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Abstract
Multibody dynamics simulations are currently widely accepted as valuable means for

dynamic performance analysis of mechanical systems. The evolution of theoretical and com-

putational aspects of the multibody dynamics discipline make it conducive these days for

other types of applications, in addition to pure simulations. One very important such appli-

cation is design optimization for multibody systems. Sensitivity analysis of multibody system

dynamics, which is performed before optimization or in parallel, is essential for optimization.

Current sensitivity approaches have limitations in terms of efficiently performing sen-

sitivity analysis for complex systems with respect to multiple design parameters. Thus, we

bring new contributions to the state-of-the-art in analytical sensitivity approaches in this

study. A direct differentiation method is developed for multibody dynamic models that em-

ploy Maggi’s formulation. An adjoint variable method is developed for explicit and implicit

first order Maggi’s formulations, second order Maggi’s formulation, and first and second

order penalty formulations. The resulting sensitivities are employed to perform optimiza-

tion of different multibody systems case studies. The collection of benchmark problems

includes a five-bar mechanism, a full vehicle model, and a passive dynamic robot. The five-

bar mechanism is used to test and validate the sensitivity approaches derived in this paper

by comparing them with other sensitivity approaches. The full vehicle system is used to

demonstrate the capability of the adjoint variable method based on the penalty formulation

to perform sensitivity analysis and optimization for large and complex multibody systems

with respect to multiple design parameters with high efficiency.

In addition, a new multibody dynamics software library MBSVT (Multibody Systems

at Virginia Tech) is developed in Fortran 2003, with forward kinematics and dynamics,



sensitivity analysis, and optimization capabilities. Several different contact and friction

models, which can be used to model point contact and surface contact, are developed and

included in MBSVT.

Finally, this study employs reference point coordinates and the penalty formulation to

perform dynamic analysis for the passive dynamic robot, simplifying the modeling stage and

making the robotic system more stable. The passive dynamic robot is also used to test and

validate all the point contact and surface contact models developed in MBSVT.
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Chapter 1

Introduction

1.1 Motivation and Objectives

1.1.1 Motivation

Multibody dynamics has become an essential tool for mechanical systems analysis and

design. Progress during the last decades lead to the development of complex multibody

models that consider phenomena difficult to take into account in the past and impossible to

achieve with analytical models.

One of the most interesting problems that brought attraction since even before of the

earlier developments of the multibody systems techniques, is the optimization of the dynamic

response of mechanical systems [6]. Nowadays, with the improvement of computer technol-

ogy and computational methods, the possibility of performing the optimization of complex

industrial problems becomes an interesting topic in the multibody community. Sensitivity

analysis, which quantifies the effect of specific design parameters of interest on the dynamic

response of a given multibody system, is often performed before the optimization or in par-

allel with it. The purpose of sensitivity analysis is to obtain the gradient of an objective

function with respect to the design parameters. The outputs of sensitivity analysis are next

used by gradient-based optimization packages to perform optimization.

Numerical sensitivities, when needed, are often calculated by means of finite differences.

However, to calculate numerical sensitivities is computationally expensive. Moreover, in

many cases the results suffer from low accuracy due to round-off error generated by the

computer.
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Due to the shortcomings of numerical sensitivities, the development of analytical ap-

proaches to perform sensitivity analysis becomes essential. There are two well-known sensi-

tivity approaches: the direct differentiation method (DDM) and the adjoint variable method

(AVM). Haug and Arora, 1978, first extended the adjoint variable method from control the-

ory to multibody systems optimization[7]. Later on, the sensitivity analysis of dynamical

mechanical systems was presented by Haug, Wehage, and Mani, 1984 [8]. The direct differ-

entiation method was presented in the same year by Krishnaswami and Bhatti [9]. These

two sensitivity approaches for different multibody formulations have already been developed,

as summarized in section 1.3.1. However, these methods have some drawbacks that prevent

them from easily computing sensitivities for large and complex multibody systems. For in-

stance, the direct differentiation method works well when the number of parameters is small,

but it becomes computationally expensive when the number of parameters is large. In con-

trast, the adjoint variable method works well when the number of parameters is large, but it

doesn’t work well when the number of adjoint variables becomes large. On the other hand,

the direct differentiation methods and the adjoint sensitivity methods using index-3 and

index-1 differential algebraic system of equations (DAE) formulations are not practical due

to the numerical difficulties associated to the underlying formulations [10, 11]. To date, the

sensitivity analysis and optimization of large and complex multibody systems with respect

to a large number of design parameters is still an open topic.

Moreover, current commercial software packages and academic software packages for

multibody dynamics have some drawbacks. First, most of these packages don’t release the

source code and the user is constrained to work within the package’s given limitations.

Second, some of these packages don’t have the capability to perform sensitivity analysis and

optimization for multibody system while others are able to perform sensitivity analysis and

optimization only for very simple multibody systems. Thus, in order to perform sensitivity

analysis and optimization for large and complex multibody systems with respect to a large

number of parameters, a new multibody dynamics software that includes new sensitivity

approaches should be developed and validated.
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An interesting area of application for the multibody dynamics techniques is robotics. In

general, relative coordinates and a Lagrange formulation are used for the analysis of robotic

systems. There are several drawbacks associated to the use of this approach. First, it is

difficult to assess if all the DOF associated with these coordinates will be valid during the

entire simulation; the system may become unstable when it goes through a singular or a

bifurcation position. Second, it is more difficult to model and to write the equations with

relative than with reference point coordinates. Thus, a more general-purpose method is of

interest.

1.1.2 Objectives

• The first objective of this study is to overcome the drawbacks of current sensitivity

approaches and to create new algorithms and techniques in order to efficiently perform

sensitivity analysis for large and complex systems with respect to a large number of

parameters.

• The second objective is to validate and test these new analytical sensitivity approaches

by applying them to an illustrative example. The case study selected here is a five-bar

mechanism; the results are compared with other analytical and numerical approaches.

• The third objective is to demonstrate the capability of the new approaches to perform

sensitivity analysis for large and complex multibody systems with respect to multiple

design parameters. This is done by applying the newly developed sensitivity analysis

techniques to a three-dimensional (3D) full vehicle system.

• Using the outputs of the sensitivity analysis, several gradient-based optimization pack-

ages can be used to perform dynamical optimization. Thus, the fourth objective is to

perform dynamic response optimization of large and complex multibody systems with

respect to multiple parameters. The case studies presented here are for vehicle ride

optimization and vehicle handling optimization with respect to suspension parameters.
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• The fifth objective is to develop a multibody package for research and education of

multibody dynamics and vehicle dynamics, and to make it available to the scientific

community. The new package, Multibody Systems at Virginia Tech (MBSVT), uses

the new approaches developed in this study and is able to perform sensitivity analysis

and optimization for large and complex multibody systems.

• The last objective is to develop a more systematic and general-purpose approach for

the dynamic analysis of legged robotic systems. A passive dynamic two-legged robot

is presented as a case study. The robot can also be used to test and validate all the

point contact and surface contact models developed in MBSVT.

1.2 Multibody dynamics formulations

1.2.1 Coordinates system

Multibody systems can be described with different coordinates. There are three important

types of coordinates: reference point coordinates, natural coordinates, and relative coordi-

nates.

• Relative coordinates

Relative coordinates define the relative position between the current element and the

previous element in the kinematic chain. If two elements are linked by a revolute

joint, then their relative position is the relative angle between these two elements. If

they are linked by a translational joint, then their relative position is the distance

between two points on these two elements. In the spatial multibody systems, there

are more types of joints and unlike the planar systems, most of these joints allow more

than one DOF. Denavit-Hartenberg Notation is mainly used to establish the relative

coordinates in spatial systems, especially robotic systems. Relative coordinates are

especially suitable for open-loop multibody systems attached to the ground because in
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this case the number of coordinates is equal to the number of DOF and no constraints

are needed.

• Reference point coordinates

Reference point coordinates are also called Cartesian coordinates. For the planar sys-

tems, they determine the position of a point of a body (typically the CG) by using

two Cartesian coordinates and they determine the orientation of the body by a angle.

For spatial systems, they define the position of a body by using the absolute position

of a point (typically the CG). They define the orientation of the body by three angles

(typically Euler angles or Fixed angles) or four Euler parameters. Modeling multibody

systems with reference point coordinates normally requires more variables than when

using relative coordinates. However, since the terms in the equations of motion (EOM)

are sparse, one may make the formulation efficient by some special techniques.

• Natural coordinates

Natural coordinates were introduced by J. Garcia de Jalon and Serna in 1981, 1982,

1986, and 1987 for planar systems and spatial systems [12–16]. For the planar systems,

these coordinates require the absolute positions of two points (typically at the joints)

for one body. For spatial systems, these coordinates require a sufficient number of

points and unit vectors to define both the position and orientation of bodies. For more

details about natural coordinates, the reader is referred to [17].

1.2.2 Formulations of equations of motion

There is abundant literature about multibody dynamics formulations of EOM, only

the most relevant ones are introduced here. Initially, Swiss mathematician Leonhard Euler

and Italian mathematician Joseph-Louis Lagrange developed Lagrange’s equations, which

became one of the theoretical foundations of multibody dynamics. For a constrained system,
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the Lagrange’s equations become

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+ ΦT

qλ = Qex (1.1)

where L = T − V is the Lagrangian function, Φq is the Jacobian matrix of the vector of

constraint equations, λ is the vector of Lagrange multipliers associated to the constraints

forces, and Qex is the vector of external forces. This equation is only true if the constraint

equations are satisfied. The kinetic energy of a multibody system can be written as follows:

T =
1

2
q̇TMq̇ (1.2)

Replacing (1.2) in (1.1), the well-know Lagrange multipler form of EOM is obtained as

follow:

Mq̈ + ΦT
qλ = Q (1.3)

where Q = Qex − Ṁq̇ + Tq − Vq, which contains the external forces and velocity dependent

inertia forces. Equation (1.3) can also be obtained by the method of virtual power. Since

this is a constrained system, the position, velocity, and acceleration constraint equations

must be fulfilled as follows:

Φ ≡ Φ(q, t) = 0 (1.4)

Φ̇ ≡ Φqq̇ + Φt = 0 (1.5)

Φ̈ ≡ Φqq̈ + Φ̇qq̇ + Φ̇t = 0 (1.6)

Equations (1.3) with (1.4) constitute an index-3 DAE formulation. Equations (1.3)

with (1.5) constitute an index-2 DAE formulation. To solve a high index DAE formulation is

always a difficult problem, which needs index-reduction techniques. Thus, these formulations

are not the most popular formulations in the multibody community. Equations (1.3) with

(1.6) constitute an index-1 DAE formulation, which can also be written in matrix format as
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follows:  M ΦT
q

Φq 0

 q̈

λ

 =

 Q

c

 (1.7)

where c = −Φ̇qq̇ − Φ̇t. This system matrix is also called augmented matrix, which is

presented by Negrut, Serban and Potra in 1997 [18].

A direct numerical solution of (1.7) suffers from drift-off [19], meaning that any small

perturbation in the acceleration constraints leads to an error in the position constraints that

grows quadratically with time. One of the popular solutions is the Baumgarte stabilization

method that was developed by Baumgarte in 1972 [20].

In general, the multibody dynamics equations, constitute a DAE that it is not usually

directly solved because of the numerical difficulties involved [10, 11]. Due to the drawbacks

of DAE formulations, some of the most advanced families of formulations presented in the

eighties and nineties are based on ODE-like EOM in dependent coordinates or independent

coordinates, such as Maggi’s formulation [17] and the penalty formulation [21].

Maggi’s formulation, which can be also called state-space formulation based on the

projection Matrix R, is one of the well-known formulations in independent coordinates. It

was described in [17]. For Maggi’s formulation, the dynamic equations are transformed

from dependent to independent coordinates at each time step by projecting the dependent

coordinates vector on the rows of a constant matrix B of size ((n − m) × n) where n is

the number of dependent coordinates and m is the number of constraints. This formulation

leads to a smaller size system of EOM. However, it’s not stable when the multibody system

goes through a singular or bifurcation position [22].

E. Bayo, J. Garca de Jalon, and M.A. Serna, 1988 [21], presented the penalty formula-

tion, which is one of the ODE-like formulations in dependent coordinates. Compared with

Maggi’s formulation or other formulations in independent coordinates, the penalty formu-

lation is more stable when the multibody system goes through a singular or bifurcation

position. In addtion, it doesn’t fail around kinematic singularity. Furthermore, the penalty
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formulation allows redundant constraints, significantly simplifying the modeling process.

However, the shortcoming of the penalty formulation is that it requires to choose the

value for its penalty factor. It is not always clear how to determine reasonable values for

this factor. In addition, although a large penalty factor ensures convergence to the con-

straints within a tight tolerance, it usually generates round-off errors and leads to numerical

conditioning problems. To improve the numerical conditioning of the penalty formulation,

an augmented Lagrangian formulation is described in [21]. All the formulations introduced

above are in dependent coordinates.

Flexible multibody dynamics established itself as a new field in early 1970s. The num-

ber of coordinates required for flexible multibody systems is much larger than the number

of coordinates required for rigid multibody systems. Shabana, 1997 [23], reviewed some of

the most famous formulations for flexible multibody dynamics, such as the floating frame

of reference formulation, the finite element incremental methods, large rotation vector for-

mulations, the finite segment method, the linear theory of elastodynamics, and one of the

most recent formulations, the absolute nodal coordinate formulation (ANCF). Since this

study focuses only on the sensitivity analysis and optimization of rigid body dynamics, these

methods are not going to be introduced in detail. For more details about these methods,

the reader is referred to [24–37].

1.3 Optimization of multibody systems by using sen-

sitivity analysis

The design optimization of a mechanical system usually concerns a set of design parame-

ters ρ ∈ Rp. These parameters are related to the geometry, materials, or other characteristics

that need to be specified by the engineer. The optimization theory can considerably help

the engineer to make such decisions.
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The objective of the optimization is to find a design that makes the behavior of the

system optimal. The behavior of the system is represented mathematically by a cost or

objective function ψ = ψ (ρ), which is minimized by the optimal value of the parameters.

In cases where the optimization is based on the dynamical behavior of the system under

given inputs and initial conditions, the objective function often depends directly on the states

of the system in the form ψ = ψ (y). The system states depend on the parameters y = y (ρ)

through the dynamics of the system. Thus, the objective function often depends indirectly

on the parameters in the form ψ = ψ (y (ρ) ,ρ).

It is also quite usual that the vector of design variables cannot have any value and it is

subjected to some design constraints. The design constraints should be equality or inequality

relations, e.g., Ψ (ρ) = 0.

Many advanced numerical optimization methods require the gradient of the objective

function with respect to the parameters. In this study, with the outputs of the sensitivity

analysis, a gradient-based optimization package (L-BFGS-B) is used to perform the dy-

namical optimization. More details about how to perform this sensitivity analysis will be

discussed in section 3.

1.3.1 Sensitivity analysis

State of the art

Sensitivity analysis is defined as analyzing and quantifying the effects of the system

parameters on the outputs. It is the basis of gradient-based optimization, and usually,

performed before the optimization procedures or in parallel.

For a large and complex multibody system, there is a large number of system parameters.

To perform optimization with respect to all the parameters is extremely difficult. For this

reason, the first objective of sensitivity analysis is to find those parameters that are most
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relevant to the design objective such that the other unimportant parameters don’t have to be

considered. By doing this, the problem can be simplified and the optimization with respect

to these important parameters becomes easier and more efficient. The second objective is

to obtain the gradient of the objective function with respect to the system parameters. The

gradient can be used by different optimization packages to perform optimization.

Numerical sensitivities, when needed, are often calculated by means of finite differences.

However, most of the time, the objective function depends directly on the states of the

system in the form ψ = ψ (y). The system states depend on the parameters y = y (ρ)

through the dynamics of the system. Because of that, in order to obtain the numerical

sensitivities, the EOM has to be solved many times. Thus, to calculate numerical sensitivities

is computationally expensive. Moreover, in many cases ,the results suffer from low accuracy

due to round-off error generated by the computer. For more details about the drawbacks

of numerical sensitivities, the reader is referred to [38], which introduces the numerical

sensitivity analysis of DAE formulations and the problems of numerical sensitivities.

Due to the shortcomings of numerical sensitivities, analytical approaches to perform

sensitivity analysis becomes essential. As shown in section 1.1, there are two well-known

sensitivity approaches: the direct differentiation method and the adjoint variable method.

Haug and Arora, 1978, first applied the adjoint variable method to perform optimization

of multibody systems [7]. Later on, the sensitivity analysis of kinematic and dynamic me-

chanical systems was presented by Haug, Sohoni, Wehage, and Mani, in 1982 [39] and 1984

[8] respectively. The direct differentiation method was presented in the same year by Kr-

ishnaswami and Bhatti [9]. These two sensitivity approaches based on different multibody

formulations have already been developed in the last 30 years. The direct differentiation

method using index-3 and index-1 DAE formulations were developed by Chang in 1985 [40]

and Haug in 1987 [41] respectively. The adjoint variable methods using index-3 and index-1

DAE formulations were developed by Haug in 1981 [42], Haug in 1987 [41], and Bestle in 1992

[43]. The direct differentiation method using formulations based on velocity transformations

was developed by Ashrafiuon and Mani in 1990[44]. Liu, 1996, applied the adjoint variable
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method to constrained flexible multi-body systems [45]. The direct differentiation method

using the penalty and the augmented Lagrangian formulations was developed by Pagalday in

1997 [46]. Dias and Pereira, 1997, applied the direct differentiation method to rigid-flexible

multibody systems [47]. Wang, Haug, and Pan employed the direct differentiation method

and implicit Runge-Kutta numerical integration algorithm based on generalized coordinate

partitioning to solve the DAE and to perform sensitivity analysis for rigid multibody sys-

tem in 2005 [48]. Schaffer, 2005, overcame some drawbacks of the adjoint variable method

by combining the advantages of the adjoint variable method and the direct differentiation

method [49]. Ding, Pan, and Chen applied the adjoint variable method to the second-order

sensitivity analysis of DAE formulations in 2007 [50]. Sonneville and Brüls developed the di-

rect differentiation method and the adjoint variable method based on a Lie group formulation

in 2013 [51]. For more sensitivity approaches, the reader is referred to [52–78].

Contributions

Although there are so many sensitivity approaches developed in the past 30 years, they

all have some drawbacks that prevent them from easily computing sensitivities for large

and complex multibody systems with respect to a large number of design parameters. For

instance, the direct differentiation method works well when the number of parameters is

small, but it becomes computationally expensive when the number of parameters is large.

In contrast, the adjoint variable method works well when the number of parameters is large,

but it doesn’t work well when the number of adjoint variables becomes large. On the other

hand, the direct differentiation methods and the adjoint sensitivity methods using index-3

and index-1 DAE formulations are not practical due to the numerical difficulties associated

to the underlying formulations.

Thus, the most important task of this study is to overcome those drawbacks and create

new algorithms and approaches in order to efficiently perform sensitivity analysis for large

and complex systems with respect to a large number of parameters.
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Unlike the direct differentiation method, the adjoint variable method works well when

the number of parameters is large. On the other hand, solving ordinary differential equations

(ODE) is computationally easier than solving DAE. Due to these reasons, the adjoint variable

methods using ODE-like formulations become popular.

In this study, we developed a direct differentiation method and an adjoint variable

method based on two ODE formulations: Maggi’s formulation and the penalty formulation.

More specifically, the direct differentiation method is developed with Maggi’s formulation,

the adjoint variable method is developed with explicit and implicit first order Maggi’s formu-

lations, second order Maggi’s formulation, and first and second order penalty formulations.

These sensitivity approaches are tested and validated by applying them to calculate the

sensitivities for a five-bar mechanism and comparing the results with the results generated

from other analytical and numerical approaches.

The objective of this study is not only to develop new sensitivity approaches, but also

to develop a new approach for large and complex multibody systems. As mentioned before,

the adjoint variable methods using ODE-like formulations have several advantages and the

adjoint variable methods based on the penalty formulation and Maggi’s formulation are

developed in this study. Therefore, all the aspects of these two approaches are compared

in this study. Finally, among these new sensitivity approaches developed in this study, the

adjoint variable method based on the penalty formulation is demonstrated to be able to

perform sensitivity analysis for complex multibody systems by applying this approach to a

14-DOF full vehicle.

1.3.2 Dynamic response optimization

State of the art

With the outputs of the sensitivity analysis, many gradient-based optimization packages

can be used to perform the dynamic response optimization, most of them are described in
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[79]. Dynamic response optimization is defined as the optimization of the dynamic response

of multibody systems, which is still an open topic in the dynamics community. More specif-

ically, it means how are the dynamic outputs such as displacement, velocity, acceleration,

angle, and frequency, affected by the system parameters, such as geometry, trajectory, in-

ertia parameters, stiffness, and damping coefficient. For a large system, it could be a very

complicated problem if a large number of parameters are optimized.

An extensive literature can be found in the area of dynamical optimization. Here only

some representative works will be reviewed. One of the initial pieces of work is presented by

Besselink and Van Asperen in 1994 [80]. In this paper, they made a point of the importance

of sensitivity analysis on the numerical optimization. They optimized the comfort response

of a tractor vehicle by using numerical sensitivities. Pagalday and Avello, 1997 [46], used the

direct differentiation method based on the penalty formulation to perform sensitivity analysis

and optimization. Eberhard, Schiehlen and Bestle, 1999 [81], firstly employed stochastic

methods instead of gradient-based methods to search for a global minimum. Andersson

and Eriksson, 2004 [55], used Adams to perform optimization of vehicle ride and vehicle

handling response of a intercity bus. Gonalves and Ambrósio, 2005 [82], optimized the

handling response of a sports car with respect to suspension parameters. In their paper, the

flexible chassis was studied to a large extent. In Alfonso’s PhD thesis, 2013 [2], optimization

of ride response and handling response of a bus were performed. In his thesis, automatic

differentiation technology is applied to compute all the derivatives for sensitivity analysis.

For more details about dynamic response optimization, the reader is referred to [83–98].

Contributions

One of the purposes of this study is to perform vehicle ride optimization and vehicle

handling optimization. There are several ways to improve the handling response and ride

comfort of vehicles. For example, the active suspension systems are implemented in some

vehicles in order to control the vehicle roll, pitch and bounce motion during different ma-
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neuvers. On the other hand, for the passive suspension systems, the suspension parameters

are adjusted before vehicles have been manufactured, which does not allow big changes. No

matter what kind of suspension system is chosen, it’s good to adjust the suspension parame-

ters as much as possible during the design stage. Therefore, the optimization of the dynamic

response with respect to suspension parameters becomes very important in the design stage.

In addition, for the active suspension system, several methods have been developed to change

the dynamic response by changing the suspension parameters, such as [99] and [100]. How to

adjust the parameters during different maneuvers? Which parameter has the greatest impact

to the dynamic response? How to lower the cost of adjusting the parameters? To answer

these questions, optimization with respect to suspension parameters should be performed.

