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A Novel Highly Accurate Wireless Wearable Human Locomotion Tracking
and Gait Analysis System via UWB Radios

Heba A. Shaban

(ABSTRACT)

Gait analysis is the systematic study of human walking. Clinical gait analysis is the process

by which quantitative information is collected for the assessment and decision-making of any

gait disorder. Although observational gait analysis is the therapist’s primary clinical tool

for describing the quality of a patient’s walking pattern, it can be very unreliable. Modern

gait analysis is facilitated through the use of specialized equipment. Currently, accurate gait

analysis requires dedicated laboratories with complex settings and highly skilled operators.

Wearable locomotion tracking systems are available, but they are not sufficiently accurate for

clinical gait analysis. At the same time, wireless healthcare is evolving. Particularly, ultra-

wideband (UWB) is a promising technology that has the potential for accurate ranging and

positioning in dense multi-path environments. Moreover, impulse-radio UWB (IR-UWB)

is suitable for low-power and low-cost implementation, which makes it an attractive candi-

date for wearable, low-cost, and battery-powered health monitoring systems. The goal of

this research is to propose and investigate a full-body wireless wearable human locomotion

tracking system using UWB radios. Ultimately, the proposed system should be capable of

distinguishing between normal and abnormal gait, making it suitable for accurate clinical

gait analysis.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Observational gait analysis, the standard method of evaluating gait, refers to the visual as-
sessment of a patient’s gait. Gait analysis by observer assessment does not use any specialized
equipment, and is simply used to observe abnormalities in gait. Clinical gait analysis, also
termed as quantitative gait analysis, provides a detailed clinical introduction to understand-
ing and treating walking disorders [54], [63]. The identification of gait disorders is commonly
assessed by the measurement of the spatial and temporal parameters of gait1. However, it is
worth noting that the techniques and technologies that work well for measuring normal gait
often fail when applied to abnormal gait [11], [88]. Moreover, the criteria valid for clinical
research are not necessarily the same as those valid for clinical testing [54], [15]. Accurate
measuring systems, e.g., optical tracking systems, are available, but they require that the
test subject move inside a dedicated laboratory with multiple charge-coupled devices (CCD-
cameras) and require complex settings [63], [36]. Subtle abnormalities are not evident when
examined indoors, as when walking is performed in a laboratory with the patients concen-
trating on what they are doing, since this does not necessarily represent their normal walking
[63]. On the other hand, body-fixed-sensors do not require such complex settings or highly
skilled operators. Yet, these systems also have their limitations. A possible solution for over-
coming these limitations is to use multiple sensors, or what is known as sensor-fusion [11],
[10], [24]. However, the overall power consumption and system cost remain as two limiting
factors, where sensory systems are commonly expensive.

This work is motivated by the properties of ultra wideband (UWB) technology as a
promising candidate for real-time human locomotion tracking with specific application to
clinical gait analysis. In particular, wearable wireless body area networks (WBANs) seem
to be a promising solution for long-time monitoring of patients without large laboratories
or complex measurement setups. Moreover, UWB has the potential for providing accu-

1Spatio-temporal parameters of human gait include step-length, stride-length, velocity, etc.

1
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rate ranging and positioning estimates required for the assessment of accurate clinical gait
analysis with low-power consumption. However, the design of such a system has many chal-
lenges and key factors that need to be addressed. Initially, target ranging accuracy, required
signal-to-noise-ratio (SNR), and target sampling rate should be specified. Based on these
requirements, calculation of the achievable SNR is necessary for determining the feasibility
of the system under investigation. Then, possible receiver structures should be exploited and
compared based on both performance and power consumption requirements. Further, possi-
ble alternatives for low-power consumption should be conducted. Moreover, arrangement of
transceivers (nodes), number of nodes and their locations are important factors that need to
be studied, since these factors directly affect motion captured data. Finally, determination
of relative positions of nodes during movement based on acquired ranging data and dynam-
ics of human movement is a challenging task, where all-nodes are mobile. Other factors of
interest include system performance and sensor-fusion.

1.2 Thesis Statement

In this work, we design the primary components of an on-body human locomotion-tracking
system using UWB sensors with a specific application to clinical gait analysis. The design
of such a system involves multiple research challenges including the following:

• Time-of-arrival (TOA) estimation techniques which require minimal power (of each
node and the overall system) while meeting strict accuracy requirements.

• Determination of the number of sensors and their locations in order to minimize power
requirements while providing sufficient information to determine needed body kine-
matics and/or kinetics.

• Determination of relative positions of nodes using limited (and selectively corrupted)
range measurements and collected locomotion biometrics for determining body kine-
matics.

• Identification of abnormal gait using captured body kinematics based on disease char-
acteristics defined in the literature.

• Development of sensor-fusion techniques to enhance the proposed UWB-based system
with additional sensor information including force sensors.

• Addressing general system design issues for such a system.
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1.3 Dissertation Scope and Organization

In this dissertation, we address the research challenges mentioned in the previous section.
Particularly, we design the principal components of the proposed system, and address the
following:

• Propose and investigate a novel highly accurate wireless wearable human locomotion
tracking system suitable for clinical gait analysis. Investigation includes the design
of key system parameters including the link-budget, transmission frame structure, de-
tailed system initialization, ranging techniques, localization techniques, power con-
sumption, and an evaluation of the overall system performance. More specifically we,

– Develop a framework for system performance/power consumption evaluation.

– Apply linear least-squares (LS) and classical multidimensional scaling (C- MDS)
with fast Fourier transform interpolation to node localization.

– Derive theoretical lower bounds on system performance and give closed-form for-
mulas in an additive-white-Gaussian-noise (AWGN) channel, and provide semi-
analytic simulations in multi-path channels.

– Determine system requirements for target accuracy including required ranging
accuracy and update rate.

• Propose and evaluate the performance of an accurate reference range correlation-based
(RRcR) ranging technique suitable for on-body communications. The achievable ac-
curacy (based on actual analog sliding-correlation implementation proposed in the
literature) is 1 mm compared to 1.17 cm inert-marker accuracy reported for current
gait analysis and motion tracking systems.

• Propose a short system initialization with high localization accuracy. The provided
accuracy is 0.247 mm. Furthermore, develop a core localization procedure with 0.47
mm ± 52 μm accuracy. The average accuracy reported for current motion tracking
and gait analysis systems is ≈ 0.8 mm.

• Propose and investigate the integration of foot force sensors with UWB sensors for
kinetic data estimation.

• Develop a simulation framework using MATLAB for the evaluation of common commu-
nication performance metrics (bit-error-rate (BER), ranging, and localization) based
on actual motion capture (MoCap) data files (.C3D, .GCD, .TRC, and .DST). More-
over, the framework further includes the calculation of common gait parameters.

This dissertation proposes and examines the feasibility of the system described above,
addresses the challenges associated with the design, and summarizes the obtained results.
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The rest of this document is organized as follows. The theoretical background of different
disciplines involved in this research is given in Chapter 2. First, a brief overview of gait
analysis and human locomotion tracking systems are summarized. Then, different UWB
receiver architectures and general power consumption requirements are discussed. Finally,
background information on lower-bounds of the common time-of-arrival (TOA) estimators
and their performances are provided for ranging and localization estimators.

Chapter 3 introduces the proposed system, proposes a study framework for performance
/power consumption, provides an overview of the proposed ranging procedure, gives a sum-
mary of the proposed localization procedure, and discusses the possibility of integrating other
types of sensors with UWB radios in the proposed system. Then, in Chapter 4 we discuss
and analyze some important parameters associated with the design of our proposed system.
Chapter 5 derives the theoretical lower bound on system performance, studies and proposes
a new ranging technique, and designs a link budget for the proposed system and estimates
the receiver power consumption according to the proposed design parameters. Then, Chap-
ter 6 introduces the localization stage, which is composed of two phases, namely the initial
and core measurement phases. It further provides simulation results for both phases in the
IEEE 802.15.6a channel model based on actual motion capture (MoCap) data. Chapter 7
provides the actual on-body measurements taken for the verification of the proposed system.
Particularly, we took multiple measurement sets, namely the knee-to-ankle distance, base-
of-support (BOS) distance, RRcR, and system initialization measurement sets. Chapter 8
investigates the integration of UWB sensors with foot force sensors, sensor-fusion, in order
to get a complete picture of gait parameters including kinematics and kinetics. Then, it
studies the number of bit requirement, and the effect of quantization error on the estimated
gait parameters via simulations. It then estimates the overall system performance including
memory requirement, power consumption, and battery lifetime. Finally, Chapter 9 provides
conclusions and recommendation for future work.



Chapter 2

Background

This chapter provides background related to different aspects of the work presented in this
dissertation. Section 2.1 gives an overview of gait analysis and differentiates between observa-
tional and quantitative gait analysis. Furthermore, it gives a brief summary of commercially
available gait analysis systems and their offered accuracies. Moreover, it highlights the pa-
rameters that current systems fail to measure accurately. Then, Section 2.2 gives an overview
of ultra wideband (UWB) technology as a promising candidate for health-monitoring systems
particularly for human locomotion tracking and gait analysis systems. Furthermore, Section
2.3 discusses the different UWB receiver architectures, and summarizes the advantages and
disadvantages of each type. Moreover, Section 2.4 provides a brief summary of theoretical
lower bounds on the performance of time-of-arrival (TOA) estimators. Section 2.5 gives a
summary of the chapter.

2.1 Gait Analysis

Gait analysis refers to the measurement, description, and assessment of quantities that char-
acterize human locomotion, where musculoskeletal functions are quantitatively evaluated
through the measurement of joint kinematics and kinetics [63]. The core part of gait anal-
ysis depends on the measurement of joint kinematics and kinetics; depicted in Figure 2.1.
Other measurements include, electromyography (EMG), oxygen consumption, and foot pres-
sure. Gait analysis and the construction of a precise body model are important not only
for biomechanical research, but also for characterizing diseases that affect mobility [63], [68].
Basically, gait is described as either normal or abnormal gait. Normal gait is the efficient
movement of the body, where the expended energy during movement is minimized. Any
deviation from the minimal energy expenditure causes abnormal gait [11], [68]. Samples of
different abnormal gaits are shown in Figure 2.21 [41]. Typically, the evaluation of abnormal

1Figure 2.2 is modified based on the materials presented in [104], [61].
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gait requires the knowledge of normal movement biomechanics. Commonly, the occurrence
of gait abnormalities is due to pain, abnormal range of motion, and leg-length discrepancy
[63], [11]. The key to observing abnormal gait is recognizing the symmetry of movement,
where the patients should be observed while walking for some distance [63]. It is sometimes
necessary to watch patients walking for long distances or even outdoors.

The biomechanical approach to movement analysis can be qualitative, with movement
observed and described, or quantitative, by the measurement of different movement aspects
[6], [68]. Biomechanical analysis can be conducted from either of two perspectives: namely,
kinematic or kinetic analysis. Kinematic analysis involves the description of movement,
where position, velocity, and acceleration are the components of interest. Kinetics is the
area of study that examines the forces acting on a system, such as the human body, while
kinetic movement analysis examines the forces causing movement [63], [11], [68]. Figure
2.32 summarizes the different types of movement analysis. Typically, a kinetic movement
analysis is more difficult than a kinematic analysis. The examination of both the kinematic
and kinetic components is essential to the assessment of all aspects of movement [63], [11],
[10].

In locomotion studies, a walking or running cycle is generally defined as the period from

2Figure 2.3 is reproduced based on the material presented in [68].

Figure 2.1: Various kinematic and kinetic parameters for normal gait [22]; ”used with per-
mission”.
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Figure 2.2: Examples of gait disorders.

the contact of one foot on the ground to the next contact of the same foot. The gait cycle
is usually broken down into two phases, referred to as the stance or support phase and the
swing phase [13], [15], [68]. In the stance or support phase, the foot is in contact with the
ground. The support phase can also be broken down into sub-phases. The first half of the
support phase is the braking phase, which starts with a loading or heel-strike phase and ends
at mid-support. The second half of the support phase is the propulsion phase, which starts
at mid-stance and continues to terminal stance and then to pre-swing as the foot prepares
to leave the ground. The swing or non-contact phase is the period when the foot is not
in contact with the ground, and it can be further subdivided into initial-swing, mid-swing,
and terminal swing sub-phases [68], [88], [78]. Essentially, this phase represents the recovery
of the limb in preparation for the next contact with the ground, as shown in Figure 2.43.
Furthermore, Table 2.1 summarizes walking speeds of normal walking for different ages.

A reference system is essential for the accurate observation of any type of motion, such
as the human movement. The universal method used for the description of the human
movement is based on a set of reference planes and axes; shown in Figures 2.5(a) and
(b)4. Human movement is generated by the muscular system, where the skeletal system
represents the levers and axes of rotation about which the movement is generated [68], [78].
The description of a segmental position or joint movement is typically expressed relative to
a designated starting position, also termed as zero-position. The starting position is the
reference point that is used for the description of most of the joint movements. The ultimate
target of human movement capture is to capture the positions of the skeletal system. This
is typically performed using either markers in optical tracking systems, or body sensors
attached to the body skin in sensory systems [63], [78].

Sophisticated measurement systems employ optical tracking techniques to track the dis-
placement of markers5 placed at particular anatomical sites on limb segments as shown in

3Figure 2.4 is reproduced based on the materials presented in [86], [6], [7], [83], [111].
4Figure 2.5 is reproduced based on the materials presented in [67].
5Markers are arranged based on well-defined marker-sets. Markers should be placed at specific anatomical
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Figure 2.3: Types of movement analysis.

Figure 2.66 [13], [11], [88]. Standard gait analysis is based on either optical, magnetic, or
ultrasonic motion tracking systems. These systems allow for the assessment of a complete
three-dimensional kinematic analysis of human movement [88], [24]. Measurements with
quite large random errors can result in meaningful conclusions in clinical research, but are
not valid for clinical testing. For instance, for the base-of-support (BOS)7, the reported mea-

positions, where the objective of data collection is to capture the movement of the underlying skeleton.
6Figure 2.6 is reproduced based on the materials presented in [9].
7The BOS is defined as the distance from heel-to-heel while walking. It is known to have clinical impor-

Figure 2.4: Gait cycle of a normal gait.
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(a) (b)

Figure 2.5: (a) The basic axes definitions of anatomical positions. and (b) The major
anatomical planes of motion, and axes of rotation.

surement accuracy is not sufficiently good to be clinically accepted. The BOS is typically
equal to 8.5 cm for normal adults with a reported error of 1.17 cm, thus the relative error
is ≈ 14.6 % [54], [95]. Abnormalities in the BOS are observed in older people, children with

tance.

Table 2.1: Preferred speed and cadence in terms of age and leg-length [93].

Age cadence length speed stride Normalized Normalized
(yr) (st/min) (m) (m/s) S/L cadence velocity

1.00 176 0.32 0.63 1.36 0.53 0.36
1.50 171 0.36 0.71 1.39 0.54 0.38
2.00 156 0.39 0.71 1.41 0.52 0.37
2.50 156 0.41 0.80 1.49 0.53 0.40
3.00 154 0.44 0.86 1.51 0.55 0.41
3.50 160 0.47 0.99 1.59 0.58 0.46
4.00 152 0.49 0.99 1.58 0.57 0.45
5.00 154 0.53 1.08 1.58 0.60 0.47
6.00 146 0.57 1.09 1.57 0.59 0.46
7.00 143 0.62 1.15 1.57 0.60 0.47
adult 111 1.00 1.45 1.57 0.59 0.46
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Down’s syndrome, and people with Parkinson’s disease8. In particular, people that suffer
from Parkinson’s disease have narrower BOS compared to normal people [54], [95], [17].
Snapshots of parkinsonian gait are shown in Figure 2.89. Thus, the accuracy and reliability
of the BOS measurement needs to be addressed, as it is one of important parameters to
clinicians. Moreover, its measurement requires a certain level of accuracy that is not pro-
vided by current measurement systems. A summary of the BOS values in addition to other
parameters is provided in Table 2.2 for normal gait. Also, stride-length, step-length, and
right-knee (R-knee) flexion-angle are depicted in Figures 2.9(a) and (b) for normal gait.

Table 2.2: Gait parameters for normal subjects [54].

Gait parameter Young subjects Older subjects

Step-length, R(cm) 77 cm 65 cm

Step-length, L(cm) 77 cm 63.6 cm

Base-of-support, R(cm) 8.5 cm 8.5 cm

Base-of-support, L(cm) 8.1 cm 8.5 cm

Modern clinical gait analysis traces its origins to the early 1980s, where illuminated retro-

8It is a progressive neurological disorder that commonly develops in the range of 55-65 years [41].
9Figure 2.8 is reproduced based on the materials presented in [108], [37], [41].

Figure 2.6: Example of diagrammatic definition of a marker-set.
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reflective markers were placed on the skin in relation to bony landmarks, and detected
by modified video cameras [11], [88]. If two or more cameras detect a marker and the
positions and orientations of these cameras are known, then it is possible to detect the three-
dimensional position of the marker. These systems are termed optical tracking systems [11],
[10]. A simplified description of a gait laboratory equipped with an optical tracking system
is shown in Figure 2.710. Other types of motion measurement include the attachment of
motion sensors to the patient’s body in order to directly acquire motion data. Common
types of motion sensors include, inertial, magnetic, and ultrasonic sensors [11], [24].

The choice of a suitable measurement system is controlled by multiple factors, such as
accuracy and reliability, cost, and power consumption. Optical tracking systems are based
on the use of charge-coupled device CCD-cameras and a set of markers attached to the
subject’s body, where marker positions are estimated via the triangulation of the position
and orientation of two or more cameras [11], [10], [24]. Optical systems are accurate and use
high sampling rates, which enable the acquisition of real-time data. The main disadvantage of
these systems is that they require dedicated laboratories, complex settings, and highly skilled
operators. In addition, they have the line-of-sight (LOS) restriction, where if markers are not
detected by at least two-cameras their positions are not recorded [11], [10]. Other systems
include motion sensors attached to the human body, which enable direct detection of motion.
There are several types of sensory motion tracking systems, such as mechanical, magnetic,
and inertial tracking systems. Mechanical systems employ electromechanical transducers
attached to the subject’s body, where motion is detected through voltage variations, whereas
magnetic motion tracking systems use active transducers [11], [88], [24]. These systems are
accurate and do not have the LOS restriction. However, the performance of these systems
suffer from the interference due to magnetic materials in the surroundings. For inertial
tracking systems, they are based on gyroscopes and accelerometers [11], [24]. Inertial sensors
have the advantage of being self-contained, can be sampled at high rates, and do not have the
LOS restriction. Nevertheless, these systems have the disadvantage of error accumulation
over time. A possible solution for a more accurate and reliable tracking is to use hybrid
systems [24], [92]. However, current motion tracking systems are expensive, and hybrid
systems are expected to be even more expensive.

2.2 Overview of Ultra Wideband (UWB) Technology

UWB signals are characterized by their very large fractional bandwidths. According to
the Federal Communications Commission (FCC), UWB systems are systems with fractional
bandwidths that exceed 0.20 at -10 dB level. Fractional bandwidth is the ratio of the
bandwidth occupied by the signal to the center frequency B = 2 fh−fl

fh+fl
, where fh and fl

are the upper and lower frequencies at -10 dB according to the FCC definition for UWB

10Figure 2.7 is reproduced based on the materials presented in [30].
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systems, and B is fractional bandwidth. Figure 2.1011 shows indoor and outdoor transmission
masks as defined by FCC. Narrowband communication systems have fractional bandwidths
< 0.01. Also, according to the FCC, signals are recognized as UWB if the transmitted
signal’s bandwidth is 500 MHz or more. The band allocated to UWB in the United States
is 7.5 GHz, and the frequency band allocated to UWB communications is 3.1 - 10.6 GHz
with different emission limits for indoor and outdoor systems. Accordingly, UWB systems
have many attractive features as well as many challenges associated with their application.
UWB signals have large instantaneous bandwidths that enable fine time resolution and allow
for location and tracking applications. Typically, low power-spectral-density (PSD) allows
for the coexistence with existing users with low probability of intercept (LPI). According to
Shannon’s capacity theorem, UWB systems can achieve high data-rates at reasonable SNRs.
High data-rates can be traded for low power spectral density and multi-path performance.
Typically, UWB pulses are very short, on the order of nanoseconds, which provides robust
performance in dense multi-path environments due to the large number of available resolvable
paths. Finally, UWB systems are characterized by the low-cost of their hardware components
[90], [81].

UWB signals involve two common forms namely, impulse radio UWB (IR-UWB) and
multi-carrier UWB (MC-UWB) signals. Impulse radio refers to the generation of a series
of very short pulses on the order of hundreds of picoseconds. Impulse radio is essentially
a baseband technique. Nevertheless, this type of transmission does not require additional
carrier modulation, and is sometimes referred to as carrier-less modulation. The second
form of UWB signals is MC-UWB, which is well-suited for avoiding interference because of

11Figure 2.10 is reproduced based on [90].

Figure 2.7: Basic configuration of a gait analysis laboratory.
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Figure 2.8: Snapshots of Parkinsonian gait.

the precise choice of carrier frequencies for narrowband interference avoidance. In the latter
type, high speed FFT processing is necessary, which requires significant processing powers in
addition to high peak average power ratios (PAPRs). On the other hand, IR-UWB signals
require fast switching times and highly precise synchronization. Furthermore, IR-UWB
requires antennas that can cover the ultra wide bandwidths corresponding to pulse durations
on the order of nanoseconds with minimum distortion. Ideal UWB antennas should have
radiation fields with constant magnitude and phase shift that varies linearly with frequency.
Particularly, effects induced from antennas are included in the channel model [60], [90].

Multi-path channels are quantified by their multi-path channel parameters which are
determined from the power delay profile. Time dispersive properties of wideband multi-
path channels are quantified by their mean excess delay, and the root-mean-square (RMS)
delay spread. Typical values of RMS delay spread for outdoor channels are on the order
of microseconds and on the order of nanoseconds for indoor channels [89]. Thus, typical
channel delay spreads are larger than UWB pulse durations by orders of magnitude, which
results in dense multi-path fading channels with many resolvable paths [90], [81].

2.2.1 Pulse Shapes

Pulses employed in UWB systems must satisfy FCC regulations. IR-UWB uses monocy-
cles with pulse shapes that include Gaussian, Rayleigh, and Laplacian pulses. Typically,
continuous pulse transmission without signal processing introduces strong spectral lines in
the spectrum of the transmitted signal. A common solution is to apply randomizing tech-
niques, such as time-hopping (TH), or direct sequence spread spectrum (DS-SS) techniques.
The most common form of IR-UWB is time-hopping pulse-position-modulation (TH-PPM)
UWB. An advantage of IR-UWB is the ability of introducing processing gains. Basically,
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employing multiple monocycles N per single bit achieves a processing gain PG1 = 10log(N),
which combats both noise and interference. Additionally, using low duty-cycles reduces the
impact of continuous sources of interference as well as achieving further processing gain
PG2 = 10log

(
Tf

Tp

)
, where Tf is TH frame duration and Tp is the pulse duration. Moreover,

using a short pulse width compared to frame duration reduces inter pulse interference (IPI).
The most common form of monocycles employed in IR-UWB is Gaussian pulses, for which
the first derivative has a single zero crossing [60], [90].

Typically, the nominal center frequency and bandwidth of the monocycle depend on the
monocycle’s width. If additional derivatives are considered, the relative bandwidth decreases,
and the center frequency increases for the same time constant. UWB antenna differentiates
the pulse in the time domain, thus the transmitted pulse is the first derivative of the gen-
erated pulse. The potential modulation scheme employed with TH-UWB is PPM scheme,
for which increasing the order of pulse derivative leads to a smaller value of the optimum
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Figure 2.9: (a) Step-length and stride-length gait parameters. and (b) Simulation of right-
knee angle during walking using OpenSim software [4], [33].
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Figure 2.10: Indoor and outdoor limitations as defined by FCC.

modulation index δ, and a consequent better BER performance. This is due to the fact
that the behavior is related to the cross-correlation properties of ones and zeros, and thus
an optimum value of δ can be selected and fixed for AWGN channel. The achievement of
a better BER performance is traded for higher sensitivity to timing jitter. Other common
types of modulation schemes include, pulse amplitude modulation (PAM), orthogonal pulse
modulation (OPM), and pulse shape modulation (PSM). MC-UWB basically employs or-
thogonal sub-channels [60]. [90]. Figure 2.11 and Figure 2.12 show various orders of the
Gaussian pulse and their autocorrelations, respectively.

