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Abstract

Several trends can be observed in modern microprocessor design. Architectures have
become increasingly complex while design time continues to dwindle. As feature sizes
shrink, wire resistance and delay increase, limiting architects from scaling designs cen-
tered around a single thread of execution. Where previous decades have focused on ex-
ploiting instruction-level parallelism, emerging applications such as streaming media and
on-line transaction processing have shown greater thread-level parallelism. Finally, the
increasing gap between processor and off-chip memory speeds has constrained perfor-
mance of memory-intensive applications.

The Single-Chip Message Passing (SCMP) parallel computer sits at the confluence of these
trends. SCMP is a tiled architecture consisting of numerous thread-parallel processor and
memory nodes connected through a structured interconnection network. Using an inter-
connection network removes global, ad-hoc wiring that limits scalability and introduces
design complexity. However, routing data through general purpose interconnection net-
works can come at the cost of dedicated bandwidth, longer latency, increased area, and
higher power consumption. Understanding the impact architectural decisions have on
cost and performance will aid in the eventual adoption of general purpose interconnects.

This thesis covers the design and analysis of the on-chip network and its integration
with the SCMP system. The result of these efforts is a framework for analyzing on-chip
interconnection networks that considers network performance, circuit area, and power
consumption.

This work has been generously supported by the National Science
Foundation through a Graduate Research Fellowship.
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Chapter 1
Introduction

What will the digital system of 2010 look like? What design trends make the
current architectures of microprocessors impractical for a billion transistor
chip? What possible solutions exist to the design challenges facing engineers
in the next few years? Can architects improve the testability, time-to-market,
and yield of future designs?

These questions form the motivation for the material presented in this the-
sis. Where current designs use global, ad-hoc wiring structures, the time
has come to consider general purpose networks to connect on-chip subsys-
tems. In the first chapter, current trends in microprocessor design are re-
viewed and motivation for on-chip networking is presented. The tradeoffs in
using a general-purpose interconnect must be understood, so a framework is
presented for analyzing the cost and benefit of various architectural design
decisions.

1.1 Recent Trends

The well-recognized International Technology Roadmap for Semiconductors
(ITRS) provides an analysis and projection of near- and far-term semiconduc-
tor fabrication capabilities. Based on the latest available roadmap [ITRS02],
high-performance microprocessors are expected to contain up to one billion
transistors by the year 2007 and over four billion transistors by 2013.

While it may be technically feasible for a design to contain a billion tran-
sistors or more, today’s design paradigms will not translate into successful
billion-transistor architectures. To accommodate so many gates on a single
chip, fabrication technologies continue to shrink. As feature sizes become
smaller, the cross-sectional area of wires decreases, causing wire resistance

1
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to increase and signal delays to grow. In a billion-transistor architecture, sig-
nals will not reach across the chip within one or two clock cycles. In fact,
estimates show that less than 1% of a chip will be reachable in a single clock
cycle [Agarwal00].

Despite increasing wire delays, microprocessor designers have continued to
integrate new features into the existing paradigm of single-threaded execu-
tion. For the past thirty years, the focus has been on increasing the number
of instructions that can be simultaneously executed from a single instruction
stream. While exploiting this instruction-level parallelism (ILP) has netted
performance improvements, the size of the monolithic microprocessor has
grown tremendously.

This growth has several impacts, most notably increasing area, power con-
sumption, and design cost. Increasing the area of a design results in fewer
chips per wafer, and hence a higher fabrication cost. A larger chip also has a
higher probability of defects, and thus a lower yield. Structures designed to
mitigate the impact of defects are costly to implement since they may require
design changes in several chip subsystems, each change being unique to that
component.

Power consumption is rapidly becoming a focus for engineers throughout
the design cycle. Architects, circuit designers, and layout engineers must be
cognizant of the impact their decisions have on power. Power dissipation im-
pacts every application and target market: handheld devices, desktop work-
stations, and large-scale servers can all benefit from improved power-design
methodologies. While improvements can be made at the gate and transis-
tor level, architects must consider power consumption in order to achieve
dramatic benefits.

Finally, the continued growth in the complexity of single-threaded architec-
tures has led to increased design and testing costs. The number of engineers
required to design, validate, and test a modern microprocessor is constantly
growing, while increased competition has resulted in shorter design cycles
and lower profit margins.

While area, power, and complexity have suffered with increasing architec-
tural features to exploit ILP, the performance gains have continually dimin-
ished. With applications continuing to demand performance improvements,
architects have begun to look at thread-level parallelism (TLP). Where ILP
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Figure 1.1: The SCMP Parallel Computer consists of interconnected tiles that contain
processing, memory, and network components.

exploits the most fine-grained parallelism available, recent studies indicate
many applications may contain more parallelism at the thread level [Diefendorff97].
Emerging architectures such as chip multiprocessors (CMPs) and simultane-
ous multithreading (SMT) are designed to exploit both TLP and ILP. How-
ever, CMP and SMT architectures do not generally address the previously
mentioned area and design cost issues, and they maintain a shared link to
external memory, failing to address wire latency problems.

1.2 The SCMP Parallel Computer

The single-chip message-passing (SCMP) parallel computer is designed to
exploit thread-level parallelism using localized, structured wiring to reduce
design and testing costs and improve power consumption [Baker02]. The
SCMP design integrates several processor-memory tiles on a single chip and
connects the tiles with a general-purpose interconnect. A schematic picture
of the SCMP design is shown in Figure 1.1.

Each tile in the SCMP system is identical, consisting of a processor, mem-
ory, and networking components (see Figure 1.2). The processor is a 32-bit
RISC core with added features for managing multiple threads in hardware
and sending network messages. It is estimated that in 5-10 years an SCMP
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chip can be built with 16-64 processors and 4-8MB of memory per proces-
sor [Baker02].

ALU

Pipeline

Instruction
Cache

Memory

Context
Management

Table Network
Interface

Unit

Router Other NodesOther Nodes

Thread
Contexts

Figure 1.2: A single SCMP node

The entire SCMP system has been designed to be scalable with respect to
wire latency. Nodes are arranged in a point-to-point network with nearest-
neighbor connections to keep wire lengths at a minimum. Where most shared-
memory systems are not scalable beyond a few nodes (snooping bus systems)
or have global wiring requirements (directory systems), the SCMP system
uses message passing to communicate data between nodes [Culler98]. By
integrating memory and CPU in each tile, no wires are longer than those
connected to the neighboring tiles.

1.3 On-Chip Networking

Consider the design of a complex integrated system today. Any large chip
is going to be composed of several subsystems, and each of those subsys-
tems is likely made up of a number of components. Typically, information
is shared between components and subsystems through dedicated wiring. If
two components are at opposite ends of the chip, wires may very well stretch
across the entire design to accommodate the interconnection. As an exam-
ple of the impact of the resulting wire delays, consider the extremely deep
pipeline of the Pentium IV, where two stages are reserved for signal propa-
gation alone [Hinton01].
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The global wiring used today is considered ad-hoc because the signal lines
are typically placed as needed and each design will be different. As new
features or subsystems are added, wiring needs will likely change. Ad-hoc
wiring is costly in terms of design time and testability. Fabrication defects
that occur in signal paths can be difficult to design around since each connec-
tion path is designed uniquely. Redundant wiring would be costly in terms
of area and design time.

Designing a high-speed digital system becomes difficult if the entire chip is
tied to a master clock. Clock skew effectively prevents cross-chip components
from being synchronized to the same clock, and various structures and tech-
niques have been developed to synchronize subsystems that exist in multiple
clock domains [Dally98]. With ad-hoc wiring, implementing clock synchro-
nization increases design time and complexity.

An on-chip network removes the global, ad-hoc nature of subsystem inter-
connections. Rather, information is passed in the form of messages between
nodes in the network. Nodes can be connected through short, localized paths
to reduce the impact of wire delays. The wiring between nodes is highly
structured and redundancy can be built in with little cost in area or design
time. Each node can exist in a local clock domain, and the network can ac-
commodate the necessary synchronization circuitry [Dally01].

Using on-chip networking can come at the cost of dedicated bandwidth,
longer latency, increased area, and higher power consumption. Not all sys-
tems will be candidates for using a general-purpose interconnect, despite the
potential benefits. Quantifying the costs and benefits associated with an on-
chip network will aid engineers looking to move towards a structured design.

