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tables, references and an abstract limited to about 100 words.

Secondary instability of plane channel flow to subharmonic

three-dimensional disturbances
Thorwald Herbert
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A linear secondary instability mechanism is presented that leads to the occurrence of
subharmonic three-dimensional disturbances in wall-bounded shear flows. The instability
originates from the periodic redistribution of vorticity in the shear flow by small but finite-
amplitude Tollmien—Schlichting waves. Low threshold amplitudes and other characteristics of
this instability are consistent with experiments and may elucidate various obscure observations.

Recently, combined hot-wire measurements and flow
visualizations in carefully controlled experiments'™ at low
noise levels have shown that different paths can lead from
initially two-dimensional Tollmien-Schlichting (T-S) waves
to transition in wall-bounded shear flows. These paths are
distinguished by the nature of secondary, three-dimensional
disturbances that result in different characteristic patterns of
A-shaped vortex loops in flow photographs, as sketched in
Fig. 1. The commonly observed path>® leads to spanwise
alternating “peaks” and “valleys,” i.e., regions of enhanced
and reduced disturbance amplitude, that are associated with
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FIG. 1. Pattern of A vortices in streakline photographs arising from three-
dimensional secondary instability. (a) Ordered peak-valley structure with
wavelength A, . (b) Staggered pattern with wavelength 24 . The flow is from
left to right.

871 Phys. Fluids 26 (4), April 1983

0031-9171/83/040871-04$01.90

a mean longitudinal vortex system. The A vortices are
aligned along the peaks and repeat with the wavelength A, of
the T-S wave [Fig. 1(a)]. The peak~valley splitting originates
from a secondary instability mechanism”® that provides
strong growth on a convective time scale if the maximum u/,
of the streamwise r.m.s. fluctuation u’ exceeds a threshold of
about 1% of the reference velocity. At even lower fluctu-
ation levels, a different type of three-dimensionality can oc-
cur. In this case, flow visualization shows a staggered ar-
rangement of A vortices [Fig. 1(b)]. Obviously, the pattern
repeats itself with wavelength 24, and a fixed hot wire re-
cords subharmonic signals. It is tempting to attribute this
suharmonic phenomenon to Craik’s mechanism® that pre-
dicts resonance of certain wave triads for a specific spanwise
wavelength A *. Some observations®* are indeed consistent
with Craik’s model; others,'* however, show different wave-
lengths A, A * under very similar experimental conditions.
Moreover, Craik’s mechanism is inoperative in plane Poi-
seuille flow by reasons of symmetry'® but staggered A vorti-
ces were recently observed in this flow.*

In this letter, we present a new mechanism that predicts
strong linear instability to subharmonic three-dimensional
disturbances without resorting to Craik’s model. Whereas
staggered A vortices have been observed mostly in boundary
layers, we present the theory for plane Poiseuille flow
between parallel plates, driven by a pressure gradient in the x
direction. The reason for this choice is the existence of strict-
ly periodic, two-dimensional wave solutions to the Navier—
Stokes equations'"!? in a moving frame,

V2( x’y,t)-_—vz(g»}’)’ §=x'"'Ct’ (1)

where ¢ is the phase velocity, # is the time, and y is the coordi-
nate normal to the walls at y = + 1. The wavelength in the
streamwise direction x or £ is A, = 2#/a. Existence of these
solutions is restricted to the neutral surface!” defined by a
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nonlinear dispersion relation F (4 *,R,a,c) = 0, where 4 mea-
sures the fluctuation amplitude in terms of u;, and R is the
Reynolds number based on the channel half-width and the
centerline velocity in the parabolic flow. Introducing a
stream function ¢, the periodic solutions (1) can be written as

YEN =PI +4 S b, 2)

where ¥ (y) represents the parabolic velocity profile 1 — y*.
For real ¢, ¢ _, = ¢,,, where the tilde denotes the complex
conjugate. Moreover, ¢, ( —») = (— 1)" "' 4, (y) due to the
symmetry of plane Poiseuille flow and for consistency with
the principal mode of T-S instability in the limit 4—0.