2.2.2 Receiver Implementation and Complexity Issues

Digital implementation of UWB systems is directly related to sampling frequency, which
could be accomplished via direct sampling or time interleaved sampling approaches. High
sampling frequencies put limitations on analog-to-digital-converter (ADC) design including
speed and power consumption, which is a very challenging task for UWB systems with direct
sampling approach. Figure 2.13 shows ADC power consumption versus number of bits and
sampling frequency. Time interleaved approach relaxes the system requirements, and can
still attain high sampling frequencies, where the received signal is typically sampled by a
number of ADCs operating in parallel. Another receiver implementation issue is the high
complexity associated with low-noise amplifiers (LNAs) design. LNAs are scarcely found on
chip level designs [90].

Generally, due to the bandwidth requirements of UWB signals, analog UWB receiver
designs are considered. In Particular, they can accommodate for the high bandwidth re-
quirement, which comes at the expense of reduced flexibility. Although, the use of digital
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approaches provides flexibility in receiver signal processing, they are limited by the resolution
of the ADC and digital-to-analog-convert (DAC), and high power consumption requirements
[59]. Figure 2.1412 shows a generic block-diagram of a UWB receiver. A receiver that em-
ploys ADC with single bit per sample and a sampling rate that is greater than or equal to
the Nyquist rate was introduced in [59]. An ADC based on quantization coefficients that
are obtained via the projection of a continuous time signal over a set of basis functions was
considered in [57]. Lower sampling rates are traded for an increased system complexity [57].
Moreover, an ADC conversion in the frequency domain yields a relaxation of conversion
speed due to the inherently parallel architecture [58].

2.3 UWB Receiver Architectures for Wearable WBANs

Wireless pervasive healthcare has recently received an increased attention in research, where
patients can monitor their health and take measurements at home or the office. Wireless

12Receiver block diagrams in this chapter are reproduced based on the materials presented in [60].
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Figure 2.11: zeroth, second, fifth, and seventh order Gaussian pulses.
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Figure 2.12: Autocorrelation of zeroth, second, fifth, and seventh order Gaussian pulses.

healthcare networks can provide real-time data acquisition via medical sensor nodes attached
to human body in the form of a wireless local body area network (WBAN) [16], [123]. Data
is then stored in a remote central node. Ultimately, the use of wearable healthcare systems
is a promising solution not only for gait analysis, but also for general health-monitoring and
early detection of abnormal conditions [39]. UWB pulses are very short, typically on the
order of nanoseconds. The ultra-fine time resolution of UWB pulses allows for geo-location
and tracking applications. Particularly, the time-of-arrival (TOA) and time-difference-of-
arrival (TDOA) range estimation techniques via the arrival time of the first detected path
can offer high accurate range estimates [90], [60].

IR-UWB provides robustness in dense multi-path environments [60]. An optimum receiver
is fully capable of exploiting the rich multi-path channel diversity. In order to capture the
signal energy, All-RAKE (ARAKE) receivers that have a number of fingers equal to the
available number of resolvable paths are required, but they are impractical. On the other
hand, a single correlator that is matched to one transmission path is very simple, but highly
suboptimal [60]. Non-coherent receivers are low-power solutions that do not require channel
estimation, and are suitable for low-data rate applications [20]. In these receivers, low-power
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Figure 2.13: ADC dissipation power versus number of bits and sampling frequency.

consumption is traded for a degradation in bit error rate (BER) performance. Non-coherent
alternatives include transmitted reference (TR) and energy detection (ED) schemes [106].

Optimum receivers involve the correlation of the received waveform with a locally gener-
ated template waveform, and require channel estimation, which adds to the power consump-
tion of the receiver [60]. These requirements are precluded for non-coherent receivers, where
the detection process depends solely on the received pulses [60], [20]. Figure 2.15 shows a
simplified block-diagram of a correlator receiver.

The TR scheme is based on the transmission of a pair of pulses (one modulated and one
unmodulated), where at the receiver, the unmodulated pulse is used to detect the modulated
pulse. However, TR correlation receivers, shown in Figure 2.17, suffer from the use of a noisy

Figure 2.14: Generic block-diagram of UWB receiver.
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Figure 2.15: Simplified block-diagram of correlator receiver.

template [106]. Instead of sending reference pulses, the differential transmitted reference
(DTR) scheme uses the data pulses of previous symbols for the correlation with the received
pulses, as depicted in Figure 2.16. Hence, DTR achieves a 3 dB performance gain over TR
schemes. On the other hand, DTR requires differential encoding of the transmitted bits,
which in turn requires longer delay lines, and higher power consumption [106].

The energy detection (ED) correlation receiver is another non-coherent receiver; depicted
in Figure 2.18. In ED correlation receivers, the correlator is replaced by a squaring device.
ED IR-UWB receivers can be implemented with on-off keying (OOK) and PPM schemes.
However, OOK requires a careful choice of the detection threshold [106].

Typically, there is a tradeoff between the bit-error-rate (BER) performance and receiver
complexity. The implementation approaches proposed in the literature for UWB systems
include, all-digital, analog, and partially-analog implementations [97], [74]. In the all-digital
implementation approach, the complexity is directly related to the sampling frequency. High
sampling frequencies put limitations on the analog-to-digital (ADC) design including speed
and power consumption, which is a very challenging task for UWB systems based on the
direct sampling approach. Generally, due to the bandwidth requirements of UWB signals,
analog UWB receiver designs are considered as they can accommodate the bandwidth re-
quirements, which comes at the expense of reduced flexibility. On the other hand, the use of
digital approaches provide flexibility in the receiver signal processing, but is limited by the
ADC resolution and power consumption [74].

Figure 2.16: Simple TR receiver structure.
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Figure 2.17: DTR receiver structure.

2.3.1 Power Consumption Requirements of UWB Wearable WBANs

Wearable and implanted healthcare applications have strict power consumption require-
ments, where devices are directly attached to the subject’s body. In particular, the IEEE
has recently approved the IEEE 802.15 TG6 task group for the standardization of body area
networks for short-range, wireless communication in the vicinity of, or inside the human
body for the frequency bands approved by the national medical and regulatory authorities
including the 3.1 - 10.6 GHz UWB band [16], [123], [120]. More specifically, the goal of
this group is to standardize short-range communications via implanted medical devices and
on-body sensors with monitoring tools to provide patient-health-data in real-time [39]. How-
ever, it is not restricted to medical applications. Initial requirements of the BANs include a
coverage distance of 2 to 5m with a power consumption of about 0.1 - 1 mW per node [38].
Furthermore, for on-body sensors, considered power technologies include temperature dif-
ference, non-rechargeable (Zinc-air, Lithium and silver-oxide) and Lithium-ion rechargeable.
Essentially, the low-power consumption for on-body communications is required to protect
the human tissue [16], [39]. Medical application proposals for BANs include swallowable de-
vices for drug delivery and imaging, wearable sensors, such as electroencephalogram (EEG),
electrocardiogram (ECG), blood pressure, body temperature, and hearing aids [123].

In IR-UWB receivers, ADCs can be moved almost up to the antenna after the low-noise
amplifier (LNA), which moves the signal processing to the digital domain, which is known as
the all-digital signal processing approach [90], [74], [65]. This approach puts high constraints
on the ADC, where to efficiently sample the incoming signal at the Nyquist rate the sampling
frequency is on the order of of several gigahertz. In this approach, the ADC speed and
resolution become of utmost importance [74], [65], [114]. Baseband Nyquist sampling of a 2

Figure 2.18: Simple energy detection receiver.
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GHz UWB signal requires approximately 4 GHz ADC clocking, which has the potential to
consume enormous amounts of power. In particular, using a figure of merit of approximately
4e11, the estimated power consumption of a 4-bit and 4 GSa/s ADC is equal to 160 mW.
Whereas, a key advantage of UWB radios is the low-power consumption. The ADCs and
matched filters, for coherent detectors, represent the bottleneck for achieving a low-power
consumption, where they require high sampling rates [74], [114]. Moreover, for coherent
detectors, the correlation operation and template generation must be performed at very
high speed, which implies a tradeoff between power consumption and template generation
accuracy. However, for low-power operation, a simple template is desired [65].

UWB coherent detectors that use windowed sinusoids have been proposed in the literature
as an alternative solution for low-power template generation in the analog domain, since
windowed sinusoids can approximate the optimal templates and are easily generated in the
analog domain [97]. However, this solution suffers from the sensitivity of the correlator
output SNR to timing errors. Receiver structures with suboptimal sinusoidal templates are
more sensitive to timing errors as compared to optimal receivers [97]. Complex sinusoids
were proposed to compensate for the SNR degradation in the presence of timing errors, but
this structure requires nearly double the power required for the corresponding structure with
real sinusoids [65], [53].

2.4 UWB Time-of-Arrival (TOA) Estimators and The-

oretical Lower Bounds

Ranging refers to the process of estimating the distance of a target node from a reference
node. Common ranging techniques include received-signal-strength-indicator (RSSI) and
time-of arrival (TOA) measurements. In particular, while various approaches can be used
for ranging, the most promising approach for UWB signaling is the timebased approach,
whose accuracy can be improved by increasing either the SNR at the receiver or the effective
signal bandwidth of the transmitted signal. Since UWB signals have very large bandwidths,
this property allows for extremely accurate location estimates [36], [60], [35]. The most
accurate and frequently used distance measurement approach for accurate indoor positioning
is the TOA estimation of the first detected path. In such systems, the detection of the first
arriving path in non-line-of-sight (NLOS) multi-path environments is challenging, where the
first arriving path, if exists, is not necessarily the strongest path, and can result in a positively
biased range estimate [36], [35].

Error bounds are essential for providing a performance limit of any estimator in terms
of the mean square error (MSE). The Cramer-Rao lower bound (CRLB) defines the lower
bound on the ranging accuracy in terms of the signal bandwidth and SNR [28].

The error of the range estimation εd̂ is defined as [62]:
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εd̂ =
∣∣∣d − d̂

∣∣∣ (2.1)

where, d and d̂ are the actual and estimated distances, respectively.

From estimation theory, the MSE σ2
τ̂ of any unbiased estimate τ̂ of τ is bounded by the

CRLB as follows [28]:

σ2
τ̂ = E

{
(τ̂ − τ)2

}
≥ CRLB (2.2)

where, ετ̂ = τ̂ − τ and E {.} denotes the statistical expectation [28].

The CRLB of the ranging error estimate (cm) can be calculated from the relation:

σd̂ = cστ̂ (2.3)

where, c = 3.108 m/s is the speed of light [23].

When no-multi-path is present [28]:

CRLB =
N0/2

Epβ2
=

1

2β2SNR
(2.4)

where the pulse-energy-to-noise ratio is represented by Ep

N0
= SNR, and β is the second

moment of the spectrum P (f) of the pulse shape used p(t) defined by [28]:

β2 =

∞∫
−∞

f 2 |P (f)|2 df

Ep
(2.5)

Assuming a Gaussian pulse defined in terms of the pulse width Tp and τp = 0.5 ∗ Tp as
[28]:

p0(t) = exp
(
−2π

(
t2/τ 2

p

))
(2.6)

The n-th order Gaussian pulse has the form [97]:

pn(t) =
d(n)

dtn

⎛
⎝e

−2π

(
t2

τ2
p

)⎞
⎠ (2.7)

Generally, the CRLB provides a loose bound on the TOA estimate which is not realizable
in multi-path environments [28]. Another bound that provides more accurate results, and is
suitable for multi-path environments is the Ziv-Zakai lower bound (ZZLB). The mean square
estimation error is as [28]:
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Figure 2.19: CRLB in AWGN assuming second and fifth order Gaussian pulses with τp =
0.113 ns, and Ta = 100 ns.

E
{
ε2

τ̂

}
=

1

2

∞∫
0

zP
{
|ετ̂ | ≥ z

2

}
dz (2.8)

where the expectation is with respect to τ , and Pτ (τ) is the probability density function
(pdf) of the TOA in the absence of any information is assumed to be uniformly distributed

in the interval [0, Ta]. P
{
|ετ̂ | ≥ z

2

}
is equivalent to the probability of a binary detection

scheme with equally-probable hypothesis, where Ta is the observation window [28]. Figure
2.19 shows CRLB for second and fifth order Gaussian pulses in AWGN assuming τp = 0.113
ns and Ta = 100 ns.

The ZZLB for the coherent detection of binary signaling is as given by [28]:

ZZLB =
1

Ta

Ta∫
0

z (Ta − z) Pmin(z)dz (2.9)

where, Pmin(z) is the minimum attainable probability of error expressed as [28]:

Pmin(z) = Q

(√
Ep

N0

(1 − ρpp(z))

)
(2.10)

and the pulse autocorrelation ρpp(z) normalized by the pulse-energy Ep is [28]:
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ρpp(z) =
1

Ep

∞∫
−∞

p(t)p(t − z)dt (2.11)

This bound transforms the estimation problem into a binary detection problem, which
simplifies the bound estimation in multi-path environments. The derivation of Pmin(z) de-
pends on the receiver a priori knowledge about the multi-path phenomena [28]. However,
the evaluation of the estimator in complex channel models is not analytically tractable [28].
As a result, the ZZLB is typically evaluated using experimentally measured channel impulse
responses or Monte Carlo simulations [28].

Pmin(z) ∼= 1

Nch

Nch∑
k=1

Q

⎛
⎝
√

SNR

2
d2

k,i(∗)(z)

⎞
⎠ (2.12)

Pmin(z) ∼= Q

⎛
⎝
√

SNR

2
d2

min(z)

⎞
⎠ (2.13)

where Nch is the number of channel realizations, SNR is the signal-to-noise-ratio, dmin(z) =
min

k
dk,i(∗)(z) is the minimum normalized distance, i(∗) = arg min

i
d2

k,i(z), and k is the argu-

ment of the minimization [28]. Figures 2.20(a) and (b) show ZZLB for second and seventh
order Gaussian pulses with τp = 0.2 ns and Ta = 100 ns for distance in (cm) and TOA in
(ns), respectively.

It is worth noting that this bound provides a lower-bound on the TOA of coherent de-
tectors. Whereas for the ED estimator, at high SNR it exhibits a floor equal to Ts/

√
12.

On the other hand, the MF estimator performance tends to the CRLB with a behavior
depending on the fading of the first-path [26]. Most of the available motion capture and
movement tracking systems are based on the acquirement of the absolute positions of the
different nodes. These positions are then used for the estimation of the other gait parame-
ters. The relevant approach using UWB radios is the node positioning approach. Typically,
UWB positioning-accuracy is based on the ranging accuracy. The CRLB on the positioning
accuracy is [84], [47]:

√
var(d̂) ≥ c

2
√

2π
√

SNRβ
(2.14)

where var() is the variance, d̂ is the position estimate, and β is the effective (or root mean
square) signal bandwidth. Figure 2.21 shows CRLB on localization (positioning) error for
fifth and seventh order Gaussian pulses with τp = 4 ns and Ta = 100 ns.
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Figure 2.20: (a) ZZLB for second and sixth order Gaussian pulses AWGN channel in (cm)
with τp = 0.192 ns, and Ta = 100 ns. and (b) ZZLB for second and seventh order Gaussian
pulses AWGN channel in (ns) with τp = 0.2 ns, and Ta = 100 ns.
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Figure 2.21: CRLB on localization error for fifth and seventh order Gaussian pulses with τp

= 4 ns and Ta = 100 ns.

2.5 Chapter Summary

In this chapter, we gave an overview of different topics of importance to our proposed sys-
tem design. Particulary, we summarized different gait analysis systems, and highlighted
the advantages and disadvantages of each type. Furthermore, we provided an introduction
to UWB technology, pulse shapes, and receiver implementation issues. Moreover, we pro-
vided a brief comparative summary of different UWB receiver architectures. Finally, we
demonstrated different lower bounds on the performance of TOA ranging and localization
estimators. Particularly, we discussed the CRLB and ZZLB for ranging estimators, and
CRLB for localization estimators.



Chapter 3

Overview of Proposed System

This chapter introduces the proposed system, proposes a study framework for performance
/power consumption, provides an overview of the proposed ranging procedure, gives a sum-
mary of the proposed localization procedure, and discusses the possibility of integrating
other types of sensors with UWB radios in the proposed system. Section 3.1 gives a brief de-
scription of our proposed system. Then, Section 3.2 summarizes the main rules employed in
power consumption estimation. Further, Section 3.3 summarizes the system design parame-
ters. Section 3.4 describes the employed transmitter and estimates the power consumption.
Then, Section 3.5 provides an overview of the proposed performance/power consumption
framework. Section 3.6 provides a brief summary on the proposed ranging approach, and
studies the system symbol frame structure. Section 3.7 summarizes the challenges associ-
ated with the design of an accurate localization technique for our system, and then gives
a description of the proposed approaches. Section 3.8 studies the possibility of employing
sensor fusion for our system, and addresses key performance parameters. Finally, Section
3.9 provides a summary of chapter conclusions and contributions.

3.1 Description of Proposed System

The proposed system is based on wearable UWB radios attached to the subject’s body, or
possibly sewn into clothing specifically designed for this application. The target of the pro-
posed system is to acquire the distances between the different points on the body during
movement. A simplified diagrammatic representation of the proposed system’s data acqui-
sition approach is shown in Figure 3.1. The data acquisition procedure is divided into two
phases, namely the initial phase and the core phase. The initial phase includes the measure-
ment of the subject’s height, weight, etc., as shown on the right in Figure 3.1. The aim of
the core phase is to acquire the ranging data between the different nodes while the subject
is walking through the estimation of the time-of-arrival (TOA) of the first path, which is
then converted to a distance estimate, as illustrated by the subject to the left in Figure

27
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3.1. The system is designed based on a target ranging accuracy of ≈ 0.1 cm. This value
was particularly chosen for achieving a ranging accuracy that is ten-times better than the
inter-marker distance accuracy reported in the literature for current systems. Specifically,
the reported accuracy for the inter-marker distance for current systems is equal to 1.17 cm
[54], [95].

Our measurement approach is based on LOS links, which have a substantially better per-
formance than NLOS links due to the absence of body shadowing. This could be guaranteed
through the predefinition of the sensor groups that have LOS links. An example of this
predefinition is depicted in Figure 3.2 assuming the Vicon marker-set [9]. The ultimate goals
of our system are as follows.

• High ranging and localization accuracies, and reliability of acquired data.

• Low-power consumption.

• Freedom of movement and ease of use; required to enable our system of taking mea-
surements in indoor and outdoor environments.

Generally, applications that are based on wearable devices have the low-power consump-
tion constraint, as they are placed close to the subject’s tissue, and thus cannot consume too
much power to avoid overheating or burning human tissue [16], [39]. Additionally, low power
is important due to battery life concerns. Moreover, accurate gait analysis, in particular,

Figure 3.1: Simplified diagrammatic representation of the on-body intersegmental measure-
ments using UWB radios, for the initial and during movement measurements.
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Figure 3.2: Vicon marker-set [9] grouped into regions with LOS markers.

requires a high ranging accuracy. Figure 3.3 shows a simplified representation of a wireless
wearable health-monitoring and human locomotion tracking system.

In order to choose a suitable receiver architecture for this application, it should be capa-
ble of satisfying the high ranging accuracy and low-power consumption requirements. When
transceivers are compared based on the ranging accuracies that they can provide, at high
SNR, ED estimators exhibit a floor of Ts/

√
12, where Ts is the integration window. Stored-

reference estimators, based on matched-filtering (MF), have performance which approaches
the CRLB with a behavior depending on the fading of the first path. Typically, EDs re-
quire minimal integration windows equivalent to integer multiples of the pulse width, and in
practice multiple pulses are transmitted per bit [26].

Typically, the error-performance and power-consumption tradeoffs have to be carefully
studied in order to choose a suitable receiver structure, and the corresponding design param-
eters that guarantee the achievement of a particular system design target. For this reason,
a framework for the characterization of error-performance and power-consumption of UWB
receivers was developed, as will be discussed in Section 3.6.
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Figure 3.3: Wireless wearable health-monitoring and human locomotion tracking system.

3.2 Power-consumption Approximation

Low power consumption is an important performance metric for wearable, mobile, and
healthcare applications. Essentially, power consumption optimization at the algorithmic
level has a greater impact on the total power consumption than technological optimization.
Figure 3.41 shows the common levels of abstraction used in system design. Since mobile,
and healthcare systems basically depend on limited battery sources, energy consumption
is a fundamental metric for these applications. Current research indicates that the power
consumed during memory accesses accounts for a significant percentage of the total power
consumption. Furthermore, considering only the computational complexity of an algorithm
does not provide accurate estimates of the energy consumed by an algorithm. Moreover,
data memory depends on the size of the data being processed and on how often the data
memory is being accessed. The general power estimation formula as given in [69], [70] is:

Pav = αCeffV
2
ddfs (3.1)

where, Pav is the average power, Vdd is the supply voltage, fs is the sampling frequency. Ceff ,
is the effective capacitance, which has two components namely, the average capacitance, and
the switching activity. For the behavioral level2 this is equivalent to the number of accesses

1Figure 3.4 is reproduced based on the materials presented in [103], [40].
2Low-power system design based on the top-down approach includes several levels of abstraction ordered

in a hierarchy depending on the level of abstraction. It starts by the highest level of abstraction at the top



Chapter 3. Overview of Proposed System 31

Figure 3.4: Flow of power saving through different levels of abstraction.

to a resource. The factor α represents the switching activity.

The energy consumption is calculated [73]:

Eav = PavT (3.2)

where, Eav is the average energy consumption, and T is the run-time.

Typically, a design framework should provide the designer with a flexible and efficient
environment to explore the alternatives and trade-offs at the different levels of abstraction.
UWB technology has specific challenges associated with its design due to the ultra-wide
nature of its spectrum. Specifically, ADCs have to work at the Nyquist frequency. Also, the
matched filter digital logic has to work at very high frequency. Since the allocated band to
UWB healthcare applications is the 3.1 - 10.6 GHz range, the required sampling frequency
is ≈ 15 GHz [16], [120]. A main drawback of the all-digital architecture is the high power
consumption, which is dominated by ADCs and matched filters. One popular solution to
reduce power consumption for UWB transceivers is to move the ADC after the matched filter
or correlator block with correlation being performed in the analog domain. As a result, the
sampling frequency constraints and consequently the power-consumption are reduced [74],
[65].

down to the lowest level of abstraction ordered as, the system level, behavioral level, architectural level,
circuit level, and technology level.
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3.3 System Design

The initial design parameter of the proposed system is the target ranging accuracy of ≈
0.1 cm. Furthermore, as specified by the IEEE 802.15 task-group six (TG6), allowable
bandwidth for the UWB range is 2 GHz [120]. For the purpose of illustration, seventh-
order Gaussian pulse was chosen to satisfy the FCC masks for both indoor and outdoor
environments, as shown in Figure 3.5. Assuming the ED detector, and a corresponding
pulse width = 0.8 ns, the corresponding B.W. is 2 GHz [85], the maximum achievable
ranging accuracy is 6.9 cm for an integration window that is equal to the pulse width. This
precludes the choice of ED detectors. Obviously, for such a high target ranging accuracy,
the MF seems an appropriate choice, where its performance approaches the CRLB at high
SNRs.

3.4 Transmitter Structure and Power Consumption

Typically, pulse correlation properties affect the receiver performance, and pulses should be
chosen with parameters that comply to the FCC indoor and outdoor masks [76]. Figure 3.5
shows the PSD of the FCC masks and the corresponding pulses that comply these masks.
For the 0 - 960 MHz band, the second order Gaussian pulse with σ= 60 ps covers the band.
Whereas, for the 3.1 - 10.6 GHz band, the pulse for indoor systems is the fifth order Gaussian
pulse with σ= 51 ps, and the seventh order Gaussian pulse for outdoor systems with σ= 60
ps fits within the spectral mask. As shown, the seventh order Gaussian pulse complies for
both indoor and outdoor FCC masks.

Our system is ultimately capable of taking indoor and outdoor measurements, so the
selected pulse needs to comply with both environments. Thus, we choose the seventh order
Gaussian pulse for our system. The selected bandwidth is 2 GHz from 3.1 - 5.1 GHz. An
actual implementation for this pulse generator has been proposed in the literature [85].
The block diagram of the pulse generator is depicted in Figure 3.63. The transmitter is
implemented in the analog domain to satisfy the low-power consumption requirement. The
corresponding pulse-width is Tp = 0.8 ns [85]. The seventh order Gaussian pulse with Tp =
0.8 ns is shown in Figure 3.7. A summary of the pulse parameters and power consumption
is given in Table 3.1. The equivalent power consumption at 50 Mp/s rate is 0.24 mW.

