this function in detail. Intu-

itively, there are (mi ) ASs which consist of i attributes, and (mi ) PASs with size as 2 ∗ i. Therefore, in

each loop, (mi ) ASs and PASs are identified, respectively.

b. (line:6-7) Frequency computation of DASC and F kPASC . We first operate the identification

of possible ASCs and PASCs for eachAS∗ and PAS∗Meanwhile, their corresponding subset,DASC∗
and FkPASC∗ are identified by scanning D and Fk. As shown in Algorithm 5, for each object in D,

any subset of its attributes can be mapped as one of the possible ASCs(Step 11 and 14). In the

same way, for each pair observations in F k, any subset of their attributes originated from the same

domains can be recognized as one of the possible PASCs(Step 16). After that, we map each object

into its corresponding ASC subset (Step 12, 15), and each pair of the object and its current spatial

neighbor into the corresponding PASC subset. Finally, the frequencies of all the DASC and F kPASC
are computed by using Eq.(5.18) and (5.20).

c. (line:8-18) PCR computation for specific PASC. Compute the PCR values between refer-

ence object and its kNN neighbors for each possible PASC.

Step-3(line:19-28). Computation of Relevances among objects. Then, use the mean of k PCRs as the

relevance value in each PAS subspace. And, the smallest one of the 2m − 1 PCR values is recognized as its

final relevance score.
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Algorithm 5 kNN-SCOD-M Approach
1: for i = 1 to n do {Construct the neighborhood matrix.}
2: [Neighbor(i, :)] = kNN(S, ri.S, k);
3: end for
4: F k = MapFunction(Neighbor,A); {Map the kNN relationship into dataset F k.}
5: [PAS,AS] = ASIdentify(A); {Identify all possible PASs and ASs.}

{Identify all possible PASCs and ASCs for each PAS and AS, and then extract their corresponding
subsets.}

6: [PASC,ASC,DASC ,FkPASC ] = ASCIdentify(A,PAS,AS);
{Compute the frequency vectors for each DASC ,FkPASC .}

7: [Freqasc, F reqpasc] = FreqCompute(DASC , F kPASC);
8: for i = 1 to n do {Calculate PCR matrix between spatial object and its neighbors.}
9: Ai = ri.A;

10: for j = 1 to k do
11: rj = Neighbor(i, j);
12: Aj = ri.A;
13: for a = 1 to 2m − 1 do
14: curPAS = PAS(a); curAS = AS(a); {With the information from ri and rj , identify its

corresponding PASC and ASCs.}
15: [curPASC, curASC1, curASC2]=PASCIdenfity(curPAS, curAS, ri, rj); {Compute the

PCR values for neighbor objects < ri, rj > in current PAS space.}
16: PCRMata(i, k) =

Freqpasc(curPASC)
Freqasc(curASC1)·Freqasc(curASC2) ;

17: end for
18: end for
19: for a = 1 to 2m − 1 do {Identify the smallest one of PCRs in all the PAS space as its final PCR

value.}
20: if a==1 then
21: PCR(i) = mean(PCRMata(i, :));
22: tempV alue = PCR(i);
23: else
24: PCR(i) = min{mean(PCRMata(i, :)), tempV alue};
25: tempV alue = PCR(i);
26: end if
27: end for
28: end for
29: RelevanceMat = PCR; {Compute relevances for spatial objects.}
30: RankList = Rank(RelevanceMat, ascend); {Rank objects with ascending PCR values.}
31: Ol = Outlier(RankList, 1 : l) {Mark the outliers.}

Step-4(line:30-32). Outlier detection. Finally, the objects are sorted with ascending relevance values, and

the top l objects with lower relevance scores are recognized as outliers.
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Algorithm 6 PAS and AS Identification
[PAS,AS] = ASIdentify(A)

1: Label = 0;m = |A|;
2: for i = 1 to m do {Identify AS,PAS whose size are i, 2 ∗ i, respectively.}
3: AS((i+ Label) : ((mi ) + Label)), :) = {ASi, (ASi ⊆ A) & (|ASi| = i)};
4: PAS((i+ Label) : ((mi ) + Label)), :) = {< ASi, ASi >, (ASi ⊆ A) & (|ASi| = i)};
5: Label = (mi ) + Label;
6: end for

Algorithm 7 Identification of PASC, ASC, DASC and FPASC .
[PASC,ASC,DASC ,FPASC ] = ASCIdentify(A,PAS,AS,D)

1: PASC = {};ASC = {};DASC = {};DPASC = {};
2: for i = 1 to n do
3: Aj=ri.A;
4: for j = 1 to k do
5: rj = Neighbor(i, j);
6: Aj=rj.A;
7: for a = 1 to 2m − 1 do
8: AS=AS(a);{Identify current AS .}
9: PAS=PAS(a);{Identify current PAS.}

{Generate one of the ASCs based on the attributes of object ri.}
10: ASCa

i =Ai{AS};
11: ASCAS = Add_ASC(ASCAS , ASC

a
i );

{Add object ri into its corresponding ASC subset.}
12: DASCAS = AddObjInASCSet(DASCAS , ri);

{Generate one of the ASCs based on the attributes of object rj .}
13: ASCa

j =Aj{AS};
14: ASCAS = Add_ASC(ASCAS , ASC

a
j );

{Add object rj into its corresponding ASC subset.}
15: DASCAS = AddObjInASCSet(DASCAS , rj);

{Generate one of the PASCs based on the pair attribute sets of < ri, rj >.}
16: PASCPAS = Add_PASC(PASCPAS , < ASCa

i , ASC
a
j >);

{Add < ri, rj > into its corresponding PASC subset.}
17: FkPASCPAS = AddObjInPASCSet(F k

PASCPAS
, < ri, rj >);

18: end for
19: end for
20: end for

Computational Complexity. To form the neighborhood, it will take O(n log n) for kNN (Space partition-

ing) construction and mapping process. As shown in Algorithm 4, it takes around O(2m − 1) to identify all

possible PASs and ASs. Algorithm 5 demonstrates that it takes O(n ∗ k ∗ (2m − 1)) to detect all possible
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Table 5.4: Three Simulation Dataset

Dataset Size Dimension The number of observing categories in
each dimension

Syn1 4000 1 A1: 3
Syn2 4000 3 A1: 3 ; A2: 3 ; A3: 3 ;
Syn3 4000 3 A1: 3 ; A2: 3 ; A3: 3 ;
Syn4 1000 4 A1: 3 ; A2: 4 ; A3: 5 ; A3: 6 ;
Syn5 4000 2 A1: 5 ; A2: 8 ;

PASCs, ASCs and their corresponding subsets. Finally, computing the final PCR value for each observation

takes O(n ∗ k ∗ (2m − 1)). In summary, assuming n � k and n � m , the total computational complex-

ity of kNN-SCOD-M approach is O(n ∗ (2m − 1))(= O(n log n) + O(2m − 1) + O(n ∗ k ∗ (2m − 1)) +

O(n ∗ k ∗ (2m − 1))).

5.5 Experiment Results and Analysis

We conducted extensive experiments on both simulated and real datasets to compare the performances of

PCF-SCOD and kNN-SCOD, with other popular outlier detection approaches[18, 21, 40, 100, 130].

5.5.1 Experiment Settings

This subsection introduces simulation and real life datasets, the outlier detection methods, and performance

metrics.

Simulation and real dataset

For experiments in the single attribute domain, we applied all the approaches into one simulated and three

real datasets. For those in the multiple attribute domain, since there was no public baseline dataset, we

evaluated them on simulation datasets.

Simulation Dataset

The simulation categorical datasets were generated by discretization from some numerical simulation datasets.

Denote a numerical dataset S as {Z(s1),...,Z(sn)}, Z(si) ∈ Rm (i = 1 · · ·n), where m is the number of

non-spatial attributes. The simulation datasets S1, ..., Sm were generated by a Gaussian random field model
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defined as follows:

[Z(s1)T , ..., Z(sn)T ]T ∼ N

0,


∑

11(θ11) · · ·
∑

1n(θ1n)

...
. . .

...∑
n1(θn1) · · ·

∑
nn(θnn)




[θij ]1 ∼ Uniform(1.17, 1.85), [θij ]2 ∼ Uniform(2.00, 3.24), i = j

[θij ]1 ∼ Uniform(1.00, 1.44), [θij ]2 ∼ Uniform(2.30, 2.80), i 6= j

s1, · · · , sn ∼ Uniform(0, 5). (5.19)

where Z(si) = [z1(si), · · · , zm(si)]
T ,
∑

ij(θij) = V ar(Z(si), Z(sj)), θ ∈ R2. [
∑

ij(θij)]km is defined by

an exponential model as

[
∑
ij

(θij)]km = [θij]1 · e
‖si−sj‖
|θij |2 (5.20)

[θij ]1 and |θij |2 are named as sill and range parameters, respectively. The above simulation model param-

eters were determined based on the distribution of a benchmark data set 97data.dat available in GSLIB

software[147], which has two attributes. It was fitted by the Gaussian random field model which has a

quadratic trend (mean), and the cross covariance functions were approximated by exponential models with

sill and range parameters (1.85, 2.00) for the first attribute, (1.17, 3.24) for the second attribute, and (1.22,

2.55) for the cross covariance between the two attributes. Note that, in our simulation model, we did not

consider any trend, and the data distribution was determined purely by the cross covariance functions, which

potentially increases the complexity of the distribution. We did not fix the sill and range parameters, but

instead sampled the parameters from uniform distributions around the estimated sill and range parameters

for 97data.dat. Our model was able to flexibly generate spatial simulation data sets with multiple attributes.

After the numerical data sets were generated, we applied a discretization process to convert the numerical

data into categorical data. To illustrate the discretization strategy, suppose we need to convert a numerical

attribute data {Z1(s1), · · · , Z1(sn)} into 3 categories data, we sorted the values and then separated them

into three groups such that the orders among the three groups were preserved. This means, the objects in

group 2 is always larger than those in group 1. The similar situation is for group 2 and 3. Since we focused

on nominal data, we assigned each data a label with a unique category so that the data attributes could not

be ordered.

For the five generated simulation data sets, shown in Table 6, Syn1 was utilized in the experiments for the

single attribute domain, while Syn2, Syn3, Syn4 and Syn5 were used in those for the multiple attribute one.

Real dataset
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We also executed the SCOD approaches on three real datasets with single attribute to further demonstrate

their effectiveness. The three datasets include Jura, Soil1 and Soil2. Jura data is a well-known categorical

dataset from Pieere Goovarerts book[59]. In the original dataset, five rock types are available. Following

Bel et al. [14], Portlandian is grouped with Quanternary into category 4, because its frequency of occurrence

is very low (1.2%), which makes those observations taking Portlandian general outliers. Soil1 and Soil2
dataset were both extracted from Harmonized World Soil Database[75]. Table 7 describes their detailed

information. Fig. 5.5 provides the data distribution of parts of raw soil datasets which were utilized in our

experiment. Soil1 data seems to distribute uniformly, but that of Soil2 is more complicated, which needs

higher identification qualities for SCOD approaches.
Table 5.5: Three Real Datasets

Dataset Size Dimension The observing categories
Jura 359 1 A1:Argovian; A2:Kimmeridgian; A3:Sequanian;

A4:Quaternary;
Soil1 1000 1 A1:LP-Leptosol; A2:CL-alcisol; A3:RK-utcrops;

A4:DS-Sand Dunes;
Soil2 3000 1 A1:LV-Luvisol; A2:LP-Leptosol; A3:PT-Plinthosol;

A4:VR-Vertisol; A5:NT-Nitisol; A6:LX-Lixisol;
A7:FL-Fluvisol;

Figure 5.5: Data distribution of three real-life datasets.(Left:Jura;Middle:Soil1;Right:Soil2)

Outlier Detection Approach

We compared the performances of our proposed methods, denoted as PCF-SCOD and kNN-SCOD, to other

existing methods introduced in this subsection.

Univariate Detection Methods
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TCOD. Considering the local correlation property of spatial data, we chose NN (Nearest Neighbor) based

techniques for SCOD tasks. Typical approaches include kNN [130] and LOF[21] methodologies. To

compute the similarities among nominal data, we used Lin and OF measurements which showed high

performances[18, 31]. We combined the NN based techniques with categorical similarity measurements

together to get overall 4 different comparable “TCOD” approaches: LOF-Lin, LOF-OF, kNN-Lin and kNN-

OF.

It is noted that kNN-SCOD is not related to kNN-Lin and kNN-OF, although they have the same prefix

“kNN”. As we introduced above, kNN-Lin and kNN-OF were generated from one of the most popular

traditional numerical outlier detection approaches: kNN [130], while kNN-SCOD is proposed in this paper

by introducing a novel kNN mapping function process as an effective and efficient approximation of the

general PCR computation.

SCOD. Z-test is one of the most typical methods to identify SNOs. When operating it on categorical data,

we integrated Z-test with Lin and OF measurements. As a result, there were 2 comparable “SCOD” ap-

proaches: Z-OF and Z-Lin. Also, we directly applied Z-test into the categorical datasets by assuming that

the nominal categories can be ordered, denoted by Z-SNOD.

Multivariate Detection Methods

TCOD. Several advanced TCOD methods have been proposed for multivariate categorical data, including

Bayes Net Method, Marginal Method, LERAD, Conditional Test, Conditional Test-Combining Evidence,

and Conditional Test-Partitioning. Experiments had shown that Conditional Test and its two variants out-

performed all other methods[40]. Therefore, we focused on the comparison of our method with the three

best methods, denoted as Conditional Test, Conditional Test-Combining Evidence, and Conditional Test-

Partitioning.

SCOD. For the competing methods in SNOD group, we chose Multivariate Z-SNOD, which is an extension

version of single attribute Z-test, by considering Mahalanobis distance and MCD (Minimum Covariance De-

terminant) techniques. In addition, we integrated the preceding method with multiple categorical similarity

measurements, Lin and OF, named as Multivariate Z-Lin, and Multivariate Z-OF.

Performance metrics

We generated synthetic outliers in both simulation and real datasets, which enable us to analyze the effec-

tiveness of outlier detection approaches in a controllable way. We assumed the raw dataset as a ground truth,

and contaminated around α percent of the data records as outliers. In our paper, for each dataset, includ-

ing both simulation and real life ones, we randomly selected 2%, 3% and 5% of the data to be anomalies

by modifying them from its original category to anyone of others. For each contamination rate (2, 3 and
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5), the synthetic outliers were generated 10 times and the mean and standard deviation of accuracies were

calculated for each method.

To compare the accuracies among all methods, we used the common evaluation measures: precision (de-

tection rate), i.e., the fraction of examples labeled as outliers that are true outliers, and recall (detection

precision), i.e., the fraction of true outliers that are correctly identified. The precision is plotted against

recall, and the curves that are higher and farther to the right denote better performances since it corresponds

to a higher precision for a given recall. Each point corresponds precision and recall when a specified number

of outlier is predefined, from 1 to n (the number of objects in the whole dataset). As another measure of

accuracy, average precision was computed to approximate the area under the precision-recall curve.

All the experiments were conducted in a PC with Intel (R) Core (TM) Duo CPU, CPU 2.80 GHz, and 2.00

GB memory. The development tool was MATLAB 2008.

5.5.2 Experiment Results and Analysis

This section presents experimental evaluations for the above approaches on simulation and real datasets. We

compared the SCOD accuracies among different methods based on different parameter combinations.

Results on single attribute datasets

Detection Accuracy

Fig. 5.6 depicts the comparison of our methods against the other 7 existing approaches on the single at-

tribute datasets. The contamination rate α was set as 3, 5, 2 and 5 in Soil1, Soil2, Jura and Syn1,

respectively. Each point in the curves corresponds to the average performance over 10 randomly gener-

ated datasets for each algorithm. We observed that both PCF-SCOD and kNN-SCOD methods achieved

20 − 40% improvement over Z-OF and Z-Lin, and 60 − 70% over LOF-Lin, LOF-OF, kNN-Lin, kNN-OF

and Z-SNOD(Z-SOD). From these results, we found that kNN and LOF can’t handle the categorical outlier

detection in spatial context. After integrating Z-test with OF and Lin similarity measurements together, the

outlier identification quality was increased. Z-Lin was always better than Z-OF. As introduced in [18], OF
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(a) Soil1, α = 3 (b) Soil2, α = 5

(c) Jura, α = 2 (d) Syn1, α = 5

Figure 5.6: Comparison of algorithm performances for the spatial dataset with single attribute

and Lin compute similarities for categorical attributes in different ways:

SimOF (X,Y ) =


1 if X = Y ;

1
1+log(N/fk(Xk))×log(N/fk(Yk)) otherwise.

ωk = 1/d (5.21)

SimLin(X,Y ) =

2log pk(Xk) if X = Y ;

2log(pk(Xk) + pk(Yk)) otherwise.

ωk =
1

Σd
i=1log pi(Xi) + log pi(Yi)

(5.22)
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Table 5.6: Average precision (normalized area under precision-recall curve) for spatial categorical
datasets with single attribute, comparing PCF-SCOD, kNN-SCOD-S and other 7 approaches.

Approach Soil1 Soil2 Jura Syn1

PCF-SCOD 0.7805 0.7822 0.7481 0.7646
kNN-SCOD-S 0.7811 0.7763 0.6521 0.7148
kNN-Lin 0.0279 0.0389 0.0276 0.0489
kNN-OF 0.0284 0.1261 0.0279 0.0454
LOF-Lin 0.0284 0.0621 0.0279 0.0455
LOF-OF 0.0284 0.0300 0.0279 0.0502
Z-Lin 0.6781 0.5407 0.4362 0.6298
Z-OF 0.6966 0.0473 0.3668 0.0477
Z-SNOD 0.1845 0.1603 0.0807 0.2072

where fk(Xk) denotes the number of times attribute to take the value X in the kth dimension, pk(Xk) the

sample probability to take the value Xk in the dataset, and ωk is the weight value of the kth dimension.

When identifying the relevance score among objects with the same categorical attribute, OF always assigns

a constant value 1 to it, while Lin computes the value based on the occurrence probability of the category.

When two objects have different categorical attributes, OF assigns lower relevance to the objects with higher

frequencies, while Lin assigns higher values. Consequently, Lin could better capture the spatial relationship

than OF by more accurately computing spatial relevance among objects. If the category of one of the pair

objects occurs frequently in the dataset, it means the higher probability to co-occur with another category in

the whole dataset. That is why the methods integrating with Lin always achieved better performance than

those with OF. However, when identifying the spatial categorical outliers, Lin and OF measurements are

based on the category frequencies that are determined by the whole data distribution, not the co-occurrence

frequencies which take spatial dependency into considerations. That was why the performances of Z-Lin

and Z-OF were worse than those of PCF-SCOD and kNN-SCOD.

Compared with kNN-SCOD, PCF-SCOD had better performance. Especially, when applied to the datasets

with more complicated distribution, like Jura and Soil2 (as shown in Fig. 5.5), PCF-SCOD can accurately

capture the relationships among objects by considering PCRs among pair of categories at different spatial

distances. Furthermore, it can get the highest precision of identifying spatial categorical outliers. Also,

with the increasing data size, kNN-SCOD got better approximations of PCF-SCOD, like in Soil1(1000),

Soil2(3000) and Syn1(4000), since with the more objects in the dataset, kNN-SCOD could capture suffi-

cient mapping information from the raw dataset, which helps accurately approximate PCRs for pair objects.

Finally, we found that the identification qualify of PCF-SCOD was not affected by different contamina-

tion rates. For each contamination value, PCF-SCOD always achieves higher accuracy with stable process
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abilities, as shown by its small standard deviations of detection precisions in Fig. 5.6(b).

Figure 5.7: Average precisions of PCF-SCOD by varying b value

Figure 5.8: Average precisions of PCF-SCOD by varying k value

The average precision values are also given in Table 8 for all the SCOD approaches in single attribute

domain. Note that for most datasets, PCF-SCOD and kNN-SCOD achieved higher accuracy than other ap-

proaches. We notice that the performance of the methods also depends on the detection tasks. For example,

kNN-SCOD has comparable or better performance than PCF-SCOD in Soil1 and Syn1. In Soil1, only

3% of data are contaminated which makes the outlying behavior more obvious based on the information

derived from the normal objects. There are 3 categories in Syn1, and only 6 possible pair attributes. It is

sufficient for 4000 observations to extract the normal pair attributes which co-occur frequently by analyzing

those behaviors. On the contrary, kNN-SCOD can’t work as well as PCF-SCOD in Jura. There are only

359 observations which take four different categories, which means there are overall 10 pair attributes. The
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neighborhood information in these 359 observations can’t provide substantial information to help derive the

normal behaviors. On the other hand, by observing Fig. 5.5, we notice that the distribution of the whole

dataset is not uniform. It seems that there are various kinds of pair attributes co-occurring in near distances,

such as, blue-blue, blue-orange, red-red, red-orange, red-while, and white-orange, etc. In this sense, only

considering the neighborhood based information is not sufficient to mine the normal patterns. Although

some pair attributes often co-occur within a near region, but they maybe not within a little distant one.

PCF-SCOD can extract the co-occurrence frequencies of pair attributes at different distances. That is why

PCF-SCOD performs well in Jura1.

Data Size 359 1000 3000 4000
PCN-SCOD 1.14 4.41 34.6 55.5
kNN-SCOD 0.01 0.02 0.11 0.18
kNN-Lin 0.01 0.14 1.48 3.14
LOF-Lin 0.04 0.44 4.11 8.39
Z-Lin 0.001 0.02 0.12 0.23
Z-SOD 0.001 0.02 0.16 0.75

Figure 5.9: Runtime in seconds for datasets with varying size

Impacts of neighborhood sizes

We also evaluated the anomaly detection performances of proposed approaches by varying the sizes of

spatial neighborhood. Fig. 5.8 shows various k values from 6 to 16, respectively. The curves depict the

effects of varying the number of spatial neighbors on the average precisions of PCF-SCOD on 4 different

sizes of datasets. In general, its anomaly detection performance seems stable as the neighborhood size

increases. In Soil1, Soil2 and Syn1, the optimal k values are around 8 to 14. But for Jura, which is a

small-size data set, higher k value leads to a worse performance. This is because, higher neighborhood size

makes distant objects involve in evaluating the specified observation behaviors, which violates the spatial
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correlation theory. This same situation occurred in the results generated by kNN-SCOD method, as shown

in Fig. 5.10. Since kNN-SCOD work is based on the neighborhood information, which makes it more

sensitive to the k value. For the dataset with larger data size, 8-16 neighborhood size is appropriate to collect

the co-occurrence information of pair attributes. This is proved by the curves of Soil1, Soil2 and Syn1. For

small dataset, both lower and higher k values result in worse identification performances.