This study focuses mainly on the vehicle handling optimization and vehicle ride opti-

mization of a Bombardier Iltis vehicle model [1] with respect to six suspension parameters,

demonstrating the capability of the adjoint variable method using the penalty formulation

to perform sensitivity analysis for large and complex multibody systems with respect to mul-

tiple design parameters. Double-lane change maneuver, four-post test maneuver, and speed

bump test are employed as standard maneuvers for the virtual experiments.

1.4 Multibody dynamics software development

Contributions

There are many commercial packages that can model multibody systems, such as MSC

ADAMS, SIMPACK, SimMechanics, LMS VirtualLab Motion, and RecurDyn. One of the

drawbacks of these commercial packages is that they don’t release the source code to the

users. Moreover, commercial multibody packages focus primarily on kinematics and dy-

namics capabilities, their sensitivity analysis and optimization capabilities are not efficient.

There are also some packages developed in academia, but these packages focus on specific
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applications and algorithms.

This study developed a modular multibody package MBSVT (Multibody Systems at

Virginia Tech) as a software library with forward kinematics and dynamics, sensitivity anal-

ysis, and optimization capabilities. MBSVT is a package for education and research, which

allows access to the source code for customization. In MBSVT, ewton’s method, explicit and

implicit Runge-Kutta method are used to perform kinematic analysis and dynamic analysis,

respectively. Moreover, the adjoint variable method based on the penalty formulation is em-

ployed to calculate the sensitivities. Furthermore, with the outputs of sensitivity analysis,

MBSVT uses L-BFGS-B [101], a very popular optimization package, to perform gradient-

based optimization. Finally, several different contact and friction models, which can be

used to model point contact and surface contact, are developed and included in MBSVT.

These models include a static friction model, Ambrósio dry friction model [102], Kelvin-Voigt

viscous-elastic model [103], and a simplified tire model.

To show the functionality of the library, the application of MBSVT to a full vehicle and

a passive legged robot are discussed in section 5.2 and section 5.3 respectively.

Manual differentiation

Unlike kinematic analysis and dynamic analysis, the computation of sensitivities requires

the differentiation of cost function and the EOM, which generates many derivatives. Thus,

an efficient, accurate, and general-purpose tool is required to compute these derivatives. At

present, the use of symbolic mathematical codes is one of the methods to compute derivatives

generated from sensitivity analysis, such as Maple or Mathematica. This method requires

the whole codes to use symbolic computation, thus it’s not efficient. A better method is

to use symbolic codes to derive the expressions for these derivatives. However, sometimes

these symbolic codes generate highly complex expressions, complicating the problem. In the

last few decades automatic differentiation (AD) tools become popular for the sensitivities

computation of multibody systems [104–106]. Alfonso, 2013 [2], proposed automatic differ-
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entiation technology to calculate the derivatives for sensitivity analysis in vehicle dynamics

problems.

The other method to compute the derivatives is manual differentiation (MD), which is

employed in MBSVT. By using manual differentiation, the expressions of all the derivatives

are simplified to a very large extent, avoiding complicated expressions generated by symbolic

tools and making the computation become very efficient. Complex finite difference method

[107] is used to validate all the derivatives before implementing them in the software library,

which guarantees the computational accuracy. Both AD and MD are very good methods to

compute the derivatives for sensitivity analysis. The comparison of efficiency and accuracy

between AD and MD is still an open topic.
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Chapter 2

Multibody dynamics formulations

Forward dynamics of multibody systems is a crucial step that provides the basis of

sensitivity analysis and dynamical optimization carried out later. In this chapter, several

basic formulations are introduced, including DAE formulations with different index and ODE

formulations. Direct integration method is presented for DAE formulations.

2.1 Index-3 DAE formulation

The equations of motion of multibody system written in dependent coordinates consti-

tute an index-3 DAE formulation. Assume that the configuration of a multibody system is

given by a set of n coordinates q ∈ Rn, related by a set of m holonomic constraint equations

Φ (t,q,ρ) = 0 ∈ Rm (2.1)

where ρ ∈ Rp is a vector of parameters of the system. Some parameters may describe the

geometry of the system and therefore affect the constraints (2.1).

The constraint equations (2.1) allow to obtain several kinematic relations. Any virtual

displacements of the system coordinates δq∗, with the time held fixed, have to satisfy the

following equations:

Φq δq
∗ = 0 (2.2a)
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The velocities and accelerations of the system have to fulfill the following equations

Φ̇ = Φqq̇ + Φt = 0⇒ Φqq̇ = −Φt = b (2.2b)

Φ̈ = Φqq̈ + Φ̇qq̇ + Φ̇t = 0⇒ Φqq̈ = −Φ̇qq̇− Φ̇t = c (2.2c)

The equations of motion constitute an index-3 system of n+m DAE:

Mq̈ + ΦT
qλ = Q (2.3a)

Φ = 0 (2.3b)

where M = M (q,ρ) ∈ Rn×n is the mass matrix, Q = Q (t,q, q̇,ρ) ∈ Rn contains the

generalized forces and may also include the Coriolis and centrifugal effects (if the formulation

needs them), Φq ∈ Rm×n is the Jacobian matrix of the constraints (2.3b), and λ ∈ Rm are

the Lagrange multipliers associated with the constraints.

The direct numerical integration of the index-3 DAE EOM poses a number of numerical

difficulties, including ill-conditioning for small time steps and instability problems that make

the direct solution of the equations not recommendable in general.

The instability problems come from the fact that only the position level constraints are

considered in the formulation and this causes an unstable behavior when integrated with

the classical time-stepping schemes. The explanation for it is that the EOM only impose

the satisfaction of the constraints themselves, but no integrator can automatically guarantee

that the velocities and the accelerations will remain onto their respective manifolds of the

constraints derivatives since they are weak invariants of the EOM [108]. To avoid this

problem the authors recommend to combine the direct integration of the equations (2.3)

with the use of projection techniques like proposed in [109] or to reformulate the problem

as an augmented Lagrangian approach with projections like in [110], to solve the forward

dynamics.

The ill-conditioning problem was also addressed in the past by several authors and it
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will be presented in this section particularized for an integrator belonging to the Newmark

family. It will be illustrative since the sensitivity equations developed later in this study will

inherit the same issue. Let

f =

 Mq̈ + ΦT
qλ−Q

Φ

 (2.4)

be the residual of the EOM (2.3), meaning that equations (2.4) have to be equal to zero.

Using an implicit integrator (e.g., trapezoidal rule) to integrate the previous equations

as described in [109]

q̇n+1 =
2

h
qn+1 + ˆ̇qn ; ˆ̇qn = −

(
2

h
qn + q̇n

)
(2.5a)

q̈n+1 =
4

h2
qn+1 + ˆ̈qn ; ˆ̈qn = −

(
4

h2
qn +

4

h
q̇n + q̈n

)
(2.5b)

where n is the time step index and h the time step.

Replacing equations (2.5) in (2.4), a nonlinear system of algebraic equations in n+ 1 is

obtained that can be solved using following Newton’s method

[
∂f

∂y

](i)
∆y

(i+1)
n+1 = −f (i) (2.6a)

[
∂f

∂y

]
=

 4

h2
M +

2

h
C + Mqq̈ + ΦT

qqλ + K ΦT
q

Φq 0

 (2.6b)

where y =
[

q λ
]T

.

The solution of equations (2.6a) for small time steps poses severe issues: it was reported

in [111] that the propagation of errors in the solution of the Lagrange multipliers is of

order O (h−2) and the condition number of the tangent matrix (2.6b) is of order O (h−4) (ill

conditioned for small time steps). Several authors proposed the scaling of the equations to

alleviate these problems [111–113].

19



In [111] a specific scaling for equations (2.6a) with Newmark integrators is proposed,

which can be easily particularized for the particular case of the trapezoidal rule by scaling

the first n equations in the residual (2.4) and the Lagrange multipliers by a factor of h2/4,

leading to the following scaled equations and states

[
∂ f̄

∂ȳ

](i)
∆ȳ

(i+1)
n+1 = −f̄ (i) (2.7a)

f̄ =

 h2

4

(
Mq̈ + ΦT

qλ−Q
)

Φ

 (2.7b)

[
∂ f̄

∂ȳ

]
=

 M +
h

2
C +

h2

4

(
Mqq̈ + ΦT

qqλ + K
)

ΦT
q

Φq 0

 (2.7c)

where ȳ =
[

q λ̄
]T

are the scaled states and λ̄ =
(
h2/4

)
λ are the scaled Lagrange multipliers.

The suggested scaling leads both the propagation of errors in the solution of the Lagrange

multipliers and the condition number of the tangent matrix (2.6b) to order O
(
h0
)
.

2.2 Index-1 DAE formulation

The difficulties mentioned before to numerically solve equations (2.3) recommend reformulat-

ing the problem to formulations that are easier to solve. Index reduction is a common technique

[11]. Differentiating (2.3b) twice leads to the following index-1 DAE system:

Mq̈ + ΦT
qλ = Q (2.8a)

Φqq̈ = −Φ̇qq̇− Φ̇t = c (2.8b)

The direct numerical integration of the index-1 DAE equations follows the same steps as we

did in the previous section. Let

f =

 Mq̈ + ΦT
qλ−Q

Φqq̈− c

 (2.9)
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be the residual of the EOM (2.8), meaning that equations (2.9) have to be equal to zero. Replacing

equations (2.5) in (2.9), a nonlinear system of algebraic equations in n+ 1 is obtained that can be

solved using following Newton’s method

[
∂f

∂y

](i)
∆y

(i+1)
n+1 = −f (i) (2.10a)

[
∂f

∂y

]
=

 4

h2
M +

2

h
C + Mqq̈ + ΦT

qqλ + K ΦT
q

4
h2

Φq − 2
hcq̇ + Φqqq̈− cq 0

 (2.10b)

where y =
[

q λ
]T

.

Scaling the first n equations in the residual (2.9) and the Lagrange multipliers by a factor of

h2/4, the following scaled equations and states can be solved

[
∂ f̄

∂ȳ

](i)
∆ȳ

(i+1)
n+1 = −f̄ (i) (2.11a)

f̄ =

 h2

4

(
Mq̈ + ΦT

qλ−Q
)

c

 (2.11b)

[
∂ f̄

∂ȳ

]
=

 M +
h

2
C +

h2

4

(
Mqq̈ + ΦT

qqλ + K
)

ΦT
q

4
h2

Φq − 2
hcq̇ + Φqqq̈− cq 0

 (2.11c)

where ȳ =
[

q λ̄
]T

are the scaled states and λ̄ =
(
h2/4

)
λ are the scaled Lagrange multipliers.

2.3 Baumgarte stabilization method

A direct numerical solution of (2.8) suffers from drift-off [19], meaning that any small per-

turbation in the acceleration constraints leads to an error in the position constraints that grows

quadratically with time: Φ̈ = ε1 ⇒ Φ̇ = ε1t+ ε2 ⇒ Φ = ε1t
2/2 + ε2t+ ε3.

Baumgarte, 1972, presented a stabilization method [20] that replaces the differential constraint

21



equations (2.8b) by the following equations:

Φ̈ + 2αΦ̇ + β2Φ = 0 (2.12)

where α and β are positive constants. Assume the general solution of (2.12) is:

Φ = a1e
b1t + a2e

b2t (2.13)

where a1 and a2 are constant vectors that depend on the initial conditions, b1 and b2 are the

unknowns. Replace (2.13) in (2.12), we get the expressions of b1 and b2:

b1, b2 = −α±
√
α2 + β2 (2.14)

Since α and β are positive constants, the real part of b1 and b2 is negative, which makes Φ

converge to 0 as t grows up, stabilizing the general solutions.

After replacing (2.8b) with (2.12), the index-1 DAE system (2.8) are transformed into:

Mq̈ + ΦT
qλ = Q (2.15a)

Φqq̈ = c− 2αΦ̇− β2Φ (2.15b)

The direct numerical integration of this system is similar to what we did in the previous section.

2.4 The penalty formulation

In [21] the penalty formulation of multibody dynamics is introduced. The equations constitute

a system of ODE of dimension n:

Mq̈ + ΦT
qα
(
Φ̈ + 2ξωΦ̇ + ω2Φ

)
= Q (2.16)
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where α is the penalty matrix and ξ, ω are coefficients of the method. An equivalent formulation

is:

M̄q̈ = Q̄ (2.17a)

M̄ ≡
(
M + ΦT

qαΦq

)
(2.17b)

Q̄ ≡ Q−ΦT
qα
(
Φ̇qq̇ + Φ̇t + 2ξωΦ̇ + ω2Φ

)
(2.17c)

where the following kinematic identities hold

Φ̇ = Φqq̇ + Φt (2.18)

Φ̈ = Φqq̈ + Φ̇qq̇ + Φ̇t (2.19)

Comparing (2.16) and (2.3a) it can be seen that the penalty equations approximate the La-

grange multipliers with the following term

λ∗ = α
(
Φ̈ + 2ξωΦ̇ + ω2Φ

)
(2.20)

where the star means approximated or fictitious Lagrange multipliers, as opposed to the real ones

that arise in DAE formulations.

Assuming that α is a diagonal matrix with the penalty factors for each constraint on the

diagonal, each entry of λ∗ in (2.20) is the equation of a one-DOF oscillatory system. The coefficients

of the oscillatory system are usually selected as ω = 10 and ξ = 1, which corresponds to a critically

damped system.

The penalty equations (2.16) are equivalent to the original DAE for infinite penalty factors.

In floating point computing loss-of-significance errors appear in the first parenthesis of equation

(2.17a) for large penalties; thus, the selection of the penalty factors is a sensitive issue that the

analyst has to solve. In practice, this formulation does not satisfy exactly either constraint equation

(Φ = 0, Φ̇ = 0, or Φ̈ = 0) but it approximately satisfies the equation Φ̈ + 2ξωΦ̇ + ω2Φ = 0.
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2.5 Maggi’s formulation

All the formulations introduced above are in dependent coordinates. Maggi’s formulation [17],

which can be also called state-space formulation based on the projection Matrix R, is one of the well-

known formulation in independent coordinates. The starting point is the d’Alembert’s principle in

dependent coordinates

δq∗T
(
M (q,ρ) q̈−Q (q, q̇, t,ρ)

)
= 0 (2.21)

where δq∗ constitutes a set of n dependent virtual displacements, and the rest of the terms are

described in the nomenclature.

In addition to Eqn. (2.21), the actual positions, velocities, accelerations, and the virtual dis-

placements have to fulfill the constraint equations and their derivatives, i.e., the following kinematic

relations:

Φ (q, t,ρ) = 0 (2.22a)

Φqq̇ = −Φt = b (2.22b)

Φqq̈ = −Φ̇qq̇− Φ̇t = c (2.22c)

Φqδq
∗ = 0 (2.22d)

where the derivatives of the constraints vector are calculated as described in the nomenclature.

Note that the EOM (2.21) and the constraints (2.22) are dependent on some design parameters

ρ ∈ Rp (typically masses, lengths, or other parameters as selected by engineers).

Consider the matrices R ∈ Rn×d and S ∈ Rn×m. As it was indicated in the nomenclature,

n is the number of dependent coordinates, m is the number of constraints and d is the number

of DOF of the system. Without loss of generality, the constraints are assumed to be independent

and therefore n = m + d. The dependent velocities, accelerations, and virtual displacements can
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be expressed in terms of the independent DOF by means of these matrices, as

q̇ = Rż + Sb (2.23a)

q̈ = Rz̈ + Sc (2.23b)

δq∗ = Rδz∗ (2.23c)

Using (2.23) in (2.21), and taking into account that the virtual displacements δz∗ are indepen-

dent, one obtains (
RTMR

)
z̈ = RT (Q−MSc) (2.24)

or, in a more compact form

M̄ (z,ρ) z̈ = Q̄ (z, ż, t,ρ) (2.25a)

M̄ (z,ρ) = RTMR (2.25b)

Q̄ (z, ż, t,ρ) = RT (Q−MSc) (2.25c)

Equations (2.25) constitute a second-order state-space ODE. Note that the mass matrix and

generalized forces vector in (2.25) are dependent on the design parameter set ρ, and therefore

z = z (t,ρ), ż = ż (t,ρ), z̈ = z̈ (t,ρ).

The matrices R and S can be calculated in different ways. One possibility is to write the

following kinematic systems of equations derived from (2.22)

 Φq

B

 q̇ =

 b

ż

 (2.26a)

 Φq

B

 q̈ =

 c

z̈

 (2.26b)

 Φq

B

 δq∗ =

 0

δz∗

 (2.26c)

where B is a matrix composed of zeros and ones that imposes a set of additional constraints over

a subset of independent coordinates z, selected by the user as DOF from the entries of q. Thus,
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Eq. (2.23) are directly obtained from (2.26) by inverting and partitioning the leading matrix

[
S R

]
=

 Φq

B

−1 ⇒
 Φq

B

[ S R
]

=

 Im 0m×d

0d×m Id

 (2.27)

Here I stands for the identity matrix and 0 for a matrix with all of its elements equal to zero.

The matrices S and R are the first m and the last d columns of the inverse matrix, respectively.

Since the set of constraints is assumed to be independent Φq is a m× n matrix with rank m and

the full leading matrix is always invertible, provided that a valid set of d DOF are selected via B.

For selecting a proper set of DOF and for algebraic techniques to deal with redundant constraints,

the reader is referred to [114].

The explicit calculation of matrix S is rarely needed for the forward dynamics so, from the

computational point of view, the calculation of the inverse in (2.27) could be avoided for that case.

Nevertheless, it will be shown next that the matrix S plays an important role in the sensitivities

calculation.
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Chapter 3

Sensitivity analysis of multibody sys-

tems

In this chapter, we bring new contributions to the state-of-the-art in analytical approaches to

perform sensitivity analysis of multibody systems. A direct differentiation method and an adjoint

variable method are developed in the context of several different multibody dynamics formulations:

index-1 and index-3 DAE formulations, the penalty formulation and Maggi’s formulation. Direct

integration method is incorporated into the direct differentiation methods with index-1 and index-3

DAE formulations. The computed sensitivities are validated by finite difference methods. Finally

,the resulting sensitivities will be applied to perform dynamical optimization of different multibody

systems in the next chapter.

3.1 Direct differentiation method

In this section, the sensitivity equations for the EOM presented in chapter 2 are derived based

on the direct differentiation method.

Consider the case where the EOM dependent on the vector of parameters ρ ∈ Rp. The

following objective function is defined in terms of the parameters, on the states q, q̇, q̈ ∈ Rn, and

on the Lagrange multipliers λ ∈ Rm

ψ = w (qF , q̇F , q̈F ,ρF ,λF ) +

∫ tF

t0

g (q, q̇, q̈,λ,ρ) dt (3.1)

where the subindex F means evaluation at the final time tF . The sensitivity analysis techniques
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discussed herein will evaluate the gradient of the objective function with respect to parameters:

∇ρψ = (dψ/dρ)T (3.2)

3.1.1 Index-3 DAE formulation

The direct differentiation method for the sensitivity analysis using the index-3 formulation in

chapter 2 was developed in [41] for objective functions dependent on q, q̇,ρ,λ and variable time

limits tF . In this section, the results are revisited also for objective functions depending on q̈ but

fixed end time tF .

Differentiating (3.1)

∇ρψ
T = (wqqρ + wq̇q̇ρ + wq̈q̈ρ + wλλρ + wρ)F +

∫ tF

t0

(gqqρ + gq̇q̇ρ + gq̈q̈ρ + gλλρ + gρ) dt

(3.3)

In equation (3.3) the derivatives of functions w and g are known, since the objective function

has a known expression. The derivatives qρ, q̇ρ, q̈ρ and λρ are the sensitivities of the solution of

the dynamical system. These can be obtained by differentiating (2.3) with respect to each one of

the parameters:

dM

dρk
q̈ + M

∂q̈

∂ρk
+

dΦT
q

dρk
λ + ΦT

q

∂λ

∂ρk
=

dQ

dρk
(3.4)

dΦ

dρk
= 0, k = 1, . . . ,m (3.5)

Expanding the total derivatives and grouping them together in matrix notation, leads to the

following set of p DAE, each one of them is called a tangent linear model (TLM):

Mq̈ρ + Cq̇ρ +
(
Mqq̈ + ΦT

qqλ + K
)
qρ + ΦT

qλρ = Qρ −Mρq̈−ΦT
qρλ (3.6a)

Φqqρ = −Φρ (3.6b)

where K = −Qq, C = −Qq̇, and the following terms are tensor-vector products: Mqq̈ ≡Mq ⊗ q̈,

ΦT
qqλ ≡ ΦT

qq ⊗ λ, Mρq̈ ≡Mρ ⊗ q̈, ΦT
qρλ ≡ ΦT

qρ ⊗ λ.
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The TLM (3.6) needs for the following 2np initial conditions

qρ (t0) = qρ0 (3.7a)

q̇ρ (t0) = q̇ρ0 (3.7b)

The initial conditions (3.7) are not independent, since they have to satisfy the following con-

straint equations

dΦ (t0)

dρ
= 0 → [Φqqρ]0 = −Φρ0 (3.8a)

dΦ̇ (t0)

dρ
= 0 → [Φqq̇ρ]0 = − [(Φqqq̇ + Φtq) qρ + Φqρq̇ + Φtρ]0 (3.8b)

where the sub-index 0 means evaluation at the initial time t0, as indicated in the nomenclature.

Consequently, n − rank (Φq) independent sensitivities can be chosen from (3.8a) and n −

rank (Φq) independent “velocity” sensitivities from (3.8b). That means that the impact of the

parameters on the initial configuration of the system, by means of a subset of DOF, can be decided

as an input to the problem.

The TLM DAE in equations (3.6) can be directly integrated in the same way that the EOM

in section 2.1. The trapezoidal rule equations for the sensitivities

q̇n+1
ρ =

2

h
qn+1
ρ + ˆ̇q

n
ρ ; ˆ̇q

n
ρ = −

(
2

h
qnρ + q̇nρ

)
(3.9a)

q̈n+1
ρ =

4

h2
qn+1
ρ + ˆ̈q

n
ρ ; ˆ̈q

n
ρ = −

(
4

h2
qnρ +

4

h
q̇nρ + q̈nρ

)
(3.9b)

where the superindex n means time step. Replacing the integrator equations in (3.6) and solving

for qn+1
ρ and λn+1

 4

h2
M +

2

h
C + Mqq̈ + ΦT

qqλ + K ΦT
q

Φq 0

 qn+1
ρ

λn+1
ρ

 =

 Qρ −Mρq̈−ΦT
qρλ−Mˆ̈q

n
ρ −Cˆ̇q

n
ρ

−Φρ


(3.10)

Observe that the leading matrix in equation (3.10) is identical to the tangent matrix (2.6b)
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and therefore exactly the same scaling applies here M +
h

2
C +

h2

4

(
Mqq̈ + ΦT

qqλ + K
)

ΦT
q

Φq 0


 qn+1

ρ

λ̄n+1
ρ

 =

 h2

4

(
Qρ −Mρq̈−ΦT

qρλ−Mˆ̈q
n
ρ −Cˆ̇q

n
ρ

)
−Φρ

 (3.11)

where λ̄ρ =
(
h2/4

)
λρ are the Lagrange multipliers scaled sensitivities.