3Figure 3.6 is reproduced based on the materials represented in [85].
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Figure 3.5: PSD of second order, fifth order, and seventh order of Gaussian monocylce and
the indoor and outdoor FCC masks for 0 - 960 MHz and 3.1 - 10.6 GHz bands.

Table 3.1: Summary of Transmitter Parameters and Power Consumption [85].

Parameters Values

Bandwidth 3.1 - 5.1 GHz

Pulse duration 0.8 ns

Energy consumption per pulse 4.9 pJ per pulse
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3.5 Overview of Proposed Performance/Power consump-

tion Study Framework with Non-coherent Detec-

tors Case Study

In order to study the power consumption/performance trade-offs, we developed a framework
for the estimation of power consumption and performance of the architectures under study.
Furthermore, we used this framework for the choice of the optimum hardware architecture
for our target application. For instance, the choice of a suitable receiver architecture for our
system is crucial. Particularly, our target is to have low power consumption and high ranging
and localization accuracy. Since, commonly good performance is traded for higher power
consumption, thus combining these two metrics in one architecture choice is a challenging
task.

For this reason, our developed framework will take into consideration all possible power
consumption and performance parameters without having actually to implement these ar-
chitectures. Furthermore, in order to have a fair comparison, we assume the same imple-
mentation technology based on state-of-the-art components proposed in the literature. The
proposed framework in addition to a sample case study will be given in detail in a later
chapter.

3.6 Ranging Approach and System Symbol Structure

The primary motivation for using UWB technology (besides the wide spectrum available)
is the ability of UWB pulses to provide very accurate distance estimates using TOA mea-
surements [36], [49]. As was shown in a previous section, ranging is the main stage of our
proposed system. Typically, the inter-node distance is estimated in real-time based on a
TOA estimate of the first arriving path. We divide the measurement procedure into initial
and core measurement phases. Typically, our target ranging accuracy (1 mm) is a high
accuracy that requires a special type of detectors. The choice of the appropriate receiver for
our system is a key parameter, since we require not only high ranging accuracy, but also low-

Figure 3.6: Block diagram of pulse generator.
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Figure 3.7: Seventh order Gaussian pulse with Tp = 0.8 ns.

power consumption. As is well known and previously discussed, there is a common trade-off
between accuracy and power consumption. Commercially available UWB TOA estimators
achieve ranging accuracies on the order of few centimeters (10 - 15 cm) for operating ranges
greater than 50 m [71]. Nevertheless, the selected receiver has to accommodate the special
requirements of gait analysis. In other words, the detectors that work well for common sen-
sor network applications, are not necessarily suitable for gait analysis and wearable human
locomotion tracking systems. Particularly, on-body communications have special require-
ments. Moreover, UWB body-area-network (BAN) channels have special characteristics.
For instance, [36] suggested that new ranging techniques are required for reliable on-body
TOA estimators. We deem that a new ranging technique that is capable of providing a high
ranging accuracy, and is suitable for BANs is necessary.

We start our analysis by studying the gait characteristics, setting a frame-rate (range
estimate update rate) for our system, and design a symbol frame structure for our system.
Human movement is a repetitive movement that occurs at low frequencies. Typically, the
normal walking frequency range is 1.7 - 2.3 Hz, 2.0 - 3.5 Hz for running, and 1.8 - 3.4 Hz
for jumping [124]. Common optical tracking systems are based on 50, 80, and 120 frame/s
frame rates [9], [116]. Recent optical tracking systems provide higher rates, e.g. 240 frame/s
(Vicon T-series) [115] and 750 Hz (Optotrak) [82]. Our target system update rate (TOA
estimate for all nodes) is 1 kframe/s. We design our system symbol structure based on both
gait characteristics and UWB technology properties. The key design parameters and design
procedure are as follows:

• Target system update rate is 1 kframe/s
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• We assume an initial-frame and subsequent frames.

• We assume a maximum (inter-marker) distance = 1 m ≡ 3.333 ns.

• The corresponding observation interval is 4 ns (sufficient for observing the maximum
expected distance).

• Normal walking speed 1.2 m/s [64].

• Fastest man in the world (Usain Bolt) running speed is 37.6 km/hr [118].

• Speed 37.6 Km/hr = 10444.44 mm/s.

• Expected maximum change between successive frames = (10444.44 / 1000) = 10.44
mm.

• This value is equivalent to (10.44 / (3 * 1011)) = 34.8 ps.

• Transmitted pulses are assumed to have a minimum separation that exceeds the channel
delay spread equal to 10 ns.

• Assume 20 ns (50 Mpps) spacing to allow for time-hopping.

• For the initial-frame, search all possible 400 time values (4 ns).

• Estimated time-of-arrival (TOA) takes a value of 400 possible values, which requires 9
bits for representation in digital format.

As described above, our system has two measurement phases, namely the initial and
core phases. In the initial phase, we search all possible values (4 ns based on our design
parameters). In subsequent frames, we limit the search interval to the expected rate of
change among successive frames (34.8 ps). The symbol frame structure for the initial and
subsequent frames are depicted in Figures 3.8 and 3.9, respectively. Moreover, Figure 3.10
shows a hierarchy diagram of the proposed symbol frame structure for subsequent frames.

As will be addressed in detail in later chapters, the next key design factor is the suitable
receiver structure, and the appropriate ranging approach for achieving a 1 mm target rang-
ing accuracy. All assumptions and results will be verified via both simulations and actual
measurements. Moreover, we will provide a complete study on the theoretical lower bound
of the system performance for the selected receivers.

3.7 Overview of Localization Approach

Localization is another crucial stage for our system, where acquired inter-marker distances
are converted to three dimensional coordinates. Nevertheless, localization is another chal-
lenging task, and is not like ordinary localization approaches used in common types of wireless
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Figure 3.8: Proposed system symbol structure for initialization of the core measurement
phase.

sensor networks (WSNs). The main difficulty associated with the design of a localization
approach for our system is that all nodes are mobile, and it is hard if not impossible to have
reference nodes attached to the test subject’s body during movement. Moreover, in order to
guarantee freedom of movement, it is also hard to have a fixed reference-node, even if not
attached to the subject’s body. As, our main target is to give the test subject’s freedom,
and to overcome the disadvantage of the subject knowing that he/she is being monitored, or
limited in movement. As was mentioned before, limiting the movement to a specific path or
walkway makes the movement does not necessarily represent the test subject’s actual walk-
ing, which is a great debate around currently available measurement systems, even the most
accurate ones. Again, we need to provide a complete freedom of movement in addition to
accurate measurements. Such requirements and limitations make the design of an accurate
localization technique a real challenging task for our system. Above all this dominates the
low-power consumption requirement for on-body communications.

In order to overcome these difficulties we divide the localization procedure into two main
phases, similar to the ranging approach. In the initial phase (system initialization), we can
have reference nodes to be able to accurately estimate the initial positions of the nodes.
During system initialization, the test subject does not need to start walking or have any
movement activity. After initialization is performed, the user is supposed to move freely
without any constraints. So, we propose an initial localization phase that requires reference
nodes. This initialization stage is followed by a core measurement phase that does not have
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Figure 3.9: Proposed system symbol structure for subsequent frames of the core measurement
phase.

any reference nodes, but is required to maintain the attained accuracy during the initial
phase.

It is worth mentioning that with all the challenges associated with the design of an
accurate localization stage for our system, by dividing the measurements into initial and core
phases this ultimately precludes the need for performing localization in real-time (on-body).
In other words, real-time acquired ranging data can be stored for sometime, then localization
be performed a later time. Definitely, this fact relaxes both memory and power consumption
requirements. Moreover, it can facilitate having more complex localization techniques to
guarantee high positioning accuracy compared to having to perform localization on-body in
real-time.

3.8 Sensor Fusion and System Performance

Essentially, UWB radios are suitable for integration with other motion sensors such as,
pressure sensors and accelerometers. Ultimately, acquired data from our proposed system
should cover both kinematic and kinetic parameter estimation. Using UWB radios will
typically cover kinematic parameter estimation. Thus, in order to be able to estimate kinetic
parameters as well, other types of sensors are expected to be integrated with UWB radios.
For instance, currently available optical tracking systems use force plates to acquire force
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Figure 3.10: Diagrammatic hierarchy of the proposed system symbol structure for initializa-
tion of the core measurement phase.

data in addition to the three-dimensional positions of markers to estimate kinetics as well
as kinematics. Similarly, in our system we will integrate other types of sensors with UWB
radios to estimate both kinematic and kinetic parameters, as will be studied in detail in later
chapters of this dissertation.

The integration of other types of sensors with UWB radios also has main requirements
and key parameters that need to be addressed. In addition to the choice of the type of sensor,
the placement of the sensor is another issue that needs to be considered. Particularly, these
sensors need to be integrated with UWB sensors, at the same time they should not affect
the performance of UWB sensors. For instance, they can not be placed in such a way that
they would interfere with UWB sensors, or obstruct the LOS links needed to guarantee the
required accuracy of UWB sensors. Moreover, the power consumption and sampling rate
should not put further constraints on the overall power consumption. Furthermore, their
update rate needs to cope with the UWB sensor update rate, and not interfere with it.
Moreover, typically such sensors often acquire data in the analog form, so this acquired data
needs to be converted to the digital form, and be transmitted to the central node in such a
way that keeps the accuracy of acquired data. Once again, their connection with the on-body
central-node needs to be handled in such a way that it preserves the freedom of movement
provided by our system.
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There are several key system design parameters that need to be addressed for the system
to provide the anticipated accuracies. First of all, since our system is mainly aimed at gait
analysis applications, we need to estimate gait analysis parameters kinematics and/or kinet-
ics to verify the validity of our proposed system for the anticipated application. Moreover, we
need to compare our system’s performance to existing systems in order to verify the claimed
gain in performance. Second, preserving the accuracy of the acquired data is essential partic-
ularly during the transmission from the body nodes to the central-node, and consequently to
the off-body node. Third, we need to study the accuracy and power consumption trade-offs.
Like common low-power sensor networks, we consider time-division-multiple-access (TDMA)
for our system. Particularly, TDMA is suitable for low-power peer-to-peer networks, where
it is suitable for keeping nodes at sleep mode (standby or low-power) while not in operation.
Fourth, the battery lifetime is also an important design key parameter. Essentially, we would
like to have at least one day of operation without needing to recharge the system, in order
to facilitate system use. Finally, we also need to calculate the data storage requirements in
order to estimate the required on-body memory. Practically, the frequency of data transfer
from the on-body central node to the off-body system should be minimized.

3.9 Chapter Summary and Contributions

In this chapter, we studied the key design and analysis parameters of our proposed system.
Furthermore, we gave overviews of different design parameters associated with our system.
Particularly, we gave a brief description of our proposed system followed by key design pa-
rameters, namely power consumption issues, employed pulse shape, transmitter architecture,
and power consumption. Moreover, we gave an overview of the proposed framework for the
study of performance/power-consumption. Furthermore, we provided an overview of the
proposed ranging stage, and designed the system symbol structure. Moreover, we addressed
different challenges related to the design of an accurate localization technique, and gave a
brief description of our proposed solution.

The possibility of having sensor-fusion was also addressed in this chapter. We concluded
that our system is suitable for the integration of other types of motion sensors with UWB
radios for the estimation of kinetic/ kinematic parameters associated with human gait. Par-
ticularly, because we need other sensors to provide a complete picture of gait parameters,
kinematics/kinetics. Finally, we addressed different system design parameters that need to
be precisely chosen in order to achieve the ultimate goals of our proposed system (high
accuracy, low-power-consumption, and freedom of movement).

Related Publications:

• H. Shaban, M. Abou El-Nasr, and R.M. Buehrer,” Toward a highly accurate am-
bulatory system for clinical gait analysis via UWB radios,” IEEE Transactions on
Information Technology in Biomedicine, Vol. 14, No. 2, pp. 284-291, Mar. 2010.
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System Analysis

In this chapter we discuss and analyze some important parameters associated with the design
of our proposed system. Section 4.1 discusses some UWB BAN channel models proposed
in the literature in addition to the IEEE 802.15.3a channel model, which we will use in our
proposed system performance/power consumption framework. Furthermore, Section 4.2 pro-
poses a design for our system’s link budget. Section 4.3 provides a brief comparative study
of power consumption of different UWB receiver alternatives. Section 4.4 provides the pro-
posed performance/power consumption framework, and gives a case study for non-coherent
UWB detectors. Then, Section 4.5 briefly describes the different studied gait parameters
and methodology of simulation. Finally, Section 4.6 summarizes the chapter conclusions and
contributions.

4.1 Channel Models

In this section, we discuss the channel models that are used within our work. First, we
discuss the employed BAN channel models. Then, we discuss the IEEE 802.15.3a channel
model, which we will use in the analysis of our proposed performance/power consumption
framework.

4.1.1 BAN Channel Models

This subsection summarizes some of the UWB-BAN channel models proposed in the liter-
ature; particularly the ones that are used in our simulations. Specifically, we consider the
models proposed in [12], [44], and [119].

41
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UWB-BAN Channel Simulation Model

According to [44], wave propagation through the body is negligible in the UWB range (3.1-
10.6 GHz). This model considers a discrete-time impulse response model for channel char-
acterization, and proposes that energy decays exponentially with time. It also proposes that
adjacent bins are correlated up to a factor of 0.8. It assumes two groups of distinct multi-
path components (MPC), due to scattering waves around the body and reflections from the
ground. It also suggests that the second group of MPC decays faster than the first cluster
[44]. We implemented this model using MATLAB. Figures 4.1(a) and (b) show impulse
response realizations of the side and back scenarios, respectively.

IEEE 802.15.4a BAN Channel Model

This model assumes the presence of two main clusters. The first cluster is due to waves
diffracting around the human body, and the second cluster is due to ground reflections.
Furthermore, it concludes to that wave arrival bins are correlated following a log-normal
distribution. Also, path-loss near the body is dominated by energy absorption from the
human tissue leading to exponential decay of power versus distance. The model assumes
three different scenarios, namely the front, back, and side scenarios [12].

The path-loss is calculated as [12]:

PdB = γ(d − d0) + P0,dB (4.1)

where γ = 107.8 dB/m, d is the LOS separation distance, d0 = 0.1 m is the reference distance,
and P0,dB is path-loss in dB at d0, and is equal to 35.5 dB [12]. Figures 4.2(a) and (b) show
impulse response realizations of the front and back scenarios, respectively.

IEEE 802.15.6a UWB-BAN Channel Model

IEEE has recently formed a task group (TG6) for the development of a unified characteri-
zation of BAN channels [16]. This model does not assume different body scenarios, instead
it assumes a model for the on-body-to-on-body communication (CM3), and on-body-to-off-
body scenario, namely CM4, as depicted in Figure 4.31.

4.1.2 IEEE 802.15.3a Channel Model

In addition to the BAN models, we consider the IEEE 802.15.3a channel model in our
developed framework. Particularly, we consider the time-invariant indoor channel model

1Figure 4.3 is reproduced based on [119].
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Figure 4.1: (a) Side scenario impulse response channel realizations for the BAN channel
model proposed in [44]. and (b) Back scenario Impulse response channel realizations for the
BAN channel model proposed in [44].
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Figure 4.2: (a) Front scenario impulse response channel realizations for the IEEE 802.15.4a
BAN channel model. and (b) Back scenario impulse response channel realizations for the
IEEE 802.15.4a BAN channel model.
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Figure 4.3: IEEE 802.15.6a channel models for non-implant devices.

written as [50]:
h(t, τ) =

∑
k

Gk(t)δ(τ − Tk(t)) (4.2)

where, t and τ are the observation and application times of the impulse response, k denotes
the k -th multi-path component, Tk(t) are the time-varying arrivals of the paths, and Gk(t)
are the time-varying gains of the impulse [50]. For indoor channels, we consider the time-
invariant model [50]:

h(τ) =
∑
k

Gkδ(τ − Tk) (4.3)

The IEEE 802.15.3a channel model is a cluster model, where the paths arrive in clusters
with exponentially decaying cluster amplitudes allowing for multiple exponentially decaying
sets [55]. Multi-path arrival times Tk are modeled using a random process based on the
Poisson point process. Moreover, the multi-path arrivals are grouped into cluster arrivals
that are associated with ray arrivals within each cluster [50]. The Measurements in UWB
channels indicate that the amplitudes follow a lognormal distribution [50]. The statistics of
multi-path arrival times Tk and path gains Gk are specified by the IEEE 802.15.3a model
[55], [50].

In [50] and [56], the IEEE 802.15.3a UWB channel model is treated as a two-dimensional
point process of pairs (Tk, Gk) with an equivalent representation of the channel response:

h(τ) =
∑
k

φ(Tk, Gk) (4.4)

where, φ(Tk, Gk) = Gkδ(τ − Tk), for which the channel response is represented as a sum of
a function evaluated at random augments, and is called a shot-noise random variable [56],
[50]. If we set φ(Tk, Gk) = GkI[0,Tw](Tk), where I[0,Tw](Tk) is an indicator function, then the
sum represents the path gains that arrive in a time window [0, Tw] and is given by [50], [56]:

Φl =
∑
k

GkIl[0,Tw](Tk) (4.5)
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Figure 4.4: IEEE 802.15.3a channel gains Gk versus arrival times Tk with 4 paths that arrive
within an observation window [0, Tw] and have gains in the range Gmin ≤ Gk ≤ Gmax.

where, the indicator function of the l -th resolvable path within the interval [0, Tw] is Il[0,Tw](t)
=1 for t ∈ [0, Tw] and is zero elsewhere, and Tw is chosen such that the expected energy in
the finite interval [0, Tw] meets a specific fraction of the expected energy in the infinite
observation window [0,∞), e.g. 90% of the expected energy [56].

Generally, point processes can be viewed as counting measures on measurable sets [50].
In the context of multi-path channels, since the multi-path components are now defined as a
two-dimensional point process of (Tk, Gk), then the sum of path gains Φl can be regarded as
a counting measure of the paths that arrive within the measurable set of arrival times and
path gains, such that Tk ∈ [0, Tw] and Gk ∈ [Gmin, Gmax] [50] . Figure 4.42 shows a graph of
the IEEE 802.15.3a channel that depicts the multi-path components gains versus the arrival
times with four paths that occur within the observation window [0, Tw] and that have gains
in [Gmin, Gmax].

In the IEEE 802.15.3a channel model, each cluster has an initial and non-initial paths,
and the initial cluster is assumed to start at a fixed time T0 = 0. For the LOS channel
model, the path gains sum the counting processes of the arrival times of the clusters within
an observation window [0, Tw] including the initial cluster [50], [56]. The start times of
the clusters are assumed to be the occurrences of a homogeneous Poisson process, and the
gains are the marks of the Poisson cluster start times, where the marked Poisson process
is equivalent to a two-dimensional Poisson process. Furthermore, the arrival times of the
non-initial paths are conditioned on the start times of the clusters, and are modeled as
independent homogeneous Poisson processes [50], [56]. In the NLOS channel model, the

2Figure 4.4 is reproduced based on [50].
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initial cluster is omitted [50], [56].

4.2 Preliminary Link Budget Design

In order to guarantee a specific Ep/N0, a system link budget must be prepared. Commonly,
a link budget design includes the choice of pulse width, transmitted power, data rate, and
antenna gains for a target Ep/N0, which in turn is based on a required Ep/N0|req.

4.2.1 Design Parameters

The link budget signalling design parameters are summarized in Table 5.1. The transmit
power is chosen according to the maximum allowed power spectral density (PSD) = -41.3
dBm/MHz, and the bandwidth of interest is 2 GHz.

Another important parameter that defines the loss that the signal exhibits is termed path
loss at distance d is defined as [90]:

PLt(d) = PL0 + 10m log(
d

d0
) (4.6)

where, PL0 is the path loss at the reference distance d0, and m is the path loss exponent.

The received power PR at a distance d is [90]:

PR(d) = Pt − PLt(d) + Gr + Gt (4.7)

where Pt is the transmitted power, and Gt and Gr are the transmit and receive antenna
gains, respectively. The two-sided noise PSD = N0/2, and N0 is calculated as:

N0 = 10 log10(kT0)+Nf = 10∗ log(1.38∗10−23 ∗290∗103)+Nf = −174.4dBm/Hz+NF(dB)
(4.8)

Table 4.1: Main Link Budget Parameters.
Parameter Value

Pt (transmitted power in dB relative to a W) -8.3 dBm

B.W.min (bandwidth) 2 GHz

PSD(dBm/MHz) -41.3 dBm/MHz

Receiver Noise Figure (NF ) 10 dB

N0 (Noise PSD = kTsys) -164.4 dBm/Hz

Gt and Gr (Tx and Rx antenna gains) 0 dBi

Implementation Loss (La) 3 dB

Required Eb/N0|req (dB) 18 dB
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Table 4.2: Path loss values for on-body channel models.
Path Loss PL0 d0(m) Path Loss Exponent m Channel

82.0dB 1m 3.3 Anechoic Chamber [121]

75.8dB 1m 2.7 Office [121]

109.2dB 1m 4.1 Worst case [121]

82.0dB 1m 2.6 Front side (vertical) [122]

101.0dB 1m 3.7 Front side (horizontal) [122]

86.0dB 1m 2.2 Front side (diagonal) [122]

82.0dB 1m 2.9 Back side (vertical) [122]

93.0dB 1m 2.8 Back side (horizontal) [122]

84.0dB 1m 2.7 Back side (diagonal) [122]

50.5dB 0.1m 7.2 Around Torso [43]

44.6dB 0.1m 3.1 Along Torso [43]

where, k is Boltzman constant = 1.38∗10−23 J/0K, T0 = 2900K, and NF is the receiver noise
figure. The average noise per pulse PN in terms of the pulse rate Rp is expressed as:

PN = N0 + 10 log Rp (4.9)

The link margin LM is:

LM = PR(d) − PN −
(

Ep

No
|req

)
− La (4.10)

where
(

Ep

N0
|req

)
is the required pulse energy to noise ratio and La is the implementation loss.

The minimum receiver sensitivity Sr is calculated as:

Sr = PR(d) − LM (4.11)

Effect of Body Shadowing

An important parameter that defines the loss that the signal exhibits is termed path-loss.
The received bit energy Er = Pr ∗ Tp at a distance d in terms of the transmitted bit energy
Et = Pt ∗ Tp, Tp is the pulse duration, is [90]:

Er(d)(dBmJ) = Et(dBmJ) − PLt(d)(dBm2) (4.12)

To estimate the effect that human body shadowing has on the amount of pulse shape
distortion, actual measurements were taken at the Virginia Tech’s Mobile and Portable
Radio Research Group (MPRG) labs, and the explicit results were presented in [36]. These
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Table 4.3: Additional Losses [36].

Measurement Man (dB) Woman (dB)

Arm parallel 18.84 12.08

Arm perpendicular 3.35 4.87

Leg inline 20.23 20.31

Leg perpendicular 12.43 5.87

Thigh 14.88 13.88

Torso 45 degree 18.62 20.28

Torso parallel 21.86 18.65

Torso perpendicular 21.60 19.79

measurements showed that the body can introduce a significant attenuation (up to 20 dB)
when a body limb blocks the LOS path. A summary of results is given in Table 4.3. These
results agree with the results presented in [100]. Moreover, a recent analysis showed that
above 2 GHz little to no energy penetrates the body, and that signals transmitted from
the antenna diffract around the body and can be reflected from arms and shoulders [100].
This explains the wide variations of the path-loss exponents when the link between nodes
is obstructed by the body limbs. Consequently, this fact highlights the importance of the
node’s placement to guarantee a sufficient number of LOS connections during movement.
Also, measurements indicate that there are always a minimum of two clusters of multi-path
components, namely a wave diffracting around the body, and a reflection from the ground
[100]. Table 4.4 gives preliminary link budget designs for our system assuming a 1 Kb/s
bit-rate (TOA update rate per system frame including all non-body nodes) for possible 500
Kp/s, 1 Mp/s, and 50 Mp/s pulse rates. An exact link budget will be presented based on
more precise values in later chapters.

