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(ABSTRACT) 

An automatic method generates tests for circuits described in a hardware description language 

(HDL). The input description is in a non-procedural subset of VHDL, with a simplified period-

oriented timing model. The fault model, based on previous research, includes micro-operation and 

control statement faults. The test method uses path-tracing, working directly from the circuit de-

scription, not a derived graph or table. Artificial intelligence problem-solving techniques of goals 

and goal solving are used to represent and manipulate sensitization, justification, and propagation 

requirements. Backtracking is used to recover from incorrect choices. The method is implemented 

in ProLog, an artificial intelligence language. Results of this experimental Pro Log implementation 

are summarized and analyzed for strengths and weaknesses of the test method. Suggestions are 

included to counter the weaknesses. A user's manual is included for the experimental implemen-

tation. 
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Chapter 1 

Introduction 

As circuit design and simulation has evolved from the gate level to the chip level to handle 

increasing circuit complexities, fault modeling and automatic test generation have lagged behind. 

When digital circuits were described only at the gate level. Circuit faults were modeled with 

the classical stuck-at fault model, i.e. gate inputs or outputs became stuck at a logic one or a logic 

zero. Roth's D-algorithm [l] and direct enhancements [2,3,4] generated tests for stuck-at faults from 

a combinational gate-level description. The D-algorithm was also extended to test sequential 

gate-level circuits [5,6]. 

At the register connection level, the description consists of connected devices such as registers, 

counters, multiplexors, ALUs, etc., where these devices are description primitives for simulation 

efficiency and are not hierarchically constructed from gates. Typically, stuck-at models are used at 

this level. Test generation methods for this level are usually based on the D-algorithm [7,8,9). 

With AHPL [ 10] and similar register transfer languages (RTLs), circuit descriptions no longer 

directly reflect circuit structure. This level required new fault models. Su [11, 12, 13, 14, 15, 16] 

developed fault models and a test generation method for RTL descriptions. 
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Recently, with the introduction of hardware description languages (RTLs) such as GSP (17, 

18], GSP2 [19, 20], and VHDL [21, 22], circuit description has reached the chip level, where circuits 

are described as a whole, not as a hierarchy of low-level primitives, in a syntax similar to a computer 

program. Chip-level modeling also requires new fault models. Recent fault modeling research [22, 

23, 24] gives a chip-level fault model derived from HDL constructs. 

This chip-level fault model provides the basis for a chip-level test generation method. The 

fault model tells to how to sensitize chip-level faults, and the definition of the HDL in which a 

circuit is described tells how to complete tests given the sensitization requirements. 

Contents 

This thesis describes an approach to test generation for chip level models, including the HDL 

and fault model used, the test generation strategy, the current implementation and results, and 

suggestions for improvement. 

Chapter II, "Literature Review", is a review of previous methods and techniques used in au-

tomatic test generation, from gate-level methods to other chip-level method. 

Chapter III, "Test Method", describes the test method. It outlines the overall strategy, general 

test generation, special cases, and efficiency enhancements. 

Chapter IV, "Results'', describes the current implementation and reviews results of running 

test generation on some small models. 

Chapter V, "Analysis and Suggestions'', analyzes test generation results and suggests some 

improvements. 

Chapter VI, "Conclusions", gives conclusions about the test method method. 

Appendix A, "USER'S Manual", describes how to use the ProLog implementation. 
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Appendix B, "Circuit Models and Fault Lists", lists VHDL and internal-form descriptions of 

the circuit models used in this research, and gives faults lists for the circuit models, including brief 

comments on successes and failures. 
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Chapter 2 

Literature Revie'v 

Gate Level M etlzods 

Original automatic test generation work was done at the gate level. 

Probably the most important development in automatic test generation was the Roth's D-

algorithm [ l]. The D-algorithm is based on D-calculus, in which D represents a good value of 1 

and a faulty value of 0, D represents a good value of 0 and a faulty value of 1, and gate functions 

are redefined in terms of Dor D (in addition to only 0 and 1). D-calculus provides for defming the 

effects of a stuck-at fault, and is used by many subsequent test methods. The D-algorithm uses the 

structure of a circuit to propagate faulty values through the circuit, and to justify values needed on 

internal lines. Justification may require choices, which in tum may lead to conflicts. The D-

algorithm uses backtracking when conflicts are discovered, as with all subsequent methods. 

The D-algorithm was adapted for sequential gate-level circuits. Kobu treated sequential sub-

circuits (i.e. flip-flops) as primitive elements [6). Roth used a heuristic loop-cut method to cut 

combinational feedback loops in gate-level circuits [5]. Both methods are based on changing the 
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sequential problem to a combinational one, by making multiple copies of the combinational por-

tion of the circuit, cut at the state variables, and running combinational test generation on the re-

sulting iterated circuit. 

Goel [2] presents a method called POD EM, designed to handle reconvergent fanout, a problem 

on which the D-algorithm bogs down. Goel uses Roth's D-notation and D-propagation, but uses 

a more efficient control structure to implicitly search the space of all possible tests. He used the 

"branch and bound" method of searching to manipulate primary inputs to find a test, with heuristics 

to improve the efficiency of the search. 

The 9-V (for nine logic values) algorithm [4] is another method addressing reconvergent 

fanout. For multiple path tracing (needed when there is reconvergent fanout), propagating a value 

through a gate sometimes needs a fixed 0 or l on inputs of the gate, and sometimes needs another 

Dor D. The D-algorithm tries each choice separately, backtracking when one fails. The 9-V al-

gorithm uses additional logic values to represent each combination of choices, so less backtracking 

is required. 

Register Co1111ection Level JY/ethods 

Above the gate level is the register level, where circuit primitives are functional units such as 

registers, counters, multiplexors, ALUs, etc. (That is, these devices are not modeled hierarchically 

in terms of gates.) 

Shteingart, Nagle, and Grason [7] pre;;sent RTG, a register-level stuck-at test generator. RTG 

uses high-level modeling of sequential ckments for simulation and test generation efficiency. Spe-

cifically, sequential components are modeled using primitive functions such as clear, load, etc., and 

are not constructed from gates. RTG uses the D-algorithm-based 9-V algorithm, extended to 

handle clock pulses, to work on the combinational portion of a sequential circuit. R TG has a 

global approach to sequential test generation. One key element is that it runs combinational test 
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generation on several time slices at once. (That is, it does not work progressively on adjacent time 

slices). When working with sequential circuits, a test generator must be careful about getting into 

endless loops by moving data values around in sequential feedback loops, or by returning to the 

same state. When loading a register, R TG checks that the register was not encountered before when 

justifying the current test. 

Marlett (8, 9J presents a method called EBT. The main elements are two-period truth tables 

for sequential circuits and a unidirectional time flow for test vector generation. 

The two-period truth tables relate the inputs, clocks, and outputs for sequential circuits. For 

a typical rising-edge-triggered device, the edge sensitivity is represented as a low value in the first 

period and a high in the second period. Required inputs are given in the first period, and outputs 

are given in the second period. Thus, the current state is related to previous period inputs and state. 

EBT works backwards, generating the last test vector first, and the first one last. Instead of 

working bidirectionally forwards (for propagation) and backwards (for justification) from the time 

of the actual internal fault detection at the site of the fault, EBT works from detection at an output 

pin back to the first justification step. The purpose was to gather all constraints for a given time 

period at once, for better conflict detection. Marlett also uses decision numbers to improve back-

tracking. At a conflict, decision numbers associated with node values are used to find the most 

recent related decision; backtracking skips to that point, bypassing decisions known to be unrelated. 

Register Transfer Level ill et hods 

Above the register level is the register transfer level, in which the description consists of a se-

quence of instructions, and does not necessarily reflect the structure of the actual circuit. 

Stephen Su has done work at register-transfer level (11, 12, 13, 14, 15, 16J. Lin and Su (11, 

12] describe the S-algorithm. Their work is based on an Al-IPL-style (10] control strncture. They 

use a fault model based on possible failure modes of the various elements of the RTL description. 
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They use symbolic execution to find expressions representing good and bad result values in terms 

of register and input values. This execution includes path constraints, values needed to select an 

execution path through particular statements. They then select input values such that the path 

constraints are satisfied and the results for good and bad execution differ. If such values are found, 

they constitute a test. 

Graph J\!lethods 

Work has been done using various types of system graphs. However, most methods apply 

only to microprocessors, and are not useful for general circuits [26, 27, 28). 

Abadir and Reghbati [29) propose a path-tracing test method for circuit modeled as connected 

modules, where the function of each module is described with binary decision trees. Binary decision 

trees are a concise description of a module, considerably denser that truth tables for typical circuits. 

The authors define current and next state variables, to treat sequential circuits as combinational 

ones. Module testing involves testing each branch of the binary decision tree describing each bit 

of the module. Faults are stuck lines and functional faults, stuck-at perturbations of the binary 

decision trees. Tests generation is based on the D-algorithm, modified for sequentiality. It runs 

on time frames, with checks to ensure trying only a finite number of internal states. 

Hardware Description Language Methods 

Most recently, circuits have begun to be described at the chip level [30), with hardware de-

scription languages (HDLs). 
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Levendel and Menon (31) generalize the D-algorithm to apply to "CHDL" descriptions of 

circuits. They derive D-propagation cubes for boolean switching expressions, and also for non-

switching operations such as shifting and addition. They analyze IF and CASE control statements 

controlling transfers to switching expressions to derive D-propagation information. However, in-

stead of these derived D-propation cubes, they use the structure of the CHDL description for test 

generation. They consider procedural (sequential) and non-procedural (concurrent) interpretations 

of an HDL description. For procedural interpretation, they use a method similar to Su's symbolic 

execution [ 11). 

R. Khorram [32) worked on test generation from models described in a procedural HDL which 

executes once per clock cycle. Khorram breaks testing into several parts: testing a particular state-

ment, justifying required local inputs, activating the HDL statement, and propagating statement 

result to an output. Testing the statement refers to selecting values to test the variables or oper-

ations in the statement. Justification, as in other test methods, involves finding primary input val-

ues to get the required values to the statement under test. Activating a statement refers to presetting 

any conditions necessary to execute the HDL statement (e.g. the control expression of an IF 

statement). Propagation, also as expected, involves determining how to get local test results to an 

output. Khorram's method does stuck-at tests, plus functional tests for operators. 

Khorram's justification involves finding a statement to load a variable, if the variable is not a 

primary input. This can lead to other required values, if the variable is loaded from other variables. 

Propagation involves finding a statement to move the fault syndrome closer to an output, unless 

the fault syndrome is not at a primary output. Similarly, propagation can imply other required 

values which must be justified. Since conflicts may crop up, backtracking is used, and Khorram 

suggests using heuristics to select choices. 
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Chapter 3 

Test Method 

The method described here is a automatic test generation method for the chip level. The test 

method accepts an HDL description of a circuit, and uses a chip-level fault model to enumerate and 

sensitize faults. As opposed to more abstractly algorithmic methods, the test method directly ex-

amines the circuit description to justify and propagate values, as a test engineer might to generate 

tests manually. The method uses goals and goal solving, artificial intelligence problem-solving 

techniques, to represent and satisfy original, intermediate, and final test requirements. 

