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4 2-D vertical piping span Stress Analysis in Tmin  
 

The original computer code of Tmin analyzed horizontal piping configurations.  The 

addition of a 2-D vertical piping span analysis to Tmin was completed at the request of my 

sponsor and is the basis of this thesis.  In order to analyze this piping span, the theories 

discussed in Chapter 2, Section 2-1 is followed for the entire span. 

 

This chapter, details the analysis of a 2-D vertical piping span model with valves 

included in various spans.  Using this model, shear and moment diagrams will be crated, 

detailed, and explained in Sections 4.1 and 4.2.  Stress intensity factors (SIF) that are used for 

valve connections and elbows as required by ASME.  These factors are found in Section 

VIII of the Unfired Boiler and Pressure Vessel code are used in the 2-D vertical piping span 

are discussed in Section 4.3 [14].  The use of a stress intensity factor increases the moment at 

a location along the piping span where the valve or elbows are located.  Using the shear and 

moment diagrams created, the differential stress elements, discussed in Chapter 2, will be 

evaluated at certain sections on the piping span in Section 4.4.  By performing the 

differential stress element analysis, the maximum stress was calculated for each section of the 

pipe.  Finally, in Section 4.5, the stress at each section are equated to the ASME allowed 

stress and is used to evaluate the maximum pipe-wall thickness using a root-solver.   

 
 
4.1 Shear and Moment Analysis 
 

Static load analysis of the 2-D vertical piping span was completed first.  Static 

analysis is performed on the 2-D vertical piping span, using pinned-pinned ends of the 

piping span [7].  Using pinned-pinned ends allowed for analysis of the 2-D vertical piping 

span to be locked into position at the ends of the piping spans, ensuring zero lateral 

movement.  Moreover, these boundary conditions insure maximum moment estimates 

internal of the 2-D vertical piping span.  The piping components of the 2-D vertical piping 

span included the weight of the pipe, elbows, internal fluid, and any valves or elbows that 

may have been included.   
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A test case showing the 2-D vertical piping span with valves at different locations is 

seen as the Q diagram seen in Figure 4-1.  The purpose of a Q diagram is to simplify the 

sums of forces and moments that are required to find the reactions at the pinned ends [9].  

The test case model dimensions are seen in Table 4-1.  The reader is encouraged to use these 

dimensions and values to verify calculations for further models.  The full derivation of the 

shear and moment analysis on the 2-D vertical piping span can be found in Appendix A. 

 

In Figure 4-1, the weight of the pipe and fluid (Wp) are added together and are seen as 

distributed downward arrows.  The valves are identified as vectors F1, F2 and F3, also in the 

downward position.  The distances to the valves are identified as Dist-F1, Dist-F2, and Dist-F3.  

Finally, since the piping span has elbows incorporated, the weights of each elbow (we) are 

seen as additional forces only in the vertical span L2.  
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      Figure 4-1.  2-D Vertical Pipe-Span. Showing Forces on Piping 

x

y 

We 0.5 lbs 
wp 0.5 lbs/ft 
L1 10 feet 
L2 5 feet 
L3 10 feet 
F1 2 lbs 
F2 5 lbs 
F3 2 lbs 

Dist-F1 5 feet 
Dist-F2 5 feet 
Dist-F3 5 feet 

Table 4-1.  Values used for Test-Case Model 
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The combined weights of the pipe spans, internal fluid, valves and elbows are then 

shown in an equivalent load diagram, Qe.  Since the weight of the pipe and fluid are seen as 

distributed forces acting along the entire span of pipe, a Qe diagram formulates these forces 

into concentrated loads at the center of each span.  A Qe diagram of the 2-D vertical piping 

span is seen in Figure 4-2.  Using this diagram, the reaction force, R2, can be found using the 

sum of moments seen as Equation (4.1). 

 

 

 

 

 

 

   

 

According to Shigley and Mishke [8], the sum of moments is defined as the force 

multiplied by its distance for the reference point. 
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Using R2, the second reaction force, R1, can be found using summation of forces in 

the y-direction.  Equation (4.2) yields R2 as:  

 

∑ == 2RFy ( ) ( ) ( ) 1332211 RFwFwFw ppp −+++++          (4.2) 

 

Once these reaction forces are found, a shear diagram can be created.  A shear 

diagram is used to visually evaluate the piping span for critical areas of load.  The moment 

diagram is used to complement the shear diagram as to where to evaluate the piping stresses, 

for example, by looking at maximum moment locations.  However, the moment diagram is 

normally the more important of these two diagrams. 

