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1
USING POWER FINGERPRINTING (PFP) TO
MONITOR THE INTEGRITY AND ENHANCE
SECURITY OF COMPUTER BASED
SYSTEMS

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention generally relates to power finger-
printing and more particularly to use of power fingerprinting
as a technique for improving the security and monitoring the
integrity of computer processing and software used on
computer-based systems.

BACKGROUND DESCRIPTION

In CMOS digital circuits, with every bit transition there is
a transient current drain resulting from a brief short circuit
in the gates and the charge and discharge of parasitic
capacitance at the outputs of the circuit. In a processor, the
intensity of these transient currents, hence, the total power
consumed in a specific clock cycle, is determined by the
total number of bit transitions that take place in that cycle.
The number of bit transitions is determined by the specific
instruction sequence executed, as well as their addresses and
parameters. Power fingerprinting is an integrity assessment
and intrusion detection solution for critical cyber systems
based on taking fine-grained measurement of a processor’s
power consumption and comparing them against trusted
signatures (patterns that result from the specific sequence of
bit transitions during execution) for anomaly detection. The
basic approach behind power fingerprinting is to character-
ize the execution of trusted software and extract its power
signatures and use them as reference to compare test traces
to determine whether the same code is executing.

A power fingerprinting (PFP) monitor consists of three
main elements common to all pattern recognition systems,
as shown in FIG. 1: sensing 110, feature extraction 120, and
detection/classification 130. Sensing involves measuring the
instantaneous current drain of digital hardware, which can
be accomplished using a commercial current probe and a
high-performance oscilloscope. Feature extraction is a criti-
cal aspect for PFP and involves the identification of statis-
tical and temporal properties of the power consumption that
uniquely identify the execution of a given software routine.
This is a challenging task that requires deep understanding
of the processor’s architecture and the structure of the
software, but which can be {facilitated by building the
software itself with certain characteristics that enhance
signatures and improve determinism. Ideally, a signature is
extracted from every execution path in the code. In cases
where this is not feasible, only a few critical sections are
characterized and monitored, such as OS kernel modules
and core applications.

In the general power fingerprinting approach, a sensor 110
is placed on the processor’s board as close to the power pins
as possible. The sensor captures the instantaneous current
drain of the processor. The sensor can be a commercial
current probe, a shunt resistor, or a current mirror. The signal
from the sensor has to be digitized at a rate higher than the
processor’s main clock rate. If the processor has an internal
phase-locked loop to increase the operating frequency, then
this becomes the effective clock frequency. Satisfactory
results have been obtained using 3.5x the effective clock
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2

frequency, but this does not represent a lower bound. Several
mechanisms can be used to reduce the sampling require-
ments.

After the instantaneous current drain has been digitized
into a power trace, different signal processing techniques are
applied to extract discriminatory features from the traces.
After the features have been extracted, they are passed
through a supervised classifier, or detector, 130 that has been
previously trained using traces 140 from trusted software.
This detector ultimately makes the decision of whether the
software execution corresponds to the authorized software
or not. A pictographic description of the general power
fingerprinting approach in the prior art is presented in FIG.
1

The decision of whether features from a specific power
trace correspond to authorized execution is performed by a
carefully designed detector, which compares incoming
power traces against all stored signatures 140 from autho-
rized code. When the observed traces cannot be matched
with any of the stored signatures, within a reasonable
tolerance, it is determined that an intrusion has occurred.
Although the difference for each feature may be small, the
confidence in judging an intrusion can be very high and
arbitrarily set because of the large number of features.

However, current techniques and procedures must be
enhanced and improved to keep pace with technology and
practices being developed and used by those seeking to
overcome or defeat safeguards that rely on power finger-
printing for execution integrity of computer systems.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
procedures for enhancing target system execution integrity
assessment determined by power fingerprinting (PFP): by
integrating PFP into the detection phase of comprehensive
defense-in-depth security; by deploying a network of PFP
enabled nodes; by executing untrusted devices with pre-
defined inputs forcing a specific state sequence and specific
software execution; by embedding module identification
information into synchronization signaling; by combining
signals from different board elements; by using malware
signatures to enhance PFP performance; by automatic char-
acterization and signature extraction; by providing secure
signature updates; by protecting against side-channel
attacks; performing real-time integrity assessment in embed-
ded platform by monitoring their dynamic power consump-
tion and comparing it against signatures from trusted code;
by pre-characterizing power consumption of the platform
and concentrating on trace sections carrying the most infor-
mation about the internal execution status; by improving the
ability of PFP to detect deviations from authorized execution
in commercial embedded platforms.

An aspect of the invention is a method for performing
real-time integrity assessment of execution of a routine in a
computer processing platform. This is accomplished by
monitoring execution of the routine by tracing power con-
sumption of a processor, by sampling the processor during
execution of the routine. A platform characterization tech-
nique is employed that detects sections of the traces, that is,
those sections that display the largest dependence on state
transitions in the processor. These sections are used to select
features carrying the most information. This platform char-
acterization applies to the platform and can be used for all
routines run on the platform. The next step is to obtain, from
a characterization of selected features of the routine, as
contained in the sections identified in the platform charac-
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terization, a set of trusted power fingerprints of the routine.
Then there is established a threshold for a specific false
alarm rate based on the probability distribution of distance
from a signature comprised of the trusted fingerprints. A
library of the trusted fingerprints is then compared to fea-
tures extracted from traces from the execution of untrusted
code, and there is then determined a distance between the
fingerprints in the library and the features extracted from
execution of the untrusted code. An exception is reported if
the distance exceeds the threshold.

Various procedures for improving the operation, effec-
tiveness, usability, and performance of integrity assessment
and intrusion detection systems based on power fingerprint-
ing (PFP) are described. The different procedures include:

Embedding module identification information into syn-

chronization signaling

Improved PFP monitoring by combining signals from

different board elements

Using malware signatures to enhance PFP performance,

generalizing on existing battery monitoring technology.

Automatic characterization and signature extraction

Secure signature updates

Response to integrity violations and layered security

Protection against side-channel attacks

Also described are methods and apparatus for:

Distributed PFP monitor network to monitor malware

dynamics and behavior

Application of PFP to Supply-Chain Trust Analysis

Digital rights management and execution limited leases

Failure prediction based on PFP

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of preferred embodiments of the invention with
reference to the drawings, in which:

FIG. 1 is a general block diagram of power fingerprinting.

FIG. 2 is a diagram showing ideal sensor locations for a
PFP monitor.

FIG. 3 is a diagram showing ideal sensor locations for
multi-processor boards.

FIG. 4 is a diagram showing an example of triggering
with a physical signal.

FIG. 5 is a schematic diagram showing PFP strategic
instruction insertion for synchronization and triggering.

FIG. 6 is a schematic diagram showing indirect access to
physical resources in the Linux device driver paradigm.

FIG. 7 is a flow chart showing the trusted code charac-
terization process.

FIG. 8 is a graph showing an example of preprocessing of
traces by calculating their power spectral density.

FIG. 9 is a graph showing sample preprocessing of traces
in the time domain.

FIG. 10 is a graph showing PSD difference from the
execution of test traces against a stored signature.

FIG. 11 is a flow chart showing the process of detector
design.

FIG. 12 is a graph showing sample probability distribu-
tion from trusted code execution used for detector design
and threshold selection.

FIG. 13 is a flow chart showing the PFP integrity assess-
ment operation process.

FIG. 14 is a schematic diagram showing a sample
embodiment setup for the Android platform.
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FIG. 15 is a graphical representation of sample distribu-
tions resulting from execution of the original untampered
routine.

FIG. 16 is a graphical representation of sample distribu-
tions resulting from execution of the tampered routine.

FIG. 17 is a graph of sample trace detail showing different
sections of the traces containing different levels of discrimi-
natory information.

FIG. 18 is a schematic representation of a platform
characterization using a linear projection from the most
informative perspective.

FIG. 19 is a schematic diagram showing a reference
measurement setup for platform power consumption char-
acterization and monitoring using PFP.

FIG. 20 is a graph showing a sample trace from baseline
code execution to evaluate ability to detect minimum power
consumption change.

FIG. 21 is a graphical representation of an average
signature from baseline code execution, where each point
represents a projection on an n-dimensional Euclidean
space.

FIG. 22 is a graph showing sample distribution of Euclid-
ean distances from the average signature extracted from the
execution of the baseline code.

FIG. 23 is a graph showing sample distribution of Euclid-
ean distances from the baseline signature in the transformed
space obtained using PCA.

FIG. 24 is a graph showing centroids of traces from
profiling instructions for LDA.

FIG. 25 is a graph showing sample distribution of Euclid-
ean distances from the baseline signature in the transformed
space obtained using LDA.

FIG. 26 is schematic block diagram of an exemplar target
platform for detecting deviations from authorized software
execution.

FIG. 27 is schematic diagram showing different layers in
a defense-in-depth approach to cyber security.

FIG. 28 is a schematic diagram showing PFP monitoring
scope within a layered defense-in-depth security solution.

FIG. 29 is a schematic diagram showing PFP Honeypot
node for monitoring and intelligence gathering.

FIG. 30 is a schematic diagram showing a PFP Honeypot
network.

FIG. 31 is a flow diagram of a supply-chain trust analysis
using PFP.

FIG. 32 is a schematic diagram showing potential sources
of reference signatures for supply-chain trust analysis using
PFP.

FIG. 33 is a diagram showing use of an IO register to
provide synchronization and identification signaling to a
PFP monitor.

FIG. 34 is a diagram showing embedding of PFP syn-
chronization and identification signaling into power traces.

FIG. 35 is a diagram showing a sample setup for com-
bining multiple signals for PFP integrity assessment.

FIG. 36 is a flow chart of a process to extract features that
preclude device failure for PFP.

FIG. 37 is a schematic diagram showing relationships
between the different system elements interacting for auto-
matic characterization and feature extraction.

FIG. 38 is a diagram of a structure for preventing side-
channel attacks from exploiting an embedded PFP monitor.

FIG. 39 is a diagram of a structure for preventing side-
channel attacks from exploiting an external PFP monitor.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

Power fingerprinting (PFP) is a technique that enables an
external monitor to assess the execution integrity of a cyber
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system. PFP relies on the execution status information
carried by the dynamic power consumption of a processor.
Using this information, along with pre-characterized signa-
tures from trusted references, PFP is able to determine
execution integrity in target systems. For practical applica-
tion of PFP, it is necessary to implement specific apparatus
and follow specific procedures to provide an effective moni-
toring solution. In this work, we describe various procedures
for improving the operation, effectiveness, usability, and
performance of a PFP monitoring solution.

Applying PFP to Detect Software Modifications in Smart
Phones and Other Embedded Devices.

Cyber security has become a critical element for national
security. Microprocessors are ubiquitous in almost every
aspect of modern life. Technology developments in the
information technology areas are moving forward at a faster
pace than the security solutions necessary to protect them.
The threat of cyber attacks remains constant with potential
devastating consequences to critical infrastructure and
national security. Cyber infrastructure has become so impor-
tant that cyber space is now considered a new warfare
domain and an element critical for national security that
needs to be protected from all kinds of threats, including
state-sponsored adversaries.