1.4 Thesis Overview

This thesis will focus on the design issues involved in using a general-purpose
interconnect in the SCMP architecture. Data is passed between tiles using
the network, while components within each tile use conventional dedicated
wiring to carry data and control signals. While researchers have begun to ex-
tol the benefits of using a general-purpose interconnect in chip design [Dally01],
more analysis is required before industry adoption can begin. This thesis will
discuss design issues in using an on-chip network in the SCMP architecture
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and present a framework for quantifying the costs and benefits associated
with using such an interconnect.

The analysis consists of two components: analytical models and simulation-
based observations. Analytical models will quantify the delay, area, and
power of a pipelined router implementation. Simulations consist of appli-
cation benchmarks run in an instruction set simulator and synthetic network
traffic used in an RTL-level network simulation. The optimum network ar-
chitecture will be determined by balancing performance, area, and power
estimates.

The remainder of this thesis is organized as follows. In the next chapter, rel-
evant background information covering interconnection networks is given.
This background chapter will define basic terms and give an overview of the
networking taxonomy. In Chapter 3, related research is presented, includ-
ing parallel computer networks, on-chip networking, and quantifying cost
and performance in a network. The fourth chapter gives a detailed descrip-
tion of the design and implementation of the router and network interface
of the SCMP system. The next chapter gives an analysis of the router imple-
mentation, including analytical expressions for delay, area, and power, and
simulation results of performance. The simulations cover both synthetic net-
work traffic and realistic application performance. Based on the results and
observations in Chapter 5, the final chapter presents conclusions and future
directions for this research.



Chapter 2
Background

Using an on-chip network means that data is passed between subsystems in
the form of messages. This thesis concerns direct networks where the com-
ponents (processors, memories, etc.) are connected through point-to-point
links. Messages travel through the network by making one or more hops
between the source and destination tiles.

In this chapter, a general overview of interconnection network terminology
and concepts is given. Important design parameters will be discussed in-
cluding network topology, routing and switching algorithms, and flow con-
trol techniques. In characterizing an interconnection network, it is important
to understand the performance metrics commonly used. An overview of the
SCMP network will be presented from the perspective of an application pro-
grammer or processor microarchitect.

2.1 Network Performance Metrics

The time between when a message is sent and the complete message arrives
at the destination is referred to as latency. For this thesis, latency will be
measured in two ways. The time between when the message header enters
the network and the end of the message is ejected from the network is called
network latency. When software benchmarks are used to provide performance
measures under typical application loads, latency will include the time for
pointer arithmetic, memory accesses, etc. as messages are built. This form
of latency measure that includes software overhead is called system latency.
Both measures are important, and will be used throughout the analysis.

Often used in conjunction with latency is the notion of a network’s through-
put. Throughput is the maximum traffic a network can accept per unit time,

7
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typically measured as bytes or packets per node per cycle. Throughput is
commonly measured from a Burton Normal Form (BNF) plot of latency ver-
sus accepted traffic, both functions of offered traffic [Duato02]. The through-
put corresponds to the maximum accepted traffic rate where latency approaches
infinity, as shown in Figure 2.1.

 35

 40

 45

 50

 55

 60

 65

 70

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

A
ve

ra
ge

 L
at

en
cy

 (c
yc

le
s)

Normalized Accepted Traffic

Throughput

Figure 2.1: A BNF plot illustrating throughput as the maximum accepted traffic.

Another commonly used metric is bandwidth. In the context of this thesis,
bandwidth will be used to characterize the performance capabilities of a
given network structure, or topology (see Section 2.2). Among the numer-
ous bandwidth measures, most important in this thesis is the bisection band-
width, measured as the minimum number of wires connecting two equal
partitions of nodes [Duato02]. The bisection bandwidth will be used to char-
acterize the network activity when traffic is uniformly distributed across the
nodes, as in the case of synthetic network benchmarks.

When measuring latency and throughput, there are several ways to quantify
and report the results. One technique is to use software application bench-
marks that generate network traffic in a practical, realistic context. Software
benchmarks include latency introduced by the processor pipeline, e.g. due
to pointer arithmetic and memory access. Alternatively, synthetic network
benchmarks can be used to generate network traffic with some desired sta-
tistical properties in an attempt to stress a network design in a generic way.
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Synthetic benchmarks also enable the testing of network components alone,
isolated from software-generated overhead.

2.2 Interconnection Network Taxonomy

The nature of an on-chip network can be classified according to its topology,
routing protocol, switching mechanisms, and flow control techniques. This
section presents the network design alternatives that are relevant to on-chip
networking, and the SCMP network in particular.

2.2.1 Network Topology

The topology of a network is defined by the shape and structure of the inter-
connected nodes. Popular choices include members of the k-ary n-cube fam-
ily, including 2-D meshes, rings, tori, hypercubes, and Omega networks [Hwang97].
Other possible topologies include fat trees, cube-connected cycles, and star
graphs, among others. Figure 2.2 shows several possible topologies for a net-
work.

(a) (b) (c) (d)

Figure 2.2: Several common network topologies: (a) fat tree, (b) 4-ary 3-cube, (c)
torus, (d) ring.

While interconnection networks in conventional multiprocessors frequently
take the form of higher-dimensional topologies [Hwang97], on-chip networks
will likely use networks such as a 2-D mesh or folded torus with lower di-
mensionality to keep wire lengths short. Figure 2.3 illustrates the 2-D mesh
and folded torus topologies.
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(a) (b)

Figure 2.3: Two-dimensional topologies: (a) folded torus and (b) 2-D mesh.

2.2.2 Routing Algorithms

The path a message takes through the network is determined by the rout-
ing protocol. Routing can be either deterministic, adaptive, or a combination
of both. In a deterministic routing algorithm, a message’s path is known
precisely from the source and destination nodes, while an adaptive routing
algorithm will decide the path based on current network conditions. Deter-
ministic routing algorithms generally offer simpler implementations, while
adaptive algorithms can provide better performance and fault tolerance.

Some networks use a hybrid system that reserves some channels for deter-
ministic routing and others for adaptive paths, combining the benefits of the
two alternatives at the cost of additional area, wiring, and power [Mukherjee02].

The simplest deterministic algorithm is dimension-order routing, where mes-
sages are transmitted fully in each dimension, beginning with the lowest di-
mension available. For example, in a 2-D mesh network, a message is trans-
mitted first along the “x” dimension until reaching the column containing
the destination node. Then, the message moves along the “y” dimension
until the destination is reached. An analogous algorithm can be applied to
networks with higher dimensions.

Adaptive algorithms are used to improve performance in the presence of
localized traffic or to provide fault-tolerance in the network. Several sub-
classifications of adaptive routing can be made. Among them, minimality
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and progressiveness are important to consider in on-chip network applica-
tions. An algorithm which always moves the message closer to the desti-
nation node is termed a minimal routing algorithm; otherwise, the protocol
allows misrouting. A progressive algorithm only moves the message forward,
while a backtracking algorithm can reverse direction and choose an alternative
route that differs from the previously chosen path [Duato02].

Deadlock

In addition to its simplicity, another advantage of dimension-order routing
is deadlock avoidance. Deadlock occurs when messages are unable to be
transmitted due to a circular dependence on resources. The messages cannot
proceed because each one is waiting for another node which is also blocked.

Dimension-order routing avoids deadlock by requiring that circular depen-
dencies, or cycles, cannot occur. Other routing algorithms can avoid dead-
lock by increasing the number of resources available in the network. One
way to guarantee deadlock-free operation in adaptive routing networks is
to add channels that are routed in a deadlock-free, deterministic fashion. If
messages cannot continue on the adaptive channels, they may be transmitted
through the deterministic routes to clear the deadlock.

Originally developed to guarantee deadlock-free routing in wormhole net-
works (see section 2.2.3), virtual channels are multiplexed on top of a single
physical channel to give the appearance of a larger number of resources.
Virtual channels, although originally developed for deadlock avoidance, can
also be used to improve flow control performance, and will be discussed in
that context shortly.

2.2.3 Switching Mechanisms

Switching techniques control how and when message data is connected from
input to output channels. Switching operation can be defined by how mes-
sages are broken up and how the subsequent pieces are transmitted between
nodes. Many of the popular switching techniques used in parallel computers
were originally developed for local- and wide-area networks. Others have
been developed specifically with high-performance computing in mind.

In circuit switching, a message’s route is secured before the message itself
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enters the network. Typically, this is achieved by transmitting a header probe
from the source to the destination. As the probe travels in the network, it
reserves resources along the way. An acknowledgement is sent back to the
source to confirm that the circuit has been set up, and the message can then
be transmitted. When long messages are present, especially continuous data
streams, circuit switching can be advantageous. On the other hand, the la-
tency incurred in sending the header probe and corresponding acknowledge-
ment can make circuit switching prohibitive for short, frequent messages.