Impact of bin sizes

The effects of bin sizes were examined on the performances of PCF-SCOD method. Fig. 5.7 shows its

performances keep impressive by varying b values from 6 to 20. Apparently, SCOD identification quality

achieves stable after the points at 10. PCF-SCOD computes the pair attribute frequencies at different bins.

If b is smaller, e.g., b < 8, the pair observations in more distant region are mixed with those in nearer

region that we are interested. This results in the incorrect computation of the co-occurrence frequency of

pair attributes, which further leads to the worse identification performances. On the contrary, higher b value

helps compute the pair frequency more accurately. However, too much bins will cost a lot, and normally, it

is sufficient to set b as 10, which is demonstrated by the curves in Fig. 5.8.

Computational Cost Analysis

Finally, we showcase the speed and respective scalability of the algorithms. Fig. 5.9 contains the runtime

performances of algorithms in the datasets with varying number of data observations. As observed, the

methods based on Lin have similar runtime with those based on OF. Therefore, we only show the Lin

based approaches. As shown in Fig. 5.9, PCF-SCOD finished execution at around 1.14 seconds for Jura

data, , while kNN-SCOD had a running time of 0.01 seconds. And, in Syn2 dataset, PCF-SCOD is at

around 55.5 seconds, while kNN-SCOD is at only 0.18 seconds. By analyzing the results in Fig. 5.9,

kNN-SCOD approximated the accuracy of PCF-SCOD very well, while it outperformed PCF-SCOD for

larger-size datasets. For other compared approaches, although they finished running more quickly than

PCF-SCOD, they had lower identification accuracies.

Results on multiple attribute datasets

Detection Accuracy

Fig. 5.8 shows the performances when contamination rate was 5% in simulation datasets. Obviously,

kNN-SCOD-M still had very preceding performance increases. The curves demonstrate that kNN-SCOD

performs the best, followed by the Multivariate Z-Lin and Multivariate Z-SNOD. The series of Conditional

Test perform very poorly in comparison. The worst one is Multivariate Z-OF, since OF measurement can’t

handle well the similarities among nominal data with multiple attributes. Meanwhile, the curves of all

methods are also depicted with the standard variances of precision values of the 10 randomly generated
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Table 5.7: Average Precision for spatial categorical datasets with multiple attribute datasets, com-
paring kNN-SCOD-M and other six approaches.

Approach Syn2 Syn3 Syn4 Syn5

kNN-SCOD-M 0.7282 0.7862 0.8003 0.7886
Conditional Test 0.0526 0.2084 0.3895 0.2509
Conditional Test-Combining Evi-
dence

0.0526 0.2084 0.4084 0.2509

Conditional Test-Partitioning 0.0526 0.2082 0.3948 0.2468
Multivariate Z-SNOD 0.3984 0.5536 0.3596 0.4257
Multivariate Z-Lin 0.5950 0.6413 0.5498 0.4068
Multivariate Z-OF 0.0442 0.0512 0.0476 0.0512

datasets. The smaller standard variance of kNN-SCOD indicates that it has more stable performance to

detect spatial multivariate categorical outliers.

Similarly, TCOD approaches didn’t get competitive results when being applied into the spatial context,

as shown by the ROC curves generated by Conditional Test, Combining Evidence, and Conditional Test-

Partitioning. The performance of Multivariate Z-Lin is still much better than that of Multivariate Z-OF in

the multiple dimension domain. Besides the different ways of similarity computation for a specific attribute

domain, OF and Lin applied different weight values when calculating the final similarities by combining the

different values from different attribute domain. OF assigns the same weight to different attributes, while

Lin computes the corresponding weigh based on the category distribution in it. As shown in Eq.(5.25),

Lin measure gives higher weight to the same categories with frequent values, and lower weight to differ-

ent categories with infrequent values. Such a way could better reflect the case that if two objects having

same category co-occur with higher frequency, they will have higher relevances. Whereas, if they co-occur

frequently with different categories, their relevance score will be lower since they are assigned an lower

weight. However, such measurement to capture the relevance among pair objects with different categories

is significant inconsistent with the concept of SCOs. That is why the performance of Multivariate-Lin is

much worse than that of kNN-SCOD. It is worthy of note that Z-SNOD approach performs well compared

with TCOD methods since it takes the characteristic of spatial auto-correlation into considerations when

identifying SCOs, although it treats the categorical attributes as numerical ones.

Similarly, TCOD approaches didn’t achieve competitive results when applied to the spatial context, as

shown by the PR(Precision-Recall) curves generated by Conditional Test, Combining Evidence, and Con-

ditional Test-Partitioning. The performance of Multivariate Z-Lin was still much better than that of Multi-

variate Z-OF in the multiple dimension domain. Besides the different ways of similarity computation for a
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Figure 5.10: Average precisions of kNN-SCOD-S by varying k value

Figure 5.11: Average precisions of kNN-SCOD-M by varying k value

specific attribute domain, OF and Lin applied different weight values when calculating the final similarities

by combining the different values from different attribute domains. OF assigns the same weight to different

attributes, while Lin computes the corresponding weigh based on the category distribution in it. As shown in

Eq.(25), Lin measure gives higher weight to the same categories with frequent values, and lower weight to

different categories with infrequent values. Such a way could better reflect the case that if two objects having

the same category co-occur with a higher frequency, they will have higher relevance. Whereas, if they co-

occur frequently with different categories, their relevance score will be lower since they are assigned a lower

weight. However, such measurement to capture the relevance between pair objects with different categories

is significant inconsistent with the concept of SCOs. That is why the performance of Multivariate-Lin is

much worse than that of kNN-SCOD. It is worthy to note that Z-SNOD approach performs well compared

with TCOD methods since it takes the characteristic of spatial auto-correlation into considerations when

identifying SCOs, although it treats the categorical attributes as numerical ones.
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(a) Syn2, α = 5 (b) Syn3, α = 5

Figure 5.12: Comparison of algorithm performances for the spatial data with multiple attributes

The average precision values are given in Table 9 for all the SCOD approaches in the multi-attribute domain.

Note that for most datasets,kNN-SCOD achieved much higher accuracy, from 0.7282 to 0.8003, than other

approaches, from 0.0442 for Multivariate Z-OF, to 0.6413 for Multivariate Z-Lin, and 0.5536 for Multivari-

ate Z-SNOD. Similarly, the performance of the methods also depends on the detection tasks. In Syn4 and

Syn5, the contamination rate are 2 and 3, respectively, which means there exist less outliers in the whole

data sets. The lower contaminated data alleviated the side-effects of outlying behaviors on the identification

quality of kNN-SCOD-M approach. This is also demonstrated by most of the higher average precisions

generated by other methods, like the Conditional Test series. For Multivariate Z series, they all performs

poorer in Syn4 compared in other datasets, since there are 4 dimensions in it. It is apt to lose information

when computing the spatial relevance by integrating with Mahalanobis distance if there exist more attributes

in datasets.

Impacts of neighborhood sizes

In the same way, we showcase the effects of neighborhood size on the performance of kNN-SCOD-M on

multiple attribute domain. Fig. 5.11 depicts its identification quality is not sensitive to different sizes, from

6 to 16, of spatial neighborhood. The sizes of these four data sets are 1000 and 4000. It is sufficient to set

the k as around 8 to perform the computation of spatial relevance scores.

Analysis and discussion

Based on the above experimental evaluations, PCF techniques have shown to be very effective in modeling

the relevances among spatial category objects in both single and multiple attribute datasets. As a result,
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(a) Syn2, α = 5 (b) Syn3, α = 5

(c) Syn4, α = 2 (d) Syn5, α = 3

Figure 5.13: Comparison of algorithm performances for the spatial data with multiple attributes

PCF-SCOD and kNN-SCOD demonstrated superior identification qualities over the competing techniques

in both simulated and real datasets. The evaluations verify two observations: 1) first, SCOs are identified in

a different way with that of SNOs. Two objects taking different attributes are not necessarily irrelevant with

each other. Sometimes, their frequent co-occurrence exactly illustrates their higher spatial correlation. This

can be demonstrated by comparisons of Z-SNOD against PCF series of methods; 2) when identifying SCOs,

the existing TCOD and SCOD approaches can’t avoid the well-known swamping and masking problems.

TCOD approaches treat spatial and non-spatial attributes equally and don’t take the spatial dependency and

spatial auto-correlation into considerations, which are the specific properties of spatial data. Z-OF and Z-
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Lin outperformed TCOD methods since they differentiate spatial and non-spatial attributes. However, they

performed worse than PCF-SCOD and kNN-SCOD since their dissimilarity computation is based on the

global frequencies, not local frequencies.

Notice that there might be white noise in the original data set. Considering that data noise is usually uni-

formly distributed over the space, our defined pair correlation ratio is able to capture the spatial correlation

as a small but nontrivial ratio value between noise observations and normal observations as long as there

exist some correlation patterns between them based on their spatial distances. The pair correlation ratio will

increase if the signal-noise ratio decreases. In the situation with high signal-noise ratio, noise will not be

identified as outliers. In the situation with low signal-noise ratio, some noise observations may be identified

as outliers, but should not be highly ranked outliers. In the extreme case where the signal-noise ratio is very

high, then all the noise observations will be returned as top ranked outliers, since they are rare observations

and should be regarded as outliers.

This paper assumes that the spatial locations are uniformly distributed. The case of sparsely distributed

data may refer to two scenarios. The first scenario refers to the situation where the data set has a very low

signal-to-noise ratio. In this case, noise will be handled well as explained above. The second scenario refers

to the situation where some categorical types are rare. This still depends on the sample size of these rare

categorical types is still sufficient to calculate the stable pair correlation ratios. If it is not sufficient, we

may need to remove them in the pre-processing step, since we are not able to calculate stable statistics for

them. However, note that sparse distribution is not common in spatial categorical data. The datasets that we

collected are all not sparsely distributed.

5.6 Conclusion

This paper investigates the benefits of PCF technique on the SCOD, and designs three algorithms which can

identify SCOs with single and multiple attributes. General idea in PCF-SCOD is that, first, for each pair of

categories, we compute its Pair Correlation Ratios (PCR) as a function of distance. Then, the outlier scores

are computed by the mean of estimated PCR values between each object and its spatial neighbors. Finally,

the top l objects with higher infrequent behaviors are recognized as SCOs. Furthermore, we propose two

kNN based estimators which only utilize kNN neighborhood information to estimate the co-occurrence fre-

quency of pair objects in single and multiple attribute domains, respectively. The proposed approaches have

several advantages: 1)they can identify SCOs with both single and multiple categorical attributes; 2) they can

process not only ordinal, but nominal categorical datasets; 3)compared with existing approaches, they can

better avoid swamping and masking issues. The experiments conducted on the synthetic and real datasets

demonstrated PCF series of approaches significantly outperformed other existing popular approaches.



Chapter 6

Robust Prediction and Outlier Detection for
Spatial Datasets

Spatial kriging is a widely used predictive model for spatial datasets. In spatial kriging model, the ob-

servations are assumed to be Gaussian for computational convenience. However, its predictive accuracy

could be significantly compromised if the observations are contaminated by outliers. This deficiency can

be systematically addressed by increasing the robustness of spatial kriging model using heavy tailed dis-

tributions, such as the Huber, Laplace, and Student’s t distributions. This paper presents a novel Robust

and Reduced Rank Spatial Kriging Model (R3-SKM), which is resilient to the influences of outliers and

allows for fast spatial inference. Furthermore, three effective and efficient algorithms are proposed based

on R3-SKM framework that can perform robust parameter estimation, spatial prediction, and spatial outlier

detection with a linear-order time complexity. Extensive experiments on both simulated and real data sets

demonstrated the robustness and efficiency of our proposed techniques.

This chapter is organized as follows. Section 6.1 gives the background and motivation. Section 6.2 reviews

the theoretical preliminaries. Section 6.3 presents the R3-SKM framework. A general approach based on

R3-SKM is proposed to perform robust parameter estimation in Section 6.4, and two inference algorithms

are discussed in Section 6.5. Experiments on both simulated and real datasets are presented in Section 6.6.

The paper concludes with a summary of the research in Section 6.7.

92
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6.1 Background and Motivation

With the increasing public sensitivity and concern on environmental issues, as well as the development of

remote sensing technologies, huge amounts of spatial data have been collected from location based social

network applications to scientific data, and the volume keeps increasing at fast pace over recent decades.

Especially, the rapid advances in Geographical Information System (GIS) and Global Positioning System

(GPS) enable accurate geo-coding of locations where scientific data are collected. As one of the major re-

search issues, the prediction of spatial data has attracted significant considerations. Illustrative applications

include climate prediction, environmental monitoring, molecular dynamical pattern mining, and infectious

disease outbreak prediction in fields such as environmental monitoring, biology, epidemiology, geography,

and economics. Spatial prediction is the process of estimating the values of a target quantity at unobserved

locations. When applied to a whole study area, it is also referred to as spatial interpolation or mapping.

Given the large volume of spatial data, it is computationally challenging to apply traditional prediction

methods in either an allowable memory space limit or an acceptable time limit, even in supercomputing en-

vironments. Efficient prediction for large spatial data has therefore become one of the emerging challenges

in data mining fields. Most existing spatial prediction methods have the time complexity of O(n3). Re-

cently, a number of approximate methods have been proposed to tackle the “Big N” problem using different

techniques, such as kernel convolutions [73], low rank basis functions or splines [95], moving averages,

likelihood approximation [123], and Markov random field [39]. Recent advance by Banerjee et al. [11] pro-

posed a reduce rank spatial kriging approach that projects the spatial process onto a subspace generated by

realizations of the original process at a specific set of locations named as knots. All these methods assume

that the observations follow a multivariate Gaussian distribution.

However, a well-known limitation with the above Gaussian observation model is non-robustness. In many

regression problems, observations may include outliers which deviate strongly from the other members

of the sample. Such outliers may occur, for example, because of failures in the measurement process or

absence of certain relevant explanatory variables in the model. The estimations of the mean and variance-

covariance matrices are sensitive to outliers due to the well-known masking and swamping effects [105]. In

addition to the impacts on parameters estimation, outliers also significantly reduce the accuracy of spatial

predictions. For example, a single corrupted observation will deviate the posterior expectation of predictions

at unobserved locations far away from the level described by the other observations. As demonstrated by

Figure 6.1, the kriging prediction result is heavily distorted by the existence of 5 outliers (in the dark red

areas in Figure 6.1(b)). In such cases, a robust observation is required. This limitation can be properly

addressed by considering robust statistics techniques.

Robust inference has been studied extensively. De Finetti [41] described how Bayesian inference on the

mean of a random sample, assuming a suitable observation model, naturally leads to giving less weight to
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(a) Original Data (b) Contaminated Data

Figure 6.1: Impacts of spatial outliers on prediction

outlying observations. However, in constrast to simple rejection of outliers, the posterior depends on all

data but in the limit, as the separation between the outliers and the rest of the data increases, the effect of

outliers becomes negligible. More theoretical results on this kind of outliers rejection were presented by

Dawid [41] who gave sufficient conditions on the observation model p(y|θ) and the prior distribution p(θ)

of an unknown location parameter θ, which ensure that the posterior expectation of a given function m(θ)

tends to the prior as y →∞. He also stated that the Student-t distribution combined with a normal prior has

the property.

A more formal definition of robustness was give by O’Hagan [117] in terms of an outlier-prone observation

model. The observation model is defined to be outlier-prone of order n. That is, the effect of a single

conflicting observation to the posterior becomes asymptotically negligible as the observation approaches

infinity. O’Hagan showed that the Student-t distribution is outlier prone of order 1, and that it can reject up

to m outliers if there are at least 2m observations altogether. this contrasts heavily with the commonly used

Gaussian observation model in which each observation influences the posterior no matter how far it is from

the others.

Currently, a number of robust methods have been proposed for different learning problems, including multi-

variate regression, Kalman filtering and smoothing, clustering, and independent component analysis. (e.g.,

[1, 47, 67, 80, 83, 105, 116, 151]). The majority of these methods can be summarized by using a probabilis-

tic framework [105] in which the measurement error is modeled by a heavy tailed distribution, such as the

Huber, Laplace, Student’s t, and Cauchy distributions, instead of the traditional Gaussian distribution. The

prediction problem can then be reformulated as a Maximum-A-Posterior (MAP) prediction problem con-

ditional on observations. However, employing heavy tailed distributions makes the prediction process ana-

lytically intractable. Although stochastic simulation methods have been applied to estimate an approximate
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posterior distribution, for example, via MCMC or particle filtering [47, 67, 83] , these versatile methods are

very computationally intensive. Jylanki et al. [84] presented an efficient expectation propagation algorithm

for robust Gaussian process regression based on the Student’s t distribution, while Svensn and Bishop [151]

proposed a variational inference approach to robust Student’s t mixture clustering. Gandhi and Mili [53]

proposed a robust Kalman filter based on the Huber distribution and the iterative reweighted least squares

(IRLS) method. An efficient Kalman smoother was presented by Aravkin et al. [8] based on the Laplace

distribution and the convex composite extension of the Gauss-Newton method.

This paper aims to address the robust prediction problem for large spatial dataset. It considers the same

probabilistic framework as that was used in existing robust methods. Specifically, a Robust and Reduced-

Rank Spatial Kriging Model (R3-SKM) is formulated, and then efficient algorithms are proposed by utilizing

Laplace approximation to perform parameter estimation, robust spatial prediction, and spatial outlier detec-

tion.

To the best of our knowledge, this is the first statistical approach that can perform robust spatial prediction

in linear time. The main contributions can be summarized as follows:

• Formulation of the R3-SKM model. A Robust and Reduced Rank Spatial Kriging Model is pro-

posed in which the measurement error is modeled by a heavy tailed distribution, and a Bayesian

hierarchical framework is integrated to support priors on model parameters.

• Design of an approximate algorithm for robust parameter estimation. The posterior distribution

of latent variables conditional on parameters and observations is estimated via Gaussian approxima-

tion. Furthermore, the posterior distribution of parameters conditional on observations is estimated

via Laplace approximation. It has time complexity of O(n).

• Development of robust inference algorithms. R3-SP (Robust and Reduced Rank Spatial Predic-

tion) and R3-SOD (Robust and Reduced Rank Spatial Outlier Detection) algorithms are proposed to

perform robust spatial prediction and spatial outlier detection. Their time complexities are analyzed,

which scale linearly.

• Comprehensive experiments to validate the robustness and efficiency of the proposed tech-
niques. The R3-SKM was evaluated by the extensive experiments on simulated and real datasets.

The results demonstrated that the three algorithms based on R3-SKM outperformed existing repre-

sentative techniques, when the data were contaminated by outliers.
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6.2 Preliminary Concept

In this section, we review the approximate inference methods considered in this paper. First we give a short

description of Spatial Kriging Model (SKM). Then we review knot based reduced-rank techniques, as well

as the Laplace Approximation.

6.2.1 Spatial Kriging Model

Let us define a numerical random field Y (s) on a domain D ⊆ R2, and Y = (Y (s1), · · · , Y (sn))′ be

the n × 1 vector of observed responses, each of which is along with a p × 1 vector of spatially referenced

predictors x(s). The associated spatial kriging model can be represented as

Y (s) = xT (s)β + η(s) + ε(s) (6.1)

where ε(s) is a spatial white noise process with mean zero, var(ε(s)) = τ2 > 0, and τ2 is a parameter

to be estimated. The white noise assumption implies that Ri,j(φ) = cov(ε(si), ε(sj)) = 0, unless i = j.

x(s) refers to a vector of known predictors, and the coefficients β are unknown. xT (s)β is a vector of

deterministic (spatial mean) or trend functions, which models large scale variations, and the spatial random

process η(s) captures the small scale variations. The hidden process η(s) captures spatial association. It

is assumed to follow a Gaussian process with zero mean and the covariance function σ2C(s, s′;φ), where

σ2 refers to the variance, and C(·;φ) the correlation function of the process controlled by the parameter φ.

Function C controls the smoothness and scale among latent variables η(si), and can be selected freely as

long as the resulting covariance matrix is symmetric and positive semi-definite.

6.2.2 Reduced Rank Methodology

The spatial inference (e.g., spatial prediction, outlier detection) based on the SKM model involves the in-

version of the n by n correlation matrix, which has the time complexity of O(n3). This makes the SKM

model prohibitively expensive for large n. The knot-based model proposed by Banerjee et al. [11] considers

a fixed set of “knots” S∗ = (s∗1, · · · , s∗n∗) with n∗ � n. The Gaussian process η∗(s) yields an n∗-vector

of realizations over the knots, that is, η∗ = (η(s∗1), · · · , η(s∗n∗)), which follows a GP{0, C∗(s∗i , s∗j ; θ)}.
Spatial estimation at a generic site s is operated through

η̃(s) = E{η(s)|η∗} = cT (s; θ)C∗−1(θ)η∗ (6.2)
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Table 6.1: Description of Major Symbols

Sym. Description

S S = {si}ni=1, a set of n training locations.
S∗ S∗ = {s∗i }mi=1, a set of m knot locations.
Y A given set of observations with numerical attributes which follow Gaussian distribution.

Y = {Y (si)}ni=1

X A set of explain variables. {X(si)}ni=1 is a p× 1 vector of covariates or explain variables at
location si.

η Spatial random effects of the observations, which provide local adjustments to the means.
η = {η(si)}ni=1

η∗ Spatial random effects of the knots. η∗ = {η∗(si)}mi=1

η̃ The predicted values of η by η∗.η̃ = {η̃(si)}ni=1

ε̃ {ε̃(si)}ni=1 is the nugget measurement error.
v∗ v∗ = (η∗

′
, β′)′, it is a (m+ p)× 1 vector comprising the realizations of the spatial predictive

process and the regression parameters.
φ The decay and smoothness parameter.
ρ(·;φ) The function for computing the correlations between Y, between Z, or between Y and Z.

H H = [F (φ)X]. F (φ) is a transformation matrix which describes that η̃ is defined as a
spatially varying linear transformation of η∗.

