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(ABSTRACT) 

 

 

 

Traditional hardware radios provide very rigid solutions to radio problems. Intelligent software 

defined radios, also known as cognitive radios, provide flexibility and agility compared to 

hardware radio systems. Cognitive radios are well suited for radio applications in a changing 

radio frequency environment, such as dynamic spectrum access. In this thesis, a cognitive radio 

is demonstrated where the system self reconfigures to demodulate a detected waveform. The 

GNU Radio framework is used to provide basic software defined radio building blocks and is 

supplemented with FPGA accelerators. The use of GNU Radio compliant hardware interfaces 

allows for seamless hardware/software radio deployments. Dynamic resource mapping allows 

radio designers to operate at a layer of abstraction above the physical radio implementation. By 

establishing lower level abstraction layers, future researchers can focus on larger picture 

concepts such as learning algorithms and behavioral models for the cognitive engine. 
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Chapter 1 

Introduction 

 

The increase in processing power of general purpose processors has made it possible for radios 

to be implemented largely in software.  A traditional radio system typically consists of a radio 

frequency front end such as an antenna and radio specific hardware.  In this manner, a traditional 

radio can only transmit and receive a specific type of signal.  For example, a FM radio cannot 

receive and transmit Bluetooth.  Software defined radios still require a radio frequency front end; 

however, the remaining processing is performed in software.  With this model, different radios 

can be implemented on the same platform by simply running different programs. A software 

defined radio platform with the appropriate radio frequency front end could conceivably transmit 

and receive both FM and Bluetooth.  Additionally, as new radios are invented, software can be 

written to enable a software defined radio platform to transmit and receive the new radio data. 

 

Cognitive radio expands upon software defined radio by adding a layer of intelligent command 

and control software.  Cognitive radios have the ability to change radios and radio parameters 

based on the current environment.  A cognitive radio that has the same radio capabilities of a 

modern smartphone with WiFi and 4G radios could be programmed to conserve 4G data by 

using WiFi when available.  To achieve this action, the cognitive radio must first have the ability 

to sense the radio frequency spectrum and determine whether or not WiFi is available.  Secondly, 

the cognitive radio must have the ability to use the spectrum information it gathered to 

reconfigure itself for either 4G or WiFi as appropriate. 
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The flexibility of software defined radios comes at the cost of power efficiency.  Hardware 

radios are specifically designed to transmit and receive set radios.  As such, application specific 

hardware radios typically consume less power than a solution on a general purpose platform.  For 

mobile applications such as phones and tablets where the main power supply is a battery, power 

consumption and efficiency are a concern.  A more power efficient general purpose processor, 

such as the ARM processor, fills the gap between application specific hardware and high 

performance desktop processors.  The continuum of efficiency spans between application 

specific hardware and general purpose processors.  Field programmable gate arrays (FPGAs) fill 

the gap between application specific hardware and power efficient general purpose processors. 

 

In recent years, Xilinx has released the Zynq processor which contains a dual core ARM 

processor as well as a field programmable gate array.  This unique combination provides an 

interesting platform for implementing software defined radios with hardware (FPGA) and 

general-purpose processor (ARM) components.  The ARM processor is well supported and can 

be configured to run a Linux-based operating system.  By running Linux, existing software 

defined radio frameworks such as GNU Radio can be used to significantly reduce the amount of 

effort required to create software defined radio applications. 
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Motivation 

 

Low-power software defined radio platforms suffer from performance limitations that make it 

difficult to realize real time radio systems.  The aim of this project is to enhance the capabilities 

of the GNU Radio software defined radio framework through tight integration with FPGA 

accelerators.  In this thesis, a cluster of Zynq processors is explored to provide a platform for 

mixed hardware and software cognitive radio deployments.  Fast and efficient deployment of 

hardware/software radios is achieved by creating standard interfaces to hardware accelerators 

that seamlessly integrate with GNU Radio software components. 

 

Contributions 

 

This thesis establishes a platform for future cognitive radio system research.  Future researchers 

can leverage this groundwork to construct a more advanced cognitive radio system.  Future 

efforts can be conducted at a higher level of abstraction, building upon the work presented in this 

thesis.  Specific contributions include: 

 

● Developed a GNU Radio compatible interface for reliable board to board communication.  

When used in combination with dynamic resource allocation a layer of abstraction is 

established that allows users to design hardware agnostic radios. 

● Created a set of input and output functions that establish an application programming 

interface (API) for future cognitive radio applications.  Creating a API significantly 

reduces design effort for future researchers, allowing focus to be focused on higher level 

concepts, such as cognitive algorithms. 



 

 

 

4 

● Implemented GReasy compatible Fast Fourier Transform accelerator.  Contributing to 

common library of parts creates a set of reusable components available to other designers.  

Standard libraries enable users to leverage proven designs and greatly reduces 

implementation and testing efforts. 

● Demonstrated Tflow as an enabling technology for cognitive radio system.  Previous 

cognitive radio systems utilize pre-generated partial bit files as an adaptive technology.  

Tflow provides significantly more flexibility than partial bit files and allows for 

dynamically generated radios to be realized in autonomous systems. 

 

Document Organization 

 

 

The remaining chapters are organized as follows.  Chapter 2 will provide background 

information on software defined radio and cognitive radio.  Two software packages, GNU Radio 

and Tflow will also be discussed.  Finally, related works will be explored and analyzed.  Chapter 

3 will present the hardware components used in a first generation cognitive radio platform.  An 

analysis of the shortcomings of this first generation platform will be discussed as motivating 

factors in selection of the second generation hardware.  A detailed overview of the resulting 

system architecture will then be presented.  Chapter 4 will present the software components of 

the cognitive radio system beginning at energy detection and ending with system 

reconfiguration.  Chapter 5 describes a demonstration of the cognitive radio system.  In the 

demonstration the cognitive radio detects two transmitted waveforms then self reconfigures to 

deploy an associated radio receiver.  Chapter 6 will present conclusions and opportunities for 

future work. 
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Chapter 2 

Background 

 

In this chapter, software defined radio and cognitive radio will be further explored.  First, formal 

definitions will be given, as well as a sample application of cognitive radio.  Next, an overview 

of two software packages, GNU Radio and TFlow, will be presented.  These two software 

packages enable software defined radio and cognitive radio respectively.  Finally, the state of the 

art in software defined radio and cognitive radio will be explored. 

 

Software Defined Radio 

 

In 1992, Dr.  Joe Mitola published the first paper on the subject of software defined radio (SDR).  