Observe that the systems (3.11) are cheap to solve, since they don’t need to be iterated and

the previous factorization of the leading matrix, from the dynamics, can be employed to solve it.

3.1.2 Index-1 DAE formulation

The direct differentiation method is now applied to the index-1 formulation discussed in chapter

2. The gradient of the objective function is given again by (3.3) and the derivatives qρ, q̇ρ, q̈ρ

and λρ are the sensitivities of the solution of the dynamical equations (2.8). These sensitivities are

obtained differentiating (2.8) with respect to each one of the parameters as follows:

dM

dρk
q̈ + M

∂q̈

∂ρk
+

dΦT
q

dρk
λ + ΦT

q

∂λ

∂ρk
=

dQ

dρk
(3.12a)

dΦ̈

dρk
= 0, k = 1, . . . , p (3.12b)

Expanding the total derivatives and grouping them together in matrix notation, leads to the

following TLM DAE system:

Mq̈ρ + Cq̇ρ +
(
Mqq̈ + ΦT

qqλ + K
)
qρ + ΦT

qλρ = Qρ −Mρq̈−ΦT
qρλ (3.13a)

Φqq̈ρ − cq̇q̇ρ + (Φqqq̈− cq) qρ = cρ −Φqρq̈ (3.13b)
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where

cq = −
(
Φ̇q

)
q

q̇−
(
Φ̇t

)
q

(3.13c)

cq̇ = −
(
Φ̇q

)
q̇

q̇− Φ̇q −
(
Φ̇t

)
q̇

= −Φqqq̇− Φ̇q −Φtq (3.13d)

cρ = −
(
Φ̇q

)
ρ
q̇−

(
Φ̇t

)
ρ

(3.13e)

The identities
(
Φ̇q

)
q̇

= Φqq and
(
Φ̇t

)
q̇

= Φtq were used, and the tensor-vector product rules,

with the operator ⊗, were applied to the terms involving Φqq, Φqρ,
(
Φ̇q

)
q

and
(
Φ̇q

)
ρ
.

The approach presented for the index-3 TLM can be employed here to obtain the initial conditions

of the index-1 TLM.

The tangent linear model DAE in equations (3.13) can be directly integrated in the same way

that the EOM in section 3.1.1. Replacing (3.9) in (3.13) and solving for qn+1
ρ and λn+1

 4

h2
M +

2

h
C + Mqq̈ + ΦT

qqλ + K ΦT
q

4
h2

Φq − 2
hcq̇ + Φqqq̈− cq 0

 qn+1
ρ

λn+1
ρ

 =

 Qρ −Mρq̈−ΦT
qρλ−Mˆ̈q

n
ρ −Cˆ̇q

n
ρ

cρ −Φqρq̈−Φq
ˆ̈q
n
ρ − cq̇

ˆ̇q
n
ρ


(3.14)

Scaling applies here M +
h

2
C +

h2

4

(
Mqq̈ + ΦT

qqλ + K
)

ΦT
q

4
h2

Φq − 2
hcq̇ + Φqqq̈− cq 0


 qn+1

ρ

λ̄n+1
ρ

 =

 h2

4

(
Qρ −Mρq̈−ΦT

qρλ−Mˆ̈q
n
ρ −Cˆ̇q

n
ρ

)
cρ −Φqρq̈−Φq

ˆ̈q
n
ρ − cq̇

ˆ̇q
n
ρ

 (3.15)

3.1.3 The penalty formulation

The direct differentiation method for the sensitivity analysis using the penalty formulation was

initially developed in [46, 115]. We seek to obtain the sensitivities of the objective function

ψ = w (qF , q̇F , q̈F ,ρF ,λ
∗
F ) +

∫ tF

t0

g (q, q̇, q̈,ρ,λ∗) dt (3.16)
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The Lagrange multipliers λ in (3.1) are replaced by the approximate Lagrange multipliers λ∗

in (3.16). These variables don’t show up in the penalty equations of motion (2.16) and they have

to be approximated by (2.20). The initial and final times are considered here independent of the

parameters, but more general objective functions are possible.

The gradient of the objective function (3.16) can be obtained by the following expressions

∇ρψ
T =

dψ

dρ
=

[
wqqρ + wq̇q̇ρ + wq̈q̈ρ + wρ + wλ∗α

(
dΦ̈

dρ
+ 2ξω

dΦ̇

dρ
+ ω2dΦ

dρ

)]
F

+

∫ tF

t0

[
gqqρ + gq̇q̇ρ + gq̈q̈ρ + gρ + gλ∗α

(
dΦ̈

dρ
+ 2ξω

dΦ̇

dρ
+ ω2dΦ

dρ

)]
dt (3.17a)

dΦ̈

dρ
= Φqq̈ρ +

(
Φqqq̇ + Φ̇q + Φtq

)
q̇ρ +

(
Φqqq̈ +

(
Φ̇q

)
q

q̇ +
(
Φ̇t

)
q

)
qρ +

Φqρq̈ +
(
Φ̇q

)
ρ

q̇ +
(
Φ̇t

)
ρ

(3.17b)

dΦ̇

dρ
= Φqq̇ρ + (Φqqq̇ + Φtq) qρ + Φqρq̇ + Φtρ (3.17c)

dΦ

dρ
= Φqqρ + Φρ (3.17d)

where the identities
(
Φ̇q

)
q̇

= Φqq and
(
Φ̇t

)
q̇

= Φtq were used, and the tensor-vector product

rules mentioned in the nomenclature, with the operator ⊗, were applied to the terms involving

Φqq, Φqρ,
(
Φ̇q

)
q

and
(
Φ̇q

)
ρ
.

In equations (3.17) the derivatives of functions w and g are known, since the objective function

has a known expression. The derivatives qρ, q̇ρ and q̈ρ are the sensitivities of the solution of the

dynamical system, and are obtained by differentiating equations (2.16) with respect to each one of

the parameters :
dM̄

dρk
q̈ + M̄

∂q̈

∂ρk
=

dQ̄

dρk
, k = 1, . . . , p (3.18)

Expanding the total derivatives and grouping them together in matrix notation leads to the
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following TLM ODE system:

M̄q̈ρ + C̄q̇ρ +
(
K̄ + M̄qq̈

)
qρ = Q̄ρ − M̄ρq̈ (3.19a)

qρ (t0) = qρ0 (3.19b)

q̇ρ (t0) = q̇ρ0 (3.19c)

Observe that each TLM (3.19) is a system of only n equations, compared to the n+m equations

of the index-3 and index-1 tangent linear DAE in sections 3.1.1 and 3.1.2 respectively. Equations

(3.19b) and (3.19c) are the initial conditions for the tangent linear ODE and can be obtained by

an approach similar to the one in Section 3.1.1. The following terms appear in (3.19a):

K̄ = −∂Q̄

∂q
= K + ΦT

qqα
(
Φ̇qq̇ + Φ̇t + 2ξωΦ̇ + ω2Φ

)
+

ΦT
qα

((
Φ̇qq̇

)
q

+
(
Φ̇t

)
q

+ 2ξω (Φqqq̇ + Φtq) + ω2Φq

)
(3.20a)

C̄ = −∂Q̄

∂q̇
= C + ΦT

qα
(
Φqqq̇ + Φ̇q + Φtq + 2ξωΦq

)
(3.20b)

Q̄ρ =
∂Q̄

∂ρ
= Qρ −ΦT

qρα
(
Φ̇qq̇ + Φ̇t + 2ξωΦ̇ + ω2Φ

)
−

ΦT
qα

((
Φ̇qq̇

)
ρ

+ Φ̇tρ + 2ξωΦ̇ρ + ω2Φρ

)
(3.20c)

M̄qq̈ = Mqq̈ + ΦT
qq (αΦqq̈) + ΦT

qα (Φqqq̈) (3.20d)

M̄ρq̈ = Mρq̈ + ΦT
qρ (αΦqq̈) + ΦT

qα (Φqρq̈) (3.20e)

We have K = −Qq in equation (3.20a) and C = −Qq̇ in (3.20b). In equations (3.20d) and

(3.20e) the following tensor-vector products are calculated: Mqq̈ = Mq ⊗ q̈ and Mρq̈ = Mρ ⊗ q̈.

3.1.4 Maggi’s formulation

The direct differentiation method of this section is useful when the number of parameters p is

small. If the number of parameters is large, this approach can become computationally expensive.

One seeks to obtain the sensitivity of a cost function defined in terms of the states and the
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design parameters of the system

ψ =

∫ tF

t0

g (q, q̇,ρ) dt (3.21)

The proposed expressions can be extended to include more general cost functions. Note that

the cost function (3.21) is supposed to depend explicitly on the full set of states q and their

derivatives, instead of depending on the independent ones z and their derivatives.

The gradient of the cost function (3.21) is:

∇ρψ
T =

dψ

dρ
=

∫ tF

t0

((
∂g

∂q

∂q

∂z
+
∂g

∂q̇

∂q̇

∂z

)
∂z

∂ρ
+
∂g

∂q̇

∂q̇

∂ż

∂ż

∂ρ
+
∂g

∂ρ

)
dt (3.22)

The following equation is derived from (2.26a) and (2.27)

 Φq

B

 ∂q̇

∂q
+

 Φqq

0

 q̇ =

 bq

0

⇒
∂q̇

∂q
=

 Φq

B

−1  −Φtq −Φqqq̇

0

⇒
∂q̇

∂q
= −S (Φqqq̇ + Φtq) (3.23)

From Eqns. (2.23a), (2.23c), and (3.23) one obtains:

∂q

∂z
=
∂q̇

∂ż
= R (3.24a)

∂q̇

∂z
=
∂q̇

∂q

∂q

∂z
= −S (Φqqq̇ + Φtq) R = −SΦ̇qR (3.24b)

Using (3.24) the gradient (3.22) becomes:

∇ρψ
T =

∫ tF

t0

((
gq − gq̇SΦ̇q

)
Rzρ + gq̇Rżρ + gρ

)
dt (3.25)

In Eq. (3.25) the derivatives of the function g are known, since the objective function has

a known expression, and the derivatives zρ and żρ are the sensitivities of the solution of the

dynamical equations (2.25). They are obtained by differentiating (2.25) with respect to each one
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of the parameters, as follows:

∂M̄

∂ρi
z̈ + M̄zz̈

∂z

∂ρi
+ M̄

∂z̈

∂ρi
=
∂Q̄

∂z

∂z

∂ρi
+
∂Q̄

∂ż

∂ż

∂ρi
+
∂Q̄

∂ρi
(3.26)

where the term M̄zz̈ ≡ M̄z ⊗ z̈ is a tensor-vector product, described in the nomenclature, and is

calculated later in this section.

Grouping all the derivatives with respect to parameters together in (3.26) leads to the following

TLM ODE system:

M̄z̈ρ + C̄żρ +
(
K̄ + M̄zz̈

)
zρ = Q̄ρ − M̄ρz̈ (3.27a)

zρ (t0) = zρ0 (3.27b)

żρ (t0) = żρ0 (3.27c)

where zρ is the sensitivity matrix of size d × p. The matricial TLM (3.27) can be interpreted as

a set of p classical ODE systems of size d, one per parameter. Since the initial conditions (3.27b)

and (3.27c) are the initial sensitivities of the DOF of the system, their values are assigned based

on their physical interpretation.

In Eq. (3.27a), K̄, C̄ and Q̄ρ are derivatives of the projected vector of generalized forces Q̄,

given by

K̄ = −∂Q̄

∂z
= −

(
∂Q̄

∂q

∂q

∂z
+
∂Q̄

∂q̇

∂q̇

∂z

)
= −

(
Q̄q − Q̄q̇SΦ̇q

)
R (3.28a)

C̄ = −∂Q̄

∂ż
= −∂Q̄

∂q̇

∂q̇

∂ż
= −Q̄q̇R (3.28b)

Q̄ρ = −∂Q̄

∂ρ
= RT (Qρ −MρSc) (3.28c)

where equation (3.24b) was used inside (3.28a).

The terms M̄zz̈ and M̄ρz̈ in (3.27a) are derivatives of the projected mass matrix M̄ times the
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vector of accelerations, and are obtained by

M̄zz̈ = RT
z MRz̈ + RTMzRz̈ + RTMRzz̈ (3.29a)

M̄ρz̈ = RTMρRz̈ (3.29b)

In Eq. (3.28c) and Eq. (3.29b) the following products must be calculated with the tensorial

operator ⊗: MρSc = Mρ⊗Sc and MρRz̈ = Mρ⊗Rz̈. The derivatives Q̄q and Q̄q̇ of Eq. (3.28a)

and Eq. (3.28b) are calculated as follows:

Q̄q = RT
q (Q−MSc)−RT

(
K + MqSc + M

∂Sc

∂q

)
(3.30a)

Q̄q̇ = −RT (C + MScq̇) (3.30b)

where K = −Qq, C = −Qq̇ and the following products involve tensors: RT
q (Q−MSc) = RT

q ⊗

(Q−MSc) and MqSc = Mq⊗Sc. The following extra terms, derived from (2.27), are needed for

Eq. (3.30a) and Eq. (3.30b):

∂R

∂qj︸︷︷︸
n×d

=

 Φq

B

−1
 −∂Φq

∂qj
R

0

 = −S
∂Φq

∂qj
R (3.31)

RT
q︸︷︷︸

d×n×n

=−RT ⊗
[

ΦT
qq 0

]
⊗
[

ΦT
q BT

]−1
=−RT ⊗ΦT

qq ⊗ ST=−RTΦT
qqST (3.32)

∂Sc

∂q
= S (−ΦqqSc + cq) (3.33)

cq = −
(
Φ̇q

)
q

q̇−
(
Φ̇t

)
q

(3.34)

cq̇ = −
(
Φ̇q

)
q̇

q̇− Φ̇q −
(
Φ̇t

)
q̇

= −Φqqq̇− Φ̇q −Φtq (3.35)

In Eqns. (3.33), (3.34), and (3.35), the terms ΦqqSc ≡ Φqq⊗Sc,
(
Φ̇q

)
q

q̇ ≡
(
Φ̇q

)
q
⊗ q̇, and

Φqqq̇ ≡ Φqq ⊗ q̇ are tensor products and
(
Φ̇q

)
q
, Φqq are the tensor derivatives of Φ̇q and Φq

with respect to q respectively, obtained as explained in the nomenclature. Moreover, the following
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identities from (2.27) were used to obtain the derivatives (3.31), (3.32) and (3.33),

 Φq

B

R =

 0m×d

Id

 (3.36a)

RT
[

ΦT
q BT

]
=
[

0d×m Id

]
(3.36b) Φq

B

Sc =

 c

0d×1

 (3.36c)

Equation (3.29a) involves several tensor product terms: MzRz̈ ≡ Mz ⊗ Rz̈, RT
z MRz̈ ≡

RT
z ⊗MRz̈, and Rzz̈ ≡ Rz ⊗ z̈. Using the identity ∂qj/∂zi = Rji and Eq. (3.31), the components

of Rz and Mz are

∂R

∂zi
=

n∑
j=1

∂R

∂qj

∂qj
∂zi

= −S
n∑
j=1

(
∂Φq

∂qj
Rji

)
R (3.37)

∂M

∂zi
=

n∑
j=1

∂M

∂qj

∂qj
∂zi

=
n∑
j=1

∂M

∂qj
Rji (3.38)

3.2 Adjoint variable method

In this section, the sensitivity equations for the EOM presented in chapter 2 are derived based

on the adjoint variable method.

3.2.1 Index-3 DAE formulation

The adjoint variable method for the sensitivity analysis using the index-3 formulation in chapter

2 was developed in [41] for objective functions dependent on q, q̇,ρ,λ and variable time limits tF .

In this section, the results are revisited also for objective functions depending on q̈ but fixed end

time tF .

Considering the EOM (2.3) the gradient (3.2) can be indirectly obtained via the Lagrangian
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function

L (ρ) = w (qF , q̇F , q̈F ,ρF ,λF ) +

∫ tF

t0

g (q, q̇, q̈,λ,ρ) dt−∫ tF

t0

µT
(
Mq̈ + ΦT

qλ−Q
)

dt−
∫ tF

t0

µT
ΦΦdt (3.39)

and the following identity that holds along any solution of the EOM:

∇ρψ = ∇ρL (3.40)

Infinitesimal variations of L under infinitesimal variations δρ are as follows (note that the

computation of δµ and δλ is not needed):

δL = [wqδq + wq̇δq̇ + wq̈δq̈ + wλδλ + wρδρ]F

+

∫ tF

t0

(
gq − µT

(
Mqq̈ + ΦT

qqλ−Qq

)
− µT

ΦΦq

)
δqdt

+

∫ tF

t0

(
gq̇ + µTQq̇

)
δq̇dt +

∫ tF

t0

(
gq̈ − µTM

)
δq̈dt +

∫ tF

t0

(
gλ − µTΦT

q

)
δλdt

+

∫ tF

t0

(
gρ − µT

(
Mρq̈ + ΦT

qρλ−Qρ

)
− µT

ΦΦρ

)
δρdt (3.41)

Integrating by parts the integrals involving δq̇, δq̈:

δL = [wqδq + wq̇δq̇ + wq̈δq̈ + wλδλ + wρδρ]F

+

∫ tF

t0

(
gq − µT

(
Mqq̈ + ΦT

qqλ + K
)
− µT

ΦΦq

)
δqdt +

(
gq̇ − µTC

)
δq
∣∣tF
t0

−
∫ tF

t0

(
dgq̇

dt
− µ̇TC− µTĊ

)
δqdt +

(
gq̈ − µTM

)
δq̇
∣∣tF
t0
−
(

dgq̈

dt
− µ̇TM− µTṀ

)
δq

∣∣∣∣tF
t0

+

∫ tF

t0

(
d2gq̈

dt2
− µ̈TM− 2µ̇TṀ− µTM̈

)
δqdt +

∫ tF

t0

(
gλ − µTΦT

q

)
δλdt +∫ tF

t0

(
gρ − µT

(
Mρq̈ + ΦT

qρλ−Qρ

)
− µT

ΦΦρ

)
δρdt (3.42)
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When the following equations are satisfied all the integral terms that involve δq and δλ cancel:

gq − µT
(
Mqq̈ + ΦT

qqλ + K
)
− µT

ΦΦq −
dgq̇

dt
+ µ̇TC + µTĊ +

d2gq̈

dt2
− µ̈TM− 2µ̇TṀ−

µTM̈ = 0 (3.43a)

Φqµ = gTλ (3.43b)

The initial conditions can be obtained by canceling the additional terms at the final time

appearing in (3.42): δqF , δq̇F , δλF[
wq + gq̇ − µTC−

dgq̈

dt
+ µ̇TM + µTṀ

]
F

δqF +[
wq̇ + gq̈ − µTM

]
F
δq̇F + [wq̈δq̈]F + [wλδλ]F = 0 (3.44)

An additional initial condition is given by (3.43b) that holds at any time, in particular at

t = tF .

It can be shown that the resulting adjoint system is an index-3 DAE in µ and µΦ:

MTµ̈ +
(

2Ṁ−C
)T

µ̇ +
(
Mqq̈ + ΦT

qqλ + K + M̈− Ċ
)T

µ + ΦT
qµΦ =

gTq −
dgq̇

dt

T

+
d2gq̈

dt2

T

(3.45a)

Φqµ = gTλ (3.45b)

and has the following initial conditions

[
MTµ̇ +

(
Ṁ−C

)T
µ

]
F

=

[
dgq̈

dt

T

− gTq̇ − wT
q

]
F

(3.45c)[
MTµ

]
F

=
[
gTq̈ + wT

q̇

]
F

(3.45d)

[wq̈]F = 0 (3.45e)

[wλ|F = 0 (3.45f)

[Φqµ]F =
[
gTλ
]
F

(3.45g)

Equations (3.45e) and (3.45e) express incompatible conditions for the objective function, mean-
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ing that the objective function cannot depend on the acceleration or Lagrange multipliers in the

final time. Moreover, if gq̈, wq̇ or gλ are not equal to zero, equations (3.45d) and (3.45g) constitute

an incompatible system of equations in µ that can be solved, according to [41], adding the following

terms, evaluated at the final time, to the Lagrangian (3.39).

γTΦ (tF ,qF ,ρF ) (3.46)

ηTΦ̇ (tF ,qF , q̇F ,ρF ) (3.47)

where γ ∈ Rm and µ ∈ Rm are new adjoint variables that need to be determined and the constraint

equations are given in equations (2.1) and (2.22b).

The addition of condition (3.46) is convenient, since the constraint equations are imposed

by the index-3 formulation. Nevertheless, the addition of (3.47) can be problematic since they are

hidden constraints not explicitly imposed by the index-3 formulation unless, for example, projection

techniques are employed, as proposed in [109] and suggested in section 3.1.1.

The addition of equations (3.46) and (3.47) to the Lagrangian (3.39), contribute with the

following terms to the variation (3.41)

γT [Φqδq + Φρδρ]F (3.48)

ηT [(Φqqq̇ + Φtq) δq + Φqδq̇ + (Φqρq̇ + Φtρ) δρ]F (3.49)

The final adjoint is not affected by these additions and equations (3.45) are still valid, never-

theless the initial conditions for the adjoint at the final time become the following

[
MTµ̇ +

(
Ṁ−C

)T
µ + ΦT

qγ + (Φqqq̇ + Φtq)T η

]
F

=

[
dgq̈

dt

T

− gTq̇ − wT
q

]
F

(3.50a)[
MTµ + ΦT

qη
]
F

=
[
gTq̈ + wT

q̇

]
F

(3.50b)

[Φqµ]F =
[
gTλ
]
F

(3.50c)[
Φqµ̇ + Φ̇qµ

]
F

=

[
dgTλ
dt

]
F

(3.50d)

where equation (3.50d) is the derivative of (3.50c) and it was added to complete a full set of
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equations to determine the initial adjoint variables. The process was described by [41] and consist

of solving the two sets of equations formed with (3.50b), (3.50c) to obtain µF and ηF and (3.50a),

(3.50d) to obtain µ̇F and γF .

The gradient of the objective function is obtained with the remaining terms not canceled out

in the variational equation (3.42) and additional terms (3.48), (3.49):

∇ρψ
T =

[
wρ + γTΦρ + ηT (Φqρq̇ + Φtρ)

]
F

+

[(
dgq̈

dt
− gq̇ − µ̇TM− µT

(
Ṁ−C

))
qρ

]
0

+

−
[(
gq̈ − µTM

)
q̇ρ

]
0

+

∫ tF

t0

(
gρ − µT

(
Mρq̈ + ΦT

qρλ−Qρ

)
− µT

ΦΦρ

)
dt (3.51)

The gradient depends on the solution of the EOM and on the adjoint differential and algebraic

variables µ and µΦ. The adjoint variables µ and µΦ are the solution of the adjoint system. The

adjoint system derived from the index-3 EOM is an index-3 DAE.