Θ The set of sample locations of θ, based on the mode and Hessian at it of π̂(θ|Y,Z). Θ =
{θ}Kk=1.

∆ The set of weight values of sample θ, which are computed by their corresponding posterior
distributions. ∆ = {∆}Kk=1

where c(s; θ) = [C(s, s∗j ; θ)
n∗
j=1]. The reduced rank SKM model can be formalized as

Y (s) = xT (s)β + η̃(s) + ε(s) (6.3)

It is important to select a reasonable number of knots as well as their spatial locations. This is related to

the problem of spatial design. There are two popular knots selection strategies. One is to draw a uniform

grid to cover the study region and each grid is considered as a knot. Another is to place knots such that

each covers a local domain and the regions with dense data have more knots. In practice, it is feasible to

validate models by using different number of knots and different choices of knots to obtain a reliable and

robust configuration.

6.2.3 Laplace Approximation (LA)

The Laplace approximation for the conditional posterior of the latent function is constructed from the second

order Taylor expansion of log p(f |D, θ, σ2, v) around the mode f̂ , which gives a Gaussian approximation to
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the conditional posterior

p(f |D, θ, σ2, v) ≈ q(f |D, θ, σ2, v) = N(f |f̂ ,ΣLA) (6.4)

where f̂ = argmaxfp(f |D, θ, σ2, v) [131]. Σ−1
LA is the Hessian of the negative log conditional posterior at

the mode, that is,

Σ−1
LA = −∇∇ log p(f |D, θ, σ2, v)|f=f̂ = K−1 +W, (6.5)

where W is a diagonal matrix with entries Wii = ∇fi∇fi log p(y|fi, σ2, v)|fi=f̂i .

The inference in the hyperparameters is done by approximating the conditional marginal likelihood p(f |D, θ, σ2, v)

with Laplace’s method and searching for the approximate maximum a posterior estimate for the hyperpa-

rameters

{θ̂, σ̂2, v̂} = arg max
θ,σ2,v

[log q(θ, σ2, v|D)] = arg max
θ,σ2,v

[log q(y|X, θ, σ2, v) + log p(θ, σ2, v)] (6.6)

where p(θ, σ2, v) is the prior of the hyperparameters. The gradients of the approximate log marginal like-

lihood can be solved analytically, which enables the MAP estimation of the hyperparameters with gradient

based optimization methods. Following Williams and Barber, the approximation schema [165] is called the

Laplace method, but essentially the same approach is named Gaussian approximation by Rue et al. [136] in

their Integrated nested Laplace approximation (INLA) software package for Gaussian Markov random field

models [156].

6.3 Robust and Reduced Rank Spatial Kriging Model

The Robust and Reduced-Rank Spatial Kriging Model (R3-SKM) integrates robust, reduced-rank, and

Bayesian hierarchical techniques together.

The proposed R3-SKM is defined as

Y = Xβ + η̃ + ε̃ (6.7)

in which most of the variables are defined in section II, except the measurement error ε̃ now follows a heavy

tailed distribution with the probability density function f(ε̃;µ, %2) = 1
%h((ε̃ − µ)/%), where µ refers to

the mean, and % the dispersion parameter. Examples of the h function include: 1) Laplace distribution:

h(x) = 1
2e
−|x|; 2) Student’s t distribution: h(x) = c(x+ ν)(p+ν)/2, where c is a normalization constant, the
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Figure 6.2: pdfs of Heavy Tailed Distributions

case v = 1 is the Cauchy density, and the limiting case v →∞ yields the normal distribution; and 3) Huber

distribution: h(x) = ce−ϕ(x;%),

ϕ(x;κ) =


κ|x| − 1

2
κ2, for |x| > κ

1

2
x2, for |x| ≤ κ, (6.8)

where c is a normalization constant that ensures
∫
c
%e
−ϕ(x;κ) = 1, and % is a range parameter of the distribu-

tion. The probability density functions (pdf) of the Huber, Laplace and Gaussian distribution are compared in

Figure 6.2. The robustness of the R3-SKM is realized by the latent variation component ε̃i, i = {1, · · · , n},
which follows a heavy tailed distribution. For example, the parameter ν in Student’s t, or κ in Huber distri-

bution controls the degree of the robustness. When the value of ν increases, the robustness of the Student’s

t will decrease.

R3-SKM can be formalized in the framework of Bayesian hierarchical model with three layers, including

the observation layer, the latent robust Gaussian process layer, and the parameter layer. The observation

layer contains the observations Y = {Y (s1), · · · , Y (sn)}. It is assumed that each Y (si) follows a Gaussian

distribution. Each random variable Y (si) is related to the latent Gaussian effects in the second layer, v∗ =

(η∗′, β′)′, which is the (m + p) × 1 vector. Specifically, β is assigned a multivariate Gaussian prior, i.e.,

β ∼ N (µβ,Σβ). The third level of the hierarchical model consists of the related parameters with the latent

variables. In the R3-SKM model, the parameters include θ = (σ2, φ, ν, %2). That is, σ2 and φ for modeling

η∗, µ and %2 for modeling ε̃. σ2 has an inverse gamma prior distribution: σ2 ∼ IG(ασ, γσ), where ασ and

γσ are sufficiently small informative prior distribution. The correlation parameter φ is usually assigned an

informative prior decided based on the underlying spatial domain, i.e., φ ∼ U(aφ, bφ), a uniform distribution

over a finite range. In Student’s t distribution, ν ∼ U(aν , bν) and %2 ∼ IG(α%, γ%). Taking the Student’s t
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as an example, the graphic representation of the R3-SKM is depicted in Figure 6.3.

6.4 Robust Parameter Estimation

This section presents a novel approach, R3-PE (Robust and Reduced-Rank Parameter Estimation), to execute

the robust parameter estimation by integrating Laplace approximation [136]. It consists of two critical steps:

1) Gaussian approximation of the posterior distribution of latent variables conditional on parameters and

observations; 2) Laplace approximation of the posterior distribution of corresponding parameters conditional

on observations. Student’s t distribution is selected to model the pdf of ε̃.

6.4.1 Gaussian Approximation of Posterior Distribution of v∗

First, we need to compute π(v∗|Y, θ), where v∗ = (η∗
′
, β′)′, which consists of the spatial predictive process

and the regression parameters. Its mean and covariance matrix are computed as follows.

µv∗ = (0m, µβ)′,Σv∗ =

σ2C∗(φ) 0m×p

0p×m Σβ

 (6.9)

we have prior v∗ ∼ N(µv∗ ,Σv∗).

Case 1: Integrated with Student-t distribution

With the information depicted by the graphical model in Figure 6.3, we determine that the full conditional

distribution of π(Y |v∗, θ) follows the heavy tailed distribution, which can be approximated as a Gaus-

sian distribution of v∗ by Taylor expansion. For example, if ε̃ accords to the Student’s t distribution, then

π(yi|ν, TiHv∗, %2)=
Γ( ν+1

2
)

Γ( ν
2

)
√
πν%2

(1 + 1
ν

(yi−TiHv∗)2
%2

)−
ν+1
2 , where TiHv∗ = xiβ+ η̃i and Ti is the ith row of

unit matrix In. H=[F (φ)X], and F (φ) = C(φ)′C∗−1(φ), where C(φ)′ is an n×m matrix whose ith row is

the 1×m vector in which the jth element is given by C(si, sj ;φ). We Taylor expand it to second order by
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Figure 6.3: Graphic Model Representation of R3-SKM

expressing the result in a quadratic form of v∗,

log (π̂(Y |v∗, θ)) = −1

2
v∗
′
QY v

∗ + v∗
′
bY + const

QY =

n∑
i=1

Qyi , bY =

n∑
i=1

byi

Qyi = m1m2(
m2OD(v̂∗){OD(v̂∗)}′

(1 +m2D(v̂∗))2
− O2D(v̂∗)

1 +m2D(v̂∗)
)

byi =
m1m2OD(v̂∗)

1 +m2D(v̂∗)
+Qyi v̂

∗

m1 = −ν + 1

2
,m2 =

1

ν%2

D(v̂∗) = (yi − TiHv̂∗)′(yi − TiHv̂∗)

OD(v̂∗) = −2H ′T ′iyi + 2H ′T ′iTiHv̂
∗

O2D(v̂∗) = 2H ′T ′iTiH (6.10)

With the above Gaussian approximation, π(v∗|Y, θ) is analytically available and numerical routines can be

applied. For the R3-SKM, the full conditional for v∗ is

π(v∗|Y, θ) ∝ π̂(Y |v∗, θ)π(v∗|θ) (6.11)

∝ exp[(−1

2
v∗
′
Qyv

∗ + v∗
′
by) + (−1

2
v∗
′
Σ−1
v∗ v

∗ + v∗
′
Σ−1
v∗ µv∗)]

∝ exp[−1

2
v∗
′
Qv∗ + v∗

′
b]

∝ exp[−1

2
v∗
′
(Qy + Σ−1

v∗ )v∗ + v∗
′
(by + Σ−1

v∗ µv∗)]

∝ N(Y |v∗, θ)N(η∗|θ)π(ε̃|θ)nonumber (6.12)

(6.13)
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where the full conditional precision matrix Q = QY + Σ−1
v∗ , and the canonical parameter b = bY + Σ−1

v∗ µv∗ .

Thus, the full conditional is π(v∗|Y, θ) ∼ N(Q−1b,Q−1). We can compute the required inverse and deter-

minant of the size (m + p) × (m + p) matrix Q by utilizing the structure of Σv∗ and H . The main cost of

matrix inversion is thus O(m3), since the number of knots is m, assuming m� p.

Case 2: Integrated with Laplace distribution

If ε̂ accords to the Laplace distribution, then π(yi|B, TiHν∗) = 1
2B exp(−

|yi−TiHν∗|
B ). Here, B ≥ 0, where

TiHν
∗ = xiβ + η̃i, and Ti is the ith row of unit matrix In. H = [F (φ)X], and F (φ) = C(φ)′C∗−1, where

C(φ)′ is an n×mmatrix whose ith row is the 1×m vector in which the jth element is given by C(si, sj ;φ).

We Taylor expand it to second order by expressing the result in a quadratic form of ν∗,

log (π̂(Y |v∗, θ)) =


TiHν

∗

B
+ const, for yi > TiHν

∗

−TiHν
∗

B
+ const, for yi ≤ TiHν∗, (6.14)

For the R3-SKM, corresponding to Eq. (6.11), the full conditional precision matrix Q = Σ−1
ν∗ , and the

canonical parameter

b =


H ′T ′i
B

+ Σ−1
ν∗ µν∗ , for yi > TiHν

∗

−H
′T ′i
B

+ Σ−1
ν∗ µν∗ , for yi ≤ TiHν∗, (6.15)

Thus, the full conditional is π(v∗|Y, θ) ∼ N(Q−1b,Q−1). We can compute the required inverse and deter-

minant of the size (m + p) × (m + p) matrix Q by utilizing the structure of Σv∗ and H . The main cost of

matrix inversion is thus O(m3), since the number of knots is m, assuming m� p.

Case 3: Integrated with Huber distribution

Here we explores the special structure of the R3-SKM model based on the Huber distribution. The Huber

distribution is used to model the measurement error: the random variable ε̃(si) ∼ Huber(0, σ, κ). The pdf

of the Huber distribution is defined as π(ε̃;µ, σ, κ), h(yi|TiHν∗, σ, κ) = cexp(−ϕ(yi−TiHν
∗

σ ;κ)), and

ϕ(
yi − TiHν∗

σ
;κ) =


κ(yi − TiHν∗)−

1

2
κ2, for (yi − TiHν∗) > κ

1

2
(yi − TiHν∗)2, for −κ ≤ (yi − TiHν∗) ≤ κ

−κ(yi − TiHν∗)−
1

2
κ2, for (yi − TiHν∗) < −κ, (6.16)
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We Taylor expand it to second order by expressing the result in a quadratic form of v∗,

log (π̂(Y |v∗, θ)) =


ν∗′κH ′T ′i + const, for (yi − TiHν∗) > κ

−1

2
ν∗′H ′T ′iTiHν

∗ + ν∗′(yiH
′T ′i ), for −κ ≤ (yi − TiHν∗) ≤ κ

−ν∗′κH ′T ′i + const, for (yi − TiHν∗) < −κ, (6.17)

That is, we can express it in the following quadratic form of ν∗,

log (π̂(Y |v∗, θ)) = −1

2
v∗
′
QY v

∗ + v∗
′
bY + const (6.18)

where

QY =


0, for (yi − TiHν∗) > κ

H ′T ′iTiH, for −κ ≤ (yi − TiHν∗) ≤ κ

0, for (yi − TiHν∗) < −κ, (6.19)

and

bY =


κH ′T ′i , for (yi − TiHν∗) > κ

yiH
′T ′i , for −κ ≤ (yi − TiHν∗) ≤ κ

−κH ′T ′i , for (yi − TiHν∗) < −κ, (6.20)

The value of κ is chosen in order to ensure a given asymptotic variance - hence a given asymptotic efficiency

- at the normal distribution.

6.4.2 Laplace Approximation of Posterior Distribution of θ

Different from π(v∗|Y, θ), the posterior π(θ|Y ) is usually skewed and the approximation as a Gaussian

distribution is inappropriate. The posterior π(θ|Y ) plays an important role in the inference of marginal

posterior of latent variables that are of interests. Take v∗ as an example, the interest is to estimate the

marginal posterior π(v∗|Y ), which has

π(v∗|Y ) =

∫
π(v∗|Y, θ)π(θ|Y )dθ (6.21)
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Algorithm 8 Exploring posterior distribution of π(θ|Y )

Input: S, S∗, Y,X
Output: Θ,∆

1: Choose an initial value θ = (σ2, φ, ν, %);
2: repeat
3: Construct µv∗ , Σv∗ with θ (See Equation(6.9));
4: Calculate the transformation matrix H;
5: Gaussian approximation of π(Y |v∗, θ) as the form of v∗.
6: Apply IRLS to identify the mode υ̂∗ and Hessian at the mode of π̂(υ∗|Y, θ).
7: Compute the gradient and Hessian of π̂(θ∗|Y ) and apply one Newton’s step to update θ.
8: until Convergence
9: Explore the contour of π̃(θ|Y ) based on its mode and Hessian at the mode, obtain K sample locations,

Θ = {θ1, ..., θK}.
10: Compute and normalize {π̂(θ1|Y ), · · · , π̂(θK |Y )} to obtain ∆ = {∆1, · · · ,∆K} as ∆k =

π̂k(θk|Y )∑K
k=1 π̂k(θk|Y )

.

It is possible to obtain a sample set of {θ1, · · · , θK} from the input space of θ that represents an approximate

discrete form of the posterior π(θ|Y ). We can estimate the approximate π̂(v∗|Y ) by

π̂(v∗|Y ) =

K∑
k=1

π(v∗|Y, θk)π(θk|Y )∆k (6.22)

where ∆k is the weight of the sample θk that can be measured by its normalized probability density. The

critical step is to efficiently identify a suitable sample set {θ1, · · · , θK}, as well as its corresponding weight

set {∆1, · · · ,∆K}. The posterior π(θ|Y ) can be reformalized as

π(θ|Y ) ∝ π(Y |v∗, θ)π(v∗|θ)π(θ)

π(v∗|Y, θ)
(6.23)

Laplace Approximation (LA) can be applied to approximate the denominator π(v∗|Y, θ) as a Gaussian

distribution, and then set the vector of variables, υ∗, to the mode. The LA method uses similar ideas for

Bayesian spatial inference:

π̂(θ|Y ) ∝ π(Y |v∗, θ)π(v∗|θ)π(θ)

π̂(υ∗|Y, θ)

∣∣∣∣∣
v∗=v̂∗

(6.24)

where π̂(υ∗|Y, θ) is a Gaussian approximation as shown in Equation (6.11). We can get the mode v̂∗ and

the curvature at the mode of this full conditional expression. The preceding Gaussian approximation can be

efficiently conducted by using the popular Iterated Re-weighted Least Squares (IRLS) algorithm. The above

detailed procedures can be summarized as Algorithm 1.

Algorithm 1 iterates l1 times, from Step 2 to Step 8 until convergence. Among these steps, Step 6 has the
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highest time cost, because the solution is analytically intractable and numerical optimization techniques are

applied. An efficient IRLS algorithm is proposed to conduct this process. Step 6 is first reformulated as the

following optimization problem

argmax
v∗

π̂(v∗|Y, θ) = argmin
v∗

− lnπ(Y |v∗, θ)− lnπ(v∗|θ) (6.25)

Expanding the density functions π(Y |v∗, θ) and π(v∗|θ), we have that argmin
v∗
{1

2v
∗′{
∑n

i=1Qi}v∗−v∗′{
∑n

i=1 bi}+
1
2

(
v∗ − µv∗)′Σ−1

v∗ (v∗ − µv∗
)
}. The gradient and Hessian matrix of the above objective function can be ob-

tained as

5π̂(v∗|Y, θ) = (

n∑
i=1

Qi + Σ−1
v∗ )v∗ − (

n∑
i=1

bi + Σ−1
v∗ µv∗)

52π̂(v∗|Y, θ) =
n∑
i=1

Qi + Σ−1
v∗ (6.26)

The IRLS algorithm for Step 6 is described as follows:

1. Select an initial v̂∗

2. Until convergence

Update v̂∗ = v̂∗ −
(
52π̂(v̂∗|Y, θ)

)−1 5 π̂(v̂∗|Y, θ).

3. Output v̂∗ as the mode of π̂(v∗|Y, θ).

Computational Complexity. In Algorithm 1, suppose that it needs l2 iterations to find the mode υ̂∗ and

Hessian at the mode of π̂(υ∗|Y, θ), the time cost of Step 6 is O(l2 ∗ (n ∗m2 +m3)). The Step 5, Gaussian

approximation of π(Y |v∗, θ), takesO(n∗m). Overall, Steps 2-8, which generate the converged gradient and

Hessian of π(θ|v∗) take O(l1 ∗ l2 ∗ (n ∗m2 +m3) + l1 ∗ n ∗m). Finally, sampling the θ set and computing

their corresponding weighted values take O(K). In summary, assuming n � K, n � m, n � l1 and

n� l2, the total computational complexity of robust parameter estimation based on R3-SKM is O(n).

6.5 Robust Spatial Inference

This section formalizes the Robust and Reduced Rank Spatial Prediction (R3-SP) , and Robust and Reduced

Rank Spatial Outlier Detection (R3-SOD) based on the R3-SKM.
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Algorithm 9 Robust Reduced Rank Spatial Prediction
Input: S, S∗, S0, Y,X,X0,Θ,∆
Output: Y 0

1: for k = 1toK do
2: Construct µv∗ , Σv∗ with θk and S∗ (See Equation (6.9)).
3: Calculate the transformation matrix H with θk, S∗, S,X .
4: Gaussian approximation of the likelihood of Y.
5: Calculate the mode, Hessian at the mode of π̂(υ∗|Y, θk), and its Gaussian approximation (See Equa-

tion (6.11)).
6: Predict Y 0

k for new locations S0. (See Equation (7.54))
7: end for
8: Calculate the final Y 0 values as Y 0 =

∑K
k=1 Y

0
k ×∆k

6.5.1 Robust Spatial Prediction

Given a set of unsampled locations {s0
1, · · · , s0

Nte
}, we are interested in predicting the Y values at these lo-

cations, denoted as Y 0 = [Y (s0
1), · · · , Y (s0

Nte
)]. The first step is to estimate the posterior distributions of the

corresponding latent variables π(v0|Y ), where v0 = [v(s0
1), · · · , v(s0

Nte
)]′. Then, the posterior distributions

of Y 0 can be obtained as

π(Y 0|Y ) =

∫
π(Y 0|v0)π(v0|Y )dv0 (6.27)

Given the approximated π̂(v∗|Y, θ) and π̃(θ|Y ) as obtained in Sections IV.A and IV.B, the posterior distri-

bution π(v0|Y ) can be estimated by

π(v0|Y ) =

∫ ∫
π(v0|v∗, Y, θ)π(v∗|Y, θ)π(θ|Y )dv∗dθ

=

∫ {∫
π(v0|v∗, θ)π(v∗|Y, θ)dv∗

}
π(θ|Y )dθ

≈
∑
k

{∫
π(v0|v∗, θk)π̂(v∗|Y, θk)dv∗

}
π̂(θk|Y )∆k

≈
∑
k

N (µ̃, Σ̃)π̂(θk|Y )∆k (6.28)

where

Σ0 = Cov(v0),Σ∗ = Cov(v∗),Σ0∗ = Cov(v0, v∗)

µ̃ = Σ0∗Σ∗−1Q−1b

Σ̃ = Σ0 − Σ0∗Σ∗−1Σ0∗′ + Σ0∗Σ∗−1Q−1Σ∗−1Σ0∗′
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Based on the above theoretical analysis, the main procedures of R3-SP are described by Algorithm 2. In the

R3-SP algorithm, we first derive the K samples of θ and their weight values, ∆, by utilizing the R3-SKM

framework, and then use each generated sample, θk, to construct the corresponding mean and covariance

matrix of latent variables, v∗. Next, the transformation matrix H = [F (φ)X] is computed, in which F (φ)

describes the spatially varying linear transformation of η̃ on η∗. Furthermore, the likelihood of Y are ap-

proximated as the result of a quadratic form of v∗. Next, the mode of π̂(v∗|Y, θk) are calculated to predict

the new observations Y 0
k at sample θk. Finally, the predicted Y is calculated as Y 0 =

∑K
k=1 Y

0
k ×∆k.

Computational complexity. Similarly, for the R3-SP algorithm, Steps 4 and 6 dominate most time costs,

because they are naturally analytical intractable. With the numerical optimization discussed in Section

IV, it takes O(n ∗ m) to operate a Gaussian approximation of Y at each sample θk. And computing the

mode and Hessian of π̂(v∗|Y, θk) costs O(l2 ∗ (m3 + n ∗m2)). Repeating Steps 2-6 at K sample θs takes

O(K ∗ (n ∗ m + l2 ∗ (m3 + n ∗ m2))). In summary, the total computational complexity of the R3-SP

algorithm is O(n), assuming n� K, n� l2, n� p and n� m.