His paper [1], outlines the fundamental components of a software defined radio platform.  In 

addition to general purpose processors and digital signal processing (DSP) chips, a software 

defined radio also consists of an analog to digital converter (ADC) and a digital to analog 

converter (DAC).  The ADC and DAC convert data to/from the analog signals into discrete 

digital signals where they can be manipulated with software.  Traditional radio frequency (RF) 

equipment, such as antennas, are still required for data transmission and reception. 

 

By performing the majority of signal processing functions in software, a software defined radio 

platform can implement many different waveforms on one set of hardware.  As new waveforms 
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are developed, software can be written for the existing software defined radio platform, without 

changing any of the underlying hardware.  By implementing radios in software, SDRs prove to 

be extremely flexible and adaptable.  In contrast, deploying a new waveform on a strictly 

hardware radio would likely require adding new hardware or modifying the existing hardware, 

which is a much more time consuming process. 

 

Cognitive Radio 

 

A cognitive radio is a software defined radio that has the ability to change its configuration based 

on information about its environment.  According to [2], a cognitive radio has three key aspects: 

observation, reconfiguration and cognition.  Observation refers to the radio’s ability to gather 

information about its environment, reconfiguration refers to its ability to change, and cognition 

refers to its ability to make changes based on the data collected about the environment.   

 

One proposed application of cognitive radios has been in dynamic spectrum access.  Worldwide, 

spectrum has been allocated by government regulators such as the Federal Communication 

Commission (FCC) in the United States and the International Telecommunications Union - 

Radiocommunication sector (ITU-R).  Licenses are issued for use of spectrum by frequency and 

location and are often held for long periods of time.  It has been reported [3] that spectral usage 

varies from between 15% and 85%.  Such gaps in spectral usage exists both temporally and 

spatially.  Increasing demand for spectrum access has led to discussions about secondary users 

utilizing licensed spectrum when the primary user is not transmitting.  The FCC has certified 
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Google’s Spectrum Database [4] to index such “whitespaces” based on location.  Figure 1 shows 

the unused television frequencies for Blacksburg, Virginia in 2014. 

 

 

Figure 1 - Television “whitespace” for Blacksburg, Virginia Google, “Google Spectrum Database.” [Online]. 

Available: https://www.google.com/get/spectrumdatabase/channel/. Used under fair use, 2014. 

  

Cognitive radios would allow users to opportunistically access this spectrum by first sensing 

whether or not the primary user is transmitting.  Then, if it is determined that there is spectrum 

that is currently unused by a primary user, the radio could be reconfigured to use that spectral 

gap.  However, this configuration is only legally ethical while a primary user is not present since 

the primary user is licensed to operate in specified frequency band.  If the secondary user travels 

to a new location and detects a primary user, the radio should stop using the spectrum.  Cognitive 

radio could also be used to select the best unused spectrum and reconfigure when a better 

channel becomes available. 
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GNU Radio 

 

GNU Radio is an open-source software toolkit for implementing software defined radios.  Users 

are provided with a library of functions, often referred to as “blocks”.  These blocks range from 

signal processing to data conversion, and are designed to enable users to quickly create software 

defined radio applications without re-inventing fundamental components.  Since GNU radio is an 

open source software project, it can be compiled and run on many different platforms (such as 

ARM).  GNU Radio has a large user community, with many sample radio implementations.  

Additional building blocks can be added to GNU Radio to increase its capabilities. 

 

GNU Radio is written in two programming languages, C++ and Python.  Performance critical 

blocks, such as signal processing blocks are written in C++.  Less computationally intensive 

software, such as the overall system framework is written in Python.  GNU Radio comes with an 

interactive graphical user interface (GUI), called GNU Radio companion (GRC), similar to 

National Instrument's LabVIEW [4].  Users can graphically place and connect blocks without 

writing a single line of code.  Figure 2 shows an example of a GRC flow-graph. 
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Figure 2 – Example GNU Radio companion flowgraph GNU Radio, “screenshot-grc-nbfm” [Online]. 

Available: http://gnuradio.org/redmine/attachments/266/screenshot-grc-nbfm.png. Used under fair use, 2014. 

 

GNU Radio operates on a one thread per block model, where each block in a flowgraph is run as 

a separate thread.  Every pair of connected blocks has a buffer in between them, which creates 

backpressure in the system.  Before a GNU Radio block is scheduled to run, a check is 

performed to determine whether or not there are sufficient samples in the input buffer and if 

there is sufficient space in the output buffer to hold results.  If either condition is not met, the 

GNU Radio scheduler moves on to the next block in the chain and performs the same checks.  

GNU Radio natively supports the data types shown in Table 1.  GNU Radio uses two single 

precision floating point numbers to represent the real and imaginary portions of complex data. 
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Data Type # Bits 

Float 32 

Complex (Float real, Float imaginary) 64 

Int 32 

Short 16 

Byte 8 

 
Table 1 - GNU Radio data types 

 

Tflow 

 

Generating configuration files, also known as bit files, for FPGAs is often a slow process.  

Complicated designs can take hours to complete the process of synthesis, placement, routing and 

bit file generation.  The Virginia Tech developed software package, Tflow [5], attempts to 

reduce the amount of time required to generate FPGA configuration files.  Tflow splits FPGA 

designs into two distinct regions, a non-changing “static” region and a dynamic “blacktop” 

region.  The static region is comprised of portions of a design that do not change between 

rebuilds.  The blocktop region consists of portions of a design that change between builds. 

 

Functional components utilized in the blacktop are pre-generated and put into a library of parts.  

These library components are also known as “macro” blocks.  Macro blocks can be combined to 

create more complicated designs in the blacktop.  Tflow achieves speedups in bit file generation 

by skipping the placement and routing for both the static region and all of the macro blocks.  
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Tflow only needs to perform placement of the macro blocks, the routing between blocks and bit 

file generation.   

 

Tflow greatly reduces the amount of time spent generating new FPGA configuration files and 

thereby makes it possible for hardware accelerators to be efficiently used in conjunction with 

software components.  Tflow enables another Virginia Tech software project, GReasy [6], to 

deploy hardware/software radios quickly.  This makes hardware/software prototyping much 

faster, enabling users to concentrate on radio designs instead of hardware implementations.  As 

of 2014, Tflow supports Xilinx Virtex 4, Xilinx Virtex 5, and Xilinx 7 Series FPGAs. 