Hardware Descriptioll Lallguage Characteristics 

The test generation method works from a data-flow description of a circuit in an asynchronous 

block-structured concurrent HDL. Block-structured means that conditional execution is described 

with IF and CASE statements, not with GOTO or other branch statements (as in a register transfer 

language). Concurrent (or non-procedural) means that statements execute in parallel, and that only 
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inputs and state variables are involved. (There are no temporary variables that can take on different 

values sequentially through the description.) Asynchronous means that the description "executes" 

continuously (or equivalently, each statement executes whenever any of its input variables changes). 

(A synchronous description would execute once for each system clock period and so cannot model 

asynchronous clocks.) 

VHDL Subset 

VHDL, the Department of Defense's VHSIC Hardware Description Language (21], was 

adopted as the input language to define HDL details. Since VHDL is such a powerful language, 

and since only concurrent data-flow descriptions are considered, only a small subset of VHDL is 

handled, and timing assumptions are made to fit our timing model. 

The method uses a simple period-based timing model, since it considers only functional tests 

and not timing tests. Primary inputs are set to values at the beginning of a time period and are held 

for the period. Clock inputs that require a rising edge require two time periods: one with a 0 im-

mediately followed by one with a 1 (falling edges require a 1 followed by a 0). Primary outputs are 

sampled at the end of each period (before the next period's inputs are set). These periods are long 

enough for all signal propagation to complete and stabilize. This is the same style used in R TG [7], 

Marlett's EBT (8,9] and Khorram's work (32). 

VHDL's delta timing is simplified to fit our time-period model. In VHDL, transitions are 

detected with the 'STABLE attribute [21]. The expression" x'STABLE "is false immediately after 

x changes, and true other.vise. 'ST AD LE is usually used as in 

IF clk='l' AND NOT clk'STABLE THEN 

q <= d AFTER delay; 
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to model a synchronous clock. In the example, a rising edge on elk would latch the value of d into 

q. Right after elk rises, the assignment statement executes. After the delay, q takes on its assigned 

value. (If no delay is specified, a infmitesimal delay of delta is used.) The timing is as in part a of 

Figure 1 on page 11. Note that as written the example takes the value of d right after the clock 

changes. Since with the propagation and hold times of real circuits, d will not change immediately 

if it is an output of another edge-clocked latch, an equivalent construction is: 

IF clk='l' AND NOT clk'STABLE THEN 

q <= d'DELAYED AFTER delay; 

which changes the timing to that of part b of Figure 1. 

To fit the period timing model, the following is assumed: 

• when a signal's value changes from one period to the next, 'STABLE is false for that signal 

• for any object other than the clock, in the IF statement or in any statement in the THEN 

clause, the previous period's value is ·used 

• any object assigned as the result of an edge clock (in the THEN clause) takes on its new value 

in the second time period 

Thus, the assumed timing is as in part c of Figure 1. The statement is said to execute in the pre-

vious period, though the value is actually assigned in the second period (this is arbitrary; this par-

ticular choice reduces special cases in the implementation). 

The VHDL subset includes only signal objects and not variable objects. (Signals have a 

constant value during one pass through the description, representing state variables. Variables can 

take on several values sequentially at different points in the description. Thus, the value of a vari-

able is not uniquely specified by the time (or which simulation pass); it must be qualified by posi-

tion in the code.) 
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Objects may be bits or bit vectors. Values are 0 and l, plus X (don't-care) in test generation. 

(Z, high-impedance, is not implemented.) Many other types can be mapped into these two. 

Booleans can be translated to bits, and integers to bit vectors (especially in CASE statement se-

lection expressions). 

Statement may be IFs, CASEs, or simple assignments. (This excludes all loops, and any 

function or submodule declarations. Loops are sequential, and require variables, which are not 

implemented.) 

The test method assumes that all assignments to a signal refer to the same driver for the signal. 

Single drivers are assumed to avoid bus resolution functions, which are commonly expressed algo-

rithmically with a loop, and which typically use Z values which are not currently implemented. 

This assumption is equivalent to placing all assignments to a given object within one process 

statement, sensitive to every1hing. 

The subset includes most basic operations on data: boolean operations AND, OR, XOR, 

NOT, and EQV on bits and bit vectors, and EQ and NOTEQ operations for bit vectors; unsigned 

arithmetic operations ADD, SUB, less than and less than or equal for bit vectors; concatenation 

of bit vectors in expressions; and slices (subvectors) and elements of objects and expressions, except 

for slices of destination objects or using a slice as an edge clock. 

Because of the time period model, all sequential logic must be modeled explicitly, with using 

cross-connected gates or other combinational feedback. This is a minor restriction, since a chip-

level model would not have such feedback anyway. 

Appendix A, the User's Manual, contains other details of these restrictions and assumptions. 

HDL Terminology 

The following terms refer to various elements of the VHDL [21) description of a circuit:. 

literal: a value appearing right in the code; in ° x < = 'l' ", 0 '1' His a literal. 
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object: VHDL's term for simulation variable; VHDL has signals and variables as classes of ob-

jects; only signals are used here. 

expression: object(s) and/or literal(s) combined with micro-operations; an expression may be ar-

bitrarily complex, or may consist of a single object or single literal. 

subexpression: an expression within an expression, as an argument to a micro-operation; in "IF a 

AND (b OR c) THEN ... ", subexpressions are" a", "(b OR c)", "b ",and" c ". 

source expression: the expression in an assignment statement, whose value is loaded into the des-

tination object when the assignment statement executes. 

destination object: (of an assignment statement): the object (to the left of the < =) set when the 

assignment statement executes. 

control expression: the conditional expression of an IF statement or the selection expression of a 

CASE statement, which controls which THEN, ELSE, or WHEN clause executes. 

conditional expression: the control statement of an IF statement; if its value is true, the statements 

under the THEN clause execute; if false, the ELSE executes. 

selection expression: the control expression of a CASE statement; if its value matches a value in 

a WHEN phrase list, the statements under the WHEN clause execute. 

clause: a set of statements under one branch of a control statement. 

THEN clause: the statements under the THEN of an IF statement. 

ELSE clause: the statements under the ELSE of an IF statement. 

\HIEN clause: the statements under a WHEN of a CASE statement. 
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WHEN phrase: the value(s) after the WHEN keyword which specify what value(s) is needed to 

execute the associated WHEN clause. 

parent statement: the control statement controlling a statement. 

under: controlled by; a statement is under a (control) statement if it is controlled by that statement. 

under 'STABLE: under an IF statement with a 'ST ABLE; controlled by an edge clock. 

top-level statement: a statement not under any other statement; top-level statements effectively 

execute all the time, and do not need any conditions set to execute. 

Fault Models 

Gate-level stuck-at fault are insufficient at the chip level. A correspondingly high-level fault 

was needed for chip-level test generation. 

Original Fault l\'lodel 

Chip-level fault models were first presented by J. R. Armstrong (23]. He suggested micro-

operation and control faults. For a micro-operation fault, a micro-operation in the description fails 

to some other operation. As a heuristic, the dual of the operation was used, where defined. 

Though unusual, this choice has some hardware correspondence (24]. For a control fault, a branch 

functions incorrectly. For example, a conditional branch becomes inverted or unconditional, or 

an unconditional branch fails. 
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A. K. Gupta used these fault models for chip-level test generation [24). He used GSP [17, 18), 

an assembly language-style HDL, for fault simulation. Using manual test generation for a 3700-gate 

signal processing chip, these chip-level faults gave 88.6% coverage of gate-level stuck-at faults [24, 

34]. Other fault simulation with GSP yielded coverages near 90% [34, 35). 

l\Iodified Fault l\!Iodel 

Gupta's control faults were modified to fit the constructs of a block-structured HDL [35). The 

resulting faults are: 

STUCKTHEN and STUCKELSE: An IF statement becomes stuck one way or the other, as if the 

conditional expression became stuck true or false. 

DEADCLAUSE: A WHEN clause in a CASE statement fails to execute when it is selected. 

(A STUCKCLAUSE fault might seem more consistent, but DEADCLAUSE should give 

better coverage. To test for STUCKCLAUSE faults on n clauses (n > 2), only 2 tests are needed: 

execute clause 1 (to detect stuck at clause 2 through stuck at clause n), and execute clause 2 (to 

cover stuck at clause 1). A test for a dead clause fault tries to execute the faulty clause, so it takes 

n tests to test n clauses. Using n tests should yield better coverage then 2 tests). 

ASSNCNTL: For an ASSNCNTL (assignment control) fault, an assignment statement fails to 

execute (i.e. the assigned object is not changed). This addition was to improve coverage; a pure 

transfer (with no micro-operations) would not be tested directly without this fault type. 

MICRO-OP: A micro-operation fails to some other operation. Each micro-operation may have 

several fault modes. 
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Results of l\'lodified Fault l\'lodel 

Additional experiments were done to verify this modified fault model [25]. Models for 11 

small/medium-size circuits (12 to 91 gates, 44 average; plus 0 to 16 flip-flops, 6 average) were 

written in GSP2, a block-structured language [19]. Using this fault model, tests were derived 

manually from the chip-level models using the chip-level fault models. These tests were run on 

gate-level models of the same circuits, yielding an average coverage of 92.4%. Thus, the modifica-

tions seem valid. 

General Approach to Solving 

The chip-level test method is a path-tracing method that works directly from the HDL de-

scription of a circuit. After sensitizing the fault, path-tracing test generation must propagate the 

fault syndrome to an output and justify any needed interal values back to inputs. The particular 

HDL constructs in a description are used directly to justify and propagate values. 

In a gate-level model, the inputs and state variables determine the outputs, through internal 

node values. This holds for chip-level descriptions, except for what constitutes a node. In a gate-

level mode, nodes (or nets) are gate inputs and outputs. In an HDL description, nodes correspond 

to objects, micro-operations, and whether statements execute (particularly, those statements under 

control statements dependent on exprest>ion values). Chip-level test generation works with these 

virtual nodes. 

Justification: Justification involves working backwards to set inputs such that internal node values 

are satisfied. Khorram [32] separates justification of object and expression values from activation 

of statements. Our method considers these all justification. 
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Justifying expression values parallels combinational gate-level justification. An expression may 

consists of a micro-operation and its argument expressions. Justifying the expression's value re-

quires selecting values for the arguments such that the micro-operation computes the desired value, 

much as gate inputs are selected to justify the gate output value. 

To justify a value in an object, the circuit description is searched for an assignment statement 

to use to load the value into the object. The statement must be executed, and its source expression 

must be set to the value to be loaded. These requirements must be justified in turn. In general, 

the object could be loaded in a time period previous to when it is needed. The choice of when to 

load the value is separate from the choice of which statement to use. 

To justify the execution of a statement, any IF or CASE statements controlling the statement 

must be executed, and any control expressions must be set appropriately, and justified in turn. 

Propagation: Propagation involves using the fault syndrome at some place to affect another object, 

eventually moving it to an output. 

Propagating an object value is similar to gate-level propagation of a state variable with fanout. 

Since the object can be used in expressions, an appearance in an expression is selected, and the fault 

syndrome is propagated through the expression. Also, since the object may hold its value over 

time, the time to observe the value must be chosen. 

Propagating fault syndromes through micro-operations in expressions parallels propagation 

through a gate with a fanout of one. The value of the micro-operation's other argument is selected 

to pass a fault syndrome as the result of the micro-operation. 