6.5.2 Robust Spatial Outlier Detection

Statistically, spatial outlier can be interpreted as observations that have abnormally low correlations with

their spatial neighbors, considering normal deviations caused by measurement error (white noise). For the

regular SKM framework, when a data set contains outliers, the additional variation due to those outliers

will be captured by distorting spatial dependence. The white noise component is unable to handle large

deviations due to the light tailed feature of the Gaussian distribution. In comparison, the proposed R3-SKM

uses heavy tailed distribution to model the measurement error. When outliers appear, our model directly

captures the additional large variation due to outliers as the measurement error, which will control the

resulting accurate parameter estimation and spatial outlier detection.

Therefore, the R3-SKM can also be utilized to identify spatial outliers as objects with higher predicted

ε̃ values(measurement error). First, we apply the R3-SKM to accurately estimate the latent variables and

parameters for the contaminated spatial dataset. Second, the estimated values are utilized to operate a spatial

prediction for each observed location. Finally, the differences between observed and predicted values are

computed to measure their outlying degrees. The objects which have higher measurement errors are labeled

as spatial outliers.

The main procedures of spatial outlier detection are described in Algorithm 3. In the R3-SOD Algorithm,

we use the K samples of θ to predict the corresponding {Yi}pk(k = 1, · · · ,K), and the predicted {Yi}p is

finalized by the sum over values derived from different θk with weight ∆k. If the predicted {Yi}p has a large

deviation compared with its original value, and this deviation is higher than the cut-off value, c · %(c = 3),
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Algorithm 10 Robust Reduced Rank Spatial Outlier Detection (R3-SOD)
Input: S, S∗, Y,X,Θ,∆
Output: Y 0

1: Repeat Steps 1-7 in Algorithm 2 to predict {Yi}pk for each locations si.(k = 1, · · · ,K, and i =
1, · · · , n).

2: for i = 1ton do
3: Calculate the final {Yi}p values as {Yi}p =

∑K
k=1 {Yi}

p
k ×∆k.

4: Calculate the abstract difference Diffi= |{Yi}p − Yi|.
5: end for
6: Rank the objects by sorting Diff with an descending order.
7: Label the top ones that have Diff≥ c · % as spatial outliers.

then the corresponding objects will be identified as spatial outliers.

Computational complexity. As analyzed in Algorithm 2, predicting {{Yi}pk}
n
i=1 takes around O(K(l2n+

m3)). Finalizing the predicted {{Yi}p}ni=1 costs O(n). In summary, R3-SOD algorithm takes O(n), assum-

ing n� K, n� l2, n� p and n� m.

6.6 Experiment

This section evaluates the robustness and efficiency of the proposed R3-SKM model based on an analysis of

simulated and real data sets. Student’s t distribution was selected to model the probability density function

of ε̃. All experiments were conducted on a PC with Intel(R) Core(TM) I5-2400, CPU 3.1 Ghz, and 8.00 GB

memory.

6.6.1 Experiment Setting

Dataset Description

Simulation Dataset. The simulations were generated based on the following statistical model:

Y (s) ∼ N (xTβ + η(s), τ2) (6.29)

where η(s) is from a latent spatial Gaussian process with the variogram model V ar(η(si), η(sj)) = σ2C(h|φ),

and h = |si − sj |. C(h|φ) refers to the spatial correlation, where φ is the range parameter that controls its

degree. The popular exponential function was used to model C(h|φ). The parameter settings used in our

experiments are shown in Table 6.2. We also evaluated different combinations of parameters, and observed

similar patterns.
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Table 6.2: Parameter settings in the simulations

Variable Setting Description
[Ntr, Nte] Training and testing points were randomly generated at Ntr spatial locations {si}Ntri=1

and Nte spatial locations {si}Ntei=1, respectively, in the range [0,50]×[0,50] units.
Ntr = 300, 500, Nte = 30, 100

β The regression coefficient β = [0.5, 1.5]′.
σ σ2 = 4 in all simulations
φ φ = 25.
τ The nugget variance, τ 2, was set to 0.1.
α The contamination rate was set to 25, 20, 15, 10, 5.
γ The shift rate was set to 3, 3.5, 4, 4.5, 5, 5.5, 6.
C(h|φ) An exponential spatial correlation function C(h|φ) = σ2exp(−h

φ
) was used in all

simulations.

Real Dataset. We validated our approach on five real datasets, namely, Lake, MLST, BEF, HR, and House.

Lake was originally published by Varin et al. [157] and was used to model trout abundance in Norwegian

lakes as a function of lake acidity. The explained attributes used include Intercept, X coordinate, Y coordi-

nate, Product of X and Y coordinates, X coordinate squared and Y coordinated squared. MLST [46] came

from multiple listings containing structural descriptors of houses, their sale prices, and their addresses for

Baltimore, Maryland, in 1978. Dubin estimated a spatial autocorrelation model which calculated the portion

of the price by multiplying the vector of attributes by the estimated coefficients. The explained attributes

used contain X coordinate, Y coordinate, Product of X and Y coordinates, X coordinate squared, and Y co-

ordinate squared. BEF [49] is a forest inventory dataset from the U.S. Department of Agriculture Forest

Service, Barlett, NH. The explained variables include levels of nitrogen oxides, particulate concentrations,

average number of rooms, proportion of structured built before 1940, black population proportion, lower sta-

tus population proportion, crime rate, proportion of area zoned with large lots, proportion of nonretail busi-

ness area, property tax rate, pupil-teacher ratio, location contiguous to the Charles River, weighted distances

to the employment centers, and an index of accessibility. Variables include species, specific basal area, total

tree biomass, inventory plot coordinates, and slope, etc. Finley and Banerjee made the detailed analysis of

the non-spatial logistic regression to the data. HR is a Boston Housing dataset from 1978 which discusses

issues related to the demand for clean air. [65] made statistical analysis on it. The explained variables are the

slope, elevation of the object, the tasseled cap brightness, greenness, and wetness components from summer

2002. House contains information collected for a range of variables for all the block groups in California

from the 1990 Census. The spatial regression model of the data was analyzed by Pace and Barry [122].

BEF, Both House and HR data are included in the spBayes R package [148]. Specifically, it contains me-

dian house value, median income, housing median age and total room, etc. The analyzed explained variables

include Median Income, Median Income2, Median Income3, ln(Median Age), ln(TotalRooms/Population),
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ln(Bedrooms/Population), ln(Population/Households) and ln(Households). Table 6.3 summarizes the main

information types of each of these datasets used in our experiments.

Table 6.3: Settings in 5 real datasets

Dataset Data
Size

Ntr Nte Y Y-SD

BEF 437 337 100 BE basal area 0.17
Lake 371 271 100 Trout abundance 0.007
MLST 211 150 61 House price 0.17
HR 506 406 100 House price 0.10
House 20,640 1000 200 House price 0.25

Spatial Inference Method

Spatial Estimation and Prediction Methods. There are currently two popular methods used for parameter

estimation and spatial prediction. The Spatial Kriging Model(SKM) predicts unobserved values as a linear

combination of the known values of observed locations, while Linear Regression[15] models data using

linear predictor functions, and estimates unknown model parameters from the data. It can be used to fit a

predictive model to an observed dataset of Y and X value. However, Linear Regression does not take the

spatial dependency into considerations, since it is focused on the general modeling. We identify them as

SRM and Regression in our experiment.

Outlier Detection Methods. We compared R3-SOD with eight existing representative SOD approaches:

Z-test [143], Median Z-test, Iterative Z-test, trimmed Z-test [100], Scatterplot [7], MoranScatterplot [62],

SLOM [9] and POD [90]. The implementations of the above methods were all based on their published

algorithm descriptions.

Performance Metric

For both the synthetic and real dataset, there might be some outlying observations in raw dataset which

are unknown for us. To demonstrate the effectiveness of proposed approach, we need to generate some

synthetic outliers. We assumed the raw dataset as a ground truth, and contaminated around α percent of the

data records as outliers. In our paper, Data Contamination. For each dataset, including both the simulations

and real datasets, we randomly selected α%(contamination rate) of the data to be anomalies by shifting

them from their original values with γ(shift rate) times standard deviation of Y. For each α, the synthetic

outliers were generated 10 times, and the mean values of the results from the parameter estimation, spatial

prediction and spatial outlier detection were calculated for each approach.

Parameter Estimation. Parameter estimation was executed only in simulations since the true values of

parameters were known. We compared the estimation results from SKM, Regression and R3-SKM, with the
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Table 6.4: Comparison of parameter estimation results on simulations

Data Para. True Value R3-SKM Regression SKM

Sim_300_30_36_0.25_7
β [0.50, 1.50] [0.49, 1.61] [0.44, 2.31] [0.06, 1.91]
φ 25.00 24.73 – 6
σ2 2.00 1.11 – 1.85

Sim_500_100_49_0.05_2.5
β [0.50, 1.50] [0.44, 1.54] [0.62, 1.84] [0.78, 1.23]
φ 25.00 25.92 – 5.78
σ2 2.00 1.98 – 1.82

Sim_700_200_81_0.05_5
β [0.50, 1.50] [0.48, 1.60] [0.39, 1.82] [0.29, 1.76]
φ 25.00 26.41 – 5.66
σ2 2.00 1.80 – 1.77

Sim_1000_400_100_0.05_5
β [0.50, 1.50] [0.49, 1.46] [0.63, 1.31] [0.61, 1.38]
φ 25.00 27.39 – 19077.44
σ2 2.00 1.73 – 48.33

true values to validate their effectiveness.

Spatial Prediction. SKM, Regression and R3-SKM were also applied in both simulation and real datasets

to obtain the predicted Ỹ . The Mean Absolute Percentage Error (MAPE =
∑Nte
i=1 |Yi−Ỹi|
Nte

) and Root Mean

Square Error (RMSE = {
∑Nte
i=1 (Yi−Ỹi)2

Nte
}1/2) between Y and Ỹ were calculated to evaluate the prediction

performance.

Spatial Outlier Detection. Nine different outlier detection approaches were applied to both simulation and

real datasets. To compare the accuracies among them, we used the following common evaluation measures:

detection rate (precision) and detection precision (recall). The precision was plotted against recall and the

curves that are higher and farther to the right denote better performance.

6.6.2 Experiment analysis and discussion

Robustness on Parameter Estimation. Table 6.4 shows the parameter estimation results on four simula-

tions with training data sizes of 300, 500, 700 and 1000. The data name depicts the parameter combination

information. For example, “Sim_500_100_49_0.05_2.5” indicates that it was generated by simulation
data, and there are 500 training data, 100 testing data, 49 knots, and 5% of the training data were contami-

nated as outliers by shifting the original Y to (Y + 2.5 ∗ std(Y )).

Comparing the estimated parameters with the true values, R3-SKM was able to more accurately estimate

most of the parameters. For “Sim_500_100_16_0.05_2.5”, only 5% the data are distorted with a relatively

small shift rate(2.5), which means the contaminated data had a similar distribution to that of the original.
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(a) HR_406_100_49_0.05_7 (b) House_1000_200_81_0.05_3

(c) Acid_271_100_25_0.10_3.5 (d) MLST_150_61_25_0.20_7

(e) Sim_500_100_49_0.10_4.5 (f) Sim_300_30_36_0.25_7

Figure 6.4: Comparison of prediction performances on simulation and real datasets

Even so, SKM and Regress performed much worse than R3-SKM on this data. As depicted by Table 6.4,

when estimating β value, the estimation errors for R3-SKM were 12% and 2.7% for β1 and β2, respectively.

However, SKM had values of 56% and 18%, and Regression 24% and 22.6% for the same data. When

estimating σ and φ, the estimation errors for R3-SKM were 4% and 1%, while for SKM, they were 76.8%

and 9%. This considerable difference in the estimation errors implies that SKM was highly influenced by
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the existence of outliers. There is no result for σ and φ for the Regression model, since this approach does

not take the spatial dependency into consideration. And, as a consequence, it always incorrectly estimated

β with higher errors, which absorbed the spatial variations into the spatial mean(XTβ). Compared with

SKM and Regression, R3-SKM can be resilient to the influence of outliers, even in datasets in which more

data were heavily contaminated, such as, “Sim_300_30_36_0.25_7” in which 25% of data were skewed

with a higher shift rate(7). Not surprisingly, some experimental results indicate that if the data is severely

contaminated, it is more difficult to accurately estimate parameters. This is demonstrated by the lower

performances of SKM and Regression in Sim_ ∗ _5 and Sim_ ∗ _7. Still, R3-SKM was able to achieve

very impressive estimation results since the integration of the heavy tailed distribution helped alleviate the

impact of outliers.

Robustness on Spatial Prediction. To better analyze prediction performances, we utilized Moran’s I-

statistic to capture the spatial dependency of Y observations. This made it possible to learn more about

the degree of spatial auto-correlation for each dataset. The spatial dependency for Y in simulations was

computed to be 0.70, which means that the simulations have a higher spatial dependency and this must be

accurately captured during the estimation and prediction processes. The last column in Table 6.3 shows the

calculated spatial dependencies for real datasets. Most are lower values, which implies that the non-spatial

attribute(X) contributes a great deal to the prediction the outcome variables.

Figure 6.4 compares the performances of different prediction models for simulated and real datasets. The

calculated RMSEs and MAPEs demonstrate that R3-SP outperforms both Regression and SKM. In particu-

lar, SKM did not perform as good as the Regression model in spite of the fact it takes into account the spatial

auto-correlation in its spatial predictions. This is because the SKM model is considerably more complicated.

It consists of a vector representing the spatial mean(xTβ), the spatial random process(η) and measurement

error ε. Regression is composed of xTβ and ε. The hidden process η captures spatial association which

is assumed to be a multivariate Gaussian process. When there are outliers in the dataset, SKM treats their

outlying behaviors as natural spatial variations in the dataset, which therefore affects the computation of

η, and further degrades the prediction quality. Meanwhile, the greater the outlying degrees of outliers, the

worse its prediction performance: for the cases of HR_406_100_49_0.05_7, MLST_150_61_25_0.20_7

and Sim_300_30_36_0.25_7, where the shift rate are all 7. Interestingly, R3-SP generated very similar pre-

diction result to that for the Regression model for Acid_271_100_25_0.10_3.5. This is because Acid data

has a very low spatial dependency, 0.007. So, spatial mean(xTβ) dominates the prediction results. But for

datasets with high spatial dependencies, like Sim_300_30_36_0.25_7 and House_1000_200_25_0.05_3,

R3-SP has preceding performance increases by benefiting from the integration of the heavy tailed distribu-

tion.

Accuracy of Spatial Outlier Detection. The outlier detection accuracies of different methods were com-

pared based on different combinations of parameter settings. Figure 6.5 shows six representative results from
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(b) Acid_371_36_0.25_1.5 (c) BEF_437_64_0.10_2

(d) MSLT_211_25_0.05_2.5 (e) HR_506_49_0.15_1.5

(f) House_1000_81_0.05_1.5 (g) Sim_500_64_0.10_1.5

Figure 6.5: Comparison of SOD performances on simulation and real datasets

simulated and real datasets. Clearly, R3-SOD has impressive identification performances, achieving 10-15%
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improvement over Z, Median-Z, Iterative-Z and Trimmed-Z, 20-30% over POD and SLOM, 40-50% over

Moran-Scatterplot, and 60-70% over Scatterplot. Z series of approaches identify outliers by normalizing the

difference between a spatial object and the average of its spatial neighbors. However, this difference value

is easily influenced by the presence of one or more outliers in its neighborhood, which leads to worse outlier

detection qualities. This is especially true for higher numbers of outliers in the neighborhood, as demon-

strated by “BEF_437_64_0.10_2” and “Sim_500_64_0.10_1.5”. POD method constructs a graph based

on k nearest neighbors, assigns the non-spatial attribute differences as edge weights, and then continuously

cuts high weight edges to identify isolated points as outliers. Its performance degrades significantly with in-

creasing outlier sizes. Such as in “MSLT_211_25_0.05_2.5”, its performance was better than others since

only 5% of the data were contaminated. The MoranScatterplot and Scatterplot approaches detect outliers

by normalizing the attribute values against the average values for the corresponding neighborhood, which

greatly neutralizes the significant differences caused by outliers and results in poor performances. It is worth

mentioning that, if the outlying degrees of outliers are much higher(such as the shift rate is set to 4 and 5),

all the SOD approaches can get good identification results. However, if the outlying behavior is less differ-

entiated, they did not accurately capture spatial outliers at all except R3-SOD. In contrast, R3-SOD can be

easily resilient to the outliers with different outlying degrees. When identifying outliers, it does not rely on

neighborhood differences, which are susceptible to the neighborhood size and presence of outliers. Rather,

it statistically analyzes the data model by integrating a heavy tailed distribution to minimize the effects of

outliers. Its competing identification results are demonstrated by Figure 6.5.

Figure 6.6: Prediction performances by varying knot sizes

Impact of Knot Sizes. We also evaluated the prediction performance by varying the knot sizes. Figure 6

shows various knot sizes from 16 to 121 (representing 3.2% and 24.2%, respectively, of the total number

of observations). The curves show the effects of varying the number of knots on prediction accuracy. The

simulations with different outlying degrees(2.5, 3, 4, 4.5, 5) have very similar affected trends for the different
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Figure 6.7: Total response time by varying data size

knot sizes. As shown in Figure 6.5, RMSEs decline as the knot size increases till they reach a stable state.

In the simulations, which include 500 training and 100 testing points, the optimum prediction performance

was achieved when knot size is equal to 64. That is, the knot size can be as high as 10%-15% of the total

dataset. We also evaluated the optimal knot size in different sized datasets, and observed similar patterns.

The optimal selection of the knot size enables not only more accurate spatial prediction, but also faster

inferences.

Computational Cost. Finally, we examined the speed and associated scalability of SKM and R3-SKM.

Figure 6.7 displays the comparison of their runtime in datasets with varying numbers of training points. For

all the simulations, the knot sizes were set to 10. Consequently, for R3-SKM, when the data size is smaller

than 1000, the time complexity is dominated by the knot size, O(m3) = 1000, rather than data size, O(n).

Above 1000, the time cost increases linearly. In comparison, the time cost of SKM was observed to increase

in a nonlinear fashion for larger datasets. In summary, the reduced-rank techniques enables our algorithms

to perform efficiently with a linear time complexity.

Result Discussion. R3-SKM has been shown to be very robust for parameter estimation and spatial in-

ference. It has superior performance over existing techniques in both real and simulation datasets. The

experimental results verify three observations. First, if there is a good selection of knots that cover most of

the domain interests, the predictive process cost will be significantly reduced to a linear order. Second, by

being combined with numerical routines, Laplace approximation can provide much faster and more accurate

parameter estimation. Third, integrating the heavy detailed distribution into the modeling process clearly

minimizes the impact of outliers to a reasonable value, which provides a very good demonstration of the
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new method’s robustness.

6.7 Conclusion

This paper proposes a Robust and Reduced-Rank Spatial Kriging Model for large spatial datasets, abbrevi-

ated as R3-SKM. This approach integrates a Bayesian hierarchical framework to support priors on model

parameters. Meanwhile, the measurement error is modeled by a heavy tailed distribution, which enables it

to be resilient to the influences of outliers and allow for fast spatial inferences. Furthermore, three algo-

rithms are proposed to perform robust parameter estimation, spatial prediction and spatial outlier detection,

respectively, in linear time. Their robustness and efficiency were demonstrated by extensive experimental

evaluations. R3-SKM provides critical functionality for stochastic processes on large spatial datasets.

The limitation of the model is that it assumes the spatial data accords to the generalized linear model for the

calucated local differences, but no justifications for this crtical assumption have been presented. Acutally, the

prediction performances on geostatistic data with both linear and non-linear trend are required to studying

in real application.
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(b) Acid_371_36_0.25_1.5

(c) BEF_437_64_0.10_2

(d) HR_506_49_0.15_1.5

(e) House_1000_81_0.05_1.5

Figure 6.8: Comparison of SOD performances on real datasets: Evaluation on Laplace Distribu-
tion
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(b) Acid_371_36_0.25_1.5

(c) BEF_437_64_0.10_2

(d) HR_506_49_0.15_1.5

(e) House_1000_81_0.05_1.5

Figure 6.9: Comparison of SOD performances on real datasets: Evaluation on Huber Distribu-
tion



Chapter 7

Spatial Prediction of Large Multivariate
Non-Gaussian Datasets

With the ever increasing volume of geo-referenced datasets, there is a real need for better statistical estima-

tion and prediction techniques for spatial analysis. Most existing approaches focus on predicting multivariate

Gaussian spatial processes, but as the data may consist of non-Gaussian (or mixed type) variables, this incurs

two challenges: 1) how to accurately capture the dependencies among different data types, both Gaussian

and non-Gaussian; and 2) how to efficiently predict multivariate non-Gaussian spatial processes for large

datasets. In this paper, we propose a generic approach for predicting multiple response variables of mixed

types. The proposed approach accurately captures cross-spatial dependencies among response variables and

reduces the computational burden by projecting the spatial process to a lower dimensional space with knot-

based techniques. In addition, efficient approximations are provided that estimate posterior marginals of

latent variables for the predictive process. Extensive experimental evaluations based on both simulation and

real-life datasets demonstrate the effectiveness and efficiency of this new approach.

The chapter is organized as follows. Section 7.1 gives the background and motivation. Section 7.2 re-

views the theoretical background, including the exponential family, knot-based techniques and the INLA

framework. Section 7.3 presents the new multivariate hierarchical non-Gaussian model and the reduced

rank spatial predictive process. An approximate inference for multivariate spatial predictions is proposed

in Section 7.4 and experiments on both simulated and real datasets are presented in Section 7.5. The paper

concludes with a summary of the research in Section 7.6.

120
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7.1 Introduction

The increasing public sensitivity and concern on environmental issues have led to as well as the develop-

ments of remote sensing technology, huge amounts of spatial data being collected, and this volume keeps

increasing at an ever faster pace. As one of today’s major research issues, the prediction of multivariate

spatial observations has attracted significant attentions, particularly from those working in areas such as

biology [107], epidemiology [16], geography [72], and economics [36]. Spatial prediction is the process

of estimating the values of a target quantity at unvisited locations, based on the observed measures at sam-

pled ones. When applied to a whole study area, it is also referred to as spatial interpolation or mapping.