 

R1 

(wp1 + F1)

 

(wp2 + F2 + 2We) (wp3 + F3)

      Figure 4-2.  Qe Diagram of 2-D Vertical Piping Span 

(L1/2) (L3/2) 

R2 L1 
L3 
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4.2 Shear and Moment Diagrams 
 

The fundamentals of shear analysis are seen as the forces that are present at all 

locations on the piping span being analyzed.  When the reaction forces are found (R1 and 

R2), these values are now seen as the change in the end load values.  Since the piping has a 

distributed, downward load, the distributed load will be seen as a decreasing slope on the 

shear diagram.  Figure 4-3 shows a shear (upper figure) and moment diagram (lower figure) 

of the previous piping configuration. Both were created in Matlab.  The Matlab code was 

created for use in creating correct IF-THEN statements used to determine where the 

maximum moment would occur in the piping span.  In addition, it was used to 

independently verify the accuracy of Tmin’s output shear and moment diagrams.  As a result 

of this preliminary code, the addition to the Tmin code for the 2-D vertical piping span was 

made easier. 

 

The shear diagram is used to show the entire set of forces on the member.  Note that 

the shear diagram closes to zero at the end.  This indicates proper reaction analysis.  As seen 

in this figure, the shears, V, are largest at the ends.  These loads decrease the shear value 

along the piping span.  When the piping has a concentrated load such as a valve, a step 

function is found in the shear diagram [9].  
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Note that in the Matlab code the moment diagram was created by using the 

trapezoids of the shear diagram at each step seen.  As a result, when the moment diagram 

was created the moment will appear to have sharp edges.  In addition, this moment diagram 

will be used as a guideline as to where evaluation of moments will take place.  A moment 

diagram is created by the integration of the shear diagram starting from the left side of the 

shear diagram as seen by Equation (4.3) [8].  That is, the change in the moment diagram 

equals the area under the shear diagram.  
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Integrating the shear areas between each step function causes the moment diagram 

to increase as long as the shear diagram remains positive in sign.  When the shear diagram 

becomes zero, in this case at the center of the span, the maximum moment occurs.  As 

shown in Figure 4-3 (lower figure), the moment is zero at the left end and increases until the 

maximum occurs at the center of the piping span.  Continuing to the right of the piping span 

after the maximum moment occurs, the moment decreases until the right end of the 2-D 

vertical piping span is complete.  This moment reduction is a direct result of the negative 

shear diagram integration. 

 

Now that the shears and moments have been evaluated for this piping span, 

differential stress element analysis can be started at various sections along the piping system.  

The obvious places to evaluate the stress state would be at the maximum shear (end of 

piping spans) and at the maximum moment locations because of the SIF factors that apply at 

these points.  In addition, the location where the step function occurs are also choices for 

evaluation. 

 

Since the 2-D vertical piping span uses elbows, 5 different elbows are available for 

choice by the user.  With each of these elbows is a stress-intensity factor (SIF) is different 

and is described in the next Section 4.3.  If the user chooses a pipe configuration with a 

valve, the SIF connection type of the valve, must be accounted for [28].  In respect to the 

valves, additional SIF values are incorporated into the program for valve connection type [1].  

 

 

4.3 Stress-Intensity Factors 
 

A stress-intensity factor (SIF) is a numerical value titled and determined by the 

ASME and is found in the B31.3 standards and codes [28].  The SIF values for each elbow 

type are seen in Table 4-2.  When an elbow or valve is chosen by the end-user of the 

program, the corresponding SIF value will be multiplied by the moment at that location.   
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Table 4-2.  Stress-Intensity Factors for Elbow Choice
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 Description Stress-Intensity Factors (SIF) [28] 

Long Radius Bend 1.5 

t Radius Bend 1 

3D Bend 3 

5D Bend 5 

 Chapter 5 are input screens that will enable the user to choose the type of 

vertical piping span being evaluated.  A check in the computer code finds 

tarts in comparison to the pipe-span itself [1].  The moment at the end of 

tion is multiplied by the SIF value corresponding to the elbow chosen. 

moment that may have had a low numerical value, in comparison to the 

t value, to be increased by the SIF factor.  This will appear as a spike in 

m as seen in Figure 4-4. 

shear and moment diagrams of Figure 4-3, the SIF values for a pre-chosen 

connection type are multiplied by the appropriate moments.  Stress-

an have numerical values of 1 (one) to 2.6 as seen in the Table 4-1 of SIF 

ramatically change the final Tmin pipe-wall thickness output. 