We describe a technique to perform real-time integrity
assessment in smart phones and other embedded platforms
by monitoring their dynamic power consumption and com-
paring it against signatures from trusted code. The method
and technology described build from the general concept of
power fingerprinting and provide enhancements for general
application on complex commercial devices. We present
examples of preferred embodiments of the general tech-
niques to be used as references and examples. The tech-
niques, however, are general and can be adapted to any cyber
platform.

As part of the approach, we also describe a methodology
to pre-characterize the way a specific platform and processor
consume power to improve the performance of the approach
by concentrating classification efforts on the sections of the
traces that carry the most information about the internal
execution status of the processor and ignore redundant or
extremely noisy features that can hamper performance.

The goal is to enhance the general power fingerprinting
(PFP) approach to define a reliable technique to detect
unauthorized software modifications in smart phones,
embedded systems, and general information systems. The
general prior art approach is depicted in FIG. 1.

The general PFP method begins by collecting fine-grained
measurements from the power consumption during the
execution of trusted code. The sensor 110 needs to collect a
direct or indirect metric representation of the dynamic power
consumption or instantaneous current drain of the processor.
The sensor 110 can be implemented by means of a com-
mercial current probe, a Hall effect sensor, piezoelectric/
magnetostrictive, composite magnetic field sensor,
Rogowski coil, a high-bandwidth current mirror, or a simple
low-resistance precision shunt resistor. Notice that the sen-
sors need to meet the requirements set by the specific feature
extraction techniques selected.

The physical location of the sensor is a critical element for
the success of this approach. The ideal location 210 is shown
in FIG. 2 at the V,, signal of the processor 205. If this
location is not feasible, or introduces excessive power
supply noise, then the second best location 220 is also
shown. If the sensor 220 is placed in the second location the
copper traces with their parasitic capacitance and inductance
along with the decoupling capacitors 215 create a low-pass
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(LP) RLC filter that affects the current traces. For PFP it is
beneficial to pre-characterize this hardware effect by iden-
tifying the transfer function, H, of the LP filter using a
commercial Network Analyzer or another system identifi-
cation technique. The effect of the inherent LP filter can be
minimized by passing the traces through another filter with
the inverse transfer function, H,,,. It is recommended to
implement the inverse filter digitally. Since the direct inver-
sion of H can lead to a unstable filter, it is necessary to select
an the closest stable approximation of H,,,,..

In FIG. 2, V55 oose 225 can be provided by different
sources. For simple processors, it comes directly from the
voltage regulators. For more sophisticated platforms, it can
come from a power and peripheral management system,
which is a complex circuit that provides a wide array of
services including delivering different voltage levels
required, reset and interrupt handling, and other peripheral
management. Power managers are complex systems that
merge different signals and add interference from the PFP
perspective and tend to hide the power signatures. For
system with a power management circuit, it is recommended
to design the system board with the necessary provisions to
place the current sensor after the power management system
to avoid the extra interference and facilitate signature extrac-
tion. In a best case scenario, the power sensor would be
included in the power management system as another ser-
vice provided, facilitating the integration of PFP.

In the case of multiple processors in the board, the same
principle can be repeated for each processor, as shown in
FIG. 3, where the nth processor 206 is preferably monitored
at 211 or at second best location 221 after decoupling
capacitor 216. In this case, the detector must be designed to
combine and consider traces from both sensors. For multi-
core processors in the same package, the same principles
apply as in the multi-processor example, but the location and
feasibility will depend on the architecture of the processor,
the number of cores powered by each rail, and decoupling
requirements.

With the sensor in place, the next step is to characterize
trusted code. This process is accomplished by repeatedly
executing the target trusted code in a controlled environment
(including isolation of the target software, set inputs used
during execution, and insertion of specific markers that help
synchronizing traces). Markers can be of different nature and
help with triggering and synchronization. Potential markers
include physical signals (as changing the voltage level of a
pin) or a specific sequence of instructions that yields a
known power consumption sequence. An example of a
physical trigger signal 410 is shown in FIG. 4. The concept
of instruction insertion for triggering is depicted in FIG. 5.
In this case the extra assembly instructions 515 are chosen
to yield a known pattern 510 in the traces, usually strong
variation in the current drain for a short period of time to
help indicate when a specific code 510 is executed.

When the target application 610 is running on the User
Space in a platform that implements the Linux device driver
paradigm, or in any other operating system with indirect
access to physical signals, as described in FIG. 6, it is
necessary to account for the inherent uncertainties in execu-
tion and timing caused by the indirect access. In this case,
the trigger instructions 515 will be executed in the User
Space 610 which has no direct access to Physical Memory
640, and can only access the registers 632 necessary to
create the physical signal 650 by means of a device driver
631 located in the Kernel Space 620. Uncertainties in
execution and timing exist because file access requires the
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process to wait (block execution) for the appropriate syn-
chronization signaling during which the kernel 620 sched-
ules other process to run.

Even though the markers 630 are not required to remain
in the final code, the process of run-time assessment is
facilitated if they remain in place. In the case when the
markers are left on the deployed version, it is necessary to
ensure that the facilities or services used for the markers will
still remain in the deployed platform (e.g. if the marker is
supposed to turn on a LED 640, that LED 640 must exist on
the deployed platform).

It is important to note that during characterization the
exact code that will be deployed needs to be used. This
includes using the exact same tools to build the software,
with the same level of optimization, etc.

For better performance, the characterization should be an
iterative, interdependent process, during which the source
code structure along with the respective markers are co-
developed to yield the strongest signatures with the smallest
variance across different execution instances.

Several traces from the execution of the trusted code may
need to be collected in order to average them and reduce the
impact of random noise inherent to any physical system. The
characterization process is depicted in FI1G. 7. After inserting
710 markers into the code, the trusted software is executed
and the resulting power traces are captured 720. This is done
for all the significant execution paths 730, using predefined
input 735 if necessary. The variations due to random param-
eters are removed using PCA (principal component analysis)
740. Discriminatory features are extracted 750 and statistical
analysis, averaging and clustering 760 is done to generate a
set of authorized signatures 770.

The signatures can be extracted from different signal
domains and be multidimensional. Furthermore, multiple
signatures can be used to identify a single piece of code.
Trace Processing and Feature Extraction

The process of preparing test traces to be compared
against the stored signature is known as preprocessing and
feature extraction. Trace preprocessing involves general
tasks to condition the traces to extract the selected discrimi-
natory features, e.g. converting the traces to the appropriate
domain or aligning the traces in reference to a specific
marker. An example of trace preprocessing is shown in FIG.
8, in which time-domain traces from the execution of test
software in a BeagleBoard with an OMAP3 processor are
first converted to the frequency domain by calculating their
power spectral density.

Another example of basic preprocessing is to align time-
domain traces, as shown by the alignment of the base
execution and alternate (-1 bit transition) traces in FIG. 9,
before being passed to a correlation detector. In this
example, each trace of N samples is considered as a point in
a multidimensional Euclidean space.

Feature extraction is the process of calculating the final
test statistic (from new traces) which is passed to the
detectors and used to determine integrity. This process is
unique to each selected feature. For example, in basic time
domain correlation analysis, preprocessing could include
coarse synchronization and compensation for specific plat-
form power consumption patterns, while feature extraction
involves comparing against the stored signature by calcu-
lating the correlation factor or the Euclidean distance. An
example of feature extraction is shown in FIG. 10, which
shows the PSD error in dBs of test traces corresponding to
the execution of the trusted code and tampered code in the
BeagleBoard’s OMAP3 processor following the PSD
example in FIG. 8. Using this difference vector, the final test
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statistic or discriminatory feature passed to the detector can
be represented by the mean squared error or any other
distance or error metric.

Detector Design

Once the signatures have been extracted and the discrimi-
natory features have been selected, the next step in the PFP
process is to design optimal detectors to perform the final
integrity assessment. These detectors will make the final
decision of whether a test trace should be considered an
intrusion during monitoring operation. The process of detec-
tor design and normal monitoring operation are very similar.
In detector design, test traces from the execution of trusted
software are captured and processed to extract the selected
discriminatory features and compared against the stored
signatures. Several traces are collected and processed and
their statistical sample distributions are used to identify a
threshold that yields the expected performance targets. The
process of detector design is shown in FIG. 11. Random or
predefined input 1110 is provided to trusted software 1120
and fresh test traces are captured from its execution. The
results are aligned and synchronized 1130, and the traces are
preprocessed and conditioned 1140. Using authorized sig-
natures 770 for comparison, the selected discriminatory
features are extracted and a distance metric is generated
1150. Then statistical analysis and distribution fitting is done
1160 on the resulting metrics. Finally, the Neyman-Pearson
criterion is applied 1170 to determine a threshold that meets
expected performance targets.

A common approach to create optimal detectors involves
the application of the Neyman-Pearson criterion to maxi-
mize the probability of detection for a given probability of
false alarm. As a brief reminder of this criterion, which is
spawned from basic hypothesis testing theory, a target
probability of false alarm is set based on the tolerance and
estimated cost of making a mistake in the final decision.
Using an estimate of the probability distribution of the
discriminatory features from the trusted code, a distance
threshold is calculated that yields the expected probability of
false alarm while maximizing the probability of correct
detection. An example of this process is shown in FIG. 12,
in which a distance threshold 1220 is calculated for a
probability distribution 1210 that yields an expected prob-
ability of false alarms 1230.

It is important to note, however, that there are different
techniques that can yield improved results depending on the
nature of the selected discriminatory features. Other tech-
niques for detector design and machine training include:
Neural Networks, Support Vector Machines, and Hidden
Markov Models.

Monitoring Operation

Once signatures have been extracted from the execution
of trusted code, discriminatory features have been selected,
and optimal detectors have been designed, the PFP monitor
is ready to assess the integrity of test software. As mentioned
before, the normal integrity assessment process is very
similar to the detector design process. During normal opera-
tion, the monitor also extracts the selected discriminatory
features from power traces after the necessary preprocess-
ing, but instead of collecting the statistics from several traces
as was done for detector design, they are passed through the
appropriate detector to compare against the respective
thresholds and determine the integrity status of the test code
execution. The detector compares the test traces against all
known signatures and, if no single test statistic is enough to
determine that authorized code has executed, then an intru-
sion is reported. This process is depicted in the diagram
shown in FIG. 13. The target software is executed 1310
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during normal operation or using predefined input to capture
test traces 1320, which are then aligned and synchronized
1330, and then preprocessed and conditioned 1340. The
detector then compares 1350 the extracted features against
the known signatures 1370 to determine a distance, using the
predefined threshold 1220 to make an integrity assessment
decision 1360.

Sample Results

In order to exemplify the PFP process on smart phones
and other embedded platforms, we describe a reference
implementation of this technique using a BeagleBoard revi-
sion C4 with the ARM processor (OMAP3 @ 720 MHz)
running the Android platform. The BeagleBoard 1410 is
slightly modified by cutting the main traces 1420 providing
power to the core power rail in order to connect a current
probe 1430. The capture system is implemented using a
commercial real-time oscilloscope 1440 and current probe
1430. The oscilloscope is configured to a sampling rate of
2.5 GSps and a total of 30K samples are collected in every
trace initiated by the trigger 1450. The setup is described in
FIG. 14.