Observations are often of different types, such as continuous, ordinal, and binary, each of which conveys

important information. For example, in economics studies, the living area (continuous variable), the age of

the dwelling (ordinal variable), and an indicator that shows if the dwelling is located in a certain county (bi-

nary variable), are usually measured when characterizing the sale prices of houses. Most spatial prediction

models focused on predicting one variable at a time. However, the spatial prediction of several related vari-

ables simultaneously also attracts significant attractions. In Ecology, ecologists are interested in predicting

the joint abundance of species at unsampled spatial locations [74]. In the meantime, the interesting joint

patterns of species can be identified. In geology, it is often desirable to predict related variables of differ-

ent types, such as element concentrate, granularity and coloration for pedological data [27], based on data

collected at nearby locations. This raises three research challenges: 1) Modeling cross-spatial dependencies

between Gaussian and non-Gaussian variables; 2) Prediction of multivariate spatial observations; and 3)

Efficient processing for large datasets.

In the univariate case, spatial prediction has been well studied for different data types, including continuous

spatial processes [39, 160], discrete spatial processes [118, 161], and Poisson spatial processes [166]. Diggle

et al. [45] presented an embedding linear Kriging framework for non-Gaussian attributes, which considers a

latent spatial Gaussian process in the framework of Generalized Linear Mixed Model (GLMM). Kammann

and Wand [85] extended Diggle et al.’s work and proposed a geoadditive model that integrates both the

GLMM and additive models. All these approaches can be described in a hierarchical Bayesian framework,

which decomposes a complicated model into a series of simpler conditional levels [164]. Recently, a number

of methods have been proposed for processing large univariate spatial datasets of different types, including

the fixed rank kriging [38], the knot-based spatial process [11], and the INLA based predictive process [136].

In many cases, geo-referenced data sets are multivariate. The prediction of multivariate spatial processes

at unsampled locations plays an important role when there are cross-spatial dependencies between multi-

ple response variables of interests and there is a considerable literature on the modeling and prediction of

multivariate spatial processes [39]. Most of the related works focus on multivariate Gaussian processes, the

key component of which is the modeling of cross-covariance functions between attributes at different spatial
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locations. Commonly used constructive frameworks include the separable forms proposed by Mardia and

Goodall [104]; the linear models of coregionalization (LMC) proposed by Wackernagel [160], which was

extended by Gelfand and Sirmans [55]; and the moving average model designed by Ver Hoef and Barray

[158]. The book by Wackernagel [160] and the review by Gelfand and Banerjee [54] provide a comprehen-

sive survey of different spatial Gaussian multivariate modeling and prediction techniques.

However, only a limited amount of research has been proposed to support non-Gaussian multivariate spatial

processes. One potential reason is the challenge of analytical intractable inference. Wibrin et al. [163]

explored the Bayesian Maximum Entropy (BME) approach in which both continuous and categorical values

are considered by a “cross-covariance” function. Schmidt and Rodriguez proposed Markov Chain Monte

Carlo (MCMC) methods for modeling multivariate counts [138], while Chagneau et al. proposed a hier-

archical Bayesian model for the modeling of Gaussian, count, and ordinal variables, and designed MCMC

methods using the Gibbs sampler with Metropolis-Hastings (M-H) steps [28].

Both a KDD panel discussion [129] and a position paper [173] identified the prediction of multivariate

non-Gaussian (or mixed type) data as one of the 10 most important challenges in data mining for the next

decade. Most existing predictive algorithms for multivariate non-Gaussian spatial processes are designed

within the framework of MCMC, which is a popular way to address problems that are analytically intractable

[10, 17, 94, 134, 174]. Although MCMC has an immense flexibility for a variety of hierarchical models, it

becomes prohibitively expensive for large spatial datasets [28]. This raises the question: How can we process

large non-Gaussian multivariate spatial data as efficiently as Gaussian data? To the best of our knowledge,

there is no previous work that addresses this challenging problem. In recent works, Rue et al. proposed

an Integrated Nested Laplace Approximation (INLA) algorithm as an alternative to MCMC that achieves

significant computation savings while preserving high accuracy [136]. Banerjee et al. proposed a knot-

based model for multivariate Gaussian processes, which is also called “subset of regressors” method [11].

Banerjee’s method reduces the time complexity from O(n3) to O(nm3), where n is the data cardinality and

m is the number of knots, with m � n. This paper aims to address the prediction problem of multivariate

non-Gaussian processes.

This paper presents a flexible hierarchical Bayesian framework that permits the simultaneous modeling of

mixed type variables for larger datasets. Specifically, the mixed-type attributes are mapped to latent numer-

ical random variables that are multivariate Gaussian in nature. Each attribute is mapped to a corresponding

latent numerical variable via a specific link function, such as a logit function for binary attributes or a log

function for count attributes. The dependency between mixed type attributes is then modeled by the relation-

ship between their latent numerical random variables using a variance-covariance matrix. Computationally,

we first utilize knot-based techniques [11] to model the multivariate predictive process as a reduced rank spa-

tial process, and further reduce the dimensionality of the model. We then go on to develop a computational

approach for multivariate variables using a Laplace Approximation [136] approach.
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Our generic approach can be applied to a variety of spatial prediction applications where mixed-type at-

tributes are involved, including geographical information systems [24], medical imaging [34], urban traffic

modeling [96], weather forecasting [76, 153], and disease outbreak detection [103]. This technique can also

be extended to other data mining problems, including spatial outlier detection [170, 171], spatial temporal

outlier detection [96, 169], spatial-temporal scan [110], and spatial anomaly cluster identification [48, 114].

For example, for mixed-type spatial prediction, our approach can be extended by adding an additional vari-

ation component with a student-t distribution to absorb large variations due to outliers. The spatial outliers

can then be detected based on the posterior distribution of this new variation component conditional obser-

vations.

Our major contributions can be summarized as follows:

• Design of a spatial multivariate non-Gaussian hierarchical framework. The spatial model is

based on a hierarchical framework and is specifically designed to take account of mixed type random

variables.

• Model of a multivariate reduced-rank predictive process. This is the first work that applies both

knot-based and Laplace Approximation techniques to multivariate non-Gaussian datasets. The knot-

based technique is utilized to model the predictive process as a reduced-rank spatial process, which

projects the process realizations of the spatial model to a lower dimensional subspace. This projection

significantly reduces the computational cost.

• Design of an efficient spatial prediction algorithm. By integrating the Laplace approximation,

our approach efficiently makes approximations to the posterior marginal of latent variables for the

predictive process, and performs accurate spatial prediction.

• Performance analyses and experiment evaluation. Theoretical analysis and extensive experiments

on both simulations and real datasets have been conducted to demonstrate the performance of the

proposed hierarchical mixed model. The datasets and the implementation of our model, as well as

seven state-of-the-art comparison approaches, can be downloaded from [98] for evaluation.

7.2 Preliminary Concept

This section introduces the exponential family and the framework for the knot-based spatial process.
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7.2.1 The exponential family

Let Y (s) be a response variable at the location s ∈ D ⊂ R2. It is assumed that Y (s) follows an exponential

family distribution with the probability density

f(Y (s)|θ(s), τ) = exp

(
Y (s)θ(s)− a(θ(s))

d(τ)
+ h(Y (s), τ)

)
, (7.1)

where θ(s) and τ are model parameters. θ(s) is related to the mean of the distribution that varies by location,

and τ is a dispersion parameter related to the variance of the distribution. The functions h(y(s), τ), a(θ(s)),

and d(τ) are known. Y (s) has mean and variance

E(Y (s)) := µ(s) = a′(θ(s)), (7.2)

V ar(Y (s)) := σ(s)2 = a′′(θ(s))d(τ), (7.3)

where a′(θ(s)) and a′′(θ(s)) are the first and second derivatives of a(θ(s)). Many popular distributions

belong to this family, including the Gaussian, exponential, Binomial, Poisson, gamma, Inverse Gaussian,

Dirichlet, and Chi-Squared Beta distributions.

For example, the Binomial distribution B(n(s), π(s)) has the density

p(Y (s)) =

(
n(s)

Y (s)

)
π(s)Y (s)(1− π(s))n(s)−Y (s). (7.4)

Taking logs, we can rewrite the density function as

log p(Y (s)) = Y (s) log(
π(s)

1− π(s)
) + n(s) log(1− π(s)) + log

(
n(s)

Y (s)

)
. (7.5)

This shows that θ(s) = log( π(s)
1−π(s)), a(θ(s)) = n(s) log(1 + exp θ(s)), and h(Y (s), τ) = log

(n(s)
Y (s)

)
, where

the second term in the density function is rewritten as log(1− π(s)) = − log(1 + exp θ(s)).

7.2.2 Knot-based spatial process model

Estimation and prediction in spatial process models often involve a high computational complexity, which

is cubic order with the number of spatial locations. To facilitate the spatial process, Banerjee et al. [11]

proposed a knot-based spatial predictive model to reduce the computational cost through lower dimensional

process observations.

Let us define a numerical random field Y (s) on a domainD ⊆ R2, and let Y = (Y (s1), · · · , Y (sn))′ be the
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n× 1 vector of observed responses, each of which is accompanied by a p× 1 vector of spatially referenced

predictors, x(s). The associated spatial regression model can be represented as

Y (s) = xT (s)β + ω(s) + ε(s). (7.6)

The spatial process ω(s) captures spatial correlations and is a Gaussian process with zero mean and a

covariance function C(s, s′; θ). Spatial prediction requires matrix factorizations involving the dense n × n
covariance matrix which may become prohibitively expensive for a large n. The ω(s) are spatial random

effects, providing local adjustment(with structured dependence) to the mean, interpreted as capturing the

effects of unmeasured or unobserved covariates with spatial pattern. Recently, Banerjee et al.[11]proposed

a class of knot-based spatial process models for large spatial datasets. Instead, knot-based models consider

a fixed set of “knots” S∗ = (s∗1, · · · , s∗n∗) with n∗ � n. The Gaussian process ω∗(s) yields an n∗-vector

of realizations over the knots, that is, ω∗ = (ω(s∗1), · · · , ω(s∗n∗))
′, which follows a GP{0, C(s∗i , s

∗
j ; θ)}.

Spatial estimation at a generic site s is operated through

ω̃(s) = E{ω(s)|ω∗} = cT (s; θ)C∗−1(θ)ω∗, (7.7)

where c(s; θ) = [C(s, s∗j ; θ)
n∗
j=1]. As shown in Eq. (2), the predictive process w̃(s) is derived from the

parent process ω(s). The realizations of ω̃(s) are referred to as the predictions that are conditional on a

realization of ω∗(s). Replacing ω(s) in model (7.6) with ω̃(s), we obtain the predictive process model

Y (s) = xT (s)β + ω̃(s) + ε(s), (7.8)

where ω̃(s) is defined as a spatially varying linear transformation of ω∗. The dimension reduction is reduced

from the original n to n∗, thus the spatial interpolation process involves only n∗ × n∗ matrices.

It is important to select an appropriate number of knots as well as their spatial locations. This is related to

the problem of spatial design. There are two popular knots selection strategies. One is to draw a uniform

grid to cover the study region and each grid is considered as a knot. Another is to place knots such that

each covers a local domain and the regions with dense data have more knots. In practice, it is feasible to

validate models by using different number of knots and different choices of knots to obtain a reliable and

robust configuration.

7.2.3 The INLA approach

The INLA(Integrated Nested Laplace approximation) [136] is a computational approach which is proposed

as an alternative of the time consuming MCMC method. The INLA approximation performs Bayesian
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Table 7.1: Description of Major Symbols

Symbol Description
S S = {s1, · · · , sn}, a set of n training locations, where si ∈ R2;
S∗ S∗ = {s∗1, · · · , s∗m}, a set of m knot locations, where s∗i ∈ R2;
Y A given set of observations with a numerical attribute that follows a

Gaussian distribution. Y = {Y (si)}ni=1;
Z A given set of observations with a discrete attribute. If a count dataset

(Zc), it follows a Poisson distribution; if a binary dataset (Zb), it follows
a Binomial distribution. Z = {Z(si)}ni=1;

X A set of explanation variables. {X(si)}ni=1 is a p× 1 vector at location
si. X = {X(si)}ni=1;

ω, γ Spatial random effects of the observations, which provide local adjust-
ments to the means, and is interpreted as the effects of unmeasured co-
variates with spatial patterns. ω = {ω(si)}ni=1,γ = {γ(si)}ni=1;

ω∗, γ∗ Spatial random effects of the knots. ω∗ = {ω∗(si)}mi=1, γ∗ =
{γ∗(si)}mi=1;

ω̃, γ̃ The predicted values of ω, γ by ω∗, γ∗. ω̃ = {ω̃(si)}ni=1,γ̃ = {γ̃(si)}ni=1;
ω̃ε, γ̃ε The corrected predictive values of ω̃, γ̃. ω̃ε = {ω̃ε(si)}ni=1, γ̃ε =

{γ̃ε(si)}ni=1;
ε̃y, ε̃z The estimation bias values for ω̃,γ̃. ε̃y(s) = {ε̃y(si)}ni=1, ε̃z(s) =

{ε̃z(si)}ni=1. And, {ω̃ε(si) = ω̃(si) + ε̃y(si)}ni=1, {γ̃ε(si) = γ̃(si) +
ε̃z(si)}ni=1;

ε {ε(si)}ni=1 is the nugget measurement error for {Y (si)}ni=1. ε =
{ε(si)}ni=1;

v∗ v∗ = ((ω∗
′
, γ∗

′
), (β′y, β

′
z))
′, it is a (2m + 2p) × 1 vector comprising

the realizations of the spatial multivariate predictive process and the
regression parameters;

φ The decay and smoothness parameter;
F (φ) A transformation matrix that defines {ω̃, γ̃} as a spatially varying linear

transformation of {ω∗, γ∗}. See Eq.(7.24,7.27) for F (φ);
ηz The expected value of Z which is linear on a transformed scale. ηz =

{ηz(si)}ni=1. ηz = H∗z v
∗.

H∗y H∗y = [Fy(φ),
[
X 0n×p

]
]. Fy(φ) consists of the first n rows of matrix

F (φ);
H∗z H∗z = [Fz(φ),

[
0n×p X

]
]. Fz(φ) consists of the last n rows of matrix

F (φ);
Θ The set of sample locations of θ based on the mode and Hessian at it of

π̂(θ|Y, Z). Θ = {θk}Kk=1;
w The set of weighted values of sample θ, which are computed by their

corresponding posterior distributions. w = {wθk}Kk=1;
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inferences in latent Gaussian fields, that is, the models of n observations that are conditinally independent

given latent field v and the hyperparameter set, θ. It approximates the marginal posteriors of latent variables.

π(vi|Y ) =

∫
π(vi|θ, Y )π(θ|Y )dθ. (7.9)

This approximation is an efficient combination of Laplace approximations to the full conditionals π(θ|Y )

and π(vi|θ, Y ), and finally executes numerical integration routines by integrating out the parameter θ.

The INLA approach consists of three main approximations to obtain the marginal posterior for each latent

variable. The first step is to approximate the full posterior π(θ|Y ), which is executed using the Laplace

approximation

π̃(θ|Y ) ∝ π(v, θ, Y )

π̃G(v|θ, Y )

∣∣∣
v=v∗(θ)

. (7.10)

As shown above, we need to approximate the full conditional distribution of π(v|Y, θ), which can be

achieved by a multivariate Gaussian density π̃G(v|Y, θ) [135]. The v∗(θ) is the mode of the full condi-

tional distribution of v for a given θ and can be estimated using π̃G(v|Y, θ). The posterior π̃(θ|Y ) will be

used later to integrate out the uncertainty with respect to θ when approximating π(vi|Y ).

The second step executes the Laplace approximation of the full conditionals π(vi|θ, Y ) for specified θ

values. The density π(vi|θ, Y ) is approximated using Laplace approximation defined by

π̃LA(vi|θ, Y ) ∝ π(v, θ, Y )

π̃G(v−i|vi, θ, Y )

∣∣∣
v−i=v∗(vi,θ)

, (7.11)

where π̃G(v−i|vi, θ, Y ) refers to the Gaussian approximation of π(v−i|vi, θ, Y ) which takes the vi as a fixed

value. v∗(vi, θ) is the mode of π(v−i|vi, θ, Y ).

Finally, we can approximate the marginal posterior density of vi by combining the full posteriors obtained

in the previous steps. The approximation expression is shown as follows.

π(vi|Y ) ≈
∑
k

π̃(vi|θk, Y )π̃(θk|Y )4k. (7.12)

It is a numerical summation on a representative set of θk, with the area weight,4k for k = 1, · · · ,K. Note

that a good choice of the set of θk is crucial to the accuracy of the above numerical integration. Rue et

al.[136] suggested to compute the negative Hessian matrix at the modal configuration, and then select the

set θk of evaluation points by stepping along the main directions away from the model until log[π̂{θ|Y }] is

negligible. All θ-points satisfying

log[π̂{θ(0)|Y )}]− log[π̂{θk|Y }] < ηπ (7.13)
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With the θk values, π(vi|Y ) in (7.13) is evaluated and normalized.

7.3 Spatial Multivariate Non-Gaussian Model

This section presents a spatial process model for random variables that consists of one Gaussian and one non-

Gaussian variables from the exponential family. The multivariate non-Gaussian Model is designed based

on a Bayesian hierarchical framework that allows any number of response variables. The computational

challenges in modeling large mixed type spatial datasets are addressed by integrating with the knot-based

predictive process. Table 1 summarizes the key notations used in this paper.

7.3.1 Model formulation

The spatial multivariate predictive model is specifically designed to deal with variables of different types.

The model can be defined for any number of response variables. Here, we consider two different types:

Gaussian and non-Gaussian variables (e.g., Binomial or Poisson).

Let s1, · · · , sn be the n sampled locations, Y (si) be a Gaussian variable at location si, and Z(si) be a non-

Gaussian variable, such as a Poisson variable. Let Y = (Y (s1), · · · , Y (sn))′ andZ = (Z(s1), · · · , Z(sn))′.

Geostatistics typically assumes that the Gaussian response variable Y (s) is modeled as a spatial regression

model with a p× 1 vector of spatially referenced predictors, x(s), such as

Y (s) = x(s)Tβy + ω(s) + ε(s). (7.14)

The residual includes the spatial random effect, ω(s), and the independent process ε(s), known as the nugget.

Usually, ε(s) ∼ N(0, τ2). The ω(s) provides a local adjustment to the mean, interpreted as the effect of

unmeasured covariates on the spatial pattern.

Let the first stage of Z be the non-Gaussian process. Essentially, we assume that the function of the expected

value of Z(si) is linear on a transformed scale, such as

ηz(s) ≡ g(E(Z(s))) = x(s)Tβz + γ(s), (7.15)

where g(·) is a suitable link function.

The Gaussian variable Y (si) and the non-Gaussian variable Z(si) depend on the latent variables ω(si) and

γ(si), respectively, which are together responsible for the spatial dependences. Given ω(si) and γ(si), the

variables Y (si) and Z(si) are conditionally independent. The customary process specification for (ω′, γ′)′
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is a mean zero Gaussian process with covariance function, Σ(ω′,γ′)′ , denoted as GP (0,Σ(ω′,γ′)′). The most

obvious specification of a valid cross-covariance function for (ω′, γ′)′ is to let ρ be a valid correlation

function for a univariate spatial process. Let T be a d× d (here d = 2 refers to the dimension of the dataset)

positive definite matrix T =

 σ2
y σ2

yz

σ2
yz σ2

z

, which is interpreted as the covariance matrix associated with

(ω′, γ′)′. T follows an Inverse Wishart distribution, denoted as T ∼ IW (Ψ,m). And, ρ(si, sj ;φ) attenuates

association as si and sj become farther apart. The covariance matrix for (ω′, γ′)′ is easily shown to be

Σ(ω′,γ′)′ = R(φ)⊗ T, (7.16)

whereR(φ)i,j = ρ(si, sj ;φ) is a correlation function, φ includes decay and smoothness parameters, yielding

constant process variances, and ⊗ denotes the Kronecker product.

The prior distributions of the remaining parameters construct the third level of the hierarchical model.

Customarily, the regression parameters βy and βz are assigned multivariate Gaussian priors, i.e., βy ∼
N(µβy ,Σβy), βz ∼ N(µβz ,Σβz), while the latent variance components σy, σz, and σyz are assigned IW as

introduced above. The nugget variance τ2 is assigned an IG(aτ , bτ ) prior (Inverse Gamma). The process

correlation parameter φ is usually assigned an informative prior (e.g., uniform over a finite range) based on

the underlying spatial domain.

With n locations, say S = (s1, · · · , sn), the process realizations are collected into an 2n× 1 vector, sayω
γ

 = (ω(s1), · · · , ω(sn), γ(s1), · · · , γ(sn))′, which follows a multivariate normal distribution with

mean 0 and dispersion matrix Σ(ω′,γ′)′ =

 σ2
yR(φ) σ2

yzR(φ)

σ2
yzR(φ) σ2

zR(φ)

 with ρ(si, sj ;φ) being the (i, j)th el-

ement of R(φ).

Let Y and Z be two n × 1 vectors of observed responses. The mixed data likelihood can be obtained

by combining with hierarchical specifications, as shown in Fig. 7.1, to derive a posterior distribution

π(βy, βz, ω, γ, T, τ
2, φ|Y,Z) that is proportional to

π(φ)× IG(τ2|aτ , bτ )× IW (T |Ψ,m)×N(βy|µβy ,Σβy)×N(βz|µβz ,Σβz)

×N

(ω
γ

 |0,Σ(ω′,γ′)′

)
×

n∏
i=1

N(Y (si)|x(si)
Tβy + ω(si), τ

2)

×
n∏
i=1

π(Z(si)|x(si)
Tβz + γ(si))). (7.17)
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Figure 7.1: Graphical Model Representation

7.3.2 Reduced-rank spatial multivariate non-Gaussian process

For the spatial multivariate non-Gaussian process model, both the estimation and prediction steps require

evaluating the (d ∗ n) × (d ∗ n) covariance matrix among d dependent response variables. Therefore, fit-

ting hierarchical mixed models often involves expensive matrix decompositions whose computational cost

is O((d ∗ n)3), thus making such model not scalable for large spatial data sets. To address this challenge,

we take the predictive process models into consideration for multivariate datasets. In this section, the spatial

multivariate predictive model, known as the reduced-rank spatial multivariate non-Gaussian process, is de-

signed by projecting the full process into a subspace generated by a specified set of representative locations.