This formulation of the sensitivity equations is not very convenient for the case of objective

functions depending on q̈ or λ due to the difficulty to obtain the derivatives of these terms, involving

higher order derivatives of the states or Lagrange multipliers, normally not calculated.

The adjoint index-3 DAE (3.45) can be directly integrated backward in time:

MTµ̈ + ATµ̇ + BTµ + ΦT
qµΦ = gTq −

dgq̇

dt

T

+
d2gq̈

dt2

T

(3.52a)

Φqµ = gTλ (3.52b)

The implicit trapezoidal rule equations for backward integration can be expressed as

µ̇n∗ = −2

h
µn∗ + ˆ̇µ

n+1
∗ ; ˆ̇µ

n+1
∗ =

2

h
µn+1
∗ − µ̇n+1

∗ (3.53a)

µ̈n∗ = − 4

h2
µn∗ + ˆ̈µ

n+1
∗ ; ˆ̈µ

n+1
∗ = − 4

h2
µn+1
∗ +

4

h
µ̇n+1
∗ − µ̈n+1

∗ (3.53b)

where the subindex ∗ means that the same equations hold for µ and µΦ.
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Replacing equations (3.53) in (3.52)

 4

h2
MT +

2

h
AT + BT ΦT

q

Φq 0

 µn

µnΦ

 =

 gTq − ġTq̇ + g̈Tq̈ −MTµ̈n+1 −ATµ̇n+1

0

 (3.54)

Observe that the system of equations (3.54) is very similar in its structure to (2.6a), except by

the fact that (3.54) is linear in µn, µnΦ and therefore it doesn’t need to be iterated. This similarity

suggests the same scaling proposed before, leading to the following scaled system MT +
h

2
AT +

h2

4
BT ΦT

q

Φq 0


 µn

µ̄nΦ

 =

 h2

4

(
gTq − ġTq̇ + g̈Tq̈ −MTµ̈n+1 −ATµ̇n+1

)
0

 (3.55)

where µ̄nΦ =
(
h2/4

)
µnΦ are the scaled adjoint variables associated to the constraint equations.

3.2.2 Index-1 DAE formulation

Approach 1

The adjoint variable method for the index-1 formulation was obtained in [43] for the EOM

considered as a first order system and objective functions with variable time limits tF but not

dependent either on λ or q̈F . In this section, the results are revisited also for objective functions

depending on q̈F and λ but fixed end time tF .

Considering the EOM (2.8), the gradient (3.2) can be obtained like in section 3.2.1

L (ρ) = w (q, q̇, q̈,λ,ρ)tF +

∫ tF

t0

g (q, q̇, q̈,λ,ρ) dt

−
∫ tF

t0

µT
(
Mq̈ + ΦT

qλ−Q
)

dt−
∫ tF

t0

µT
Φ (Φqq̈− c) dt (3.56)

Compute infinitesimal variations of L under infinitesimal variations δρ (computation of δµ
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and δλ not needed):

δL = [wqδq + wq̇δq̇ + wq̈δq̈ + wλδλ + wρδρ]tF

+

∫ tF

t0

(
gq − µT

(
Mqq̈ + ΦT

qqλ + K
)
− µT

Φ (Φqqq̈− cq)
)
δqdt +∫ tF

t0

(
gq̇ − µTC + µT

Φcq̇

)
δq̇dt +

∫ tF

t0

(
gq̈ − µTM− µT

ΦΦq

)
δq̈dt +

∫ tF

t0

(
gλ − µTΦT

q

)
δλdt +∫ tF

t0

(
gρ − µT

(
Mρq̈ + ΦT

qρλ−Qρ

)
− µT

Φ (Φqρq̈− cρ)
)
δρdt (3.57)

Integrating by parts the integrals involving δq̇, δq̈ leads to:

δL = [wqδq + wq̇δq̇ + wq̈δq̈ + wλδλ + wρδρ]tF +∫ tF

t0

(
gq − µT

(
Mqq̈ + ΦT

qqλ + K
)
− µT

Φ (Φqqq̈− cq)
)
δqdt +

(
gq̇ − µTC + µT

Φcq̇

)
δq
∣∣tF
t0
−
∫ tF

t0

(
dgq̇

dt
− µ̇TC− µTĊ + µ̇T

Φcq̇ + µT
Φ

dcq̇

dt

)
δqdt +

(
gq̈ − µTM− µT

ΦΦq

)
δq̇
∣∣tF
t0
−
(

dgq̈

dt
− µ̇TM− µTṀ− µ̇T

ΦΦq − µT
ΦΦ̇q

)
δq

∣∣∣∣tF
t0

+∫ tF

t0

(
d2gq̈

dt2
− µ̈TM− 2µ̇TṀ− µTM̈− µ̈T

ΦΦq − 2µ̇T
ΦΦ̇q − µT

ΦΦ̈q

)
δqdt +∫ tF

t0

(
gλ − µTΦT

q

)
δλdt +∫ tF

t0

(
gρ − µT

(
Mρq̈ + ΦT

qρλ−Qρ

)
− µT

Φ (Φqρq̈− cρ)
)
δρdt (3.58)

Canceling all the integral terms that involve δq and δλ, the following adjoint DAE is obtained

MTµ̈ +
(

2Ṁ−C
)T

µ̇ +
(
Mqq̈ + ΦT

qqλ + K− Ċ + M̈
)T

µ + ΦT
q µ̈Φ +

(
cq̇ + 2Φ̇q

)T
µ̇Φ

+

(
Φqqq̈ + Φ̈q − cq +

dcq̇

dt

)T

µΦ = gTq −
dgTq̇
dt

+
d2gTq̈
dt2

(3.59a)

Φqµ = gλ (3.59b)

The adjoint system (3.59) can be easily proved to be an index-1 DAE in µ and µΦ. The initial
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conditions for the adjoint DAE are:

[
MTµ̇ +

(
Ṁ−C

)T
µ + ΦT

q µ̇Φ +
(
Φ̇q + cq̇

)T
µΦ

]
F

=

[
−wT

q − gTq̇ +
dgTq̈
dt

]
F

(3.60a)

[
MTµ + ΦT

qµΦ

]
F

=
[
(wq̇ + gq̈)T

]
F

(3.60b)

[wq̈]F = 0 (3.60c)

[wλ]F = 0 (3.60d)

[Φqµ]F =
[
gTλ
]
F

(3.60e)[
Φqµ̇ + Φ̇qµ

]
F

=

[
dgTλ
dt

]
F

(3.60f)

Observe that two incompatibility conditions (3.60c) and (3.60d), arise for the objective func-

tionals whose final time term cannot depend on q̈ or λ. Moreover, the extra condition (3.60e) and

its derivative (3.60f) were taken from (3.59b) particularized for the final time to complete a full set

of equations, which allow to obtain the initial values of µ, µ̇, µΦ and µ̇Φ at the final time tF .

The following gradient of the objective function is obtained from the variational equation

(3.58):

∇ρψ =
[
wT
ρ

∣∣
F
−

[
∂q

∂ρ

T
(
gTq̇ −

dgTq̈
dt

+
(
Ṁ−C

)T
µ + MTµ̇ +

(
cq̇ + Φ̇q

)T
µΦ + ΦT

q µ̇Φ

)]
0

−
[
∂q̇

∂ρ

T (
gTq̈ −MTµ−ΦT

qµΦ

)]
0

+

∫ tF

t0

(
gTρ −

(
Mρq̈ + ΦT

qρλ−Qρ

)T
µ− (Φqρq̈− cρ)TµΦ

)
dt (3.61)

The gradient depends on the solution of the EOM and on the adjoint differential and algebraic

variables µ and µΦ that are the solution of the adjoint system.

Approach 2

Equations (3.59) and (3.61), are of theoretical interest, but of lower practical value because

they can involve higher order derivatives of the state variables, as pointed out in [116]. A more

convenient approach is to use equations (2.8) to express the variations δq̈ and δλ in terms of the
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variations of the states δq and δq̇. Taking the variation of (2.8)

 δq̈

δλ

 =

 M ΦT
q

Φq 0

−1 −K−Mqq̈−ΦT
qqλ

cq −Φqqq̈

 δq +

 −C

cq̇

 δq̇


+

 M ΦT
q

Φq 0

−1  Qρ −Mρq̈−ΦT
qρλ

cρ −Φqρq̈

 δρ (3.62)

leads to

δq̈ = q̈qδq + q̈q̇δq̇ + q̈ρδρ (3.63a)

δλ = λqδq + λq̇δq̇ + λρδρ (3.63b)

where

 q̈q

λq

 =

 M ΦT
q

Φq 0

−1  −K−Mqq̈−ΦT
qqλ

cq −Φqqq̈

 (3.64)

 q̈q̇

λq̇

 =

 M ΦT
q

Φq 0

−1  −C

cq̇

 (3.65)

 q̈ρ

λρ

 =

 M ΦT
q

Φq 0

−1  Qρ −Mρq̈−ΦT
qρλ

cρ −Φqρq̈

 (3.66)

Replacing equations (3.63a) and (3.63b) in (3.57) yields

δL = [(wq + wq̈q̈q + wλλq) δq + (wq̇ + wq̈q̈q̇ + wλλq̇) δq̇ + (wρ + wq̈q̈ρ + wλλρ) δρ]tF +∫ tF

t0

(
gq + gq̈q̈q + gλλq − µT

(
Mqq̈ + ΦT

qqλ + K
)
− µT

Φ (Φqqq̈− cq)
)
δqdt +∫ tF

t0

(
gq̇ + gq̈q̈q̇ + gλλq̇ − µTC + µT

Φcq̇

)
δq̇dt−

∫ tF

t0

(
µTM + µT

ΦΦq

)
δq̈dt−

∫ tF

t0

µTΦT
q δλdt +∫ tF

t0

(
gρ + gq̈q̈ρ + gλλρ − µT

(
Mρq̈ + ΦT

qρλ−Qρ

)
− µT

Φ (Φqρq̈− cρ)
)
δρdt (3.67)

Observe that only the variations δq̈ and δλ associated with the objective function terms w

and g were eliminated in (3.67). Integration by parts can be applied to the remaining δq̈ and δq̇
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terms

δL = [(wq + wq̈q̈q + wλλq) δq + (wq̇ + wq̈q̈q̇ + wλλq̇) δq̇ + (wρ + wq̈q̈ρ + wλλρ) δρ]tF∫ tF

t0

(
gq + gq̈q̈q + gλλq − µT

(
Mqq̈ + ΦT

qqλ + K
)
− µT

Φ (Φqqq̈− cq)
)
δqdt+

(
gq̇ + gq̈q̈q̇ + gλλq̇ − µTC + µT

Φcq̇

)
δq
∣∣tF
t0
−∫ tF

t0

(
d (gq̇ + gq̈q̈q̇ + gλλq̇)

dt
− µ̇TC− µTĊ + µ̇T

Φcq̇ + µT
Φ

dcq̇

dt

)
δqdt−

(
µTM + µT

ΦΦq

)
δq̇
∣∣tF
t0

+
(
µ̇TM + µTṀ + µ̇T

ΦΦq + µT
ΦΦ̇q

)
δq
∣∣∣tF
t0
−∫ tF

t0

(
µ̈TM + 2µ̇TṀ + µTM̈ + µ̈T

ΦΦq + 2µ̇T
ΦΦ̇q + µT

ΦΦ̈q

)
δqdt−∫ tF

t0

(
µTΦT

q

)
δλdt +

∫ tF

t0

(
gρ + gq̈q̈ρ + gλλρ − µT

(
Mρq̈ + ΦT

qρλ−Qρ

)
− µT

Φ (Φqρq̈− cρ)
)
δρdt

(3.68)

Canceling all the integral terms that involve δq and δλ leads to the following adjoint DAE

MTµ̈ +
(

2Ṁ−C
)T

µ̇ +
(
Mqq̈ + ΦT

qqλ + K− Ċ + M̈
)T

µ + ΦT
q µ̈Φ +

(
cq̇ + 2Φ̇q

)T
µ̇Φ

+

(
Φqqq̈ + Φ̈q − cq +

dcq̇

dt

)T

µΦ = (gq + gq̈q̈q + gλλq)T −
d (gq̇ + gq̈q̈q̇ + gλλq̇)T

dt
(3.69a)

Φqµ = 0 (3.69b)

Observe that the last term in equation (3.69a) can be difficult to obtain, because the temporal

derivatives of a functional that depends on the accelerations and Lagrange multipliers can involve

temporal derivatives of the accelerations and temporal derivatives of the Lagrange multipliers that

normally are not calculated by the integrator.
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The initial conditions for the adjoint are the following

[
MTµ̇ +

(
Ṁ−C

)T
µ + ΦT

q µ̇Φ +
(
Φ̇q + cq̇

)T
µΦ

]
F

=

−
[
(wq + wq̈q̈q + wλλq + gq̇ + gq̈q̈q̇ + gλλq̇)T

]
F

(3.70a)[
MTµ + ΦT

qµΦ

]
F

=
[
(wq̇ + wq̈q̈q̇ + wλλq̇)T

]
F

(3.70b)

[Φqµ]F = 0 (3.70c)[
Φqµ̇ + Φ̇qµ

]
F

= 0 (3.70d)

Finally, the gradient

∇ρψ =
[
(wρ + wq̈q̈ρ + wλλρ)T

]
F
−[

∂q

∂ρ

T(
(gq̇ + gq̈q̈q̇ + gλλq̇)T +

(
Ṁ−C

)T
µ + MTµ̇ +

(
cq̇ + Φ̇q

)T
µΦ + ΦT

q µ̇Φ

)]
0

+[
∂q̇

∂ρ

T (
MTµ + ΦT

qµΦ

)]
0

+∫ tF

t0

(
(gρ + gq̈q̈ρ + gλλρ)T −

(
Mρq̈ + ΦT

qρλ−Qρ

)T
µ− (Φqρq̈− cρ)TµΦ

)
dt (3.71)

3.2.3 The penalty formulation

The adjoint variable method seeks to obtain the sensitivity of a cost function, ψ, with respect

to the set of parameters ρ. For practical applications, very general cost functions depend not only

on positions and velocities, but also on accelerations and reaction forces:

ψ = w (qF , q̇F , q̈F ,ρ,λ
∗
F ) +

∫ tF

t0

g (q, q̇, q̈,ρ,λ∗) dt (3.72)
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Equations of motion written as a first-order ODE system

The system (2.17a) can be transformed into a first order system by simply defining a new set

of variables by the relation q̇ = v,

 I 0

0 M̄

 q̇

v̇

 =

 v

Q̄

 ⇔ M̂ (y,ρ) ẏ = Q̂ (t,y,ρ) (3.73)

In (3.73), the new state vector is y =
[

qT vT
]T

. Taking the inverse of the leading matrix,

the system (3.73) can be expressed as a first order explicit ODE

ẏ = M̂−1 (y,ρ) Q̂ (t,y,ρ) = f (t,y,ρ) (3.74)

Similarly, the objective function (3.72) can be expressed as a function of the first order states

ψ = w (yF , ẏF ,ρF ,λ
∗
F ) +

∫ tF

t0

g (y, ẏ,ρ,λ∗) dt (3.75)

Following [117], we consider the following Lagrangian, given by the cost function subject to

the EOM constraints

L (ρ) = ψ −
∫ tF

t0

µT (ẏ − f (t,y,ρ)) dt (3.76)

where µ is the vector of Lagrange multipliers or adjoint variables. Applying variational calculus

δL = δψ −
∫ tF

t0

δµT (ẏ − f (t,y,ρ)) dt−
∫ tF

t0

µT (δẏ − fyδy − fρδρ) dt (3.77)

The central term vanishes if the EOM are fulfilled at each time step.

The variation of the cost function is

δψ = (wyδy + wẏδẏ + wρδρ + wλ∗δλ∗)F +

∫ tF

t0

(gyδy + gẏδẏ + gρδρ + gλ∗δλ∗) dt (3.78)

From Eqn. (2.20)

δλ∗ = α
(
δΦ̈ + 2ξωδΦ̇ + ω2δΦ

)
(3.79a)
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where

δΦ̈ = Φqδq̈ +
(
Φqqq̇ + Φ̇q + Φtq

)
δq̇ +

(
Φqqq̈ +

(
Φ̇q

)
q

q̇ +
(
Φ̇t

)
q

)
δq

+

(
Φqρq̈ +

(
Φ̇q

)
ρ

q̇ +
(
Φ̇t

)
ρ

)
δρ (3.79b)

δΦ̇ = Φqδq̇ + (Φqqq̇ + Φtq) δq + (Φqρq̇ + Φtρ) δρ (3.79c)

δΦ = Φqδq + Φρδρ (3.79d)

Grouping together the terms associated to δq̈, δq̇, δq, δρ and taking into account that y =[
qT vT

]T
, Eqn. (3.79a) becomes

δλ∗ = λ∗ẏδẏ + λ∗yδy + λ∗ρδρ (3.80)

Identifying the common terms in (3.79a) and (3.80) and using the identity v = q̇ one obtains

λy =
[
λ∗q λ∗v

]
(3.81a)

λẏ =
[

0 λ∗v̇

]
(3.81b)

λ∗v̇ = αΦq (3.81c)

λ∗v = α
[
Φqqv + Φ̇q + Φtq + 2ξωΦq

]
(3.81d)

λ∗q = α

[
Φqqv̇ +

(
Φ̇q

)
q

v +
(
Φ̇t

)
q

+2ξω (Φqqv + Φtq) + ω2Φq

]
(3.81e)

λ∗ρ = α

[
Φqρv̇ +

(
Φ̇q

)
ρ

v +
(
Φ̇t

)
ρ

+2ξω (Φqρv + Φtρ) + ω2Φρ

]
(3.81f)

Replacing (3.80) in (3.78)

δψ =
[(
wy + wλ∗λ∗y

)
δy +

(
wẏ + wλ∗λ∗ẏ

)
δẏ +

(
wρ + wλ∗λ∗ρ

)
δρ
]
F

+

∫ tF

t0

[(
gy + gλ∗λ∗y

)
δy

+
(
gẏ + gλ∗λ∗ẏ

)
δẏ +

(
gρ + gλ∗λ∗ρ

)
δρ
]

dt (3.82)

For convenience, δẏ in (3.82) can be expressed as a function of δy. Differentiating Eqn. (3.74)

δẏ = fyδy + fρδρ (3.83)
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and replacing Eqn. (3.83) in (3.82) leads to

δψ =
[(
wy + wλ∗λ∗y +

(
wẏ + wλ∗λ∗ẏ

)
fy
)
δy +

(
wρ + wλ∗λ∗ρ +

(
wẏ + wλ∗λ∗ẏ

)
fρ
)
δρ
]
F

+

∫ tF

t0

[(
gy + gλ∗λ∗y +

(
gẏ + gλ∗λ∗ẏ

)
fy
)
δy +

(
gρ + gλ∗λ∗ρ +

(
gẏ + gλ∗λ∗ẏ

)
fρ
)
δρ
]

dt (3.84)

The variation of the full Lagrangian (3.77) can be obtained by replacing (3.84) in (3.77)

δL =
[(
wy + wλ∗λ∗y +

(
wẏ + wλ∗λ∗ẏ

)
fy
)
δy +

(
wρ + wλ∗λ∗ρ +

(
wẏ + wλ∗λ∗ẏ

)
fρ
)
δρ
]
F

+∫ tF

t0

[(
gy+gλ∗λ∗y+

(
µT+gẏ+gλ∗λ∗ẏ

)
fy
)
δy +

(
gρ+gλ∗λ∗ρ+

(
µT+gẏ+gλ∗λ∗ẏ

)
fρ
)
δρ−µTδẏ

]
dt

(3.85)

In Eqn. (3.85), the variation of the parameters δρ is known, and variations δy and δẏ could be

calculated by solving the linearized form of the EOM (3.74), but this is computationally expensive.

Instead of calculating them, the idea is to cancel these variations. Integrating by parts the integral

terms involving δẏ the variation can be removed from the integral

∫ tF

t0

−µTδẏdt = −µTδy
∣∣tF
t0

+

∫ tF

t0

µ̇Tδydt (3.86)

Therefore

δL=
[(
wy+wλ∗λ∗y+

(
wẏ+wλ∗λ∗ẏ

)
fy − µT

)
δy +

(
wρ+wλ∗λ∗ρ+

(
wẏ+wλ∗λ∗ẏ

)
fρ
)
δρ
]
F

+
[
µTδy

]
0

+

∫ tF

t0

[(
µ̇T+gy+gλ∗λ∗y+

(
µT+gẏ+gλ∗λ∗ẏ

)
fy
)
δy +

(
gρ+gλ∗λ∗ρ+

(
µT+gẏ+gλ∗λ∗ẏ

)
fρ
)
δρ
]

dt

(3.87)

In Eqn. (3.87) it is possible to cancel δy by choosing µ to be the solution of following adjoint

ODE system

µ̇ = −fTy
(
µ + gTẏ + λ∗Tẏ gTλ∗

)
− gTy − λ∗Ty gTλ∗ (3.88a)

µF =
[
wT

y + λ∗Ty wT
λ∗ + fTy

(
wẏ + wλ∗λ∗ẏ

)T]
F

(3.88b)

The adjoint system (3.88) is a first order linear ODE in µ. Since the initial conditions (3.88b)
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are given at the final time tF , it has to be integrated backward in time from tF to t0 as an initial

value problem.

Finally, from Eqn. (3.87) the gradient of the cost function with respect to parameters can be

obtained as

∇ρψ =
[
wT
ρ + λ∗Tρ wT

λ∗ + fTρ
(
wẏ + wλ∗λ∗ẏ

)T]
F

+

[
∂yT

∂ρ
µ

]
0

+

∫ tF

t0

[
fTρ
(
µ + gTẏ + λ∗Tẏ gTλ∗

)
+ gTρ + λ∗Tρ gTλ∗

]
dt (3.89)

where the identity δψ = δL was used. This holds if the EOM are satisfied, as can be seen from

Eqn. (3.76).