Abasic test app was developed to demonstrate the process
and show feasibility. This basic app consists of a simple
counter that displays an increasing integer on the device
screen. The operation of the app is described in LISTING 1
and consists of a typical Android Java application structure
with an initialization routine that prepares the screen for
showing a text box and sets an integer variable used as a
counter. There is also a routine called DisplayCounter in
charge of incrementing the value of the counter and dis-
playing it on the screen. This routine is configured as a
recurrent task that is called every second.

LISTING 1. Pseudo-code of Android Test App

Initialize
DisplayCounter( )

counter = IncrementValue(counter);
Display data

Sleep for one sec
DisplayCounter at wake up

The critical IncrementValue routine was implemented in
native C code and included as an external library by
Android’s NDK toolset, instead of the traditional Java
implementation. Before the critical section, a physical trig-
ger 1450 is set to signal 1460 the capture systems to start
collecting power traces.

We only characterize and monitor the critical Increment-
Value routine shown in Listing 2.

LISTING 2. Pseudo-code of monitored native routinein C

/*Critical native routine*/

int incrementValue(int Val)

{
[*trigger LED usrl*/
Open device driver control file
Write 1 into file
/*Increment Val*/
Val++;
/*General extra processing™®/
i =1000;
while(i)i-—;
/*Reset LED usrl Trigger*/
Write O into file
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-continued

LISTING 2. Pseudo-code of monitored native routinein C

Close driver control file
return Val;

Signature extraction is performed in the frequency
domain by simply averaging the PSD of several traces from
trusted code execution. The phase information of the trace is
ignored. The PSD of two hundred traces is averaged together
to yield the signature.

The discriminatory features are extracted in the frequency
domain as well by a mean-squared error between the sig-
nature and the PSD of test traces (in dBs). The PSD of the
latest three test traces are averaged together before calcu-
lating the MSE. Only the first 200 MHz of the PSD are used
in the MSE calculation.

This process for signature extraction yields a mono-
dimensional discriminatory feature.

Detector design was performed using the Neyman-Pear-
son criterion described earlier using a target probability of
false alarm, P, of 1%. The sample statistics of the trace are
extracted from a sample of 200 traces from the execution of
the trusted code.

The sample distribution was fit to a Rayleigh distribution
with mean and variance equal to the training sample distri-
bution mean and variance. Using this distribution, the
inverse probability distribution is calculated to find the
threshold that yields the target 1% Pg,.

In order to test the ability to detect execution deviations
from trusted code, we test the previously designed monitor
using a slightly tampered version of the app. The tampered
app, shown in LISTING 3, is designed to emulate a covert
attack in which the intrusion remains inactive until a specific
condition is met. The intrusion consists of a very simple
modification in which a file is written only when the value
of a counter reaches a specific value (the condition).

LISTING 3. Pseudo code of tampered critical native routine

/*Critical native routine*/
Int incrementValue(int Val)
{
[*trigger LED usr1*/
Open device driver control file
Write 1 into file
/* Tamper */
if(Val == 1){
/fopen temporary file
//Write Val into file
//Close file

/*Increment Val*/

Val++;

/*General extra processing™®/
i =1000;

while(i)i-—;

/*Reset LED usrl Trigger*/
Write 0 into file

Close driver control file
return Val;

It is important to note that the file writing taking place in
the tamper only occurs once during execution (i.e. when the
counter is 1). The rest of the time, when the routine is called,
the condition is not met and the extra file is not written.
Hence, for the majority of the time the routine is called, the
only modification from a logic standpoint is an extra evalu-
ation of a given condition.
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Operational Results

The results from running the monitor when the original
untampered version of the routine is executing are shown in
FIG. 15.

We can see that for the duration of the test, we had only
a few instances that went past the threshold 1510, which is
consistent with the designed probability of false alarm.

The results from running the monitor with the tampered
version of the app are shown in FIG. 16. Notice that no
instance is misclassified as authorized execution and every
single execution of the tampered app would be flagged as an
intrusion above threshold 1610. It is also important to note
that due to the conditioned execution of the tamper, only
once during the execution instances used in these results was
the file actually written. The rest of the time, only a condition
was checked, and when it was not met, normal execution
resumed.

Platform Characterization and Evaluation of Minimum Sen-
sitivity

The fine-grained measurements of the power consump-
tion can lead to redundant information that adds very little
discriminatory information, but that can add significant
noise and uncertainty to the signatures. In the time domain
this looks like FIG. 17. In this case, we would like to focus
our attention on the sections of the traces (dimensions) that
have the largest variance 1710 between the two executions,
in contrast to the sections, e.g. 1720, which show little
variance between the two executions. On the other hand,
when characterizing a specific software routine that takes
random parameters, the effect of these random parameters is
to introduce noise to the signatures, which ends up reducing
performance and increasing the probability of false alarm. In
this case, we would like to focus our attention to the
dimensions (e.g. 1720) that remain constant during the
execution of the target software, while ignoring the ones that
add noise. In this case, we would like to ignore the dimen-
sions that display large variance (e.g. 1710).

In order to improve the performance of PFP, it is neces-
sary to reduce the number of features analyzed by concen-
trating on only the ones that carry the most information. This
is accomplished by pre-characterizing the features that carry
the most information for a given platform as part of the
training and then eliminate redundant information during
preprocessing before passing the traces to the detectors.
Technical Background

In traditional pattern recognition systems, the process of
selecting a subset of features that maximizes a specific
criterion (in the case of PFP we want to maximize discrimi-
natory information PFP), is known as optimal feature selec-
tion. In clustering systems, this is normally accomplished by
projecting the traces, x, to a transformed space with fewer
dimensions from the most useful (or informational perspec-
tive) by means of a linear transformation.

This transformation is described as

y=Wx

Where W is a carefully designed linear transformation
matrix that when applied to test traces, yields a transformed
trace with lower dimensionality that maximizes a particular
criteria. There are different criteria to identify the optimal
transformation. Because we are trying to optimize feature
selection in terms of discriminatory information, it is natural
to follow an information theoretical approach. This optimi-
zation has been performed before and can be found in
several sources in the pattern recognition literature, for
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example see J. T. Tou and R. C. Gonzalez. “Pattern Recog-
nition Principles”. Addison-Wesley Publishing Company,
1974.

Principal Component Analysis

A well know approach to determine the appropriate W
that optimizes the entropy (or information) in the traces is
known as Principal Component Analysis (PCA). We assume
that the covariance matrices of the different classes, C,, are
normally distributed and identical C,=C. Hence, the eigen-
vectors can be considered as the information bearers for the
traces under consideration. Some of these vectors carry more
discriminatory information in the classification sense than
others, which can be safely eliminated without much per-
formance penalty. It should be no surprise that the optimal
feature vectors are tied to these eigenvectors and are used to
create the transformation matrix W by aggregating eigen-
vectors in descending order according to the corresponding
eigenvalue. Because in PFP we only need a single point per
clock cycle, the transformation matrix W is given by the
eigenvector of the covariance matrix associated to the larg-
est eigenvalue.

The linear transformation can be interpreted as a projec-
tion of the test trace into a transformed space of lower
dimensionality from the most informative perspective. PCA
can be applied to in different ways, depending of the specific
objective. From a clustering perspective, it is preferred to
construct W using the eigenvectors associated with the
smallest eigenvalues, as this would yield a tighter cluster in
the transformed space. On the other hand, it is also possible
to use the eigenvectors associated with the largest eigenval-
ues when traces from different executions are used. When
applied this way, PCA will select the features that present the
largest variance between classes. With the assumption that
the covariance matrices are identical, these eigenvectors will
represent the features that contain the maximum discrimi-
natory information between the specific traces used for
PCA.

Linear Discriminant Analysis (LDA)

PCA selects a feature subset in ascending, or descending,
order in terms of variance to optimize trace entropy. It does
not consider, however, the specific differences between
classes to select an optimal set of features that maximizes the
distance between distributions Linear Discriminant Analysis
(LDA) maximizes the divergence between distributions,
which is a measure of distance between probability distri-
butions. Divergence is closely related to the concept of
relative entropy in information theory.

Using specific information from different classes and
divergence as optimization criterion, LDA identifies the
optimal transformation matrix to project the traces from the
unique perspective that yields the maximum separation
between them. This is because the transformation vector W
is normal to the optimal discriminating hyper-plane between
both distributions.

Following the assumption that traces are noiinally dis-
tributed, it can be shown [TOU] that the transformation
matrix that yields a divergence extremum is given by the
only eigenvector of C'8d7 associated with a non-zero
eigenvalue. This vector is given by

Wo=C" (11 -Ho)
where W, provides the optimal projection to separate both
classes while 11, and 1, are the respective centroids for the
two training classes. LDA can be extended to M discrimi-
nating classes. In this case, there will be M-1 eigenvectors
associated with non-zero eigenvalues.
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Platform Power Consumption Characterization

As mentioned before, not all samples in a test trace are
equally important to determine whether an execution devia-
tion has taken place or not. Because of the large oversam-
pling ratio and the nature of the power traces, there are
certain sections of the traces that carry more discriminatory
information than others. For PFP, the goal is to identify a
linear transformation that reduces the dimensionality of the
traces by removing redundancy while emphasizing the
dimensions that carry the most information.

The idea is to transform discriminatory features to reduce
dimensions by using a linear projection of the traces using
an optimal transformation matrix. In the time domain, trace
sections corresponding to a full clock cycle 1810 are
reduced to a single point 1820 in the transformed space, as
depicted in FIG. 18. Classifiers also have to be designed to
operate in the transformed space, reducing the number of
dimensions that need to be considered during normal moni-
toring operation.

Characterization is performed under controlled conditions
in the lab and is required only once per platform. As
described in the previous sections, there are two general
approaches to identify the optimal transformation matrix:
PCA and LDA.

Platform Characterization using PCA

In order to create a transformation matrix using PCA, it is
necessary to observe the power consumption of the proces-
sor during random clock cycles. The traces are aligned for
every clock cycle to clearly show the sections of the traces
that are affected the most by the dynamic behavior of
processor execution. Once the traces are aligned, PCA is
used to identify the transformation vector that accounts for
the most variance in the traces.

Performing platform characterization using PCA is rela-
tively easy to implement and well suited for complex
platforms in which controlling the contents in the pipeline
results too difficult.

Platform Characterization using LDA

Performing platform power consumption characterization
using LDA requires the development of two carefully tai-
lored routines. These routines must execute the specific
instructions with specific addresses and parameters in the
right sequence to create two sets of traces that show prede-
termined differences during a specific clock cycle. Training
traces from the execution of both routines provide the two
classes for which LDA will find the optimal discriminating
hyperplane, which will in turn become the optimal transfor-
mation vector.