For an assignment statement source expression, the fault syndrome can be propagated to the 

assigned object by executing the statement. For a control expression, the faulty value affects exe-

cution (i.e. the good value executes one clause and the faulty value executes another clause). This 

execution difference is detected by its effects on an object assigned different values by assignment 

statements within the affected clauses. Expressions in these assignment statement may have to be 

set to ensure that the affected object gets different values in each case. 
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Sequentiality and Time Choices: Since HDL descriptions are in general sequential, justification and 

propagation involve choosing when to load objects. The time choice strategy is to assign each load 

event its own time designation, determine how to accomplish the load, and then decide exactly 

when to do the load relative to other load events. The time designation is called a base time. 

Constraints such that one load must precede another are expressed by saying that the farmer's base 

time be less than the latter's. At some point, the absolute offset between them is decided. 

Goals and Data Structures 

The test method is implemented with goals. Goals are an artificial intelligence problem-solving 

technique used to break a problem into small pieces. Goals are used to represent and manipulate 

the requirements of a problem. The test method uses goals to represent basic sensitization re-

quirements, derived justification and propagation requirements, and final test vector specifications. 

There are eleven types of goals to represent these requirements: 

I. Preload goals: 

a. VIO (Value in Object): Need value in object at time. 

b. VIE (Value in Expression): Need expression equal to value at time. 

2. Execution goals 

a. EXEC (Execute): Execute statement at time. 

b. DNE (Do Not Execute): Don't execute statement at time. 

c. EXG: (Execute Given): Execute statement at time given that set of statements execute. 

3. Observation goals: 

a. OBSOBJ (Observe Object): Observe value in object at time for good value or bad value 

b. OBSEXPR (Observe Expression): Observe (sub)expression at time for good value or bad 

value 
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c. OBSEXEC (Observe Execution): Observe execution of clauses of statement at time, ex-

pecting good or bad clauses to execute. 

4. Preserve goals: 

a. DND2 (Do Not Disturb, Multiple): Preserve value in object loaded at timel until time2. 

b. DNDl (Do Not Disturb, Single): Preserve value in object at period time. 

5. TR (Time Relation): Specify time relation timel ~ time2 or timel = timc2. 

VIO and VIE goals are used to load objects and set expression values. EXEC and EXG goals 

are used to activate statements. OBSOBJ and OBSEXPR specify where a fault syndrome currently 

is. OBSEXEC specifies a fault-induced difference of execution to be detected. TR goals represent 

constraints on when to load object or to propagate results. DND2, DNDl, and DNE goals are 

ensure consistency by ensuring that loaded values are not overwritten. 

Times are represented as a base time and an offset, in the form tn ± m. Base times refer to 

arbitrary time periods. The offset refers to time periods relative to the base time. For example, 

tl + 3 refers to the third period after period tl. Until decided and explicitly specified, there is no 

implied relation between different base times; they may be the same period or different periods. 

The value of an object at a certain time is referred to by specifying the object name and the 

time. For example, x@t3- l refers to the value of object x at time period t3- l. 

There are two representations for expressions. One refers to expressions and subexpressions 

within the circuit description, for example, "the expression in statement 5," or " the left subex-

pression of the right subexpression of statement 7." (The latter example could refer to "x AND y" 

in "(a AND b) XOR ((x AND y) OR z).") Position codes are used, as in "5-" or "7RL", for ex-

ample. The left/right nomenclature is based on the parse tree of an expression. The position code 

method can specify where to expect a fault syndrome, for OBSEXPR goals, or where a faulty 

micro-operation is. This is similar to numbering nodes in a gate-level circuit. 

However, the position code method can only refer to expressions and subexpressions existing 

in the description. The method must be able to construct new expressions which might never occur 

in the description. For example, to make x and y different, one could require that "x -::P y" be true, 
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but "x :¢: yn might never occur in the description. To represent such expressions, a parse tree re-

presenting the expression is constructed and manipulated. To be able to refer to different objects 

at different times, times are associated with individual objects instead of the whole expression, for 

example in nx@t0-1 :¢: y@t 1." Associating times with objects in expressions is called time-tagging 

the expression. This second form of expressions is used in VIE expression fields, and in OBSOBJ 

and OBSEXPR value fields. 

Actiolls 

The test method uses the chip-level fault models to list faults and to select "basic tests" for 

faults. 

Listing Faults 

Faults are listed by traversing the circuit description and listing faults for each HDL item. IF 

statements are listed for STUCKTHEN and STUCKELSE tests. CASE statement clauses are 

listed for DEADCLAUSE tests. Assignment statements are listed for ASSNCNTL tests. Each 

expression in the description is traversed to find micro-operations to test. For each micro-operation 

found, its fault cases are looked up and listed for testing. 
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Selecting Basic Tests 

Basic tests are the sensitization requirements for faults, and are represented with goals. Basic 

tests for each fault are derived from the fault model. Base time tO is chosen to refer to the time the 

internal test occurs (as opposed to when results are propagated to a primary output). 

STUCKTHEN/STUCKELSE Test 

A STUCKTHEN fault is sensitized by trying to execute the ELSE clause, by executing the 

IF statement and setting the conditional expression false. An EXEC goal specifies to execute the 

IF statement. A VIE goal sets the expression false: the IF statement control expression is copied, 

is time-tagged with tO (the time of the basic test), and is set false with the VIE goal. 

The fault is detected by observing which clause executes. An OBSEXEC goal specifies to 

detect whether the statement's THEN clause (indicating faulty operation) or ELSE clause (indi-

cating good operation) executes at tO. 

A test for STUCKELSE is similar, with the expression set true, to try to execute the THEN 

clause, and with the OBSEXEC good and bad clauses reversed. 

DEADCLAUSE test 

A DEADCLAUSE fault is sensitized by trying to execute the clause. A WHEN clause is ex-

ecuted by executing the CASE statement and having the selection expression equal to one of the 

values given in the WHE:-.: phrase (usually a single value). An EXEC goal specifies to execute the 

CASE statement at time tO. To set the conditional expression, an expression of the form "(e=vl) 

OR (e = v2) ... (e = vn)" is made, where e is a copy of the selection expression, and vl..vn are values 

in the WHEN phrase, any of which selects the clause. This expression is time tagged with tO, and 
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specified to be true using a VIE goal. Thus, the selection expression will be set to one of the 

WHEN phrase values. 

The fault is detected by observing whether the clause actually executes. An OBSEXEC goal 

specifies the CASE statement, the time (tO), and specifies that good execution would be the tested 

clause and bad execution would be nothing. (That is, nothing under the CASE statement would 

execute.) 

ASSNCNTL Test 

An assignment control fault is sensitized by executing the statement with an EXEC goal, and 

detected with an OBSEXEC goal. The OBSEXEC goal specifies that the statement will execute 

for good operation, and will not for bad operation. (This OBSEXEC will observe execution by 

trying to load a value using the assignment statement.) 

!vlicro-Operation Test 

A micro-operation fault is sensitized by setting the arguments of the operation such that the 

result of the good micro-operation differs from the result of the bad micro-operation (i.e., 

f 800iarguments) :;i: fb0iarguments) ). To simplify this selection of values, a condition is given in a 

lookup table for each micro-operation fault case. This condition is expressed as an expression of 

the micro-operation's arguments which must have a required value. For example, for" < argl > 

AND < arg2 > "failing to " < argl > OR < arg2 > ",the condition is < argl > :;i: < arg2 >. The 

lookup table rules construct an express:on using the micro-operation's arguments. This expression 

is time-tagged with tO (test time), and put in a VIE goal with the required value. When the VIE 

is solved, necessary conditions will be satisfied. 

The micro-operation's result is detected with an OBSEXPR goal. The OBSEXPR specifies 

the position of the micro-operation, and specifies the good and bad values. The expected good and 
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bad results are simply the good function of the arguments and the bad function of them, respec-

tively. The lookup table specifies this, or may specify a fixed value, if already constrained by the 

input condition. 

Solving for a Test Vector 

The test generation is done in the goal-solving phase. This solving phase takes the basic test 

goals and recursively solves them into goals representing the test vectors for a fault. Goals are 

solved by breaking them into subgoals which will accomplish the original goal, using rules for each 

goal type which take into account the circuit description. 

The solving phase maintains an unsolved goal stack. Basic test goals are initially placed on 

this stack. As goals are picked off the stack, they examined. A goal may be primitive, inherently 

solved, solvable, or unsolvable. 

Primitive Goals: A goal is primitive if it specifies a needed input pin value or an expected output 

pin value. Obviously, input pins can be directly controlled and output pins can be directly ob-

served, so primitive goals are added to the test vector. 

Inherently Solved Goals: A goal is inherently solved if nothing needs to be done. A goal requiring 

that x = x be true would be inherently solved; whatever xis, x = xis true. Nothing is done for 

inherently solved goals, since they are solved. 

Solvable Goals: A goal is solvable if it can be accomplished by specifying several other goals. Most 

goals are solvable with subgoals. For example, a VIE goal requiring a AND b = 1 can be solved 

·with VIE a = 1 and VIE b = I. For solvable goals, the new subgoals are added to the unsolved 

goal stack, so they can be solved in turn. Frequently, there is a choice of how to solve a goal. 
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When one choice is made, the other options are noted so they can be tried later in case the original 

choice leads to a conflict. 

Unsolvable Goals: A goal is unsolvable if there is no way to satisfy the goal. An example would 

be a VIO goal requiring one value in an object when the object has already been assigned a different 

value. This is also called a conflict. When an unsolvable goal is encountered, solving "backtracks" 

to the most recent choice point and selects a new option. 

Backtracking 

Backtracking is a technique to back up and try other options after encountering a conflict. 

At each point at which there is a choice of what to do, one option is chosen, and the others are 

saved. At a conflict, execution backs up to the most recent choice (restoring the state to what it 

was before that choice), and the next remaining untried option at that choice point is chosen. If 

no options remain, backtracking proceeds to the previous choice point. 

In the test method, there are choices about how to solve goals. There is a choice of when to 

load an object or propagate a value. There may be multiple paths usable to load an object. There 

may be a choice of object values which will give the needed value for an expression. 

Conflicts occur when a goal cannot be solved. Two goals may require conflicting (i.e. differ-

ent) values in the same object at the same time. An execute goal may clash with a do not execute 

goal for the same statement at the same time. An unsolvable goal is considered a conflict. 

Solving Goals 

The various types of goals are solved as follows: 
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Solving VIO (Value in Object) goals: A VIO goal specifies that some object needs a certain value 

at some time. If the object is a primary input, the VIO is primitive, and becomes part of the test 

vector. 

If the object is not a primary input, the object must be loaded, using an assignment statement, 

by the time the value is needed. A new base time is allocated to represent the time period in which 

the object is actually loaded, and is specified to be less than or equal to the time at which the.value 

is needed. The statement must be executed, and its source expression must be set to the value given 

in the VIO goal. For an asynchronous statement (not under a 'STABLE), an EXEC goal specifies 

to execute the statement at the new base time, and a VIE goal specifies the needed value for the 

source expression at the new base time. For a synchronous statement (one controlled by a 'STA-

BLE), the VIE applies in the previous time period (i.e. the new base time minus one period), before 

the clock edge. With the convention for when a synchronous statement executes, the EXEC goal 

also specifies this previous period. Finally, a DND2 goal specifies to preserve the value from the 

new base time (when it was loaded) to the time in the VIE goal (when it is needed). 

Solving VIE (Value in Expression) Goals: A VIE goal requires a given expression of time-tagged 

objects, literals, and micro-operations to have a certain value. VIE goals are solved by selecting 

values for objects such that the expression has the needed value. There are several VIE cases. 