Consider a set of “knots”, S∗ = {s∗1, · · · , s∗m}, the vector of corresponding centroids of the m spatial

clusters generated by the spatial attributes of the dataset. The latent variables (ω∗
′
, γ∗

′
)′ follow a mean zero

Gaussian distribution with the covariance function, Σ(ω∗′ ,γ∗′ )′ = R∗(φ)⊗T , denoted as GP (0,Σ(ω∗′ ,γ∗′ )′).

R∗(φ) is the corresponding m×m covariance matrix, where R∗(φ)i,j = ρ(s∗i , s
∗
j ;φ)i,j=1,··· ,m. The spatial

interpolant at a site s0 is estimated byω̃(s0)

γ̃(s0)

 = E

{ω(s0)

γ(s0)

∣∣∣∣∣
ω∗
γ∗

} (7.18)

= Υ(s0)Σ−1
(ω∗′ ,γ∗′ )′

ω∗
γ∗

 =

fωω (s0) fγω(s0)

fωγ (s0) fγγ (s0)

ω∗
γ∗

 .

Here, Υ(s0) = r(s0;φ)′⊗T , and r(s0;φ) is an m×1 vector whose jth element is given by ρ(s, s∗j ;φ). The

f series represent four 1 ×m matrices. This yields a spatial Gaussian process (ω̃′, γ̃′)′ ∼ GP (0, ρ̃ ⊗ T ),

where ρ̃(si, sj ;φ) = Υ(si)Σ
−1
(ω∗′ ,γ∗′ )′

Υ′(sj) and (ω̃′, γ̃′)′ is referred to as the predictive process derived

from the parent process (ω′, γ′)′. As shown in Eq. (7.18), (ω̃(s)′, γ̃(s)′)′ is a spatially adaptive linear

transformation of the realizations of (ω(s)′, γ(s)′)′ over S∗ with Υ(s0)Σ−1
(ω∗′ ,γ∗′ )′

comprising the coefficients
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of the transformation.

Proof. Assume x ∼ Nx(µ,Σ), where

x =



ω(s0)

γ(s0)

ω∗
γ∗



 , µ =

 02×1

02m×1

 ,Σ =

 T r(s0;φ)′ ⊗ T

r(s0;φ)⊗ T R(φ)⊗ T

 (7.19)

then, ω̃(s0)

γ̃(s0)

 = 02×1 + {r(s0;φ)′ ⊗ T} ∗ {R(φ)⊗ T}−1 ∗

ω∗
γ∗


= Υ(s0)Σ−1

(ω∗′,γ∗′)′

ω∗
γ∗

 =

fωω (s0) fγω(s0)

fωγ (s0) fγγ (s0)

ω∗
γ∗

 (7.20)

Replacing ω(s) and γ(s) in Eqs. (7.14-7.15) with ω̃ and γ̃, we obtain the reduced-rank predictive model,

Y (s) = x(s)Tβy + ω̃(s) + ε(s), (7.21)

ηz(s) ≡ g(E(Z(s))) = x(s)Tβz + γ̃(s). (7.22)

Using Eqs. (7.21-7.22) as the likelihood, we obtain the predictive process counterpart of Eq. (7.17) as

π(φ)× IG(τ2|aτ , bτ )× IW (T |Ψ,m)×N(βy|µβy ,Σβy)×N(βz|µβz ,Σβz)

×N

(ω∗
γ∗

 |0,Σ(ω∗′ ,γ∗′ )′

)
×

n∏
i=1

N(Y (si)|x(si)
Tβy + ω̃(si), τ

2)

×
n∏
i=1

π(Z(si)|x(si)
Tβz + γ̃(si))). (7.23)

The reduced variability in ω̃ often incurs an overestimation of the nugget variance τ2. Banerjee et al. [11]

detailed these biases. With regard to this issue, Finley et al. [50] proposed replacing ω̃(s) and γ̃(s) in Eqs.

(7.21-7.22) with ω̃ε(s) = ω̃(s) + ε̃y(s) and γ̃ε(s) = γ̃(s) + ε̃z(s). Using ω̃ε(s) and γ̃ε(s) instead of ω̃(s)
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and γ̃(s) as the spatial process yields

π(φ)× IG(τ2|aτ , bτ )× IW (T |Ψ,m)×N(βy|µβy ,Σβy)×N(βz|µβz ,Σβz)×

N

(ω∗
γ∗

 |0,Σ(ω∗′ ,γ∗′ )′

)
×N

(ω̃ε
γ̃ε

∣∣∣∣∣F (φ)

ω∗
γ∗

 ,Σ(ε′y ,ε
′
z)′

)
×

n∏
i=1

N(Y (si)|x(si)
Tβy + ω̃ε(si), τ

2)×
n∏
i=1

π(Z(si)|x(si)
Tβz + γ̃ε(si))). (7.24)

F (φ) = (R(φ)′ ⊗ T )Σ−1
(ω∗′ ,γ∗′ )′

, where R(φ)′ is an n ×m matrix whose ith row is given by r(si;φ)′, and

r(si;φ) is an m × 1 vector whose jth element is given by ρ(si, s
∗
j ;φ), for i = 1, · · · , n, j = 1, · · · ,m.

And, Σ(ε′y ,ε
′
z)′ is a 2n× 2n matrix which consists of four diagonal matrices (n×n) in which the following 4

specified diagonal elements

 (i, i)th (i+ n, i)th

(i, i+ n)th (i+ n, i+ n)th

 are computed as T −Υ(si)Σ
−1
(ω∗′ ,γ∗′ )′

Υ′(si),

where Υ(si) = r(si;φ)′ ⊗ T .

Let v∗ = ((ω∗
′
, γ∗

′
), (β′y, β

′
z))
′ be a (2m + 2p) × 1 vector comprising the realizations of the spatial mul-

tivariate predictive process and the regression parameters. Since Z is related to the discrete variables, we

assume there is no estimation bias [136]. The posterior π(v∗, T, φ, τ2|Y,Z) is proportional to

π(φ)× IG(τ2|aτ , bτ )× IW (T |Ψ,m)×N(v∗|µv∗ ,Σv∗)×
n∏
i=1

N(Y (si)|x(si)
Tβy + fωω (s)ω∗ + fγω(s)γ∗ + ε̃y(s), τ

2)×

n∏
i=1

π(Z(si)|x(si)
Tβz + fωγ (s)ω∗ + fγγ (s)γ∗), (7.25)

where µv∗ = (01×2m, µ
′
βy
, µ′βz)

′ and the (2m+ 2p)× (2m+ 2p) covariance matrix

Σv∗ =


Σ(ω∗′ ,γ∗′ )′ 02m×p 02m×p

0p×2m Σβy 0p×p

0p×2m 0p×p Σβz

 . (7.26)

The likelihood of Y for the modified predictive process is

N(Y |H∗yv∗, τ2
y In + ε̃yIn), H∗y = [Fy(φ),

[
X 0n×p

]
]. (7.27)
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Here, Fy(φ) consists of the first n rows of matrix F (φ). The GLM likelihood model of Z can be defined by

ηz = H∗z v
∗, H∗z = [Fz(φ),

[
0n×p X

]
], (7.28)

Similarly, Fz(φ) consists of the last n rows of matrix F (φ).

7.3.3 Predictive model for two non-Gaussian variable

Replacing ω(s), γ(s) in (7.14-7.15) with ω̃, γ̃, we obtain the predictive model,

ηy(s) ≡ gy(E(Y (s))) = x(s)Tβy + ω̃(s) (7.29)

ηz(s) ≡ gz(E(Z(s))) = x(s)Tβz + γ̃(s) (7.30)

Using (7.29-7.30) as the likelihood, we obtain the predictive process counterpart of (7.17) as

π(φ)× IW (T |Ψ,m)×N(βy|µβy ,Σβy)×N(βz|µβz ,Σβz)×

N

(ω∗
γ∗

 |0,Σ(ω∗′ ,γ∗′ )′

)
×

n∏
i=1

πy(Y (si)|x(si)
Tβy + ω̃(si))

×
n∏
i=1

π(Z(si)|x(si)
Tβz + γ̃(si)) (7.31)

Since Y and Z are both discrete variables, we assume there does not exist the estimation bias.

Let again v∗ = ((ω∗
′
, γ∗

′
), (β′y, β

′
z))
′ be a (2m+2p)×1 vector. The predictive posterior π(v∗, T, φ, τ2|Y,Z)

is proportional to

π(φ)× IW (T |Ψ,m)×N(v∗|µv∗ ,Σv∗)×
n∏
i=1

πy(Y (si)|x(si)
Tβy + fωω (s)ω∗ + fγω(s)γ∗)×

n∏
i=1

πz(Z(si)|x(si)
Tβz + fωγ (s)ω∗ + fγγ (s)γ∗) (7.32)

The GLM likelihood mode of Y and Z can be defined by

ηy = H∗yv
∗, H∗y = [F (φy),

[
X 0n×p

]
]

ηz = H∗z v
∗, H∗z = [F (φz),

[
0n×p X

]
] (7.33)
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F (φ) = (R(φ)′ ⊗ T )Σ−1
(ω∗′ ,γ∗′ )′

, where R(φ)′ is an n × n∗ matrix whose ith row is given by r(si;φ)′, for

i = 1, · · · , n. Here, F (φy) consists of the first n rows of matrix F (φ) and F (φz) the last n rows.

7.4 Approximate Bayesian Inference

Since the likelihood model of the spatial multivariate observations is non-Gaussian, it makes the predictive

process no longer analytical available. To address this issue, we can formalize the multivariate predictive

process by applying approximate Bayesian inference methods.

7.4.1 Gaussian approximation to the posterior distribution of v∗

First, we need to approximate π(υ∗|Y, Z, θ). For the predictive process model, the covariance parameters

would be θ = (T, φ, τ2). The simplest approximation to π(υ∗|Y, Z, θ) is the Gaussian approximation. We

have

π(υ∗|Y,Z, θ) ∝ π(Y,Z|υ∗, θ)π(υ∗|θ) ∝ π(Y |υ∗, θ)π(Z|υ∗, θ)π(υ∗|θ), (7.34)

where π(Y,Z|υ∗, θ) = π(Y |υ∗, θ)π(Z|υ∗, θ) is derived based on the D-separation rules in the graphic

model theory (see Fig. 7.1). As discussed in Section (3.2), π(Y |υ∗, θ) follows a Gaussian distribution, but

π(Z|υ∗, θ) does not. We therefore need to conduct a Gaussian approximation on π(Z|υ∗, θ), and then on

π(Y,Z|υ∗, θ). Under the Gaussian distribution assumption, N(Y |H∗yv∗, ε̃yIn + τ2In), and we have the

prior v∗ ∼ N(µ∗,Σ∗). The full conditional distribution of υ∗ conditional to {Y, θ} is thus

π(v∗|Y, θ) ∝ N(Y |H∗yv∗, U)N(µ∗v,Σ
∗
v) (7.35)

∝ exp{[−1

2
(Y −H∗yv∗)′U−1(Y −H∗yv∗)]−

1

2
(v∗ − µ∗v)′Σ∗−1

v (v∗ − µ∗v)}

∝ exp(−1

2
v∗
′
Qyv

∗ + v∗
′
by),

where U = ε̃yIn + τ2In, the full conditional precision matrix Qy = H∗
′
y U

−1H∗y + Σ∗−1
v , and the canonical

parameter by = H∗
′
y U

−1Y + Σ∗−1
v µ∗v.

The likelihood model of Z is non-Gaussian, so we need to expand the likelihood in a quadratic form utilizing

the Gaussian approximation. The GLM likelihood of Z is
∏
i π(Z(si)|ηz(si)), where the GLM parameter

ηz = H∗z v
∗ = [F (φz), [0n×pX]]v∗.
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Based on the discussion in Section 7.2.1, the distributions in a natural exponential family have the form

π(Z|ηz) = exp{ηzZ − f(ηz)}h(Z). (7.36)

For example, for binomial distribution, Binomial(1, π), ηz = log( π
1−π ), f(ηz) = log(1 + exp(ηz)), and

h(Z) = 1. In the Poisson case, Poisson(λ), ηz = log(λ), f(ηz) = exp(ηz), and h(Z) = 1
Z! .

By performing a Taylor expansion of f(ηz) = f(H∗z v
∗) to the second order, we obtain the quadratic form

of v∗,

π(Z|ηz) ∝ exp{−
1

2
v∗
′
Qzv

∗ + v∗
′
bz}, (7.37)

Qz = H∗
′
z ∇2f(H∗z v̂

∗)H∗z , bz = H∗
′
z (Z −∇f(H∗z v̂

∗) +∇2f(H∗z v̂
∗)H∗z v̂

∗).

Combining Eqs. (7.34), (7.35) and (7.37) gives

π(υ∗|Y,Z, θ) ∝ exp[−1

2
υ∗
′
(Qy +Qz)υ

∗ + υ∗
′
(by + bz)]. (7.38)

Finally, the full conditional precision matrix Q = Qy +Qz , and the canonical parameter b = by + bz . Thus,

the full conditional distribution is π(υ∗|Y, Z, θ) ∼ N(Q−1b,Q−1). We can compute the required inverse

and determinant of the size (2m+ 2p)× (2m+ 2p) matrix Q by utilizing the structure of H∗z , H
∗
y , and Σ∗v.

The main cost of the matrix inversion is thus O(m3), since the number of knots is m and assuming m� p.

The supplementary material provides further details of the Taylor expansion for the Binomial and Poisson

distributions.

Taylor expand for Binomial and Poisson distribution

With count data which follows the Poisson distribution,

π(Zc(si)|ηz−c(si)) ∝ exp(Zc(si)ηz−c(si)− exp(ηz−c(si)) (7.39)

We operate a Taylor expand exp(ηz−c(si)) to second order. By expressing the result in a quadratic form of

υ∗, we obtain,

log(π(Zc|ηz−c)) = −1

2
υ∗′Qz−cυ

∗ + v∗′bz−c + const (7.40)

Qz−c = H∗′z Dz−cH
∗
z , bz = H∗′z (Zc − dz−c +Dz−cH

∗
z υ̂
∗)

Dz−c = diag(exp(H∗z υ̂
∗)), dz−c = Dz−c ∗ 1n
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where 1n is an n× 1 vector of ones.

Geo-statistic usually assumes the binary data follows the Binomial distribution,

π(Zb(si)|ηz−b(si)) ∝ exp(Zb(si)ηz−b(si)− n(si)log(1 + exp(ηz−b(si)))) (7.41)

where n(si) is the fixed number of trials. Taylor expansion is utilized to express υ∗ as the quadratic form

[136].

log(π(Zb|ηz−b)) = −1

2
υ∗′Qz−bυ

∗ + v∗′bz−b + const (7.42)

Qz−b = H∗′z Dz−bH
∗
z , bz−b = H∗′z (Zb − dz−b +Dz−bH

∗
z υ̂
∗)

dz−b = {n� exp(H∗zυ∗)} � {1n + exp(H∗zυ
∗)}

Dz−b = diag({n� exp(H∗zυ∗)} � {(1n + exp(H∗zυ
∗))~2})

where n = ((n(s1), · · · , n(sn)))′.

Approximating π(υ∗|Zb, Zc, θ) for Binomial+Gaussian response

With Eqs.(7.40) and (7.42), we can obtain

π(Zb, Zc|υ∗, θ) ∝ exp[−
1

2
υ∗
′
(Qz−b +Qz−c)υ

∗ + υ∗
′
(bz−b + bz−c)] (7.43)

Finally, the full conditional precision matrix Q = Qz−b + Qz−c, and the canonical parameter b = bz−b +

bz−c. Thus, the full conditional distribution is π(υ∗|Zb, Zc, θ) ∼ N(Q−1b,Q−1).

7.4.2 Laplace approximation to posterior distribution of θ

Unlike π(υ∗|Y, Z), the posterior π(θ|Y,Z) is usually highly skewed and its approximation as a Gaussian

distribution is thus inappropriate [136]. The posterior π(θ|Y, Z) plays an important role in the inference of

the marginal posterior of latent variables. Taking υ∗ as an example, we can estimate the marginal posterior

π(υ∗|Y,Z), which takes the form of

π(υ∗|Y, Z) =

∫
π(v∗|Y,Z, θ)π(θ|Y,Z)dθ. (7.44)
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It is possible to obtain a sample set {θ1, · · · , θK} from the input space of θ that represents an approximate

discrete form of the posterior p(θ|Y, Z). We can estimate the approximate p̂(v∗|Y,Z) by

π̂(v∗|Y,Z) =
K∑
k=1

π(v∗|Y,Z, θk)π(θk|Y,Z)wθk , (7.45)

where wθk is the weight of the sample point θk that can be measured by its normalized probability den-

sity. The critical step is to efficiently identify a representative sample set {θ1, · · · , θK}, as well as the

corresponding set of weights {wθ1 , · · · , wθK}.

The posterior π(θ∗|Y,Z) can be re-formalized as

π(θ|Y,Z) ∝ π(Y, Z|υ∗, θ)π(υ∗|θ)π(θ)

π(υ∗|Y, Z, θ)
. (7.46)

The Laplace Approximation (LA) can be applied to approximate the denominator π(υ∗|Y, Z, θ) as a Gaus-

sian distribution. The LA method uses a similar approach to that for Bayesian spatial inference:

π̂(θ|Y,Z) ∝ π(Y,Z|υ∗, θ)π(υ∗|θ)π(θ)

π̂(υ∗|Y,Z, θ)

∣∣∣∣∣
υ∗=υ̂∗

, (7.47)

where π̂(υ∗|Y,Z, θ) is a Gaussian approximation of

π̂(υ∗|Y,Z, θ) ∝ π̂(Y,Z|υ∗, θ)π̂(υ∗|θ). (7.48)

Utilizing the above approximation yields the mode υ̂∗ and the curvature at the mode of this full conditional

expression. In our framework, we apply the generalized linear model (GLM) to capture the distributions of

non-Gaussian variables. The preceding Gaussian approximation can be efficiently conducted using the pop-

ular Iterated Re-weighted Least Squares (IRLS) algorithm. The detailed procedures for this are summarized

in Algorithm 1.

Algorithm 1 iterates l1 times from Step 2 to Step 8 until convergence. Among these steps, Step 6 has the

highest time cost. Because the solution is analytically intractable, numerical optimization techniques need to

be applied. An efficient IRLS algorithm is proposed to conduct this process. For the purpose of illustration,

suppose observations Z are count data and follow a Poisson distribution (See Eq.(7.39)). Step 6 is first

reformulated as the following optimization problem

argmax
v∗

π̂(v∗|Y,Z, θ) = argmin
v∗

− lnπ(Y |v∗, θ)− lnπ(Z|v∗, θ)− lnπ(v∗|θ). (7.49)
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Algorithm 11 Exploring the posterior distribution of π(θ|Y, Z)

Input: S, S∗, S0, Y, Z,X
Output: Θ, w

1: Choose an initial value θ = {τ2, T, φ};
2: repeat
3: Construct µv∗ , Σv∗ with θ (See Eq. (7.26)).
4: Calculate the transformation matrix F (φ) (See Eq. (7.24)).
5: Calculate the likelihood of Y for Gaussian variables (See Eq.(7.27)) and GLM likelihood of Z for

exponential ones (See Eq.(7.28)).
6: Apply IRLS to find the mode υ̂∗ and Hessian at the mode of π̂(υ∗|Y, Z, θ), then make a Gaussian

approximation by applying Eq.(7.38).
7: Compute the gradient and Hessian of π̂(θ∗|Y,Z) and apply one Newton’s step to update θ.
8: until Convergence
9: Explore the contour of π̂(θ|Y,Z) based on its mode and Hessian at the mode, obtainK sample locations,

Θ = {θ1, ..., θK}.
10: Compute and normalize {π̂(θ1|Y,Z), · · · , π̂(θK |Y,Z)} to obtain the set of weights w =

{wθ1 , · · · , wθK} as wθk = π̂k(θk|Y,Z)∑K
k=1 π̂k(θk|Y,Z)

.

Expanding the density functions π(Y |v∗, θ), π(Z|v∗, θ), and π(v∗|θ), we have

argmin
v∗

1

2

(
Y −H∗yv∗

)T
U−1

(
Y −H∗yv∗

)
−
(
ZTH∗z v

∗ − 1T exp(H∗z v
∗)
)

(7.50)

+
1

2

(
v∗ − µv∗)TΣ−1

v∗ (v∗ − µv∗
)
.

The gradient and Hessian matrix of the above objective function can be obtained as

5π̂(v∗|Y, Z, θ) =
(
H∗y

TU−1H∗y + Σ−1
v∗

)
v∗ +H∗z

T exp(H∗z v
∗) (7.51)

−H∗y
TU−1Y −H∗z

TZ − Σ−1
v∗ µv∗ ,

52π̂(v∗|Y, Z, θ) = H∗y
TU−1H∗y + Σ−1

v∗ +H∗z
Tdiag(exp(H∗z v

∗))H∗z , (7.52)

where diag(exp(H∗z v
∗)) reshapes the vector exp(H∗z v

∗) as a diagonal matrix.

The IRLS algorithm for Step 6 is described as follows:

1. Select an initial v̂∗

2. Until convergence

(a) Update v̂∗ = v̂∗ −
(
52π̂(v̂∗|Y, Z, θ)

)−1 5 π̂(v̂∗|Y,Z, θ) by Eqs. (7.51) and (7.52)

3. Output v̂∗ as the mode of π̂(v∗|Y,Z, θ).
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Computational Complexity. In Algorithm 1, suppose that l2 iterations are required to find the mode v̂∗ and

Hessian at the mode of π̂(υ∗|Y, Z, θ), and the time cost of Step 6 is O(l2 ∗ (n ∗m2 +m3)). For Step 5, the

Gaussian approximation of π̂(υ∗|Y,Z, θ) takes O(n ∗m). Overall, Steps 2-8, which generate the converged

gradient and Hessian of π(θ|v∗), take O(l1 ∗ l2 ∗ (n∗m2 +m3)+ l1 ∗n∗m). Finally, sampling the θ set and

computing their corresponding weighted values take O(K). The overall framework is designed based on

Newton’s method, whose convergence is generally rapid. The performance on problems in R10000 is thus

similar to that on problems inR10, and the required number of Newton’s steps (l1) only increases modestly

[19]. Step 6 applies IRLS to capture the mode of π̂(υ∗|Y,Z, θ), and in practice five iterations (l2 = 5) are

sufficient. In summary, assuming m � K, m � l1 and m � l2, the total computational complexity of

parameter estimation is O(n ∗m2).