 

IRIS on Zynq 

 

A group from Trinity College in Dublin, Ireland have created a Xilinx Zynq based software 

defined radio platform based on the SDR framework, Implementing Radio in Software (IRIS) 

[7].  IRIS, like GNU Radio, is a framework for constructing software defined radios.  In this 

framework, software components are connected together to form complete radios.  The Universal 

Software Radio Peripheral (USRP), a well established product by Ettus Research, is used as a RF 

front end to the system.  The Zynq board runs a Xilinx Linux distribution for an operating 

system.  FPGA accelerators are used to reduce bottlenecks in some of the more computationally 

intensive IRIS components.  Using two complete systems (USRP + Zynq), the Trinity 

researchers were able to achieve a 800 kbps orthogonal frequency division-multiplexing 

(OFDM) video stream end to end. 
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The OFDM radio implementation demonstrates the Zynq processor’s ability to implement 

software defined radios.  The selection of mature products such as IRIS and the USRP provides a 

stable platform for software defined radio development.  IRIS was not an open-source project 

until 2013, and as such has a smaller user community than GNU Radio.  A large user community 

means there are more example applications to leverage and more support is available when 

developing new applications.  A larger user group also means that software bugs are more likely 

to be found.  Both GNU Radio and IRIS use XML to represent radio designs.  However, GNU 

Radio provides a convenient, user-friendly GUI to generate the XML for radio designs. 

 

Zcluster 

 

Researchers from the University of Toronto have constructed Zcluster [8], a cluster of Zynq 

processors.  The cluster uses the open source Apache Hadoop framework to enable distributed 

processing across nodes in the cluster.  The cluster consists of eight Zedboards, which feature a 

Zynq XC7Z020 processor.  Each board runs Xillinux [9] as its operating system, a Linux 

distribution based on Ubuntu 12.04 for the ARM processor.  Nodes communicate with each other 

through a 100 Mbps switch.   

 

An x86-based host system is also present on the network to function as the “NameNode” for the 

Hadoop Distributed File System (HDFS).  This “NameNode” was deemed too memory and 

computationally intensive to be run on one of the ARM processors.  Xillybus, the Xilinx 

intellectual property (IP) core, was used to communicate between accelerators in the FPGA and 

the ARM cores through the AXI bus.  A Finite Impulse Response (FIR) filter was implemented 
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both as a FPGA accelerator (running at 100 MHz) and as an optimized C program.  The FPGA 

implementation was measured to execute 2.4 times faster than the software implementation. 

 

Zcluster’s use of Hadoop is appropriate for inherently parallel tasks, where large datasets can be 

broken into smaller datasets.  However, software defined radios have many sequential 

dependencies.  Data must be processed in a specific order to be correctly demodulated.  In a real 

time radio system, data is processed as it arrives and must be processed in real time to avoid data 

loss.  This type of data would not benefit from the parallel framework provided by Hadoop.  

Additionally, transferring large amounts of radio data between boards via ethernet consumes a 

large percentage of the ARMs processing which could be utilized for data processing.  The 

network speed test shown in Figure 5 required 100% of an ARM core to transfer data at 20.9 

MBps from a Zedboard to a x86 host via gigabit Ethernet.  Running two such speed tests in 

parallel maxes out around 31 MBps with both ARM cores at 100% utilization. 

 

 

Figure 3 - Zedboard network speed test 
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Chapter 3 

Hardware Components 

 

This chapter will cover the hardware components of the cognitive radio system.  The first 

iteration of this system will be reviewed and analyzed.  Conclusions from the first generation 

system will be drawn upon to discuss component selection for the second generation system 

featured in this thesis.  The use of a cluster topology is discussed and a detailed review of inter-

node communication is presented.  Finally, the use of hardware accelerators is explained. 

 

First Generation 

 

The objective of the encompassing project has been to construct a highly agile hardware 

accelerated cognitive radio, based upon the GNU Radio software model, and designed for low-

power autonomous operation.  The first generation platform of this project was centered on a 

Tilera TilePro64 processor [10].  The selection of the Tilera TilePro64 as a SDR platform was 

largely driven by the number of concurrent software threads the Tilera could support.  As 

previously mentioned, GNU Radio operates on a thread per block model; every component in a 

radio flowgraph is assigned to a unique thread.  The TilePro64 features 64 homogenous general 

purpose cores running at 866 MHz.  In this manner, it was theorized that each core in the Tilera 

would handle a thread and the computational load of the desired software defined radio would be 

evenly distributed across all 64 cores.   
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The TilePro64 features four memory controllers, connected to eight gigabytes of DDR2 memory 

total.  Memory can be configured to optionally “stripe” across the four memory controllers, such 

that each 8 KB of memory is a controller by a different memory controller.  This memory 

striping effectively load balances memory access between all of the memory controller.  The 

TilePro64 also features two 10 gigabit Ethernet controllers, two gigabit Ethernet controllers and 

two 4x PCIe controllers. 

 

The processors are connected in an 8x8 mesh grid as seen in Figure 4.  Each processor has five 

separate 32-bit wide buses to each neighboring core: the I/O dynamic network (IDN), the 

Memory dynamic network (MDN), the Coherence dynamic network (CDN), the User dynamic 

network (UDN) and the Tile dynamic network (TDN).  The IDN provides a two way connection 

between I/O devices and memory.  The MDN is for reads/writes to memory and other core’s 

cache.  The CDN is used to maintain cache coherency between cores.  The UDN provides users 

with low level first in first out (FIFO) interfaces for low latency data transfers between cores.  

The TDN, similar to the MDN, supports cache reads and writes. 
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Figure 4 – TilePro64 core layout Tilera Corporation (San Jose), “TILE Pro 64 Processor – Product Brief,” 2011.  

[Online].  Available: http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf. 

Used under fair use, 2014. 

 

The Tilera runs a custom version of symmetric multiprocessing (SMP) Linux.  All applications 

not provided with the Tilera were cross compiled using the included Tilera specific GNU 

Compiler Collection (GCC).  In this manner, GNU Radio and all its dependencies were also 

cross compiled for this platform.  A host machine acted as a Peripheral Component Interconnect 

Express (PCIe) bus master.  The Tilera communicated with a Virtex 6 FPGA via the PCIe bus. 

 

Several shortcomings were discovered while developing software for the TilePro64.  One of the 

most significant shortcomings of the Tilera processor was the lack of a floating-point unit (FPU).  

Many GNU Radio components utilize floating point numbers, and the emulated floating-point 

operations performed by the Tilera proved to be a significant bottleneck in the overall system 

performance.  Another shortcoming of the Tilera system was the maturity of the C compiler.  

Upon careful observation of compiled code, it was determined that the compiler was not utilizing 
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all of the Tilera's operation codes (opcodes).  In order to achieve the necessary performance for 

critical portions of code, the use of intrinsic functions was required. 