The objective of the special characterization routine is to
execute a carefully crafted sequence of instructions to prop-
erly load the pipeline such that in a specific clock cycle there
is a known change during each execution stage (fetching,
latching, execution, etc). The changes should be relatively
small, preferably due to a few changing bits in the respective
registers. The characterization routine is not unique, but it is
platform specific as it depends on the architecture, instruc-
tion set, etc. of the platform being characterized. Different
processors will likely require a different sequence.

Once the traces from the execution of both sequences are
captured and synchronized, LDA is used to find the optimal
transformation vector W. It is expected that platform char-
acterization using LDA will provide the best performance,
given the availability of two known classes, but its imple-
mentations is more complex than PCA.
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Platform Power Consumption Characterization Reference
Implementation Results

For this reference implementation, we use a motherboard
with a PIC18LF4620 8-bit microcontroller from Microchip
Technology Inc., similar to the ones used in the PICDEM Z
Demonstration Kit, intended as an evaluation and develop-
ment platform for IEEE 802.15.4. This is a popular embed-
ded microcontroller without a memory management unit.

The processor motherboard is slightly modified in order to
enhance power consumption features. From the board, a
total of six decoupling capacitors are removed totaling a
cumulative 6 microF. The function of these capacitors is to
mitigate the stress placed on the power supplies by the
strong current peaks caused by digital processors. It is
important to note that removing decoupling capacitors
would not be necessary if the current sensor is placed closer
to the processor power pins, or if the effect of the resulting
LP filter is cancelled using signal processing.

Trace collection is performed using a Tektronix TDS
649C real-time oscilloscope 1910 and a Tektronix TC-6
current probe 1920. The probe is connected right passed the
voltage regulators on the mother board. The oscilloscope is
configured to 500 MS/s and 10 mV. The trigger is driven by
LEDI1 1930, and configured for falling-edge, 40 mV level,
and no pre-trigger samples are kept. A total of L=30,000
samples are collected after every trigger event. The mea-
surement setup is depicted in FIG. 19. Traces are captured
and transferred to a host computer using GPIB for their
posterior analysis.

A sample routine is developed for this experiment with a
dual purpose 1) to provide training routines to perform the
platform characterization and 2) to provide a reference
change to measure the performance of the approach. We start
by describing the evaluation usage of the routine and pro-
vide baseline performance for comparison. The test routine
is shown in LISTING 4 and executed in an infinite loop. In
this routine, the contents of Register W are toggled from 00
to Of using different instructions. Notice that the actual logic
in the routine has no impact on the performance of power
fingerprinting. This routine was chosen because it is easy to
control the number of bit transitions that happen. The results,
however, do not depend on the specific software being
executed. Therefore, this routine provides a representative
example.

LISTING 4.

BYTE i; //addr 00
BYTE j; //addr 01
BYTE k; //addr 10
BYTE I; //addr 11

// Initialize the system
BoardInit( );

// Initialize data variables
_asm

movlw 0x07

movwf i, 0 //addr 0x00
movlw 0x0f
movwf j, 0 /faddr 0x01
movlw 0x0f //Set for minimum change
movwf k, 0 //addr 0x10
movlw 0x1f
movwf [, 0 /laddr 0x11
movlw 0x00
__endasm
//Target code infinite loop
while(1){
TMROH = 0x00; //Restart TIMO
TMROL = 0x00;
LED_2=1; //Trigger
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-continued
LISTING 4.

LED_2 =0;

_asm
nop
iorwf  j,0, 0 //w=0f
andlw  0x00 //w =00
movf  j,0, 0 /lw=0f
andlw  0x00 //w =00
movf  k,0, O //w =0fChange in k (one bit)
movlw  0x00 //w =00
xorwf j,0, 0 /lw=0f
movlw  0x00 //w =00
iorwf  j,0, 0 //w=0f
xorlw  0x00 //w =00
nop
.. x 10
nop

_endasm

The routine, as shown in LISTING 4 represents the base
execution. Preceding the target code, we create a trigger
using an LED on the board. The trigger is used to synchro-
nize trace capture with the oscilloscope. The “NOP” instruc-
tion between the trigger and the target code is included as a
buffer to isolate the target traces form any residual effects
from the trigger. Once inside the main loop, Register W is
toggled from 0 O to O f creating four bit transitions in that
register every instruction. The alternative, or modified, code
has one fewer bit transition. In Line 15, we change the
contents of variable j from O f to 0 7. This way, when the
target code is executing, in Line 35, the parameter k is
loaded onto Register w which goes from 0 0 to 0 7, with only
three bits transitioning in the register for that instruction.
Note that there is just one bit difference between this
modified code and the base execution which loads Register
W with a 0 if and that everything else in the execution is kept
the same, including instructions, parameters, and addresses.
Note that this one-bit change actually affects two clock
cycles, as there is one less transition coming into that
instruction and one less coming out of it. Trailing the target
code there is a string of “NOP” instructions before the loop
is repeated.

A detail of a typical trace is shown in FIG. 20. In this
figure we capture one full execution cycle of the target code.
The trigger effects on the power traces are clearly visible as
two square steps 2010 and 2020. Individual instruction
cycles are also noticeable. They can be identified as groups
of four spikes that repeat every 125 samples. Using timing
information from the processor’s documentation, we can
determine the section of the trace that corresponds to the
execution of the target code. In FIG. 20, this section is
highlighted as a solid line 2030 that spans ten instruction
cycles. This is in agreement with the actual code, which
consists of ten assembly instruction, each taking one bus
cycle to execute.

Several traces are captured from each of the base and
alternative executions and the traces from each execution are
averaged together to provide a clean picture of both execu-
tions showing the total effect of one less bit transition. The
averaged traces are shown in FIG. 21. In this picture, the ten
clock cycles corresponding to the execution of the base code
are shown and it appears that the traces from each execution
are aligned. Around sample index 650, however, there can be
seen a small difference between the two traces. The differ-
ence (at 2110) is more noticeable in the top of FIG. 21,
which provides a closer look. Along with the closeness of
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the centroids from both scenarios, it is also evident that
traces are largely correlated due to over sampling and also
that only certain sections of the traces carry useful discrimi-
natory information.

For comparison purposes, we provide the results of a
naive classification approach in the time domain without
platform pre-characterization. We use a basic minimum-
distance classifier. In this approach each captured trace of
length 1.=1250 (the length of the target code) represents a
point in an [-dimensional Euclidean space. The Euclidean
distance is taken from the base execution centroid to each
incoming test trace. For classification purposes, the base
centroid and test traces represent a single point, or vector, in
a multidimensional Euclidean space with 1250 dimensions.
The test traces are different from the training ones used to
obtain the base centroid. This is to avoid a bias in the
evaluations of a minimum-distance classifier to accurately
discriminate between the different scenarios.

Test traces from the execution of both routines have the
Euclidean distance distributions shown in FIG. 22. In this
naive example, the performance of power fingerprinting is
not encouraging, as there is barely any difference between
the distributions, which substantially overlap. This poor
performance is expected considering the small differences in
power consumption between the base and alternative sce-
narios.

The first results for platform characterization are obtained
from applying PCA. For this process we use all clock cycles
corresponding to the execution of our target code in the
routine shown in LISTING 4. The trace corresponding to the
full execution of the trace is divided into different sections
corresponding to a single clock cycle execution. The sub-
sections are then aligned and PCA is used to find the
transformation vector W corresponding to the eigenvector
that accounts for the most variance. In this case, as explained
before, we take the oversampled trace for one clock cycle
and we reduce it to a single point.

After performing the platform characterization using PCA
the test traces from the evaluation routine are processed
again to demonstrate the performance improvements of
platform pre-characterization. The minimum distance distri-
butions from the transformed test traces to the signature in
the new PCA transformed space are shown in FIG. 23.

A clear separation is seen between the bulk of the distri-
butions, which represents a clear improvement with respect
to the naive classification performance shown in FIG. 22.
Results with Platform Characterization Using LDA

In order to obtain the training traces necessary to apply
LDA, we execute the base routine and a slightly modified
version. We obtain the special platform characterization
traces by comparing two sets of traces: from the base
execution, which is once again the code in LISTING 4 and
a slightly modified version of it shown in LISTING 5. The
changes in execution are carefully selected to cause one less
bit transition on each execution stage compared to the base
execution. In this modified version, the instruction in Line
36 is changed from xorwt with opcode 0 0 01 10da to iorwf
with opcode 0 0 01 00 da (the optional arguments d and a,
control the destination and RAM access bit, respectively,
and are kept with the same value in both cases). During
execution the difference in the opcodes will cause one-less
bit transition when latching the instruction word. The param-
eter in the instruction changed from j, located at address
0x01, to i, located at address 0x00 in Access RAM. Once
again, the change will create one-less bit transition when
executed. Furthermore, notice that the contents of the j and
1 also differ in one bit. This will also translate into one less
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bit transition when parsing the parameter, when executing
the instruction and when writing the results.

LISTING 5. Modified routine for platform characterization

movlw

35 0x00 Jlw = 00
36 iorwf i, 0, 0 //w=07
37 movlw  0x00 /fw =00

For platform characterization we use only traces corre-
sponding to the execution of Line 36 in Listing 5. The
average of these traces (for each execution, the base execu-
tion and the one-less bit transition) is shown in FIG. 24.

Using these traces, we perform LDA to identify the
optimal discriminating hyperplane and the linear transfor-
mation that project our traces from the most informative
perspective. The test traces from the evaluation routine are
processed again to demonstrate the performance improve-
ments of platform pre-characterization. The minimum dis-
tance distributions from the transformed test traces to the
signature in the new LDA transformed space are shown in
FIG. 25.

Detecting Deviations from Authorized Software Execution
in Software-Controlled Radio Platforms and Other Embed-
ded Systems

Dynamic power consumption of a processor can be moni-
tored to determine whether it corresponds to the expected
execution or a deviation has occurred.

Platform Description

The exemplar target platform for illustrating this use of
power fingerprinting (PFP) is a software-controlled radio, in
which the specific configuration of the radio behavior is
controlled by software. A generic block diagram of the
intended platform is shown in FIG. 26.

In this platform, the behavior and configuration of the RF
Transceiver 2610 is controlled by the processor 2620. The
application 2626 represents the highest layer and imple-
ments the intended functionality for the processor. In order
to interact efficiently with the RF Transceiver 2610, there is
a set of Application Program Interfaces (APIs) 2624 that
abstract the complexity of the interactions with the hardware
to the main application. These APIs, together with the
required drivers and protocol stack implementation 2622,
provide a board support package for the specific transceiver.
The protocol stack 2622 arranges the data to be transmitted
in the prearranged format, adding required headers and
preparing the payload so the intended receiver can extract
the information. It is also in charge of extracting the infor-
mation received from remote devices and presenting it to the
application layer 2626. The cryptographic module 2612 can
be implemented in the RF transceiver or in software as part
of the protocol stack. FIG. 26 shows it as part of the
transceiver. The location of the cryptographic module 2612
presents no practical difference in the approach. The MAC
2614 and PHY 2616 layers of the RF Transceiver 2610 are
in charge of medium access and physical transmission and
reception of the information.