Superposition of smali, three-dimensional disturbances
in the form

V(§,y,2,t) = v2(§)y) + ﬂ3(§’y’z’t) (3)
leads, after linearization in €, to disturbance equations with
coefficients independent of z and ¢. We therefore assume dis-
turbances in the form

vi(yz,t) = e HiE ), (4)

where B =2w/A, is the spanwise wavenumber and
s = 0 + iw combines the amplification rate o and the fre-
quency o with respect to a frame moving with c.

The resulting disturbance equations have periodic coef-
ficients owing to the periodic base flow (2). Apart from the y
dependence, the equations are essentially of the Hill type (or
Mathieu type) with damping. Such systems permit various
classes of solutions; the two most important classes arise
from primary (fundamental) resonance with wavelength A4,
and from principal parametric (subharmonic) resonance
with wavelength 24,. Primary resonance generates the
modes of instability”® that are associated with peak—valley
splitting. In plane Poiseuille flow, two groups of such modes
are distinguished by different symmetry in the y direction.
For principal parametric resonance one obtains distur-
bances (4) with

]

flEy) =

m= — oo

f 1 (e 0622 (5

Beyond being doubly periodic with A, and 24, , these distur-
bances are invariant under the translation
(£,2)—(€ + A,z + A,/2) that is characteristic for the stag-
gered pattern in Fig. 1(b). Due to the absence of aperiodic
terms in the series (5), the disturbances cannot lead to a mean
longitudinal vortex system. In plane Poiseuille flow, the
functions f,,, , ; (v} for even and odd m have opposite sym-
metry in y. Consequently, f itself is asymmetric and the dis-
tinction of modes with different y symmetry is redundant.
With homogeneous boundary conditions for the compon-
ents of f one obtains an eigenvalue problem for s. After trun-
cating the Fourier series (2) and (5) we have applied a Cheby-
shev-collocation technique’® in y for solving this problem
numerically. The results given below are for the symmetry
u,(y) = u,{ — ) and for the lowest consistent approximation
in|<1in Eq. (2), m = — 1,0in Eq. (5). Eliminating the span-
wise velocity components and using 18 collocation points in
0<y< 1 results in a 78 X 78 complex matrix eigenvalue prob-
lem for s. The eigenvectors provide the velocity components
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FIG. 2. Spectrum of eigenvalues s = 0 + iw witho> — 0.8 of subharmonic
modes at R = 5000, @ = 1.12, and # = 2.0, where 4 = 0.0248.

u,u_, (streamwise) and v,v_,; (normal to the walls)
whereas w,,w_, can be retrieved from the continuity equa-
tion.

Figure 2 shows the spectrum of eigenvalues s in a cutout
of the complex domain for R = 5000,a = 1.12,and 8 = 2.0.
These parameters are close to experimental situations.*®
The periodic basic flow (2) has 4~~0.025 for this point. The
asymmetry of the spectrum about the real axis reflects the
lacking symmetry of f(&,y) in Eq. (5). There are three eigen-
values in the right half-plane, > 0, that can lead to instabil-
ity. The dominant mode of subharmonic instability is asso-
ciated with s = 0.0465 — i 0.0020. This eigenvalue is slightly
off the real axis, indicating that three-dimensional and two-
dimensional disturbances travel at slightly different speed.
The instability is strong in the sense that the subharmonic
disturbance grows by a factor of 100 within about five cycles
of the T-S wave. The growth rate is very similar to that
found for primary resonance at these parameters.® This is
not surprising since the strong mechanism of combined vor-
tex stretching and tilting’ is common to both types of insta-
bility. Similar results were also found' for the three-dimen-
sional subharmonic (helical pairing) and fundamental
(translative) modes of instability in a periodic shear layer.