Another commonly used alternative is packet switching, where messages are
broken into fixed size pieces, termed packets. Each packet is routed indepen-
dently, and therefore must contain enough control and routing information to
be delivered. Packets are also fully buffered at each node in the path, which
is why packet switching is also commonly referred to as store-and-forward
switching. When messages are short and frequent, packet switching can most
effectively use network resources.

Frequently, packet widths exceed available physical channel widths, mean-
ing packets must be transmitted in pieces over several cycles. In virtual cut-
through (VCT) switching, packet headers are forwarded as they are received,
rather than waiting for the entire packet to arrive. In the absence of block-
ing traffic, VCT switching has a lower latency than packet switching. VCT
switching requires the same available buffer space as packet switching so
that, in the case when a packet header is blocked, the entire packet can be
stored.

To lessen the buffering requirements of VCT switching, wormhole switching
breaks a message into smaller flow-control digits, or flits. Only the header
flit(s) contains routing information, reducing the overhead incurred with packet
or VCT switching. In the presence of blocking traffic, flits can be distributed
along the path in the network. Wormhole switching requires only enough
buffer space to store a few flits in each router, so the overall storage require-
ments are less than those in packet or VCT switching [Dally90].

In conventional multi-chip interconnection networks, physical channel widths
are typically limited due to small pin counts. Flits are often broken into sev-
eral phits that fit into the physical channel width. With on-chip networks,
however, physical channel widths can be significantly larger, but storage re-
quirements and their associated power and area consumption may become
more restricted than in multi-chip networks.
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2.2.4 Flow Control Techniques

Data is synchronized between network nodes through flow control techniques.
Flow control mechanisms allocate and release buffering space and pass cred-
its to inform neighboring nodes of resource availability. In circuit switching,
for example, the header probe and acknowledgement packet are examples of
flow control. In packet, VCT, or wormhole switching, flow control circuitry
keeps track of available buffer space on neighboring nodes, and allocates the
space required to transmit a given packet or flit.

One common implementation is to use a source-controlled system, where all
state information is kept at the sending end of a transmission link. The sender
has information on how many buffer slots are available, which channels are
allocated, etc. Credits are passed across a channel from receiver to transmitter
to indicate when new space is made available or when a link becomes free.

Virtual Channel Flow Control

Virtual channels, also called virtual lanes, were originally developed to avoid
deadlock, as discussed above. However, Dally [Dally92] showed that using
virtual channels in a flow control paradigm could reduce the latency of mes-
sage transmission in a wormhole network. Without virtual channel flow con-
trol, a message receives exclusive access to output channels. When a message
is blocked, however, the channels in the message’s path are now unavailable
to other messages that could otherwise proceed. By multiplexing the channel
access, virtual channel flow control allows the physical channel to be used by
flits that continue to progress in the network. Figure 2.4 illustrates the virtual
channel principle.

Virtual channel flow control isn’t free, of course. Besides the increased stor-
age required to buffer several messages simultaneously, the flow control cir-
cuitry must also be increased to pass information regarding which virtual
channel is being used. Credits passed from receiver to transmitter must in-
dicate the applicable virtual channel, so physical channel widths are wider
than flow control without virtual channels.
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Figure 2.4: Virtual channel flow control. In (a), without virtual channels, the message
from A is blocked when the message from C is blocked. In (b), two virtual channels
mean the message from A still gets through to its destination. The physical channels
have not increased; rather, the virtual channels are multiplexed across each physical
channel.

2.3 The SCMP Network

The design of an interconnection network is often dictated by the compo-
nents being connected, and the SCMP network is no different. The SCMP
processing tiles are designed to operate on instruction streams with the net-
work operations controlled through a subset of the SCMP instruction set. Ta-
ble 2.3 lists the SCMP network instructions, their operands, and the desired
result.

The SCMP system supports thread and data messages. Thread messages
spawn a new thread context on another tile, while data messages transfer
blocks of local memory to a different node. A thread message consists of
the starting instruction pointer (IP) and initial context register values. When
a thread message is received, the Network Interface Unit (NIU) obtains a
context slot in the Context Management Table (CMT) and stores the IP and
context registers in the local node.

Data messages consist of a base memory address, an address stride, and one
or more data words. Data messages can be constructed at the sender by trans-
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Table 2.1: Network-related operations in the SCMP instruction set.
Instruction Operands Description

SEND rs1 Send 1 data word
SEND2 rs1, rs2 Send 2 data words

SEND2E rs1, rs2 Send 2 data words and end message
SENDE reg Send 1 data word and end message
SENDH reg, type, imm Send msg. header, imm. operand
SENDH reg1, type, reg2 [,imm] Send msg. header, reg. operand
SENDM reg1, reg2 Send data words from memory

SENDME reg1, reg2 Send data words and end message

 
 
 
 
 
 

Header Flit Address Flit Data Flit Data Flit Tail Flit 

Figure 2.5: SCMP message format.

mitting register values (using SEND or SEND2 instructions) and/or using the
block transfer instruction SENDM. The SENDM instruction sets up a direct
memory transfer by specifying the starting address, local stride, and number
of words to transfer. The NIU initiates the memory requests and builds the
message directly from memory, freeing the processor to continue operating.
The NIU memory access is given a lower priority than the pipeline memory
requests.

Either message type ends when a SENDE, SEND2E, or SENDME instruction
is executed. These opcodes are identical to the SEND, SEND2, and SENDM
instructions just discussed, except that the flits are marked as being tail flits,
signaling the end of a message. Therefore, a complete SCMP message con-
sists of the elements illustrated in Figure 2.5.

Understanding the types of network traffic in the SCMP architecture is crit-
ical to making high-level network design decisions. Simulation studies in-
dicate that thread message latency is dominated by pointer arithmetic and
not network latency. On the other hand, data message latency is dependent
on both network traffic and the local node’s memory access patterns, making
system performance quite application dependent.
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The SCMP network is designed to handle only dynamic traffic with no prior
knowledge about traffic patterns, volume, or timing. As such, wormhole
switching with virtual channel flow control has been selected as the architec-
ture for the SCMP router. For its simple implementation and easier analysis,
dimension-order routing will be used. A 2-D mesh topology has been cho-
sen to keep wire lengths at an absolute minimum; however, implementing a
folded torus requires only minimal changes to the routing circuitry and top-
level wiring.

The SCMP tile, with multi-threaded processor and local memory, is con-
nected to a router by the network interface unit (NIU). The NIU is responsible
for packaging data from the processor and memory into network messages.
As its name implies, the NIU provides the interface between raw data in the
tile and the wormhole-switched router that makes up the network fabric. The
router has great design flexibility, and this thesis focuses on the architectural
and circuit-level impacts of the router design parameters. On the other hand,
the NIU’s structure is largely dictated by the router and processor/memory
designs. A brief discussion of the NIU design and implementation will be
given in section 4.2, but no further analysis of the NIU will be made.



Chapter 3
Related Research

While some constraints may change when considering on-chip networking,
the broader context of parallel computer networks provides a wealth of ex-
isting research. This chapter consists of a review of the literature related to
on-chip networking, beginning with the significant contributions from in-
terconnection networks for parallel computers, specifically direct networks
used with point-to-point connections.

3.1 Parallel Computer Networks

Built from commodity or custom microprocessors, parallel computer sys-
tems have leveraged interconnection networks to provide high-bandwidth
message passing or tightly-coupled shared memory. Early message-passing
computer systems included the Cosmic Cube [Seitz85], the Mosaic C sys-
tem [Athas88], and the MIT J- and M-Machines [Noakes93, Fillo95]. These
systems showed that fine-grained message passing was a capable platform
on which to build a large, parallel computer system. In fact, the Mosaic net-
work was so popular it was used as the interconnect for the Intel Paragon,
Stanford DASH, and MIT Alewife machines [Boden95].

The Active Messages [vonEicken92] project demonstrated that the complex-
ity of most message-passing implementations was creating unnecessary over-
head in the network interface. If message headers contain information about
the storage or processing of data, a significant reduction in the network com-
plexity is achieved. The goal of active messaging is to decouple the processor-
network interaction wherever possible, increasing the overlap of computa-
tion and communication.

The Pica architecture [Wills97] at Georgia Tech employed an active messag-
ing style with integrated processor, network components and small amounts

17
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of local memory (4,096 36-bit words). Much of the SCMP architecture is an
extension of the Pica system, except for the small memory footprint. In target-
ing future embedded DRAM fabrication capabilities, the SCMP architecture
integrates large amounts of memory with processing and network circuitry.