If the expression is a just a literal value (i.e., no objects or operations) which is the same as 

the needed value, the VIE is inherently solved. 

If the expression is a literal value different from the needed value, the VIE is unsolvable. 

If the expression is a single object, the VIE is solved with a VIO requiring the value in that 

object, at the time with the time-tagged object. This case simply rewrites the VIE as a VIO. 

The main case is when the expression consists of a micro-operation and its arguments. In this 

case, values are selected for the arguments to give the needed result. Since the arguments are in 

general expressions, a VIE goal specifies the selected value for each argument expression. There 

may be several combinations of values to give the needed result, so when one is chosen, the others 

are noted for backtracking. 
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Solving EXEC (Execute) Goals: An EXEC goal specifies to execute a statement at a particular 

time. Since EXEC goals are a special case of EXG goals, they are solved in terms of EXG goals 

(see "Solving EXG Goals (Execute statement given statement list)", below). 

Soh-ing EXG Goals (Execute statement given statement list): An EXG goal is used to execute a 

statement assuming that some higher-level statements already execute. EXGs are use for solving 

OBSEXEC goals, and for solving EXEC goals. 

EXG goals are used mainly in solving OBSEXEC goals. An OBSEXEC goal specifies which 

clauses of a control statement execute for good and faulty operation. To detect execution, an as-

sigrunent statement within the clause must execute to affect some object. The assigrunent may be 

nested under other IFs or CASEs, so values must be set to execute that assigrunent. For example, 

1ll 

sl: IF a AND b THEN 
s2: IF c OR d THEN 
s3: x <= I 1' ; 

ELSE 
s4: y <= IQ I; 

END IF; 
s5: z <= I 1' ; 

ELSE 

END IF; 

consider a test for statement sl stuck at ELSE. Statement sl would be executed with an EXEC 

goal, the control expression H a AND bH would be set true with a VIE goal to try to execute the 

THEN clause, and an OBSEXEC goal would specify good execution as the THEN clause and bad 

execution as the ELSE clause. If s5 is chosen to detect execution (by setting z), then s5 will execute 

whenever the THEN clause executes. However, if statement s3 is chosen to detect execution of the 

THEN clause (by changing the value in x), the expression "c OR d" must be set true. 

EXG goals are used to set up such conditions needed to execute statements under a clause. 

In this example, an EXG goal would specify to execute s3 given that sl's THEN clause executes. 
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The THEN clause is specified as s2 and s5, since execution of either s2 or s5 indicates that the 

THEN clause executed. (An EXEC s3 goal would be wrong, because s3 is not to be executed all 

the time, just if sl's THEN executes.) Solving this EXG would set H c OR d "true. If s5 is used, 

the EXG goal would be used to execute s5 given that s2 and s5 execute. In this case, no further 

goals are necessary. 

EXG goals are also used to solve EXEC goals. If an EXG goal's given list consists of top-level 

statements (which always execute), solving the EXG goal will ensure that the statement executes. 

Thus, EXEC is a special case of EXG. (That is, the EXG goal executes the statement if the top-

level statements execute. The top-level statements execute under any conditions. Therefore, the 

statement will always be executed.) An EXEC is solved by making an EXG goal, specifying the 

top-level statements as the assumed list. 

EXG goals are solved as follows: 

If the needed statement is in the list of given statements, the EXG is inherently solved (e.g. if 

it says execute s2 assuming that sl, s2, and s3 execute, s2 can be assumed to execute, so it is in-

herently solved.) This is the termination case. 

Othen.vise, the parent of the needed statement must be executed, and the clause containing the 

needed statement must be sensitized. The parent is executed with an EXG goal, specifying the same 

given statements. The clause is sensitized with a VIE goal. If the statement is in the THEN clause 

of an IF statement, the VIE sets the conditional expression true. If in the ELSE clause, it sets it 

false. If in a WHEN clause of a CASE statement, The VIE sets the expression "(e=vl) AND 

(e = v2) ... (e = vn)" true, where e in the selection expression and vl..vn are the values in the WHEN 

phrase, so that the selection expression has one of the WHEN values. This activates the clause if 

the CASE executes. 

Solving DNE Goals (Don't execute statement at time): A DNE goal specifies to ensure that a 

statement does not execute at some time (e.g., to avoid changing a value in an object). 

A DNE for a top-level statement is unsolvable, since a top-level statement always executes. 

Test Method 28 



A statement can be avoided by avoiding its parent statement, or by desensitizing its parent 

clause (the parent statements's clause which contains the statement to avoid). The parent is avoided 

with a ONE for the parent statement. If that fails, the parent clause can be desensitized by setting 

the control expression's value with a VIE goal. For a statement under a THEN, the conditional 

expression is set false; for ELSE, it is set true. For a statement in a WHEN clause, the selection 

expression for the CASE statement must be set so that its value is not one of the WHEN phrase 

values which would select the WHEN clause. To specify this requirement, the expression ° 

( e :;C v 1) AND ( e :;C v2) ... ( e :;C vn) 0 is set true, where e is the time-tagged control expression and 

vl..vn are WHEN values which could select the clause. This expression will be true only if the 

selection expresion value is not one of the values for the WHEN clause. Thus, setting the ex-

pression true will ensure that if the control statement executes, the WHEN clause containing the 

statement will not execute. 

Note that a ONE is the negation of an EXEC goal. An EXEC goal executes the parent and 

sensitizes the parent's clause; a ONE goal avoids the parent, or desensitizes the parent clause. 

Solving OBSOBJ Goals (Observe object value at timel): An OBSOBJ goal specifies to observe the 

fault syndrome in some object at some time, with the the expected good and faulty values. 

An OBSOBJ is primitive if the object is an output. Obviously, a fault syndrome at an output 

is directly observable. Such an OBSOBJ becomes part of the test vector. 

If the object is not a primary output, the object's value must be observed indirectly by prop-

agating the fault syndrome towards an output. The object value may be used in a source expression 

in an assignment that loads another object, or may be used in a control expression to affect exe-

cution. A new base time is selected as the· time to use the value in the object and a TR goal specifies 

that this new time be equal to or after the time the fault syndrome appears in the object. An 

OBSEXPR is used to further propagate the fault syndrome within the expression using the object. 

The OBSEXPR refers to the position of the object within the expression, the time, and the good 

and faulty values. A D.!'\02 goal specifies not to disturb the object's value until it is observed. 

Test Method 29 



Soh'ing OBSEXPR Goals (Observe expression value at timel): OBSEXPR specifies a particular 

(sub)expression whose value to observe. This is equivalent to knowing a gate has a Dor Don it, 

and trying to propagate the value through combinational logic. The value in a subexpression is 

propagated up through expression operations, and then observed. There are several cases for 

OIJSEXPR solving: 

If the expression is the argument of a unary micro-operation, the propagated results are simply 

f(good) and f(bad), where f is the micro-operation. A new OBSEXPR is issued, referring now to 

the micro-operation, at the same time, and with the new good and bad values. 

The binary case is a more complicated. The other argument of the micro-operation may need 

to be constrained. This constraint is expressed with a VIE goal, specifying a value for a symbolic 

expression constructed using the other argument. As in the unary case, the resultant values must 

be computed as a function of both the fault syndrome and the other argument. Finally, a new 

OBSEXPR is issued, pointing to the micro-operation, and specifying the newly-computed good 

and bad values. 

If the expression to be observed is not an argument of a micro-operation, it is an assignment 

statement source expression or a control statement control expression. 

For an assignment source expression, the fault syndrome can be loaded into some other object. 

An EXEC goal is used to execute the assignment statement, and an OBSOBJ goal specifies to ob-

serve the fault syndrome now in the object. (If the assignment statement is under a 'STABLE, the 

OBSOIJJ specifies the following time period, since the value of the source expression before the 

clock edge will only show up in the destination object after the clock edge.) 

For a control statement, the good vs. bad values affect which clauses execute. In an IF 

statement a good vs. bad value of 0 vs. I becomes ELSE vs.THEN, and 1 vs. 0 becomes THEN 

vs. ELSE. An OBSEXEC for the control statement specifies THEN vs. ELSE or ELSE vs. THEN 

as good vs. bad execution. For a CASE statement, the good value will select one clause, and the 

bad value will select another. An OIJSEXEC specifies these clauses. 
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Solving OBSEXEC Goals (Observe execution of clauses of statement): OBSEXEC goals are used 

to observe the execution path, which cannot be observed directly, by observing its effects on some 

object. An OBSEXEC specifies a control statement and two of its clauses (one possibly empty) 

to check. 

First, one of the objects loaded by statements under either of the two clauses is picked (alter-

nates are saved for backtracking). Next, a statement assigning to that object is picked from each 

clause. These statements are used to load one value if the good clause executes and another if the 

bad clause executes. In a variation, only one statement from one of the clauses is picked, and no 

statements in the other clause are executed. Thus, the old value will be changed if that clause ex-

ecutes. The choice of statements is also subject to backtracking. 

When two statements are selected, a VIE goal is used to specify that the source expression be 

different, by requiring e I * e2, where e 1 is one statement's source expression and e2 is the other's. 

An EXG goal for each ensures that each executes if its respective clause executes (the statements 

may be nested under other control statements). An OBSOBJ goal checks the resulting value. (For 

one statement, the VIE sets the object's old value to be not equal to the value the statement would 

load.) 

Solving DND2 Goals (Preserve value in object from timel to time2): DND2 specifies to preserve 

a value in an object from a start period to an end period. Most DND2 goals are issued with two 

different base times; thus, they cannot be solved until the accompanying TR goal is solved and one 

base time is represented in terms of the other. A DND2 is solved with a DND 1 for each period in 

the DND2 interval. 

Solving DNDI Goals (Preserve value in object at time): DNDl specifies to preserve a value in an 

object for a single time period. A DND 1 is solved by fmding all statements assigning to the object, 

and using a DNE for each to avoid executing it. In case the DNE fails, a VIE is used to set the 

source expression of a statement to the value already in the object, so if the statement executes, it 

reloads the value already in the object, thus preserving that value. 
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The statement that initially loads the value in the object must not be disallowed. DND2 and 

DNDI goals also include this loading statement. When a DND2 goal for an interval is solved with 

DNDI goals for each period in the interval, the DNDI goal for the first period (when the object 

was loaded) has a first-period flag set. When a DND 1 goal is solved with DNEs for each statement 

that could disturb the object, if the DND 1 is for the first period, no DNE is issued for the loading 

statement. 

Solving TR Goals (Timing Relations): Time relation goals specify constraints between different 

base times. There are two forms: (TR tl $; t2) and (TR tl = t2). 

A (TR t I $; t2) goal specifies that time t I be less than or equal to time t2. Usually (but not 

necessarily), each time is a base time with zero offset. The TR goal is solved by picking an offset 

between the times that satisfies the constraint. For example, (TR tl + 1 $; t2) could be solved with 

t l + l = t2, t l + I = t2- l, t l + l = t2-2, etc. When an off set is selected, a TR = goal is issued to unify 

one base time to some offset from the other. The offset is arbitrarily limited to some maximum. 

A TR = goal is a very special case. It specifies one base time in terms of the other. To nsolven 

a TR = goal, all occurrences of one base time in all solved and unsolved goals are substituted in 

terms of the other base time. This binds the base times together. If time substitution leads to any 

conflicts, the TR = is unsolvable, and leads to backtracking (usually to try a different offset from 

the TR $; goal). 