 1, F1 Valve 3, F3 

Maximum Moment 
Elbow Location 

Example Moment Diagram with Additions of SIF Values Showing Drastic 
Moment Values 
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In addition to the SIF values for the elbows, the ASME also has SIF values for the 

valve connection types.  These valve connection SIF values are obtained in the ASME B31.3 

standards and codes [28].  When the user chooses a 2-D vertical piping span for analysis, the 

program will prompt the user for a valve-connection type.  This connection type could be a 

weld, a threaded, or even a bolt-on flange valve type.  Again, what this does is increase the 

moment according to the connection type due to the SIF value.  In comparison, when the 

user chooses a valve connection type, a different set of SIF values are used.  However, due 

to the limited knowledge about the length of various valves, the SIF value will only be 

multiplied at the exact center of the valve.  These limitations of valve size are due to the wide 

variety of valve lengths used in the industry today. 

 

The preliminary evaluations of the shear and moment diagrams are now complete.  

The next section will detail the evaluation of these sections using differential stress elements 

and Mohr’s circle analysis. 

 

 

4.4 Differential Stress Element Analysis of the 2-D vertical piping span  
 

Using critical sections in Figure 4-3, differential elements are used to determine the 

maximum stress states at these locations.  Reviewing differential stress elements and Mohr’s 

circle analysis from Chapter 2 will be helpful for understanding of this section.  Only three 

areas will be evaluated in this test case because of symmetry of the 2-D vertical piping span: 

the lower left-end of the piping span, the valve, F1, location, and the vertical piping span 

section. The full derivation of the 2-D vertical piping span can be followed in Appendix A, 

while numerical examples are given in Chapter 6.   

 

Figure 4-5 starts the evaluation of the left end of the piping span.  At this location, as 

seen in Figure 4-3, the shear is at a maximum and thus requires the use of Mohr’s circle.  To 

begin, the piping section will be evaluated using 4 differential stress elements located 90 

degrees apart from one another.  The left end of the piping system is shown with the 4 

elements used for evaluation with a shear, V, seen on both sections of the span. 
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As seen in this figure, the shears, V, passes through elemental points 2 and 4, but are 

parallel to elements 1 and 3.  Elements 2 and 4 have an outside face that cannot sustain shear 

stress.  Thus the shear at 2 and 4 must go to zero.  Evaluating elemental points 1 and 3 shear 

stress are expected.  These shear stresses seen are the maximum in the section [8].  The 

differential stress elements 1 and 3 will be evaluated first, seen as Figure 4-6 (a and b).  In 

this figure, the longitudinal stress will be used to find a maximum stress using Mohr’s circle 

and the Maximum-Shear-Stress Theory (MSST), as detailed in Chapter 2.  It can be seen that 

the shear passes down on the left side of differential stress element 3.  At the same time the 

direction of the shear goes up on the right of the same element; this ensures static vertical 

equilibrium. 

 

 

 

   

 

 

 

 

 

 

 

In Figure 4-7 (a and b) differental stress elements 2 and 4 only principal stresses are 

observed. 
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Figure 4-5.  Differential Elements Shown on Left-End of Piping Span 
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Figure 4-6. Differential Elements 1 (a) and 3 (b) on a Piping Span End 
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Using the stress states in Figure 4-6 (a and b) using 3-D Mohr’s circles, the maximum 

circle created will define the maximum shear stress.  Noting that the stress elements in 

Figure 4-6 have one added stress to those in Figure 4-7, once must consider those of Figure 

4-5 as critical.  Figure 4-8 shows the Mohr’s circle evaluation of element (a) in Figure 4-5.  

Noting that the largest principal stress is seen as σ1, this stress is equated to one-half of the 

maximum shear, τ Max, and following the Maximum-Shear-Stress Theory results in Equation 

(4.4) and (4.5) for the evaluation of element (a) in Figure 4-5.  Since there are other locations 

where the piping span must be evaluated, this is but one equation of several which will be 

used in solving for the pipe-wall thickness. 
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      Figure 4-7.  Differential Elements 2 (a) and 4 (b) on a Piping Span End 
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Figure 4-8.  Mohr’s Circle Analysis of Element (a) in Figure 4-5 
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 The next section to be evaluated on the shear and moment diagrams is where the 

concentrated load occurs.  The concentrated loads occur because of the valves at the 

locations 5 and 15 feet.  At these locations a step function is seen.  Because there is a 

moment observed in addition to shear in Figure 4-3, Figure 4-9 shows the evaluated 

differential stress elements with the inclusion of a moment, M.   