In shared-memory systems, the interconnection network is responsible for
transporting cache coherency data and control signals. Here, low latency
and latency-tolerant architectures are paramount. Many small-scale multi-
processors have been built around a shared bus, limiting scalability. Larger
shared-memory systems have been built using the non-uniform memory ac-
cess (NUMA) paradigm with interconnection networks.

In the last decade, commodity interconnection networks have been devel-
oped for building parallel systems, marking a departure from the custom-
designed systems of the past. Using the Parallel Virtual Machine (PVM)
or Message-Passing Interface (MPI) programming paradigms, interconnects
such as Myrinet [Boden95] and the Scalable Coherent Interface [James90]
have enabled the construction of parallel systems from widely-available mi-
croprocessors.

3.2 Networks-On-Chip

As VLSI has advanced, researchers have begun to suggest the integration of
multiple processor cores on a single chip. The RAW project at MIT is com-
bining processing units with static and dynamic interconnects [Waingold97].
More than just a miniaturization from the parallel computer world, RAW
is also integrating elements of reconfigurable computing to create a flexible
computing solution. RAW uses both statically schedule and dynamically al-
located network mechanisms [Taylor02]. The static network is treated as a
programmable resource and message transmission is scheduled at compile
time. The dynamic network is a conventional wormhole network. Physical
interconnect channels in the RAW architecture carry multiplexed static and
dynamic network traffic, with priority given to the scheduled, static network.

Dally and Towles [Dally01] proposed using a general-purpose interconnect to
replace the ad-hoc global wiring found in modern VLSI designs. Leveraging
plentiful on-chip resources, their sample design advocates using a folded-
torus topology to reduce the average number of routing hops. Their design
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uses virtual-channel flow control with a very large flit width (300 bits) due
to the lack of pin constraints found in multi-chip networks. The example
network sketched by Dally and Towles is not application-specific; rather, it
targets arbitrary client logic (microprocessors, DSPs, memory, etc.).

In [Guerrier00], Guerrier and Greiner propose an on-chip network architec-
ture for the creation of Systems-On-Chip (SoC) designs. They argue that a
switched network will lead to more scalable designs than the current bus-
based designs in place today. Their prototype network uses packet-switching
in a fat-tree topology, as opposed to the wormhole switching, virtual channel
flow control in a 2-D mesh proposed in this thesis.

Guerrier and Greiner argue that wormhole switching alone results in under-
utilized network resources in the presence of contention. This is true with-
out virtual channels, as [Peh01] concludes as well. The crossbar switch used
in [Guerrier00] is quite large (10x10), even though not all 100 switch connec-
tions are made. Nonetheless, it is likely that their design’s cycle time will
be limited by the large switch. The analysis in [Guerrier00] does include cost
and performance tradeoffs; however, it does not provide power consumption
data or detailed timing results. The area data provided is not parameterized
and therefore would be difficult to extend beyond the design and 0.25µ im-
plementation given. That said, the work in [Guerrier00] is significant in that it
proposes a complete, generic architecture for building scalable SoC designs.

Jantsch, Tenhunen, and colleagues at the Royal Institute of Technology in
Sweden have been developing a system design approach using Networks-
On-Chip (NoCs) [Jantsch03, Kumar02, Soininen03]. Without committing to
a specific interconnect topology or network design (switching, routing, or
flow control), they propose connecting Intellectual Property (IP) blocks in
a programmable fashion. Much of their work has focused on system- and
platform-level design issues, and the work presented here could be easily
applied to the design methodologies they have proposed.

3.3 Quantifying Performance and Implementation Costs

Researchers have developed a multitude of metrics to quantify network and
system performance. Measuring latency and bandwidth in network com-
ponents has been widespread since the first interconnection networks were
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proposed. An area of active interest has been the development of accurate
delay models for routers of various classifications. Delay models seek to
quantify the latency of a single network hop; that is, the time it takes one
packet or flit to clear a router. Chien [Chien93] proposed a basic delay model
for wormhole routers, which was later extended by Peh and Dally [Peh01] to
account for pipelining and more practical virtual channel implementations.
In section 5.1.1, the models of [Peh01] will be applied to compute the delay
of several SCMP router design alternatives.

Chien [Chien93] also advocated the consideration of implementation com-
plexity when designing interconnection networks. He used the gate count
to quantify the complexity of several routing algorithms in a k-ary n-cube,
wormhole-switched network. One drawback in using gate count to estimate
implementation cost is the assumption that wires do not consume area or
contribute to complexity. A few recent router designs have area information
given, or it can be extracted by observing a photomicrograph of the imple-
mentation. Section 5.1.2 will extend the work of Chien to include wire and
gate areas derived from VLSI models.

Peh and her colleagues at Princeton have begun developing power models
for wormhole networks with virtual-channel flow control [Wang03]. Using
circuit models for power consumption, they have obtained architectural-level
estimates that appear to come within 10% of implementation results for sev-
eral modern routers. With an ever-increasing emphasis on power efficient
designs, it is critical to continue the development of power models for net-
work architectures.

The power model in [Wang03] considers only dynamic (switching) power,
which makes up the majority of the power dissipated in current fabrication
technologies. The commonly used formula for dynamic power consumption
is P = 1/2αCV 2

ddfclk, where α is the switching activity, C is the switch capaci-
tance, Vdd is the supply voltage, and fclk is the clock frequency. In this thesis,
as in [Wang03], power models will be determined by estimating α and C.
Dynamic power modeling will be applied to the SCMP network design in
section 5.1.3.



Chapter 4
Design and Implementation

The SCMP router has been designed for pipelined operation so that its clock
cycle matches the speed of the SCMP processors. The network interface has
been designed as two finite state machines controlling the inject and eject op-
erations. Both the router and NIU were prototyped using the SystemC hard-
ware design language to obtain a cycle-accurate simulation of the network
subsystem. For detailed area estimates, the crossbar switch and flit buffers in
the router have been designed in full custom VLSI layout. This chapter de-
scribes the detailed design and implementation efforts as part of this project.

4.1 Router

As Peh and Dally suggest [Peh01], modern router implementations are nearly
all pipelined. The SCMP router consists of four substantial operations: de-
code+routing, virtual channel allocation, switch allocation, and crossbar traver-
sal. These four operations make up a four-stage pipeline that serves as the
basic router design. At the beginning of a flit’s router traversal, buffers store
the flit in case resource contention blocks its passing. The input buffering
happens in parallel with the virtual channel and switch allocation stages,
which are only used when a header flit enters the port. Figure 4.1 shows
the router’s composition and pipelined structure.

To keep the crossbar switch at a manageable size, the virtual channels are
multiplexed across the five switch inputs. Having all the virtual channels
connected directly to the switch results in less arbitration logic but a switch
that could be prohibitively large. It has been shown that arbitration logic
costs little in terms of power [Wang03] and, according to the delay models of
Peh and Dally [Peh01], the switch arbitration stage is almost 50% faster than
the virtual channel arbitration stage, leaving time for the simple arbitration
between virtual channels.
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Figure 4.1: SCMP router with four pipeline stages. The input buffering occurs for all
flits entering the port, while the decode+routing and virtual channel allocation stages
are only used for header flits and operate in parallel with the buffering. Switch paths
are allocated on a per-flit basis.

While a four-stage pipeline has been tentatively used for architectural analy-
sis, the final, optimal pipeline design will come as a result of back-annotating
timing information from layout or synthesis of the router components. Be-
cause the SCMP processor is not heavily pipelined (only five stages), it can
be expected that the optimal router pipeline will not be very deep, and four
stages is likely a good choice. In the following subsections, the major com-
ponents of the router are discussed further and implementation details are
given.
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4.1.1 Decode+Routing

When the header flit of a message enters the router, its destination must be
decoded and the correct route must be determined. When a header flit is
detected, the X- and Y- offsets are decoded and the destination direction is
obtained. The offsets each indicate the number of remaining hops in that
direction, and the most-significant bit (MSB) of the offset indicates west or
east in the case of the X-offset, and north or south in the case of the Y-offset.

Implementing dimension-order routing is straightforward. For a non-zero X-
offset, the destination direction is either west or east depending on the MSB.
If the X-offset is zero, the Y-offset is used in a similar manner when traveling
north or south. A decrement or increment operation is used to update the
offset for the next hop. When both X- and Y-offsets are zero, the destination is
the local node’s NIU. Other routing algorithms could easily be implemented
in place of the dimension-order routing currently used.