Base Times and Substitution 

Recall that base times are names for arbitrary time periods. The test base time is tO. As base 

times are created, the index is incremented (i.e. the next is tl, then t2, etc.) When two times are 

unified with a TR = goal, the substitution is in terms of the one with the lower index, (e.g. t2 and 

t5 - > t2 and t2±offset). Thus, all final times will be in terms of tO; the offsets may range from 

negative to positive, which may be unfamiliar, but time labels are arbitrary anyway. 
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Loop Cuts 

Test generation for sequential circuits must deal with sequential feedback. Sequential feedback 

can lead to loops, in which an object is used to load itself, or the value in an object is propagated 

back to the object. Such loops waste effort, and can trap automatic test generation. 

To sense and avoid loops, VIO and VIE goals, and OBSOBJ and OBSEXPR goals have an 

extra parameter. For a VIO or VIE goal, this parameter is a list of objects loaded from the current 

object or expression. The list specifies that the current VIO or VIE goal results from justifying 

values in these other objects. A register must not be loaded from itself, directly or indirectly. If the 

object to be loaded appears in the list, it means a loop was just completed. Under this condition, 

the VIO goal fails as unsolvable, to try another path. Solving a VIO goal adds the object to the 

path, and the VIE goal passes the path information on to the VIO goals it can lead to. OBSOBJ 

and OBSEXPR goals work similarly, checking that the fault syndrome is not loaded back into any 

place it has been. 

Fa ult Awareness 

Test generation must keep track of the fault to ensure a correct test. This makes goal solving 

more complex. The goal solving rules given above assume correct operation, and must be modified 

to handle goal-solving correctly in the presence of a fault. Most modifications avoid using the faulty 

item to preload before the test, or to propagate results afterwards. Without checks, using the faulty 

item to test itself could mask out the fault. However, these checks preventing use of the statement 

or micro-operation must be overridden to use the statement or micro-operation once to test it. 

For a STUCKTHEN fault, statements in the ELSE clause cannot be executed, and no state-

ment in the THEN clause can be avoided if the IF statement executes. STUCKELSE faults are 

similar. For a DEADCLAUSE fault, no statement in the clause can be executed. Unless over-

ridden, EXEC solving checks that the statement is not directly in a clause which cannot execute. 

Test Method 33 



DNE solving will only issue a DNE for the parent statement, and not try to desensitize the parent 

clause if the statement is in a STUCK clause. 

For an ASSNCNTL fault, the statement cannot be used to preload or observe, since it may 

be faulty. Unless overridden, EXEC solving also checks that there is no ASSNCNTL fault on a 

statement. 

Micro-operation faults usually are not a problem, but a faulty micro-operation must no~ be 

used to preload or propagate its own test. When an expression is copied from the description (i.e. 

to make a VIE goal), the faulty operation is marked. So marked, it cannot be used, so it is never 

reused where it should not be. 

Two-Plzase Tests 

One part of the fault model that causes problems is the ASSNCNTL fault. The standard test 

is to preload one value vi into the destination object, try to load a new value v2 ( :;i!: vl) by exe-

cuting the assignment statement with the source expression set to v2, and observe the resulting 

value in the object. If the assignment is the only assignment to the object, there is no other as-

signment with which to load the first value into the object. If the faulty statement is used to preload 

the first value, one cannot be sure the object is loaded, since the statement may fail. For example, 

if an object x has a value of I (random initialization), and one tries to load a 0 and then load a l, 

the original 1 will be in x, and one will think the statement works. . 

The solution is to do a 0 two-phase0 test. In a two-phase test, value vi is loaded and the object 

is observed for vl; then v2 is loaded, and the object is observed. (Actually, because of a limitation, 

this becomes a three-phase test: load vl, check vl; load vl again, load v2, and check v2. Value 

vl is loaded again because observing vl may destroy the vl in the object, for example, observing 

a bit in a serial-output shift register.) 

Two-phase tests are implemented in OBSEXEC solving. Normally, OBSEXEC goal uses a 

VIE goal to specify to preload one value, another VIE goal to set the source expression, an EXEC 
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goal to execute the statement, and an OBSOBJ goal to observe the value. If the ASSNCNTL 

statement is the only assignment to the object, the OBSEXEC solving issues an extra VIE goal to 

load the value and an extra OBSOBJ goal to verify that value. These two goals are issued for a 

new, totally independent base time. (I.e., the new base time will never be constrained with a TR 

goal, and will never be substituted in terms of tO. This will effectively yield two tests which can 

be done in any order.) 

Control faults can require two-phase tests, when all statements that load an object are under 

a faulty control statement. If all assignments to an object are under a faulty IF statement, or in a 

dead WHEN clause, OBSEXEC also initiates a two-phase test. 

Enhancements 

Several enhancements added to basic solving strategy speed up execution. 

Simple Controllability and Observability 

Crude controllability and observability estimates are used to select justification and propa-

gation paths. These estimates are simple input and output distance measures. Input distance of 

an object is the udistance 0 from an input, measured as the number of assignments needed to get to 

the object. Input pins have distance zero, objects loaded from inputs have distance l, objects 

loaded from distance-1 objects have dist<:tnce 2, etc. Similar measures are used for output distance. 

However, this definition does not specify how to count objects in control expressions. They ob-

viously affect how easily objects can be loaded, but are harder to count since they are indirectly 

related. Unspecified distances are counted as infinity for now. 

When selecting an assignment statement to use to load an object to solve a VIO goal, the as-

sigruncnt with the most controllable source expression is chosen first. When selecting a use of an 
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object (in some expression) when solving an OBSOBJ goal, the one loading the object with the 

best observability is selected first. When picking an object to use to detect execution when solving 

an OBSEXEC goal, the most observable object is picked first. 

Conflict Clzecks 

Additional conflict checks are done to catch conflicts more quickly. The basic check is for two 

VIO goals for the same object at the same time requiring different values. This is sufficient for 

correctness, but is inefficient. One additional check is for an EXEC goal and a DNE goal at the 

same time for the same statement. (This would eventually be caught when selecting corresponding 

object values to set control expressions, but this saves the work and time spent selecting those 

values.) Other new checks are for unsolvable goals, such as VIE goals with impossible combina-

tions of expressions and values, or DNE goals for top-level statements. 

Conflict checks are significant because of when they are done. Subgoals returned from solving 

a goal are checked immediately, to catch conflicts or impossible goals then, instead of considerably 

later when the subgoals are examined for solving. Compatibility is also checked immediately after 

time substitution, since many conflicts appear then. 

Object Value Substitution 

Related to conflict checks is the substitution of known object values in expressions. Substi-

tution is done to simplify VIE expressions, when the value of any object in the expression is known, 

to determine that the VIE goal is unsolvable or inherently solved. Also, since OBSOBJ and 

OBSEXPR good vs. faulty values are represented as expressions of argument values, these ex-

pressions are substituted to resolve them to literal values by the time all goals are solved. Known 

object values are substituted in goals when the goals are returned as subgoals, and again when each 
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goal is solved (to substitute any values decided in between). This substitution corresponds to 

(partial) forward implication. 

Solved and Decided Goal Lists 

Instead of a single goal stack, there are actually three goal lists: the unsolved list previously 

described, the solved goal list, and the decided (but not yet solved) goal list. The unsolved list keeps 

tracks of goals which must be solved. The solved goal list consists of goals already solved (primi-

tive, inherently solved, or solved with subgoals). The decided goal list consists of all goals (solved 

and unsolved). It is called the decided list because it lists all goals decided to be done, regardless 

of whether they are solved or unsolved. 

The solved goal list is used to catch new goals that have been solved already. For example, 

if a VIO goal for some value in an object at some time was solved, and later for another reason 

another VIO goal requires the same value in the same object at the same time, the second VIO goal 

is considered inherently solved, since it was already solved. Immediately before being solved, a goal 

is checked against the solved list. 

The decided goal list is used for enhanced conflict checks. Originally, a goal was checked for 

conflicts only against previously-solved goals. This was correct, but inefficient. Consider the case 

where a goal is solved with subgoals and one subgoal is incompatible with some solved goals. 

Backtracking should begin at this point, but would not begin until solving got to the the incom-

patible goal. Subgoals, being decided even before being solved, are put in the decided list (along 

with solved goals) so everyihing decided is checked for conflicts, not just what has been solved. 

Another use for the decided goal list is for object value substitution. All values decided, not 

just those which have been justified, are substituted to catch conflicts or discover inherently solved 

goals. 
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DND2 VIO c/zecks 

Another enhancement is embedded in DND2 goal solving. Recall that a DND2 goal is used 

to preserve the value in some object over an interval of time periods. The DND2 goal becomes a 

DNDl goal for each period, and each DNDI goal usually becomes a DNE for each statement that 

could assign to the object. In case of a bad time choice, such that one value is loaded, then a second 

value is loaded, and then the first value is used, there will eventually be a clash when the EXEC 

goal loading the second value conflicts with a DNE (from the DND2 from loading the first value), 

preserving the first value. To catch such conflicts early, the DND2 creates a temporary VIO goal 

for each period in the interval, and checks these VIOs against any existing VIOs. Thus, conflicts 

can be detected when solving the DND2 (which is the first thing solved after a time choice), instead 

of later when the DNDls are solved with DNE's. (These VIO goals should be permanently added 

to the solved list, in case conflicting VIOs pop up later.) 

Unsolved Goal List Sorting 

A major enhancement is sorting the unsolved goal stack (it becomes the unsolved goal list). 

The aim is to catch conflicts more quickly by solving goals which lead to conflicts first, and to re-

duce work repeated near choices, especially involving deferred time choices. 

When a decision is made, as much as possible should be done to find out if the decision is bad 

before making more decisions. (Recall that when solving an exponential-order problem, it is the 

choice points and conflicts that count. Most other improvements yield only linear improvement, 

which is insignificant.) Thus, if there are any goals to be solved which involve no choices, they 

should be done first. Next should be any goals related to the choice (since related goals are more 

likely to cause or reveal conflicts than non-related ones). 

Solving non-choice goals first helps for another reason too. For example, if goal A has no 

choices, goal B has three choices, and conflicts can be detected only after solving both A and B, 
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doing A first is better. If B is done first, three options of B are tried, doing A for each one. If A 

is done first, and then B's three options are done, two solvings of A are avoided. 

Thus, non-choice goals should be solved first, and then "related" goals. This is implemented 

by assigning a weight to each goal and then sorting by this weight. The intrinsic weight of a goal 

is computed as an estimate of the number of ways to solve it, with several special cases. Goals on 

the same base time are considered rebtcd, so goals are first grouped by base time, and then sorted 

by intrinsic weight. TR goals involve two base times; they are kept in their own group, the last to 

be solved. 

Sorting is also used to defer some goals until they can be solved. DND2 goals are usually is-

sued with two different base times, and cannot be solved until one base time is substituted in terms 

of the other; DND2s with one base time are sorted to near the top, and DND2s on different bases 

are sorted to the end. Some OBSEXPR goals cannot be solved until object values are decided and 

substituted. OBSEXPR goals with unsimplified expressions are sorted to be after VIE goals; when 

the appropriate VIEs are solved, values will be decided and substituted into the OBSEXPR ex-

pression. When the OBSEXPR is fully substituted, sorting will move it nearer to the top, so it can 

be solved. 