In Eqns. (3.89) and (3.88) the derivatives of function g are known, since the objective function

has a known expression. The derivatives of f are obtained using (3.73) as

M̂
∂f

∂y
+ M̂yf =

∂Q̂

∂y
⇒ fy = M̂−1

(
Q̂y − M̂yf

)
(3.90a)

M̂
∂f

∂ρ
+ M̂ρf =

∂Q̂

∂ρ
⇒ fρ = M̂−1

(
Q̂ρ − M̂ρf

)
(3.90b)

The derivatives fy and fρ can be calculated in block form as

fy =

 I 0

0 M̄−1

 0 I

−K̄ −C̄

−
 0 0

M̄qv̇ 0

 =

 0 I

−M̄−1 (K̄ + M̄qv̇
)
−M̄−1C̄

 (3.91a)

fρ =

 I 0

0 M̄

−1 0

Q̄ρ

−
 0

M̄ρv̇

 =

 0

M̄−1 (Q̄ρ − M̄ρv̇
)
 (3.91b)

In Eqns. (3.91a) and (3.91b) the terms K̄, C̄, Q̄ρ, M̄qq̈, and M̄ρq̈ are given by the following
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expressions:

K̄ = −∂Q̄

∂q
= K + ΦT

qqα
(
Φ̇qq̇ + Φ̇t + 2ξωΦ̇ + ω2Φ

)
+

ΦT
qα

((
Φ̇qq̇

)
q

+
(
Φ̇t

)
q

+ 2ξω (Φqqq̇ + Φtq) + ω2Φq

)
(3.92a)

C̄ = −∂Q̄

∂q̇
= C + ΦT

qα
(
Φqqq̇ + Φ̇q + Φtq + 2ξωΦq

)
(3.92b)

Q̄ρ =
∂Q̄

∂ρ
= Qρ −ΦT

qρα
(
Φ̇qq̇ + Φ̇t + 2ξωΦ̇ + ω2Φ

)
−

ΦT
qα

((
Φ̇qq̇

)
ρ

+ Φ̇tρ + 2ξωΦ̇ρ + ω2Φρ

)
(3.92c)

M̄qq̈ = Mqq̈ + ΦT
qq (αΦqq̈) + ΦT

qα (Φqqq̈) (3.92d)

M̄ρq̈ = Mρq̈ + ΦT
qρ (αΦqq̈) + ΦT

qα (Φqρq̈) (3.92e)

In Eqns. (3.92a) and (3.92b), K = −Qq and C = −Qq̇ respectively. For Eqns. (3.92d) and

(3.92e), the following magnitudes are tensor-vector products that have to be calculated as explained

in the nomenclature

Mqq̈ ≡Mq ⊗ q̈ (3.93a)

Mρq̈ ≡Mρ ⊗ q̈ (3.93b)

ΦT
qq (αΦqq̈) ≡ ΦT

qq ⊗ (αΦqq̈) (3.93c)

ΦT
qρ (αΦqq̈) ≡ ΦT

qρ ⊗ (αΦqq̈) (3.93d)

ΦT
qα (Φqqq̈) ≡ ΦT

qα (Φqq ⊗ q̈) (3.93e)

ΦT
qα (Φqρq̈) ≡ ΦT

qα (Φqρ ⊗ q̈) (3.93f)

To obtain expression (3.92a), the kinematic relation (2.18) was employed, and for expression

(3.92b) the relations
(
Φ̇q

)
q̇

= Φqq,
(
Φ̇t

)
q̇

= Φtq, were used. The last two relations can be

checked by considering the following differentials

δΦq =Φqqδq⇒
d

dt
δΦq =Φ̇qqδq+Φqqδq̇=δΦ̇q =Φ̇qqδq+Φ̇qq̇δq̇⇒ Φ̇qq̇ =Φqq (3.94a)

δΦt = Φtqδq⇒
d

dt
δΦt = Φ̇tqδq + Φtqδq̇ = δΦ̇t = Φ̇tqδq + Φ̇tq̇δq̇⇒ Φ̇tq̇ = Φtq(3.94b)
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Equations of motion written as a second-order ODE system

Considering the EOM (2.17a), the Lagrangian in this case has the following expression

L (ρ) = w (qF , q̇F , q̈F ,ρF ,λF ) +

∫ tF

t0

g (q, q̇, q̈,λ∗,ρ) dt−
∫ tF

t0

µT
(
M̄ (q,ρ) q̈− Q̄ (t,q, q̇,ρ)

)
dt

(3.95)

Applying variational calculus

δL=[wqδq+wq̇δq̇+wq̈δq̈+wλ∗δλ∗+wρδρ]tF +

∫ tF

t0

(
gq−µT

(
M̄qq̈+K̄

))
δqdt

+

∫ tF

t0

(
gq̇−µTC̄

)
δq̇dt+

∫ tF

t0

(
gq̈−µTM̄

)
δq̈dt+

∫ tF

t0

gλ∗δλ∗dt+

∫ tF

t0

(
gρ−µT

(
M̄ρq̈−Q̄ρ

))
δρdt

(3.96)

The variation δλ∗ can be removed by expressing it in terms of the variations δq, δq̇ and δq̈.

From Eqn. (2.20)

δλ∗ = α
(
δΦ̈ + 2ξωδΦ̇ + ω2δΦ

)
(3.97)

where

δΦ̈ = Φqδq̈ +
(
Φqqq̇ + Φ̇q + Φtq

)
δq̇ +

(
Φqqq̈ +

(
Φ̇q

)
q

q̇ +
(
Φ̇t

)
q

)
δq

+

(
Φqρq̈ +

(
Φ̇q

)
ρ

q̇ +
(
Φ̇t

)
ρ

)
δρ (3.98)

δΦ̇ = Φqδq̇ + (Φqqq̇ + Φtq) δq + (Φqρq̇ + Φtρ) δρ (3.99)

δΦ = Φqδq + Φρδρ (3.100)

Grouping together the terms associated to δq̈, δq̇, δq, δρ, Eqn. (3.97) becomes

δλ∗ = λ∗q̈δq̈ + λ∗q̇δq̇ + λ∗qδq + λ∗ρδρ (3.101)
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Identifying the common terms in (3.97) and (3.101)

λ∗q̈ = αΦq, (3.102a)

λ∗q̇ = α
[
Φqqq̇ + Φ̇q + Φtq + 2ξωΦq

]
(3.102b)

λ∗q = α

[
Φqqq̈ +

(
Φ̇q

)
q

q̇ +
(
Φ̇t

)
q

+2ξω (Φqqq̇ + Φtq) + ω2Φq

]
(3.102c)

λ∗ρ = α

[
Φqρq̈ +

(
Φ̇q

)
ρ

q̇ +
(
Φ̇t

)
ρ

+2ξω (Φqρq̇ + Φtρ) + ω2Φρ

]
(3.102d)

The variation δq̈ can be removed too, by expressing it in terms of the variations δq, δq̇ and

δq̈. Making use of equations (2.16) and (3.101)

Mδq̈ + Mqq̈δq + Mρq̈δρ + ΦT
q δλ

∗ + ΦT
qqλ

∗δq + ΦT
qρλ

∗δρ = Qqδq + Qq̇δq̇ +

Qρδρ (3.103)

M̄δq̈ = −
(
K + Mqq̈ + ΦT

qλ
∗
q + ΦT

qqλ
∗) δq− (C + ΦT

qλ
∗
q̇

)
δq̇ +(

Qρ −Mρq̈−ΦT
qλ
∗
ρ −ΦT

qρλ
∗) δρ (3.104)

Then

δq̈ = q̈qδq + q̈q̇δq̇ + q̈ρδρ (3.105)

where

q̈q = −M̄−1 (K + Mqq̈ + ΦT
qλ
∗
q + ΦT

qqλ
∗) (3.106)

q̈q̇ = −M̄−1 (C + ΦT
qλ
∗
q̇

)
(3.107)

q̈ρ = M̄−1 (Qρ −Mρq̈−ΦT
qλ
∗
ρ −ΦT

qρλ
∗) (3.108)

Replacing equation (3.105) back in equation (3.101) yields

δλ∗ =
(
λ∗q̇ + λ∗q̈q̈q̇

)
δq̇ +

(
λ∗q + λ∗q̈q̈q

)
δq +

(
λ∗ρ + λ∗q̈q̈ρ

)
δρ (3.109)
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After replacing equations (3.105) and (3.109) in (3.96), the variations δq̈ and δλ∗ disappear

δL =
[(
wq + wq̈q̈q + wλ∗

(
λ∗q + λ∗q̈q̈q

))
δq +

(
wq̇ + wq̈q̈q̇ + wλ∗

(
λ∗q̇ + λ∗q̈q̈q̇

))
δq̇

+
(
wρ+wq̈q̈ρ+wλ∗

(
λ∗ρ+λ∗q̈q̈ρ

))
δρ
]
F

+

∫ tF

t0

(
gq+gq̈q̈q+gλ∗

(
λ∗q+λ∗q̈q̈q

)
−µT

(
M̄qq̈+K̄

))
δqdt

+

∫ tF

t0

(
gq̇ + gq̈q̈q̇ + gλ∗

(
λ∗q̇ + λ∗q̈q̈q̇

)
− µTC̄

)
δq̇dt

−
∫ tF

t0

µTM̄δq̈dt +

∫ tF

t0

(
gρ + gq̈q̈ρ + gλ∗

(
λ∗ρ + λ∗q̈q̈ρ

)
− µT

(
M̄ρq̈− Q̄ρ

))
δρdt (3.110)

Integrating by parts the integrals involving δq̇, δq̈:

δL =
[(
wq + wq̈q̈q + wλ∗

(
λ∗q + λ∗q̈q̈q

))
δq +

(
wq̇ + wq̈q̈q̇ + wλ∗

(
λ∗q̇ + λ∗q̈q̈q̇

))
δq̇

+
(
wρ + wq̈q̈ρ + wλ∗

(
λ∗ρ + λ∗q̈q̈ρ

))
δρ
]
F

+∫ tF

t0

(
gq + gq̈q̈q + gλ∗

(
λ∗q + λ∗q̈q̈q

)
− µT

(
M̄qq̈ + K̄

))
δqdt

+
(
gq̇ + gq̈q̈q̇ + gλ∗

(
λ∗q̇ + λ∗q̈q̈q̇

)
− µTC̄

)
δq
∣∣tF
t0

−
∫ tF

t0

d
(
gq̇ + gq̈q̈q̇ + gλ∗

(
λ∗q̇ + λ∗q̈q̈q̇

))
dt

− µ̇TC̄− µT ˙̄C

 δqdt

−
(
µTM̄

)
δq̇
∣∣tF
t0

+
(
µ̇TM̄ + µT ˙̄M

)
δq
∣∣∣tF
t0
−
∫ tF

t0

(
µ̈TM̄ + 2µ̇T ˙̄M + µT ¨̄M

)
δqdt

+

∫ tF

t0

(
gρ + gq̈q̈ρ + gλ∗

(
λ∗ρ + λ∗q̈q̈ρ

)
− µT

(
M̄ρq̈− Q̄ρ

))
δρdt (3.111)

Canceling all the integral terms that involve δq and δq̇ leads to the following adjoint ODE

M̄Tµ̈ +
(

2 ˙̄M− C̄
)T

µ̇ +
(
M̄qq̈ + K̄− ˙̄C + ¨̄M

)T
µ =

(
gq + gq̈q̈q + gλ∗

(
λ∗q + λ∗q̈q̈q

))T
−

d
(
gq̇ + gq̈q̈q̇ + gλ∗

(
λ∗q̇ + λ∗q̈q̈q̇

))T
dt

(3.112a)[
M̄Tµ̇ +

(
˙̄M− C̄

)T
µ

]
F

=

−
[
wq + wq̈q̈q + wλ∗

(
λ∗q + λ∗q̈q̈q

)
+ gq̇ + gq̈q̈q̇ + gλ∗

(
λ∗q̇ + λ∗q̈q̈q̇

)]T
F

(3.112b)[
M̄Tµ

]
F

=
[
wq̇ + wq̈q̈q̇ + wλ∗

(
λ∗q̇ + λ∗q̈q̈q̇

)]T
F

(3.112c)
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Finally, the gradient can be obtained from the remaining terms in the variational equation

(3.111)

∇ρψ =
[
wρ + wq̈q̈ρ + wλ∗

(
λ∗ρ + λ∗q̈q̈ρ

)]
F
−[

qT
ρ

(
gq̇ + gq̈q̈q̇ + gλ∗

(
λ∗q̇ + λ∗q̈q̈q̇

)
+ µ̇TM̄ + µT

(
˙̄M− C̄

))T]
t0

+
[
q̇T
ρ

(
µTM̄

)T]
t0

+

∫ tF

t0

(
gρ+gq̈q̈ρ+gλ∗

(
λ∗ρ+λ∗q̈q̈ρ

)
−µT

(
M̄ρq̈−Q̄ρ

))T
dt (3.113)

Observe that more derivatives than those already obtained for the direct differentiation method

are necessary in (3.112) and (3.113). The additional terms not obtained before are ˙̄M, ¨̄M and ˙̄C.

From equation (2.17b)

˙̄M = Ṁ + Φ̇T
qαΦq + ΦT

qαΦ̇q (3.114)

¨̄M = M̈ + Φ̈T
qαΦq + 2Φ̇T

qαΦ̇q + ΦT
qαΦ̈q (3.115)

and from equation (3.92b)

˙̄C=Ċ+Φ̇T
qα
(
Φqqq̇+Φ̇q+Φtq+2ξωΦq

)
+ΦT

qα
(
Φ̇qqq̇+Φqqq̈+Φ̈q+Φ̇tq + 2ξωΦ̇q

)
(3.116)

3.2.4 Maggi’s formulation

The adjoint variable method of this section is most useful when the number of parameters p

is large. Approaches are developed herein for each of the following three formulations of the EOM:

1. The equations of motion are written as a first-order explicit ODE system.

2. The equations of motion are written as a first-order implicit ODE system, and

3. The equations of motion are written as a second-order implicit ODE system.
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Equations of motion written as a first-order explicit ODE system

The system (2.25) can be transformed into a first-order implicit one, by introducing a new set

of variables ż = v, and defining the new vector y =
[

zT vT
]T

 I 0

0 M̄

 ż

v̇

 =

 v

Q̄

 (3.117a)

M̂ (y,ρ) ẏ = Q̂ (t,y,ρ) (3.117b)

Taking the inverse of the leading matrix in (3.117b), the system can be expressed as a first-order

explicit one,

ẏ = M̂−1 (y,ρ) Q̂ (t,y,ρ) = f (t,y,ρ) (3.118)

The cost function becomes

ψ =

∫ tF

t0

g (y,ρ) dt (3.119)

As proposed in [117] we consider the following Lagrangian, given by the cost function con-

strained by the EOM,

L (ρ) =

∫ tF

t0

g (y,ρ) dt−
∫ tF

t0

µT (ẏ − f (t,y,ρ)) dt (3.120)

where µ is the vector of Lagrange multipliers. Applying variational calculus:

δL =

∫ tF

t0

(
∂g

∂y
δy +

∂g

∂ρ
δρ

)
dt−

∫ tF

t0

δµT (ẏ − f (t,y,ρ)) dt−
∫ tF

t0

µT

(
δẏ − ∂f

∂y
δy − ∂f

∂ρ
δρ

)
dt

(3.121)

The central term involves the dot product of δµ with the EOM; if they are fulfilled at each

time step, this term vanishes. For the last term, integration by parts is applied

∫ tF

t0

µTδẏdt = µTδy
∣∣tF
t0
−
∫ tF

t0

µ̇Tδydt (3.122)
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Therefore

δL =

∫ tF

t0

(
∂g

∂y
+ µT ∂f

∂y
+ µ̇T

)
δydt+

∫ tF

t0

(
∂g

∂ρ
+ µT ∂f

∂ρ

)
δρdt−µT (tF ) δy (tF )+µT (t0) δy (t0)

(3.123)

In equation (3.123) δy (t0) in the last term is known, and the δy (tF ) term can be cancelled by

choosing µ (tF ) = 0. Moreover, to avoid calculating δy, the first integral is canceled by choosing µ

to be the solution of following adjoint ODE system:

µ̇ = −fTy µ− gTy (3.124a)

µ (tF ) = 0 (3.124b)

From equation (3.123) the gradient of the cost function (3.119) with respect to parameters can

be obtained as

∇ρψ = yT
ρ (t0)µ (t0) +

∫ tF

t0

(
fTρ µ + gTρ

)
dt (3.125)

In the previous result the identity δψ = δL was used, which holds if the EOM (3.118) are

satisfied, as can be derived from (3.120).

In (3.125) and (3.124a) the derivatives of function g are known, since the objective function

has a known expression. The derivatives of f are obtained from (3.117b):

M̂
∂f

∂y
+ M̂yf =

∂Q̂

∂y
⇒ fy = M̂−1

(
Q̂y − M̂yf

)
= I 0

0 M̄

−1 0 I

−K̄ −C̄

−
 0 0

M̄zv̇ 0

 =

 0 I

−M̄−1 (K̄ + M̄zv̇
)
−M̄−1C̄

 (3.126a)

M̂
∂f

∂ρ
+ M̂ρf =

∂Q̂

∂ρ
⇒ fρ = M̂−1

(
Q̂ρ − M̂ρf

)
= I 0

0 M̄

−1 0

Q̄ρ

−
 0

M̄ρv̇

 =

 0

M̄−1 (Q̄ρ − M̄ρv̇
)
 (3.126b)
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Taking into account the first equation of (3.117a), v = ż, the terms K̄, C̄ and M̄zv̇ in (3.126a)

are given by Eq. (3.28a), (3.28b), and (3.29a) respectively. Similarly in (3.126b), the terms Q̄ρ and

M̄ρv̇ are given by (3.28c) and (3.29b) respectively.

Equations of motion written as a first-order implicit ODE system

Another form of the adjoint ODE system (3.124a) and the gradient of the cost function (3.125)

can be obtained using the EOM (3.117b) as constraints in the Lagrangian

L (ρ) =

∫ tF

t0

g (y,ρ) dt−
∫ tF

t0

µT
(
M̂ (y,ρ) ẏ − Q̂ (t,y,ρ)

)
dt (3.127)

Applying variational calculus

δL =

∫ tF

t0

(
∂g

∂y
δy +

∂g

∂ρ
δρ

)
dt−

∫ tF

t0

δµT
(
M̂ (y,ρ) ẏ − Q̂ (t,y,ρ)

)
dt

−
∫ tF

t0

µT

(
M̂δẏ + M̂yẏδy + M̂ρẏδρ− ∂Q̂

∂y
δy − ∂Q̂

∂ρ
δρ

)
dt (3.128)

Again, the central term vanishes if the EOM are fulfilled at each instant. For the last term,

integration by parts is applied:

∫ tF

t0

µTM̂δẏdt = µTM̂δy
∣∣∣tF
t0
−
∫ tF

t0

(
µ̇TM̂ + µT ˙̂

M
)
δydt (3.129)

Therefore,

δL =

∫ tF

t0

(
∂g

∂y
− µT

(
M̂yẏ − ∂Q̂

∂y
− ˙̂

M

)
+ µ̇TM̂

)
δydt

+

∫ tF

t0

(
∂g

∂ρ
− µT

(
M̂ρẏ − ∂Q̂

∂ρ

))
δρdt− µTM̂δy

∣∣∣tF
t0

(3.130)

The first integral and the last term at the final time are canceled if µ is the solution of the
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following adjoint ODE:

M̂ µ̇ =
(
M̂yẏ − Q̂y − ˙̂

M
)T

µ− gTy (3.131a)

µ (tF ) = 0 (3.131b)

where the symmetry of M̂ was assumed, gy is known and

M̂yẏ =

 0 0

M̄zv̇ 0

 (3.132)

∂Q̂
∂y =

 0 I

−K̄ −C̄

 (3.133)

Observe that the previous derivatives (3.132) and (3.133) have the same terms already ex-

plained in the derivation of (3.126a).

Taking into account that M̄ = M̄ (z,ρ) and the fact that the parameters do not vary with

time:

˙̂
M =

 0 0

0 ˙̄M

 (3.134a)

˙̄M =
∑
i

∂M̄

∂zi
żi =

∑
i

(
RT
ziMR + RTMziR + RTMRzi

)
żi (3.134b)

where the terms of Rzi are given by Eq. (3.37). From Eq. (3.130), after removing the terms made

zero in Eq. (3.131), the gradient of the cost function with respect to parameters can be obtained as

∇ρψ = yT
ρ (t0) M̂ (t0)µ (t0) +

∫ tF

t0

((
Q̂ρ − M̂ρẏ

)T
µ + gTρ

)
dt (3.135)
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where the symmetry of M̂ was used,

Q̂ρ =

 0

Q̄ρ

 (3.136)

M̂ρẏ =

 0

M̄ρv̇

 (3.137)

and Q̄ρ and M̄ρv̇ are given by (3.28c) and (3.29b) respectively.

Equations of motion written as a second-order implicit ODE system

The first-order adjoint ODE system (3.131) of size 2n can be replaced by a second-order adjoint

system of size n. The EOM (2.25) are used in the construction of the Lagrangian

L (ρ) =

∫ tF

t0

g (z, ż,ρ) dt−
∫ tF

t0

µT
(
M̄ (z,ρ) z̈− Q̄ (t, z, ż,ρ)

)
dt (3.138)

Applying variational calculus

δL =

∫ tF

t0

(
∂g

∂z
δz +

∂g

∂ż
δż +

∂g

∂ρ
δρ

)
dt−

∫ tF

t0

δµT
(
M̄ (z,ρ) z̈− Q̄ (t, z, ż,ρ)

)
dt−∫ tF

t0

µT

(
M̄δz̈ + M̄zz̈δz + M̄ρz̈δρ − ∂Q̄

∂z
δz− ∂Q̄

∂ż
δż− ∂Q̄

∂ρ
δρ

)
dt (3.139)

The central term vanishes if the EOM are fulfilled at each instant. Application of integration

by parts gives

∫ tF

t0

µTM̄δz̈dt = µTM̄δż
∣∣tF
t0
−
∫ tF

t0

(
µ̇TM̄ + µT ˙̄M

)
δżdt (3.140)∫ tF

t0

∂g

∂ż
δżdt =

∂g

∂ż
δz

∣∣∣∣tF
t0

−
∫ tF

t0

d

dt

∂g

∂ż
δzdt (3.141)∫ tF

t0

µT∂Q̄

∂ż
δżdt = −µTC̄δz

∣∣tF
t0

+

∫ tF

t0

(
µT ˙̄C + µ̇TC̄

)
δzdt (3.142)
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where C̄ is described in (3.28b) and ˙̄C later in this section. Applying integration by parts again to

the integral on the right hand side of (3.140) leads to

∫ tF

t0

(
µ̇TM̄ + µT ˙̄M

)
δżdt =

(
µ̇TM̄ + µT ˙̄M

)
δz
∣∣∣tF
t0
−
∫ tF

t0

(
µ̈TM̄ + 2µ̇T ˙̄M + µT ¨̄M

)
δzdt

(3.143)

From Eq. (3.143) and Eq. (3.140)

∫ tF

t0

µTM̄δz̈dt = µTM̄δż
∣∣tF
t0
−
(
µ̇TM̄ + µT ˙̄M

)
δz
∣∣∣tF
t0

+

∫ tF

t0

(
µ̈TM̄ + 2µ̇T ˙̄M + µT ¨̄M

)
δzdt

(3.144)

Therefore,

δL =

∫ tF

t0

(
∂g

∂z
− d

dt

∂g

∂ż
− µT

(
M̄zz̈ + K̄− ˙̄C + ¨̄M

)
− µ̇T

(
2 ˙̄M− C̄

)
− µ̈TM̄

)
δzdt+(

∂g

∂ż
+ µ̇TM̄ + µT

(
˙̄M− C̄

))
δz

∣∣∣∣tF
t0

− µTM̄δż
∣∣tF
t0

+

∫ tF

t0

(
∂g

∂ρ
− µT

(
M̄ρz̈− ∂Q̄

∂ρ

))
δρdt

(3.145)

The first integral and the terms evaluated in t = tF are canceled in (3.145) if µ is the solution

of the following second-order adjoint ODE system

M̄ µ̈ +
(

2 ˙̄M− C̄
)T

µ̇ +
(
M̄zz̈ + K̄− ˙̄C + ¨̄M

)T
µ = gTz −

d

dt
gTż (3.146a)

µ (tF ) = 0 (3.146b)

M̄ (tF ) µ̇ (tF ) = −gTż (tF ) (3.146c)

where the symmetry of the matrix M̄ was used. From Eq. (3.145) the gradient of the cost function

with respect to parameters is

∇ρψ=−zTρ (t0)
(
gż+µ̇TM̄+µT

(
˙̄M−C̄

))T∣∣∣∣
t0

+żTρ (t0) M̄ (t0)µ (t0)+

∫ tF

t0

((
Q̄ρ−M̄ρz̈

)T
µ+gTρ

)
dt

(3.147)
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Most of the terms appearing in Eq. (3.146a) and Eq. (3.147) were obtained in sections 2.5 and

3.1.4. Some additional terms are also needed. From Eq. (3.28b) and Eqn. (3.30b)

˙̄C = ṘT (C + MScq̇) R + RT (C + MScq̇) Ṙ + RT
(
Ċ + ṀScq̇ + MṠcq̇ + MSċq̇

)
R (3.148)

From Eq. (3.35)

ċq̇ =
d

dt
cq̇ = −Φqqq̈− d

dt
(Φqq) q̇− Φ̈q − Φ̇tq (3.149)

The terms ˙̄M and ¨̄M can be calculated either from (3.134b), or by taking derivatives of (2.25b)

˙̄M = ṘTMR + RTṀR + RTMṘ (3.150a)

¨̄M = R̈TMR + RTMR̈ + 2ṘTMṘ + RTM̈R + 2
(
ṘTṀR + RTṀṘ

)
(3.150b)

where the symmetry of the mass matrix M was assumed. Taking derivatives in equation (2.27)

leads to:  Φq

B

[ Ṡ Ṙ
]

= −

 Φ̇qS Φ̇qR

0 0

⇒
 Ṙ = −SΦ̇qR

Ṡ = −SΦ̇qS
(3.151)

Differentiating once more in Eq. (3.151) yields

R̈ = −S
(
Φ̈qR + 2Φ̇qṘ

)
(3.152)

3.3 Validation of the computed sensitivities

The validation of the computed sensitivities is crucial because small errors in individual terms

can result in completely wrong sensitivities and even if wrong sensitivities can usually solve opti-

mization problems, they are still wrong. The strategies proposed and employed here to validate

sensitivities are the following:

1. Compare the results of the direct differentiation method and the adjoint variable method:

they should be equal within the truncation error.