7.4.3 Spatial prediction via Laplace Approximation

Given a set of unsampled locations {s0
1, · · · , s0

Nte
}, we are interested in predicting the Y and Z attribute

values at these locations, denoted as Y 0 = (Y (s0
1), · · · , Y (s0

Nte
))′ and Z0 = (Z(s0

1), · · · , Z(s0
Nte

))′. The

first step is to estimate the posterior distributions of the corresponding latent variables π(ω0|Y,Z) and

π(γ0|Y,Z), where ω0 = (ω(s0
1), · · · , ω(s0

Nte
))′ and γ0 = (γ(s0

1), · · · , γ(s0
Nte

))′. Then the posterior distri-

butions of Y 0 and Z0 can be obtained as

π(Y 0|Y, Z) =

∫
π(Y 0|ω0)π(ω0|Y,Z)dω0, (7.53)

π(Z0|Y, Z) =

∫
π(Z0|γ0)π(γ0|Y,Z)dγ0. (7.54)

We denote v0 = (ω0′, γ0′)′. Given the approximated π̂(v∗|Y, Z, θ) and π̂(θ|Y,Z) as obtained in Sections

4.1 and 4.2, the posterior distribution π(v0|Y,Z) can be estimated by

π(v0|Y,Z) =

∫ ∫
π(v0|v∗, Y, Z, θ)π(v∗|Y,Z, θ)π(θ|Y,Z)dv∗dθ

=

∫ (∫
π(v0|v∗, θ)π(v∗|Y,Z, θ)dv∗

)
π(θ|Y,Z)dθ

≈
K∑
k=1

(∫
π(v0|v∗, θk)π̂(v∗|Y,Z, θk)dv∗

)
× π̂(θk|Y,Z)wθk

≈
K∑
k=1

N (µ̃, Σ̃)π̂(θk|Y,Z)wθk , (7.55)
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where

Σ0 = Cov(v0),Σ∗ = Cov(v∗),Σ0∗ = Cov(v0, v∗),

µ̃ = Σ0∗Σ∗−1Q−1b, (7.56)

Σ̃ = Σ0 − Σ0∗Σ∗−1Σ0∗T + Σ0∗Σ∗−1Q−1Σ∗−1Σ0∗T .

Note that, an alternative approximation strategy is to reformulate π(v0|Y,Z, θ) as

π(v0|Y, Z) =

∫
π(v0|Y,Z, θ)π(θ|Y,Z)dθ. (7.57)

Given that

π(v0|Y, Z, θ) ∝ π(Y,Z|v0, v∗)π(v0, v∗|θ)
π(v∗|v0, Y, Z, θ)

, (7.58)

we apply Laplace approximation in Section 4.2 to obtain the approximate marginal as

π̃(v0|Y,Z, θ) ≈ π(Y,Z|v0, v∗)π(v0, v∗|θ)
π̂(v∗|v0, Y, Z, θ)

∣∣∣∣∣
υ∗=υ̂∗

, (7.59)

where π̂(v∗|v0, Y, Z, θ) is a Gaussian approximation of

π(v∗|v0, Y, Z, θ) ∝ π(Y,Z|v∗, v0)π(v∗, v0|θ). (7.60)

The posterior distribution π(v0|Y, Z, θ) can be estimated by

π(v0|Y,Z) ≈
K∑
k=1

π̂(v0|Y,Z, θk)π̂(θk|Y,Z)wθk . (7.61)

In practice, the above two alternative strategies provide similar accuracies for the predictions of Y 0 and

Z0, but the former strategy has a lower computational cost, so this was chosen as the default implementa-

tion. However, studies have shown that the latter strategy works better for the prediction of the regression

parameters βY and βZ .

Based on the above theoretical analysis, the main procedures involved in predicting multivariate non-

Gaussian variables are described by Algorithm 2.

After obtaining the θ samples {θ1, · · · , θK} and their weight values {wθ1 , · · · , wθK} from Algorithm 1, we

first use each θk(k = 1, · · · ,K), to construct the mean and covariance matrix of latent variables, v∗. Next,
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Algorithm 12 Spatial Multivariate Non-Gaussian Prediction
Input: S, S∗, S0, Y, Z,X,X0,Θ, w
Output: Y 0, Z0

1: for k = 1 to K do
2: Construct µv∗ , Σv∗ with θk and S∗ (See Eq. (7.26)).
3: Calculate the transformation matrix F (φ) with θk, S∗, S,X (See Eq.(7.24)).
4: Calculate the likelihood of Y for Gaussian variables (See Eq.(7.27)) and the GLM likelihood of Z for

exponential ones (See Equation (7.28)).
5: Calculate the mode, the Hessian at the mode of π̂(υ∗|Y,Z, θk), and its Gaussian approximation (See

Equation (7.38)).
6: Predict Y 0

k , Z0
k for new locations S0. (See Eqs.(7.53 and 7.54))

7: end for
8: Calculate the final Y 0, Z0 values as Y 0 =

∑K
k=1 Y

0
k × wθk , Z0 =

∑K
k=1 Z

0
k × wθk

the transformation matrix F (φ) is computed, which describes the spatially varying linear transformation of

(ω̃′, γ̃′)′ on (ω∗′, γ∗′)′. As shown in Eqs. (7.27-7.28), the likelihood of Gaussian observations and the GLM

likelihood of exponential ones are defined by F (φ), µv∗ , Σv∗ , and X . The mode of π̂(υ∗|Y,Z, θ) is then

calculated to predict the multivariate observations Y 0
k and Z0

k at sample θk. Finally, the predicted Y and Z

are calculated as Y 0 =
∑K

k=1 Y
0
k × wθk , Z0 =

∑K
k=1 Z

0
k × wθk .

Computational complexity. Step 6 dominates the computational costs because it is analytical intractable.

With the numerical optimization discussed in Section 4.1-4.2, it takes O(n ∗ m) to operate a Gaussian

approximation of π̂(υ∗|Y, Z, θk) for each sample θk. Computing the mode and Hessian of π̂(v∗|Y,Z, θk)
costs O(l2 ∗ (m3 + n ∗m2)). Repeating Steps 1-7 for K sample θs therefore takes O(K ∗ (n ∗m + l2 ∗
(m3 +n∗m2))). In summary, the total computational complexity of the Spatial Multivariate Non-Gaussian

Prediction algorithm is O(n ∗m2), assuming m� K and m� l2.

7.5 Experimental Result and Analysis

This section evaluates the effectiveness and efficiency of our proposed framework based on experiments on

simulations and four real life datasets. Because of the space limit, we focused on three bivariate scenarios:

1) the response variables include one Gaussian and one Binomial; 2) the response variables include one

Gaussian and one Poisson; 3) the response variables include one Binomial and one Poisson. The datasets and

the implementation of our approach can be downloaded from [98] for evaluations. All the experiments were

conducted on a PC with Intel(R) Core(TM) I5-2400, CPU 3.1Ghz, and 8.00 GB memory. The development

tool was MATLAB 2011.
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7.5.1 Simulation study

Simulation settings

Data set: We used a similar simulation model as that used in [28]. Taking the Gaussian+Binomial(G+B)

simulation as an example, we considered Y (s) as a Gaussian random variable at location s, and Z(s) as a

binomial random variable. The simulation data were generated based on the following statistical model:

Y (s) ∼ N (xTβy + ω(s), τ2), (7.62)

Z(s) ∼ Binomial(m, gb(x
Tβz + γ(s))),

where gb(·) is the link function of the generalized linear model for binomial distribution and ω(s) and γ(s)

are defined together as a latent spatial co-kriging Gaussian process [54] with the covariogram model

V ar([ω(s); γ(s)], [ω(o); γ(o)]) = Σ̂tn =

∣∣∣∣∣∣ σ
2
y σ2

yz

σ2
yz σ2

z

∣∣∣∣∣∣C(h|φ),

and h = |s − o|. The correlation component C(h|φ) refers to the spatial correlation between two random

variables. We used the popular exponential kernel function to model the correlation, which has the form

C(h|φ) = −exp
(
h
φ

)
, where φ is the range parameter that controls the degree of spatial autocorrelations.

The model design indicates that the spatial dependency between the variables Y (s) and Z(s) is realized

through their corresponding latent variables.

The simulations for count data were generated based on a Poisson distribution

Z(s) ∼ Poisson(gp(x
Tβz + γ(s))), (7.63)

where gp(·) is the link function of the generalized linear model for Poisson distribution.

In Gaussian+Poisson(G+P), Y (s) and Z(s) were considered as Gaussian and Poisson random variables,

respectively. In Binomial+Poisson(B+P), Y (s) and Z(s) were Binomial and Poisson random variables, re-

spectively. The parameter settings used in our experiments are shown in Table 2. We also tested different

combinations of parameters, and observed similar patterns. Fig. 7.2 depicts density maps of the numeri-

cal(Y) and binary(Z) responses from a typical G+B simulation, which shows the complicated distributions

involved and illustrates why a higher processing ability is required for the predictive models.

Seven State of the Art Competing Methods: Our literature survey revealed only two methods for pre-

dicting multivariate non-Gaussian spatial data. One is the BME method proposed by Wibrin et al., which

supports the mixture of one numerical and one categorical variables[163], and the other is MCMC designed
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Table 7.2: Parameter settings in simulations

Variable Setting Description
Data Type Gaussian(Y)+Binomial(Z), Gaussian(Y)+Poisson(Z), Bi-

nomial(Y)+Poisson(Z)
Ntr, Nte Ntr = 1000, Nte = 400, 500. Training data were ran-

domly generated at Ntr spatial locations {si}Ntri=1 for the
range [0,50]×[0,50] units. Testing data were generated at
Nte spatial locations {si}Ntei=1 over the same range.

βy, βz The regression coefficient βy = [2, 2]′, βz = [2, 1]′ in
G+P; βy = [0.5, 0.5]′, βz = [0.1, 0.1]′ in G+B; βy =
[0.1, 0.1]′, βz = [2, 1]′ in B+G.

σy, σz, σyz σ2
y = 4, σ2

z = 3.24, σ2
yz = 2.52 in all types of simulations.

φ φ = 25 in all types of simulations.
τ The nugget variance, τ 2, was set to 1 in both G+B and G+P

simulations.
Correlation
model

An exponential spatial correlation function C(h, φ) =
σ2exp(−h

φ
) was used in all types of simulations.

by Chagneau et al., which is based on the Gibbs sampler with Metropolis-Hastings (M-H) steps [28]. As

BME is restricted to bivariate data with one Gaussian and one Categorical variables, and MCMC is flexible

for a variety of mixture types. We implemented MCMC using the same framework (Gibbs sampler with

M-H steps), and denoted it as Spa-Multi-MCMC.

Figure 7.2: Density maps of a typical G+B simulation

There is also an R toolbox function named “MCMCglmm” that supports general multivariate non-Gaussian

prediction without considering spatial dependency. We implemented this method using the same MCMC
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framework, denoted as Multi-MCMC. In practice, Spa-Multi-MCMC and Multi-MCMC do not scale well

to large datasets (e.g., 1,000 points), since they need to sample a large set of latent variables, ω and γ.

Therefore, we implemented two approximate versions of them, namely, Spa-Multi-MCMC-K and Multi-

MCMC-K. The basic idea is to split the full conditional distribution π(ω(s1), · · · , ω(sn)) into the product

of block conditional distributions, where each block includes a set of neighbor points. The blocks are

obtained by using K-Means clustering algorithm. Using this strategy, we reduced the dimensionality of

latent ω and γ, from n to the block size. The model proposed in this paper is identified as Spa-Multi-INLA.

There are several techniques that can be used for non-spatial predictive modeling, including CART (Classi-

fication and Regression Trees ) [20], MARS (Multivariate Adaptive Regression Splines) [51], and Treenet

(also known as MART, Multiple Additive Regression Trees) [52]. These three methods can all determine the

predictors from a large number of variables and estimate their interactions, which helps accurately predict

the outcome variables. All are flexible regarding classification and regression modeling of high dimensional

data. However, none take spatial dependency into consideration since they are focused on general multi-

variate modeling. These three techniques have been implemented into a flexible and powerful data mining

tool, known as the Salford System [152], which was used to make predictions for Y and Z separately in our

experiment. We identify them as CART, MARS, and Treenet.

Performance metric: We ran the experiments with 20 realizations of each parameter combination and

then calculated the mean and standard deviation of the approximated value of every parameter combination

in the multivariate process model. For each observation, we computed the MAE (Mean Absolute Error)

for numerical and count observations, and the accuracy for binary ones based on their corresponding pre-

dicted and true values. To validate the new model’s effectiveness and efficiency, we compared the results

of estimations, predictions, and response times for the Spa-Multi-INLA, MCMC based approaches, CART,

MARS, and Treenet. Finally, we utilized Moran’s I-statistic to capture the spatial dependency of numerical

observations.

Simulation results

Model Parameter Estimates
Tables 3-5 show the estimation results for the model parameters on the data sets of size 1000 for the G+B,

G+P, and B+P simulations, respectively. “Spa-Multi-INLA(64)” refers to our approach with a knot size

equal to 64. No results are shown for Multi-MCMC and Spa-Multi-MCMC because they became very slow

when the data size exceeded 1000. The iterations of Spa-Multi-MCMC-K and Multi-MCMC-K were set

to 3000 iterations, and K equal to 170 blocks (clusters). Also, there are no results for CART, MARS and

Treenet in these tables. This is because these models do not include these parameters. Instead, these ran on

the Salford tool, which is a well-developed and optimized powerful tool and it was not considered reasonable
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Table 7.3: Comparisons of the parameter estimation and computational cost in G+B.(Spa-Multi-
MCMC and Multi-MCMC are unable to process datasets with data sizes greater than 1000)

PPPPPPPPPApproach
Para.

βy βz φ σ2
y σ2

z σ2
yz τ 2 Time(m)

True Values

[
0.50

0.50

] [
0.10

0.10

]
25 4 3.24 2.52 1.00 —

Spa-Multi-INLA(64)

[
0.60(0.05)

0.63(0.05)

] [
0.18(0.07)

0.15(0.07)

]
11.44

(2.64)

5.65

(1.86)

3.20

(1.02)

2.47

(0.12)

1.31

(0.06)
1.3

Spa-Multi-INLA(256)

[
0.60(0.03)

0.63(0.03)

] [
0.21(0.07)

0.19(0.07)

]
10.64

(2.25)

4.73

(1.21)

3.02

(0.86)

2.40

(0.19)

1.12

(0.06)
1.5

Spa-Multi-MCMC-K

[
0.18(6.89)

−0.13(6.77)

] [
0.22(0.47)

−0.09(0.43)

]
12

(1.05)

22.48

(24.39)

51.41

(58.19)

4578.56

(1054.58)

0.12

(0.15)
171.93

Multi-MCMC-K

[
0.29(7.11)

0.06(7.29)

] [
−2.84(0.48)

0.28(1.11)

]
−− −− −− −−

0.13

(0.16)
234.27

to directly compare their running times with those of the LA(Laplace Approximation) and MCMC based

approaches both of which ran on Matlab. However, we did compare the prediction performances of Y and

Z among all of these approaches and the results are shown in Fig. 7.3.

By comparing the estimated parameters with the true values, we observed that our method was able to

accurately estimate most of the model parameters with only small deviations, compared to the other two

MCMC based methods for these three types of simulations. The true range parameter φ is 25, but both

the LA and MCMC based approaches underestimated the range parameter at around 11. This indicates the

difficulty of capturing the degree of spatial autocorrelation based on the spatial distance. In addition, we

found that it was more difficult to estimate βz than βy in G+B and G+P, and βy than βz in B+P. This is

reasonable since for binary data, it is usually more difficult to estimate the corresponding β than for count

and numerical data. Compared with numerical data, count data is also more difficult to model.

Finally, there was an interesting result for MCMC based methods. In some cases, they performed well, as in

the B+P simulation, where both Spa-Multi-MCMC-K and Multi-MCMC-K did approximately estimate the

βy and βz . However, they sometimes failed to make good estimations, as in the G+P and G+B simulations,

where all of the estimated parameters deviated substantially from their true values. The reason for this is that

MCMC approaches are sampling-based. If there insufficient iterations are provided, their performances will

not be stable, as this depends on the sample selections of the latent variables. Executing MCMC approaches

with appropriate iterations provided comparable results but were very time consuming, requiring around

1-2 days for our simulations. Since our focus is on not only the effectiveness, but also the efficiency, we
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Table 7.4: Comparisons of the parameter estimation and computational cost in G+P

PPPPPPPPPApproach
Para

βy βz φ σ2
y σ2

z σ2
yz τ 2 Time(m)

True Values

[
2.00

2.00

] [
2.00

1.00

]
25 4 3.24 2.52 1.00 –

Spa-Multi-INLA(64)

[
2.51(0.22)

2.01(0.02)

] [
1.38(0.17)

1.03(0.01)

]
13.87

(3.29)

4.90

(1.27)

3.02

(0.77)

3.31

(0.67)

1.28

(0.06)
1.83

Spa-Multi-INLA(256)

[
0.92(0.15)

1.94(0.01)

] [
0.44(0.12)

0.94(0.01)

]
9.42

(2.29)

3.37

(0.94)

2.08

(0.48)

2.03

(0.35)

1.07

(0.05)
3.20

Spa-Multi-MCMC-K

[
−0.07(7.01)

0.13(6.94)

] [
0.94(0.05)

0.89(0.10)

]
2.97

(1.75)

36.31

(35.36)

2.82

(2.64)

1.84

(0.48)

0.26

(0.29)
72

Multi-MCMC-K

[
0.39(6.95)

−0.03(7.12)

] [
1.39(0.05)

0.99(0.07)

]
−− −− −− −−

0.14

(0.15)
27

therefore abandoned the attempt to improve the accuracy of the MCMC based approaches.

Prediction Accuracy
Fig. 7.3 provides the prediction results of different approaches for the G+B, G+P and B+P simulations.

Applying Moran’s I-statistic, we computed the spatial dependencies for Y numerical attributes in G+B

and G+P, as 0.7006 and 0.7222, which indicates that the existing high spatial auto-correlation needs to be

considered during the estimation and prediction processes. In fact, when we generated these simulations,

to demonstrate the effectiveness and efficiency of our approach, the degree of spatial dependencies among

different objective attributes were set with higher values.

As we can see in Fig. 7.3, for the case of G+B, Spa-Multi-INLA(256) has the lowest MAE(0.89) for Y and

the highest accuracy (0.85) for Z. By contrast, CART, MARS and Treenet have higher MAEs (1.60, 1.61

and 1.58) and lower accuracies (0.73, 0.74 and 0.75) since they are unable to capture the spatial dependen-

cies. Spa-Multi-MCMC-K has the worse performance (MAE: 4.23, Accuracy: 0.75) at the cost of large

computational iterations. Multi-MCMC-K approach failed to accurately execute spatial predictions since it

was unable to learn the spatial dependency and operated without sufficient iterations. Spa-Multi-MCMC and

Multi-MCMC cannot process mixed type datasets whose data sizes are greater than 1000 because in MCMC

based approaches the un-marginalized models used to fit the Binomial+Poisson outcome data required more

MCMC iterations.

Fig. 7.3(b-c) also provides the prediction comparisons of Spa-Multi-INLA models with 64 and 256 knots
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(a) Gaussian+Binomial

(b) Gaussian+Possion

(c) Gaussian+Possion

Figure 7.3: Comparison of the performances for six approaches on simulation datasets
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Table 7.5: Comparisons of the parameter estimation and computational cost in B+P

PPPPPPPPPApproach
Para

βy βz φ σ2
y σ2

z σ2
yz Time(m)

True Values

[
0.10

0.10

] [
2.00

1.00

]
25 4 3.24 2.52 –

Spa-Multi-INLA(64)

[
0.16(0.03)

0.23(0.03)

] [
2.09(0.01)

1.04(0.01)

]
20.05

(3.58)

2.38

(0.87)

2.89

(0.54)

1.47

(0.03)
0.95

Spa-Multi-INLA(256)

[
0.12(0.03)

0.35(0.03)

] [
1.97(0.01)

1.08(0.01)

]
20.05

(3.58)

3.56

(1.21)

3.87

(0.88)

2.60

(0.32)
9.17

Spa-Multi-MCMC-K

[
0.17(0.10)

0.26(0.10)

] [
1.91(0.03)

1.01(0.03)

]
6.37

(0.61)

1.34

(0.06)

1.51

(0.09)

1.04

(0.06)
101

Multi-MCMC-K

[
0.15(0.08)

0.20(0.08)

] [
3.15(0.02)

1.36(0.02)

]
−− −− −− −− 95

against other approaches for the G+P and B+P simulations. These exhibit the same estimation patterns as

those in G+B. By comparing different knot intensities, we see the predictive process with 64 knots has quite

a close performance to that with 256 which indicates that the parameter effects can be accurately estimated

with the proper knot selections.

Computational Cost
The last columns in Tables 3-5 show the computing times required to deliver the estimation and prediction

results for each simulations. For the MCMC based approaches, the main evaluation cost is matrix inversion

at O((2 ∗ 1000)3). For the Spa-Multi-INLA model, the main cost is O(2 ∗ n ∗ (2 ∗m)2)(m = 64 or 256)

, which is the cost of building the required inverse and determinant of the size (2m + 2p) × (2m + 2p)

matrix Q as shown in Eq.(30) by assuming m >> p. As shown in Tables 3-5, there is a clear reduction

in the computational cost when using Spa-Multi-INLA approach. Meanwhile, the predictive process with

64 knots has a similar prediction capability but lower computational burden compared to the 256 knots.

Integrating the Laplace approximation into the spatial multivariate predictive model clearly helps achieve

sufficiently accurate results in a moderate time.

7.5.2 Real life datasets

We validated our approach using four real datasets, namely, Lake, MLST, BEF, and House. All are G+B

datasets.
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The datasets

Lake was originally published by Varin et al. [157]. It was used to model the trout abundance in Norwegian

lakes as a function of lake acidity. The explained attributes include Intercept, X coordinate, Y coordinate,

Product of X and Y coordinates, X coordinate squared, and Y coordinated squared. MLST came from mul-

tiple listings containing structural descriptors of houses, their sale prices, and their addresses for Baltimore,

Maryland in 1978. Dubin [46] estimated a spatial autocorrelation model that calculated the portion of the

price by multiplying the vectors of attributes by their estimated coefficients. The explained attributes used X

coordinate, Y coordinate, Product of X and Y coordinates, X coordinate squared, and Y coordinate squared.