Sorting is also used to gather constraints on object values. For a four-bit vector x, a VIE 10 

in x[ 1 downto OJ leads to VIO XX 10 in x, and VIE 0 in x[3] leads to VIO OXXX. If the VI Os are 

solving separately, the work is done twice to find subgoals to load x. Also, these two VIOs must 

really occur at the same time (otherwise, if there are two separate loads, the second will undo the 

first). Test generation may try them at different times, failing until they happen to be at the same 

time. If the two VIO goals are combined to form VIO OX 10 in x, solving is done only once, and 

trying different time offsets is eliminated. (If they can not be combined it is a conflict.) To combine 

VIOs, the first one to occur must not be solved until the second one occurs (being returned as a 

subgoal solving a VIE goal). To satisfy this requirement, VIOs are sorted to be after VIE goals. 

Thus, a VIO is not solved until any other related VIOs exist; and when a VIO is returned as a 

subgoal, it is combined with any related VIOs. 
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Chapter 4 

Results 

Experi111ental J111ple111entation of M etlzod 

The test method is implemented in about 7000 lines (including space and comments; about 

280K bytes) of Virginia Tech Pro Log [36] on a DEC VAXTM running Vl'vIS™. ProLogis a lan-

guage designed for artificial intelligence work. As such, backtracking is built in. When a rule fails, 

ProLog automatically backtracks to the most recent choice, and continues solving. 

Some Implementation Details 

The circuit description must be translated into an internal form. The internal form consists 

of Pro Log facts or rules representing things such as object declarations, the type of each statement, 

and the structure of expressions in statements. The translation is done by hand, since the research 

concentrated on testing and not on compiler issues such as input parsing and error checking. Only 
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two rules are not direct translations of the VHDL. One indicates state variables, for efficiency. 

The other indicates whether statements are controlled by a 'STABLE. Both of these are derivable 

from the VI-IDL source, so this hand translation does not invalidate the method. Appendix A de-

scribes this translation. 

The internal form input is preprocessed to compute input and output distance measures and 

to pre-sort lists of object assignments. These sorted lists are used to select objects based on input 

and output distance. The internal form plus the preprocessor output is used by test generation. 

Control faults and their tests are hard-coded. However, micro-operation faults are listed in a 

lookup table. Test parameters are given by rules for each fault case. (Stuck-at faults are imple-

mented for comparative work and for program development because stuck-at faults can be easier 

to test. Vector-wide stuck-at faults are implemented (e.g. stuck at 000 and 111, not OXX, XOX, 

XXO, lXX, XIX, and XXl).) 

A path-tracing method must be able to evaluate micro-operation results, and to backtrace and 

propagate through micro-operations. The program has "evaluate," "backwards," and "propagate" 

rules for each micro-operation. The backwards rule is most complicated; it must pick micro-

operation argument values to give the required output value. (The backwards rules were not 

completely implemented; addition and subtraction results with Xs cannot be justified currently.) 

The 'STABLE attribute is a special case. All micro-operations have one or two explicit ar-

guments; 'STABLE has the given object and implicitly has the value of the object in the adjacent 

period. When 'STABLE of an object must be true or false at some time, as in object'STABLE 

= TRUE at some time or (object@time)'STABLE=TRUE, the 'STABLE is translated to not 

equals, as in (object@time) ;:!: (object@previoustime). (Because of a time convention, it is actually 

the following time period.) Currently, prvpagation through a 'STABLE is not implemented. 

The unsolved goal list is sorted expiidtly for easy modification. Lookup rules based on goal 

type and parameters give the intrinsic weight numerically; the numbers are easily changed for ex-

perimentation. Grouping by base times is superimposed by adding offset based on the base time 

used in each goal. Goals are sorted on these final weights. The base time grouping is also easily 

modified. 
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To avoid reusing faulty micro-operations (for justification or propagation), the bad micro-

operation is marked so that it cannot be reused. Any other micro-operations, literals, or objects in 

the expression can be used, as long as the faulty micro-operation is not. (This does not apply for 

the actual test, just for justification or propagation of the test.) 

Some faults near 'STABLEs were ill-defined or did not make sense in the time-period frame-

work and were excluded from test generation. For example, in 

sl2 IF x='l' AND NOT x'STABLE THEN 
sl3 count<= ADD(count, 11 001 11 ) 

a STUCKTHEN for sl2 does not make sense. In a strict VHDL interpretation, a STUCKTHEN 

means that s 13 executes all the time, i.e. at every delta time, or at infinite frequency. Such a fault 

is obviously unrealistic. This fault cannot be tested by the test method, so such faults are excluded. 

The excluded faults include STUCKTHENs for IF statements containing 'STABLEs, most 

micro-operation faults on such IF statements' expressions, and some stuck-at faults in those ex-

pressions (the stuck-active faults; stuck-inactive faults are not excluded). 

The basic tests for some stuck faults were invalid. A literal "00 l" in an expression would be 

listed for stuck-at-000 and stuck-at-111 faults. The test for a stuck-at-000 fault is to set the item 

to 111. However, a literal "001" cannot be set to 111, so such basic tests are invalid. 

Circuit 11/odels Used 

Thirteen small models were used for test generation. Table 1 on page 43 lists these models. 

The VHDL and actual internal form for these models is given in Appendix B, "Circuit Models and 

Fault Lists". There were four combinational models (ADDER, ADDR2, FNTST, PRTY), two 
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Table I. Sample models used 

Code Description 
ADDER 4-bit adder, vector implementation 
ADDR2 4-bit adder, bit implementation 
CCNT2 2-bit controlled counter 
CKTA 2 serially connected D F/Fs and AND gate 
CKTCV 2-bit, 4-register multiplexor 
CNTR 3-bit counter, bit implementation 
CNTRV 3-bit counter, vector implementation 
DFF D flip/flop with set and clear 
FNTST reconvergent fanout test 
PRTY 8-bit parity generator 
SHFT 4-bit bidir. par. in shift reg., bit implementation 
SHFTV 4-bit bidir. par. in shift reg., vector implementation 
UAR TO 2-bit UART transmit half, vectors 
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very small sequential models (DFF, CKTA), four small sequential models (CNTR, CNTRV, 

SHFT, SHFTV), and three medium models (CKTCV, CCNT2, UARTO). 

ADDER 

The ADDER model describes a simple four-bit adder at the vector level. "ADDER Description" 

on page 85 gives the VHDL and internal form description, and "ADDER Fault List" on page 86 

gives the fault list. 

ADDR2 

The ADDR2 model describes a simple four-bit adder at the bit level, to exercise test generation for 

micro-operations. "ADDR2 Description" on page 87 gives the VHDL and internal form de-

scription, and "ADDR2 Fault List" on page 90 gives the fault list. 

CCNT2 

The CCNT2 model describes a controlled up/down counter with limit register. CCNT2 was used 

to exercise test generation for interdependent statements and signals. "CCNT2 Description" on 

page 93 gives the VHDL and internal form description, Figure 2 on page 96 shows the circuit, and 

"CCNT2 Fault List" on page 97 gives the fault list. 

CKTA 

The CKTA model consists of two serially-connected independently-clocked flip-flops and an AND 

gate; see Figure 3 on page 100. CKT A was used to exercise selection of loading times. "CKT A 
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Description" on page 98 gives the VHDL and internal form description, Figure 3 on page 100 

shows the circuit, and "CKT A Fault List" on page 101 gives the fault list. 

CKTCV 

The CKTCV model describes a multiplexor with input, output, and control registers. CKTCV 

was designed to exercise the preloading of multiple registers through one input path, as might be 

needed to test a microprocessor by loading various registers through the input data bus. "CKTCV 

Description" on page 102 gives the VI-IDL and internal form description, Figure 4 on page 105 

shows the circuit, and "CKTCV Fault List" on page 106 gives the fault list. 

CNTR 

The CNTR model describes a three-bit clearable counter at the bit level. "CNTR Description" 

on page 107 gives the VHDL and internal form description, and "CNTR Fault List" on page 109 

gives the fault list. 

CNTRV 

The CNTRV model describes a three-bit clearable counter at the vector level. "CNTRV 

Description" on page 111 gives the VHDL and internal form description, and "CNTRV Fault List" 

on page 113 gives the fault list. 
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DFF 

The DFF model describes a simple D flip-flop with clear and set. DFF was used to validate tests 

for asynchronous and synchronous clocks. "DFF Description" on page 114 gives the VHDL and 

internal form description, and "DFF Fault List" on page 117 gives the fault list. 

FNTST 

The FNTST model is used to show how reconvergent fanout causes failure. "FNTST Description" 

on page 119 gives the VHDL and internal form description, and "FNTST Fault List" on page 121 

gives the fault list. 

PRTY 

The PRTY model describes an eight-bit parity generator, to exercise micro-operation faults. 

"PRTY Description" on page 122 gives the VHDL and internal form description, and "PRTY 

Fault List" on page 123 gives the fault list. 

SHFT 

The SHFT model describes a 4-bit parallel-in, serial-out, bidirectional shift register at the bit level. 

SHFT has serial output to exercise observation goals. "SHFT Description" on page 125 gives the 

VHDL and internal form description, and "SHFT Fault List" on page 130 gives the fault list. 
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SHFTV 

The SHFTV model describes the same register as SHFT, but at the vector level. "SHFTV 

Description" on page 132 gives the VHDL and internal form description, and "SHFTV Fault List" 

on page 135 gives the fault list. 

UAR TO 

The UAR TO model describes the transmit half of a very simple 2-bit UART. UAR TO was used 

to test preloading and propagation for interdependent signals. "UARTO Description" on page 137 

gives the VHDL and internal form description, and "UARTO Fault List" on page 140 gives the 

fault list. 

Test Generation Results 

Table 2 on page 48 summarizes the results of test generation for sample models. The first row 

for each model is for chip-level faults (ASSNCNTL, STUCKTHEN, STUCKELSE, and 

MICROOP); the second row is for the vector-wide stuck-at faults done for comparison 

(STUCKDAT A). The "Faults" column is number of faults listed by the program. The "NAF ," 

or "Not a Fault" column is the number of listed faults which either were not faults (e.g. a literal 'l' 

stuck at 1) or were undetectable (e.g. a dead clause which contained no statements, so failure makes 

no difference). NAF also includes invalid basic tests and redundant faults. The "Exel." or "Ex-

cluded" column is the number of unrealistic edge-clock timing faults which were excluded. "Tried" 

is the number of tests attempted, or "Faults" minus "NAF" minus "Excluded." "Done" is the 
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Table 2. Test generation results 

Code Description Faults NAF Exel. Tried Done Failed Over. 
ADDER vector adder 3 - - 3 3 - -

6 - - 6 6 - -
ADDR2 bit adder 32 - - 32 32 - -

92 - - 92 92 - -
CCNT2 contr. counter 41 - 14 27 I 2 24 
CKTA F/Fs and ANT 14 - 8 6 3 3 -

34 2 12 20 8 12 -
CKTCV latched mux. 17 4 13 12 1 -

30 2 6 22 15 7 -
CNTR bit counter 18 - 4 14 4 9 1 

44 5 6 33 15 18 -
CNTRV vector counter 12 - 4 8 2 5 1 

26 5 6 15 2 13 -
DFF D flip/flop 18 - 4 14 14 - -

38 7 6 25 25 - -
FNTST fanout test 5 3 - 2 1 1 -

12 4 - 8 6 2 -
PRTY parity gen. 9 - - 9 9 - -

45 - - 45 45 - -
SHFT bit shift reg. 30 1 4 25 21 2 2 

56 5 6 45 37 8 -
SHFTV vector shift reg. 18 1 4 13 9 2 2 

52 3 6 43 36 7 -
UAR TO UART 27 - 9 18 4 6 8 

Note: The first line of each model is for chip-level faults. The second line is for vector-wide 
stuck-at faults done for comparison. 
Faults: Number of faults listed. 
NAF (Not a fault): Faults which are not really faults (e.g. nl" stuck at 1, or empty dead clause) 
Exel.: Excluded faults which disturb edge clocking. 
Tried: Faults tried (Total - NAF - Excluded = Tried) 
Done: Tests generated successfully 
Failed: Generation failed because of fault model interpretation, test method, or implementa-
tion. 
Over.: Generation failed because of Pro Log overflow. 
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number of successful, correct tests. nFailed" is the number of failed or incorrect tests. "Over."' is · 

the number of test attempts which overflowed or crashed the Pro Log interpreter. 