2. Compare the results of different formulations of the EOM: Index-3, Index-1, the penalty and
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Maggi’s sensitivities were compared.

3. Compute the sensitivities using a third party code: FATODE [118] was used to double-check

the results presented.

4. Use real finite difference method to approximate whole sensitivities or individual derivatives:

it can be a very inaccurate or even completely useless strategy. Small truncation errors (small

δ) cause important loss-of-significance errors.The first-order approximation of the derivatives

with real perturbations reads

dψ

dρk
=
ψ (ρ + δek)− ψ (ρ)

δ
(3.153)

The truncation error in this case is O(δ) cf. (3.153) and the loss of significance errors are order

O(δ−1), where δ is the perturbation. This fact can make these derivatives highly inaccurate.

5. Use complex finite difference method to approximate whole sensitivities or individual deriva-

tives: it is a much more reliable approach than the previous one, but more complex to

implement. Since there is not subtraction, there are not loss-of-significance errors in the

imaginary part. The first-order approximation of derivatives with complex perturbations is

the following
dψ

dρk
=
= (ψ (ρ + iδek))

δ
(3.154)

where i is the imaginary unit and = is the imaginary part of a complex number. The approach

is considerably more accurate than the previous one, because there are no subtractions in

the imaginary parts and therefore the perturbations can be chosen arbitrarily small without

loss-of-significance errors appearing in the calculation of the approximation. The practical

difficulty to apply complex finite difference method is that not all codes can be changed

easily to accommodate complex arithmetic. Special attention should be paid to the third

party functions (if any) involved in the code (transpose functions, norm functions, numerical

integrator chosen, etc).
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Chapter 4

Numerical optimization

There are numerous optimization methods in the literature. Since sensitivity analysis is per-

formed prior to optimization in this study, most gradient-based optimization methods with con-

straints should be good choices. L-BFGS-B, which is a popular gradient-based optimization package

based on quasi-Newton method, is used in this work to perform optimization.

This study only uses L-BFGS-B to perform optimization and no new optimization algorithm

is developed here, thus the motivation of this chapter is to briefly review the theory of gradient-

based optimization methods and the algorithm of L-BFGS-B. The global optimization methods

and multi-objective methods will not be reviewed since this study doesn’t include any results from

them. For more theoretical details on these methods, the reader is referred to Venkataraman 2009

[119], Bazaraa 2013 [120], Fletcher 2013 [121], and Wright 1999 [122].

4.1 Optimality conditions for unconstrained case

The local optimization method relies on the first-order or high-order derivatives of the objective

function, which guarantees the convergence to a local minimum close to the initial guess. In this

section, the unconstrained optimization problem will be presented, which can be written as follows:

Minimize Ψ(q)

q ∈ Rn (4.1)

In order to perform unconstrained optimization, the first-order and second-order conditions

will be reviewed first since they are the most relevant optimality conditions.

The first-order necessary condition is given as follows:
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Let Ψ : D ⊂ Rn → R be continuously differentiable on D, then ∇Ψ(q∗) = 0 if q∗ ∈ D is a

local minimum. This condition shows us the slope at q∗ is 0 if q∗ is a local minimum.

The second-order necessary condition is given as follows:

Let Ψ : D ⊂ Rn → R be twice continuously differentiable on D, then ∇Ψ(q∗) = 0 and

∇2Ψ(q∗) is positive semidefinite if q∗ ∈ D is a local minimum.

A zero slope doesn’t guarantee a local minimum, it could be also a local maximum. Thus, the

second-order sufficient condition is given as follows:

Let Ψ : D ⊂ Rn → R be twice continuously differentiable on D, if ∇Ψ(q∗) = 0 and ∇2Ψ(q∗)

is positive definite, then q∗ ∈ D is a local minimum.

Actually, solving the optimality conditions for unconstrained case is equivalent to finding

solutions of algebraic nonlinear system.

4.2 Optimality conditions for constrained case

The general from of a constrained optimization problem can be written as follows:

Minimize Ψ(q)

Subject to Ceq(q) = 0

Cineq(q) ≤ 0

q ∈ Rn (4.2)

where Ceq(q) are the equality constraints and Cineq(q) are the inequality constraints. In order to

solve this constrained optimization problem, Karush in 1939, Kuhn and Tucker in 1951 presented
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the flowing well-know conditions, which is also called KKT condition:

∇Ψ(q∗) +∇Ceq(q∗)Tµ +∇Cineq(q∗)Tν = 0 (4.3)

µT∇Ceq(q∗) = 0 (4.4)

µ ≥ 0 (4.5)

where µ ∈ RCineq and ν ∈ RCeq(q.

KKT conditions are not necessary or sufficient for a local minimum. But if some conditions

hold, KKT conditions could become necessary or sufficient for a local minimum. First let ci and gi

be the ith element of Cineq and Ceq. I(x̄) = {i : ci(x̄) = 0}, we have some necessary and sufficient

conditions as follows:

• Necessary condition

– Let q∗ be a local minimum. If gi ∀i are affine, and cj ∀j ∈ I(q∗) are (pseudo)concave,

then q∗ is a KKT point.

– Let q∗ be a local minimum. If∇gi(q∗) ∀i and∇cj(q∗) ∀j ∈ I(q∗) are linear independent,

then q∗ is a KKT point.

– Let q∗ be a local minimum. If gi(q
∗)∀i are locally affine, cj(q

∗) ∀j ∈ I(q∗) are locally

convex, and ∇gi(q∗) ∀i are linear independent, and ∃q̂ such that cj(q̂) < 0 ∀j ∈ I(q∗),

then q∗ is a KKT point.

• Sufficient condition

– Let q∗ be a KKT point. If Ψ is locally (pseudo)convex, gi ∀i are affine, and cj ∀j ∈ I(q∗)

are locally (pseudo)convex, then q∗ is a local minimum.
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4.3 The L-BFGS-B algorithm

Introduction

Since L-BFGS-B is the only optimization package used in this study, its algorithm will be

briefly introduced here. For more details, the reader is referred to [123].

The problem is described as follows:

Minimize Ψ(q)

Subject to li ≤ qi ≤ ui ∀i (4.6)

where Ψ is the cost function, li and ui represent the lower bound and the upper bounds for each

parameter qi. This algorithm requires the first derivative of the cost function that is provided by

MBSVT while the second derivative of the cost function is not required. Thus this algorithm can

be applied when the Hessian matrix is not available. L-BFGS-B uses a limited memory BFGS

update to replace the Hessian matrix.

Outline of the algorithm

Assume qk is the current state where k = 0 for the initial guess, in order to minimize the cost

function Ψ(qk), a quadratic model is formed as follows:

Ψ(q) = Ψ(qk) + GT
k (q− qk) +

1

2
(q− qk)

TBk(q− qk) (4.7)

where Ψ(qk) is the value of cost function, Gk is the value of gradient, and Bk is the limited memory

BFGS matrix that is used to replace the Hessian matrix. Then with the bounds from 4.6, Ψ(q) can

be approximately minimized. To do this, the piece-wise linear path is described first as follows:

q(t) = P (qk − tGk, l,u) (4.8)
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where

Pi(q, l,u) =


li if qi < li

qi if li < qi < ui

ui if qi > vi

(4.9)

With equation 4.8 and 4.9, Cauchy point qc is computed. Cauchy point is defined as the first

local minimum of Ψ(q). The variables whose value at the qc at lower or upper bound are fixed,

which comprise the active set A(qc). After obtaining the Cauchy point and active set, the following

quadratic problem is used to calculate an approximate solution q̄k+1 as follows:

min {Ψ(q) : qi = qci ∀ i ∈ A(qc)}

subject to li < qi < ui ∀ i /∈ A(qc) (4.10)

After obtaining an approximate solution q̄k+1, the new state qk+1 can be obtained by satisfying

the following two conditions:

Ψ(qk+1) = Ψ(qk) + αλkG
T
kDk∣∣GT

k+1Dk

∣∣ ≤ β ∣∣GT
kDk

∣∣ (4.11)

where Dk = q̄k+1−qk determines the direction and step length of line search, λk is the step length

of the line search, α and β are 10−4 and 0.9 respectively. After obtaining the new state qk+1, If it

converges, then the process is ended, otherwise a new iteration starts.

For more details about the computation of the Cauchy point qc, the computation of the limited

memory BFGS matrix Bk, and the minimization of the quadratic problem, the reader is referred

to [123].
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Chapter 5

Numerical experiments

In this chapter, all of the new sensitivity methods developed from chapter 3 are applied to two

case studies, five-bar mechanism and a full vehicle. The resulting sensitivities are then applied to

perform dynamical optimization. For five-bar mechanism, since it’s a unconstrained optimization

problem, the first-order necessary condition from section 4.1 is used to solve the optimization

problem. For the road vehicle problem, the ride response and handling response are optimized

by using L-BFGS-B. In addition, the dynamic analysis of a passive dynamic robot with knees is

presented and several different point and surface contact models are employed to model the contact

dynamics for the passive dynamic robot.

5.1 Five-bar mechanism optimization

The first case study chosen to test the formulations proposed in this study is the five-bar

mechanism with 2 DOF shown in Fig.5.1.

The five bars are constrained by five revolute joints located in points A, 1, 2, 3 and B. The

masses of the bars are m1 = 1 kg, m2 = 1.5 kg, m3 = 1.5 kg, m4 = 1 kg and the polar moments

of inertia are calculated under the assumption of a uniform distribution of mass. The mechanism

is subjected to the action of gravity and two elastic forces coming from the springs. The stiffness

coefficients of the springs are k1 = k2 = 100 N/m and their natural lengths are initially chosen

L01 =
√

22 + 12 m and L02 =
√

22 + 0.52 m, coincident with the initial configuration shown in

Fig.5.1.

The mechanism can be balanced by properly selecting the two parameters ρT = [L01, L02]. Of

course the problem can be solved by means of the static equations but the aim here is doing so by

dynamical optimization.
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Figure 5.1: The five-bar mechanism

The objective is to keep the mechanism still in the initial position, which can be represented

mathematically by the following objective function.

ψ =

∫ tF

t0

(r2 − r20)
T (r2 − r20) dt (5.1)

where r2 is the global position of the point 2 and r20 is the initial position of the same point.

The condition to obtain the minimum is the following:

∇ρψ = 0 (5.2)

The gradient (5.2) was obtained by the following approaches with the EOM proposed in the paper:

1. Direct sensitivity:Index-3 DAE formulation.

2. Direct sensitivity:Index-1 DAE formulation.
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3. Direct sensitivity:The penalty formulation.

4. Direct sensitivity:Maggi’s formulation.

5. Adjoint sensitivity.:Index-3 DAE formulation.

6. Adjoint sensitivity.:Index-1 DAE formulation.

7. Adjoint sensitivity.:The penalty formulation.

8. Adjoint sensitivity.:Maggi’s formulation.

9. Numerical sensitivity with real perturbations.

10. Numerical sensitivity with complex perturbations.

The response of the system is shown in Fig.5.2 for a 5 seconds simulation.
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Figure 5.2: Mechanism response: top) velocity of point 2; bottom) energy of the system
The upper plot represents the horizontal and vertical velocities of the point 2 while

the lower one represents the energy taking as reference for the potential energy the initial
configuration of the system.

The results for the sensitivities with the mentioned methods are presented in table 5.1.
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Table 5.1: Results for the five-bar mechanism.

Approach Parameters dψ/dL01 dψ/dL02

1: Direct index-3 h = 10−2s -4.2381 3.2170
2: Direct index-1 h = 10−2s -4.2383 3.2169
3: Direct penalty h = 10−2s -4.2305 3.2154
4: Direct maggi’s h = 10−2s -4.2300 3.2112
5: Adjoint index-3 h = 10−2s -4.2287 3.2090
6: Adjoint index-1 h = 10−2s -4.2294 3.2094
7: Adjoint penalty h = 10−2s -4.2293 3.2137
8: Adjoint maggi’s h = 10−2s -4.2294 3.2093

9: FATODE Tol = 10−3 -4.2257 3.2077
10: Num. diff. real with penalty δ = 10−7m -9.7390 -4.0344

11: Num. diff. complex δ/i = 10−7m -4.2288 3.2116

As can be seen in table5.1, all the approaches, except the numerical sensitivities with real

perturbations, offer similar results, which guarantees that the schemes proposed are correct. The

numerical sensitivities with real perturbations are not reliable if accurate results for the sensitivities

are important for the application to tackle. Given the simplicity of the system proposed, definitive

conclusions in terms of efficiency cannot be stated.
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Figure 5.3: Objective function, gradient and parameters evaluation.
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The computed sensitivities can be employed for the optimization proposed. All the methods

perform similar to solve the optimization problem. In this case the simulation time was reduced to

1s and the results for the objective function, derivatives and parameters are presented in figure5.3

for the Adjoint penalty approach. The plots for the direct differentiation method coincide with the

ones presented and they are not presented for clarity.

The optimization converges in three iterations, but in one is almost done. It is important to

remark that approximate derivatives can be used to calculate the gradient and the optimization

would converge at a lower pace.

Another important remark is that the tolerances in the solution of the forward dynamics are

very important in order to obtain stable solutions for the TLM and adjoint ODE, both of them

strongly depend on the solution of the dynamics.

5.2 Road vehicle optimization

5.2.1 Vehicle model

z 

CGc 

0.5700 

0.3560 X c 
0.970 1.047 

Figure 5.4: The Bombardier Iltis vehicle (Adapted from [1])

The Iltis vehicle was proposed as a benchmark problem by the European automobile industry

to check multibody dynamics codes. The vehicle model is extensively described in [1], therefore only

a summary of the most important parameters of the model is given here. The vehicle is represented

in Fig. 5.4 and a diagram of the model is given in Fig. 5.5 showing that the model is composed of
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20 bodies: the chassis, 4 bodies per suspension, 1 tie rod per each one of the front suspensions, and

the steering rod. The bodies of the model are joined by 25 kinematic joints plus 3 extra primitive

constraints: 16 revolute joints, 8 spherical joints, 1 translational joint, 2 constraints to avoid the

rotation of the tie rods, and a rheonomic constraint to control the steering rod.
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Figure 5.5: Multibody model diagram

The total number of coordinates is 140 and the total number of constraints is 132 (6 of them

redundant) giving a total count of 14 DOF : 6 DOF for the chassis, 4 DOF for the suspensions and

4 DOF for the wheels rotation. The steering is controlled by means of the mentioned rheonomic

constraint and therefore it is not a true DOF since it is kinematically determined.

Masses and moments of inertia are given in table 5.2. As indicated in [1], the masses of bodies not

included in the table are neglected, and all the moments of inertia are principal, therefore they are

given in their CG reference frames and all products of inertia are considered to be zero. Centers

of mass locations are given in table 5.3, expressed in the reference frame C, indicated in Fig. 5.4.

The topology of the suspensions is explained in diagram Fig. 5.5 and the geometry of the left

front suspensions is shown in Fig. 5.6. The rear suspensions have a similar topology, but without

the steering system. Note that the leaf spring is modeled as a link and a linear spring.
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Table 5.2: Mass and principal moments of inertia (Adapted from [1])

Body Mass [kg] Ixx [kg m2] Iyy [kg m2] Izz [kg m2]
Chassis 1260 130 1620 1670
Wheel/hub/brake assembly 57.35 1.2402 1.908 1.2402
A-arm 6.0 0.052099 0.023235 0.068864

Table 5.3: Positions of centers of mass (origin C. Fig. 5.4) (Adapted from [1])

Body
Coordinates of CG [m]
x y z

Chassis 0 0 0.57
Right front wheel with hub and brake assembly 0.97 -0.615 0.356
Left rear wheel with hub and brake assembly -1.047 0.615 0.356
Right front A-arm 0.97 -0.4155 0.2655
Left rear A-arm -1.047 0.4155 0.2655

Tie rod

A-Arm

Leaf spring link

Leaf spring force element

Steering rack

Wheel
Bump stop

Wheel hub

Wheel

Nonlinear spring-damper

XY

Z

Figure 5.6: Left front suspension system

The key point positions for the left front suspension are given in table 5.4. The corresponding

points for the left and rear suspensions can be easily obtained since all the suspensions are identical,

76



except for the fact that the tie rods are not present in the rear ones, since there is not steering in

the back.

Table 5.4: Positions of joints (left front suspension, origin C. Fig. 5.4) (Adapted from [1])

Point description x [m] y [m] z [m]
Wheel center 0.97 0.615 0.356
A-arm to hub carrier 0.97 0.572 0.229
A-arm to chassis 0.97 0.259 0.302
Leaf spring connection to hub carrier 0.97 0.488 0.531
Leaf spring connection to chassis 0.97 0.1585 0.600
Damper connection to A-arm 1.045 0.500 0.241
Damper connection to chassis 1.045 0.297 0.632
Tie rod connection to hub carrier 0.83 0.448 0.531
Tie rod connection to chassis 0.83 0.07 0.600
Steering rack connection to chassis 0.83 0.00 0.600

Suspension forces

Each one of the four suspensions has three force elements: a linear leaf-spring that repre-

sents the stiffness of the leaf spring, a bump stop, and a non-linear spring-damper element. The

suspension forces in the nominal configuration are given in table 5.5.

Table 5.5: Suspension forces in the nominal configuration (Adapted from [1])

Leaf spring force 2728.9 N
Non-linear Spring-Damper force 128.0 N
Bump stop force 0.0 N

The force of the leaf spring can be represented by the following equation,

FL = −kL (L− (1 + 2728.9/35906 N/m)) (5.3)

where L is distance between the spring extreme points, the stiffness is originally kL = 35906 N/m,
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and in the nominal (initial) configuration L = 1 m and the leaf spring force is equal to FL =

2728.9 N .

The force of the bump stop is given by

FB = −107 (s− 0.93) ; s < 0.93 m (5.4a)

FB = 0 ; s ≥ 0.93 m (5.4b)

The elastic and damping force of the nonlinear spring damper is given by the following expres-

sion

Fs = −4.0092 · 106 + ks− 6.7061 · 107s2 + 5.2796 · 107s3 (5.5a)

Fd = cv + 33955.72v2 − 59832.25v3 − 395651.0 v4; −0.2 < v < 0.21 m/s (5.5b)

Fd = −416.4200 + 1844.3 v; v < −0.2 m/s (5.5c)

Fd = 1919.1638 + 1634.727v; v > 0.21 m/s (5.5d)

where s is the distance between the extreme points of the nonlinear spring-damper. c and k

are the dominant suspension damping coefficient and stiffness, where c = 9945.627 N s/m, k =

2.8397 · 107 N/m.

The tire model

The tire is composed of normal, longitudinal, and lateral models. The normal model is a

linear spring-damper element, and the longitudinal and lateral models are linearized models with

saturation. [1] the normal model is

Fn = −kn (r −R) n; r < R (5.6)

where r is the distance from the center of the wheel to the ground, R is the tire radius, and n is

the normal vector to the ground in the center of the contact region. The normal tire forces in the

nominal configuration are given in table 5.6.
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Table 5.6: Tire forces in the nominal configuration (Adapted from [1])

Front tyre load 3829.6 N
Rear tyre load 3593.6 N

The longitudinal and lateral models implemented in this study are described in [124].

Ft = Fxb + Fy (n× b) (5.7a)

Fx =


µx |Frad|

κc
κ; κ ≤ κc

µx |Frad| ; κ > κc

(5.7b)

Fy =


µy |Frad|

αc
α; α ≤ αc

µy |Frad| ; α > αc

(5.7c)

where u is the unit vector coincident with the wheel rotation axis, b = (u× n) /|u× n| is the

longitudinal vector, κ is the longitudinal slip, α is the slip angle, and κc, αc are the critical slip

factors for the longitudinal and lateral models, which are parameters of the tire model.

The longitudinal slip and slip angle can be defined according to the following expressions

κ =
−bTvslip

bTvc
=
−bT (vc − vr)

bTvc
=
−bT (vc − ω × rn)

bTvc
(5.8a)

α = − arcsin

(
nT

(
b×

vc −
(
nTvc

)
n

|vc − (nTvc) n|

))
(5.8b)

where vc is the velocity of the center of the wheel ω is the angular velocity of the wheel, and r the

effective radius defined before.