 

 

 

 

 

 

 

 

 

 

 

Elements 2 and 4 experience moment-induced compressive and tensile stresses 

respectively, with no shear stress.  Like in the previous analysis, elements 1 and 3 will have 

maximum shear.  But since shear load is not a maximum in the longitudinal piping span, it 

will not dominate over the previous stress calculations.  Observing differential stress 

elements 1 and 3, it is seen that they are identical to Figure 4-5, but with a lesser shear stress.  

The moment-induced stress will not be observed in elements 1 and 3 because they are zero 

at the neutral axis.  However, differential stress elements 2 and 4, seen in Figure 4-10 (a and 

b), include an additional bending stress due to the moment.  In these figures, the additional 

stress is the resultant of a moment-induced stress, σB.  Its direction to the differential stress 
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Figure 4-9.  Differential Elements Shown on Piping Span Section-Shear 
and Moment Loads 
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element is dependent on the moment being positive or negative.  When the added moment-

induced stress is compressive, the bending stress goes into the differential stress element, 

while a tensile moment-induced stress is seen as moving away from the differential stress 

element. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11 (a) shows the Mohr’s circle analysis that was used for the analysis of 

differential stress element (a) in Figure 4-8.  Two cases are observed.  One case has the 

difference between the hoop, bending and longitudinal stresses being dominant, seen in 

Figure 4-11 (a), while the other case has the hoop stress the dominant stress (Figure 4-11 b)).  
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Figure 4-10.  Differential Elements 2 (a) and 4 (b) on 2-Axis Vertical piping Span End 
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Figure 4-11.  Mohr’s Circle Analysis of Element (a) in Figure 4-10 
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Equation (4.6) is the result of the Mohr’s circle analysis completed on element (a) in 

Figure 4-10.  Mohr’s circle analysis of the differential stress element in Figure 4-12 (b) again 

results in two more cases observed.  From Figure 4-11 (a), this case shows that the hoop 

stress is the dominant stress observed.  While in Figure 4-11 (b), the bending plus the 

longitudinal stress are the dominant stresses observed.  From this analysis, Equation (4.7) 

was created and will be used for analysis at this section. 

 

 

 

 

 

 

 

 

 

 

As a result of the 3-D Mohr’s circle analysis of the elements in Figure 4-12 (a and b) two 

independent MSST stress states will be evaluated.  The first is for element (a) in Figure 4-10.  

The second is for element (b) in Figure 4-12.  The stress-states are seen as Equations (4.6) 

and (4.7). 

 

HMSST σσ ='  or ( )LBHMSST σσσσ −+='        (4.6) 

HMSST σσ ='  or ( )LBMSST σσσ +='                (4.7) 

 

The maximum pipe-wall thickness will be found between these four stresses.  This 

maximum thickness value will be used for final comparison in the entire 2-D vertical piping 

span.  Performing analysis of the differential stress elements on the vertical piping section 

proved to be different than previous analysis.  The difference occurred because of the 

σL + σB σH       

τ 

(a) 
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Figure 4-12.  Case (a) Shows Hoop Stress Dominant.  Case (b) Shows the Bending and 
Longitudinal Stresses as Dominant 
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addition of another stress term.  Because there is an additional normal force on the vertical 

piping span due to gravity and also due to effects on the longitudinal piping the weight of 

the vertical pipe.  This force may be compressive or tensive.   

 

Since the moment observed in the vertical piping span is constant along its length an 

additional load diagram was needed. Figure 4-13 shows such a plot. However, the loads need 

not be entirely compressive as shown here. In order for this case to occur, a short vertical 

span is observed and at the same time the upper piping span would need to be much longer 

than the lower piping span. When this happens the vertical span would be in compression 

from the weight of the upper piping span pushing down on the vertical span.  If the loads on 

the vertical span are in compression, Figure 4-13 will be used for evaluation.  However, if 

the loads in the vertical section experience a tension, a figure showing a tension plot will 

need to be identified. A tension case will be discussed later in this section.  In Figure 4-13 it 

is seen that at the top of the piping span, the load value is lower than the load value at the 

bottom of the piping span. Following the rules of distributed loads seen in the shear 

diagram, the compressive state is seen to increase because of the piping and insulation 

weight.  Next, a concentrated load is observed. This is due to the valve weight. 