 

Second Generation 

 

The shortcomings discovered with the Tilera platform heavily influenced the selection of 

components in the second phase of this project.  An ARM processor was selected for its FPU, 

stable C compiler and general maturity of the architecture.  Linux for ARM processors is readily 

available, enabling GNU Radio to continue to be utilized in the second generation system.  Next, 

a replacement for the Virtex-6 FPGA was considered.  In the first generation system, a host 

machine was necessary to act as a PCIe bus master to enable Tilera to FPGA communication.  

To reduce the number of extra components in the system, a solution was sought that would allow 

the ARM to communicate directly with the FPGA. 

 

The PCIe connected between the Tilera and the FPGA only offered a single datapath.  Even if 

Tilera were replaced with a desktop system, all interactions between the GPP and the FPGA 

would be through a single PCIe connection. This could prove to be a difficult system to design 

for as a resource sharing system would need to be implemented.  For the second generation 

system, multiple datapaths were desired in order to match the data flow model of GNU Radio 

flowgraphs.  Additionally, the first generation system, the Virtex-6 FPGA image was completely 

static.  For the second generation system, it was desired to have a more flexible FPGA interface.  

Any change would require generating a new bit file using a traditional Xilinx tools.  

Transitioning from the Xilinx tool-chain to Tflow allowed for increased flexibility.  However, 
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the Virtex-6 is not supported by the Tflow software.  A Virtex 5 series or a 7 Series Xilinx FPGA 

was required to be compatible with Tflow. 

 

The Xilinx Zynq processor met the requirements for an ARM processor, it has a tightly 

integrated FPGA and is supported by Tflow.  The Xilinx Zynq architecture shown in Figure 5 

illustrates the unique combination of a dual-core ARM Cortex A9 processor with a Artix-7 Field 

Programmable Gate Array (FPGA) on the same physical die.  The maximum clock frequencies 

for the processor is 866 MHz for the smaller chips (XC7Z010, XC7Z015, XC7Z020) and 1 GHz 

for the larger chips (XC7Z030, XC7Z045, XC7Z100).  Each of the two ARM processors has a 

NEON general-purpose single instruction multiple data (SIMD) engine. 

 

 

Figure 5 - Zynq 7000 Architecture Xilinx, Inc (San Jose), “Zynq-7000 All Programmable SoC.” [Online]. 

Available: http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/. Used under fair use, 2014. 
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The ARM processors and the FPGA fabric are connected through an Advanced eXtensible 

Interface (AXI).  The existence of both devices on the same chip allows for tightly integrated 

hardware and software designs.  Larger versions of the Zynq series (XC7Z030, XC7Z045, 

XC7Z100) feature additional programmable logic from a Kintex-7 FPGA.  These larger devices 

also include multi-gigabit transceivers (MGTs).   

 

The FPGA resources for the Zynq XC7Z020 used in this thesis are shown in Table 2 below.  The 

information in Table 2 was obtained from the Zynq 7000 product table [11]. 

 

Resource # of Resources 

Look Up Tables 53,200 

Flip Flops 106,400 

Block RAM (36 Kb) 240 

DSP Slices 220 

 
Table 2 - Zynq XC7Z020 FPGA resources 

 

In order to run GNU Radio and TFlow, the Zynq boards were configured to run Linaro Ubuntu 

[12], an ARM branch of Ubuntu Linux.  The boards are running a full Linux operating system 

(OS), which simplifies the installation of new software through the “apt-get” tool in Ubuntu.  

Leveraging “apt-get” provides a large productivity boost, because it removes the need to compile 

(or cross-compile) many required programs and libraries.  The “apt-get” version of GNU Radio 

(v3.6) was ignored in favor of the latest version of GNU Radio (v3.7).  As such, GNU Radio was 

compiled natively on the Zynq boards. 
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The file system for the Zynq boards can be either a Secure Digital (SD) card or a Network File 

System (NFS) mount.  For this demonstration, a NFS system was used and mounted on an x86 

host machine.  The SD card solution would be better suited for a mobile application where size 

and power constraints are more stringent.  The NFS solution provides more storage, is much 

faster, and is well suited for a development environment. 

 

Cluster Architecture 

 

A driving factor in initially selecting the Tilera processor was to have dedicated cores for each 

GNU Radio thread.  The first generation Tilera-based system featured 64 general purpose 

processors.  In contrast, the Zynq platform selected for the second generation system only has 

two general-purpose processors.  In an effort to emulate a larger, ARM based multi-core 

processor, a cluster architecture was explored.  Four Xilinx Zynq-7000 ZC702 development 

boards provided a cost effective platform to explore such an architecture. 

 

Each node in the cluster is driven by a Xilinx Zynq XC7Z020 system-on-a-chip (SoC).  Nodes in 

the cluster are connected together with a gigabit Ethernet and FPGA Mezzanine Card (FMC) 

connectors.  Gigabit Ethernet was used for configuration and control while the FMC connectors 

were used for low-latency, high-bandwidth data transfers.  For communication between the 

ARM processors and the FPGA fabric, a direct memory access (DMA) interface was created 

using the AXI interface. 

 

The Zynq ZC702 boards have two Low Pin Count (LPC) FMC connectors that interface directly 

to the FPGA fabric on each board.  An FMC to Serial ATA (SATA) adapter board was 
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fabricated to interconnect the ZC702 boards.  The adapter board is seen in Figure 6.  The design 

is an open hardware project created by Dan Strother [17].  Since the ZC702 version of the Zynq 

processor lacks multi-gigabit transceivers (MGT), the existing data transfer IP such as the Xilinx 

Aurora was not available.  Instead, a Xilinx SelectIO interface was generated to handle data 

serialization and deserialization (SerDes).  A custom data synchronization scheme was 

implemented to compensate for time skew and data inversion. 

 

  

Figure 6 – FMC to SATA adapter board D.  Strother, “FMC-LPC to SATA adapter board.” [Online].  Available: 

http://danstrother.com/2010/12/04/fmc-lpc-to-sata-adapter-board/. Used under fair use, 2014. 