4.3 A Comparative Power Consumption Study

UWB technology has specific challenges associated with its design due to the ultra-wide
nature of its spectrum. Specifically, ADCs have to work at the Nyquist frequency. Also, the
matched filter digital logic has to work at very high frequency. The allocated band to UWB
healthcare applications is the 3.1 - 10.6 GHz range. Thus, the required sampling frequency
for this band is ≈ 15 GHz [16], [120]. Essentially, digital implementation approaches have
the advantage of flexibility and accuracy. However, the all-digital architecture suffers from
high power consumption. Typically, this power consumption is dominated by ADCs and
MFs. An attractive solution to reduce power consumption for UWB transceivers is the
partially-analog approach, in which the ADC is moved after the MF or correlator block.
Consequently, the correlation is performed in the analog domain. As a result, the sampling
frequency constraint and the power-consumption are significantly reduced [65], [74].
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This section provides a sample comparative study of power consumption estimation, ac-
cording to the partially-analog approach for the TR, ED, and correlator receivers based
on state-of-the-art implemented UWB components proposed in the literature. The power
consumption is estimated assuming 0.18 μm CMOS technology [65].

IR-UWB correlation receivers with analog correlators were proposed in the literature for
low-power consumption, where the correlors are placed before the ADC, and hence relaxing
the sampling requirements [114]. The correlation operations are assumed to be performed
in the analog domain in order to relax the ADCs requirements, and consequently to reduce
the overall power consumption [65]. In particular, moving the correlation operation from
the digital domain to the analog domain reduces the required sampling frequency from the
Nyquist rate to the pulse repetition rate [65]. A possible choice of the number of bits is n
is 4 bits. However, the choice of n affects the ADC power consumption, where the power
consumption of ADCs is calculated as:

PADC =
2nfADC

FOM
(4.13)

where FOM is the figure-of-merit, and the quantization noise influences the BER [74]. In
[79] it was shown that 4 bits is sufficient for reliable detection of UWB signals.

In order to further reduce the power consumption of correlator receivers, windowed sinu-
soidal templates have been proposed as an alternative for the generation of optimal Gaussian
pulses. Essentially, the template waveform should be matched to the received pulse. Un-
fortunately, the generation of a Gaussian pulse template is difficult and power consuming.
Moreover, generating a sinusoidal wave is straightforward [114], and when windowed it can

Table 4.4: Link Budget for B.W. = 2 GHz.
Pulse rate Rp 500 Kp/s 1 Mp/s 50 Mp/s

B.W.min (bandwidth) 2 GHz 2 GHz 2 GHz

Pt (transmitted power in dB relative to W) -8.3 dBm -8.3 dBm -8.3 dBm

PL0 44.6 dB 44.6 dB 44.6 dB

PL(d = 1m) (exponent=3.1) 31 dB 31 dB 31 dB

Total path loss PLt(d) 75.6 dB 75.6 dB 75.6 dB

Average noise power per pulse (PN) -107.4 dBm -104.4 dBm -87.4 dBm

Average power at the receiver (PR) -83.9 dBm -83.9 dBm -83.9 dBm

Achieved Ep/N0 23.5 dB 20.5 dB 3.5 dB

Link Margin (LM ) 2.5 dB -0.5 dB -17.5 dB

Target bit-rate Rb 1 Kb/s 1 Kb/s 1 Kb/s

Pulses per bit (Ns) 27 dB 30 dB 47 dB

Link Margin (LM ) 29.5 dB 29.5 dB 29.5 dB

Minimum receiver sensitivity (Sr) -113.4 dB -113.4 dB -113.4 dB
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Figure 4.5: Second Order Gaussian pulse and corresponding suboptimal template.

resemble the main pulse form [97]. Figure 4.5 shows the optimal and suboptimal templates
assuming the second order Gaussian pulse, and Figure 4.6 shows the corresponding auto-
correlation and cross-correlation functions. Suboptimal templates are in the form of either
real or complex sinusoids, also known as quadrature analog correlators (QAC). Generally,
receivers with complex suboptimal templates lead to less severe SNR degradation, which is
traded for more power consumption as compared to receivers with a real template. However,
it requires smaller power consumption as compared to the optimum detector [65]. Figure 4.7
shows a comparison of power consumption for the fully-digital (FD) approach with 4 bits
and 1 bit, TR, ED, correlator (CR) with a real suboptimal template, and QAC correlator
assuming a signal bandwidth = 500 MHz based on the design parameters presented in [65],
[113]. As shown, ED detectors has the smallest power consumption followed by correlator-
based detector with real suboptimal template and QAC receivers. Thus, CR with suboptimal
templates and QAC receivers are worth studying in further details, as they are promising
solutions that combine coherent-detection performance and low power requirements associ-
ated with non-coherent detectors. A detailed study of the performance of these detectors
will be provided in later chapters.

4.4 Proposed Performance/Power-consumption Study

Framework with Non-coherent Detectors Case Study

This section provides a sample case-study of power consumption estimation, according to the
partially analog approach, for the TR and ED receivers based on state-of-the-art implemented
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Figure 4.6: Second Order Gaussian pulse autocorrelation and cross-correlation with corre-
sponding suboptimal template.
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UWB components proposed in the literature. The power consumption is estimated assuming
0.18 μm CMOS technology [65].

Non-coherent receivers are low-power solutions that do not require channel estimation,
and are suitable for low-data rate applications [20]. In these receivers, low-power consump-
tion is traded for a degradation in bit error rate (BER) performance. Non-coherent alterna-
tives include transmitted reference (TR) and energy detection (ED) schemes [106].

The main modulation scheme employed with time hopping impulse radio TH IR-UWB
is the pulse-position modulation (PPM) scheme, for which increasing the order of the pulse
derivative leads to a smaller value of the minimal autocorrelation value and a consequently
better BER performance. However, the achievement of better BER performance is traded
for higher sensitivity to timing jitter. Other common types of modulation include pulse
amplitude modulation (PAM) and on-off keying (OOK) modulation [20].

The transmitted reference (TR) scheme with a correlation based receiver is considered
a non-coherent receiver. The TR scheme is based on the transmission of a pair of pulses
(one modulated and one unmodulated ), where at the receiver, the unmodulated pulse is
used to detect the modulated pulse. However, TR correlation receivers suffer from the use
of a noisy template [106]. Instead of sending reference pulses, the differential transmitted
reference (DTR) scheme uses the data pulses of previous symbols for the correlation with
the received pulses. Hence, DTR achieves a 3 dB performance gain over TR schemes. On
the other hand, DTR requires differential encoding of the transmitted bits, which in turn
requires longer delay-lines, and higher power consumption [106].

The energy detection (ED) correlation receiver is another non-coherent receiver. In ED
correlation receivers, the correlator is replaced by a squaring device. ED IR-UWB receivers
can be implemented with on-off keying (OOK) and PPM schemes. However, OOK requires
a careful choice of the detection threshold [106]. The main difference between ED and
TR receivers is the reference pulse. Both receiver structures suffer from the use of noisy
waveforms at the receiver, and both receivers require a careful choice of the integration
window in order to minimize the BER performance [60], [106].

4.4.1 Comparison of Power Consumption of Non-coherent Detec-
tors

This section provides an estimation of the power consumption of TR and ED receivers based
on state-of-the-art UWB components proposed in the literature. The power consumption is
estimated assuming 0.18 μm CMOS technology [94]. The power consumption comparison of
different receiver blocks is given in Table I.

The correlation operations are assumed to be performed in the analog domain in order
to relax the ADCs requirements, and consequently to reduce the overall power consumption
[94]. In particular, moving the correlation operation from the digital domain to the analog
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Table 4.5: Power Consumption Summary.

TR ED Ref.

LNA 9 mW 9 mW [94]

mixer 10.8 mW - [19]

Squarer - 1.7 mW [45]

Integrators 10.4 mW 10.4 mW [99]

Delayline 13.1 mW - [74]

PLL 13.5 mW 13.5 mW [94]

ADC 0.8 mW 0.8 mW [74]

Digital cct. 2.5 mW 2.5 mW [74]

Total Power 60.1 mW 37.9 mW

domain reduces the required sampling frequency from the Nyquist rate to the pulse repetition
rate [94]. The ADCs are assumed to have n = 4 bits3 for a signal bandwidth W= 500 MHz,
Ns= 10 pulses per bit, a bit-rate of 2 Mbps, and fADC= 25 MHz [94], [74]. The power
consumption of the integrators is based on [99], which requires a power consumption of 5.2
mW for a 100 MHz pulse repetition frequency, or equivalently an energy consumption of 52
pJ and a holding time > 10 ns. Scaling the power consumption to 20 MHz as in [94] gives
1.04 mW. The hold time (integration time) of the integrator is equivalent to half of the clock
time [106]. Thus, an integration window of 100 ns would require 10 integrators each with an
integration time of 10 ns.

As provided in Table 5.1, ED receivers consume less power as compared to TR receivers.
This difference in power consumption is basically because of the analog delay-line used in
the TR correlation receiver. Currently, the implementation of analog delay-lines with delays
on the order of nanoseconds is challenging [106]. Analog delay-lines can be implemented
using the group delay properties of bandpass filters. However, the wide bandwidth nature
of UWB signals leads to a high filter implementation complexity, which increases the overall
power consumption [106].

3The choice of n affects the ADC power consumption P = 2nfADC

FOM , where FOM is the figure-of-merit,
and the quantization noise influences the BER [74]. In [79] it was shown that 4 bits is sufficient for reliable
detection of UWB signals.
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4.4.2 BER Performance

In our estimation for the BER, we consider the IEEE 802.15.3a channel model that was
presented in an earlier section. The output signal-to-noise-ratio Λ is proportional to:

HL =
L∑

l=0

Φ2
l (4.14)

where, the random variable HL is the sum of L+1 random variables with different distribu-
tions. The Φl are uncorrelated but are not statistically independent. The average SNR as a
function of number of paths L is [55]:

ASNR(L) = E[Λ] = SNR × E[HL] (4.15)

where,

E[HL] = Ω0{1 + Rβ̄(Tw, s0) + Cβ̄(Tw, τ0) + RC[s0β̄(Tw, τ0)

−s0β̄(Tw, s0τ0/(s0 − τ0))e
−Tw/s0]}

(4.16)

Tw = (L + 1/2)TΔ, TΔ = 1/W , W is the signal bandwidth,

β̄(Tw, μ) =

Tw∫
0

e−t/μdt = μ
[
1 − e−Tw/μ

]
(4.17)

Eb = NsEp, is the bit energy, Ns is the number of frames per bit, Ep is the energy per pulse,
R is the ray arrival rate, C is the cluster arrival rate, τ0 is the cluster decay factor, s0 is
the ray decay factor, and Ω0 is a scale factor, Ω0 = 1/ [(1 + Rs0) (1 + Cτ0)] [55]. In [66] the
channel averaged SNR is defined in terms of the integration window T = LpTp (T is an Lp

integer multiple of the pule duration Tp):

ASNR(Lp) =
NsE

2
pG

2(Lp)

N0EpG(Lp) + N2
0 BLpTp/2

(4.18)

where B is the one-sided receiver bandwidth, and the average path energy is calculated

by enumerating all possible arrival times in the n-th time bin from G(Lp)
Δ
= E{A(1)2

i },
E{A(v)2

1 } = Ω0, and

E{A(v)2

n } = Ω0PcPr exp
[
−nTΔ

s0
+

TΔ

τ0

]
ρ2 (1 − ρn−2)

1 − ρ

+Ω0Pc exp

[
−(n − 1)TΔ

τ0

]

+Ω0Pr exp

[
−(n − 1)TΔ

s0

]

(4.19)
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where, n ≥ 2, N is the number of time bins, Pc is the probability that one cluster occurs
with Pc = CTΔ, given the cluster arrival, Pr is the probability that one ray occurs in a time

bin with Pr = RTΔ, ρ = exp(TΔ

s0
− TΔ

τ0
), Ēc

Δ
= E{∑N

i=1A
(v)2

n }, and Ω0
Δ
= 1

Ēc|
Ω0=1

[66].

The BER of simple TR (STR) receiver for BPAM is [20]:

Pb = E

⎡
⎣Q

⎛
⎝[ 2

Ns

(
N0

Eb

)
+

WT

Ns

(
N0

Eb

)2
]− 1

2

⎞
⎠
⎤
⎦ (4.20)

where, E[.] is the expected value, W is the real bandpass signal bandwidth, Q(x) = 1√
2π

∞∫
x

e−z2/2dz,

and N0 is the noise PSD. The BER performance in (4.20) can be evaluated in two ways:
(a) using (4.15) to evaluate (4.20) and (b) using (4.18) to evaluate (4.20). As, in multi-
path channels, the SNR used in the BER formulas is assumed to be the average SNR. This
assumption is valid for non-coherent detectors, where they assume using one receive arm
for the detection of the received signal. Thus, calculating the average BER in terms of the
channel averaged SNR gives good approximates. A comparison of the BER performance
using the aforementioned two ways is shown in Figure 4.8 for Ns = 2 and 16. We can see
that both methods provide nearly identical results.

The BER of the ED receiver for BPPM (ED-BPPM) is [117]:

Pb =
1

2
erfc

⎛
⎝ η(T ) (d0 + d1W ) (Eb/N0)

2
√

(TW/p0) + 2s0η(T ) (Eb/N0)

⎞
⎠ (4.21)

where, η(T ) is the ratio of the energy captured to the total energy available, T denotes
the integration window, d0, d1, and s0 are IEEE 802.15.3a channel parameters [117]. The
ED-BPPM receiver achieves a similar BER performance to the TR-BPAM receiver as shown
in Figure 4.9.

The BER of DTR receiver for BPAM (DTR-BPAM) is [20]:

Pb = E

⎡
⎢⎣Q

⎛
⎜⎝
⎡
⎣2Ns − 1

N2
s

(
N0

Ep

)
+

WT

4Ns

(
N0

Ep

)2
⎤
⎦
− 1

2

⎞
⎟⎠
⎤
⎥⎦ (4.22)

A BER performance comparison of DTR-BPAM and TR-BPAM correlation receivers
in the IEEE 802.15.3a CM4 is given in Figure 4.10. The performance of the TR-BPAM
receiver, and DTR-BPPM and ED-BPPM receivers are similar as shown in Figure 4.11. For
the ED correlation receiver, due to the squaring device it is unable to detect binary antipodal
signaling. Moreover, BPPM is more sensitive to timing mismatch when compared to BPAM
scheme. The DTR-BPAM receiver outperforms TR-BPAM and ED-BPPM receivers.



Chapter 4. System Analysis 57

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

 

 
N

s
=16 mthd.1

N
s
=16 mthd.2

N
s
=2 mthd.1

N
s
=2 mthd.2

Figure 4.8: BER performance of TR-BPAM receiver in the IEEE 802.15.3a CM1 using two
ways: (a) mthd.1 [55] and (b) mthd.2 [66] for Ns= 2 and 16.

4.4.3 Relationship between BER and Power-Consumption

This subsection describes the framework in detail and discusses the relationship between the
BER and power consumption of the receivers under investigation. In order to maintain a
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fair comparison, both the implementation and performance parameters were fixed. From
an implementation point of view, ED receivers consume less power than TR receivers. The
difference in power consumption is mainly caused by the analog delay-line required for the
correlation operation in the TR receivers, as depicted in Figure 4.12(a). Further, the use of
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Figure 4.11: BER performance comparison of ED-BPPM, DTR-BPPM, and TR-BPAM
receivers in the IEEE 802.15.3a CM4. for WT= 100 and 160.
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analog delay-lines not only leads to higher power consumption, but the design of accurate
analog delay-lines for UWB signals is challenging. The performance of the studied receivers
suffer from the use of noisy templates, and the achievement of a better BER performance
requires the averaging of multiple received pulses.

TR-BPAM, DTR-BPPM and ED-BPPM receivers have the same BER performance for
the same parameters, including n (when the effect of quantization noise is considered),
W , Ns, and T , as shown in Figure 4.12(b). However, the choice of these parameters is
essential for both the BER performance and power consumption. Since the channel ASNR
depends on the channel model and Tw, W in turn affects the amount of energy captured
by the receiver. Further, T is chosen such that it minimizes the BER for a specific channel
model and a specific value of Tw. Moreover, Ns affects Eb/N0 and the BER performance.
When the power consumption is the main constraint, it is more convenient to fix the power
consumption, and to compare the equivalent BER performance. For the same pulse repetition
frequency (PRF) and PADC , the number of required Ns for W= 500 MHz and 1 GHz are
10 and 20 pulses/bit respectively. The BER performance is plotted versus T in Figure
4.13(a) for W = 500 MHz and 1 GHz, and Ns = 10 and 20 in CM1 and CM4. Accordingly,
one integrator (10 ns) is chosen for minimum power consumption and BER performance,
and the BER versus the corresponding change in power consumption ΔP is depicted in
Figure 4.13(b). Typically, increasing the integration window increases power consumption.
However, it does not necessarily enhances the performance, as there is an optimal value after
which increasing the window results in adding more noise, which causes the performance
to degrade. From the power consumption point of view, W affects the sampling frequency,
T determines the number of integrators, and Ns and n influence the amount of relaxation
of the ADC sampling frequency, where the correlation is performed in the analog domain
before the ADC. To summarize, the ED-BPPM receiver achieves the same BER as TR-
BPAM and DTR-BPPM correlation receivers with much less power consumption for the
same parameters.

4.5 Studied Gait Parameters

As a part of studying different gait parameters, we developed multiple MATLAB simula-
tion scripts for the extraction and calculation of various gait parameters based on actual
motion capture (MoCap) files. Particularly, we extracted and estimated gait parameters
from ”.C3D” files associated with the Plug In Gait software of the Vicon optical system
[115], ”.GCD” and ”.DST” associated with GaitLab (GaitCd) software [112], and ”.TRC”
associated with OpenSim software [4], [33].

In order to estimate gait parameters, first raw marker data was extracted from MoCap
files, and then processed using MATLAB. Generally, ”.C3D” files were obtained from the
human locomotion database available at [1], [2]. Figures 4.14(a) and (b) show the heel-to-
heel and base-of-support (BOS) distances for normal gait, respectively. Furthermore, Figure
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Figure 4.12: (a) Power-consumption comparison of EDWi,Nsi
and TRWi,Nsi

Rxs for W1,2= 500
MHz and 1 GHz, and Ns1,2= 10 and 20. and (b) BER performance comparison of ED-BPPM,
DTR-BPPM, and TR-BPAM receivers in the IEEE 802.15.3a CM4.
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Figure 4.13: (a) BER of TR-BPAM Rx. versus T (ns) for various W and Ns in CM1 and
CM4. and (b) BER vs ΔP , with same parameters as in (a), in CM1 and CM4.
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4.15(a) shows the right-knee flexion angle for normal gait. Similarly, Figure 4.15(b) shows
the right-ankle angle. Moreover, Figures 4.16(a) and (b) depict the angular velocity and
acceleration of the right-knee for normal gait, respectively.

4.6 Chapter Summary and Contributions

This chapter discussed and studied some important parameters related to our system design,
namely the channel model, the link budget, and the important estimation of gait param-
eters to be studied. Also, it gave a comparative study of power consumption considering
six different receiver architectures. Specifically, three different channel models employed
in our simulation were discussed including the recent industrially accepted IEEE 802.15.6a
channel model. Then, link budget design parameters were discussed and estimated for our
target system TOA update rate for different pulse repetition frequencies (PRF). Moreover,
we proposed a framework for the study of performance/power-consumption, and gave a case
study for non-coherent UWB receivers. Furthermore, a brief comparative power consumption
study was provided for the comparison of power consumption of different receiver architec-
tures. Moreover, the employed estimation methodology of gait parameters was explained.
Particularly, we do not use motion capture specialized software for the simulation of gait
parameters, as we will further need to integrate these parameters in our communication
system simulations starting from the raw marker data.

Related Publications:

• H. Shaban, M. Abou El-Nasr, and R.M. Buehrer, ” A Framework for The Power Con-
sumption and BER Performance of Ultra-low Power Wireless Wearable Healthcare and
Human Locomotion Tracking Systems via UWB Radios ”,The 9th IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT 2009), Dec.-14
Dec. 17 2009, pp. 322-327.

• H. Shaban, M. Abou El-Nasr, and R.M. Buehrer,”Toward a highly accurate ambulatory
system for clinical gait analysis via UWB radios,” IEEE Transactions on Information
Technology in Biomedicine, Vol. 14, No. 2, pp 284- 291, Mar. 2010.

• H. Shaban, M. Abou El-Nasr, and R.M. Buehrer,”A highly accurate wireless wearable
UWB-based full-body motion tracking system for gait analysis in rehabilitation ,”
Submitted to IEEE Transactions on Information Technology in Biomedicine.
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Figure 4.14: (a) Heel-to-heel distance for normal gait extracted from actual MoCap file. and
(b) Base-of-support (BOS) distance for normal gait extracted from actual MoCap file.
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Figure 4.15: (a) Right-knee flexion angle for normal gait extracted from actual MoCap file.
and (b) Right-ankle angle extracted from actual MoCap file.
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Figure 4.16: (a) Angular velocity of right-knee joint extracted from actual MoCap file. and
(b) Angular acceleration of right-knee joint extracted from actual MoCap file.



Chapter 5

Ranging and Theoretical Lower
Bounds

This chapter derives the theoretical lower bound on ranging performance, studies and com-
pares ranging approaches proposed in the literature, and proposes a new ranging technique
for on-body communications. Moreover, it provides link and power budgets for the proposed
system. In particular, Section 5.1 studies the structure of the employed receiver based on
state-of-the-art implementation parameters proposed in the literature. Furthermore, Section
5.2 studies the template design, BER in AWGN and multi-path channels, and SNR degrada-
tion. Moreover, Section 5.3 studies the theoretical lower bound on system performance and
provides closed-form formulas. The proposed ranging approach is introduced in Section 5.4.
Then, a comparison of the performance of the proposed approach with other TOA estimators
is provided in Section 5.5. The link and power budgets for the proposed approach are given
in Section 5.6. Finally, chapter conclusions and contributions are given in Section 5.7.

5.1 Analog Correlator Receiver Architecture

In our design, we assume the analog sliding-correlator proposed in [31]. In this receiver,
incoming pulses are multiplied by a series of template pulses generated at the pulse repetition
rate (PRR) with a predetermined phase offset increment added to each generated template
pulse. Target time-of-arrival (TOA) is determined from the receiver clock phase when the
output energy of multiplied incoming and template signals is maximum. This value is set to
correspond to the TOA of the incoming signal. In more detail, the analog sliding-correlator
is composed of a multiplier and buffer stages. The TOA of the incoming signal is determined
by sweeping the phase of reference clock with a predetermined one-degree-per-step value, and
the TOA is set to correspond to the maximum detected cross-correlation energy. Time-step
is calculated as Δt = 1

CLKRX.360o in s/1o, where CLKRX is the reference clock frequency [31].

66



Chapter 5. Ranging and Theoretical Lower Bounds 67

Figure 5.1: Sliding-correlator block-diagram based on the receiver architecture in [31] [32].

A simplified block-diagram of the correlator is shown in Figure 5.11. Furthermore, Figure
5.22 shows how the incoming signal and template pulses are aligned with a 10 ps incremental
phase step. It also shows the multiplier output which resembles the cross-correlation of
the incoming and template signals. This procedure is verified using MATLAB simulations
assuming a PRF = 50 MHz, as shown in Figure 5.3, where the incoming and template signal
trains are showed. Moreover, Figure 5.4 depicts the output correlation function.

Even though the multiplier output pulses are spaced by the pulse-repetition frequency
(PRF), this spacing is transformed to clock sweeping step when estimating the TOA [31]
[32]. Obviously, in order to be able to determine the maximum energy, which corresponds
to the TOA, an ADC placed after the buffer stage is required. It needs to have a sampling
frequency equivalent to PRF. For the proposed gait analysis system, initially we assume 400
possible positions of the correlation pulse peaks, which correspond to the maximum expected
4 ns delay divided by the 10 ps step. Thus, for this stage, an ADC with 9 bit resolution and
a sampling frequency equivalent to PRF = 50 MHz is sufficient. According to [29], an ADC
with 9.7 effective number of bits (ENOF) and 80 Msample/s sampling frequency requires a
10 mW. Thus, for a 50 Msample/s PRF, the ADC power consumption is approximately 6.25
mW.

In our calculations, as was shown in earlier chapters, we further perform TOA estimation
ten-times, and take the average of these estimates. Essentially, averaging provides values
that are not limited to the 10 ps resolution assumption. For instance, averaging 10 ps and
20 ps gives 15 ps, a value that would not have been attained by solely using the 10 ps limit.