The described approach characterizes the execution of the
Application software 2626, in particular the execution of the
API calls 2624 that impact the behavior of the cryptographic
module 2612. In this approach, the specific code executed as
a result of an API call is used to determine whether encryp-
tion was used and the type of encryption used. For example,
if the application calls for a specific kind of encrypted
transmission, this approach asserts the execution of the code
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that invokes the encryption. In case of malicious or acci-
dental tampering, this approach provides a reliable indicator
of the modification.

Signature Extraction

Traces of length L captured during the i execution of
authorized code a are represented by

r Ol n=0, ..., -1

In order to avoid potential low-frequency interference
from other board components, a basic no-multiplier high-
pass filter is introduced by calculating the difference
between trace samples

4.0 ) =1 1,0 [1-1]

Several captured traces from the execution of the autho-
rized code are used to create a signature, our target finger-
print. N traces are averaged to form the target signature and
reduce the effects of random noise in the individual traces

1N71
P WOrpte = -
sa[n]_N;da nln=0,..,L-1

Feature Extraction

The process of extracting discriminatory features consists
of simple time-domain correlation against the target signa-
ture. The correlation, however, is performed on j>0 partial
sections of the signature and the trace, each section has a
length w=floor{L}. This partial correlation is performed to
avoid spreading potential differences in the power traces
across a full-trace correlation.

The cross correlation for different sample lags, O<k=w, of
section j of the traces is given by:

v
sa[n1dP Tk + n] — wsd

P, U k)=
“a% n=(—1w

w=1osoy

where s and o, are the sample mean and standard deviation
of the corresponding section in s, and d and o, are the
sample mean and standard deviation of the corresponding
section in d,®.

In order to compensate for any clock drifts, we keep the
maximum correlation values for different lags. This action
reduces the dimensionality of our traces to only a sequence
ofj peak correlation values for every trace:

ﬁSadl‘,‘) = mkaX{PSadl(;)(j, 0}

Under ideal conditions and with b=a, f)sndb(l)(j):l for every
section j. Any deviation from the power consumption char-
acteristics would be reflected by a reduced correlation factor.
The actual discriminatory feature or test statistic used in this
work to evaluate traces is the minimum peak correlation
value for that specific trace

© _ o fa .
% _mfn{psad},‘)(/)}

Xp=x:i=0,... ,N-1



US 9,558,349 B2

19

The random variable x, indicates the maximum deviation
from the signature of instance i of code b. Using X, we can
design appropriate detectors using different criteria depend-
ing on the statistical information we can gather from the
system a priori.

Response to Integrity Violations and Layered Security

PFP is a very effective approach to detect execution
deviations in cyber systems. In order to have a complete
solution, however, it is necessary to have a structured policy
to handle integrity violations when the PFP monitor detects
a deviation from expected execution.

There are three clearly defined phases in computer secu-
rity:

Prevention. Includes active mechanisms to deter, discour-
age and prevent attackers from carrying on attacks to
disrupt the system, disclose information, etc.

Detection. Because perfect absolute prevention is not
feasible, it is necessary to perform constant monitoring
of the integrity of the system

Response. The set of policies set in place to react to
successful attacks.

The architecture for integrating PFP into a comprehensive
defense-in-depth security approach will now be described.
In this approach PFP provides a robust solution for the
“Detection” phase to complement a number of different
techniques to prevent and deter potential attacks. The appro-
priate reaction to different successful attacks is defined in the
“Response” phase and is described according to the security
policy described below.

While achieving system security requires a process and
not just isolated mechanisms or technologies we will con-
centrate on describing the areas where PFP can complement
traditional security mechanisms to provide continuous or
intermittent monitoring for integrity assessment and intru-
sion detection. Before describing the role of PFP it is
important to mention that the security process involves
several steps including:

Design. Follow sound design approaches and design the
systems to facilitate security enforcement, reduce vul-
nerabilities, enforce access control, etc. A typical
example is to design the system such that security
functions are isolated from the rest of the functionality
and where access control features are inherently
enforced.

Development. Follow best development practices to pro-
duce maintainable products with reduced vulnerabili-
ties.

Deployment. Make sure only authorized modules are
deployed. This requires strong authentication and non-
repudiation approaches.

Operation. Maintain a secure environment by enforcing
strong access control and other security policies.

Monitoring. Constantly assess the integrity of the system.
PFP, antivirus, and Network intrusion detection sys-
tems.

Response. Define the policies and procedures to be fol-
lowed when an attack is successful. Policies should be
developed considering the criticality of the systems and
should be strictly enforced.

This section describes an architecture to integrate a PFP
monitor into a comprehensive security solution that includes
complementary security mechanisms where the vulnerabili-
ties of one layer are covered by the next. The approaches and
technologies included in the different layers include: encryp-
tion of data at rest, strong authentication, access control,
tamper-resistance, firewalls, sandboxes, virtualization, and
physical protection. The architecture also provides a mecha-

10

15

20

25

30

35

40

45

50

55

60

65

20

nism to define and enforce security policies to react to
integrity violations detected by PFP.

The architecture defines a layered security solution where
a PFP monitor provides a last line of defense by detecting
when an intruder manages to get through all other defense
mechanisms. FIG. 27 shows the different layers 2700 in a
defense-in-depth approach. The different layers are intended
to slow an adversary and make it progressively more difficult
to breach a defensive layer without being noticed. In the
outer layers are the external defense mechanisms, such as
internet firewalls, physical protection of the equipment and
passwords and security policies (i.e. to prevent social engi-
neering attacks). The inner layers correspond to different
defenses that reside within the host 2750. They start with
access control 2740 and encryption of data at rest. They
continue with different security mechanisms intended to
protect the applications 2760 and the operating system 2770.
At the core 2780, there are controls for the most basic kernel
and safety operations.

PFP can effectively monitor the integrity of different
layers. At the core level 2780, PFP can assess the integrity
of kernel and safety operations that all other mechanisms
depend on. It can also be expanded to monitoring the
integrity of core applications in the operating system 2770,
as well as the integrity of critical user-level applications
2760. Notice that PFP can monitor the integrity of all the
modules that reside within the processor scope, including
antivirus modules and encryption modules, as shown in FIG.
28.

Integrating PFP into a defense-in-depth approach for
cyber security allows faster handling of potential incidents
before they can achieve their goals and cause damage.

The power signatures from the execution of other security
modules, such as encryption and antivirus, are extracted and
evaluated at runtime. From the PFP perspective, signatures
from a kernel module and an antivirus program are extracted
the same way and using the same techniques.

It is important to note that PFP can be extended to any
other device to monitor its execution integrity. This includes
devices that can be used to implement different security
layers such as firewalls, digital security locks, etc.

The last stage of cyberdefense with PFP is to define the
appropriate policies to handle different anomalies detected
by the monitoring and assessment operations. Because the
appropriate reaction to successful intrusions depends on
several factors unique to each platform and application, we
cannot generalize the response to different intrusions
detected by the PFP monitor. Therefore, it is necessary to
follow an architecture that accepts and enforces different
security policy definitions which can be adjusted to different
systems while maintaining and reusing the basic operational
principles and structures.

Distributed PFP Monitor Network to Monitor Malware
Dynamics and Behavior

This section describes the operation of a wide network of
nodes with PFP capabilities that are deployed across differ-
ent geographical or logical regions to monitor the spread of
malware, detect targeted attacks, and discover the potential
intentions of malicious adversaries. This approach is appli-
cable to discovering furtive remote attacks on specific
logical or geographical areas.

One of the main advantages of using PFP for this appli-
cation is its stealth, which prevents adversaries from detect-
ing the monitoring activities themselves, giving them a false
sense of furtiveness (believing they have not been detected)
and tricking them into carrying on with their activities,



US 9,558,349 B2

21

disclosing intentions and capabilities. This application of
PFP is a powerful tool for intelligence gathering.
Operation.

Stealth monitoring is achieved thanks to the low footprint
of PFP and negligible impact on memory and latency on the
target system. The distributed network of PFP nodes is
implemented using the following steps:

1. Enable representative nodes with PFP (Fit them with a
PFP monitor and extract trusted signatures from their
target components). The monitor can be rack mounted
and resourceful, as the target nodes only act as a honey
pot.

2. Deploy a network of the PFP enable nodes on the target
geographical or logical areas of interest.

3. Monitor each node individually for integrity violations
and intrusions as depicted in FIG. 29.

4. Periodically submit the integrity results to a centric
location for logging and analysis.

5. In the event of an integrity violation, the report should
include:

(a) a copy of the power traces that experienced the
violation

(b) the ordered sequence of untampered module execution
that executed prior to the violation

(c) the ordered sequence of modules that execute after the
violation

This application of PFP is depicted in FIG. 30. The figure
shows PFP honey pots in different geographical networks. It
is important to note, however, that network separation can be
logical, as in different sections of the same network, or
socio/political, as in networks for different government
agencies or corporate divisions.

The links between the honey pots and the centralized
analysis location, represented on FI1G. 30 as dotted lines, can
be implemented as a separate network (e.g. dedicated wire-
less links) or made using available wide-area networks, such
as the public switched telephone network (PSTN) or the
Internet. In any case, strong non-repudiation mechanisms, in
charge of providing proof (high assurance authentication) of
the origin and integrity of the traces, must be placed to
maintain trustworthiness in the system as a whole.
Application of PFP to Supply-Chain Trust Analysis

Outsourcing device manufacturing and production to for-
eign and untrusted foundries and manufacturers opens the
door to potential security breaches and tampering. Even with
trusted providers, there is the potential for foreign or dis-
gruntled personnel to try to disrupt the operation and func-
tionality of critical systems.

PFP provides a mechanism to detect unauthorized modi-
fications and other tampering in software, firmware, and
hardware introduced by untrusted links in the supply chain
throughout the system’s lifecycle. Integrity assessment of
new shipments and untrusted devices using PFP requires the
steps shown in FIG. 31. Input vector generator 3110 is used
to provide the necessary inputs for the execution of the target
device under a controlled environment 3120 during which
power traces are collected 3130. The parameters of the
individual characteristics of the power consumption are
compensated 3140 before performing feature extraction
3150. The resulting features are compared 3160 against
stored reference signatures 3170 and from this comparison
the final assessment result is obtained.

Detecting the integrity of digital devices using PFP is not
a destructive process and requires only minimal collabora-
tion from the device being assessed. Furthermore, the fine-
grained measurements of the power consumption provide
significant visibility into the internal execution status of the
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device, making it extremely difficult for a modification to go
unnoticed. For instance, PFP can detect tampering that
activates only under certain conditions (also known as logic
and time bombs) due to partial activation of the extra
functionality or execution flow during condition checks. The
ability of PFP to detect extra or missing functionality does
not depend on the purpose or intentions of the insertions
themselves.

Another advantage of PFP is that a specific execution path
verified with PFP can be trusted even if malicious activity is
not triggered. In other words, if PFP does not detect a
significant deviation from the signatures, it means that no
tampering or extra functionality has happened in that par-
ticular execution path.