 

The custom synchronization scheme was devised in to address the three factors.  First, each 

individual board in the cluster is reset independently of all other boards, and because of that, they 

exit reset at different times.  Second, it was discovered that the FMC to SATA board (seen in 

Figure 6) inverts some of the differential data pairs so that there are data inversions on some of 

the board links, but not on all.  The final factor in creating a custom synchronization scheme is 

system scalability.  It is highly undesirable to create board specific versions of the same 

functional design to compensate for data inversion. 
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The solution was for each transmitter to send a known sequence of data for a few seconds after 

reset.  Likewise, each receiver comes out of reset and begins comparing the data it received with 

the expected data.  The receiver performs a sequence of data inversions (XOR with a counting 

sequence) and time-domain bit shifts.  The receiver continues cycling through all possible 

combinations until the expected sequence is received.  The receiver saves the correction vector 

and applies the correction to all future received data.  Figure 7 shows the state machine for the 

link synchronization scheme. 

 

 

Figure 7 – Link synchronization state machine 

 

The link synchronization state machine above prevents unaligned and inverted data from passing 

to the rest of the system using a gated buffer (as seen in Figure 8).  The link synchronization state 

machine is labelled as the “Correction Vector” block Figure 8.  The gated buffer is disabled until 

the link has been synchronized and the transmitter stops sending the known data sequence.  Data 

are also sent with an extra bit indicating whether or not the data are valid.  This is necessary 

because the transmitter sends data every cycle regardless of whether or not it has received input.  
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The known sequence transmitted during link synchronization does not have a valid bit set, so the 

receiver will not pass this synchronization data to the reset of the system.   

 

 

Figure 8 - Link synchronization block diagram 

 

To test the stability of the links, a series data transfer test was conducted.  One iteration of the 

test consisted of reconfiguring all the FPGAs in the cluster, resetting the DMA and FMC 

subsystems, then writing and reading 2 MB of counter data on every link in the cluster.  Each 

counting sequence was checked by the receiver for data integrity.  Several hundred iterations of 

this test were run automatically overnight with no detected bit flips.  For the test described, the 

serial clock ran at 100 MHz and the parallel clock ran at 10 MHz.  A maximum data rate of 640 

Mbps was achieved with a serial clock speed of 200 MHz and a parallel clock speed of 20 MHz.  

When running the serial clock at 300 MHz, bit flips were too frequent to be reliable. 

 

The FMC to SATA board has 17 SATA connectors, each containing two differential pairs.  This 

setup provides a highly customizable interface, allowing the cluster interconnects to be rewired 

to meet system requirements.  Figure 9 illustrates a fully connected configuration between Zynq 

boards and each board connected to the same data source (shown as Zed1).  The cluster can be 
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rewired for any subset of connections (seen in Figure 9).  The cluster can also be rewired to 

create multiple connections between boards. 

 

 

Figure 9 - Zynq board interconnects 

 

For the cognitive radio application described in this paper, a fully connected configuration was 

selected.  Each of the four boards in the cluster has a 32-bit wide connection to and from every 

other board.  Each Zynq board in the cluster receives a clock from the same external clock.  

Figure 10 illustrates how the fully connected configuration in Figure 9 was realized using the 

FMC to SATA board. 

 



 

 

 

25 

  

Figure 10 - Zynq cluster connected to data source 

 

Hardware Accelerators 

 

To supplement the ARM’s computation abilities, FPGA-based accelerators were developed.  To 

maintain compatibility with the GNU Radio programming model, each FPGA accelerator is 

wrapped with a standard interface.  The standard interface consists of a 32-bit input with a valid 

bit and a 32-bit output with a valid bit.  For complex data, the upper 16 bits represent imaginary 

samples and the lower 16 bits represent real samples.  This interface was selected in order to be 

compliant with the GReasy project.  Any hardware accelerator developed for this project can be 

used in GReasy and vice versa.  Two such accelerators featured later in this thesis are a fast 

Fourier transform (FFT) and a finite impulse response (FIR) filter.  
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Chapter 4 

Cognitive Radio 

 

This chapter covers the software components of the cognitive radio system developed in this 

thesis.  The cognitive radio consists of seven parts, as seen in Figure 11.  With the exception of 

an FPGA based FFT, all components are implemented as software on the ARM cores of the 

Zynq processors.  The signal source seen in Figure 11 is not necessarily a component of the 

cognitive radio, rather the source of data. 

 

  

Figure 11 - Software Flow Diagram 

 

Signal Source 

 

A single Zedboard containing the same Zynq XC7Z020 as the rest of the cluster was used to 

provide data to the rest of the system.  GNU Radio was utilized to generate signals that were sent 

to each individual board via their individual FMC connectors.  Using GNU Radio allows easy 
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creation on different input waveforms, as well as the ability to shift each waveform to the desired 

transmission frequency.  Waveforms can either be generated offline and replayed from a GNU 

Radio file source or generated at runtime.  Playing pre-generated data proves useful when 

debugging radio implementations, as the transmitted data is known and consistent.  In an earlier 

demonstration, a Zynq XC7Z045 was used in combination with an FMC-based ADC card to 

provide off-the-air, real time data.  Alternatively, the Zedboard could be configured to interface 

to a USRP.  The variety of data source options illustrates the advantage of having a well-

supported GPP in the system. 

 

Energy Detector 

 

The goal of the energy detector is to find signals present in the spectrum and identify their center 

frequency and bandwidth.  The energy detector receives spectrum data from the FPGA FFT 

through the ARM’s AXI bus.  One node in the cluster is always configured to contain a FPGA 

FFT.  By running the FFT on the FPGA, ARM resources are freed up to run algorithms less 

suited to FPGAs.  The designated node performs a FFT on time-domain samples received from a 

data source and produces frequency-domain samples to the ARM processor. 

 

The ARM processors perform a two-step peak finding process.  First, the average of the 

spectrum and the maximum value are calculated.  These two characteristics are used to establish 

a minimum threshold above the noise floor that signals must exceed in order to be considered in 

the second step.  Next, the spectral bins that exceed the minimum threshold are put into groups 
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by proximity.  The center frequency and bandwidth of each cluster is reported to the cognitive 

engine. 

 

Cognitive Engine 

 

The role of the cognitive engine is to make decisions about what radios to deploy based on two 

factors: the current state of the system and the current RF spectrum.  The state of the system can 

be further broken down in several components: active radios, time and available radio 

configurations.  In this manner, the cognitive engine looks at spectrum data from the energy 

detector and compares that spectrum against a list of known waveforms.  If there is a match, the 

cognitive engine checks if there is a comparable radio already running (to avoid duplicates).  The 

time since the last reconfiguration is also taken into account, in order to avoid excessive 

reconfiguration.  With all of these parameters taken into account, the cognitive engine produces a 

list of signals of interest and corresponding radios. 