1Figure 5.1 is reproduced based on the receiver provided in [31], [32].
2Figure 5.2 is reproduced based on the figure presented in [110].
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Figure 5.2: Sliding-correlator signal flow.
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Figure 5.4: Output of the multiplier stage.

5.2 Template Pulses and BER Performance in AWGN

and Multi-path Channels

The n-th order Gaussian pulse p0(t) in terms of σ2 = Tp/2π, and the pulse duration Tp, has
the form [97]:

pn(t) =
d(n)

dtn

(
1√

2πσ2
e

−t2

2σ2

)
(5.1)

Assuming a correlation receiver, the optimal template v(t) should be matched to the received
pulse p(t) = pn(t), where the pulse parameters are chosen to meet the specified FCC allowable
emission limits. When using a suboptimal windowed sinusoidal template, v(t) = cos(ωc(t))
for a window-length T and carrier frequency ωc, the oscillator frequency should be chosen
to maximize the output SNR [97]:

SNR =
Es

N0

ρ2
pv(τe)

ρpp(0)
(5.2)

where, Es is the bit energy, N0 is the noise PSD, ρpv(.) is the normalized cross-correlation
of the received pulse and the template waveform, τe is the timing error, and ρpp(.) is the
normalized auto-correlation of the received pulse.

5.2.1 BER Performance in AWGN Channel

In this subsection, we derive the BER assuming the PPM scheme, which will be used later in
the estimation of the ZZLB. Considering binary Pulse Position Modulation (BPPM), with
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a transmitted pulse p(t), the optimal template is [14]:

v(t) = p(t) − p(t − δ) (5.3)

where, δ is the PPM modulation parameter. In the case of the optimum receiver, the BER
can be minimized by choosing δ to minimize the autocorrelation [91]:

δopt = arg
{
min

δ
ρpp(δ)

}
(5.4)

For equally correlated (EC) M -ary PPM, the transmitted signal is composed of Ns time
shifted pulses with 2 ≤ M < Ns, where each signal is identified by a sequence of cyclic shifts
of an m-sequence of length Ns [91]. The union bound on the bit error probability of EC
M -ary PPM assuming an optimum receiver is [91]:

UBPb =
M

2
Q

(√
Es

2N0
(1 − ρpp min)

)
(5.5)

ρpp(τ) =
1

Ep

∞∫
−∞

p(t)p(t − τ)dt (5.6)

where, Q(.) is the Gaussian tail function [91], [102]. The alternate representation for the tail

function is expressed as Q(x) = 1
π

∫ π/2
0 exp

(
− x2

2sin2θ

)
dθ [102], ρpp min

Δ
= ρpp(δopt), and Ep is

the pulse energy.

Real Suboptimal Template

The normalized cross-correlation function of the received pulse and windowed sinusoidal
template (where T is the window-length and ωc is the carrier frequency) can be calculated
as [97]:

ρpv(τ) =
1√

Ep

√
Ev

T/2∫
−T/2

p(t) cos(ωc(t − τ))dt (5.7)

where, Ev is the template energy. Without loss of generality we assume that the received
pulse is the Gaussian pulse p(t) = p0(t), from which all derivatives could be obtained, this
gives:

ρpv(τ) =
1

4
√

Ep

√
Ev

[
erf

(
1

2
√

2σ
Φ

)
+ erf

(
1

2
√

2σ
Φ∗
)] [

exp
(−ωc

2
Λ
)

+ exp
(−ωc

2
Λ∗
)]

(5.8)
where, Φ = T + 2iωcσ

2, Λ = σ2ωc + 2iτ , i =
√−1, ωc is the oscillator angular frequency

in rad/s, T is the window duration, and τ is the time-shift. To minimize BER, we wish to
choose the value of δ that minimizes the correlation ρpv min(δopt). Further, at the receiver we
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choose a sample time μ to maximize the correlation between the suboptimal template and
the generated pulse:

μopt = arg
{
max

μ
ρpv(μ)

}
(5.9)

with ρpv max = ρpv(μopt), the union bound on the bit error probability for equally correlated
signals is defined as:

UBPb =
M

2
Q

(√
Es

2N0
(ρpv max − ρpv min)

)
(5.10)

Complex Suboptimal Template

The quadrature analog correlation (QAC) receiver uses two branches for correlation, namely
the in-phase I -branch and quadrature-phase Q-branch [65]. The I -branch uses a template
signal similar to the real suboptimal template-based receiver. Whereas, the Q-branch uses
a template v(t) = sin(ωct). The resulting correlation from the Q-branch is expressed as:

ρpvQ(τ) =
1√

Ep

√
Ev

T/2∫
−T/2

p(t) sin(ωc(t − τ))dt (5.11)

The corresponding closed-form correlation is written as:

ρpvQ(τ) =
i
√

2πσ

4
√

Ep

√
Ev

[
erf

(
1

2
√

2σ
Φ

)
+ erf

(
1

2
√

2σ
Φ∗
)] [

− exp
(−ωc

2
Λ
)

+ exp
(−ωc

2
Λ∗
)]

(5.12)
Also, The cross-correlation function could be further simplified to:

RpvQ(τ) =
−i

√
2πσ

2
√

Ep

√
Ev

[
erf

(
1

2
√

2σ
Φ

)
+ erf

(
1

2
√

2σ
Φ∗
)]

sin
(

ωc

2
Θ
)

(5.13)

where, sin
(

ωc

2
Θ
)

= −i0.5
(
exp

(
iωc

2
Θ
)
− exp

(
iωc

2
Θ
))

. The resulting cross-correlation func-
tion is plotted versus ωc for various values of τ and T in Figure 5.5. The resulting correlation
from the I -branch and Q-branch is expressed as:

ρpvQAC
= ρpvI + iρpvQ (5.14)

and from Eq. (5.8) and (5.13), the resulting cross-correlation function is expressed as:

ρpvQAC
(τ) =

√
2πσ

2
√

Ep

√
Ev

[
erf

(
1

2
√

2σ
Φ

)
+ erf

(
1

2
√

2σ
Φ∗
)]

exp
(−ωc

2
Λ
)

(5.15)
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Figure 5.5: Normalized cross-correlation function RpvQ(τ) of the Gaussian pulse and subop-
timal sinusoidal pulse from the Q-branch versus the frequency of the suboptimal template
for various values of τ , and T , τ1 = 1.9192 ns, τ2 = 5.9596 ns, T1 = 1.9 ns, and T2 = 0.9 ns.

5.2.2 Signal to Noise Ratio Degradation

The SNR degradation at the output of the correlator could be calculated according to Eq.
(5.2) for the real and complex suboptimal templates based on Eq. (5.8) and (5.15), respec-
tively. Figure 5.6 shows the SNR degradation versus timing error for the optimal template,
real and complex suboptimal templates for various values of ωc and T . Obviously, both
parameters affect the SNR degradation. Moreover, receivers with complex suboptimal tem-
plates exhibit less severe SNR degradation, which is traded for more power consumption
compared to receivers with real templates. However, it requires smaller power consumption
compared to optimum detectors [65].

5.2.3 BER Performance in Dense Multi-path Channels

The BER of low complexity partial RAKE (PRake) receivers [87], assuming PPM mod-
ulation and optimal templates in terms of the moment generating function (MGF), Mηl

,
over a Nakagami-m channel with uniform power delay profile (PDP), and Lp independent
identically distributed (i.i.d.) paths is [87]:

Pb,PRake =
1

π

π/2∫
0

(
Mηl

(
−(1 − ρpp min)

4m sin2 θ

))Lp

dθ (5.16)
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Figure 5.6: Output SNR degradation of the correlation receiver output for the Gaussian
pulse and suboptimal templates versus the timing error for various values of ωc, and T ,
ωc1 = 0.7677 GHz, ωc2 = 1.1717 GHz, T1 = 1.9 ns, and T2 = 2.9 ns.

where, η̄ = Es/LN0. Ideal Rake (ARake) receivers capture all the energy in all L paths, i.e.,

Lp = L [87]. Substituting with the MGF Mη̄(s) =
(
1 − sη̄

m

)−m
gives:

Pb,PRake =
1

π

π/2∫
0

(
4m sin2 θ

4m sin2 θ + η̄(1 − ρpp min)

)mLp

dθ (5.17)

The probability of bit error of PRake receivers for PPM modulation with a suboptimal
template is:

Pb,PRake =
1

π

π/2∫
0

(
4m sin2 θ

4m sin2 θ + η̄(ρpv max − ρpv min)

)mLp

dθ (5.18)

The MGF for correlated Nakagami-m fading is:

Mη̄(s) =
L∏

l=1

(
1 − sη̄l

mL

)−m

[det[cuj]]
−m (5.19)

where,

cuj =

⎧⎨
⎩

1 u = j
√

ρuj

(
1 − mL

sη̄j

)−1
o.w.

(5.20)
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where ρuj is the fading power correlation between sub-bands u and j [102]. The corresponding
error probability is:

Pb,PRake =
1

π

π/2∫
0

Lp∏
0

(
4m sin2 θ + η̄(ρpv max − ρpv min)

4m2Lp sin2 θ

)−m

. [det[cuj]]
−m dθ (5.21)

and,

cuj =

⎧⎨
⎩

1 u = j
√

ρuj

(
1 + 4m2Lp sin2 θ

(ρpv max−ρpv min)η̄j

)−1
o.w.

(5.22)

Template Design and Numerical Results

In this sub-section, we use the analysis provided above to compare the performance of IR-
UWB correlation receivers with optimal and suboptimal templates in AWGN and dense
multi-path channels.

Using windowed sinusoids was proposed in the literature as an alternative solution for low-
power template generation in the analog domain, since windowed sinusoids can approximate
the optimal templates and are easily generated in the analog domain [97]. However, this
solution suffers from the sensitivity of the correlator output SNR to timing errors. As will
be shown later, this is an advantage for our system since we are interested in estimating the
TOA rather than the BER. Receiver structures with suboptimal sinusoidal templates are
more sensitive to timing errors as compared to optimal receivers [97]. Complex sinusoids
were proposed to compensate for the SNR degradation in the presence of timing errors, but
this structure requires nearly double the power required for the corresponding structure with
real sinusoids [53], [65].

Suboptimal template design requires the appropriate choice of the sinusoidal wave fre-
quency, and the integration window-length [97]. Figure 5.7(a) shows the optimal and sub-
optimal templates assuming the seventh order Gaussian pulse, and Figure 5.7(b) shows the
corresponding autocorrelation and cross-correlation functions. Figure 5.8 shows the cross-
correlation function of the Gaussian pulse and the sinusoidal template versus the frequency
of the sinusoidal template at different time samples, and correlation window-lengths using
Eq. (5.15). As shown, the cross-correlation function is highly sensitive to both the sinusoidal
template frequency and the integration window. The normalized cross-correlation coefficient
can be > 0.9 for appropriate choice of sinusoidal templates. For M -ary PPM modulation, the
performance loss caused by sinusoidal templates with appropriately chosen parameters is <
0.2 dB, as depicted in the simulation results in Figure 5.9. Furthermore, the simulated BER
performance of ARake receivers is shown in Figure 5.10 for BPPM and 4-PPM schemes in
IEEE 802.15.4a outdoor NLOS channel, for the seventh order Gaussian pulse, and sinusoidal
templates. Finally, Figure 5.11 shows a BER comparison between simulated BPPM and
4-PPM schemes in IEEE 802.15.6a for the seventh order Gaussian pulse, assuming optimal,
suboptimal, and complex suboptimal sinusoidal templates.
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Figure 5.7: (a) Seventh Order Gaussian pulse and corresponding suboptimal template. and
(b) Seventh order Gaussian pulse autocorrelation and cross-correlation with corresponding
suboptimal template.

5.3 Derivation of TOA Theoretical Lower Bounds

The primary motivation for using UWB technology (besides the wide spectrum available) is
the ability of UWB pulses to provide very accurate distance estimates using Time-of-Arrival
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Figure 5.8: Normalized cross-correlation function ρpv(τ) of the Gaussian pulse and subopti-
mal sinusoidal pulse versus the frequency of the suboptimal template for various values of τ ,
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(TOA) measurements [36], [49]. In general, the accuracy can be improved by increasing
either the SNR at the receiver or the effective signal bandwidth of the transmitted signal
[60]. Error bounds are essential for providing a performance limit of any estimator in terms
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Figure 5.10: BER performance comparison of M -ary PPM modulation in NLOS IEEE
802.15.4a channel for the seventh order of the Gaussian pulse with optimal and subopti-
mal templates.

of the mean square error (MSE) [36]. From estimation theory, the mean square error (MSE)
σ2

τ̂ of any unbiased estimate τ̂ of the time-of-arrival τ is under-bounded by the Cramer-Rao
Lower Bound (CRLB) [28]:

σ2
τ̂ = E

{
(τ̂ − τ)2

}
≥ CRLB (5.23)

where the measurement error is ετ̂ = τ̂ − τ and E {.} denotes the statistical expectation [28].

5.3.1 CRLB and ZZLB TOA Lower-Bounds

The CRLB for the ranging error estimate can be calculated from the relation:

σd̂ = cστ̂ (5.24)

where, c = 3 × 108 m/s is the speed of light [23]. When no-multi-path is present [28]:

CRLB =
N0/2

Epβ2
=

1

2β2SNR
(5.25)

where, the pulse-energy-to-noise ratio is represented by Ep

N0
, and β2 is the second moment of

the spectrum P (f) of the pulse shape used p(t) defined by [28]:

β2 =

∞∫
−∞

f 2 |P (f)|2 df

Ep
(5.26)
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Figure 5.11: BER performance comparison of M -ary PPM modulation in IEEE 802.15.6a
channel for the seventh order Gaussian pulse assuming coherent detectors with optimal, and
real and complex suboptimal templates.

Another representation of the Gaussian pulse defined in terms of pulse-width Tp and τp =
0.5 ∗ Tp as [28] is:

p0(t) = exp
(
−2π

(
t2/τ 2

p

))
(5.27)

The n-th order Gaussian pulse has the form [97]:

pn(t) =
d(n)

dtn

(
1√

2πσ2
e

−t2

2σ2

)
(5.28)

In order to estimate the ZZLB, we need to find the mean square error. The mean square
estimation error is [28]:

E
{
ε2

τ̂

}
=

1

2

∞∫
0

zP
{
|ετ̂ | ≥ z

2

}
dz (5.29)

where the expectation is with respect to τ and r(t). P
{
|ετ̂ | ≥ z

2

}
is equivalent to the prob-

ability of a binary detection scheme with equally-probable hypotheses, where Ta is the ob-
servation window [28]. It is assumed that the probability density function (pdf) of the TOA
in the absence of any information is uniformly distributed in the interval [0, Ta].

The TOA ranging approach is based on the estimation of the arrival time of the first
detected path. Typically, optimum detection involves the correlation of the received wave-
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form with a locally generated template waveform, which adds to the receiver complexity [60].
However, this requirement is precluded for non-coherent receivers, where the detection pro-
cess depends solely on the received pulses [60], [20]. One promising low-power non-coherent
receiver is the energy detection (ED) correlation receiver, where the correlation is replaced
by a squaring device. Generally speaking, EDs consume smaller amounts of power as com-
pared to coherent stored-reference receivers since they do not require template generation.
However, this simplification is traded for a degradation in the estimation performance. As-
suming the ED detector, and a corresponding pulse-width 0.8 ns, the corresponding B.W. is
2 GHz for the seventh-order Gaussian pulse3 [85], the maximum achievable ranging accuracy
is 6.9 cm for an integration window that is equal to the pulse-width. This is because the
ED estimator exhibits a maximum achievable accuracy equal to Ts/

√
12, where Ts is the

integration window. This precludes the choice of ED detectors. Obviously, for such a high
target ranging accuracy, required for accurate human locomotion tracking, the MF seems an
appropriate choice, where its performance approaches the CRLB at high SNRs.

Generally, the CRLB provides a loose bound on the TOA estimate which is not realizable
in multi-path environments [28]. Another bound that provides more accurate results suitable
for multi-path environments is the Ziv-Zakai lower bound (ZZLB). The improved ZZLB for
the coherent detection of binary signaling is as given by [28]:

ZZLB =
1

Ta

Ta∫
0

z (Ta − z) Pmin(z)dz (5.30)

where, Pmin(z) is the minimum attainable probability of error expressed as [28]:

Pmin(z) = Q

(√
Ep

N0
(1 − ρpp(z))

)
(5.31)

where Ep is the pulse energy and ρpp(z) is the pulse autocorrelation. For the suboptimal
template, the corresponding minimum attainable probability of error is:

Pmin(z) = Q

(√
Ep

N0
(ρpv(0) − ρpv(z))

)
(5.32)

This bound transforms the estimation problem into a binary detection problem, which sim-
plifies the bound estimation in multi-path environments. The derivation of Pmin(z) requires
the a priori knowledge of the multi-path phenomena [28].

The evaluation of the estimator in complex channel models is not analytically tractable
[28]. As a result, the ZZLB is typically evaluated using experimentally measured channel
impulse responses or Monte Carlo simulations [28].

3Seventh-order Gaussian pulse was chosen to satisfy the FCC masks for both indoor and outdoor envi-
ronments
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Pmin(z) ∼= 1

Nch

Nch∑
k=1

Q

⎛
⎝
√

SNR

2
d2

k,i(∗)(z)

⎞
⎠ (5.33)

Pmin(z) ∼= Q

⎛
⎝
√

SNR

2
d2

min(z)

⎞
⎠ (5.34)

where Nch is the number of channel realizations, SNR is the total signal-to-noise-ratio,
dmin(z) = min

k
dk,i(∗)(z) is the minimum normalized distance between the symbols used for

the representation of the PPM scheme, i(∗) = arg min
i

d2
k,i(z), and k is the argument of the

minimization [28].

Assuming a correlation receiver, the optimal template v(t) should be matched to the re-
ceived pulse p(t) = pn(t), where the pulse parameters should be chosen to meet specified FCC
system’s allowable emission limits. Since the human locomotion tracking system under in-
vestigation should work in indoor and outdoor environments, we chose the seventh derivative
Gaussian pulse to satisfy the FCC masks for both environments. The corresponding ZZLB
for the optimal and suboptimal templates are shown in Figures 5.12(a) and (b) for TOA and
distance bounds, respectively. In order to obtain results for the TOA bounds using realistic
BAN channels, the ZZLB was determined using a semi-analytic simulation approach in the
BAN channel model described in [44]. The ZZLB was calculated for the simulated channels
and the average is depicted in Figures 5.13(a) and (b) for the distance and TOA bounds,
respectively assuming the back, side, and front channel models. Further results for the TOA
bounds using industrially accepted BAN channels were obtained by simulating the ZZLB
using a semi-analytic simulation approach in the IEEE 802.15.6a channel model [119] and in
Section 4.1. The resulting ZZLB is depicted in Figures 5.14(a) and (b) for the distance and
TOA bounds, respectively. As seen from the results, an accuracy of 0.11 cm is achievable at
an Ep/N0 = 18 dB, which defines the target Ep/N0. Different link budget calculations for
low-power and low-cost detectors for BAN applications showed that the achievable Ep/N0 is
greater than 18 dB with appropriate link margins [101], [80]. We will discuss the link bud-
get in detail in Section 5.6. Figures 5.15(a) and (b) show a comparison of the ZZLB in the
IEEE 802.15.6a assuming optimal, real suboptimal, and complex suboptimal template-based
detectors for the TOA and distance bounds, respectively.

5.3.2 Effect of Timing Misalignment on The ZZLB

In this subsection, we will study the effect of timing-misalignment on the ZZLB, which results
from of error in the position of the template relative to what the clock. For the suboptimal
template, the effect of timing-misalignment τe on the BER performance of PPM scheme is:

Pmin(z) = Q

⎛
⎜⎝
√√√√Ep

N0

[ρpvI(τe) − ρpvI(z − τe)]
2

ρpvI(0) − ρpvI(z)

⎞
⎟⎠ (5.35)
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Figure 5.12: (a) ZZLB and CRLB (ns) for range estimation in AWGN channel for a seventh
order Gaussian pulse. and (b) ZZLB and CRLB (cm) for range estimation in AWGN channel
for a seventh order Gaussian pulse.

where ρpvI(.) is the normalized cross-correlation of the received pulse and the template
waveform, and τe is the timing error.

The ZZLB with the effect of timing misalignment for suboptimal template is given in Eq.
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Figure 5.13: (a) CRLB along with a comparison of ZZLB (ns) for optimal, suboptimal, and
QAC receivers in the IEEE 802.15.6a channel for a seventh order Gaussian pulse. and (b)
CRLB along with a comparison of ZZLB (cm) for optimal, suboptimal, and QAC receivers
in the IEEE 802.15.6a channel for a seventh order Gaussian pulse.

(5.36).

ZZLBτe =
1

Ta

Ta∫
0

z (Ta − z) Q

⎛
⎜⎝
√√√√Ep

N0

[ρpvI(τe) − ρpvI(z − τe)]
2

ρpvI(0) − ρpvI(z)

⎞
⎟⎠dz (5.36)
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Figure 5.14: (a) ZZLB and CRLB (cm) for range estimation in a BAN channel for seventh
order Gaussian pulse. and (b) ZZLB and CRLB (ns) for range estimation in a BAN channel
for seventh order Gaussian pulse.

In order to obtain results for the TOA bounds using realistic BAN channels, the ZZLB was
simulated using a semi-analytic simulation approach with the IEEE 802.15.6a UWB BAN
channel model. The resulting ZZLB for suboptimal template is shown in Figures 5.16(a) and
(b) for τe = 10 and 30 ps for distance and TOA bounds, respectively. Since the target SNR
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Figure 5.15: (a) ZZLB and CRLB (cm) for range estimation in a BAN channel for seventh
order Gaussian pulse. and (b) ZZLB and CRLB (ns) for range estimation in a BAN channel
for seventh order Gaussian pulse.

is within the high SNR region (at which performance approaches the CRLB), the effect of
the allowable timing misalignment (10 ps) has no effect on the target SNR. More specifically,
since our system is based on a 10 ps accuracy, as explained in Section 5.1, the simulated
results for 10 ps represent the maximum expected template timing-misalignment. Even for
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Figure 5.16: (a) ZZLBτe (cm) for various values of timing mismatch τe in the IEEE 802.15.6a,
assuming suboptimal template and seventh-order Gaussian pulse. and (b) ZZLBτe (ns) for
various values of timing mismatch τe in the IEEE 802.15.6a, assuming suboptimal template
and seventh-order Gaussian pulse.

the 30 ps case, which exceeds the maximum expected timing misalignment, the 18 dB SNR
requirement is sufficient for achieving a 1 mm target ranging accuracy. It is worth noting
that even though the expected misalignment is 10 ps, which corresponds to 3 mm ranging
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accuracy, by averaging ten successive TOA readings we obtain more accurate TOA estimates,
where averaging works as interpolation. In [98], we show that for a 2 GHz seventh order
Gaussian pulse with a transmit power Pt = - 8.3 dBm, 75.6 dB path-loss, and bit-rate Rb

= 10 Kb/s, the achievable SNR is 40.5 dB. Thus, for a 10 Kb/s gait analysis system with a
2 GHz transmit pulse, and considering an additional 3 dB implementation loss, the 18 dB
SNR requirement is achieved with a 19.5 dB link-margin [98].

5.4 Proposed Reference Range Correlation-based (RRcR)

Technique

IR-UWB is a good candidate for low-power wireless sensor network applications. UWB
systems have the potential for providing high ranging and positioning accuracies. However,
the design of a highly accurate ranging system with low-power consumption is a challenging
task, and has many implications. Particularly, ranging is based on determining the time-
of-arrival (TOA) of the first-path. UWB channels are dense multi-path channels, in which
the first-path is not necessarily the strongest, or may not be sufficiently separated from
later-arriving paths, which makes the TOA estimation a challenging task.

Basically, TOA estimation is either performed by threshold-crossing (TC), also known as
leading-edge (LE) detectors, or matched filtering-based (MF) estimators. In threshold-based
approaches, the determination of the optimum threshold is critical, as it highly affects the
system performance. A small threshold leads to increasing the probability of false alarm
(detecting noise as the TOA), and large thresholds increase the probability of missing the
direct-path. Both cases provide erroneous TOA estimates [75]. Typically, threshold design is
based on the channel statistics, and due to the large number of available multi-path compo-
nents and channel variations, this makes accurate and fast channel estimation a challenging
task [27].