Once a header flit has been decoded and routed, a virtual channel allocation
request is placed in a small FIFO queue. The queue is necessary for the corner
case when several small messages (i.e. only header, address, and tail flits)
enter the same virtual channel. The queue depth is given by dB/3e, where
B is the number of flit slots in a virtual channel buffer. The current queue
outputs are used in the second router stage to allocate virtual channels of the
destination node.

4.1.2 Virtual Channel Allocation

Virtual channels of the destination router are allocated at the sending router.
Because the SCMP network doesn’t recognize network priorities, a simple
round-robin arbiter is used. The allocation is done in a two-stage, separable
manner, as illustrated in Figure 4.2. In the first stage, a single (valid) virtual
channel is chosen from each input port. These virtual channel outputs are for-
warded to the second stage, where each virtual channel of each output port
chooses from the forwarded virtual channels. Separable allocation doesn’t
guarantee perfect matchings, but rather represents a reasonable compromise
of performance and implementation complexity [Peh01].

Each of the allocation modules of Figure 4.2 uses the same generic structure
to implement a round-robin arbiter. The circuit structure, shown in Figure 4.3
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Figure 4.2: Separable virtual-channel allocator. In the first stage, each input port has
a set of arbiters for each output port. The second stage arbiters are larger, having piv
inputs. These larger arbiters choose one of the chosen virtual channels from the first
stage to receive control of the virtual channel on the receiving node.

is inherited from a simple matrix arbiter used when priorities are present in
the network [Wang03]. In a matrix arbiter with m inputs, a binary matrix
is constructed by setting the element of the ith row and jth column to 1 if
the priority of input i is higher than that of input j. Because of the symmetric
nature of the matrix, only m(m−1)/2 flip-flops are required to store priorities.

For a round-robin arbiter, m sets of priority matrices are kept, and the chosen
matrix is rotated using a one-hot pointer. Because the matrix priorities are
fixed, flip-flop storage elements are not required.

4.1.3 Switch Allocation and VC Multiplexing

In wormhole switching without virtual channels, the switch ports are allo-
cated on a per-message basis. With virtual channels, however, switch ports
are allocated for each flit. As with virtual channel allocation, a separable al-
locator is used to balance performance and implementation costs. In the first



4 - Design and Implementation Brian Gold 25

req
nn

req
11

req
kk

mm
1n

mm
nk

gnt
nn

Figure 4.3: Matrix arbiter modified for use in round-robin operation. The matrix priori-
ties mi,j are rotated depending on the last granted input.

stage, an allocated virtual channel from each input port is selected. The sec-
ond stage selects an acceptable input port for each output port, should one
exist. Again, the arbitration used in both stages is the round-robin arbiter of
Figure 4.3. The entire switch allocation stage is diagrammed in Figure 4.4.

4.1.4 Crossbar Switch

The crossbar switch connects input paths to output paths, enabling the rout-
ing of flits through the network. A schematic figure of the SCMP crossbar
switch is shown in Figure 4.5. Note that not all the connections are made in
the crossbar. The missing connections aren’t necessary due to the dimension-
order routing. For instance, a message traveling from the south cannot then
move in the east direction (flits are routed along the x-dimension first). With
dimension-order routing, the total number of switch connections required in
a 5-by-5 crossbar is 16.

Each switching element can be implemented in a variety of ways. The two
most popular choices are transmission gates and tri-state buffers, which are
both shown in circuit form in Figure 4.6. The transmission gate has been
chosen in this thesis, due to its smaller size. The tri-state buffer should be
used when faster switching speeds are required.
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Figure 4.4: Separable switch allocation module. The arbitration circuits in the first
stage choose a flit from each input port. The winning flit is forwarded to the appropriate
output arbiter before going on to the switch.

The crossbar has been designed with the “Magic” VLSI layout package us-
ing the MOSIS deep-submicron scalable CMOS fabrication design rules (SC-
MOS DEEP). Figure 4.7 shows the layout of a single transmission gate, while
Figure 4.8 is the layout of a set of switches represented by a single connection
point in Figure 4.5.

The wiring strategy for the crossbar switch layout is as follows. Metal layer
one is used to bring input data signals vertically to the area of the switch-
ing elements. Metal layer two carries those input signals horizontally to the
actual switches. The outputs are routed horizontally in metal layer three.
This wiring strategy has been chosen to enable a compact design that can
be reused as a standard switching cell used in forming the larger crossbar
switch, as shown in Figure 4.9.

4.1.5 Virtual Channel Buffers

The virtual channel storage is implemented in first-in-first-out (FIFO) buffers
termed “flit buffers”. Each flit buffer consists of B buffer slots and pointers to
mark the current buffer entry and exit slots. In modern router architectures,
FIFO buffers are typically implemented using SRAM arrays [Wang03]. An
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Figure 4.5: A 5-by-5 crossbar switch. Inputs run vertically and outputs run horizontally.
Each (•) represents a set of connections made between inputs and outputs. Note that
not all connections are required, due to dimension-order routing restrictions.

alternative approach, used in the MIT RAW project, implements the buffers
using shift registers. The RAW project is an exception, however, and their
choice is likely based on the lower storage requirements associated with the
static network. As buffer sizes increase, the additional complexity of SRAM
arrays is amortized.

Supporting purely dynamic traffic, the SCMP network will use SRAM arrays
to implement virtual channel buffers. The SRAM cell used must have inde-
pendent read and write ports, allowing simultaneous access to store a new

In Out

En'

En
Data

En

Vdd

GND

Out

(a) (b)

Figure 4.6: Circuit diagrams of (a) transmission gate and (b) tri-state buffer.
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Figure 4.7: VLSI layout of a transmission gate.

flit and retrieve the oldest flit in the buffer. Unlike SRAM arrays used in cache
blocks or other common applications, the virtual channel buffers don’t need
column or row decoders. That is, each row in the array corresponds to one
buffer slot, and read and write pointers can be be implemented as one-hot
words that are rotated to operate the FIFO buffer. Figure 4.10 shows a circuit
diagram of both a “typical” single-port SRAM cell and the SRAM cell used
here for the FIFO buffers [Weste94].

The VLSI layout of the FIFO SRAM cell is depicted in Figure 4.11. The out-
ermost vertical wires (metal two) carry GND to the N-FETs in the inverters,
while the top, horizontal wire (metal one) carries Vdd to the inverter P-FETs.
The two inner vertical wires (metal two) carry the differential read pair, and
the outer vertical wires carry the differential write pair. The read and write
word lines run horizontally in polysilicon. This implementation is adapted
from the notes found in [HorowitzNotes].

SRAM read and write operations use differential bit lines (bit r/bitp r and
bit w/bitp w in Figures 4.10 and 4.11). Part of the overhead associated with
SRAM arrays accommodates precharging the bit lines and subsequently sens-
ing and amplifying the small changes in the differential signals. The SRAM
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Figure 4.8: Layout of a set of transmission gate switches.

buffer is organized as a B x F array, where B is the number of buffer slots
and F is the flit size. Each of the F columns requires a preamplifier and sense
amp, as shown in the schematic of Figure 4.12. The layout of a complete 6-
by-34 flit buffer is shown in Figure 4.13.
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Figure 4.9: VLSI layout of a 5-by-5 crossbar switch.
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Figure 4.10: Circuits for (a) conventional 6-T SRAM cell and (b) fully dual-ported
SRAM cell with independent read and write.

Figure 4.11: VLSI layout of fully dual-ported SRAM cell.
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Figure 4.12: VLSI layout of six SRAM cells and associated precharge and sense
amplifier circuitry.
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4.2 Network Interface Unit

The NIU serves as glue logic between the router and the rest of the SCMP
tile components. The two essential operations of the NIU are the ejection of
flits from the network and injection of flits into the network. The two mecha-
nisms are completely decoupled and are implemented in separate modules.
Figure 4.14 contains a diagram of the inject and eject operation in the NIU.

The injection side receives control signals from the pipeline, indicating when
messages are to be started or a new flit is to be transmitted as part of a mes-
sage. Within the inject operation, two components can be identified. The
first component receives message creation commands (sendh ) and single or
double flit-sending commands (send , sende , send2 , and send2e ). With
these commands come the values fetched from the context registers by the
pipeline, and both opcode and register values are buffered into small FIFOs.

The second component of the injection side receives commands for sending
blocks of memory. Because the memory blocks likely exceed a single word,
the entire operation will be completed over a number of clock cycles. The
base memory address is received in the initial command, along with a length
and address stride. The NIU keeps an active memory address pointer that is
updated as each memory word is fetched.