 

The cognitive engine determines which radios to deploy based on a set of user defined criteria 

loaded at runtime.  The radio deployment criteria are stored in a comma separated values (CSV) 

file.  For example, the CSV line “100000,5000,3,fm,fm100.grc”, indicates to the cognitive 

engine to use the GNU Radio companion file, “fm100.grc”, if a signal has a center frequency of 

100 MHz and has a bandwidth of at least 5 KHz.  The CSV line also indicates that the signal has 

a priority of three.  Signals with lower priority numbers are selected when there are limited 

resources or the user puts a cap on the maximum number of demodulators.  A CSV file can 

contain many entries describing the desired behavior of the radio given its RF environment.  An 
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adjustable tolerance is given to allow for variations between ideal and reported spectrum 

information. 

 

Netlist Generation 

 

After the cognitive engine has determined which signals are of interest and it has selected the 

corresponding radio(s) to deploy, a netlist of required parts is generated out of available GNU 

Radio components and FPGA accelerators.  Individual radios are stored as GNU Radio 

companion files.  Every GNU Radio block and FPGA accelerator used in the radios has a 

corresponding XML file describing its input, outputs and parameter.  FPGA accelerators and 

GNU Radio components all share a common format.  By using the same format, all components 

can be connected using the GNU Radio companion tool.  FPGA accelerator components have an 

additional parameter that indicates to the Resource Mapper to instantiate an FPGA component 

instead of a GNU Radio software component.  In this manner, constructing a mixed netlist of 

hardware accelerators and software is seamless to the user. 

 

All of the individual XML files that describe the radio components and interconnects are 

combined into a single XML file.  This file is then parsed and translated into a vector of GNU 

Radio blocks, FPGA accelerators and connections.  Each block in the vector contains Python 

formatted commands to instantiate the block and import any Python library it requires.  The 

functionality of the netlist generation program effectively creates an embedded version of GNU 

Radio companion translating XML into Python. 

 



 

 

 

30 

At runtime, the netlist generator creates a list of available GNU Radio blocks by searching 

specific install directories for GRC formatted XML files.  The available part list associates part 

names with their corresponding XML files.  After receiving a list of radios to deploy from the 

cognitive engine, the netlist generator concatenates the GRC files into one file adding prefixes to 

avoid duplicate names.  Next, the netlist generator parses the combined GRC files to generate a 

list of blocks and connections.  The XML file associated with each block in the list is then parsed 

for two items, the import string and the make string. 

 

The import string contains all of the required Python imports necessary to use the block.  The 

make string is the Python command to instantiate the block.  The make string by itself contains a 

list of variables to be evaluated before the make statement can be used.  The values for each of 

the variables comes from the GRC netlist.  Therefore, the netlist generator iteratively replaces the 

variables in each make string with the user defined values from GRC.  Table 3 shows an example 

conversion of a GNU Radio file source. 

  



 

 

 

31 

 

File Source XML 

<block> 
 <name>File Source</name> 
 <key>blocks_file_source</key> 
 <import>from gnuradio import blocks</import> 
 <make>blocks.file_source($type.size*$vlen, $file, $repeat)</make> 
</block> 

 

GNU Radio Companion XML 

<block> 
 <key>blocks_file_source</key> 
 <param> 
   <key>id</key> 
   <value>blocks_file_source_0_0</value> 
 </param> 
 <param> 
   <key>file</key> 
   <value>portal_320k_filesink</value> 
 </param> 
 <param> 
   <key>type</key> 
   <value>complex</value> 
 </param> 
 <param> 
   <key>repeat</key> 
   <value>True</value> 
 </param> 
 <param> 
   <key>vlen</key> 
   <value>1</value> 
 </param> 
  </block> 

 

Evaluated Make String 

blocks_file_source_0_0 = blocks.file_source(gr.sizeof_gr_complex*1, "portal_320k_filesink", True) 

 

Evaluated Import String 

from gnuradio import block 

 

Table 3 - Evaluating make string for GRC XML blocks 
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Resource Mapper 

 

The resource mapper receives a netlist from the netlist generator and assigns components to 

available resources.  The mapper takes care of any intermediate connections needed to span 

between resources in the cluster.  Consider the case where an FPGA accelerator on one FPGA is 

connected to a file sink on another board’s ARM processor.  The resource mapper will connect 

the FPGA accelerator to the FMC interboard links between the two boards and connect to the 

DMA system on the second board to complete the connection.  This process happens 

automatically, without user intervention and without changing the functionality of the original 

netlist. 

 

The inclusion of a resource mapping program allows the netlist generator to function completely 

agnostic of the hardware.  This hierarchical separation allows for greater flexibility and 

scalability.  For example, if more Zynq boards were added to the cluster, the only program in the 

system that needs to be updated to the change is the mapper.  All other programs are functionally 

unchanged by the architecture change.  Future versions of the system could contain a feedback 

mechanism to enable load balancing within the cluster.  The resource mapper produces an FPGA 

netlist and the GNU Radio flow graphs that will be run on the ARM cores in the system.  The 

resource mapper employs the tool Tflow [5] to quickly generate bitstreams. 

 

Tflow 

 

To meet the real time requirements of an adaptive radio, the bitstream generation process needed 

to be accelerated.  In a traditional system, this process would involve regenerating an entire 
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FPGA configuration bitstream, a process involving synthesis, mapping, place and route, and a bit 

stream generation.  To address this issue, Tflow was utilized.  Tflow creates two distinct regions 

for a design, the non-changing “static” portion, and the dynamic “blacktop” region. 

 

The static region contains components that are consistent across all designs, such as interfaces to 

the ARM processor.  Prebuilt macro blocks are placed in the blacktop region as specified by the 

user.  The prebuilt macro blocks are placed and routed beforehand so that after they are placed in 

the blacktop, the tools only need to route between macro blocks.  This use of macro blocks and a 

static region greatly reduce the bit stream generation time, thereby allowing the system to adapt 

to a rapidly changing RF environment. 

 

Figure 12 illustrates the default configuration for all Zynq boards in the cluster.  The static region 

consists of the DMA system and the FMC interboard links.  Each board has four receive and four 

transmit DMA interfaces accessible through a Linux device driver.  Every board also has four 

receive FMC ports and three FMC transmit ports.  The boards only have three FMC transmit 

ports as they do not send data back to the data source, and thereby only need a unidirectional 

link.  The static region and dynamic blacktop region are connected through FIFOs at each 

individual interface. 
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Figure 12 - Tflow regions of Zynq boards 

 

Table 4 shows the FPGA resource utilization for the static region (DMA, FMC and FIFOs).  

While the static region requires 30% of the available lookup tables (LUTs), it does not use any of 

the available DSP slices.  This is fortunate as the DSP slices can be reserved for accelerators in 

the blacktop. 