Success was not limited to extremely simple circuits, though controllability of internal registers 

appears important. The combinational circuits (ADDER, ADDR2, PRTY) did well, with 100% 

success. Most tests for the shift registers (SHFT, SHFTV) succeeded, as did many for the latched 

multiplexor (CKTCV). The significant sequentiality of these circuits did not prevent test gener-

ation. 

The main causes of failure were the fault interfering with justification and propagation, in-

complete or incorrect implementation, inefficient implementation, and ProLog interpreter limita-

tions. 

The fault can interfere with the execution or use of statements needed to justify values. The 

test method keeps track of the fault to ensure that the fault does not inadvertently mask itself out. 

The faulty HDL item is generally avoided when justifying or propagating its own test. 

Incomplete implementation prevented some tests. Justification of addition or subtraction re-

sults with Xs (don't-cares) was not implemented. Such values would be used but would not be 

justified. This made many CNTRV tests incorrect. 

Some tests overflowed the Pro Log interpreter. Size overflows do not directly reflect on the test 

method; a larger ProLog or new implementation is needed to retry these failures. 

Sample IVIodel Results 

Highlights of test results for each model are given here. See Appendix B, "Circuit Models and 

Fault Lists" for fault lists with comments for individual faults. 

Results 49 



ADDER 

All chip-level and stuck faults for ADDER were correctly tested. 

An idiosyncrasy of the fault model and test method appears in ADDER tests. The adder is 

combinational, but the test vector for an ASSNCNTL fault for statement sl was: 

Simple adder, vectors 
(1 ASSNCNTL s 1) 
t\obj a b c 
t0-1 0000 0000 
tO+O 0000 1111 1111/0000 
t3+0 0000 0000 0000/1111 

This is an example of a two-phase test. The test is to see if statement sl can load c. Signal c 

is loaded with 0000 (at t0-1), and then with 1111 (at tO), to see if the load works. Since 0000 was 

loaded with the potentially faulty statement, 0000 is loaded separately and checked (at t3). Such 

two-phase tests are similar to two stuck-at tests, but seem strange for a combinational circuit. 

ADDR2 

All tests were successful. Again, two-phase tests were used, though ADDR2 was combina-

tional. 

CCNT2 

Very few CCNT2 tests succeeded. Most attempts overflowed the ProLog interpreter, or ex-

ceed the batch job time limit. Some tests failed because CCNT2 had the poorest observability. 

No internal signals were directly observable; each had to be observed by its effect on COUNT. 

The size of CCNT2 emphasized inefficiencies which were minor problems for other circuit models. 

Many tests overflowed or took too long and thus did not complete, because of inefficient justifica-
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tion of object values. Recall that a new base time is allocated for each load event. Thus, each load 

is treated as a separate event, including loads which can only occur at the same time (i.e. their 

statements are related, such that if one executes, the other will execute also). Also, the loading of 

an object may be treated as two or more separate events if the value in the object is needed to solve 

two or more separate goals. The time for each load is chosen separately, so only combinations of 

time choices where the loads occur simultaneously will succeed. However, time choices are made 

one at a time, not together, so a bad time choice for one object may not be discovered for a while. 

Meanwhile, other choices may be made. l\faking any new choices before discovering an existing 

bad choice severely reduces efficiency as the test method tries alternatives which cannot succeed. 

For CCNT2, the EN and DIR flags were typically involved. The flag would be set to solve 

one goal, but some other goals might require the same value and issue more VIO goals setting the 

flag. For example, EN might be true to increment the counter, but to preload the counter by 

clearing and incrementing, EN must also be true. In a final test, EN would be set true once, and 

not cleared until after all incrementing was done. However, multiple VIOs were issued to set EN 

true, and solved separately. Solving them separately, when ultimately they must map to the same 

time, causes conflict detection and backtracking to be very inefficient. 

CKTA 

Three of six CKT A non-excluded chip-level faults were generated. One failed because of fault 

avoidance; a STUCKELSE prevent preloading for its test. The other two faults backtracked too 

much because of poor goal solving orders. Two-phase tests create a new base time; goals on this 

second base time are independent of other testing. Because of the sorting order, these goals are 

solving before some of the regular goals, delaying the catching of conflicts. 
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CKTCV 

CKTCV was successful, with 12 successful tests out of 13 attempted chip-level faults. Multi-

period test vectors were generated to load the various registers needed for tests. For example, to 

test for statement s6 stuck at THEN (i.e. C loads from A even when it should be from B), the test 

vector was: 

Program Output 

Circuit V - Latched Multiplexor 
(13 STUCKTHEN s6) 
t\obj clock in cmd a b p 
t0-6 0 00 01 
t0-5 1 
t0-4 0 11 10 
t0-3 1 
t0-2 0 11 00 
t0-1 1 
tO+O 0 11 
tO+l 1 

Notes 

with Vectors 

c 
-load 00 in 

-load 11 in 

-load 11 in 

-expect 11 
11/00 00 

A 

B 

p (for B->C) 

from B if good, 
from A if bad 

For an ASSNCNTL fault for statement s7 (i.e., C cannot be loaded from A), the test was: 

Program Output Notes 

Circuit V - Latched Multiplexor with Vectors 
(16 ASSNCNTL s7) 
t\obj clock in cmd a b p c 
t0-10 0 11 00 -load 11 in P (for B->C) 
t0-9 1 
t0-8 0 00 10 -load 00 in B 
t0-7 1 
t0-6 0 11 -load 00 in c from B 
t0-5 1 
t0-4 0 00 00 -load 00 in p (for A->C) 
t0-3 1 
t0-2 0 11 01 -load 11 in A 
t0-1 1 
tO+O 0 11 -try to load 11 from A to C 
tO+l 1 11/00 expect 00 if it fails 
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The one failure was for a STUCKELSE fault. All assignment statements were under the 

THEN clause; so none could be execute to preload or propagate the test. Most stuck faults were 

successful. The failures \Vere due to fault avoidance. 

CNTR 

Several CNTR tests failed because of loop checks. Loop checks are used to avoid getting 

caught in loops loading an object from itself. The problem is that loop checks are local to an ob-

ject, not taking the global state of the circuit into account. For CNTR, if 011 is needed in q2, ql, 

and qO, loop checks would prevent loading those values. Consider ql. To count to 011, 010 must 

be the previous state. Thus, q 1 must have a I. But this I in q 1 for 010 is used to load the 1 in 

ql for 011. Local loop checks see that ql's value 1 is used to load ql with a I, even though the 

global state of the circuit changes from 010 to 011. Such local loop checks may be too restrictive. 

CNTRV did not have loop check problems, because the count was modeled as a vector; loop 

checks saw the whole state at once, not just individual bits. 

CNTRV 

Many CNTRV tests failed because of the incomplete implementation of BVADD. Vector values 

with Xs were not justified correctly (they were effectively forgotten), so tests using such values were 

invalid. 

DFF 

All DFF tests were successfully generated. However, in some cases, two-phase tests were used 

when not necessary (though they were valid). For faults 16 and 17 (ASSNCNTL for s9 and 10), 
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the faulty statement was reused to preload for the test. Two-phase tests were used, so the tests were 

valid. It would seem better to use the set or clear functions to load one value, and then test s9 or 

s 10 by loading another value. The two-phase tests were used because two-phase testing can be 

initiated before all other assignment statements are tried. 

FNTST 

As expected, reconvergent fanout prevented some FNTST tests. If IN is stuck 1, IN is set 0 

to sensitize the fault, and the fault syndrome of 0 vs. 1 is propagated to a, then to x (y is symmetric), 

and then through the AND. Signal y is set to 1 to allow propagation, and y is loaded from a, but 

a cannot be loaded with 1 since IN is set to 0, so test generation fails. However, since y will end 

up also holding a 0 vs. 1 fault syndrome, OUT will have the fault syndrome, and the fault could 

be tested. Because of the model structure, many other faults were redundant, and could not be 

tested either. 

PRTY 

All PRTY faults were successfully tested. As with ADDER and ADDR2, there was a two-phase 

test, even though PRTY is combinational. 

SHFT 

Testing for SHFT was quite successful. Of 25 chip-level faults tried, 21 succeeded. Two overflowed 

the Pro Log interpreter. The remaining two failed because of avoiding the faulty item. Of 45 stuck 

faults tried, 37 were successful. The remaining 8 failed because of avoiding the faulty item. 
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SHFTV 

SHFTV was also successful: 12 of 14 chip-level faults succeeded, and 37 of 43 stuck faults suc-

ceeded. Two chip-level fault overflowed, and 2 chip-level and 7 stuck faults failed because of fault 

avoidance. 

UARTO. 

Only a few tests for the UART succeeded. Those that did were mostly simple tests, where the 

results of the fault appeared on the TXBUSY output line. There were some failures because of 

fault avoidance, as in other models. As with CCNT2, many tests overflowed or took too long be-

cause of the multiple load problem. 

Summary 

The implementation had trouble generating tests for functional and stuck faults for micro-

operations in control statements, because the micro-operations were needed to execute statements 

to preload values, but fault avoidance prevented that reuse. Similarly, some STUCKTHEN and 

STUCKELSE faults prevented preloading of observation. For the larger sequential models, ex-

cessive backtracking was a problem. Tracing the execution showsthat the goal-solving order is not 

ideal. Bad choices are not discovered for a while, during which time other choices are made. These 

late choices backtrack a lot, until backtracking returns to the originally bad choice. 

Results 55 



Execution Speed 

No claim is made about the speed of this Pro Log implementation. Small tests take a minute 

or two of CPU time; others can take 15 minutes to hours. These speeds are mostly due to the 

ProLog interpreter and the implementation within ProLog. Virginia Tech ProLog is slow; unre-

lated experience shows that even Apple II P-code Pascal is at about 10 times faster that Virginia 

Tech ProLog on a VAX. A ProLog compiler from the Virginia Tech Computer Science depart-

ment is expected to be 100 times faster than the current interpreter. Implementing the method di-

rectly in, say, Pascal could increase the speed another 2 or 3 orders of magnitude. These are rough 

guesses; the point is that the speed of the test method cannot be evaluated currently. 