A key element in performing supply-chain trust Analysis
with PFP is executing the untrusted device under a con-
trolled environment 3120. This controlled environment
includes predefined inputs 3110 that force a specific state
sequence and, for programmable devices, the specific soft-
ware to be executed. For some systems it may be necessary
to develop support scaffolding to control and isolate the
execution of specific components. The specific input vectors
depend on the functionality of the device or software module
and they are expected to exercise the critical execution paths
for the operation of the device. The same input vectors used
to extract the signatures need to be used to assess the
integrity of the untrusted devices.

Because of slight process variations during manufactur-
ing, different devices will show different power consump-
tion characteristics. These variations in power consumption
need to be compensated 3140 before feature extraction 3150
to avoid erroneous assessments. This compensation is per-
formed by means of an adaptive filter whose taps are
dynamically modified to match the specific characteristic of
the power consumption traces. This adaptive filter allows the
PFP monitor to concentrate on the power consumption
resulting from bit transitions in the device register during
execution and eliminate differences in the traces due to
manufacturing variations.

The most critical aspect for effective supply-chain trust
analysis using PFP is the availability of reference signatures
3170. There are different potential sources for such signa-
tures as depicted in FIG. 32. The best reference would be
provided by an identical trusted implementation (a gold
standard) 3230. In many occasions, however, such trusted
implementation is not available. In these cases a reference
signature can be extracted using alternative methods with
varying degrees of error and trustworthiness. For instance,
two relatively simple alternative reference sources include a
previous implementation of the device (one that has been
time tested) 3250 or an alternative implementation from a
different supplier 3260. In these cases, the signatures are
extracted from the execution of the alternative implemen-
tations, reducing the chances of two identical modifications
by different providers. Signatures from the former approach
can miss unidentified modifications present in the previous
version. In the latter approach, an attacker could create an
identical modification in both versions from the different
suppliers to avoid detection.

Using a CAD model 3240 to obtain the signatures
requires more effort, but it can be done in-house without
relying on foreign foundries. In order to extract the signa-
tures using a CAD model it is necessary to simulate the
execution of the device using deterministic input vectors.
The simulator needs to be accurate in teams of power
consumption to the register transfer level.
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Digital Rights Management and Execution Limited Leases

Another novel application for PFF is the enforcement of
Digital Rights and the creation of execution instance-limited
leasing to enable licensing based on the number of execu-
tions.

This approach is implemented by extracting signatures
from the execution of protected software and monitor at
run-time the power fingerprints to enforce the sole execution
of authorized modules. For example, a software system can
be licensed to include only a set of functional modules with
a subset of the modules reserved for a higher license tier. The
fingerprints from all modules are extracted before release. At
execution time a PFP monitor matches the execution of
different modules with the authorized licenses. When a
module not licensed executes, as a result of a stolen pass-
word or a breach in protection, the PFP monitor could
inform the issuing agency about the violation. Furthermore,
it is possible to enable a trusted execution-instance-limited
leasing approach for protected software. In this case, the
PFP monitor keeps count of the number of times the licensed
software has been executed and informs the issuing agency
when the lease has expired.

A similar approach can be taken for licensed media
content. Using a PFP monitor, it is possible to detect the
reproduction of specific files on known media players using
PFP. In this case, the protected media data takes the place of
the predetermined input during PFP characterization. If the
same media is reproduced on the specific player, the power
signatures will match. Therefore, PFP can be used to detect
the reproduction of unauthorized licensed media.

Failure Prediction Based on PFP

Hardware components undergo an inevitable aging pro-
cess, which is accelerated by operation in harsh environ-
ments or when the systems operate under continuous envi-
ronmental stress. This aging is reflected on the power
consumption characteristics of the platform. PFP can be
used to monitor not only the correct execution of software
but also the integrity of the hardware platforms. A PFP
monitor can continuously track the power consumption
characteristics of the hardware and predict failure before it
actually happens, dictating when a specific system or ele-
ment must be replaced.

Tracking the power consumption characteristics in PFP is
implemented using an adaptive filter. It is necessary to
compensate for differences in power consumption from
when the signatures are extracted or due to environmental
conditions. The same tracking mechanism can be used to
monitor the status of the hardware and compare the power
consumption characteristics to predetermined patterns cap-
tured in laboratory testing of the devices. The process to
identify the failure features is depicted in FIG. 36. In this
process, accelerated aging 3610 can be achieved by expos-
ing the target device to abrupt temperature changes. The
characterization process takes place in intervals, with one
round of accelerated aging followed by trace capture 3620
during the execution of a test routine. The traces are col-
lected for posterior analysis and the process is repeated until
the device fails. Once the device fails the set of traces is
examined to determine the specific features that are exhib-
ited before failure 3630. The features are extracted from
other similar devices to provide statistical diversity and
isolate the generic features 3640.

Embedding Module Identification Information into Syn-
chronization Signaling

The PFP requires proper synchronization with the soft-
ware being executed in order to provide a correct assess-
ment. There are two levels of synchronization in PFP: clock
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cycle level and routine level. The former can be easily
achieved by tracking the distinct cycles in the power con-
sumption that occur at the clock cycle rate or, for simple
platfoinis, by probing the clock signal itself. The latter
synchronization is more difficult to achieve and the process
is facilitated by embedding in the routine itself a trigger, or
identifier, that informs the PFP monitor the execution of a
specific routine.

In this section we present a mechanism to embed an
identification of the node being executed into the triggering
and signaling mechanisms. This mechanism not only helps
with informing the PFP monitor which specific routine is
about to execute, but also provides robust synchronization
signaling to for more accurate anomaly detection and behav-
ioral signature extraction.

The ultimate goal is to provide an identification code for
the different modules being characterized that is inserted
into the synchronization and triggering artifacts for PFP.
There are two main approaches to provide synchronization
and identification signaling for PFP: 1) creating an adjacent
physical signal, as shown in FIG. 33, and 2) embedding a
signal in the power consumption itself, as shown in FIG. 34.
For the former, a binary identification code is written in a
physical 10 register 3324 before the execution of the routine
3322. The register is then transmitted 3335 to the PFP
monitor 3340, which captures the power traces 3315 from
the sensor 3310, in either a parallel or serial fashion. The
length of the code and register depends on the number of
routines that need to be monitored. In the simplest sense, a
single-bit register, such as an LED, can be used to signal the
execution of the target routine. In the case of a separate
physical signaling the trigger is encoded as a binary number
on the signaling register, as shown in FIG. 33.

The second approach requires the synchronization signal-
ing to be embedded on power consumption itself by insert-
ing a carefully crafted sequence of instructions 3422 that
yield a distinctive power consumption pattern. This
approach is depicted in FIG. 34. The instructions on the
synchronization routines are chosen such that the bit tran-
sitions in their codewords, addresses, and parameters yield
a specific number of bit transitions that ultimately drive the
power consumption and signal the PFP monitor 3340 that a
specific sequence is about to execute to capture the right set
of traces 3415 coming from the sensor. More bit transitions
result in higher current drain. When developing the sequence
the length and characteristics of the pipeline need to be taken
into consideration. Similar to the previous approach, the
length of the sequence of instructions (code) depends on the
number of critical routines that need to be identified. By
creating different distinct power consumption patterns, the
sequence itself is chosen to yield different signatures codes
used to identify different modules.

It is important to notice that synchronization signaling is
a required element for effective PFP, as it allows to concen-
trate the assessment efforts on the sections of the code that
matter the most. Embedding an identification code in the
signaling facilitates the assessment process but it is not a
necessary requirement. This is because using a single trigger
will allow the PFP monitor to capture the right set of traces
and signal classification techniques can be used to determine
which specific routine was executed or whether no reliable
match can be established (an anomaly).

Improved PFP Monitoring by Combining Signals from
Different Board Elements

Signals from different elements of the system can be used
by a PFP monitor and be combined to provide improved
performance and reliability. Sources of multiple signals
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include multiple processors, co-processors, peripherals, or
other special-purpose elements introduced with the sole
purpose of enhancing PFP (e.g. the IO registers used for
triggering).

There are different ways to combine signals from different
sources in PFP. One of the main approaches includes cap-
turing power traces from different processors or other digital
circuits to perform integrity assessment on multiprocessor
and multicore boards. Another approach is to monitor other
elements of the systems (power consumption or other side
and direct channels) to gather extra context information to
be used during integrity assessment. The extra context
information can be used to improve synchronization and
facilitate behavioral characterization. The context informa-
tion can be generated as a product of normal system opera-
tion or deliberately introduced at design time (e.g. the 10
registers used for triggering). A sample setup of a PFP
monitor that combines multiple signals is depicted in FIG.
3s5.

Additional signals can be captured from direct support 1O
registers, from the power consumption of different elements,
or from other side-channels such as electromagnetic radia-
tion. Combining signals from different sources requires a
specially designed detector that can support the different
features. The specific combination mechanisms depend on
the system functionality and support platform. For example,
in a multi-core processor, power traces from each core can
be scanned in order to find the traces corresponding to a
target routine. Another example, in a software-defined radio,
the activation of the power amplifier (PA) can be detected by
monitoring the power consumption and occurs when a radio
transmission is taking place. The activation of the PA can be
used as a trigger mechanism for the routines involved in
preparing the data to be transmitted (notice that in this case,
the routines execute before the trigger occurs).

Using Malware Signatures to Enhance PFP Performance

Even though the main application of PFP is anomaly
detection, there are important benefits of using available
information from known malware to improve assessment
performance. When a new trend of malware is identified, it
is possible to extract its PFP signature and add it to the
library of known signatures. These malware signatures can
be used to improve the performance of PFP integrity assess-
ment by providing traditional signature-based detection of
installed malware, similar to traditional antivirus software.
The monitor would need to be made aware of the individual
nature of each signature (white list and black list) in order to
avoid incorrect assessments. Malware signatures can also be
extracted from behavioral patterns in the execution. For
instance, certain malware types, such as exhaustion attacks
have very distinct execution patterns that can be easily
identified using PFP.

The process of extracting signatures from malware is
similar to the process to extract signatures from trusted
software, in which the target modules are executed repeat-
edly in a controlled environment and different signal pro-
cessing techniques are applied to the resulting power traces
to select the features with the best discriminatory properties.
It is important to note that malware characterization is
facilitated once the malware has been identified, isolated,
and executed in a controlled environment.

Automatic Characterization and Signature Extraction

In order to efficiently characterize a new software system,
or a new version of an existing system, it is necessary to
have tools to automatically characterize a trusted reference
and extract the PFP signatures that uniquely identify that
specific software’s execution. In a sense, this process is
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similar to automated testing because it requires the execu-
tion of specific modules under controlled conditions. Dif-
ferent from automatic testing, however, PFP characterization
is only concerned with “observing” several execution
instances of different modules and does not try to evaluate
any requirements or properties.

The purpose of this section is to describe an approach to
facilitate the characterization of complex systems and soft-
ware architectures and make it feasible to extract signature
from realistic implementations of cyber systems of practical
complexity. Without this automatic approach, it would take
too long to characterize and extract the unique signatures
from complex systems (i.e. commercial systems) to be used
in power fingerprinting.