 

Resource # of Resources Available # of Resource Used Utilization % 

Look Up Tables 53,200 16,331 30% 

Flip Flops 106,400 16,087 15% 

Block RAM (36 Kb) 240 25 10% 

DSP Slices 220 0 0% 

 
Table 4 - Zynq XC7Z020 FPGA resource utilization 
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On an x86 processor, it takes approximately 15 minutes to generate the static region.  If Xilinx 

tools were used, each time a new bit file needed to be generated there would be a 15 minute wait.  

This build time is far too large for use in an adaptive cognitive radio system, where spectrum 

could change many times in a 15 minute interval.  Also, it should be noted that Xilinx does not 

support ARM processors, so this kind of an embedded system could not exist.   

 

As previously mentioned, Tflow places and routes pre-compiled macro blocks, greatly reducing 

the time to generate a bit file.  On the ARM processor, it takes approximately 90 seconds to 

generate a bit file.  This enables the cognitive radio to adapt to a new environment in 90 seconds.  

Radio designs without significant FPGA components take approximately 45 seconds to build. By 

caching previously built designs, reconfiguration time is reduced to a fraction of a second. After 

receiving an FPGA netlist from the resource mapper, each board in the cluster generates its own 

bit file using Tflow. 

 

Reconfiguration 

 

After Tflow produces bit files for each of the FPGAs in the system, the final step is to 

reconfigure the FPGAs.  Traditionally, FPGAs are configured with either with a Joint Test 

Action Group (JTAG) cable or from a read-only memory (ROM).  For a typical development 

system, programming via JTAG is a viable option.  However, in an embedded design, a host 

system might not be present to program the boards.  Fortunately, Linaro Linux has a device 

driver to program the FPGA.  FPGAs are configured by writing the binary version of the Tflow 

generated bit file to the device driver as if it were a file.  Furthermore, as the boards are all 
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connected via gigabit Ethernet, each board can be configured remotely through a secure shell 

(SSH) connection.  Another advantage of configuring the FPGAs through the device driver is 

that it removes the need to have a dedicated JTAG cable for each board in the cluster. 
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Chapter 5 

System Demonstration 

 

In this chapter, the complete cognitive radio system will be demonstrated.  Two signals are sent 

from the data source to the cognitive radio, which then detect the spectrum and associate one of 

the signals with a known radio configuration.  The cognitive radio then constructs the desired 

radio configuration through the use of GNU Radio software components and hardware 

accelerators.  Tflow is utilized to accelerate bit file generation on each node.  Finally, the cluster 

is reconfigured to deploy a radio receiver and the receiver begins streaming audio to the host for 

verification. 

 

Frequency Modulation Demonstration 

 

To demonstrate the adaptive nature of the described cognitive radio, the Zedboard data source 

was configured to transmit two frequency modulated (FM) signals at two different center 

frequencies.  The first signal is transmitted with a center frequency of 1 Hz and the second signal 

is transmitted with a center frequency of 100 MHz.  The signals were generated by first 

resampling the original audio files to 320 KHz using the Linux command line tool “sox”.  Figure 

13 shows the GRC flowgraph used to transmit data to the Zynq cluster via the FMC connectors.  

The “File Sink” seen in Figure 13 connects to the DMA device driver which passes data to the 

appropriate FMC transmit channel. 



 

 

 

38 

 

 

Figure 13 - Zedboard data source GRC flowgraph 

 

The spectrum of the two transmitted signals is shown in Figure 14.  The “WX GUI FFT Sink” in 

the Figure 13 was used to capture a snapshot of the transmitted data. 

 

 

Figure 14 - Spectrum of Zedboard transmitted data 
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A host machine is configured to run the GNU Radio flowgraph seen in Figure 15.  The 

flowgraph consists of a user datagram protocol (UDP) sink connected to an audio sink block.  

This host application functions as a feedback mechanism, which allows the user to hear when the 

correct radio has been launched. 

 

 

Figure 15 - Host GNU Radio flowgraph 

 

At runtime, the Zynq cluster is configured to contain a hardware FFT block.  The FFT block is 

placed in the dynamic blacktop region of the FPGA, as seen in Figure 16.  The exact board that 

the FFT resides on is determined by the resource mapper at runtime and returned to the energy 

detector as a parameter.  The initial configuration can be thought of as a special case where the 

desired netlist is provided to the cluster by the user instead of determined by the detected 

spectrum data.  The initial configuration is still run through the mapping and Tflow software, just 

like all subsequent configurations. 
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Figure 16 - Initial FPGA configuration 

 

The energy detection software reports any peaks in the RF spectrum to the cognitive engine.  

Figure 17 shows the received spectrum data from the FFT with the center frequencies and 

bandwidth of the signals indicated.  A horizontal line establishes the minimum threshold a 

frequency bin must exceed to be consider a signal.  Vertical lines bound the peak clusters and 

denote the bandwidth of the detected signals.  Three arrows indicate gaps between peaks that are 

ignored to ensure that wider signals are not interpreted as several narrow signals. 
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Figure 17 - Frequency domain plot of RF spectrum 

 

Figure 18 shows spectrum information generated by the energy detector for the two signals seen 

in Figure 17. 

 

 

Figure 18 - Signal data reported from energy detector to cognitive engine 

 

The cognitive engine compares this information with the preloaded signal list.  In this case, the 

cognitive engine is initialized to associate a peak at 100 MHz with a FM radio signal.  The 

cognitive engine then directs the netlist generator to build a netlist containing a 100 MHz FM 

radio receiver and a UDP source (seen in Figure 15) to communicate with the host.  Also in the 
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generated netlist are hardware accelerated FIR filter configured as a low pass filter and a cosine 

source used to mix the received signal down from 100 MHz to baseband.  The resource mapper 

distributes the netlist across the cluster generating the corresponding Python programs (GRC) for 

each board.  Each node runs Tflow and generates its own FPGA bit file.  Finally, the cluster is 

reconfigured and the host begins playing the demodulated audio it receives via UDP from the 

Zynq cluster.  Figure 19 shows the generated netlist containing an FM demodulator. 

 

 

Figure 19 - TFlow generated netlist containing FM radio demodulator 
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Result Comparison 

 

Table 5 shows a comparison of the cognitive radio described in this thesis with published 

cognitive radio systems and adaptive radio systems.  Compared radio systems were selected for 

two criteria: self reconfiguration and use a platform with both an FPGA and a general purpose 

processor. 