BEF is a forest inventory dataset from the U.S. Department of Agriculture Forest Service. Variables include

species, specific basal area, total tree biomass, inventory plot coordinates, and slope, etc. BEF data is in-

cluded in the spBayes R package [148]. Finley and Banerjee [49] made a detailed analysis of the non-spatial

logistic regression to the data. The explained variables are the slope, elevation of the object, the tasseled

cap brightness, greenness, and wetness components from summer 2002. House contains information col-

lected for a range of variables for all the block groups in California from the 1990 Census. Specifically, it

contains median house value, median income, housing median age and total room, etc. The spatial regres-

sion model of House was analyzed by Pace and Barry [122]. Explained variables include Median Income,

Median Income2, Median Income3, ln(Median Age), ln(TotalRooms/Population), ln(Bedrooms/Population),

ln(Population/Households) and ln(Households).

Table 6 summarizes the main information for each of these datasets used in our experiment. The spatial

dependencies were computed using Moran’s I-statistic function, and the results are shown in the last column.

Table 7.6: Settings in the 4 real datasets

Dataset Size Ntr Nte Y Z Spatial Depen-
dence in Y

BEF 437 337 100 BE basal
area

EH basal area 0.1672

Lake 371 271 100 Trout abun-
dance

Lake acid 0.0072

MLST 211 150 61 House price If located in
county

0.1753

House 20,640
2, 000

5, 000

200

500
House price House age 0.2529

Fig. 7.4–7.7 summarizes the comparisons among Spa-Multi-INLA(64), four MCMC based approaches,

CART, MARS and Treenet. The data name “Lake.271.100.1” indicates that it is the first realization gener-

ated from the original Lake data with 271 training data and 100 test data points. By learning their spatial
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dependencies, we determined that most of the real datasets have lower spatial auto-correlations, which sug-

gests that non-spatial attributes will contribute a lot when predicting the outcome variables.

Experimental results

Prediction accuracy

For the predicted Y (numerical observations), the MAEs were computed to demonstrate the prediction per-

formance. Neither Multi-MCMC nor Spa-Multi-MCMC could process the House data because of the large

data sizes (2000 and 5000 points). Also, the MAE values from Spa-Multi-MCMC-K and Multi-MCMC-K

were much higher (around 10) than those (0.21-0.33) of others. To better plot the performance comparisons

among Spa-Multi-INLA, CART, MARS and Treenet, we did not draw MCMC based plots for House as

MCMC based approaches generated such poor results due to the larger datasets (2000 and 5000) which

incurred excessive computation times of around 2 days. In our experiments, the iteration values for all the

datasets were set to 3000, although this still cost around 1-3.5 hours with Multi-MCMC-K, and 2.5-4.5

hours with Spa-Multi-MCMC-K for House datasets. As shown in Fig. 7.4–7.7, Spa-Multi-INLA achieved

an average 10 % improvement over CART, MARA and Treenet, 40-50 % over Spa-Multi-MCMC-K and

Spa-Multi-MCMC, and 60-70 % over Multi-MCMC-K and Multi-MCMC. For the predicted Z(binary ob-

servations), the accuracies were again computed. As shown in Fig. 7.4–7.7, Spa-Multi-INLA achieved

average improvements of 10% over CART, MARS and Treenet, 40-50% over Spa-Multi-MCMC-K and

Spa-Multi-MCMC, and 60-70% over Multi-MCMC-K and Multi-MCMC. The predicted results from dif-

ferent methods for House.2000.200.1 are shown as density maps in Fig. 7.9. The visualization indicates

that our predictive model was able to accurately capture the distributions of both the Gaussian(Y) and the

Binary(Z) variables. One interesting observation is that MCMC based methods tended to under-estimate

the Gaussian variable, while over-estimating the Binary variable, and the number of positive values is much

greater then the number of true positive values. It is worth noting that CART, MARS and Treenet generated

impressive prediction results, and they are much better than MCMC based approaches. This is because the

degrees of spatial auto-correlations of the four real datasets are not obvious. The predictions of outcome

variables are mainly controlled by the non-spatial predictors, and have less relationship with the spatial dis-

tances among the objects. For Lake, which has the lowest spatial dependency (0.0072), their performance

is close to that of the Laplace approximation based approach. In MLST and BEF, the spatial dependencies

increase a little but are still lower; the performances of CART, MARS, and Treenet are a little worse than

that of the Laplace approximation based approach. In House, the degree of spatial auto-correlation is more

obvious and clearly demonstrates the effectiveness of the Laplace approximation based approach since it

takes spatial dependency into consideration during the predictive process.

MCMC based approaches have similar estimation patterns to these in simulations and cannot perform well
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(a) Prediction MAE for Y (b) Prediction accuracy for Z

(c) Prediction MAE for Y (d) Prediction accuracy for Z

(e) Prediction MAE for Y (f) Prediction accuracy for Z

Figure 7.4: Comparison of the performances for eight approaches on House dataset
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(a) Prediction MAE for Y (b) Prediction accuracy for Z

(c) Prediction MAE for Y (d) Prediction accuracy for Z

Figure 7.5: Comparison of the performances for eight approaches on Lake dataset
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(a) Prediction MAE for Y (b) Prediction accuracy for Z

(c) Prediction MAE for Y (d) Prediction accuracy for Z

Figure 7.6: Comparison of the performances for eight approaches on BEF dataset
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(a) Prediction MAE for Y (b) Prediction accuracy for Z

(c) Prediction MAE for Y (d) Prediction accuracy for Z

Figure 7.7: Comparison of the performances for eight approaches on MLST dataset
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when there are no appropriate iterations provided.

Computational cost

(a)

Figure 7.8: Comparison of the performances for eight approaches on real life datasets

Real datasets showcase the speed and associate scalability achieved by the approaches that we evaluated.

Fig. (7.8) compares the runtime performance of these algorithms in the datasets for varying numbers of

training and testing points. For example, for BEF.337.100.2, Spa-Multi-INLA finished execution in around

0.63 mins, while Spa-Multi-MCMC-K completed in around 15.19 mins, and Multi-MCMC-K, Spa-Multi-

MCMC and Multi-MCMC took from 11.43 to 32.64 mins. In particular, for House.2000.200.2, our methods

finished running in 10 mins, while Spa-Multi-MCMC-K and Multi-MCMC-K took several hours. The other

two approaches were not able to execute this dataset since it exceeds 2000 points.

7.5.3 Result analysis

The above experimental results demonstrate that Spa-Multi-INLA is both effective and efficient in estimat-

ing the parameters and predicting different types of variables. It has a superior identification quality over

existing techniques, achieving around 10-30% improvement over CART, MARs and Treetnet, and 40-50%

over MCMC based approaches. The experimental results verified three observations. First, if there is an

appropriate selection of knots that covers most of the domain interests, the predictive process cost will be

significantly reduced to a linear order. Second, when combined with numerical routines, Laplace approx-

imation techniques can provide much faster and more accurate parameter estimation than MCMC based
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(a) True values

(b) Prediction values by Spa-Multi-INLA

(c) Prediction values by CART

(d) Prediction values by Spa-Multi-MCMC-K

Figure 7.9: Density map comparisons of the predicted values for House dataset. Y: numercial
response; Z: binary response
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algorithms for spatial multivariate non-Gaussian prediction. Third, when processing more sophisticated

datasets, such as the simulation data shown in Fig. 7.2, MCMC based approaches need a very high num-

ber of iterations to achieve acceptable results at the cost of larger computational cost, and CART MARS

and Treenet cannot handle such data with higher spatial dependencies, but our new approach can finish the

prediction in moderate times with no loss of accuracy.

7.6 Conclusions

This paper proposes a novel framework for estimating multivariate predictive process models that is de-

signed to take into account mixed type response variables. It integrates multivariate predictive process

models with approximate Bayesian inference using INLA. The predictive model consists of a representative

selection of knot locations which projects the spatial process to a lower dimensional subspace. The INLA

provides more accurate and much faster inference for spatial multivariate predictive models. Experimental

results on synthetic and real datasets conclusively demonstrated that our proposed non-Gaussian prediction

model achieved a much higher processing capability in terms of prediction accuracy and computation time.

The limitation of the model is that it assumes the spatial data accords to the generalized linear model fro

the calucated local differences, but no justifications for this crtical assumption have been presented. The

prediction performances on geostatistic data with both linear and non-linear trend are required to studying

in real application.

Future work will focus on using the designed prediction model to solve multiple spatial data mining is-

sues, including spatial outlier detection [33, 97, 99], spatial temporal outlier detection [96, 169] and spatial

clustering [48, 114] for large mixed type dataset.



Chapter 8

Completed Work and Future Directions

This Ph.D. research focuses on the construction of efficient and effective approaches for several spatial data

mining tasks, including robust prediction for large spatial data set, spatial prediction for large multivariate

non-Gaussian data and spatial anomaly detection for both numerical and categorical data. Empirical results

have shown the effectiveness and scalability of the proposed approaches.

8.1 Research Achievement

The proposed research is following four branches, spatial numerical outlier detection, spatial categorical out-

lier detection, robust inference for large spatial data set and spatial prediction for multivariate non-Gaussian

data sets. Specifically, there are several research topics on each branch that are studied in this research.

These topics as well as the corresponding tasks are listed as follows.

8.1.1 Spatial Numerical Outlier Detection (Chapter 3 and Chapter 4)

RW based Spatial Outlier Detection on Bipartite Graph

In this work, RW-BP based method has been proposed to compute the relevance by operating RW techniques

on a weighted graph. In the bipartite graph, the vertex sets correspond to the spatial objects and the clusters

generated from the non-spatial attributes of the objects in the spatial database. Random walk is performed

on the bipartite graph to compute the similarities of the non-spatial attributes between any pair of the spatial

objects. The spatial neighbor sets for each object can be formed using kNN method. And the outlierness for

158
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each objects is computed as the differences between itself and its neighborhood. The experiments on both

synthetic data and real data sets verify the outstanding performances of RW-BP in terms of its effectiveness.

RW based Spatial Outlier Detection on Exhaustive Combination Graph

However, sometimes the distribution of non-spatial attributes does not have the tendency to form clusters.

That is, it is too difficult to execute a cluster operation, like uniform distribution. In this case, we can

consider to construct another different graph. With the spatial and non-spatial attributes of the observations,

we proposed an weighted Exhaustive Combination. In this graph, the vetex set composes of all the spatial

objects and there is an edge between each pair of spatial objects. In the same way, random walk techniques

is performed on the Exhaustive Combination Graph to compute the relevance vector for each spatial object.

And then, using the sames steps as in the RW-BP approach to identify the spatial outliers. The operation of

RW-EC constructs another different algorithm:1)the construction of the weighted EC graph; 2)the random

is performing on EC graph to compute the relevance vector of any spatial object; 3)The outlierness value is

identified as the local differences of the spatial object.

Identification of the Number of Spatial Outliers

A major limitation associated with the existing outlier detection algorithms is that they generally require a

pre-specified number of spatial outiers. Estimating an appropriate number of outliers for a spatial data set is

one of the critical issues for outlier analysis. This work is interested in designing an entropy-based method

to address this problem in spatial numerical domain. Based on the relationship between outliers and the

overall entropy, that is, the dataset with more outliers has a higher entropy value than that with less outliers.

We expect, that is, the data set with more outliers has a higher entropy value than that with less outliers, we

expect that, by incrementally removing outliers, the entropy value will decrease sharply, and reach a stable

state when all the outliers have been removed.

8.1.2 Spatial Categorical Outlier Detection (Chapter 5)

Spatial Categorical Outlier Concept

The concept of the Spatial Categorical Outlier is proposed to differentiate SCOD with SNOD due to their

intrinsically differences between numerical and categorical data. Actually, in real world, category-typed

data has no intrinsic order information, which makes SCOD more complicated than SNOD. In this work,

a spatial categorical outlier is defined as a spatially referenced observation which occurs infrequently with
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regard to its neighborhood.

Design of PCF Based SCOD Algorithm)

Among several approaches to capturing the co-occurrence frequency, Pair Correlation Function has been

proven very effective. In this work, we investigate the benefits of PCF techniques on SCOD and design

algorithms in spatial categorical data sets. Firstly, we use the thoughts of PCF to define the Pair Correla-

tion Ratio, which evaluate the relevance between each pair of categories with regards to different specified

distances.With the set of discrete points in a 2-D space, determined by distances against PCR values, we

can statistically learn a continuous PCR function which can easily estimate the PCRs among spatial objects.

Then, the spatial neighbor set for each object can be formed using kNN technique. And the outlier degree

for each object is computed by the mean of PCRs between itself and its neighborhood. Finally, the outlier

scores are ranked in an ascending order and the top l objects are identified as SCOs.

Design of Approximate PCF Schemes: kNN Based Approach

For PCF-SCOD approach, in a larger size dataset, it is a time-consuming process to estimate the probability

of each pair of categories as a function of distances. Since spatial outlier detection only takes focuses on

the local differences, we consider only extract the co-occurrence among spatial objects which are spatial

neighbors with each other. Based on such idea, kNN based estimator has been proposed, which is an

approximate PCF-SCOD which only utilizes the kNN relationship to identify SCOS. Firstly, a kNN mapping

function is defined to store the kNN information from the raw dataset into a pair dataset. Then, the co-

occurrence of different pairs of categories are extracted based on the pair dataset so that the PCR between

any pair of spatial objects which are spatial objects with each other can be computed.Finally, the outlierness

for each object is computed by the mean of PCRs between itself with its neighbors.

Extension of kNN Based Approaches to multivariate spatial data

The current PCF series of frameworks was designed for univariate spatial data. This work will further

generalize kNN based approaches to multivariate spatial data. That is, given a spatial dataset, an outlying

observation is the one whose non-spatial attribute set occurs infrequently with regards to that of its neigh-

borhood. A new concept, Pair Attribute Subset(PAS), was defined to evaluate the PCRs in multiple attribute

domain. For each PAS combination, the PCR values among spatial objects were computed and constructed

a PCR matrix in which each entry describes the relevance between a reference object with its neighbors.

Furthermore, the outlier scores were computed for each pair of objects in every PAS combination. In the
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end, the smallest ones is chosen as its final outlierness. We identify outliers in this way because sometimes,

an outlier only exists in the subspace of the multiple attributes. Exhaustively estimating outliers scores in

different PAS will help identify SCOs more effectively.

8.1.3 Robust Prediction and Outlier Detection for Spatial Datasets (Chapter
6)

Design of Robust and Reduced Rank Spatial Kriging Model (R3-SKM)

R3-SKM integrates robust, reduced-rank and Bayesian hierarchical techniques together. It is formalized in

the framework of Bayesian hierarchical model with three layers, including the observation layer, the latent

robust Gaussian process layer, and the parameter layer. The observation layer contains the observations

which are assumed to follow a Gaussian distribution. Each random variable is related to the latent Gaussian

effects in the second layer. The third level of the hierarchical model consists of the related parameters with

the latent variables.

Design of Robust and Reduced Rank Parameter Estimation

Within R3-SKM framework, R3-PE is proposed to execute the robust parameter estimation by integrating

Laplace approximation. It consists of two critical steps: 1). Gaussian approximation of the posterior dis-

tribution of latent variables conditional on parameters and observations; 2). Laplace approximation of the

posterior distribution of corresponding parameters conditional on observations.

Design of Robust and Reduced Rank Spatial Prediction (R3-SP)

Given a set of unsampled locations, R3-SP enables to operating accurate spatial prediction at these locations.

The first step is to estimate the posterior distribution of the corresponding latent variables conditional the

observed samples. Then, with it, we can predict the interested values for the unsampled locations conditional

the observed values at the sampled ones. Specifically, we first derive the K samples of parameters and their

weight values; and then utilizes each generated sample to construct the corresponding mean and covariance

matrix of latent variables. Furthermore, the likelihood of the observations are approximated as the result of

a quadratic form of the latent variables. Next, its distribution is analytically intractable inference.
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Design of Robust and Reduced Rank Spatial Anomaly Detection (R3-SOD)

Statistically, spatial outlier can be interpreted as observations that have abnormally low correlations with

their spatial neighbors. R3-SKM can also be utilized to identify spatial outliers as objects with higher

predicted values. First, we apply R3-SKM to accurately estimate the latent variables and parameters for

the contaminated spatial dataset. Second, the estimated values are utilized to operate a spatial prediction

for each observed location. Finally, the differences between observed and predicted values are computed

to measure their outlying degree. The objects which have higher measurement errors are labeled as spatial

outliers.

8.1.4 Spatial Prediction for Multivariate Non-Gaussian Datasets (Chapter
7)

Design of A Spatial Multivariate Non-Gaussian Hierarchical Framework

The spatial model is based on a hierarchical framework and is specifically designed to take account of mixed

type random variables. It is the first work that applies both knot-based and Laplace approximation techniques

to multivariate non-Gaussian datasets. The knot based technique is utilized to model the predictive process

as a reduced-rank spatial process, which projects the process realizations of the spatial model to a lower

dimensional subspace. This projection significantly reduces the computational cost.

Design of A Prediction Algorithm for G + B Mixture Data

By integrating the Laplace approximation, our approach efficient makes approximations to the posterior

marginal of latent variables for the predictive process, and performs accurate spatial prediction. Suppose

the output of the observations consists of Gaussian and Binary data, the mixed-type attributes are mapped

to latent numerical random variables that are multivariate Gaussian in nature. For binary data, the suc-

cess probability of the observations is defined by a logit link function. The dependency between mixed

type attributes is then modeled by the relationship between their latent numerical random variables using a

variance-covariance matrix.

Design of A Prediction Algorithm for G + C Mixture Data

Here, one output of the observation is assumed to be a Gaussian variable and the first stage of the other

non-Gaussian process be the count response modeled using Poisson regression. Essentially, we assume the
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expected value of count responses is linear on a transformed scale mapped by a suitable link function.The

Gaussian variable and the Poisson variable depend on latent variables, which are responsible for the spatial

dependence together. We will execute experiments on synthetic data sets to validate the effectiveness and

efficiency of proposed models.

Design of A Prediction Algorithm for C + B Mixture Data

Here, the first stages of two non-Gaussian processes are the binary and count responses, which are modeled

using Binomial and Poisson regression, respectively. Essentially, we assume the expected values of binary

and count responses are both linear on the transformed scales mapped by their corresponding suitable link

functions. In the same way, the Binomial and Poisson variables depend on latent variables, which are

responsible for the spatial dependence together. We will also execute experiments on synthetic data sets to

validate the effectiveness and efficiency of proposed models.

8.2 Future Direction

This section discusses important directions of the following topics for future work, including spatio-temporal

outlier detection and Spatial anomaly detection for multivariate non-Gaussian Datasets.

8.2.1 Anomaly Detection for Spatial Mixed Type Dataset

As introduced, approaches to anomaly detection include distance-based, local density based, graph based,

and statistical based methods. Most of these approaches are designed for single type datasets, whereas

most real world the non-spatial attributes of datasets are composed of a mixture of different data types,

such as numerical, binary, ordinal, nominal, and count. Direct applications of these approaches to mixed

type data results in the loss of significant correlations between attributes, and their extension to mixed-type

data is technically challenging. For example, the statistical mode based approach relies on modeling the

correlations between different attributes, but there is no uniform correlation measure available for mixed-

type attributes. There are two main challenges for mixed-type datasets, namely modeling mutual correlations

between mixed-type attributes and capturing large variations due to anomalies.

As an extend of the work in Chapter 7, we consider to design a statistical based approach to address the above

challenges. We begin by presenting a new variant of the spatial generalized linear model that can capture

the mutual correlations between mixed-type attributes. Specifically, the mixed-type attributes are mapped

to latent numerical random variables that are multivariate Gaussian in nature. Each attribute is mapped
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to a corresponding latent numerical variable via a specific link function, such as logit function for binary

attribute and log function for count attribute. Using link functions to model attribute. Using link function

to model attributes of different types is one of the most popular strategies for modeling non-numerical

data. Based on this strategy, the dependency between mixed type attributes is captured by the relationship

between their latent variables using variance-covariance matrix. Then, an “error buffer” component will be

incorporated based on heavy tailed distribution to capture the large variaions caused by anomalies. Heavy

tailed distributions have been widely used in robust statistics to minimize the effects of outliers in variety

of statistical models, e.g., multivariate regression, Kalman filtering, clustering, and independent component

analysis. By fitting the data into the model, the error buffer absorbs all of the errors. The detection process

then revisits the error buffer and detects those abnormal instances with irregular magnitudes of error.

Based on the above idea, we will design an unsupervised framework suitable for general purpose spatial

anomaly detection on mixed-type data. The framework incorporates a novel statistical model for capturing

abnormal behaviors based on improving the INLA method to approximate Bayesian inference. We will

conduct a series of experiments on synthetic and real-life datasets to verify the idea.

8.2.2 Spatio-Temporal Outlier Detection

We have presented several generic solutions to the problems of numerical and non-numerical anomaly de-

tection. We will extend these works to the spatio-temporal domain. There is a lack of effective and efficient

approaches to idnetifying outliers from large scale multivariate mixed type spatio-temporal datsets. For mul-

tivariate mixed type spatio-temporal dataset, it raises three research challenges: 1). How to model spatial

correlations among mixed type attributes; 2). How to remove the side-effect of the outliers; 3). How to

reduce the computational cost.

Currently, there are two popular frameworks which are used to model spatio-temporal data, including spatio-

temporal random effects mode (STRE) and the spatio-temporal Kriging (STK) model. First, we will try to

design a framework which integrates these two models with a heavy tailed distribution to absorb the large

variations cuased by outliers. Second, the knot based technique will be utilized to reduce the computation

burden from a high dimension (the number of the oservations) to a lower domain (the number of repre-

sentative knots). Finally, we can map the mixed-type variables to laten numerical random ones that are

multivariate Gaussian. Further, the spatial correlations among mixed type attribute are modeled using a

variance-covariance matrix. After integrating the heavy-tailed distribution and mapping non-Gaussian vari-

ables into Gaussin domain by the link function, the inference of the designed model will be analytically

intractable. For this issues, we consider apply the approximationg inference techniques, like Gaussian ap-

proximation and Laplace approximation and expectation propagation.
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