The saturation ellipse between longitudinal and lateral forces if given by the following expres-

sion (
F satx

µx

)2

+

(
F saty

µy

)2

≤ |Frad|2 (5.9)

where µx and µy stand for the longitudinal and lateral friction coefficients and are parameters of

the tire model.
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If the components evaluated from Eqn. (5.7b) and Eqn. (5.7c) are not inside the ellipse

Eqn. (5.9), the saturation of the forces take place and the previously calculated forces Eqn. (5.7b)

and Eqn. (5.7c) doesn’t hold. In this case they have to be replaced by the following

F satx =
|Fn|√(

Fx
µx

)2

+

(
Fy
µy

)2
Fx =

|Fn|
froz

Fx (5.10a)

F saty =
|Fn|√(

Fx
µx

)2

+

(
Fy
µy

)2
Fy =

|Fn|
froz

Fy (5.10b)

5.2.2 Vehicle ride

The ride response, which is closely related to the comfort analysis, is defined as the ability of

a vehicle to filter vibration from different vibration sources, such as road roughness, speed bumps,

and on-board sources.

Vibration evaluation

Sitting passengers feel vibration from the seat, the floor, and the seat back. However, the

contact with seat is the dominant factor. When the whole system is undergoing motion, the

passengers are undergoing whole-body vibration. On the other hand, when one or more parts

are in contact with the vibration sources, the passengers are undergoing local vibration. In this

study, only whole-body vibration is considered. The vibration evaluation is involved with many

different concepts, such as sources, magnitude, types, frequency, duration, and direction. Although

many attempts have been made, it’s very difficult to unify the methods to evaluate the vibration

severity. In this study, only the tactile vibrations are evaluated, the acoustic vibrations are not

accounted for. According to ISO 2631-1, the whole-body vibration frequency range from 0.5Hz

to 80Hz is considered for health, comfort, and perception, and 0.1Hz to 0.5Hz is considered for

motion sickness. Since motion sickness will not be discussed here and higher frequency will be

filtered by the seat cushion, only frequency range from 0.5Hz to 80Hz will be considered. Vibration
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frequency is not the only factor that affects the human body discomfort. Vibration magnitude,

duration, and direction also affect the human body discomfort. When frequency is low, the human

body is approximate a rigid body and the discomfort is approximately proportional to the weighted

acceleration. In order to simplify the evaluation, human body is assumed to be rigid in this study

so that acceleration becomes the dominant magnitude.

According to ISO 2631-1, there are two basic evaluation methods, the root-mean-square(RMS)

method and the four power vibration dose value(VDV) method.

The RMS method measures the root-mean-square value of the weighted acceleration as follows:

RMS =

√
1

T

∫ tF

t0

a2w(t)dt (5.11)

where aw is the weighted acceleration and T is the duration of the measurement.

Comparing with the RMS method, The VDV method is more sensitive to the peaks:

VDV = 4

√∫ tF

t0

a4w(t)dt (5.12)

Standard tests

In this study, four-post test and the speed bumps test are presented as two standard tests for

the research of vehicle ride.

Four-post test

Four-post test is designed for the testing of vehicles, which is used here for the research of vehicle

ride. The test system consists of four vertical posts on top of which the tires are placed. These four

posts provide random vertical displacements according to a uniformly-distributed random profile.

This study focuses mainly on the affect of suspension design on the comfort analysis, the tire

characteristics is not considered here. Thus, the posts are directly connected to the wheel axis

instead of the tire surface. The random profile based on white noise is shown in figure 5.7. Between
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two profile points, the vertical displacement of the wheel center is interpolated linearly.

profile point 

Figure 5.7: The random profile of the four-post test (Adapted from [2])

Speed bumps test

5m/s 

10cm 

Figure 5.8: The modified speed bumps test

The speed bumps test is a very common test for vehicle ride comfort analysis. Generally,

speed bumps are modeled as cylindrical shapes with the axis below the ground. However, the

computation of the contacts between the bumps and the tires is complex. In order to simplify the

speed bumps test, a modified speed bumps test is employed in this study where a step is used to

replace the bumps here. Furthermore, since the initial vertical position doesn’t correspond to the

static equilibrium in the vertical direction, the vehicle system should be released after equilibrium

is reached.
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5.2.3 Ride optimization

Ride optimization based on four-post test with white noise

As discussed in 5.2.2, four-post test is employed as a case study for the research of vehicle ride.

The posts are directly connected to the wheel axis, the actuators on the posts generate white noise

for 2s. By slightly modifying the VDV method for, the objective function becomes the integral of

the fourth power of the chassis CG vertical acceleration.

Ψ =

∫ tF

t0

z̈4chassis dt (5.13)

Four different optimization experiments are carried out. The design parameters chosen for

these optimization experiments are the rear and front stiffness of the leaf spring [kL1, kL2] from

(5.3), the dominant damping of the rear and front suspension [c1, c2] from (5.5), and the dominant

stiffness of the rear and front suspension [k1, k2] from (5.5).

The first optimization experiment is the optimization of the objective function with respect to

all six parameters; the second optimization experiment is the optimization of the objective function

with respect to [kL1, kL2]; the third optimization experiment is the optimization of the objective

function with respect to [c1, c2]; the fourth optimization experiment is the optimization of the

objective function with respect to [k1, k2]. The following constraints on the parameter are imposed

to the optimization problem:

0 ≤ kL1, kL2 ≤ ∞ N/m

28300000 ≤ k1, k2 ≤ 28500000 N/m

0 ≤ c1, c2 ≤ ∞ N s/m (5.14a)

The initial guess of these parameters are the default values in [1]. The parameters evolution for

different experiments are given in Fig. 5.9, Fig. 5.11, Fig. 5.13, and Fig. 5.15 where it is shown that

each parameter converges after several iterations. In Fig. 5.10, Fig. 5.12, Fig. 5.14, and Fig. 5.16 the
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dynamic responses of the original and of the optimized systems are shown. They clearly illustrate

that all the dynamic responses are improved.
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Figure 5.9: The parameters evolution of optimization with 6 parameters for four-post test
with white noise
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Figure 5.10: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with 6 parameters for four-post test with white noise
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Figure 5.11: The parameters evolution of optimization with [kL1, kL2] for four-post test with
white noise
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Figure 5.12: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with [kL1, kL2] for four-post test with white noise
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Figure 5.13: The parameters evolution of optimization with [c1, c2] for four-post test with
white noise
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Figure 5.14: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with [c1, c2] for four-post test with white noise
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Figure 5.15: The parameters evolution of optimization with [k1, k2] for four-post test with
white noise
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Figure 5.16: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with [k1, k2] for four-post test with white noise
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Table 5.7: Objective values before and after optimization (Four-post test with white noise)

initial Ψ optimized Ψ
Optimization with 6 parameters 9.85 0.15
Optimization with [kL1, kL2] 9.85 2.26
Optimization with [c1, c2] 9.85 4.2
Optimization with [k1, k2] 9.85 2.29

Table 5.7 shows the objective value before and after optimization. The values of the optimal

parameters for different combinations are shown in table 5.8. It is easily seen that the responses

are improved to the largest extent when the optimization is performed for all six parameters. Based

on the severity of the effect the suspension parameters were shown to have on the ride comfort, the

following ranking can be identified:

[k1, k2] ≈ [kL1, kL2] > [c1, c2] (5.15)

Table 5.8: Optimized parameters with four-post test with white noise

Optimizations
kL1 kL2 c1 c2 k1 k2
[N/m] [N/m] [N s/m] [N s/m] [N/m] [N/m]

Original value 35906 35906 9946 9946 28397000 28397000
Optimized with 6 parameters 10611 16255 4699 2239 28387651 28389379
Optimized with kL1 and kL2 3252 11014 9946 9946 28397000 28397000
Optimized with c1 and c2 35906 35906 12203 4694 28397000 28397000
Optimized with k1 and k2 35906 35906 9946 9946 28310905 28330112

Ride optimization based on four-post test with red noise

In the previous section, four-post test with white noise is employed. However, generally the

road profile of rear wheels is highly correlated with the road profile of front wheels. Furthermore,

white noise has a constant power spectral density, which is not typically generated from any kind

of road profile. Therefore, four-post test with correlated red noise is employed to perform vehicle
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ride optimization in this section. The actuators on the posts generate correlated red noise for more

than 8 s. The vibration provided to the left and respectively to the right side of the vehicle are

independent. The vibrations between the front and the rear of the vehicle are correlated with a

time delay as follows:

∆T = L/v (5.16)

Same design parameters, cost function, and constraints with equation (5.14a) are chosen to

implement optimization experiments.

Like the parameters evolution in the last section, the parameters evolution for different ex-

periments are given in Fig. 5.17, Fig. 5.19, Fig. 5.21, and Fig. 5.23 where it is shown that each

parameter converges after several iterations. In Fig. 5.18, Fig. 5.20, Fig. 5.22, and Fig. 5.24 the

dynamic responses of the original and of the optimized systems are shown. They clearly illustrate

that all the dynamic responses are improved.
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Figure 5.17: The parameters evolution of optimization with 6 parameters for four-post test
with red noise
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Figure 5.18: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with 6 parameters for four-post test with red noise
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Figure 5.19: The parameters evolution of optimization with [kL1, kL2] for four-post test with
red noise
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Figure 5.20: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with [kL1, kL2] for four-post test with red noise
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Figure 5.21: The parameters evolution of optimization with [c1, c2] for four-post test with
red noise
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Figure 5.22: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with [c1, c2] for four-post test with red noise
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Figure 5.23: The parameters evolution of optimization with [k1, k2] for four-post test with
red noise
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Figure 5.24: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with [k1, k2] for four-post test with red noise

Table 5.9: Objective values before and after optimization (Four-post test with red noise)

initial Ψ optimized Ψ
Optimization with 6 parameters 3.11 0.34
Optimization with [kL1, kL2] 3.11 0.86
Optimization with [c1, c2] 3.11 0.66
Optimization with [k1, k2] 3.11 0.87

Table 5.9 shows the objective value before and after optimization. The values of the optimal

parameters for different combinations are shown in table 5.10. It is easily seen that the responses

are improved to the largest extent when the optimization is performed for all six parameters. Based

on the severity of the effect the suspension parameters were shown to have on the ride comfort, the

following ranking can be identified:

[c1, c2] > [k1, k2] ≈ [kL1, kL2] (5.17)
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Table 5.10: Optimized parameters with four-post test with red noise

Optimizations
kL1 kL2 c1 c2 k1 k2
[N/m] [N/m] [N s/m] [N s/m] [N/m] [N/m]

Original value 35906 35906 9946 9946 28397000 28397000
Optimized with 6 parameters 8663 26572 7684 42141 28386728 28393277
Optimized with kL1 and kL2 4491 66284 9946 9946 28397000 28397000
Optimized with c1 and c2 35906 35906 20075 283898 28397000 28397000
Optimized with k1 and k2 35906 35906 9946 9946 28309081 28494516

Ride optimization based on the speed bumps test

In the speed bumps test, the vehicle is released from equilibrium with an initial velocity of 5

m/s in the longitudinal direction. The steering is not actuated and the vehicle goes straight. At

a distance of 6 m ahead from the initial position in the longitudinal direction, a step of 10 cm

is placed. After 1 s the vehicle drops down the step and oscillates until the static equilibrium in

the vertical direction is reached. Again, same design parameters, same constraints with equation

(5.14a), and same cost function are chosen to implement optimization experiments.

Parameters evolution for different experiments are given in Fig. 5.25, Fig. 5.27, Fig. 5.29, and

Fig. 5.31. Again, it is shown that each parameter converges after several iterations. In Fig. 5.26,

Fig. 5.28, Fig. 5.30, and Fig. 5.32 the dynamic responses of the original and of the optimized

systems are shown. They clearly illustrate that all the dynamic responses are improved.
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Figure 5.25: The parameters evolution of optimization with 6 parameters for the speed
bumps test
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Figure 5.26: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with 6 parameters for the speed bumps test
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Figure 5.27: The parameters evolution of optimization with [kL1, kL2] for the speed bumps
test
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Figure 5.28: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with [kL1, kL2] for the speed bumps test
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Figure 5.29: The parameters evolution of optimization with [c1, c2] for the speed bumps test
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Figure 5.30: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with [c1, c2] for the speed bumps test
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Figure 5.31: The parameters evolution of optimization with [k1, k2] for the speed bumps test
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Figure 5.32: Dynamic response of chassis vertical acceleration: non-optimized vs. optimized
with [k1, k2] for the speed bumps test
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Table 5.11: Objective values before and after optimization (the speed bumps test)

initial Ψ optimized Ψ
Optimization with 6 parameters 678 48
Optimization with [kL1, kL2] 678 96
Optimization with [c1, c2] 678 257
Optimization with [k1, k2] 678 81

Table 5.11 shows the objective value before and after optimization. The values of the optimal

parameters for different combinations are shown in table 5.12. It is easily seen that the responses

are improved to the largest extent when the optimization is performed for all six parameters. Based

on the severity of the effect the suspension parameters were shown to have on the ride comfort, the

following ranking can be identified:

[k1, k2] > [kL1, kL2] > [c1, c2] (5.18)

Table 5.12: Optimized parameters with the speed bumps test

Optimizations
kL1 kL2 c1 c2 k1 k2
[N/m] [N/m] [N s/m] [N s/m] [N/m] [N/m]

Original value 35906 35906 9946 9946 28397000 28397000
Optimized with 6 parameters 1497 3052 14531 8418 28378782 28382080
Optimized with kL1 and kL2 0 0 9946 9946 28397000 28397000
Optimized with c1 and c2 35906 35906 18399 20402 28397000 28397000
Optimized with k1 and k2 35906 35906 9946 9946 28300000 28301252

5.2.4 Vehicle handling

Handling analysis is always the counterpoint to ride analysis. Usually, stiffer suspension sys-

tems increase the road-hold ability during corning and turning, but also increase vibration discom-

fort. In general, vehicle handling of a vehicle can be defined as the ability to perform transverse to

their direction of motion during turning and cornering, with precision and promptness.
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There are many maneuvers in which handling response can be test. Some good examples are

double lane-change (ISO 3888-1), obstacle avoidance (ISO 3888-2), lateral transient response test

methods (ISO 7401), and steady-state circular driving behavior (ISO 4138). This study employs

double lane-change(DLC) as a case study for the research of handling response.

Double lane-change maneuver

According to ISO 3888-1, the double lane-change maneuver consists of turning first to the

adjacent lane and returning to the initial lane without exceeding lane boundaries. The basic idea

of this maneuver is to test the lateral stability of vehicles. The suspension design is critical for the

lateral stability. For this reason, a basic requirement for suspension design is to maintain a good

lane-change performance. Otherwise, the vehicle can lose grip or even roll over in some extreme

maneuvers.

Assume the vehicle width is 1.8 m, the track dimensions for a double lane-change are presented

as follows according to ISO 3888-1:

2.23 

25 30 25 15 15 15 

2.41 

2.59 

Figure 5.33: Double lane-change track (in meters)

5.2.5 Handling optimization

As discussed in 5.2.4, this study employs a double lane-change maneuver as a case study for

the research of vehicle handling. The test speed is 50 km/h. The objective function is the integral

of the square of the chassis CG roll rate.

Ψ =

∫ tF

t0

θ̇2chassis dt (5.19)
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Four different optimization experiments are carried out. The design parameters chosen are

the same as for the four-post test. The following constraints on the parameter are imposed to the

optimization problem:

0 ≤ kL1, kL2 ≤ 200000 N/m

0 ≤ k1, k2 ≤ 29000000 N/m

0 ≤ c1, c2 ≤ 100000 N s/m (5.20a)

The parameters evolutions for different experiments are given in Fig. 5.34, Fig. 5.36, Fig. 5.38,

and Fig. 5.40. The dynamic responses of original and optimized systems are shown in Fig. 5.35,

Fig. 5.37, Fig. 5.39, and Fig. 5.41. These figures clearly illustrate that all the dynamic responses

are improved.
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Figure 5.34: The parameters evolution of optimization with 6 parameters for the double
lane-change maneuver
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Figure 5.35: Dynamic response of chassis roll rate: non-optimized vs. optimized with 6
parameters for the double lane-change maneuver
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Figure 5.36: The parameters evolution of optimization with [kL1, kL2] for the double lane-
change maneuver
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Figure 5.37: Dynamic response of chassis roll rate: non-optimized vs. optimized with
[kL1, kL2] for the double lane-change maneuver
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Figure 5.38: The parameters evolution of optimization with [c1, c2] for the double lane-change
maneuver
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Figure 5.39: Dynamic response of chassis roll rate: non-optimized vs. optimized with [c1, c2]
for the double lane-change maneuver
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Figure 5.40: The parameters evolution of optimization with [k1, k2] for the double lane-change
maneuver
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Figure 5.41: Dynamic response of chassis roll rate: non-optimized vs. optimized with [k1, k2]
for the double lane-change maneuver

Table 5.13: Objective values before and after optimization (the double lane-change maneu-
ver)

initial Ψ optimized Ψ
Optimization with 6 parameters 0.0257 0.0012
Optimization with [kL1, kL2] 0.0257 0.0028
Optimization with [c1, c2] 0.0257 0.0048
Optimization with [k1, k2] 0.0257 0.0022

Table 5.14: Optimized parameters with the double lane-change maneuver

Optimizations
kL1 kL2 c1 c2 k1 k2
[N/m] [N/m] [N s/m] [N s/m] [N/m] [N/m]

Original value 35906 35906 9946 9946 28397000 28397000
Optimized with 6 parameters 200000 200000 100000 100000 29000000 29000000
Optimized with kL1 and kL2 200000 200000 9946 9946 28397000 28397000
Optimized with c1 and c2 35906 35906 100000 100000 28397000 28397000
Optimized with k1 and k2 35906 35906 9946 9946 29000000 29000000
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Theoretically, the stiffer the suspension system is, the better are the handling characteristics.

The results of the optimization experiments implemented in this section perfectly validate this

assumption. From 5.14 it is clearly seen that all the parameters converge to their upper bounds.

Furthermore, table 5.13 shows that the optimization for all six parameters looks better than the

other optimization experiments that involved fewer design parameters.

5.3 Dynamic analysis of a passive dynamic robot

An interesting area of application for the multibody dynamics techniques is robotics. Thus, in

this study, the dynamic simulation of a passive dynamic robot with feet and knees is implemented. A

passive dynamic robot is able to perform a stable walking motion without any motor and controller,

which is a pretty good case to study human walking behavior. In the last 24 years a lot of work has

already been done for the research of passive dynamic robot. The reader is referred to [125–139]

for details.

Unlike the traditional methods used for modeling of robotic systems in the last 24 years,

different coordinate system and formulation are employed for the dynamic analysis for a passive

dynamic robot in this study. Generally, relative coordinates and Lagrange formulation are used

for the dynamic analysis for robotic systems. There are several drawbacks associated to the use

of this approach. First, it is difficult to assess if all the DOF associated with these coordinates

will be valid during the entire simulation; the system may become unstable when it goes through a

singular or a bifurcation position. Second, it is more difficult to model and to write the equations

with relative coordinates than with reference point coordinates. Thus, in this study, reference point

coordinates and the penalty formulation are employed to perform dynamic analysis for the passive

dynamic robot, significantly simplifying the modeling stage and making the robotic system more

stable. In addition, the passive dynamic robot is also used to test and validate all the point contact

and surface contact models developed in MBSVT.
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5.3.1 Contact-impact force models

The treatment of impact and contact forces is always a challenging issue in multibody systems

with instantaneous impacts or contacts of a duration between different bodies. Generally, there

are two families of methods to solve the impact problems: the discontinuous methods and the

continuous methods [140]. The discontinuous method assume the impact occurs instantaneously

[141, 142] while the continuous method relates the force and the deformation when impact occurs

[140, 143].

In this study, the continuous method and the penalty formulation are used to model the impact

and contact forces for a passive dynamic robot. Several different contact and friction models, which

can be used to model point contact and surface contact, are developed and included in MBSVT 6.

These models include a static friction model, Ambrósio dry friction model, Kelvin-Voigt viscous-

elastic model, and a simplified tire model, which will be briefly introduced in the coming section.

For other impact and contact models the reader is referred to [3, 4]

Point contact models

• Kelvin-Voigt viscous-elastic model

r 

𝛿 
 

d 
𝐅n 

Pcenter 

Pcontact 
ground 

n 

Figure 5.42: Normal contact between sphere and plane (Adapted from [3])
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Fn =

 Kδn +Dδ̇; δ̇ > 0 (loading phase)

Kδn + cDδ̇; δ̇ < 0 (unloading phase)
(5.21)

In this study, Kelvin-Voigt viscous-elastic model is employed to model the normal contact

between sphere and plane, this model assumes that both the spring and the damper are linear.

As shown in figure 5.42 and equation 5.21, r is the radius of the sphere, d is distance between

the CG of the sphere and the plane, δ is the relative penetration depth, n is the direction of

the force that is perpendicular to the plane, Fn is the normal force, K is the stiffness, D is

the damping, c is the restitution coefficient, δ̇ is the relative normal velocity of the colliding

bodies. The normal impact is compose of two phases: loading phase and unloading phase. In

the loading phase two contact bodies are compressing each other while in the unloading phase

two contact bodies are separating from each other. As shown in equation 5.21, the energy

loss from impact is included by multiplying the damping force with a restitution coefficient

c, where 0 < c < 1.

• Ambrósio dry friction model

𝐅T 
 

𝐕T 
 v0 

 
v1 

 

Figure 5.43: Ambrósio friction force (Adapted from [4])
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Ambrósio friction model, which is obtained by making some modifications to Coulomb’s

friction law, is used to model the dry friction in this study. Ambrósio friction force is expressed

as:

FT = −µcdfn
VT

vT
(5.22)

where µ is the dry friction coefficient, Fn is the normal contact force, VT is the relative

tangential velocity between contact bodies and cd is a correction coefficient, which can be

expressed as:

cd =


0 if vT < v0

vT−v0
v1−v0 if v0 < vT < v1

1 if vT > v1

(5.23)

• A static friction model

𝐅n 

𝐅s 

Figure 5.44: A static friction model

As shown in figure 5.44, the normal contact force and the tangential force are both

modeled as spring-damper systems. As mentioned before, the normal contact force is Kelvin-

Voigt viscous-elastic model and the force direction is perpendicular to the contact plane. The

tangential force, which is also the static friction force here, is parallel to the contact plane.
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With a large stiffness and damping, the functionality of the contact would be very similar

with a revolute joint.

• A simplified tire model

A simplified tire model is used in this study that is specifically described in section 5.2.1.

Surface contact model

r 
d 

δ 
ground 𝐅n 

Figure 5.45: Surface contact model

Generally, most contacts occur between surfaces. In this study, the surface contact is modeled

by adding multiple point contact to the contact surface. Figure 5.45 shows the front view and

bottom view of a typical surface contact, where each blue circle is a point contact. Multiple point

contact can be also used to model complex surface contact models, in this case different point

contact might have different radius of the sphere, stiffness, and damping. In this study, multiple

point contact is used to model the surface contact between the feet and the slope for a passive

dynamic robot, which will be described in section 5.3.3.
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5.3.2 Dynamic analysis of a passive dynamic robot with point con-

tact

mb   

mt   mt   

ms   
ms   

𝛾 

    

θ 

 

Figure 5.46: passive dynamic robot with point contact (Adapted from [5])

From Hsu’s thesis [5], the dynamic analysis of a passive dynamic robot is specifically described.