On the other hand, MF estimators determine the maximum value of the cross-correlation
of the received pulse and a pre-stored template pulse. In absence of multi-path, a MF-based
TOA estimator is the optimal estimator. In multi-path channels, the MF requires a priori
knowledge of the received pulse. In that case, the maximum (MAX) selection criteria could
be applied to determine the maximum output within a selected window. Absence of a priori
channel knowledge makes the performance of MF-estimators suboptimal. Another concern
related to MF-estimators is that they require very high-sampling rates for resolving the large
number of available multi-path associated with UWB channels [27], [52], [105]. This require-
ment could be overcome by implementing the MF using a sliding-correlator, which reduces
the sampling requirement to the pulse repetition frequency (PRF). Generally, ranging appli-
cations can have low PRFs compared to communication systems [34]. Transmitter receiver
synchronization requirement of TOA-based ranging approaches adds another implication to
the system design. Moreover, clock jitter is an important performance metric that needs to
be considered while evaluating the accuracy of UWB ranging and positioning systems [75],
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[96]. However, this should not be an issue in our system since they are all ultimately tied to
the same on-body clock. From the achievable ranging accuracy point of view, energy detec-
tion (ED) estimators exhibit an error floor of Ts/

√
12 at high signal-to-noise ratio (SNR),

where Ts is the integration window. On the other hand, stored-reference estimators, based
on the MF, have a performance that approaches the Cramer-Rao lower bound (CRLB) at
high SNRs [27].

There have been recent research trials trying to overcome the above mentioned implica-
tions associated with the design of highly accurate, but less-complex, UWB ranging systems.
For instance, some techniques proposed using a piece of the received signal as the correlation
template [72]. However, there is still a crucial need for new approaches suitable for emerg-
ing UWB applications (such as gait analysis), that are capable of providing high ranging
accuracy at low-complexity and low power consumption [36].

This section proposes a reference range correlation (RRcR) technique for our proposed
locomotion tracking system. This technique is ultimately suitable for on-body communica-
tions, and should be able to provide a higher ranging accuracy as compared to MF TOA
estimators. Assuming a suboptimal template (windowed sinusoid) v(t) in terms of the carrier
frequency ωc and window length T is defined as v(t) = cos(ωct), where −T ≤ t ≤ T [97].

The assumed transmit signal s(t) with Ns time-hopping (TH) pulses p(t) = pn(t) is given
by:

s(t) =
Ns∑
k=1

p (t − kTf − ckTc) (5.37)

where Tf and Tc are the frame and hop durations, respectively, and ck ∈ {1, 2, 3, ..., Ns} is
the time-hopping code. The multi-path fading channel impulse response is represented as a
series of impulses as:

h(t) =
L∑

l=1

αlδ (t − τl) (5.38)

where, L is the number of paths, αl and τl are the gains and delays, respectively, and
τ1 < τ2 < ... < τL and

∑L
l=1 α2

l = 1. The received signal after the effect of multi-path is
rmp(t) = s(t)

⊗
h(t) =

∑L
l=1 αlpl (t − τl), where pl(t) is the normalized received pulse at the

l -th tap, and
⊗

denotes convolution. Received signal r(t) at a distance d = c.τtoa, where c
is the speed of light = 3.108 m/s [23], is:

r(t) =
Ns∑
k=1

rmp (t − kTf − kTc − τtoa) + n(t) (5.39)

where n(t) is two-sided AWGN with variance σ2
n = N0/2, and N0 is noise power spectral

density. The delay τtoa is the TOA at the receive node. The correlator output in terms of
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the template signal v(t)4 with a sampling interval ts [27]:

zs =
∫ (n−1)ts+NsTf

(n−s)ts
r(t)v(t − (n − 1)ts)dt (5.40)

Obviously, the sampling interval affects the output of the correlator, and consequently the
TOA estimate. Considering power consumption constraints, we assume the use of an analog
sliding-correlator as proposed in [31]. The sampling interval in analog correlation is repre-
sented as time-shift. In our system, we assume a sampling interval (time-shift) = 10 ps,
similar to [31]. Sliding-correlator determines the TOA of the signal of the strongest path
[27]:

rs(t) =
Ns∑
k=1

rmp(t − kTf − ckTc − τpeak) (5.41)

where, τpeak is the TOA of the strongest path. It is worth noting that the strongest path
does not necessarily represent the direct-path.

Generally, the UWB BAN channel is characterized by two clusters, with the first cluster
due to the diffraction of propagating waves, and the second due to reflections from the ground
[109]. These clusters are statistically independent, and typically the second cluster occurs
between 7 and 10 ns after the first cluster [42]. Figures 5.17(a) and (b) shows two received
on-body pulses at 6 in and 12 in spacings from the transmit antenna placed on the same side
of the body, respectively. When transmit and receive antennas are placed on different sides
of the body, ground reflections tend to be dominant [109], [42]. Intuitively, this is because of
the presence of body parts that obstruct the line-of-sight (LOS) link between the transmit
and receive antennas. According to [36], when a body limb obstructs the direct LOS link, an
attenuation of up 20 dB occurs depending on the amount of first Fresnel zone obstruction.
This obstruction causes the propagation wave to diffract around the obstructing body limb
causing a pulse shape distortion. When the link is LOS, with no Fresnel zone obstruction,
there is no pulse shape distortion [36]. In order to guarantee accurate TOA estimates for
clinical gait analysis, target nodes, among which the distances are measured, need to have
LOS links [98].

Inspired by the above mentioned properties of UWB BAN channel, and the high ranging
accuracy required for accurate gait analysis, we propose a reference range correlation-based
(RRcR) ranging algorithm, as depicted in Figure 5.18(a). We assume LOS links between
target nodes guaranteed through the predefinition of LOS node regions [98]. The proposed
algorithm assumes the presence of three nodes, namely transmit, receive and reference nodes.
The reference range node (RRN) has a predetermined and fixed range. This node is used as
a reference for the measured node. Assuming that both RRN and the node with unknown
range exhibit the same channel (at least when considering paths arriving within the first 2Tp

seconds), the RRN can be used for correcting the difference between the determined τpeak

4Optimally, the template pulse v(t) should be a clean version of the transmitted pulse p(t). Another
low-power alternative, is to use suboptimal templates, sinusoidal templates, that resemble the original pulse
[97].
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Figure 5.17: (a) Received on-body pulse at 6 in tx.-rx. antenna separation distance indicating
ground reflections based on replicated measurement data. (b) Received on-body received
pulse at 12 in tx.-rx. antenna separation distance indicating ground reflections based on
replicated measurement data.

and the actual τtoa of the direct-path. Figure 5.18(b) shows the output of an analog sliding-
correlator based-on actual measurements taken at the MPRG labs5. It also shows τpeak and

5Actual on-body measurements were taken at the Mobile and Portable Radio Research Group (MPRG)
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τδ determination at the RRN node. The TOA estimation procedure of the proposed RRcR
is as follows:

1. Calculate the matched-filter (MF) output at the RRN.

2. Estimate the corresponding τpeakref
.

3. From the known dref , calculate the corresponding τtoaref
.

4. Calculate τδ = τpeakref
− τtoaref

.

5. At the unknown range node, also calculate the MF output.

6. Determine the corresponding τpeakij
.

7. Use the calculated τδ from the RRN to estimate the actual τtoaij
for this node.

8. Calculate τtoaij
= τpeakij

− τδ.

Figures 5.19(a) and (b) show the performance of RRcR compared to MF-estimator for both
no-a priori channel information and perfect channel knowledge cases along with the cor-
responding ZZLB and CRLB for the case of optimal template (noise free Gaussian pulse)
for TOA and distance estimators, respectively. As can be seen, RRcR shows substantial
improvement over MF estimator with no-a priori channel knowledge, and approaches the
performance of MF with perfect channel knowledge at high SNR. Same results are shown
for the suboptimal template (windowed sinusoid) in Figures 5.20(a) and (b). Also, RRcR is
studied and compared to the MF for actual clinical gait parameter, particularly for the heel-
to-heel distance in Figure 5.21. A motion capture (MoCap) data file representing normal
walking movement was obtained from [2]. This file was processed using MATLAB to extract
the raw-marker data, and estimate the heel-to-heel distance in the IEEE 802.15.6a chan-
nel. Simulated results (along with the actual distances) are plotted for multiple gait cycles.
From the plots we can see that RRcR closely approximates the true distance, and provides
substantial improvement over MF estimator. Figures 5.22(a) and (b) show the histograms
of mean-absolute-error (MAE) of RRcR and MF with suboptimal templates in the IEEE
802.15.6a channel at SNR = 21 dB. As shown, RRcR provides a 1 mm ranging accuracy
compared to 3.76 cm for MF estimator, the latter agrees with the accuracy reported in [71]
for MF estimator (120 ps accuracy = 3.6 cm).

It is worth noting that the performance gain achieved by the proposed RRcR is traded
for having an extra reference node per body segment. According to the IEEE 802.15.6a, the
power consumption should be 0.1 - 1 mW per node [38], so the extra reference node does
not contradict with the power consumption constraints. Typically, the extra node will have
an influence on the overall power consumption of the system if all nodes are assumed to be
fed by a common battery source.

labs. Detailed measurement setup and results are presented in [98].



Chapter 5. Ranging and Theoretical Lower Bounds 91

(a)

(b)

Figure 5.18: (a) Simplified schematic diagram of RRcR measurement setup. and (b) MF
output depicting TOA estimation at RRN based on actual measurements.

5.5 Performance Comparison of Practical TOA Esti-

mators

This section compares different TOA estimators provided in the previous sections. Figure
5.23 compares the performance of QAC and MF with real suboptimal templates in the
IEEE 802.15.6a channel. According to the plots, the MF with real suboptimal template
outperforms the corresponding QAC TOA estimator. Figure 5.24 extends the comparison to
include MF with optimal templates. Clearly, the performance of MF with real suboptimal
template approaches the performance of MF with optimal templates for all SNR values.
The comparison is further extended to include the proposed RRcR approach. Figures 5.26(a)
and (b) compare the performance of the proposed RRcR assuming optimal and suboptimal
templates for the TOA and distance estimators, respectively. As shown, at low SNR both
techniques approximately achieve the same performance. Whereas, at high SNR RRcR with
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Figure 5.19: (a) Performance of proposed RRcR compared to MF without and with perfect
channel knowledge, ZZLB, and CRLB (ns) in the IEEE 802.15.6a channel assuming optimal
template pulse. and (b) Performance of proposed RRcR compared to MF without and with
perfect channel knowledge, ZZLB, and CRLB (cm) in the IEEE 802.15.6a channel assuming
optimal template pulse.

optimal template outperforms the corresponding RRcR with suboptimal template. Figure
5.25 depicts a comparison of different TOA estimators plotted along with the corresponding
ZZLB bounds. Mainly, this figure compares the performance of QAC based detectors to
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Figure 5.20: (a) Performance of proposed RRcR compared to MF without and with perfect
channel knowledge, ZZLB, and CRLB (ns) in the IEEE 802.15.6a channel assuming sub-
optimal template pulse. and (b) Performance of proposed RRcR compared to MF without
and with perfect channel knowledge, ZZLB, and CRLB (cm) in the IEEE 802.15.6a channel
assuming suboptimal template pulse.

our proposed RRcR technique. Particularly, the QAC is compared to the proposed RRcR
with real and complex suboptimal templates. As can be seen, the RRcR with complex
suboptimal template substantially outperforms the corresponding QAR. Moreover, RRcR
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Figure 5.21: Heel-to-heel distance using RRcR and MF assuming suboptimal template in
the IEEE 802.15.6a channel compared to actual distance obtained from Mocap file.

with real suboptimal template outperforms both estimators.

5.6 Link and Power Budgets Revisited

This section calculates the link and power budgets for our system based on actual design and
implementation parameters. Now, almost all main design parameters related to performance
and power of our system have been set, so it is quite convenient to estimate the link and
power budgets based on these parameters.

5.6.1 Proposed System Link Budget

Generally, in our link and power budget calculations we choose the maximum expected
values, and sometimes even higher values in order to have an upper bound on the expected
values rather than exact values. For instance, in our link budget calculation we assume a
path loss = 75.6 dB, where based in our assumed LOS links the path loss is expected to be
≈ 10 dB better than the selected value.

In order to be able to determine the available link margin (LM), we need to accurately
estimate the effective bit-rate. This comes from the fact that even though our system’s
update rate is 1 Kb/s, we assume sleep time-slots in order to save power. So, we need to
estimate the active time slot, and consequently the effective bit-rate. Table 5.1 summarizes
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Figure 5.22: (a) Histogram of MAE of RRcR ranging approach with suboptimal template
in the IEEE 802.15.6a at SNR = 21 dB. and (b) Histogram of MAE of MF approach with
suboptimal template in the IEEE 802.15.6a at SNR = 21 dB.

the main link budget design parameters.

Now, we need to estimate the effective bit-rate in order to be able to estimate the available
link margin. According to the above parameters, the received power is calculated as:
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Figure 5.23: ZZLB along with performance comparison between QAC and MF with real
suboptimal template in the IEEE 802.15.6a channel assuming seventh order Gaussian pulse.

0 5 10 15 20

10
1

10
2

E
p
/N

0
 (dB)

R
M

S
E

 (
cm

)

 

 

QAC Rx.
MF subopt. template
MF opt. template

Figure 5.24: Performance comparison between QAC and MF with optimal and real subop-
timal templates in the IEEE 802.15.6a channel assuming seventh order Gaussian pulse.
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Figure 5.25: Performance comparison of different TOA estimators, namely QAC, RRcR with
complex and real suboptimal templates, and ZZLB lower bounds in the IEEE 802.15.6a
channel assuming the seventh order Gaussian pulse.

Table 5.1: Main Link Budget Parameters.
Parameter Value

Pulse Rate (Rp) 50 Mp/s

Pt (transmitted power in dB relative to a W) -8.3 dBm

B.W.min (bandwidth) 2 GHz

PSD(dBm/MHz) -41.3 dBm/MHz

Receiver Noise Figure (NF ) 10 dB

N0 (Noise PSD = kTsys) -164.4 dBm/Hz

PL0(path loss at reference distance (d0)) 44.6 dB

PL(d)(path loss at distance (d)) 31 dB

PLt(total path loss) 75.6 dB

Gt and Gr (Tx and Rx antenna gains) 0 dBi

Implementation Loss (La) 3 dB

Required Eb/N0|req (dB) 18 dB
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Figure 5.26: (a) ZZLB along with RRcR with optimal and suboptimal templates for the
TOA estimator in the IEEE 802.15.6a channel assuming the seventh order Gaussian pulse.
and (b) ZZLB along with RRcR with optimal and suboptimal templates for the distance
estimator in the IEEE 802.15.6a channel assuming the seventh order Gaussian pulse.

PR(d) = Pt − PL(d) + Gr + Gt = −8.3 − 75.6 + 0 + 0 = −83.9dBm (5.42)
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Noise power spectral density N0 is:

N0 = 10 log(kT0) + NF = −174.4 + 10 = −164.4dBm/Hz (5.43)

Hence, the average noise power is calculated as:

PN = N0 + 10 log(Rb|effective) (5.44)

The corresponding link margin LM is calculated as:

LM = PR(d) − PN −
(

Eb

N0

)
req

− La (5.45)

LM = 59.5 − 10 log (Rb)effective (5.46)

The effective bit-rate is calculated as:

Rb|effective =

(
Active − Transmission − Slot

frame − time

)
∗ Rp (5.47)

Link margin in terms of the effective active transmission slot is calculated as:

LM = 59.5 − 10 log

((
Active − Transmission − Slot

frame − time

)
∗ Rp

)
(5.48)

Figure 5.27 shows the link margin calculation per node for our system. The link margin per
node is 10 dB. Again, this value is calculated for a path loss = 75.6 dB. Typically, our system
is expected to have a 10 dB performance gain compared to this value, which corresponds to
20 dB link margin. The link budget is summarized in Table 5.2 for an effective bit-rate =
90 Kb/s, based on a system range update-rate = 1 Kb/s.

5.6.2 Receiver Power Consumption

For the proposed gait analysis system, initially we assume 400 possible positions of correla-
tion pulse peaks, which correspond to the maximum expected 4 nsec delay divided by the
10 ps step. Thus, for this stage, an ADC with 9 bits resolution and sampling frequency
equivalent to PRF = 50 MHz is sufficient. The estimated power consumption is 98.45 mW,
as summarized in Table 5.3.

In our calculations, we further perform TOA estimation ten-times, and take the average
of these estimates. Essentially, averaging provides values that are not limited to the 10 ps
resolution assumption. For instance, averaging 10 ps and 20 ps gives 15 ps, that would not
have been attained by solely using the 10 ps limit. Thus, for our frame estimate, we need a
higher resolution ADC compared to the one used after the sliding-correlator. Based on our
simulations, the required number of bits is 16 bits. Since our design is based on sampling each
node at a 500 KHz, the power consumption of a 16 bits ADC at 500 ksample/s rate is equal
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Figure 5.27: Link margin of the proposed system per node.

to 6.25 mW; based on the design provided in [29]. Adding this value to the estimated 98.45
mW, this gives 103.35 mW. Further assuming a 1% duty-cycle transmission, this corresponds
to a 1.03 mW power consumption, which satisfies the target power consumption range. As
was previously mentioned, we put an upper bound on the power consumption estimate. For
instance, the second ADC (at 500 ksample/s) is not required to be an ADC, as the signal is
already represented in the digital form.

5.7 Chapter Summary and Contributions

This chapter studied and compared different ranging approaches, proposed a ranging tech-
nique for our proposed system, derived theoretical lower bounds, and provided link and power
budgets for the prosed system. Basically, different MF TOA estimators were studied and
compared. Particularly, MF with optimal, real suboptimal, and complex suboptimal tem-
plates were studied and compared. MF with real suboptimal templates were shown to achieve
a performance that approaches the performance of MF with optimal templates while saving
power. These estimators were also shown to outperform the corresponding MF with complex
suboptimal templates, or commonly known as QAC. Furthermore, the ZZLB on the system
performance was derived for both real and complex suboptimal template-based estimators



Chapter 5. Ranging and Theoretical Lower Bounds 101

Table 5.2: Link Budget for The Proposed System.
Parameter Value

B.W.min (bandwidth) 2 GHz

Pt (transmitted power in dB relative to a W) -8.3 dBm

PL0(path loss at reference distance (d0)) 44.6 dB

PL(d)(path loss at distance (d)) 31 dB

PLt(total path loss) 75.6 dB

Gt and Gr (Tx and Rx antenna gains) 0 dBi

Receiver Noise Figure (NF ) 10 dB

Pulse Rate (Rp) 50 Mp/s

Implementation Loss (La) 3 dB

Average received power at the receiver (PR) -83.9 dBm

Average noise power (PN) -114.9 dBm (Eff. bit-rate Rb = 90 kb/s)

Achieved Eb/N0 31 dB

Required Eb/N0|req (dB) 18 + 3 = 21 dB

Link Margin (LM) 10 dB

Receiver Sensitivity (Sr) -93.9 dBm

Table 5.3: Power Consumption Summary.

Power consumption Ref.

LNA 12.6 mW [94]

Correlator 31 mW [31]

VCO+ PLL 7.6 mW [94]

ADC 6.25 mW [29]

Digital cct. 14 mW [74]

Buffers 27 mW [31]

Total Power (100% duty-cycle) 98.45 mW

Total Power (1% duty-cycle) < 1 mW
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in AWGN channel, and semi-analytic simulations were presented in realistic BAN channels.
Moreover, the effect of timing-misalignment on the ZZLB was also studied, and was shown
to be negligible on our proposed system for the expected 10 ps timing misalignment. Then,
the proposed RRcR technique was studied, and was shown to provide substantial improve-
ment over MF-TOA estimators without a priori channel knowledge, and approaches the
performance of MF estimators with perfect channel knowledge. Performance comparisons
supported the performance enhancement provided by our proposed ranging approach.

In order to be able to design a link budget for our proposed system, and estimate the
link margin, it was necessary to estimate the effective bit-rate of our system. Investigation
showed that for our target 1 Kb/s system update-rate, the effective bit-rate per node is 90
Kb/s. The corresponding link margin is 10 dB. We further showed that the estimated link
margin is an underestimate, as we selected an upper bound for the path loss. Practically,
our system is expected to have a 10 dB better path loss, and consequently the link margin is
expected to be ≈ 20 dB at the target 1 mm ranging accuracy. Effective power consumption
was shown to be ≈ 1 mW, which satisfies the IEEE 802.15.6a power consumption limit per
node (0.1 - 1 mW per node).

Related Publications:

• H. Shaban, M. Abou El-Nasr, and R. M. Buehrer, ”Performance of ultralow-power IR-
UWB correlator receivers for highly accurate wearable human locomotion tracking and
gait analysis systems,” IEEE Global Telecommunications Conference, GLOBECOM
’09, pp. 1–6, 30 Nov. - 4 Dec. 2009.

• H. Shaban, M. Abou El-Nasr, and R.M. Buehrer,” Reference range correlation-based
(RRcR) ranging for highly accurate wearable UWB motion tracking and movement
analysis systems,” Submitted to IEEE Global Telecommunications Conference, GLOBE-
COM ’10.



Chapter 6

Localization

This chapter introduces the localization stage. Specifically, the proposed localization stage
is divided into initial and core phases. The initialization stage is based on the linear least-
squares (LS) localization approach, and assumes the presence of reference-nodes. Then,
the core phase is based on classical multidimensional scaling (C-MDS) localization, where
on-body communication starts to take place, and is performed without reference-nodes.

The organization of this chapter is as follows. Section 6.1 gives an overview of both
the initialization and core measurement phases. Then, Section 6.2 introduces the proposed
system initialization stage. Then, the arrangement of nodes is given in Section 6.3. The core
measurement phase is presented in Section 6.4. Then, chapter conclusions and contributions
are provided in Section 6.5.

6.1 Overview of Localization Stage

As was previously mentioned, in our system we assume two measurement phases, namely
the initial and core phases. In the initial phase, we assume a low-complexity localization
approach, linear least-squares (LS) with reference-nodes. Whereas for the core phase, we
assume a more complex localization approach, namely the classical multidimensional scaling
(C-MDS) localization approach with no reference-nodes. This is typically because at the
initial stage we can have reference nodes, whereas at the core phase all nodes are mobile
with no reference nodes. This makes it require a more complex localization technique for
providing a high localization accuracy. Each localization stage is preceded by a ranging stage
with a ranging accuracy dependant upon the system requirements at that stage, as will be
described in further details later. Figure 6.1(a) shows a simplified schematic representation of
the proposed system, and Figure 6.1(b) shows a block diagram of the ranging and localization
stages. Specifically, we assume that the localization data processing is performed at an off-
body centralized node (typically a PC).

103
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(a)

(b)

Figure 6.1: (a) Schematic representation of the proposed system. and (b) Block diagram of
the ranging and localization procedures of the proposed system.

6.2 Initial Measurement Phase

For our system’s initialization stage, we assume averaging multiple range measurements
in order to obtain a high ranging accuracy, and consequently a high positioning accuracy.
Furthermore, during system initialization we assume that the subject does not move, so
that the initial coordinates of all nodes are accurately determined. After initialization, the
subject is allowed to move, where on-body range measurements start to take-place. In order
to accurately determine the coordinates of the initial-frame, we further assume the presence
of eight reference-nodes grouped into two node groups with four nodes (rectangles) in each
group with fixed and predetermined dimensions. The initialization setup of is depicted in
Figure 6.2. We assume that each of the two groups of nodes is fixed on a pad with fixed
dimensions, and the test subject stands on the mid-point between the two groups. This
approach guarantees an accurate system setup, as well as direct LOS links between on-body
nodes and each of the reference-nodes. Particularly, each of the two four-node groups is
responsible for one side of the body, and each of the on-body nodes transmits signals to
each of the four reference off-body nodes to measure the TOA at a preassigned time-slot.
Typically, the on-body nodes are synchronized through wire connections. We assume a
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Figure 6.2: Schematic representation of the nitial measurement phase of the proposed UWB-
WWGA system.

minimal number of wires to guarantee freedom of movement, as illustrated in Figure 6.3.
Similarly, reference nodes are synchronized through wire connections. In order to synchronize
on-body nodes and reference-nodes, we assume a wire connection between the pad, where
the reference nodes are fixed, and the on-body nodes through a plug. This plug is connected
during the system initialization, and is removed afterwards.