The ejection side is similarly composed of two finite state machines corre-
sponding to the two message types: thread and data. Thread messages are
destined for an FSM that will allocate a new thread and send register val-
ues to the context blocks. Data messages are sent to a simple FSM, which
will transfer data values to memory. The FSMs are both necessary to pro-
vide control flow in the event access to contexts or memory is temporarily
not allowed.

The NIU is not a component that affects performance greatly. As glue logic,
few design alternatives exist for implementing the NIU. For these reasons,
the NIU will not be discussed further when analyzing the performance and
implementation of the network.
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Figure 4.14: Network Interface Unit (NIU) structure and operation.



Chapter 5
Analysis

Numerous design alternatives exist for the SCMP router, as presented previ-
ously. In this chapter, the number of virtual channels and the depth of the flit
buffers will be varied, and the resulting performance and cost tradeoffs will
be analyzed. A variety of analysis tools have been developed and are put
to use here. First, analytical models will be applied to derive delay, power,
and area estimates. Second, simulation tools will be used to obtain both pure
network performance information and application-based results.

The methods applied in this chapter form the framework for analyzing on-
chip interconnection networks. The results presented here are applicable to
the SCMP computer; however, the methodology can be applied to many fu-
ture on-chip networks, especially permutations of the SCMP design.

5.1 Analytical Models

Analytical models provide tools for understanding the network’s behavior
beyond what may be exhibited in a set of benchmarks or other simulation-
based tests. However, various assumptions and idealizations must be made
to construct an analytical model, which must be accounted for when inferring
behaviors about the actual network. In this thesis, three analytical models
will be constructed: delay, power, and area.

5.1.1 Delay

The delay model used in this thesis comes from the work of Peh and Dally [Peh01].
The purpose of an analytical delay model is to predict timing behaviors of
the various router pipeline stages from an architectural level. That is, with-
out going through a full implementation and back-annotation, a delay model

36
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can provide reasonable estimates of component timing requirements. With
this information, an optimal pipeline structure can be formulated early in the
design process.

In the model of [Peh01], p is the number of ports on the crossbar switch, F is
the flit width, and v is the number of virtual channels per physical channel.
Peh and Dally point out that a realistic model should multiplex several vir-
tual channels across a single crossbar port. Otherwise, the crossbar grows to
a prohibitive size, and switch traversal cannot take place in one clock cycle.

Router operation consists of four stages: decode+routing, vc allocation, switch
allocation, and crossbar traversal. These four stages are atomic and cannot be
easily pipelined. Therefore, the simplest pipeline architecture uses the four
stages shown in Figure 4.1. Each atomic module i has a latency of ti and over-
head hi in the notation of [Peh01]. Latency corresponds to the time to process
inputs in the module, while overhead is the time required to store module
state information before the next input set can begin processing.

Peh and Dally’s delay model uses the method of logical effort [Sutherland91].
A module’s delay consists of two components: effort delay (Teff ) and par-
asitic delay (Tpar). Effort delay is defined as the sum of logical effort and
electrical effort. Logical effort is the ratio of a module’s delay to the delay of
an inverter with the same input capacitance. Electrical effort is the module’s
fanout, or ratio of output to input capacitance. Parasitic delay is the delay
due to the internal capacitance of a circuit relative to the delay caused by the
parasitic capacitance of a similar-sized inverter. The delay model of Peh and
Dally uses a technology-independent timing parameter of τ , the delay of an
inverter with identical input capacitance.

In [Peh01], the example of a single inverter driving four inverters is given.
The logical effort of an inverter is 1, while the electrical effort is 4 (fanout).
Therefore, the effort delay is 1 x 4 = 4 and the parasitic delay is 1. The total
circuit delay, relative to the parameter τ is then 4 + 1 = 5. Peh and Dally
define this circuit’s delay as τ4 = 5τ , and claim that a nominal clock cycle to
use is 20τ4.

Table 5.1 summarizes the circuit delay for the four atomic modules of the
router model. For details on the derivation of these equations, consult [Peh01].
The delays are expressed as functions of v, the number of virtual channels.
Here, the number of ports p is fixed at 5 and the flit width F is 34 bits. As
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in [Peh01], the delay for routing and decoding is assumed to be one cycle, or
100τ .

Table 5.1: Router modules’ delay as function of the number of virtual channels v and
delay parameter τ .

Module Delay equations (τ )
Route+decode Assumed to be 100

Virtual-channel allocator tV C = 33
2

log4 p + 33 log4 v + 125
6

hV C = 9

Switch allocator tSL = 23
2

log4 p + 23 log4 v + 125
6

hSL = 9

Crossbar traversal tXB = 9 log8

(
F

⌊
p
2

⌋)
+ 6 dlog2 pe+ 6

hXB = 0

Figure 5.1 shows the pipeline timing of several router configurations with
varying numbers of virtual channels (VCs) per physical channel. The VCs
are evenly divided among thread and data messages. One cycle is assumed
to be 20τ4 = 100τ . Observe that configurations having less than ten total VCs
fit into four cycles, while ten virtual channels require an additional cycle for
VC allocation.
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Figure 5.1: Router pipeline timing estimates for various numbers of virtual channels.
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5.1.2 Area

While the router is not expected to consume as much area as other parts of
the SCMP system, its size is not negligible. The major consumers of area
in the router are the flit buffers and the crossbar switch. Simply counting
transistors does not give a sufficient estimate of area, however, as the crossbar
is primarily consumed by wire area. Because the flit buffers are fully dual-
ported (see Section 4.1.5), conventional single-ported SRAM area models are
insufficient. Rather, the area of flit buffers and crossbar must be determined
empirically.

The area of the router components is parameterized by using VLSI cells that
can be repeated to build larger modules. The VLSI design uses the MOSIS
deep-submicron scalable CMOS (SCMOS DEEP) design rules, which param-
eterize feature sizes by λ. For a given fabrication process, there is a one-to-one
mapping between λ and the fabrication feature size, as in 0.5µ or 0.18µ.

For the flit buffers, the basic building block contains two SRAM cells, each of
the form in Figure 4.11. The cells are built into a column, as in Figure 4.12,
where precharge and sense amplifier circuits are added. The columns are
then aligned together to build the complete SRAM buffer, as in Figure 4.13.

The two SRAM cells occupy 44λ wide by 102λ tall. The precharge and sense
amplifier circuitry add 20λ and 94λ in height, respectively. Therefore, the
total area required for an SRAM buffer of B F -bit words is

p
(
44F x

(
B

2
102 + 114

)) [
λ2

]
.

For the SCMP network, F is fixed at 34 bits. Figure 5.2 shows flit buffer area
for a number of virtual channel configurations. For even comparison, the
total amount of buffer storage is held fixed per port. That is, for two virtual
channels per port, buffers holding eight, sixteen, or thirty-two flits are used.
For four virtual channels, buffers with four, eight, and sixteen flits are used,
etc. The area numbers given in Figure 5.2 are the total storage required for all
five ports.

For the crossbar switch, the basic building block is two of the transmission
gates of Figure 4.7. The area of this set of gates is 26λ wide by 46λ tall. Using
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Figure 5.2: The area of SRAM flit buffers in various configurations.

the strategy described in Section 4.1.4, a complete p-by-p crossbar for W =
F + 1-bit flits requires p(26 + 7W )λ by p(22W + 4)λ.

In the case of the SCMP router, W must be one larger than the usual 34 bits to
carry a valid signal. Other router definitions often include the valid signal as
part of the basic flit format. For p = 5 and W = 35, the total area required is
1355λ x 3870λ = 5.24× 106λ2. Note that this is smaller than the area required
for even two virtual channels with only eight flits per buffer, and is nearly
six times smaller than a router with eight virtual channels and eight flits per
buffer.

Area estimates have not been generated for the routing and arbitration logic,
as it is expected that they will not require much area in comparison with the
flit buffers or even crossbar.

5.1.3 Power

As power consumption has become an increasingly important factor in mi-
croprocessor design, so has the need to model and optimize power perfor-
mance at the architectural level. Several tools [Brooks00, Duarte02] have re-
cently been developed to estimate power consumption in superscalar, out-
of-order processors without requiring a detailed gate-level simulation. With
these tools, architects are able to explore more of the design space with re-
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gards to power.

Until recently, such tools were not available for interconnection networks.
In [Wang03], Wang, Peh, and Malik describe a power estimation method for
routers such as those used in the SCMP system. They model dynamic power
with the commonly used formula P = 1/2αCV 2

ddfclk, where α is the switching
activity, C is the switching capacitance, Vdd is the supply voltage, and fclk

is the clock frequency. Where Vdd and fclk will generally be set by process
technology or other architectural features, C and α must be determined as
part of the router architecture and operation.