From this figure, three compressive forces are observed: C1, C2, and C3. However, since 

compressive forces at C2 and C3 are always numerically greater than state C1, only these two 

will be evaluated seen as Equations (4.8) through (4.10). Because the compressive forces at 

C3   C2  C1 

a b 

Figure 4-13. a) Vertical Piping Span, b) Axial Load  Plot of Vertical Piping 
Segment 



 

 

the bottom of the piping span are equal to the negative value of the shear value at that 

location in the left horizontal piping span, a simple substitution was used inside the Tmin 

computer code for these equations. The compressive force C3 is equated to the shear at the 

bottom of the vertical piping span, VBottom while the compressive force C2 is at the center of 

the vertical span. Finally, the compression at the top of the piping span is equal to the shear 

at the top of the vertical span. In this test case it is seen that the compression at the top and 

the bottom of the span is necessary to evaluate. In addition, when the user selects a valve to 

be included in the vertical span, this section will also be evaluated. However, when no valve 

is present in this section, a calculation will not occur. 

 
C1=-VTop                        (4.8) 

 C2 = -Dist-F2 * (wp2) - F2 – VTop                  (4.9) 

C3 = -Vb                      (4.10) 

 

 

Now that the compressive state has been identified, a tension case will be 

investigated. In the next Figure 4-14, the tension load is the largest at the top of the plot.  

This is due to a case where the lower piping span is much longer than the upper span. As a 

result of the longer lower span the weight of the vertical span pulls down on upper span, 

which creates a pure tension case in the vertical span. 
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T3               T2  T1 

a b 

Figure 4-14. a) Vertical Piping Span, b) Axial Tension  Plot of Vertical Piping 
Segment 
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The resulatant equations that are created for this tension case are seen as Equations 

(4.8a) through (4.10a). 

 

T1 =-VTop           (4.8a) 

T2 = -Dist-F2 * (wp2) - F2 -VMiddle                      (4.9a) 

T3 = -VBottom         (4.10a) 

 

The tension in the vertical section will not be as detrimental to the vertical section as 

compression would be because the fibers of the piping will be stretched. In comparison to 

the compression values found, the tension equations will always be less of a risk to the 

vertical piping span. As a result, Equations (4.8) and (4.10) will be used for all cases when a 

valve is not present. When a valve is present in the vertical section Equation (4.9) will be 

used as well. 

 

Once the values were found, the differential stress element analysis could be 

completed.  A vertical piping segment with the 4 differential stress elements used for 

evaluation is seen in Figure 4-15. 
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As seen in this figure the compressive force pushes into the piping section from both 

top and bottom.  As a result of the compressive force, it is expected that a compressive 

stress, σC, will appear in all differential stress elements.  Figure 4-16 (a and b) shows the 

stress-states that appear on differential stress elements 1 and 3.  In the vertical segment 

location the moment is constant.  However, as discussed earlier, the moment induces a 

bending stress only on elements 1 and 3, while the bending stress in element 2 and 4 are 

zero. 
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Figure 4-15.  Differential Elements with Compressive Forces and Moments on 
Vertical Segment 

z 

x 

y 



 

 71 

 

Since the moment is zero at the edges of the piping span, as detailed in Section 2.1, 

the bending stress is zero on elements 2 and 4 seen in Figure 4-17.   

 

   

 Upon evaluation of all 4 differential stress elements, it was found that elements 1 and 

3 would generate the largest 3-D Mohr’s circle. Elements 2 and 4 are eliminated from 

consideration. The 3-D Mohr’s circles and MSST for elements 1 and 3 result in the 

Figure 4-17.  Differential Elements 2 and 4 on a Vertical piping Span End 
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Figure 4-16. Differential Elements 1 (a) and 3 (b) on 2-Axis Vertical piping Span End 
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Equations (4.11) and (4.12). These equations will be used to evaluate pipe-wall thickness in 

the vertical segment. In addition to these two equations, it was found that the hoop and the 

summation of the bending and longitudinal stresses might also be a factor. Therefore, when 

evaluating the vertical piping span, the largest pipe-wall thickness is found from all 4 of these 

Equations (4.6), (4.7), (4.11), and (4.12). Note that σc must be a negative number for 

Equations (4.11) and (4.12) to function properly. Equation (4.12) is from element 1 in Figure 

4-# and Equation (4.12) was obtained from element 3 in Figure 4-16. 

 

HMSST σσ ='  or CBLMSST σσσσ −+='  or CBLMSST σσσσ ++='      (4.11) 

HMSST σσ ='  or CBLMSST σσσσ +−='         (4.12) 

 

Using these equations for the analysis of the pipe-wall thickness for the vertical section 

will result in different pipe-wall thickness values that will be compared for the largest value. 