The structure of the symbol super-frame of the initial phase is illustrated in Figure 6.4. As
can be seen, we assume that the system initialization is subdivided into initial and subsequent
frames. The initial frame requires 0.14 seconds and 2e4 subsequent frames each of which is
1 ms. This leads to an overall system initialization of 20.14 seconds. In the initial-frame
of the system initialization procedure, depicted in Figure 6.5, we assume an active time per
node of 2.8 ms, which is subdivided into ten time-slots. At each time slot, twenty pulses
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Figure 6.3: Wire connection of nodes to guarantee synchronization while maintaining free-
dom of movement.

are averaged in order to obtain a processing gain, as well as higher ranging and positioning
accuracies. Then, these ten time slots are averaged in order to obtain a finer range estimate.
This initial-frame is followed by 2e4 subsequent-frames, as shown in Figure 6.6. After the
acquisition of the TOA of the initial-frame, subsequent-frames do a fine tracking of acquired
TOA values. Particularly, at each subsequent-frame we search over five samples around
the previous TOA to determine the current peak. This provides us with the TOA offset
w.r.t. the preceding value. We also assume averaging of twenty pulses per TOA estimate for
subsequent-frames. The resulting ranging error of the system initialization stage is depicted
in Figure 6.7. These obtained ranges are further employed in a linear least-squares (LS)
localization approach, which is typically performed at an off-body centralized node.

Generally when precise localization is required, linear-LS localization could be used for
obtaining an initial value for initializing the high accuracy localization system [46]. So, we
use linear LS as an initial solution to a more complicated approach, the C-MDS localization
approach. As mentioned above, we assume four reference nodes, and the target is to estimate
the three-dimensional positions of the on-body nodes. Based on the acquired TOA estimates
dij, the linear-LS technique is as follows [46], [35], [51]:
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Figure 6.4: Super-frame symbol structure of the initial measurement phase.

d2
ij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (6.1)

AX =
1

2
p (6.2)

where, Xi =
[

xi yi zi

]T
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⎥⎥⎥⎥⎦ (6.4)

The position of the target-node is estimated as [46], [51]:

X̂ =
1

2

(
ATA

)−1
ATp (6.5)

The mean-square-error (MSE) on the estimated coordinate is given by [51]:

MSE = Tr
{
Cov(X̂)

}
(6.6)

where, Tr(X) is the trance of a matrix X and Cov(X̂) is the covariance.

In the absence of ranging error, the linear-LS technique finds a unique solution and an
exact position estimate [46], [35], [51]. Figure 6.8(a) shows triangulation in the absence
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Figure 6.5: Initial-frame symbol structure of the initial measurement phase.

Figure 6.6: Subsequent-frames symbol structure of the initial measurement phase.
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Figure 6.7: Absolute error versus distance for our proposed system initialization stage.

of ranging error, which leads to an accurate determination of target-node location. In the
presence of ranging error, triangulation leads to multiple intersections of reference nodes’
circles. The LS technique finds the solution which minimizes the distance to the different
ranging circles, which leads to erroneous estimated position in the presence of ranging error,
as depicted in Figure 6.8(b).

The proposed system initialization procedure is summarized in Figure 6.9. The achievable
localization accuracy of our proposed system initialization is 0.247 mm. Figures 6.10 (a) and
(b) show the estimated positions plotted along with the actual node positions for MoCap
data files representing normal-walking and boxing, respectively.

6.3 Node Arrangement

Generally, gait analysis is based on markers located according to a standard arrangement,
termed marker-set. There are several standardized marker-sets like Helen Hayes, modified
Helen Hays, and Vicon marker-sets. These marker sets are typically based on substantial
work for developing sets that track each segment taking into consideration the degrees of
freedom (DOF) associated with the movement of each segment [8].

We assume using standardized marker-sets. In order to guarantee LOS links during
movement, we predetermine the groups of nodes that have this property, as depicted in
Figure 6.11 assuming the Vicon marker-set. Typically, we need four nodes in order to be
able to determine the three dimensional positions. So, we use the three nodes that are
typically using per segment in addition to a node from a neighboring body segment, such
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(a)

(b)

Figure 6.8: (a) Triangulation in absence of ranging error. and (b) Triangulation in the
presence of ranging error.
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Proposed Initialization Procedure

• Use two fixed squares of four nodes with known relative locations.

• One square is for the front-side and the other for the back-side of the body.

• The separation distance between the two squares is also fixed, and the subject stands
on the midway point.

• Transmit nodes are the body attached nodes (markers), and the receive nodes are the
off-body nodes.

• Use least-squares (LS) localization for obtaining the initial positions of all nodes (one
at a time) calculated w.r.t the reference-nodes.

• Once the initial-frame coordinates are obtained, the reference nodes are removed.

• Subsequent-frames use classical multidimensional scaling (C-MDS), and the preceding
frame as a reference-frame

Figure 6.9: Proposed system initialization procedure.
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Figure 6.10: (a) Actual markers (Vicon marker-set) compared to the estimated node positions
using linear-LS localization for a normal-walking MoCap file. and (b) Actual markers (Vicon
marker-set) compared to the estimated node positions using linear-LS localization for a
boxing MoCap file.
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Figure 6.11: Illustration of node grouping into LOS regions assuming the Vicon marker-set.

that the node on this segment has a LOS link with the node of interest during movement. For
instance, the nodes attached the the leg-calf have LOS connections with the corresponding
nodes on the thigh segment of the same leg.

6.4 Core Measurement Phase

Multidimensional scaling (MDS) includes a family of methods. Scaling refers to the methods
that construct a configuration of points in a target metric space from the information about
the inter-point distances, and is referred to as MDS when the target space is Euclidean.
C-MDS is the simplest form of MDS, and when the reference absolute frame is available it
gives a unique solution for the estimated coordinates. Otherwise, the result from MDS could
be a translated, rotated, and scaled version of the actual set, as depicted in Figure 6.12.
This is essentially because of the absence of the absolute coordinate reference [21].

An m × m matrix D consisting of squared distances d2
ij, where m = 4 nodes for a three-

dimensional absolute coordinate system. To recover the m × d matrix X of positions in
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Figure 6.12: Mapping points using translation, rotation, and scaling.

d -dimensional space; three-dimensional space in our case, D is expressed as [21]:

D =

⎛
⎜⎜⎜⎝

0 d2
12 d2

13 d2
14

d2
21 0 d2

23 d2
24

d2
31 d2

32 0 d2
34

d2
41 d2

42 d2
43 0

⎞
⎟⎟⎟⎠ (6.7)

where, dij is defined in terms of the absolute coordinates xi and xj as [21]:

d2
ij = (xi − xj)

2 = x2
i − 2xixj + x2

j (6.8)

The elements bij of the dot-product matrix B = XX′ are defined as follows [21]:

bij = dkidkj cos(α) (6.9)

where α is the angle between dki and dkj, as shown in Figure 6.13. Singular Value Decom-
position (SVD): the scalar products matrix B formed from the elements bij is a symmetric
matrix. The SVD of B gives [21]:

B = UVU′ (6.10)

where, V = diag {λ1, λ2, ..., λn} is a diagonal matrix of eigenvalues of B with λ1 ≥ λ2 ≥
... ≥ λn ≥ 0, and U = [u1, u2, ..., un] is an orthogonal matrix with columns equivalent to the
eigenvectors [21]. Since, B is a symmetric positive definite matrix, the rank of B is equal to
the dimensionality of D (i.e., the number of positive eigenvalues) [21]. Hence,

X = UV1/2 (6.11)
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Figure 6.13: Law of cosines.

In our system, we consider C-MDS, and overcome the problem of the missing reference
coordinates by using preceding frames as reference-frames, and obtain the initial-frame co-
ordinates from the initial range measurement phase of our system [98]. We further increase
the accuracy of estimated coordinates by using FFT interpolation after the ranging stage.
This interpolation is performed in time (frame-to-frame). The detailed procedure of the
localization stage associated with our system is depicted in Figure 6.14. The localization
approach was also investigated based on real MoCap data obtained from [112] in the IEEE
802.15.6a channel using Monte Carlo simulations. Particularly, the ranges obtained from
the preceding stage, with 1 mm ranging error, were applied to the localization procedure
described in Figure 6.14 for various motion speeds and types. Specifically, it was applied
to normal and abnormal walking, running, boxing, and ballet dancing. The resulting mean
absolute three-dimensional (3D) localization error was 0.47 mm with ± 52 μm variations
among the different files. This accuracy is better than the accuracy for current technologies,
with millimeter and sub-millimeter of up to ≈ 0.8 mm accuracies reported for the latter [9],
[82]. The estimated positions are plotted along with the actual node positions in Figures
6.15 (a) and (b) for an arbitrary sample frame for MoCap data files representing boxing and
normal-walking, respectively. Furthermore, the absolute error of the estimated positions of
the node with the poorest results is plotted in Figure 6.16. Moreover, Figures 6.17(a) and
(b) show the mean absolute error MAE of localization error plotted versus time frames ob-
tained via simulations in the IEEE 802.15.6a channel for a boxing Mocap data file and the
corresponding histogram, respectively. As can be seen, the MAE among the different frames
follows a normal distribution.
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C-MDS localization with FFT-interpolation

Initial-frame

1. Obtain ranges acquired through the initial-range-measurement phase.

2. Construct the initial-frame spatial coordinates with respect to a chosen on-body
reference-point, and set other points according to this point.

Subsequent-frames

1. Compute the distance matrix D from the ranges acquired in the ranging stage.

2. Up-sample data using FFT interpolation.

3. Calculate the dot-product matrix B.

4. Find SVD of B.

5. Use the preceding-frame to current-frame as a reference-frame.

6. Apply basic transformations, rotation, translation, and scaling w.r.t reference nodes to
obtain normalized absolute coordinates.

Figure 6.14: Application procedure of C-MDS localization with FFT-interpolation to the
proposed system.
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Figure 6.15: (a) Arbitrary sample-frame of a boxing MoCap file showing the actual markers
(Vicon marker-set) compared to the estimated node positions using C-MDS localization
with FFT-interpolation. and (b) Arbitrary sample-frame of a normal-walking MoCap file
showing the actual markers (Vicon marker-set) compared to the estimated node positions
using C-MDS localization with FFT-interpolation.
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Figure 6.16: Absolute error for the maximum-error node in the x -direction.

6.5 Chapter Conclusions and Contributions

This chapter introduced the localization stage, and studied the employed localization tech-
niques. It was shown that system initialization requires 20.14 seconds for a complete setup.
The localization technique used at the system initialization stage is the linear-LS, and was
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Figure 6.17: (a) Mean absolute error versus time frames based on simulations for boxing
MoCap data in the IEEE 802.15.6a channel. and (b) Histogram of mean absolute error over
different time frames based on simulations for boxing MoCap data in the IEEE 802.15.6a
channel.
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shown to achieve an average positioning accuracy equal to 0.247 mm. The node arrangement
and grouping of nodes into LOS regions were then provided. Then, the core measurement
phase was studied. In this stage, we assumed using C-MDS localization approach preceded by
an FFT interpolation. The achieved accuracy of acquired data during this stage was shown to
be 0.47 mm ± 52 μm. Results were obtained via simulations in the IEEE 802.15.6a channel
based on actual acquired MoCap data. Further results based on actual UWB measurements
will be given in the following chapter.

Related Publications:

• H. Shaban, M. Abou El-Nasr, and R.M. Buehrer,” A highly accurate wireless wear-
able UWB-based full-body motion tracking system for gait analysis in rehabilitation,”
Submitted to IEEE Transactions on Information Technology in Biomedicine.



Chapter 7

Ranging and Localization
Measurements

This chapter provides the actual on-body measurements taken for the verification of the
proposed system. Particularly, we took multiple measurement sets, namely the knee-to-ankle
distance, base-of-support (BOS) distance, RRcR, and system initialization measurement
sets. In our measurements we considered the verification of both ranging and localization
measurement accuracies, as well as the investigation for the capability of our proposed system
of the extraction of gait parameters.

In the knee-to-ankle measurement set, we investigate the ranging accuracy provided by the
proposed system. Furthermore, in the RRcR measurement set we verify the accuracy of the
proposed RRcR ranging technique. Moreover, in the BOS measurement set we investigate
the capability of the proposed system for the extraction of gait parameters. Finally, in the
system initialization measurement set we investigate the localization accuracy provided by
the proposed system.

This chapter is organized as follows. Section 7.1 gives an overview of the four measurement
sets and equipments. The first measurement set, the knee-to-ankle distance measurement
set, is given in Section 7.2 along with numerical results based on the measurements. Sec-
tion 7.3 describes the RRcR measurement set with further results. The third measurement
set, the base-of-support measurement set, is provided in Section 7.4. The system initial-
ization measurement set, fourth measurement set, is given in Section 7.5. Finally, chapter
conclusions and contributions are provided in Section 7.6.

120
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(a) (b)

Figure 7.1: (a) UWB antennas manufactured by the Virginia Tech Antenna Group (VTAG).
and (b) UWB antennas from Time Domain Corporation.

7.1 Overview of Measurement Sets

In order to evaluate the system performance based on actual-data, on-body UWB measure-
ments were taken at the MPRG labs1. The following equipments were used: HP33120A
function generator, Tektronix CSA8000B Digital Sampling Oscilloscope, Geozondas pulser
(GZ1106DL1, GZ1117DN25), and two antennas manufactured by the Virginia Tech An-
tenna Group and from Time Domain Corporation, as depicted in Figures 7.1(a) and (b),
respectively.

As was previously mentioned, we considered four distinct measurement sets, as depicted
in Figure 7.2 and Figure 7.3. The first measurement set is the knee-to-ankle measurement
set; shown in Figure 7.2(a). The second set is the RRcR measurement set; depicted in
Figure 7.2(b). The third measurement set is the BOS set, shown in Figure 7.2(c). The
fourth measurement set is the system initialization set; depicted in Figure 7.3. In the first
measurement set, we used the UWB antennas depicted in Figure 7.1(a). Whereas, for the
other three sets we used the second UWB antenna, shown in Figure 7.1(b).

7.2 Knee-to-Ankle Distance Measurement Set

The target of this measurement set is to investigate the ranging accuracy of the proposed
system, and compare it to the accuracy provided by commercial systems. In this set, two
UWB transmit and receive antennas were attached to the knee and ankle of the test subject

1We determined the measurement sets with all related requirements, and Haris Volos, Ph.D. candidate
at Wireless at Virginia Tech research group, took the measurements at the MPRG labs.
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in order to estimate the inter-spacing distance based on the TOA of the received pulses. This
parameter was chosen because it directly reflects the effect of both ranging accuracy and the
effect of antenna displacement due to body movement. In this measurement set, the test
subject was allowed to walk forward and backward, and the received pulses were recorded
and stored. The length of the pulses was 4000 samples. The reference pulse is shown in Fig-
ure 7.4 along with an example received pulse; both pulses are normalized to unit energy. The
measured data was further used in postprocessing simulations in order to estimate the TOA
and the corresponding distances. Figures 7.5(a) and (b) show performance comparisons be-
tween the MF with optimal and real-suboptimal templates and QAC estimators for the TOA
and distance estimates, respectively. As can be seen, the performance of MF-TOA estimator
with suboptimal template approaches the performance of the corresponding estimator with
optimal template. Moreover, on the contrary to the BER performance, the performance of
QAC-TOA estimator is much worse then the performance of the MF estimator with real
optimal and suboptimal templates.

7.3 RRcR Measurement Set

This measurement set was taken in order to verify the accuracy of the proposed RRcR ranging
technique based on actual measurements, and to take the effect of antenna displacement due
to movement into consideration. In gait analysis systems, since the main target of the
system is to acquire the distances among the sensors during movement, the effect of the
probable antenna displacement due to subject movement needs to be considered. For this
reason, measurements were taken of the distance between the knee and ankle sensors, and the
acquired pulses were further used in postprocessing simulations. This was done in order to
estimate the TOA of the received pulses, and to obtain the corresponding Euclidean distance.
The actual measurement setup is shown in Figure 7.6. Furthermore, the normalized received

(a) (b) (c)

Figure 7.2: (a) Knee-to-ankle measurement set. (b) RRcR measurement set. and (c) Base-
of-support measurement set.
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Figure 7.3: System initialization measurement setup.
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Figure 7.4: (a) Normalized reference pulse of measurement set 1. and (b) Normalized received
pulse for measurement set 1.
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Figure 7.5: Comparison between measured knee-to-ankle distance using MF with optimal
and suboptimal templates, and QAC detector based on actual measurements for the TOA
estimator. and (b) Comparison between measured knee-to-ankle distance using MF with
optimal and suboptimal templates, and QAC detector based on actual measurements for the
distance estimator.
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Figure 7.6: RRcR measurement setup.

pulses at the two receive nodes, nodes � 1 and 2, are depicted in Figures 7.7 (a) and (b),
respectively. The results are plotted and compared to a commercial optical tracking system in
Figure 7.8. As can be seen, the proposed system achieves obvious improvement as compared
to the commercial system providing an average ranging accuracy of 1 mm compared to 11
mm for the commercial optical tracking system.

RRcR is further evaluated and compared for optimal and suboptimal based detectors
as shown in Figure 7.9. Results show that RRcR is capable of achieving a 1 mm ranging
accuracy at 20 dB and 22 dB SNR for optimal and suboptimal templates, respectively.
Moreover, the performances of RRcR with optimal and suboptimal templates, and QAC
are compared in Figures 7.10(a) and (b) for the TOA and distance estimators, respectively.
As can be seen, the proposed RRcR with optimal and suboptimal templates outperform
the performance of MF estimators with optimal and suboptimal templates. Similar to the
MF estimator, the performance of the proposed RRcR estimator with suboptimal template
approaches the performance of the same estimator with optimal template. Moreover, based
on practical RRcR estimators, a target 1 mm ranging accuracy is achievable at 19 dB and
20 dB for the optimal and suboptimal template based estimators, respectively.

7.4 Base-of-Support Distance Measurement Set

After the investigation of the ranging accuracy of the proposed system, it was more conve-
nient to investigate the capability of the proposed system of the extraction of specific gait
parameters. In particular, the parameters that are known to be of clinical importance, such
as the BOS, were examined. In this measurement set, we measure the BOS distance for
normal gait. The actual measurement set is depicted in Figure 7.11. An example received
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Figure 7.7: Normalized received pulse for the RRcR measurement set at (a) Node � 1. and
(b) Node � 2.
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Figure 7.8: Comparison between the measured knee-to-ankle distance using the proposed
RRcR technique, and using optical tracking system.
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Figure 7.9: Comparison between measured knee-to-ankle distance using RRcR with optimal
and suboptimal templates based on actual measurements.

pulse normalized to unit energy is depicted in Figure 7.12. The measured BOS is shown in
Figure 7.13 for normal gait. Moreover, Figure 7.14 shows the BOS distance for normal gait
using a commercial optical tracking system. As can be seen, the measured BOS using the
proposed system resembles the BOS curve for normal gait with an average distance of 8.5
cm, which agrees with the value reported in the literature for normal adults.

7.5 System Initialization Measurement Set

System initialization is an important procedure for our proposed system, where in subsequent
frames we assume that the C-MDS is based on the preceding frames. Thus, the system
initialization, particularly the estimation of the initial-frame node coordinates is crucial for
our system. For this reason, we verify the proposed initialization procedure using actual
measurements. Particularly, we consider four nodes attached to the lower right-leg of the
test subject attached to the knee, leg calf, ankle, and heel. Also, we assume the use of
four reference-nodes, and take TOA measurements between each of the on-body nodes and
the four reference-nodes. The results are shown in Figure 7.15. Measurement results show
that the proposed system initialization procedure achieves a 0.247 mm localization accuracy,
which agrees with the simulation results presented in Chapter 6.
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Figure 7.10: (a) Comparison between measured knee-to-ankle distance using RRcR and MF
with optimal and suboptimal template-based estimators based on actual measurements for
the TOA estimate. and (b) Comparison between measured knee-to-ankle distance using
RRcR and MF with optimal and suboptimal template-based estimators based on actual
measurements for the distance estimate.
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Figure 7.11: BOS measurement setup.
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Figure 7.12: Normalized received pulse for the BOS measurement set.



Chapter 7. Ranging and Localization Measurements 130

0 5 10 15 20 25
3

4

5

6

7

8

9

10

11

12

Time (s)

B
as

e−
of

−
su

pp
or

t d
is

ta
nc

e 
(c

m
)

 

 
Measured distance
Average value

Figure 7.13: BOS distance for normal gait measured using the proposed UWB system.
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Figure 7.14: BOS distance for normal gait measured using commercial optical tracking
system.
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Figure 7.15: Results of system initialization measurement set.

7.6 Chapter Conclusions and Contributions

This chapter provided the actual measurements taken at the MPRG labs for the verification
of the ranging and localization accuracies provided by our proposed system. Furthermore, it
included the investigation of the capability of extraction of actual gait parameters based on
actual measurements using UWB radios. Particularly, we took four different measurement
sets for the investigation of ranging and localization accuracies, verification of the accu-
racy provided by the proposed RRcR ranging technique, and the extraction of actual gait
parameters.

The results presented in Section 7.3 showed that the proposed system is capable of pro-
viding a 1 mm ranging accuracy using optimal template at an SNR = 20 dB and 22 dB using
suboptimal real sinusoidal template, respectively. This accuracy is compared to a 1.17 cm
accuracy reported for current tracking systems. Furthermore, the extracted BOS was shown
to have the same shape as the BOS extracted using optical tracking system with average BOS
= 8.5 cm. This value agrees with the average BOS reported for normal adults. Moreover,
the proposed system initialization procedure was also verified using actual measurements.

Related publications:

• H. Shaban, M. Abou El-Nasr, and R.M. Buehrer,”Toward a highly accurate ambulatory
system for clinical gait analysis via UWB radios,” IEEE Transactions on Information
Technology in Biomedicine, Vol. 14, No. 2, pp 284- 291, Mar. 2010.

• H. Shaban, M. Abou El-Nasr, and R.M. Buehrer,” Reference range correlation-based
(RRcR) ranging for highly accurate wearable UWB motion tracking and movement
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analysis systems,” Submitted to IEEE Global Telecommunications Conference, GLOBE-
COM ’10.



Chapter 8

Sensor-Fusion and Overall System
Performance

This chapter investigates the integration of UWB sensors with other sensors, i.e., sensor-
fusion, in order to be able to get a complete picture of gait parameters including kinematics
and kinetics. Specifically, we consider the integration of UWB sensors with foot force sensors,
which is analogous to using force-plates in commercial optical tracking systems. Then, we
study the number of bits required, and the effect of quantization error on the estimated gait
parameters via simulations. Also, we compare the performance of our proposed system to
commercial optical tracking systems considering several gait parameters. Particularly, we
consider the parameters that are known to be of clinical importance for the characterization
of abnormal gait. Finally, we estimate the overall system performance including power
consumption and battery lifetime.

The organization of this chapter is as follows. First, Section 8.1 studies the senor-fusion
and gives numerical results. Then, Section 8.2 investigates the number of bits required for
UWB and force sensors. Section 8.3 provides some of the important gait parameters to char-
acterizing abnormal gait, and highlights the promise of our proposed system for providing a
more reliable gait analysis. Then, Section 8.4 compares the capability of normal/abnormal
gait identification of our system to commercial optical tracking systems. Moreover, Section
8.5 gives comparisons between our proposed system and optical tracking systems for various
gait parameters. Then, Section 8.6 estimates the overall power consumption, memory re-
quirements, and battery lifetime. Finally, chapter conclusions and contributions are provided
in Section 8.7.

133



Chapter 8. Sensor-Fusion and Overall System Performance 134

8.1 Sensor-Fusion

One of the advantages of UWB radios is their suitability for the integration with other motion
sensors. With UWB sensors and inherent ranging and localization approaches, our system
is capable of accurately estimating the gait kinematics. Ultimately, our system should be
capable of estimating both kinematic and kinetic parameters associated with gait analysis.
Thus, we further propose the use of force sensors placed under the test subject’s feet. The
analog data, force sensor data, is first converted into the digital form, and transferred to the
on-body central-node. This is typically analogous to the force plate used in optical tracking
systems. It is worth noting that the fusion of data may not be directly obvious, as both
kinetics and kinematics are used for obtaining a complete picture of the gait. So, fusion here
means using more than one type of sensors for obtaining the data required by one system,
the gait analysis system. However, some gait parameters do require the data obtained from
both kinetics and kinematics, such as the moments, which is equal to the force (kinetics)
multiplied by the distance (kinematics) [5].