 

 

Name SDR 

Framework 
Processor OS FPGA Reconfiguration 

Method 

Zynq Cognitive Cluster GNU 

Radio 
Dual ARM Cortex 

A9 
Linux (4) Xilinx 

Artix-7  
Tflow + ICAP 

Generic Software 

Framework for Adaptive 

Applications on FPGAs 

[13] 

IRIS PowerPC 

 (soft core) 
Linux Virtex II Pro Xilinx Partial 

Reconfiguration + 

ICAP  

Autonomous System on a 

Chip Adaptation through 

Partial Runtime 
Reconfiguration [14] 

N/A PowerPC 405 Linux Xilinx Virtex 

4 FX 
Xilinx Partial 

Reconfiguration + 

ICAP  

Partial reconfiguration in 

the implementation of 

autonomous radio 

receivers for space [15] 

N/A Unnamed 

“Embedded 

microcontroller” 
 

Unknown Xilinx 
Virtex 5 

LX50T 

Xilinx Partial 

Reconfiguration + 

ICAP  

 
Table 5 - Comparison of related works 

 

For all radio systems listed, the Xilinx Internal Configuration Access Port (ICAP) is used to 

configure the FPGA.  With the exception of the cognitive radio platform described in this thesis, 

all the radio systems in Table 5 use the Xilinx partial reconfiguration flow [16].  The Xilinx 

partial reconfiguration flow uses static and a dynamic reconfigurable region.  Components that 

can be placed in the reconfigurable region are stored as pre-made partial bit files.  Components 
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are generated for specific reconfiguration regions.  In order to utilize a component in multiple 

reconfiguration regions, a separate partial bit file must be generated for each region.  Take for 

example the case where there are four reconfiguration regions and five components.  In order to 

enable all components to be used in any reconfiguration region, a total of 20 partial bit files 

would need to be generated and stored on the device.  In a system with limited disk space, 

storing large numbers of partial bit files becomes infeasible. 

 

The cognitive radio cluster described in this thesis uses Tflow.  Tflow, in contrast with the Xilinx 

partial reconfiguration flow, uses one large reconfiguration region and generates bit files 

dynamically at runtime.  In this manner, Tflow can generate significantly more combinations of 

components without storing all possible combinations of parts.  By generating the bit file 

dynamically, Tflow offers more flexibility than the Xilinx partial reconfiguration solution seen in 

[13][14][15].  Take for example, an applications that dynamically generate netlists.  Such an 

application is fully supported with Tflow, however with the Xilinx partial reconfiguration flow 

such an application is not realizable.   

 

The additionally flexibility offered by Tflow over pre-generated bit files is at the expense of 

configuration time.  Programming pre-generated files is significantly faster than running the 

entire Tflow chain for new radio configurations.  However, by caching previously built Tflow 

designs configuration times are comparable.  In this manner, Tflow offers flexibility in addition 

to comparable configuration times as the Xilinx reconfiguration flow for known designs. 
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The cognitive radio described in this thesis utilizes the GNU Radio framework.  Of the radio 

systems in Table 5, only [13] and the cognitive radio in this thesis use a SDR framework.  By 

leveraging an existing SDR framework, design effort is significantly reduced when creating 

software defined radio applications.  In [13] the general-purpose processor is an PowerPC 

softcore implemented in a Xilinx Virtex II FPGA.  The computational power of such a severely 

restricted in comparison with the dedicated ARM core found in the system develop in this thesis. 
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Chapter 6 

Conclusion and Future Work 

 

This work culminated in a demonstration of a cognitive radio first sensing its spectrum, then 

identifying a corresponding radio to deploy and finally reconfiguring itself to begin receiving the 

detected waveform.  Radio components were implemented in both hardware and software 

communicating via AXI for on chip communication and through FMC connectors for inter board 

communication.  Software components of the radio were drawn from the GNU Radio 

framework.  Additionally, FPGA based radio components were used to supplement the dual core 

ARM processor within the Zynq.  Using standardized interfaces allow radios consisting of 

hardware and software to be designed as a single GNU Radio flowgraph.  A mapping program 

assigned components to available cluster resources.  Tflow was used to accelerate the FPGA bit 

file generation process. 

 

The cognitive engine used in the system demonstration associated the center frequency of a 

detected waveform with a radio implementation.  Future work could be done to expand the 

characterization of the detected waveforms to extract additional information.  Such information 

might include baud rate or modulation scheme.  Using this information, more complicated 

associations could be made between the extracted spectral characteristics and the appropriate 

radio to deploy.  Additional work could be done to create more complex, parameterizable radios.  

The radios used in the system demonstration were made specifically for the sampling rates and 

center frequencies used in the demonstration.   
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To enabled the cognitive engine to make more intelligent decisions, information about the 

performance of currently deployed radios could be gathered.  This information would provide the 

cognitive engine with feedback regarding the performance of the current system configuration.  

Such information might include statistics about bit error rates (BER) or system load.  This 

information would allow the cognitive engine to function as closed loop, “watchdog” system, 

making continuous corrections to radio deployments to optimize parameters such as date rate, 

power efficiency or reception range. Consider the scenario where the platform is configured to 

receive a waveform with specific baud rate. Next, consider that the baud rate of the original 

waveform changes.  The resulting spike in the BER of the original radio deployment will be 

reported to the cognitive engine. The cognitive engine can then determine how to reconfigure the 

system to adapt to the change. 

 

The cognitive engine could be further extended to optimize the system for multiple radio 

deployments.  In the current system, pre-designed radios are manually assigned a resource 

utilization value.  This value attempts to characterize the system resources required to deploy the 

specific radio.  The cognitive engine will try to deploy as many radios as possible (that 

correspond to detected and verified waveforms).  The cognitive engine will continue adding 

radios to the deployment list until the cummulative system utilization is 100% or there are not 

any additional radios to deploy.  Future improvements could dynamically gather information 

about the system load for each radio at runtime.  This information could be fed back into the 

cognitive engine to adjust the utilization value.  Additional work could also be performed to 

extract information about current and previous deployed radios to predict the performance of 
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future radios.  Such information could be used to make adjustments to radios before they are 

deployed thereby reducing the reconfiguration time required to achieve optimal radio 

deployments. 

 

This work establishes a platform for more advanced cognitive radio systems.  Future work can 

operate at a higher level of abstraction, without worrying about low level details such as data 

transfers, resource allocation and board reconfiguration.  Instead, researchers can focus on larger 

picture concepts such as learning algorithms and behavioral models for the cognitive engine.  

Learning algorithms could be applied to the cognitive engine to create a software defined radio 

that not only reacts but adapts to its environment. 
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