Once the evaluation is complete, the pipe-wall thickness values will be compared in an array 

[32] for the largest value. The array created was used for comparison of all pipe-wall 

thickness values along the entire piping span. 

 

As stated earlier, because the 2-D vertical piping span test case is symmetric about the 

vertical section, the same procedures can be followed for the piping sections while moving 

along to the right of the shear diagram. The procedure of analysis of the Tmin 2-D piping 

analysis is as follows: 

 

a) Input all data (pipe size, schedule, material, valves present, elbow type, etc.) 

b) Numerically compute the shear diagram 

c) Determine where the maximum moment occurs using the shear values 

d) Find out if valves are in the piping span, if so, apply the stress-intensity factors to 

the moment at the location of the valve 

e) Compute the distance the elbow starts in comparison to the pipe span itself  

f) If any moment occurs in the elbow section, apply the stress-intensity factor for 

the elbow choice 
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g) Compute the pipe-wall thickness and if necessary pass the values to the root-

solver (discussed in the next section).  If there are more than one equation for 

the section being evaluated, get the largest Tmin value (critical value) from each 

equation 

h) Compare all Tmin values calculated at each section, then display what section is 

the critical one (discussed in Chapter 5) by coloring the section red 

i) Use the critical Tmin value for final Tmin comparison checks (setup by DuPont 

previously) 

 

Using the analysis procedure documented in this chapter, the minimum pipe-wall 

thickness could be found.  A detailed analysis of a pre-determined 2-D vertical piping span 

will be computed numerically in Chapter 6.  Since some of the summation of stresses 

observed involved a pipe-wall thickness, t, to an exponent power, this created another 

problem.  In response to this problem, a root solver was incorporated into Tmin. 

 

 

 

4.5 False-Position Root Solver 
 

Since the stress equations have varying t N powers, the minimum pipe-wall 

thickness equations would be tedious to solve for the pipe-wall thickness directly. To show 

the difficulty of solving directly for the pipe-wall thickness directly in Equations (4.7), (4.11), 

and (4.12), Mathematica, a math solver was used. The resulting solution equations found were 

too complex and tedious to enter into the program for a direct pipe-wall thickness to solve.  

In addition, to trouble shoot these equations for errors would be tedious.  Results from the 

program Mathematica® solution can be seen in Appendix E.  As a consequence of the 

complex result obtained, a root-solving method was used instead.  

 

The root-solving method used is called the Regula Falsi, or False-Position 

method [33]. In order to use this type of root-solver, the stress equations are equated to an 

allowed strength. The equations are then rearranged to be equal to zero. Once this was done, 

an initial guess of [a0, b0] was used to create an interval. As seen in Figure 4-18, the plot of 
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the stress equation, with a crossing interval is shown. In this interval, one end of the interval 

must result in a negative sign at bo, and the other a positive sign at ao. Once this is done, the 

root solver will begin solving for the actual pipe-wall thickness that will make this equation 

equal to zero.  

 

 

 

 

 

 

 

 

 

 

 

 

With the interval identified, the root-solver will pass additional guesses into the stress 

equations. The guesses passed to the solver create a smaller interval repeatedly until a pipe- 

wall thickness has been found. The process is as follows, an initial guess is given to bo, the 

crossing point of the zero axes is then identified as b1.  If b1 is creates a smaller interval, then 

another guess, b2, is passed through the equations. Again, if the interval is smaller than the 

previous interval, another guess in passed through the equations until the interval of guesses 

becomes small enough that the root of the equation is found. 

 

Identified in this chapter were the stress equations that were derived from use of 

differential stress elements that were used for solution to the minimum pipe-wall thickness.  

In addition, stress-intensity factors that may create a larger minimum thickness have been 

discussed. Throughout all the discussion differential stress elements have been used for a 

solution in conjunction with the maximum-shear stress theory. Finally, a root-solving routine 

has been used to solve for the pipe-wall thickness when the stress equation becomes too 

difficult to solve for the pipe-wall thickness directly. 

 

y = f(x) 

a0 = a1 = a2 

b2 
b1 b0 

Figure 4-18.  Stationary Endpoint of a Stress Equation for the False Position Method 
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In the next Chapter 5, the additions to the Tmin program are discussed. These 

include user-friendly additions, valve-connection screens, the 2-D vertical piping span, as 

well as an output to a Microsoft Word document. 
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