In order to examine sensor integrability and accuracy of the proposed system for actual
gait parameters, gait data files acquired via force sensors were obtained from [48]. These
files were processed using MATLAB to extract the gait data. The data was first converted
to the binary format using a 12-bit ADC, as will be justified in later sections, and then used
in a simulation which was used as binary data in the IEEE 802.15.6a channel model. The
detected bits were then reconverted and compared to original data in Figures 8.1(a) and
(b) for normal gait and Parkinson’s gait, respectively. Figure 8.2 shows the BER assuming
energy detection in the IEEE 802.15.6a CM3 and CM4 channel models. The achieved BER is
7e-5 at Ep/N0 = 28 dB in the IEEE 802.15.6a on-body channel model. This is equivalent to
Eb/N0 = 18 dB with 10 pulses-per-bit. As can be seen from figure, when adding the effect of
CM4 (on-body to off-body communication), the effect of body shadowing becomes dominant.
As, for the 0o body angle, the BER approaches the performance in the CM3 model alone,
whereas considering other body rotation angles causes significant degradation in the BER.
This means that for our system we should ultimately consider the 0o transmission scenario.
This would require storing the acquired data for sometime on the on-body central-node. The
memory and battery lifetime constraints will be studied in detail in a later section.

8.2 Number of Bits for Force and Range Data and

ADC Power Consumption

In addition to ranging and localization accuracies, the number of bits is an important pa-
rameter for our system that needs to be estimated. This includes the number of bits required
for the transmission of acquired data, including force and range data. For the force sensor
acquired data, in Figure 8.3 we consider a 6-bit ADC reconstructed data as compared to
an infinite number of bits. As shown, six bits are insufficient for accurate reconstruction of
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Figure 8.1: (a) Comparison between stride time gait parameter extracted from force sensors
[48] and simulated data in IEEE 802.15.6a using UWB radios for normal gait. and (b) Com-
parison between stride time gait parameter extracted from force sensors [48] and simulated
data in IEEE 802.15.6a using UWB radios for Parkinson’s gait.
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Figure 8.2: BER performance comparison in the IEEE 802.15.6a CM3 and CM4 UWB
channel models.

data. Typically, force sensor data needs to be accurately represented, as when used in the
estimation of gait parameters, it greatly affect the estimated data, such as the gait moments.
Then, in Figure 8.4 we increase the number of bits to eight bits. Also, this number provides
insufficient accuracy. Figure 8.5 shows the reconstructed stride time using a 12-bit ADC
along with the infinite bit data. As can be seen, the 12-bit ADC provides sufficient accuracy
for accurate reconstruction of gait data. A rate of 300 Hz is sufficient for the force sensor
data transmission to the on-body central-node. The corresponding ADC power consumption
is 2.5 μW, based on the FOM given in [29].

We further consider the estimation of number of bits for the gait parameters estimated
via UWB sensors’ acquired data. In Figure 8.6 we present a reconstructed knee-flexion angle
using a 10-bit ADC compared to the original data for an adult with cerebral palsy. As
can be seen, the reconstructed curve requires more bits for a more accurate gait parameter
estimate. We consider increasing the number of bits to 14 bits in Figure 8.7, but this is
also insufficient. Figure 8.8 shows the reconstructed angle for a 16-bit ADC along with
the infinite bit knee-flexion angle. As can be seen, the 16-bit ADC provides the required
accuracy. Thus, we assume a 16-bit ADC. For a signal bandwidth W = 2 GHz, and fADC

= 20 KHz, and n = 16 bits, the power consumption of the ADC is 2.6 mW.
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Figure 8.3: Stride time gait parameter extracted from force sensor data [48] assuming a 6-bit
ADC compared to infinite-bits.
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Figure 8.4: Stride time gait parameter extracted from force sensor data [48] assuming a 8-bit
ADC compared to infinite-bits.
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Figure 8.5: Stride time gait parameter extracted from force sensor data [48] assuming a
12-bit ADC compared to infinite-bits.
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Figure 8.6: Knee-flexion angle for an adult with cerebral palsy (CP) assuming a 10-bit ADC
compared to infinite-bits.
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Figure 8.7: Knee-flexion angle for an adult with cerebral palsy (CP) assuming a 14-bit ADC
compared to infinite-bits.
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Figure 8.8: Knee-flexion angle for an adult with cerebral palsy (CP) assuming a 16-bit ADC
compared to infinite-bits.
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8.3 The Promise for a More Reliable Gait Analysis

In this section, we consider the parameters that are known to be measured with less reliability
using current technologies. In addition to the BOS gait parameter that was studied in
previous chapters, there are other parameters that are of clinical importance, and are known
to be unreliably measured using current systems. Due to the insufficient accuracy provided
by current systems, differentiation between normal and abnormal gait may not be possible.
Some of these parameters are as follows.

• Inter-marker distance (linear displacement) reported error = 11.7 mm.

– BOS measurement, equal to 8.5 cm for normal gait. Reported accuracy leads to
≈ 14% error.

– Average leg-length discrepancy reported in the literature differs from 3 mm up
to 10 mm [25]. Obviously, this would fail to be accurately characterized with the
reported accuracy (11.7 mm).

• Knee-flexion angle measurement error up to 4o for commercial systems [10], [77].

• Toe IN/OUT angle is known to be inaccurately measured [10].

• Inter-session measurement inconsistency [10].

Our proposed system’s linear displacement accuracy (1 mm) seems to have a promising
accuracy for a better reliability in detecting leg-discrepancy and BOS, and consequently for
characterizing abnormal gait. Figure 8.91 shows a simplified diagram of leg discrepancy.
Figure 8.10 shows the difference for the step-length between normal and Parkinson’s gait.
Furthermore, the ≈ 1o angular displacement accuracy of our system also seems to provide
a more accurate knee-flexion angle measurement. Figure 8.11 shows the knee-flexion angle
measurement. This accuracy also provides a more reliable measurement for the toe IN/OUT
angle measurement. In general, most of the gait parameters are expected to be measured
with higher accuracies as compared to current systems, but we decided to concentrate on
some of the parameters that are known to be of clinical importance, and are less reliably
measured.

8.4 Normal/Abnormal Gait Identification

In this section we compare our proposed system to commercial tracking systems based on the
ability to automatically identify normal/abnormal gait. We assume a hypothetical artificial
test implemented via simulations. We estimate the leg-length for normal MoCap gait for

1Figure 8.9 is reproduced based on the materials presented in [18], [107].
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Figure 8.9: Schematic diagram showing leg-discrepancy.

Figure 8.10: Comparison between step width for normal gait and Parkinson’s gait.
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Figure 8.11: Definition of knee-flexion angle.

Table 8.1: Artificial test results.

Commercial System Proposed System

Probability of detection (POD) 56.3% 100%

the left and right legs. Typically, for normal gait, they should be the same, as shown in
Figure 8.12 for the leg-segment measurement during walking. The variations in leg-length is
due to soft-tissue (skin) movement while walking in addition to the measurement accuracy.
In this simulation, we add the ranging error associated with the commercial system and
our proposed system, and estimate the probability of detection (POD) of normal gait. The
POD is the probability that the system identifies the data as normal gait. For this test,
we set a threshold of 3 mm for the definition of abnormal gait. If the detected difference
is greater that 3 mm, then the data is characterized as abnormal gait. Otherwise, it is
correctly identified as normal gait. The results are summarized in Table 8.1. As can be seen,
our system substantially outperforms the corresponding optical tracking system. The POD
for our system is 100% for normal gait tests applied 1e5 times. Whereas, for the optical
tracking system, the POD is 56.3%.

8.5 Comparison of Gait Parameters using the Proposed

System and Commercial Systems

This section gives results for some gait parameters of the proposed system using simulation.
Moreover, it compares these parameters for the proposed system and commercial gait analysis
system (accurate commercial optical tracking system) based on real-data captured using the
commercial system. In order to examine and compare the ranging accuracy of the proposed
system to the commercial system for actual gait parameters, particularly for the heel-to-heel
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Figure 8.12: Comparison between the length of left and right leg segments.

distance parameter, a motion capture data file representing normal walking movement was
obtained from [2], [112], [3]. This file was processed to extract the raw-marker data, and
estimate the heel-to-heel distance. The data was then used in a simulation which mimicked
the heel-to-heel measurement. The simulated results (along with the actual distances) are
plotted for multiple gait cycles in Figure 8.13(a), and the simulated results for the proposed
system and the actual distances are plotted for multiple gait cycles in Figure 8.13(b).

Furthermore, the same comparisons are shown in Figures 8.14(a) and (b) for the base-of-
support (BOS). As can be seen from the plots, the simulated measurements of our proposed
system closely approximate the true distance for both the heel-to-heel and BOS distances.
It outperforms the commercial system for both results. The proposed system shows a clear
advantage over the commercial system for the BOS distance.

A similar comparison for the knee-flexion angle is presented in Figures 8.15(a) and (b).
The simulated results in the IEEE 802.15.6a channel model (along with the actual distances)
are plotted in Figure 8.15(a) for a commercial optical tracking system, and Figure 8.15(b) for
our system for an adult with cerebral palsy (CP). The results show that the proposed system
closely approximates the true angle. From the simulated linear-displacement (ranging), the
attainable ranging accuracy of our proposed system in the IEEE 802.15.6a is 1 mm at an
SNR = 20 dB (assuming the sub-optimal template) using the proposed RRcR technique,
as depicted in Figure 5.22. Moreover, the corresponding achievable angular-displacement
accuracy is less than 1o.

The MoCap data was also used in a simulation of the right-knee angular-velocity for a
normal adult and plotted in Figure 8.16(a) for the commercial system, and for the system
under investigation in Figure 8.16(b). The results show that the proposed system closely ap-
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Figure 8.13: (a) Comparison between the heel-to-heel distance from measurements [2] (ac-
tual) and simulation of the commercial system. and (b) The actual system and proposed
system via simulation.
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Figure 8.14: (a) The base-of-support distance of the actual system and simulation of a
commercial system, and b) The actual system and the proposed system via simulation.
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Figure 8.15: (a) Comparison of right-knee flexion angle from measurements [112] and a
commercial system simulation. and (b) A comparison of right knee flexion angle from mea-
surements [112] and proposed system simulation.
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proximates the true angular-velocity (represented by the solid-line curve). The toe IN/OUT
angle gait parameter comparisons were also considered in Figures 8.17(a) and (b) for the
commercial and proposed systems, respectively. The proposed system outperforms the cor-
responding commercial optical tracking system.

8.6 Overall Power Consumption and Battery Lifetime

Estimation

This section studies the memory and battery lifetime requirements based on the design
parameters presented in previous chapters. We start by estimating the memory requirement
as follows.

• Assuming 16 bits per range estimate, this gives 2 bytes per frame per node.

• For all 50 nodes, it gives an overall data per frame = 100 bytes.

• Memory requirements for all UWB nodes per day = 24*60*60/1 s * 100 bytes = 8.64e9
bytes/day.

• Considering also force-sensors at a 300 Hz rate, 2*24*60*60*300 = 51.84e6 bytes/day.

• Overall memory requirements = 8.69e9 bytes/day = 8.09 Gigabytes/day.

• A 64 Gigabyte micro-Secure Digital (SD) memory card is sufficient for storing approx-
imately 8 days of acquired data.

Moreover, the overall power consumption and battery lifetime are estimated as follows.

• Duty-cycle per node= 2 μs / 1 ms = 2e-3.

• Estimated average power consumption for 100% duty-cycle ≈ 100 mW.

• Hence, the average power consumption for a 0.2% duty-cycle = 100 mW * 2e-3 = 0.2
mW.

• If the system is considered to have one battery, thus considering all 50 nodes, the
average power consumption = 10 mW.

• Roughly considering a common 1.5 V voltage source, this gives 6.667 mA.

• Considering a common battery (AAA battery) source (750 mAh), the average battery-
life is 750 mAh / 6.667 mA = 112.5 hrs/24 = 4.6 days.
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Figure 8.16: (a) Comparison of the knee angular velocity of a commercial motion tracking
systems. and (b) Comparison of the knee angular velocity of the proposed UWB.
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Figure 8.17: (a) Comparison of toe IN/OUT angle from measurements [2] and a commercial
system simulation. and (b) A comparison of toe IN/OUT angle angle from measurements
[2] and proposed system simulation.
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8.7 Chapter Conclusions and Contributions

This chapter studied multiple key design parameters related to the evaluation of the overall
system performance. Particularly, we studied the integration of UWB sensors with foot force
senors in the form of sensor-fusion for the evaluation of gait kinematics and kinetics. Fur-
thermore, we summarized some of the important parameters that are known to be of clinical
importance, and that current systems fail to provide sufficient accuracy for their measure-
ments. Particularly, we considered the BOS, knee-flexion angle, leg-discrepancy, and toe
IN/OUT angle gait parameters. We further provided an artificial test for comparing the gait
normality/abnormality identification capability of our proposed system to the commercial
optical tracking system. This test showed that our system has a 100% gait identification
capability compared to 56.3% for the optical tracking system for leg-discrepancy. Then, the
performance of our system was compared to the optical tracking systems considering various
gait parameters via simulations based on actual MoCap data. Finally, the overall system
power consumption, battery lifetime, and memory requirements were estimated. Our system
is capable of storing data on the on-body central-node using a 64 Gigabytes SD memory card
for ≈ 8 days without needing to transfer data to the off-body node. Moreover, the system
can work up to 4.6 days without needing to recharge the batteries, assuming two common
AAA battery sources supplying the whole system.

Related publications:

• H. Shaban, M. Abou El-Nasr, and R.M. Buehrer,” A highly accurate wireless wear-
able UWB-based full-body motion tracking system for gait analysis in rehabilitation,”
Submitted to IEEE Transactions on Information Technology in Biomedicine.



Chapter 9

Conclusions and Recommendation for
Future Work

In this dissertation, we proposed a full-body wearable wireless UWB human locomotion
tracking system with high ranging and positioning accuracies. The proposed system is ca-
pable of achieving a ranging accuracy that is ten times better than the ranging accuracy
provided by the commercially available systems. Results showed that the proposed system
is a promising solution for providing accurate measurements of important clinical parame-
ters, such as the BOS, which is known to be insufficiently accurate when measured using
current technologies. In particular, the proposed system is capable of providing a ranging
accuracy of 1 mm for intersegmental distance measurements, which exceeds the accuracy of
current technologies. The proposed system is also capable of providing a high localization
accuracy, which also exceeds the accuracy provided by current locomotion tracking systems.
In addition, this system can take both indoor and outdoor measurements, which is suitable
for the long-term monitoring and assessment of mobility diseases.

In order to achieve the ultimate goals of this system, there have been multiple challenges
that have been handled. Mainly, the system performance and the overall power consumption
of the system needed to be investigated. Moreover, the proposed system did not only need
to provide accurate ranging and localization accuracies, but also needed to provide accurate
motion capture data in a sense that does not affect or alter the measured motion data. This
goal is absolutely dependent upon the nature of human locomotion, and the dynamics of
human movement. Essentially, the specific acquired parameters, either kinematics or kinet-
ics, and their measurement requirements as dictated by clinical gait analysis, are the main
controllers of this task. The investigation of available ranging and localization techniques,
as well as the proposal of new techniques have been considered. Also, low-power alternatives
have been studied. Furthermore, important factors that affect performance, such as synchro-
nization errors have been addressed. Moreover, actual measurements have been provided for
the verification of the proposed system. Additionally, the integration of UWB sensors with
other sensors has been investigated.

151
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The system design and implementation issues of the system were discussed and simula-
tions were provided based on realistic environments. Furthermore, it was proven that the
required Ep/N0 for the target ranging accuracy is achievable for an adequate number of
transmitted pulses per bit. This in turn relaxes the synchronization constraints. As for a
large number of bits, synchronization becomes a complicated and a challenging task. More-
over, the ranging accuracy was investigated, and simulation results were presented. It was
shown from simulations as well as actual measurements that the high ranging accuracy of
the proposed system approaches the optimal curves (the original curves) of the investigated
gait parameters. Typically, the proposed system provides high ranging and localization ac-
curacies at low-complexity implementation requirements. Moreover, it is suitable for taking
continuous real-time measurements required for clinical gait analysis.

Chapters 1 and 2 provided an introduction and the necessary background for the work
presented in this dissertation, respectively. In Chapter 3, we studied the key design and
analysis parameters of our proposed system. We gave a description of our proposed system
followed by key design parameters, namely the power consumption, employed pulse shape,
transmitter architecture, proposed ranging stage, and designed the system symbol struc-
ture. Moreover, we addressed the different challenges related to the design of an accurate
localization technique, and gave a brief description of our proposed solution.

Chapter 4 discussed and studied some important parameters related to our system de-
sign, namely the channel model, link budget, estimation of gait parameters, and gave a
comparative study of power consumption considering six different receiver architectures.
Furthermore, it introduced our proposed framework for the study of performance/power-
consumption, and provided a case study for non-coherent UWB receivers.

Chapter 5 studied and compared different ranging approaches, proposed a ranging tech-
nique for our proposed system, derived theoretical lower bounds, and provided link and power
budgets for the proposed system based on the performance of the ranging system. Moreover,
it studied the effect of timing-misalignment (error in template position w.r.t. the received
signal) on the ZZLB. Then, it proposed a ranging technique, the RRcR technique. The pro-
posed technique was shown to provide substantial improvement over MF-TOA estimators
without a priori channel knowledge, and approaches the performance of MF estimators with
perfect channel knowledge. In this chapter, we also designed the link budget. We showed
that the link margin is expected to be equal to 10 dB at the target 1 mm ranging accuracy
using the proposed RRcR technique with suboptimal low-power template alternative. The
10 dB link margin is calculated w.r.t. the 18 dB SNR requirement based on the ZZLB.
The corresponding link margin based on the 22 dB (based on actual measurements) SNR
requirement is 6 dB based on the effective power consumption was also estimated. It was
shown to be ≈ 1 mW, which satisfies the IEEE 802.15.6a power consumption limit per node
(0.1 - 1 mW per node).

Chapter 6 investigated the localization stage, and studied the employed localization tech-
niques. It showed that the proposed system initialization requires 20.14 seconds for a com-
plete setup. The localization technique used at the system initialization stage is the linear-LS
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(as it is a low-complexity solution that could provide us with the required high positioning
accuracy), and was shown to achieve an average positioning accuracy equal to 0.247 mm.
The core measurement phase was also studied. In this stage, we assumed using C-MDS local-
ization approach preceded by an FFT interpolation. The achieved accuracy of acquired data
during this stage was shown to be 0.47 mm ± 52 μm. Results were obtained via simulations
in the IEEE 802.15.6a channel based on actual acquired MoCap data. This chapter also in-
vestigated the node arrangement, and proposed grouping the nodes in LOS links guaranteed
regions that guarantee LOS links during movement.

Theoretical and simulation results were further justified via actual measurements. Chap-
ter 7 provided the actual measurements taken at the MPRG labs for the verification of
the ranging and localization accuracies provided by our proposed system. Furthermore, it
included the investigation of the extraction of actual gait parameters based on actual mea-
surements using UWB radios. In Particular, we took four different measurement sets for the
investigation of ranging and localization accuracies, verification of the accuracy provided by
the proposed RRcR ranging technique, and the extraction of actual gait parameters. The
results presented in this chapter showed that the proposed system is capable of providing a
1 mm ranging accuracy using an optimal template at an SNR = 20 dB and 22 dB using a
suboptimal real sinusoidal template.

Chapter 8 investigated sensor-fusion, and evaluated the overall system performance.
Specifically, we studied the integration of UWB sensors with foot force senors for the evalua-
tion of gait kinetics. Then, we summarized some of the important parameters that are known
to be of clinical importance, and that current systems fail to measure with sufficient accuracy.
In Particular, we considered the BOS, knee-flexion angle, leg-discrepancy, and toe IN/OUT
angle gait parameters. Furthermore, we provided an artificial test for comparing the gait
normality/abnormality identification capability of our proposed system to the commercial
optical tracking systems. This test showed that our system has a 100% gait identification
capability (based on 1e5 attempts) compared to 56.3% for the optical tracking system for
leg-discrepancy. Then, the performance of our system was compared to the optical tracking
system considering various gait parameters via simulations based on actual MoCap data.
Also, in this chapter we evaluated the overall system power consumption, battery lifetime,
and memory requirements. Results showed that our system is capable of storing data on the
on-body central-node using a 64 Gigabyte SD memory card for ≈ 8 days without needing
to transfer data to the off-body node. It also showed that, the system can work up to 4.6
days without needing to recharge the batteries, assuming two common AAA battery sources
supplying the whole system.

9.1 Contributions

A detailed list of contributions of this work is as follows.
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• Proposed and investigated a novel highly accurate wireless wearable human locomotion
tracking system suitable for clinical gait analysis.

• Designed and investigated the primary components of the proposed system, and pro-
posed novel approaches when necessary.

• Studied human locomotion biomechanics. Defined a target ranging accuracy based on
studied gait properties and limitations of current technologies. Our selected system’s
target ranging accuracy is 1 mm. This value was particularly chosen to achieve an
accuracy that is ten-times better than the reported accuracy for current technologies,
1.17 cm. On the other hand, this accuracy has been reported in the literature for UWB
technology based on actual low-power implementations.

• Developed a study framework for performance/power consumption evaluation. The
optimum receiver architecture for the proposed system was selected based on the de-
veloped framework.

• Studied and compared low-power receiver alternatives.

• Studied theoretical lower bounds on time-of-arrival (TOA) ranging estimate. Particu-
larly, we studied the Ziv-Zakai lower-bound (ZZLB) performance of coherent detection
with suboptimal (real and complex windowed sinusoid) templates, and derived closed-
forms in AWGN channel. Furthermore, we evaluated the ZZLB in the IEEE 802.15.6a
body-area-network (BAN) channel model. Accordingly, we defined the target signal-
to-noise-ratio SNR based on target ranging accuracy.

• Further studied the effect to timing-misalignment on ZZLB, and provided closed-forms
in AWGN. Moreover, extended the evaluation in the IEEE 802.15.6a via semi-analytic
simulations.

• Designed key parameters of our system’s performance including the link-budget and
the frame structure.

• Defined LOS regions that guarantee preserving LOS links during movement based on
human movement dynamics and available motion capture marker sets.

• Proposed a short-time system setup (initialization) process that achieves 0.247 mm
localization accuracy within 20.14 seconds.

• Proposed a reference range correlation-based (RRcR) ranging technique suitable for
on-body communications.

• Verified simulation results based on actual on-body measurements.

• Proposed using classical multidimensional scaling (C-MDS) along with fast-Fourier-
transform (FFT) for subsequent frame localization. The proposed procedure provides
0.47 mm 3D localization accuracy in indoors and outdoors; compared to 1 mm average
accuracy reported for current systems.
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• Studied gait parameters, particularly those of clinical importance. Defined the param-
eters for which the proposed system is expected to provide more accurate results in
comparison to current technologies.

• Developed a simulation framework using MATLAB for the extraction of marker data
and estimation of most gait parameters from motion capture (MoCap) data associated
with common motion capture systems and software programs, namely Vicon Plug In
Gait, OpenSim, and GaitLab (associated with GaitCD).

• Compared the performance of the proposed system to the commercially available gait
analysis and motion capture systems based on simulations in the IEEE 802.15.6a chan-
nel.

• Proposed the integration of UWB sensors with foot force sensors for the estimation of
gait kinetics. Further evaluated the proposed system performance (BER) in the IEEE
802.15.6a channel and verified the proposed link-budget.

• Evaluated the overall system performance, including transmission of acquired TOA
data to central on-body node (on-body to on-body), and from on-body central node
to off-body node in the IEEE 802.15.6a CM3 and CM4, respectively.

• Developed simulations for all studied aspects, and investigated all proposals on actual
motion capture data in realistic on-body multi-path channels.

• Estimated system’s overall power consumption and battery lifetime.

9.2 Recommendation for Future Work

This research included the design and analysis of the components associated with the pro-
posed system. The natural next phase of this project would be the implementation of the
proposed system. The implementation would essentially include the choice of the most
suitable implementation technology. Other low-power alternatives could also be developed
for further power consumption reduction. Furthermore, a detailed study of the MAC layer
design would also be required.
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