In [Wang03], the authors showed that the primary power consumers were flit
buffers and the crossbar switch. For router architectures requiring large arbi-
tration circuits (e.g. 19:1 arbitration in the Alpha 21364 router [Mukherjee02]),
arbitration power cannot be ignored. With dimension-order routing, the
SCMP arbitration circuitry is significantly smaller (4:1) and the correspond-
ing arbitration power is negligible. In this section, the power consumption
of the flit buffers and crossbar switch will be modeled in the context of the
SCMP router.

The switch activity α will be treated as an independent variable in the power
consumption of the router. The flit arrival rate, Pf and the probability of a
signal changing value, Pfac, combine to form α. Thus, the task of estimating
power consumption is to model the capacitance.

Capacitance estimation is a well studied topic in the context of CMOS tran-
sistors. Using the theory presented in [Weste94], the capacitance of various
circuit components will be estimated. Three elements contribute to the total
capacitance of a CMOS circuit: gate, diffusion, and wire capacitance. The
gate capacitance is formed by the gate conductor and the holes or electrons
in the substrate. For the purposes of architectural power modeling, the gate
capacitance is estimated as

Cg = Cox ×W × L + W × Cgso + W × Cgdo + (2L× Cgbo) , (5.1)

where W and L are the width and length of the gate channel, respectively,
Cgso, Cgdo, and Cgbo are the capacitances formed from fringing fields and over-
lapping materials. Cox is the capacitance of the thin-oxide material, given by
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Cox =
ε0εSiO2

tox

. (5.2)

The value of εSiO2 is 3.9 and ε0 is the permittivity of free space, 8.854× 10−14.
tox is the thickness of the thin-oxide, obtained from SPICE model parameters.

The second capacitance value used is the diffusion capacitance, which is
formed by the voltage between the diffusion region and substrate. Based
on the theory developed in [Weste94], the diffusion capacitance is

Cd = Cj × ab + Cjsw × (2a + 2b), (5.3)

where a and b are the width and height of the diffusion region, respectively.
Cj is the junction area capacitance, and Cjsw is the capacitance of the side
walls of the diffusion region, both obtained from SPICE models. Table 5.2
lists the capacitance values taken from the TSMC 0.18µ process available from
MOSIS [TSMC18].

Table 5.2: Capacitance parameters from TSMC 0.18µ process [TSMC18]
Parameter Value Units

tox 4.1E− 9 m
Cj 9.775464E− 4 F/m2

Cjsw 2.244709E− 10 F/m
Cgdo 7.32E− 10 F/m
Cgso 7.32E− 10 F/m
Cgbo 1E− 12 F/m

Finally, the capacitance of wires used to route components of the chip must be
determined. While complex wire capacitance models have been developed
for many years [Weste94], a simple approximation will be used for quick
estimates. The wire capacitance is the sum of a parallel plate and fringing
field components, modeled as

Cw = Cpp + Cfringe =
wεdi

tdi

+
2πεdi

log (tdi/H)
. (5.4)
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For wires of minimum width, as is the most common case, a rough approxi-
mation to the above expression is poly wires (2λ width) are 0.25fF/µ, metal 1
wires (3λ width) are 0.3fF/µ, and metal 2 wires (4λ width) are 0.25fF/µ [Ho01].
These values will be used, denoted Cwp, Cwm1, and Cwm2, respectively.

As discussed in section 4.1.5, the flit buffers in the SCMP router are imple-
mented as FIFO SRAM buffers with independent read and write ports. Based
on the models of [Zyuban98] and [Wang03], the power consumption of a
FIFO SRAM buffer is

Pbuffer = fclk (5Pf (Ewrite + Eread)) (5.5)
Ewrite = Ewl + FPfac (Ebw + Ecell) (5.6)
Eread = Ewl + FPfac (Ebr + 2Echg + Eamp) , (5.7)

where Ex = CxV
2
dd, and

Lwl = F (wcell + 2 (Pr + Pw) dw) (5.8)
Lbl = B (hcell + (Pr + Pw) dw) (5.9)
Cwl = 2FCg + Cg + Cd + CwpLwl (5.10)
Cbw = BCd + Cd + Cwm1Lbl (5.11)
Cbr = BCd + Cg + Ca + Cwm1Lbl (5.12)

Ccell = 2 (Pr + Pw) Cd + 2Cd + 2Cg (5.13)
Cchg = Cg (5.14)

Eamp =
1

8
Vdd/fclk (0.0005) . (5.15)

As before, F is the flit width and B is the size of the buffer in flits. Pr and Pw

are the number of read and write ports, respectively, which are both 1 in this
case. wcell and hcell are the width and height of the SRAM cell, as given in the
previous section (5.1.2). dw is the wire spacing between the read and write
word and bit lines.

This model has numerous shortcomings, most notably that the transistors
are all assumed to be of the same, minimum size. In the case of the word line
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driver transistors, this is most likely in error. Therefore, the power estimates
for the flit buffers are most likely undersized by a nominal amount. Further
work is required to integrate the driver size into the model and observe the
change in estimated power.

The power consumption of the crossbar switch is modeled in a similar fash-
ion. Maximum power is consumed when all five switch outputs receive flits.
When fewer ports are used, the power scales linearly, leaving

Pcrossbar = 5PfPfac × F (Exb in + Exb out) , (5.16)

where

Lin = 5Wwt (5.17)
Lout = 5Wht (5.18)

Exb in = Cxb inV
2
dd = (5Cin cnt + Cg + Cd + Cwm1Lin) V 2

dd (5.19)
Exb out = Cxb outV

2
dd = (5Cout cnt + Cg + Cd + Cwm2Lout) V 2

dd. (5.20)

Here, W is the port width (F+1 in SCMP), and wt and ht are the width and
height of the input/output routing lines. Cin cnt and Cout cnt are the capaci-
tance of the input and output connectors, respectively. The latter two capaci-
tances are estimated as the coupling capacitance of metal 1 to metal 2, using
information found in the MOSIS test results [TSMC18].

The total router power is then pieced together in

Prouter = 5Pbuffer + Pcrossbar. (5.21)

It is worth explaining that the number of virtual channels do not directly play
a role in the power consumed in the router. Because only one virtual channel
is read or written per port per cycle, the consumed power is determined by
the number of ports, and not the number of virtual channels. Indirectly, how-
ever, the virtual channels do factor in the power dissipation, as the depth of
the flit buffers, B, is reduced as the number of virtual channels increases.
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Figure 5.3 illustrates the power consumed in the SCMP router for various flit
buffer sizes. To create quantitative results, the TSMC 0.18µ process is used
with a frequency of 1.2GHz and Vdd of 1.8V . λ is 0.10µ.

Several interesting observations can be made from the plots in Figure 5.3.
First, the power consumption per router is quite small (less than 1 W). In com-
paring these results with the Alpha 21364 power consumption in [Wang03],
the SCMP router consumes nearly an order of magnitude less power (6W for
the 21364). The 21364 contains a much larger router, however, having 8 input
and 7 output ports, much larger flit buffers, and buffers with two read ports
instead of one. While each SCMP router may not consume much power, con-
sider that sixty-four SCMP routers would consume 60W, not including power
in the signal lines connecting the routers.

A second observation is that, as in [Wang03], flit buffer power consumption
exceeds the crossbar power by a 3:1 ratio. The flit buffers therefore account
for the majority of area and power, emphasizing their cost to the router de-
sign. In the next section, the performance tradeoffs of various virtual channel
arrangements are considered.

5.2 Simulation Models

Where the previous two sections have given implementation “costs” in the
form of area and power, the design analysis would be incomplete without
considering the performance impacts of various configurations. As men-
tioned in the introduction, two general categories of performance evaluation
will be used. The first simulates a synthetic network load to stress the router
components alone, while the second uses application benchmarks to give an
indication of the impact router design has on software performance.

5.2.1 Synthetic Tests

The synthetic tests consisted of sending 16,000 messages into the network,
and measuring the message latencies upon reception. The messages were a
fixed length of twenty flits (as in [Dally92]), and source and destination nodes
were uniformly distributed. Tested network dimensions were: 2x2, 4x4, and
8x8. The results from each size will be treated independently, as the network
behaviors are quite different as the number of nodes increases.
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Figure 5.3: Power consumption with various router configurations.
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For each size network, two sets of comparisons will be made. First, the num-
ber of virtual channels per port will be analyzed to observe the impact VCs
have on latency and throughput. Second, the size of the flit buffers will be
varied to observe their effects. In both cases, the Burton Normal Form (BNF)
plot will be used to illustrate the behaviors. BNF plots average message la-
tency versus a normalized accepted traffic. Accepted traffic is defined as the
number of flits received per unit time and node. The normalization is done
relative to 2B/(NF ), where B is the bisection bandwidth, N is the number of
nodes, and F is the flit width. For the 2-D mesh, B is 2

√
NF .