In this study, the same model and initial conditions from [5] is employed to perform dynamic analysis

of a passive dynamic robot by using the penalty formulation and reference point coordinates system.

As shown in figure 5.46, the kneed robot is placed on slope with a fixed angle γ from the horizontal

plane. A point contact is added between the robot feet and the slope. A bump stop is installed on

the knee to prevent it from being over rotated. The mass of the body, the thigh, and the shank are

expressed as mb, mt, and ms respectively. θ is the relative angle between the upper link of leg 1

and the vertical line, which will be used later to show us the phase portrait of the gait. For other

physical parameters and initial conditions, the reader is referred to [5].
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Dynamic analysis of a passive dynamic robot with static friction force

The first numerical experiment is to add static friction forces between robot feet and the slope.

With a large stiffness and damping, the functionality of the contact would be very similar with a

revolute joint. Initially the robot is placed on the slope. With the affect of gravity, the robot is

walking along the slope automatically for 5 seconds, as shown in figure 5.47:

 

 

 

 

 

 

 

 

Figure 5.47: Screenshots from dynamic simulation for the first experiment
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The phase portrait of the periodic gait is shown in figure 5.48 as follows:
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heelstrike, switch
to swing phase

kneestrike while
being swing leg

kneestrike while
being stance leg
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prevents stance leg
from bending

heelstrike, switch
to stance phase

Figure 5.48: Phase portrait for the upper link of the first leg for the first experiment

From the phase portrait presented in 5.48 it’s clear to see that, with the given initial conditions,

the robot simulation converges to the stable limit cycle within a few steps. At the beginning, the

stance leg that is leg 2 is placed on the slope and the swing leg that is leg 1 is released with an

initial angular velocity. At a certain moment the knee-strike occurs when the swing leg straightens

out, which leads to an instantaneous angular velocity change for both legs. Then the swing leg

swings as a single link before heel-strike to the slope. After the heel-strike, the knee is locked by a

spring-damper system that connects the CG of the thigh and shack and the swing leg switches to

the stance leg. After becoming the stance leg, the spring-damper system that generally has high

stiffness and damping will prevent the knee from bending. Then, the knee-strike from the swing
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leg leads to an small instantaneous angular velocity change for both legs again. Finally, after the

heel-strike of the swing leg, the stance leg switches to the swing leg and start a new cycle again.

Dynamic analysis of a passive dynamic robot with dry friction force

In the first numerical experiment static friction forces are used and the robot converges to the

limit cycle within a few steps. In the second numerical experiment static friction forces are replaced

by Ambrósio friction force with v0 = 1−8, v1 = 1−5, and µ = 0.9 and the phase portrait is shown

as follows:
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Figure 5.49: Phase portrait for the upper link of the first leg for the second experiment

From the phase portrait 5.49 it’s clear to see the robot simulation converges to the stable limit cycle
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within a few steps just like the first experiment. This means with a large dry friction coefficient

µ = 0.9, the robot is still very stable.

In the third experiment, the same contact forces are used except the dry friction coefficient is

changed from 0.9 to 0.2. The robot becomes unstable and falls over after one step, as shown in

figure 5.50.

 

 

 

Figure 5.50: Screenshots from dynamic simulation
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5.3.3 Dynamic analysis of a passive dynamic robot with surface

contact

mb   

mt   mt   

ms   
ms   

𝛾 

    

θ 

 

Figure 5.51: passive dynamic robot with surface contact (Adapted from [5])

From Hsu’s thesis [5], the dynamic analysis of kneed robot with point contact is implemented,

which is also implemented by using different approach in the previous section. In this section, the

dynamic analysis of kneed robot with surface contact will be performed. As shown in figure 5.51,

three contact points are added to the robot foot, one on the heel, one on the arch, and one on the

toe. Two spring-damper systems are placed between the foot and the shank in order to prevent

the foot from rotating during the swing stage.
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Dynamic analysis of a passive dynamic robot with static friction force

In the fourth numerical experiment for the passive dynamic robot, static friction forces are

employed for all the contact points. Same initial conditions and physical parameters are used for

the simulation. The screen shots from walking simulation is shown in figure 5.52 as follows:

 

 

 

 

 

 

 

 

 

Figure 5.52: Screenshots from dynamic simulation for the fourth experiment
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(a) Phase portrait with 5 seconds
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(b) Phase portrait with 10 seconds

Figure 5.53: Phase portrait for the upper link of the first leg for the fourth experiment

As you can see, the robot successfully walks for 5 seconds without falling over. However, from the

phase portrait shown in figure 5.53a, it’s clear to see that the robot simulation doesn’t converge

to the stable limit cycle in the first 5 seconds. In order to see if the system is able to converge to

the stable limit cycle, a simulation with 10 seconds is implemented. As shown in 5.53b, the robot

finally converges to the stable limit cycle after 5 seconds. Comparing with the first two simulation

experiments, it takes the robot model simulation more time to converge to the stable limit cycle in

this fourth experiment.

Dynamic analysis of a passive dynamic robot with dry friction force

In the fifth numerical experiment for the passive dynamic robot with surface contact, Ambrósio

friction forces with v0 = 1−8, v1 = 1−5, and µ = 0.9 are employed for all the contact points. The

screen shots from walking simulation is shown in figure 5.54 as follows:
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Figure 5.54: Screenshots from dynamic simulation for the fifth experiment

As shown in Figure 5.54, the robot becomes unstable and falls over after one step.
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Chapter 6

Multibody dynamics software develop-

ment

The evolution of multibody dynamics during the last decades makes possible not only to think

about the analysis of mechanical systems, but also to develop tools that can help to improve the

design of them. There are many commercial packages that can model multibody systems, such as

ADAMS, SIMPACK, SimMechanics, LMS VirtualLab Motion, and RecurDyn. One of the draw-

backs of these commercial packages is that they don’t release the source code to the users. More-

over, commercial multibody packages mainly focus on kinematics and dynamics capabilities, their

sensitivity analysis and optimization capabilities are not efficient. There are also some packages

developed in academia, but these packages mainly focus on specific application and algorithm.

This study developed a modular multibody package MBSVT (Multibody Systems at Virginia

Tech) as a software library with forward kinematics and dynamics, sensitivity analysis, and op-

timization capabilities. MBSVT is a package for education and research, which allows access to

the source code for customization. This software was developed in Fortran 2003 as a collection

of Fortran modules and it was tested on several different platforms using multiple compilers. The

kinematic library includes dot-1 constraint, revolute, spherical, Euler, and translational joints, as

well as distance and coordinates driving constraints. The library implements external forces, such

as translational spring-damper-actuator, bump stop, a static friction model, Ambrósio dry fric-

tion model, Kelvin-Voigt viscous-elastic model, and a simplified tire model. In MBSVT, Newton’s

method, explicit and implicit Runge-Kutta method are used to perform kinematic analysis and

dynamic analysis respectively. Moreover, the adjoint variable method based on the penalty for-

mulation is employed to calculate the sensitivities. Furthermore, with the outputs of sensitivity

analysis, MBSVT uses L-BFGS-B [101], a very popular optimization package, to perform gradient-

based optimization. MBSVT also provides a connection with Matlab by means of the Matlab
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engine.

To show the functionality of the library, the application of MBSVT to a full vehicle and a

passive dynamic robot are discussed in section 5.2 and section 5.3 respectively.

6.1 The MBSVT features

Kinematics Dynamics 

Sensitivity 
analysis 

 
Optimization 

Figure 6.1: MBSVT features
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As shown in figure 6.1, the main features of MBSVT include kinematics, dynamics, sensitivity

analysis, and optimization. Newton’s method and Runge-Kutta method are used for the kinematic

analysis and dynamic analysis respectively. The adjoint variable method based on the penalty

formulation and L-BFGS-B are used to perform sensitivity analysis and optimization respectively.

Kinematics

• Position equation

Φ(q, t) =

 ΦK(q)

ΦD(q, t)

 = 0. (6.1)

• Velocity equation

Φq(q, t)q̇ = −Φt. (6.2)

• Acceleration equation

Φq(q, t)q̈ = −Φ̇t − Φ̇qq̇. (6.3)

The main task of kinematic analysis is to solve position, velocity, and acceleration equations.

As shown in equation 6.1, the position equation is composed of kinematic constraints ΦK(q)

and driving constraints ΦD(q, t). The velocity equation 6.2 is obtained by differentiating the

position equation while the acceleration equation 6.3 is obtained by differentiating the velocity

equation. To solve these equations, one only needs to simply employs newton’s method or other

similar methods for solving nonlinear system.

Dynamics

MBSVT employs the penalty formulation as the EOM for dynamic analysis. For more details

about the penalty formulation, the reader is referred to section 2.4. Comparing with other formu-

lations, there are several advantages to use the penalty formulation. First, the penalty formulation

is more stable, and it doesn’t fail around kinematic singularity. Second, the penalty formulation

allows redundant constraints. Third, the penalty formulation is an ODE-like formulation, it is more
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computationally efficient to be solved than DAE formulations. Fourth, unlike Maggi’s formulation,

the penalty formulation doesn’t need to restart the numerical integrator for each time step. Based

on these advantages, the penalty formulation is chosen to be the dynamic equation for MBSVT.

The shortcoming of the penalty formulation is that it requires an arbitrary value for its penalty

factor and for two other coefficients. There is no rigorous method of determining acceptable val-

ues for these terms. This penalty factor is typically chosen based on the researcher’s experience

with this formulation. To solve the EOM, explicit Runge-Kutta method and implicit Runge-Kutta

method are employed in MBSVT.

Sensitivity analysis

In order to perform sensitivity analysis for large and complex multibody systems with a large

number of parameters, the adjoint variable method based on the penalty formulation is used in

MBSVT. The advantages of the penalty formulation has already been described in the previous

section. The reason to choose the adjoint variable method instead of the direct differentiation

method is the adjoint variable method works well when the number of design parameters is large

while the direct differentiation method doesn’t work well when the number of design parameters is

large. For more details about the adjoint variable method based on the penalty formulation, the

reader is referred to section 3.2.3.

Optimization

With the outputs of the sensitivity analysis, many gradient-based optimization packages can

be used to perform the dynamic response optimization. L-BFGS-B, a third party gradient-based

optimization package, is used with MBSVT to perform optimization.

Minimize f(P)

Subject to li ≤ pi ≤ ui ∀i (6.4)
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Figure 6.2: L-BFGS-B flowchart

As shown in equation 6.4, L-BFGS-B is able to perform optimization with bounded constraints,

when f(q) is the cost function, q is the set of design parameters.

Figure 6.2 shows the functionality of L-BFGS-B, where P is the set of parameters, f is the

value of cost function, G is the set of sensitivities. The same initial condition of state vector Y is

used for each iteration. At the beginning, with the initial guess of the set of parameters P, MBSVT

computes the value of cost function f and sensitivities G. P, f , and G are then sent to L-BFGS-B

to calculate a new set of parameters P′. If the set of parameters converges at the current iteration,

then the process is ended, otherwise P′ is sent to MBSVT to obtain the new value of cost function

f ′ and sensitivities G′ that are then sent to L-BFGS-B along with P′ to start a new iteration.

6.2 The MBSVT algorithm

The MBSVT is a modular library that can be linked to user’s projects. The algorithm , as

shown in Fig.6.3, follows through the primary steps of model set-up, integrator set-up, and results

output .
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• Add bodies 

• Add constraints 

• Add forces 

• Set up DOF 

Model Set-up 

• Forward Kinematics 

• Forward Dynamics 

• Sensitivity Analysis 

• Optimization 

Integrator Set-up 
• Export results to txt 

files 

• Fortran-Matlab 
interface 

Results Output 

Figure 6.3: MBSVT Algorithm flowchart

First, by simply adding bodies from the user’s interface, all the inertia properties are auto-

matically saved. Second, constraints and forces are added to the system. After adding constraints

and forces, If the number of independent constraints, m, is smaller than the number of coordinates,

nc, then DOF, d = nc − m, must be chosen and initialized in order to solve the initial position

and velocity of the mechanism in function of the DOF. Once the mechanism has been described,

MBSVT has different functions and integrators to perform the kinematics, forward dynamics, sen-

sitivity analysis, or optimization. Finally, MBSVT provides a connection with Matlab by means of

the Matlab engine in order to visually output the results.

6.3 The MBSVT structure

As a modular package, MBSVT is made up of several modules, as shown in table 6.1 with the

structure shown in figure 6.4.

As shown in figure 6.4, the MBSVT is composed of five main parts. The first part contains all

of the inertia terms that include mass, moment of inertia, and all the inertia related computational

terms.
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Inertia terms 

•Mass 

•Moment of 
inertia 

•Mass matrix 

•Derivatives, 𝐌𝐪𝐕 

Constraints, 
𝚽,𝚽𝐪, 𝚽 𝐪… 

•Euler constraint  

•Dot-1 

•Spherical 

•Revolute 

•Translational 

•Position driving 
constraint 

•Distance driving 
constraint 

 

Forces,  

𝐐,𝐐𝐪, 𝐐𝐪 , 𝐐𝛒…  

•TSDA 

•Bump 

•Normal contact 

•Dry friction 

•Static friction 

•Tire force 

•Gravity 

•User defined 
force 

Formulations 

•Position 
kinematics 

•Velocity 
kinematics 

•Acceleration 
kinematics 

•Penalty 
formulation 

•𝐟𝐪, 𝐟𝛒, for ADJ 
sensitivity  

Integrators and 
operators 

•ERK, IRK, and  
IRK_ADJ 
integrator 

•Newton 
integrator 

•L-BFGS-B 

•Math operator 

•Matlab_caller 

 

Figure 6.4: MBSVT Modular Structure

Unlike kinematic analysis and dynamic analysis, the computation of sensitivities requires the

differentiation of cost function and the EOM, which generates many derivatives. Thus, the second

part includes all the expressions of these derivatives, which include: Φ, Φq, Φ̇q, Φ̈q, Φ̇qq̇, Φ̇qq̇q,

ΦqqV, and ΦT
qqV. Manual differentiation is used to compute the expressions of these derivatives,

for more details about manual differentiation, reader is referred to section 1.4

The third part contains several kinds of external forces and tire models, such as translational-

spring-damper-actuator force, bump stop force, static friction force, Ambrósio dry friction force,

Kelvin-Voigt viscous-elastic force, and a simplified tire model. For those forces not defined in

MBSVT, callbacks are used for users to provide user defined forces. Gravity is automatically

considered by the library.

The forth part includes all the generic functions to construct different formulations correspond-

ing to different modes such as kinematics, dynamics, sensitivity analysis, and optimization.

The last part includes all the integrators, operators, and interfaces to perform kinematic anal-

ysis, dynamic analysis, sensitivity analysis, and optimization and to visually plot the results. These

integrators and operators includes newton’s integrator for kinematics, explicit and implicit Runge-

Kutta integrator for forward dynamics, implicit Runge-Kutta adjoint integrator for adjoint sensitiv-

ity analysis, L-BFGS-B for gradient optimization, and a math operator module that includes some

important user-defined math operators. After obtaining the results, MATLAB CALLER provides

a connection with Matlab by means of the Matlab engine in order to visually output the results.
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Table 6.1: Module list

CONSTANTS Module of solver parameters
CONSTRAINTS Module that manages the constraints
d2Jacobdt2 Module of Φ̈q

DERIVED TYPES Module of solver derived types
dJacobdt Module of Φ̇q

djacobdt qp Module of Φ̇qq̇
formulation Dynamics Dynamic simulation module
formulation Kinematics Kinematic simulation module
formulation Sensitivity Sensitivity analyis module

formulations
Module contain the generic functions that manage the use of
different formulations

generalized forces Generalized forces module
Jacob Module of Φq

jacob djacobdt qp Module of (Φ̇qq̇)q

jacob jacob
Module of ΦqqV, which is the jacobian of the
primitive jacobian multiplied by a vector

jacobT jacob
Module of ΦT

qqV, which is the transpose of the jacobian of the

primitive jacobian multiplied by a vector

Mass Massq
Module of MqV, which is the jacobian of the mass matrix
multiplied by a vector

math oper
Module of mathematical operations for multibody dynamics
computations not supported by the Fortran 2003 standard

matlab caller Managment of sessions of MATLAB engine
primitive forces Primitive forces module
restric Module of primitive constraints
SOLIDS Solids module that adds and manages the bodies of the system

STATE
Module of solver state variables, subroutines and functions. It
creates, manages and updates the state variables of the model
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Chapter 7

Conclusion

In this study, we bring new contributions to the state-of-the-art in analytical approaches to per-

form sensitivity analysis of multibody systems. The direct differentiation method and the adjoint

variable method are developed in the context of the penalty formulation and Maggi’s formulation.

The resulting sensitivities are applied to perform dynamical optimization of different multibody

systems. The collection of bench-mark problems includes a five-bar mechanism and a full vehicle

model. In addition, the dynamic simulation of a passive dynamic walker is implemented by us-

ing reference point coordinates and the penalty formulation. Finally, a new multibody dynamics

software library MBSVT (Multibody Systems at Virginia Tech) is developed in Fortran 2003, with

forward kinematics and dynamics, sensitivity analysis, and optimization capabilities.

7.1 Contributions

The main contributions of this study can be summarized as follows:

• Reviewed and summarized most of the current analytical sensitivity approaches based on the

direct differentiation method and the adjoint variable method.

• Brought new contributions to the state-of-the-art in analytical approaches to perform sensi-

tivity analysis of multibody systems. The new analytical sensitivity approaches developed in

this study include:

– The direct differentiation method based on explicit first order Maggi’s formulation

– The adjoint variable method based on explicit first order Maggi’s formulation

– The adjoint variable method based on implicit first order Maggi’s formulation

– The adjoint variable method based on implicit second order Maggi’s formulation
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– The adjoint variable method based on explicit first order penalty formulation

– The adjoint variable method based on implicit second order penalty formulation

Direct 
method  

Index-1 
DAE 

Index-3 
DAE 

Penalty 

Maggi’s 
Adjoint 
method  

Index-
1 DAE 

Index-
3 DAE 

Penalty   
1st order 

ODE 

Penalty  
2nd order 

ODE 

Maggi’s 
explicit 1st 
order ODE 

Maggi’s 
implicit 1st 
order ODE 

Maggi’s 
implicit 2nd 
order ODE 

Figure 7.1: Main contributions

The direct differentiation method and the adjoint variable method in the context of several

different multibody dynamics formulations are summarized in figure 7.1. The approaches

developed in this study are highlighted with red color.

• Validated and tested these new analytical sensitivity approaches by comparing them with

other analytical and numerical approaches by using a five-bar mechanism as a case study.

• Demonstrated the capability of the adjoint variable method based on explicit first order

penalty formulation to perform sensitivity analysis and gradient-based optimization for large

and complex multibody systems with respect to multiple design parameters by perform han-

dling optimization and ride optimization for a complex full vehicle model.

• Developed an open source software package MBSVT, which has forward kinematics and

dynamics, sensitivity analysis, and optimization capabilities, for research and education of

multibody dynamics and vehicle dynamics, and make it available to the scientific community.

Complex finite difference method is used to validate all the derivatives before putting them
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in the library, which guarantees the computational accuracy of MBSVT. Checked and tested

MBSVT in several different platforms, compilers, and operating systems, such as gfortran,

gcc, intel fortran, Windows, and Linux. Furthermore, several different contact and friction

models, which can be used to model point contact and surface contact, are developed and

included in MBSVT. These models include a static friction model, Ambrósio dry friction

model, Kelvin-Voigt viscous-elastic model, and a simplified tire model.

• Finally, unlike those traditional methods to model robotic systems that employ relative coor-

dinates and Lagrange formulation, reference point coordinates and the penalty formulation

are employed to perform dynamic analysis for robotic systems in this study. By doing this,

the robotic systems become more stable when system goes through a singular or a bifurcation

position. In addition, it is easier to model and to write the equations with reference point

coordinates than with relative coordinates, simplifying the modeling process. Furthermore,

the passive dynamic robot is also used to test and validate all the point contact and sur-

face contact models developed in MBSVT, which is the software to be used to perform the

dynamic analysis for the passive dynamic robot.

7.2 Future work

Generally, the future work includes the sensitivity analysis and optimization of multibody

systems with contact, friction, and uncertainty. In addition, the comparison of the efficiency and

accuracy of between automatic differentiation, manual differentiation and other methods is the next

direction of future research. Furthermore, the MBSVT package should continue to be developed

with new algorithms and formulations for multibody systems with with contact, friction, and

uncertainty. Finally, to develop a visualization package for MBSVT is necessary if one wants to

commercialize MBSVT. Thus, another task for future work is to develop a visualization package

for MBSVT.

Specifically, the future work includes the following topics:

• In this study, the dynamic analysis for a passive dynamic robot has been done, but the
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sensitivity analysis and optimization of the performance of the passive dynamic robot has

not been studied in this study. Thus, the first job to do in the future is to perform sensitivity

analysis and optimization of the passive dynamic robot. The optimization of the performance

of passive dynamic robot has been studies in the last 10 years, such as the optimization of

energy consumption, walking speed, and stability. However, these approaches contain specific

algorithms, which limit the scope of these approaches to specific applications. Currently there

is no general-purpose method to optimize the performance of passive dynamic robot. Thus,

it’s interesting to see if these new approaches developed in this study are capable to optimize

the performance of passive dynamic robot.

• Uncertainty comes from different sources, such as initial conditions, system parameters, and

external perturbation and noise. Actually, almost all the real-life multibody systems are

affected by uncertainty. Thus, the treatment of uncertainty becomes very important. The

kinematic analysis and dynamic analysis for multibody systems with uncertainty has already

been studied by many people. Therefore, the second job to do in the future is to perform

sensitivity analysis and optimization of multibody systems with uncertainty.

• Since the computation of sensitivities requires the differentiation of cost function and the

EOM, which generates many derivatives, a efficient and general-purpose method is required

to perform sensitivity analysis. As what’s introduced in section 1.4, automatic differentia-

tion and manual differentiation are better than symbolic computational software packages

and numerical differentiation. However, a more specific comparison of efficiency, accuracy,

generality, and development time between these different methods has not been made yet.

Thus, the third job to do in the future is to compare efficiency, accuracy, generality, and

development between automatic differentiation method, manual differentiation method and

other methods.

• MBSVT is developed by Fortran 2003 in order to increase the simulation speed. By doing this,

some characteristics are sacrificed, such as the visualization and animation characteristics.

Although MBSVT has powerful functional elements, a good visualization package should

be developed and included in MBSVT if one wants to commercialize MBSVT . Currently,

MBSVT has a Fortran-Matlab interface that is able to start the matlab engine and plot the
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results. However, to visually simulate miscellaneous multibody systems, a better visualization

package is required. Thus the fourth job to do in the future is to develop a visualization

package for MBSVT.
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