Figure 3 shows o and @ for the dominant mode at
R = 5000 and a = 1.12 as functions of the spanwise wave-
number 3. The growth rate o has a maximum at f~1.26 and
decreases almost linearly with increasing S owing to increas-
ing dissipation. For < 1, o rapidly decreases with decreas-
ing B, while the frequency shift |o| between subharmonic
disturbances and basic flow increases. This shift can be relat-
ed to the frequently observed low-frequency phenomena'’ at
onset of three-dimensionality and to the broad subharmonic
peak in disturbance spectra. The instability is cut off at low
B, indicating suppression of the two-dimensional pairing
mode* in the neighborhood of a wall.

Variation of the dominant eigenvalue with the ampli-
tude A is shown in Fig. 4 for @ = 1.02 and 8 = 2.0. Strictly
periodic basic flows of different amplitude are obtained by
varying R between R, =5772 (4=0) and R=5100
(4 = 0.02), where 4 2~ R. — R. As 4 decreases, the growth
rate decreases and changes sign at a threshold amplitude
A,~0.0066. Below this threshold, the periodic vorticity
concentration is too feeble to overcome viscous damping,
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FIG. 3. Amplification rate ¢ and relative frequency « for the dominant
mode of subharmonic instability as a function of f at R = 5000 and
a = 1.12. The maximum of ¢ is marked by 0.

and the subharmonic disturbance suffers strong decay at
lower amplitudes. For a = 1.02, the lowest threshold is
A,~0.0042 at f~0.74, whereas the lowest threshold for
peak-valley splitting is 4,~0.0085 at f~1.22. For
B = 0/(1), we can distinguish three amplitude ranges that
may be relevant for the interpretation of experiments: (i)
0<4<4;, no three-dimensional instability; (i) 4, <A<4,,
instability to subharmonic modes, with considerable growth
rates as A—A; and (iii) 4, <4, instability to both types of
three-dimensional disturbances. The appearance of the one
or the other type (or a mixture of both) depends largely on the
background disturbances. A glance at various experiments
in boundary layers has not revealed any inconsistency with
these theoretical predictions.

As A—0in Fig. 4, the eigenvalue s tends to an eigenva-
lue s, of the classical linear stability problem for three-di-
mensional disturbances in plane Poiseuille flow. It is worthy
of note thats, = — 0.0626 + 70.0225 is not an eigenvalue of
the Orr—Sommerfeld problem. Instead, s, is an eigenvalue of
the second-order differential equation for u, for the special
case of v,=0."¢ The peculiar variation of s in the neighbor-
hood of A = 0 is due to interaction of the two eigenvalues s,
and s_ ,~§,, where s_, is an eigenvalue of the homogeneous
equation for #_,. The mode originating from s_, suffers
strong decay as A increases.

For S sufficiently large, the subharmonic disturbances
retain the property v , ; ~O0 at finite amplitudes 4. (The rise
of the v components seems to be associated with the rise of a
frequency shift, |w|#0, at smaller values of £.) Assuming
v=0 provides the approximations
wi12¥(a/2ﬂ)“in ﬂiIQ’JB[l +(a/2B)2]u;tl’ (6)
where 7 denotes the y component of vorticity. The normal-
ized distributions u'/u;, vs y for the two-dimensional funda-
mental and for the subharmonic are shown in Fig. 5. The
shape of the subharmonic profile and the position of its max-
imum with respect to the critical layer of the T-S wave are
consistent with experiments in the flat-plate boundary lay-
er.!? This evidence is stronger than it seems at first glance:
the data in Fig. 5 are representative for the dominant mode
of subharmonic instability at different spanwise positions z
and different wavenumbers 5. As long as o > 0, the picture
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FIG. 4. Amplification rate o and relative frequency o for the dominant

mode of subharmonic instability as a function of the amplitude 4 at
a=1.02and f=2.0.

experiences no significant change by varying the wavenum-
ber a or the amplitude A4 of the basic flow.