In Figures 5.4 through 5.9, the synthetic network results are plotted in BNF
form. Note that in varying the number of virtual channels, the depth of the
flit buffers is adjusted to keep the total flit storage space constant. This be-
comes a factor in, for instance, Figure 5.4(c), where only 2 flits per vc buffer
are insufficient storage. In general, for lower network sizes, the depth of the
flit buffers appears more significant than the number of virtual channels.

As the network size grows, the number of virtual channels becomes more
important. This observation makes practical sense, as messages pass through
more intermediate nodes to reach their destination. Those intermediate nodes
must pass more traffic than in the smaller network sizes, and the presence of
more virtual channels will mitigate the impact of blocked messages.

5.2.2 Application Benchmarks

While synthetic network tests may illustrate router operation exclusively, ap-
plication benchmarks must be considered when analyzing network perfor-
mance. The assumptions made in conducting synthetic tests (fixed message
size, uniform traffic) are in contrast with most applications, and therefore the
results from application code are of considerable importance.

At this time, four applications are available for the SCMP system: FFT, IFFT,
Median Filter, and Matrix Multiply. For the FFT and IFFT, a 2-D filter is per-
formed on a 256x256 image. The median filter is also applied to a 256x256
image, and the matrix multiply kernel operates on 256x256 matrices. As with
the synthetic tests, separate results are presented for networks of 2x2, 4x4,
and 8x8 nodes. For each network size, the thread and data latencies are con-
sidered separately. Separate analysis is performed because the message sizes
differ greatly between the two types, and therefore the latencies also differ.
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The simulation results are shown in Figure 5.10 through Figure 5.15. One
immediate observation is that message latencies are roughly invariant to the
size and number of VCs for small network sizes. This is most likely a func-
tion of the style of programming, where a data parallel paradigm is used.
For smaller network sizes, each node handles more data by itself, and hence
network activity is reduced. As system size increases, the network traffic
increases and the impact of VC configuration is more visible.

In 2x2 and 4x4 systems, the number and size of virtual channels do not im-
pact performance in these benchmarks. However, given the limited number of
application codes available today, no absolute conclusions should be drawn
from these results. In 8x8 configuration, the number of virtual channels do
impact the performance of message latency in these tests, especially the me-
dian filter and matrix multiply.

An additional note should be added about latency in the context of full sys-
tem simulation. In sending thread messages, the latency includes time spent
in pointer arithmetic, memory fetches, etc. as the message is built. More anal-
ysis of the applications and their composition is necessary to determine the
impact these software-created latencies have on overall latency.
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Figure 5.4: Latency vs. accepted traffic for 2x2 network with different numbers of
virtual channels per port.
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Figure 5.5: Latency vs. accepted traffic for 2x2 network with various amounts of buffer
space.
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Figure 5.6: Latency vs. accepted traffic for 4x4 network with different numbers of
virtual channels per port.
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Figure 5.7: Latency vs. accepted traffic for 4x4 network with various amounts of buffer
space.
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Figure 5.8: Latency vs. accepted traffic for 8x8 network with different numbers of
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space.



5 - Analysis Brian Gold 55

0

5

10

15

20

25

30

35

40

45

50

2/8 2/16 2/32 4/4 4/8 4/16 8/2 8/4 8/8

A
ve

ra
ge

 L
at

en
cy

 (
cy

cl
es

)

# vcs/# flits per vc buffer

(a) FFT. Average message length: 15 flits.
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Figure 5.10: Thread message latency in application benchmarks for various 2x2 con-
figurations.
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Figure 5.11: Data message latency in application benchmarks for various 2x2 config-
urations.
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Figure 5.12: Thread message latency in application benchmarks for various 4x4 con-
figurations.
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(a) FFT. Average message length: 35 flits.
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Figure 5.13: Data message latency in application benchmarks for various 4x4 config-
urations.
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(a) FFT. Average message length: 40 flits.
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Figure 5.14: Thread message latency in application benchmarks for various 8x8 con-
figurations.
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Figure 5.15: Data message latency in application benchmarks for various 8x8 config-
urations.



Chapter 6
Conclusions

6.1 Summary of Findings

In this thesis, a framework was developed for analyzing on-chip interconnec-
tion networks. The analysis consists of power, area, and performance, while
considering implementation issues such as pipeline depth, stage delay, and
crossbar size. The on-chip network in the SCMP parallel computer has been
used as the case study for analyzing cost and performance tradeoffs.

In terms of area, full custom VLSI layout showed that flit buffers make up
the majority of the area in the router component. A parametric area model
was developed for the flit buffers and crossbar switch, allowing a reasonable
estimate of area independent of fabrication technology.

Dynamic power consumption of the flit buffers and crossbar switch were
estimated using architectural-level models of circuit capacitance. While the
models are reusable in a variety of fabrication processes, the TSMC 0.18µ
process was used as a sample of quantitative results in a modern sub-micron
process. The results showed that power consumption of a single router is
relatively small (< 1W ), and primarily composed of dissipation in the flit
buffers.

Performance tests were conducted in two components: synthetic network
traffic and application benchmarks. The synthetic network traffic tested the
router design exclusively, independent of external system factors. However,
the application benchmarks ultimately test what matters most for users of the
SCMP system: application performance. In both cases, larger system sizes
had a greater reliance on the number of nodes, while smaller systems are de-
pendent on buffer depth. For networks of 64 nodes, at least four virtual chan-
nels should be used. Smaller networks could likely use two virtual channels,
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but the flit buffers should be larger, with at least 32 flits of total storage per
port.

Considering the power, area, and performance together, several conclusions
can be drawn. First, virtual channels do not increase the power or area costs
very much. While arbitration logic was not modeled in terms of area or
power, other work has shown it to be significantly smaller than other compo-
nents in the router. Second, increasing the depth of flit buffers without bound
does not improve performance, but drastically impacts area and power. Care-
ful consideration must be given when choosing the virtual channel configu-
ration.

6.2 Future Work

While this thesis has made progress towards a framework for analyzing the
cost and performance tradeoffs in network architecture, significant work re-
mains. In terms of performance and simulation, the SCMP system needs
a broader base of applications, including those utilizing a variety of traffic
paradigms. In the longer term, an operating system for the SCMP system
could likely stress the network in different ways than some of the applica-
tions used here.

Area and power models of the arbitration logic should be made for complete-
ness, even though they are likely diminutive in comparison to the flit buffers
or crossbar switch. The system-level layout of the complete router should
be considered to determine how best to place the various components, and
what area/power costs are incurred by the layout.

The power models need validation at several levels. While they are not in-
tended to be perfectly accurate, the power models presented in [Wang03]
have only been roughly validated. A more detailed layout of the flit buffers
should be made, in particular to include the peripheral drive circuitry. The
detailed buffer layout should be extracted, simulated, and refined to obtain
accurate estimates of drive transistor size. Additionally, modern extraction
tools are able to compute more accurate wire capacitance that includes cou-
pling and wire-to-wire capacitance. These more accurate parameters should
be included in the power models and comparisons must be made to deter-
mine the amount of modeling necessary for reasonably accurate estimates.
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In the case of the larger SCMP systems, power dissipation will be a criti-
cal operating concern. With a validated power model for the router, simi-
lar efforts should be made for the other components of the SCMP system.
Because of the similarity to conventional processing elements, the Wattch
framework [Brooks00] and similar efforts can be used as a basis for mod-
eling power consumption in SCMP. Because the main memory in SCMP will
likely be implemented using embedded DRAM, models of eDRAM power
consumption must be developed and validated as well.

As feature sizes shrink, threshold voltages decrease and leakage power in-
creases. Within a few process generations, leakage power will dominate dy-
namic power, and must be considered as part of the power consumption pic-
ture [Powell01]. Very recent work has led to the development of leakage
power models for routers [Chen03]. These models should be integrated with
the dynamic power models presented here.

Finally, with the validation of the framework presented here, research ideas
can be explored while keeping cost and performance in mind. This work has
shown the cost implications of flit buffers, but has not considered other rout-
ing algorithms or flow-control implementations. A recent paper by Busch
proposed routing without flow-control circuitry [Busch01], an idea that could
dramatically reduce power and area consumption. For performance, how-
ever, the hot-potato routing Busch proposes may have to be combined with
more conventional wormhole or circuit switching in a hybrid system.
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