The main goal is to automate the process of character-
ization for the different modules by using scaffolding similar
to what is normally used in software testing, as well as by
using a variety of statistical analyses and signal processing
to identify the best discriminatory features that form the
fingerprints. The process starts when a new software stack
needs to be characterized. The tools necessary for this
process include: critical module descriptors, signal process-
ing tools for feature extraction, detector design tools, scaf-
folding for module execution (similar to testing scaffolding),
input vector generators, report generation, and signature
packaging. In order to facilitate the understanding of the
approach, we provide a high-level view of the process that
describes the details and interrelationships between the
different subsystems. The relationships are depicted in FIG.
37.

Descriptors include required information about the criti-
cal modules, including unique identifiers, dependen-
cies, input analysis (breakdown of different input
classes), execution mode (dynamically linked, priority,
kernel module, etc).

Information from the descriptors is used to implement the
scaffolds to control the isolated execution of the target
modules. The scaffolds allow the system to enter deter-
ministic values as inputs to control the execution of the
modules.

The information in the descriptors about the functionality
and the different input types is used to determine a
suitable set of input vectors.

Coverage analysis is performed to identify the execution
paths that have been exercised, yelding a metric of the
level of protection for the system.

Once the system is loaded, the operator (which can be an
automatic system) executes the different modules with
support from the scaffolds and providing the appropri-
ate input vectors. While the modules are being
executed, the PFP monitor captures measurements of
the power consuption.

The power traces captured by the monitor are then pro-
cessed using different signal processing techniques for
extracting discriminatory features. There is a pre-
defined set of features to be extracted for each compo-
nent in different domains and using different tech-
niques.

After several traces are captured and the respective fea-
tures are analyzed, statistical analysis is performed to
design optimal detectors to discriminate normal activ-
ity from anomalies based on the specific requirements
for the application.

Signatures and detectors are then packaged together to be
deployed along with the monitors that will be assessing
the integrity of the target systems.
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The following sections include more detailed descriptions
necessary to successfully implement the approach described
above.

Descriptors

Descriptors contain meta-information about the specific
modules to be characterized. They are used to develop
scaffolding artifacts to isolate the execution of individual
modules and to provide a controlled environment to exercise
the different execution paths.

The descriptors are expected to be provided in a markup
language that is easily read by humans and machines, such
as the Extensible Markup Language (XML), but the con-
tents, language, and structure will depend on the specific
tools used for automating the characterization process and
can be proprietary.

The minimum required information that needs to be
contained in a module descriptor for PFP characterization
includes:

Unique indentifiers to describe each module. The unique
identifiers should be human readable and provide the
necessary information to uniquely locate the module in
question. Elements in the human readable part includes
Company, Product, Class, Module, and Version.

Dependencies. The required software and hardware
dependencies of the module.

State Dependencies. The elements of the internal state that
affect the behavior of the module and that need to be
controlled to provide consistent and deterministic
execution.

Interface analysis. Provides a breakdown of the different
input classes and the required input classes to exercise
the different execution paths

Execution mode. Describes in what mode the module will
be executed when deployed, i.e. static, for statically
linked modules; dynamic, for dynamically linked mod-
ules; Kernel or protected mode, for the operation mode
that the processor will adopt when executing the mod-
ule; and priority level.

Input Vector Generators

The function of the input vector generators is similar to
their counterparts in software testing, to provide the appro-
priate inputs to force the component to into a specific state
sequence that includes the different execution paths. Differ-
ent from testing, however, the goal for PFP input vectors is
not to find implementation errors, but simply to exercise the
different execution paths.

Depending on the nature of the target system, it will
sometimes be necessary to store the input vectors and
distribute them along with signatures for utilization during
assessment (i.e. integrity auditing). The decision whether to
keep the input vectors depends on the nature of the features
selected and whether traces due to random inputs can be
removed.

The input vectors can be generated using different tech-
niques, including search-based (random search, hill-climb-
ing, genetic algorithm, etc.), partial scan, linear program-
ming, and random and pseudo-random approaches

The actual identification of effective test vectors, how-
ever, remains a largely heuristic approach that depends on
the specific functionality of the target module and its input
domain, as well as the information available about the
module’s structure. There will be some cases when specific
knowledge of the execution structure of the module (what
execution paths exist and the state sequences necessary to
execute them) is necessary to find meaningful input vectors
within a reasonable time. Furthermore, sometimes the direct
input of an expert human analysis may be required to
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provide guidance to the automatic tools in order to identify
and generate meaningful, effective test vectors.

One key element of test vector generation for PFP is that
the objective is to execute the different paths that are
expected to occur once the device is deployed, not to find
errors. This is a relatively risky approach, because a valid
execution state can be reached that has not been character-
ized and, hence, is flagged as an anomaly. The advantage is
that it reduces the search space to only a few states. For most
critical systems, the execution space is relatively small and
the expected execution states are a subset.

Coverage Report

Using the information from the input vector generator is
possible to generate a coverage report based on the execu-
tion paths traversed by the specific input vectors. Using
structural information from the target modules, it is possible
to calculate a PFP coverage metric as a percentage of the
existing paths in the module and the ones traversed using the
generated input vectors. This report is only an indication of
the expected coverage for PFP. The report still needs to be
completed by identifying the number of execution paths that
actually yielded acceptable PFP signatures.

The report is provided at the end to provide the users the
information about the specific modules that can be moni-
tored using PFP.

Scaffolding

With the descriptors and the software stack, the process of
scaffolding to isolate the execution of the critical modules
and their different pieces is performed. This is similar to the
process of scaffolding for automated testing. The purpose of
scaffolding is to execute the target modules in a controlled
environment similar to the one that will be found once the
whole system is deployed in order to collect the power traces
during its execution. Because the modules are expected to
have different execution paths that depend on the inputs, the
scaffolds need to facilitate the use of different inputs.

For the case where physical inputs are needed, the scaf-
folds need to provide the appropriate physical interfaces to
provide the necessary inputs.

This is a partially manual process and depends on the
characteristics of the target modules. Fortunately, most of
the elements necessary for the scaffolds overlap in function-
ality with the traditional scaffolds for automatic testing (e.g.
unit, integration, and system testing), adding only a little bit
of extra work.

It is important to note that for non-software implementa-
tions, the scaffolding will have similar requirements,
although the final implementation will be different. In these
cases, the modules will be limited by the sections that can be
independently exercised. For highly integrated systems, this
may represent a challenge.

Signal Processing and Feature Extraction

With the power traces corresponding to the execution of
the different modules and their individual execution paths
captured using the power/instantaneous current sensor, the
discriminatory features that uniquely identify the execution
of the target module need to be extracted. The exact set of
techniques and signal analysis necessary to identify practical
signatures depends on the specific characteristics of the
target modules.

We just describe a framework for the parallel execution of
a number of different feature extraction and signal process-
ing techniques to reduce the overall time required to char-
acterize a target module.

There is no known effective procedure to deteimine the
optimal discriminatory features for a given problem. There
are, however, several techniques that can be evaluated and
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from which the best discriminatory features are selected.
The set of discriminatory features that are extracted is
determined using a combination of heuristic approaches and
experience. Included among these features are: Time-do-
main correlation, Euclidean distance, cyclostationary analy-
sis, frequency analysis, etc. The process to select the best
discriminatory features include calculating all the different
features in the set in parallel and ranking them based on
intra-class variance. The Mahalanobis distance is a sample
metric for such an evaluation of features.

The process of feature selection and detector design,
explained below, are tightly related, as the statistical prop-
ertied of the feature extraction results determine the neces-
sary analysis to determine an optimal detection threshold.

Statistical Analysis and Detector Design

Statistical analysis is performed on the different features
obtained from the power traces captured during independent
execution instances of the target module. The goal of the
statistical analysis is to select the features with the best
discriminatory qualities and to determine the threshold lev-
els, or areas within which an observed set of features will be
considered as generated by the target module (a detector).

In PFP, being an anomaly detection approach, the prob-
ability of false alarm (PFA) is an important operational
metric that determines the performance of the system. PFA
is defined as the probability that a normal execution instance
of the target module falls outside the acceptance area and is
classified as an anomaly. A PFP detector needs to be
designed to minimize the PFA while maximizing the prob-
ability of correctly identitying the target module. This is a
classic hypothesis testing problem and the Neyman-Pearson
criterion can be applied to detect a threshold. There are,
however, several other approaches that can be applied.

Given sufficient samples, an arbitrary PFA can achieved in
PFP. In practical systems, however, this is not feasible and
a finite, practical PFA level must be determined. The PFA
that can be tolerated depends on the specific module and the
nature of the application where it is expected to operate.

Ideally, signatures from different instances from the same
execution need to fall within the distance for minimum
sensitivity calculated during platform characterization. In
the event that this desired feature cannot be achieved, there
are several ways to make PFP deliver accurate assessments.
One simple approach is to average several traces to get rid
of some noise

Signature Packaging and Encryption

Once the target modules have been characterized, the
resulting signatures, feature extraction techniques, and
thresholds are packaged for deployment along with the
devices. The packaging and delivering mechanism depends
on the characteristics of the device and the application. The
complete signatures extracted using the selected features
need to be stored and passed to the monitors. For example,
in case of simple time-domain correlation, the complete
vector needs to be stored.

In order to protect the signatures at rest or during trans-
portation, it is necessary to encrypt them to avoid giving
potential attackers an exact reference of the signatures the
monitor is looking for. This encryption can be performed
using a variety of mechanisms for private or public key
encryption. It is important to note, however, that even if a
potential attacker acquires the signatures, it would be still
very difficult to match the signatures perfectly while carry-
ing on malicious behavior.

Secure Signature Update

When a deployed system being monitored using PFP is

updated, it is also necessary to update the PFP signatures in
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a reliable and secure way in order to maintain effective
integrity assessment. This is a critical step, as the trustwor-
thiness of the assessment depends on appropriate signature
management. For this update process to be secure it is
necessary to verify the signature’s integrity and authenticity.
In this section we describe the necessary mechanism to
provide secure PFP signature update.

For widely deployed PFP monitors, signatures should be
distributed along with other software updates. For central-
ized PFP monitors, updates can be delivered separate from
the software updates. The main challenge in PFP signature
updating is authentication (i.e. making sure the sender is an
authorized entity and that the signature itself is correct and
has not been tampered with or altered in any way). The
challenge is not as difficult in the case of centralized PFP
monitors, where signatures can be distributed using physical
media or trusted networks and where preparations can be
made in anticipation of the transfer of sensitive signatures.

In the case of widely distributed PFP monitors, where
signature exchange cannot be made using physical means or
alternative trusted networks, signature update needs to be
performed along with the actual software update. In this
case, there are several vulnerable points that could be
exploited by an attacker with enough knowledge of the PFP
system. For example, if not properly authenticated, the
update process can be disrupted by a man-in-the-middle
attack.

Secure Signature Update Process and Operation.