For wt = 0, the extrema of u and 7 according to Eq. (6)
for the subharmonic disturbance coincide with the maxima
of the basic-flow stream function ¥(&£,y) that are spaced A,
apart and close to the wall at y = 1. The redundant mode of
different symmetry that can be obtained by the transforma-
tion (£,y)—(& + A, /2, — y) is obviously associated with the
minima of ¥ along the opposite wall in Poiseuille flow. This
coincidence reveals the simple mechanism of the subhar-
monic instability!’: the extrema of ¥ represent material-
bound line vortices; the spanwise periodic % disturbance
bends these vortices in the y,z plane into regions of different
streamwise velocity, where stretching completes the growth
of the disturbances on a fast convective time scale. Nonlinear
development will rapidly take over and lead to transition.
Curiously, a single mode of subharmonic instability initiates
transition in the neighborhood of only one of the two chan-
nel walls at a time.

This investigation was stimulated by discussions on ex-
perimental results with William S. Saric, Victor Ya. Lev-
chenko, and Victor V. Kozlov.

The work was supported by the National Science Foun-
dation under Grant No. MEA 81-20935.

FIG. 5. Normalized distributions u’/u;, as a function of y for the basic flow
(a) and for the subharmonic disturbance (b} at R = 5000, @ = 1.12, and
B = 2.0. The critical layer of the basic flow is located at y, .
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Separation of time-averaged turbulence components

by laser-induced fluorescence
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Turbulence is measured by resonant fluorescence of sodium atoms seeded into a supersonic
nitrogen jet. By varying the frequency of the pumping laser, the mean square velocity,
temperature, and pressure fluctuations (as well as their correlations) may be determined.

Turbulence measurements in flowing gases have until
now been performed primarily with hot-wire techniques'
and laser Doppler velocimetry (LDV).2 These measurements
are particularly difficult in supersonic flows where high-tur-
bulence frequencies are encountered and fluctuations in all
the fluid properties are of interest. In hot-wire anenometry,
very thin wires (five microns diameter or less)® are used to
follow variations in the flow. The length of these wires (ap-
proximately 1 mm) seriously restricts the spatial resolution®
and the practical limit of the frequency response is lower
than the highest frequencies of interest in supersonic flows.
Moreover, the measurements cannot uniquely distinguish
velocity fluctuations from density fluctuations. The LDV
technique is also of limited utility in supersonic flows be-
cause of the inability of the particles to follow high-frequen-
cy flow fluctuations.’ In addition to these techniques laser-
induced fluorescence has been used recently to time resolve
relative density fluctuations.®’

Here we report the first use of the Resonant Doppler
Velocimeter (RDV) to observe time-averaged turbulence
fluctuations. We demonstrate that, by the proper choice of
laser frequency, velocity fluctuations may be removed from
the fluorescence signal or, alternatively, selected compon-
ents of the turbulence may be highlighted. By recording the
turbulence spectrum at a variety of laser frequencies the rela-
tive contribution of each fluid property as well as the correla-
tions between these properties may be determined.

The Resonant Doppler Velocimeter has thus far been
used for flow visualization and for quantitative measure-
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ments of the average velocity, temperature and pressure of a
gaseous flow.® This is achieved by shining a single-frequency
laser beam into a flow which is seeded with an atomic or
molecular species. The laser is tuned through the absorption
frequency of the seeded species and the resulting fluores-
cence is monitored by a detector. The velocity component in
the direction of the laser beam can be determined by observ-
ing the Doppler shift of the absorption frequency, and spec-
troscopic absorption line broadening mechanisms furnish
information regarding the static temperature and pressure of
the moving gas.

The laser-induced fluorescence intensity 7, for an opti-
cal depth much smaller than one is given by’

I, =1,k Ax. (1)

The laser intensity I, is assumed independent of frequency v
and Ax is the length of the volume of interest along the laser
beam. The fluorescence intensity depends on the velocity,
temperature, and pressure since the absorption coefficient «,
for laser intensities much lower than the saturation intensity
is given by®

K, = 70 fr, 2o jw (-l— I )
kT\)_ . \7m (v—v,—AV + (4w )

) el ):

Here r, = 2.82X 107 *° m, f;, is the absorption oscillator
strength, p is the pressure, & is Boltzmann’s constant, T'is the
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