Known approaches for secure content distribution com-
monly used in over-the-air programming and distribution of
software updates can be adapted to PFP signature updates.
Secure signature update can be seen from two different
perspectives: the authentic signature originator and the PFP
monitor. From the signature generation side, it is necessary
to provide effective authentication information along with
the signature and encrypt the signature pieces with a rotating
key scheme.

Other techniques that can be applied to enable secure
signature update include:

Scramble both the sample buffer and the signature ele-

ments

Public or symmetric-key encryption

Change the encryption key to be used for descrambling

the signature and traces according to a known sequence
(PN Sequence) that updates its index after each signa-
ture update.

Protection Against Sde-Cannel Atacks

PFP uses the same principles for integrity assessment that
are exploited for malicious side-channel attacks. Hence, in
order to prevent potential adversaries from exploiting PFP
infrastructure to perfoim side channel attacks, it is necessary
to protect the traces provided by the sensor by restricting
access to them. This is especially important when the power
traces are transmitted using a wireless connection. This
section describes a mechanism to protect the unauthorized
access to power traces, which can be misused in side-
channel attacks.

Operation.

Protection for trace access is accomplished by encrypting
or scrambling the traces using a shared key between the PFP
sensor and the PFP monitor. From this perspective, there are
two basic modes of operation for PFP: embedded monitor
(sensor and digitizer) and external monitor.

In embedded operations, traces are encrypted or
scrambled with a strong private key (symmetrical key
encryption). Performing this encryption step is especially
important when the power traces are transmitted wirelessly
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for external processing. The encryption process is described
in FIG. 38. The analog output of the processor 3810 is
monitored by sensor 3820 and converted by an analog-to-
digital converter 3830 and fed into the cipher 3850. The
cipher 3850 can hide the appropriate information from
side-channel attackers in several ways, including block
encryption of the bit samples or scrambling them (effec-
tively a transposition cipher where the key is a permutation).

For external monitors, the physical connection that gives
access to the traces is enabled by a digital switch that
requires a password. In this case, the contact points for the
external monitor are provided by the power management
chip on the platform. The power management chip can be as
simple as a voltage regulator, but for most commercial
processors used in modern smart-phones, the power man-
agement chips are much more complex. When the appro-
priate monitor is connected, the PFP-enabled power man-
ager reads the password from the external monitor once
connected and then reroutes the power supply current to go
through the external sensor which allows the external moni-
tor to capture the instantaneous current drain or power
consumption. FIG. 39 shows a graphical representation of
this process.

It is important to note that the solutions here described are
not intended to prevent attackers from carrying on side
channel attacks against our target systems. Instead they are
intended for preventing the exploitation of PFP monitoring
facilities for side-channel attacks. With these measures in
place, a potential attacker would have to make the same
hardware modifications to a board with PFP monitoring as
to one without it.

While the invention has been described in terms of
preferred embodiments, those skilled in the art will recog-
nize that the invention can be practiced with modification
within the spirit and scope of the appended claims.

The invention claimed is:

1. A method, comprising:

receiving a signal representing power consumption of a

first electronic device measured with one or more
sensors during operation;

defining a plurality of signal sections based on the signal,

each signal section from the plurality of signal sections
being less than a total size of the signal, each signal
section from the plurality of signal sections associated
with one signature section from a plurality of signature
sections representing power consumption of a second
electronic device during operation, the second elec-
tronic device being a trusted device; and

comparing, for at least one signal section from the plu-

rality of signal sections, that signal section to the
associated signature section from the plurality of sig-
nature sections to extract a feature.

2. The method of claim 1, wherein the signal is a first
signal, the plurality of signal sections are a first plurality of
signal sections, the method further comprising:

comparing, for the at least one signal section from the first

plurality of signal sections, that signal section to an
associated signal section from a second plurality of
signal sections to determine whether first electronic
device executed authorized code during operation, the
second plurality of signal sections defined based on a
second signal representing power consumption of the
second electronic device during operation of the autho-
rized code.

3. The method of claim 1, wherein the signal is a first
signal, the plurality of signal sections are a first plurality of
signal sections, the method further comprising:
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receiving a second signal representing power consump-
tion of the second electronic device during operation;

defining a second plurality of signal sections based on the
second signal, each signal section from the second
plurality of signal sections being less than a total size
of the second signal, each signal section from the
plurality of signal sections associated with one signa-
ture section from the plurality of signature sections that
were generated from the second electronic device dur-
ing operation; and

comparing, for at least one signal section from the second

plurality of signal sections, that signal section to the
associated signal section from the plurality of signature
sections to extract the feature.

4. The method of claim 1, wherein:

the feature is associated with a difference between the at

least one signal section and the associated signature
section.

5. The method of claim 1, wherein:

a duration of the at least one signal section being asso-

ciated with a size of the feature,

the size of the feature for the at least one signal section

being greater than a size of the feature when extracted
based on a difference between the signal in its entirety
and a signature in its entirety generated from the second
electronic device during operation.

6. The method of claim 1, wherein:

the comparing includes correlating the at least one signal

section with the associated signature section.

7. The method of claim 1, wherein:

the comparing includes correlating the at least one signal

section with the associated signature section,

the correlating including identifying a time of a maximum

correlation value for the at least one signal section and
the associated signature section,

the method further comprising:

compensating for timing differences between the at
least one signal section and the associated signature
section based on the time of the maximum correla-
tion value.

8. The method of claim 1, wherein:

the signal representing power consumption of the first

electronic device during operation is received from at
least one of a current probe, a shunt resistor or a current
mirror disposed with the first electronic device during
operation.

9. The method of claim 1, wherein the comparing is
performed by a detector having a detection threshold, the
method further comprising:

determining, during operation of first the electronic

device, the detection threshold to substantially maxi-
mize a probability of detection of the feature within the
at least one signal section while substantially minimiz-
ing a probability of false alarm.

10. The method of claim 1, wherein:

the comparing includes comparing a first signal section

and a second signal section from the plurality of signal
sections to an associated first signature section and an
associated second signature section from the plurality
of signature sections, respectively;

an order of the first signal section and the second signal

section corresponding to an order of the associated first
signature section and the associated second signature
section, respectively.
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11. A method, comprising:

receiving a signal representing power consumption of a
first electronic device measured with one or more
sensors during operation;
defining a signal section based on the signal and having a
duration less than a total duration of the signal, the
signal section associated with a signature section rep-
resenting power consumption of a second electronic
device during operation of authorized code and that
includes a feature having a size; and
comparing the signal section to the associated signature
section to extract the feature, the size of the feature for
the signal section being greater than a size of the feature
when extracted based on a difference between the
signal in its entirety and a signature in its entirety
generated from the second electronic device during
operation, the second electronic device being a trusted
device.
12. The method of claim 11, wherein the signal is a first
signal, the signal section is a first signal section, the method
further comprising:
comparing the first signal section to a second signal
section to determine whether first electronic device
executed authorized code during operation, the second
signal section defined based on a second signal repre-
senting power consumption of the second electronic
device during operation of the authorized code.
13. The method of claim 11, wherein the signal is a first
signal, the signal section is a first signal section, the method
further comprising:
receiving a second signal representing power consump-
tion of the second electronic device during operation;

defining a second signal section based on the second
signal, a size of the second signal section being less
than a total size of the second signal, the second signal
section associated with one signature section from the
plurality of signature sections that were generated from
the second electronic device during operation; and

comparing the second signal section to the associated
signal section from the plurality of signature sections to
extract the feature.

14. The method of claim 11, wherein:

the feature is associated with a difference between the

signal section and the associated signature section.

15. The method of claim 11, wherein:

a duration of the signal section being associated with a

size of the feature,

the size of the feature for the signal section being greater

than a size of the feature when extracted based on a
difference between the signal in its entirety and a
signature in its entirety generated from the second
electronic device during operation.

16. The method of claim 11, wherein:

the comparing includes correlating the signal section with

the associated signature section.

17. The method of claim 11, wherein:

the comparing includes correlating the signal section with

the associated signature section,

the correlating including identifying a time of a maximum

correlation value for the signal section and the associ-
ated signature section,

the method further comprising:

compensating for timing differences between the signal

section and the associated signature section based on
the time of the maximum correlation value.

34
18. The method of claim 11, wherein:
the signal representing power consumption of the first
electronic device during operation is received from at
least one of a current probe, a shunt resistor or a current
5 mirror disposed with the first electronic device.

19. The method of claim 11, wherein the receiving is
performed by a detector having a detection threshold, the
method further comprising:

determining, during operation of the first electronic

10 device, the detection threshold to substantially maxi-
mize a probability of detection of the feature within the
signal section while substantially minimizing a prob-
ability of false alarm.

s 20. A method, comprising:

receiving a signal representing power consumption of a
first electronic device measured with one or more
sensors during operation;

defining a plurality of signal sections based on the signal,

20 each signal section from the plurality of signal sections
being less than a total size of the signal, each signal
section from the plurality of signal sections associated
with one signature section from a plurality of signature
sections representing power consumption of a second

25 electronic device during operation, the second elec-
tronic device being a trusted device;

comparing each signal section from the plurality of signal
sections to the associated signature section from the
plurality of signature sections to identify a time of a

30 maximum correlation value for that signal section and
the associated signature section; and

compensating for timing differences between each signal
section from the plurality of signal sections and the
associated signature section based on the time of the

35 maximum correlation value for that signal section.
21. The method of claim 20, wherein the signal is a first
signal, the plurality of signal sections are a first plurality of
signal sections, the method further comprising:

comparing, for the at least one signal section from the first

40 plurality of signal sections, that signal section to an
associated signal section from a second plurality of
signal sections to determine whether first electronic
device executed authorized code during operation, the
second plurality of signal sections defined based on a

45 second signal representing power consumption of the
second electronic device during operation of the autho-
rized code.

22. The method of claim 20, wherein the signal is a first

signal, the plurality of signal sections are a first plurality of

50 signal sections, the method further comprising:

receiving a second signal representing power consump-
tion of the second electronic device during operation;

defining a second plurality of signal sections based on the
second signal, each signal section from the second

55 plurality of signal sections being less than a total size
of the second signal, each signal section from the
plurality of signal sections associated with one signa-
ture section from the plurality of signature sections that
were generated from the second electronic device dur-

60 ing operation; and

comparing, for at least one signal section from the second
plurality of signal sections, that signal section to the
associated signal section from the plurality of signature
sections to extract the feature.

65  23. The method of claim 20, wherein:

the comparing includes comparing each signal section

from the plurality of signal sections to the associated
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signature section from the plurality of signature sec-
tions to extract a feature for that signal section.

24. The method of claim 20, wherein:

the comparing includes correlating each signal section

from the plurality of signal sections with the associated
signature section.

25. The method of claim 20, wherein:

the signal representing power consumption of the first

electronic device during operation is received from a at
least one of a current probe, a shunt resistor or a current
mirror disposed with the first electronic device.

26. The method of claim 20, wherein the receiving is
performed by a detector having a detection threshold, the
method further comprising:

determining, during operation of the first electronic

device, the detection threshold to substantially maxi-
mize a probability of detection within the at least one
signal section while substantially minimizing a prob-
ability of false alarm.
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