However, the time difference between fast and slow tests shows that too much backtracking 

occurs. This usually occurs because the method tries many options to try to generate a test, but 

conflicts are not caught in time, and much work is done before the conflict is detected. The method 

as designed to be flexible, to try several alternatives when a first choice fails. In cases were no 

choices can succeed, all are tried before backtracking backs up the the decision which caused the 

problem. Imperfect conflict detection may let such bad choices by, catching conflicts only when 

they become more apparent. A nonoptimal order of solving goals may contribute to causing con-

flicts which are not detected quickly. This is a backtracking method; what will count is the expo-

nential term of the speed from backtracking, not linear (and worse) terms in the current ProLog 

implementation. 
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Chapter 5 

Analysis and Suggestions 

As the results chapter shows, the test generation method has certain deficiencies. This chapter 

reviews weaknesses of the method and suggests possible solutions. Analysis is based on execution 

logs, showing how goal solving progressed, and on further interactive exploration of execution. 

Fault Awareness and Reuse Avoidance 

The test method keeps track of the fault to ensure that the fault is not used to justify or 

propagate its own test, so it cannot mask itself out. The faulty HDL item is generally avoided when 

justifying or propagating its own test. 

For a faulty micro-operation, the micro-operation is not used to preload or observe values in 

its own test; it is just used once for the test. A micro-operation in a control statement can cause 

problems. The statements under the control statement are used to detect execution, and usually 

are also needed to preload for the test. Since the faulty micro-operation cannot be reused, the 
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control expression cannot be set to execute the statements, so preloading cannot be done. If no 

other statements can be used to preload for the test, no test can be generated. 

For example, in the the shift registers (SHFT, SHFTV; "SHFT Description" on page 125 and 

"SHFTV Description" on page 132), a faulty AND in the sixth statement of each causes this 

problem. The fault is detected by observing which clause executes, by replacing a preloaded value 

in an object with a new value (by loading or shifting). However, the object cannot be preloaded, 

because preloading requires executing the first statement and setting its control expression true to 

execute any statements used to preload. The AND result cannot be set true, because the AND 

may be faulty, so the control expression cannot be set true. Thus, no test can be generated. 

A STUCK fault can cause similar problems. For a STUCKTHEN, no statements under the 

ELSE can execute. If these are the only statements that can be used to preload, no test can be 

generated. Additionally, statements in the STUCK clause cannot be avoided if the IF statement 

executes. This can also eliminate tests .. 

Stuck-At Versus Assignment Control Faults 

In some cases, stuck-at faults are easier to test than the current assignment control 

(ASSNCNTL) faults. Testing for a stuck-at fault only requires loading an object with one value, 

the opposite of the suspected stuck value. An ASS NC.NTL fault needs two values, one to preload 

an object and then a different value to detect whether the faulted statement executes and loads the 

object. If the faulty assignment is the only assignment statement for the object, the object cannot 

be preloaded normally, and a two-phase test is used. For a bit object, this is equivalent to the two 

stuck-at tests for the bit. For a vector, it is usually equivalent, since the first choice for selecting 

different vector values is 00 ... 0 versus 11 ... 1. Thus, testing a stuck-at fault can be only half as 

complicated as testing an assignment control fault. 
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Reconvergent Fanout 

Reconvergent fanout has long been an efficiency concern of test generation; however, one se-

rious deficiency in the current method is it cannot handle reconvergent fanout. The deficiency is 

due to the representation of object and expression values. 

In OBSOBJ and OBSEXPR goals, the good and bad values are represented explicitly, with 

ls and Os (and possibly Xs for extra bits in vectors); this is equivalent to a D or D. Thus on the 

output path D and D values can be represented, the same as in the D-algorithm. 

VIO and VIE goals can only specify a single value for the expression (i.e. a micro-operation 

result) or object. Thus, a VIO or VIE goal can only be satisfied by a definite (1 or 0, not D or 

D) value loaded into an object or expression. 

The problem with reconvergent fanout is that to propagate a value the test method might first 

try a 1 or 0 (or a vector of Os and ls) to propagate through a micro-operation. This 1 or 0 would 

be in a VIE goal. For reconvergent fanout, it would be unable to load the 1 or 0 because the ex-

pression is in the output path of the fault. To handle reconvergent fanout, the method would allow 

the expression value to be 1/0 (D) or 0/1 (D), as appropriate. However, the equivalent of Dor D 

cannot be represented in a VIO or VIE goal value field since they use single values. 

The root of this problem is that originally only single-path propagation was addressed. A 

solution would be to allow good and bad value pairs in VIO and VIE goals and try various com-

binations as in the D-algorithm [JJ, or allow X's in one value, equivalent to the 9-V algorithm's 

approach [4J. 

Forward Implication 

An efficiency concern is the lack of complete forward implication, used in many other test 

methods. (Substituting decided object values in expressions is partial forward implication, espe-
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cially since cases such and 'O' AND 'X' - > 'O' are included. However, forward implication is not 

done to determine whether statements execute or whether objects are assigned.) Forward impli-

cation would help find conflicts more quickly, would help find already-solved goals, and could help 

find unintentionally-propagated fault results. 

Time Choice Strategy 

The strategy for justifying values in objects was first to decide which statement to use to load 

the object, and then to decide when to actually load it. That is, conditions necessary for execution 

are solved before the time is chosen. The intent was to save work by finding conflicts in how to 

load an object before deciding when to load it. If the time was decided and then the object was 

loaded but a conflict occured, another time would be picked and all the goal solving to execute the 

loading statement would be repeated. If the loading is solved first, conflicts are found before the 

time is chosen. This strategy can work well when there is no choice of how to load an object. 

The current implementation saves all time choices for last, instead of making each time choice 

after its related loading goals are solved. This worked for some circuits, but may defer conflict de-

tection too far and may cause wasteful backtracking. It is not clear which approach is better. 

One problem with this strategy is that when the same value is needed in an object for different 

reasons, the loading of the value is considered multiple times. The loads are considered separate 

events, even if they must map to the same time period. If time choices were made sooner, when 

one value was loaded, the next goal requir'.ng the value would find that the value has already been 

loaded, and would be inherently solved. 

A less abstract time choice strategy is probably necessary to handle the multiple-load problem. 

Solutions might be typical adjacent-period methods, or Marlett's unidirectional time flow approach 

[8, 9). 
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Two-Phase Tests and Time Choices 

Another problem with time choice order appears with two-phase tests. Consider a VIO goal 

on base time tl, with t2 being the highest-numbered base time currently allocated. If the VIO goal 

can be solved normally, the subgoals are based on t3, with t3 ~ tl. However, if the VIO goal uses 

an ASSNCNTL-faulted statement to load the object, extra goals to do the extra load and observe 

phase are issued. These goals are based on t4. Since goals are solving in increasing order of their 

base times' subscripts, the regular goals on t3 will be solved (possibly yielding t5, t6, etc.), and then 

the second-phase goals on t4 will be solved. Next t5 goals (from the t3 goals) will be solved. If a 

conflict occurs, backtracking will try other options in t4 goals. Since t4 goals are independent of 

t5 goals, alternate choices will keep failing until until a choice of a t3 goal is changed. Thus, many 

choices of t4 goals will be tried when none affects the conflict. The problem is that the second-

phase t4 goals are solved before conflicts implied from solving t3 goals are found. 

Inequality Solving and Dummy Variables 

The need to solve inequalities arises from the high-level fault model. (Su's high-level method 

also uses inequality solving [1 lJ.) For a stuck-at model, the value needed for a test is simply the 

opposite of the stuck value (though choices equivalent to inequality solving may appear elsewhere). 

For the chip-level fault models, exact values are flexible, but must satisfy a constraint, usually that 

two values are unequal. Inequality solving is an inherent part of testing for faults: ASSNCNTL 

tests directly require two different values to detect whether the statement executes, and IF and 

CASE tests need to detect which clause executes. 

The problem with solving inequalities is that there can be many solutions, especially when the 

unequal items are wide vectors. The current strategy is to try, for example for a 3-bit vector, the 

values 000/111, 111/000, OXX/lXX, lXX/OXX, XOX/XlX, XlX/XOX, XXO/XXl, and 
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XXI/XXO. All zeroes and all ones are tried for maximum propagation chance (this is effectively 

propagating several Ds or Ds at once). Then single bit Ds or Ds are tried in case all zeroes or all 

ones is not possible (for example, the difference after one shift of a register). This retry assumes that 

failure to load was because of the data values; if the failure results from the inability to execute a 

statement to load values, time is wasted trying to find values, when no choice will work anyway. 

One possible solution is to gather more constraints before choosing values using "dummy 

variables." When solving an inequality, one expression or object would be set equal to DI and the 

other to D2, with the constraint that D l "# D2. The symbolic values DI and D2 would be loaded 

into the expressions or objects, further constraining the values for DI and D2. For x "# y, VIOs 

would set x to DI and y to D2, and specify that "DI ¢:. D2". If xis loaded with, say, HO", then 

Dl becomes "O", and "DI "# D2" becomes "O "# D2", which reduces to "D2 = I". This is similar 

to subscripted D's in the subscripted D-algorithm [37). 

New Fra111ework 

The Need for a New Framework 

The test method as currently implemented obviously needs more work. It is ironic that while 

this automated test method defined on a fault model was intended to eliminate ad hoc test gener-

ation done by hand, the method itself is too ad hoc. 

One main problem is the treatment of the fault during preloading and propagation. For pre-

loading, the fault is avoided, or if it cannot be, preloading is done anyway but the preloaded value 

is checked. Part of this results from the fault model (directly from ASSNCNTL and indirectly from 

other faults). A sequential D/D algorithm can handle passing through the fault site again; our 

method is not yet built to handle this case. 
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A more unified framework is needed, which handles special cases more consistently, and han-

dles things such as reconvergent fanout. 

State Vector Style 

One representation of most goals that would enable easier fonvard implication and would or-

ganize goals would be to use a state-vector style representation, where instead of the actual state 

of the circuit at some time (inputs and state variables), the test method keeps the state of all possible 

goals describing the circuit at each period. There would be entries for each object, each expression 

node (objects, literals, and micro-operation results), each statement and each clause. Most current 

goals would map to these entries. A VIO for an object would be represented by having the VIO 

value at the object's position in the state vector for the time given in the VIO goal. Most VIEs 

(those for copies of actual expressions, but not for constructed expressions) would map to a value 

in a state vector for the expression node the VIE refers to. Others would be kept separately as 

constraints, similar to the suggested dummy variables. An EXEC would map to a 1 for a statement; 

a DNE for the statement would map to a 0. In place of EXGs, there would be EXECCLAUSE 

goals, which would map to a place in the state vector. 

State vector representation would simplify forward implication because the relations between 

different goals are represented as relations between nodes. State vector style could also save over-

head by making goal representation more consistent. 

An extension of state vector style leads to a circuit isomorphism. One can construct a logic 

circuit whose nodal relationships is isomorphic to the relationships between goals (this circuit is 

not the same as the original circuit). In addition, 0 gates0 of this circuit will perform HDL-level 

micro-operations such as vector-wide and/or aritlunetic operations. With this isomorphism, it 

might be possible to use a gate-style technique extended for vector-wide operations on the 

isomorphic circuit. 
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PODEl\11-Style Searching 

Instead of path-tracing, the style of PO DEM [2, 3) could be used to trying input combinations 

to find a test. Instead of solving goals from the site of the fault outwards (as the D-algorithm [1] 

does), inputs and state variable values could be manipulated (as PODEM manipulates inputs to 

control internal values) to sensitize and propagate tests. Of course, this is complicated by 

sequentiality. The manipulation could apply to inputs only for an arbitrary maximum number of 

time periods, or to inputs and state variables in a period, justifying one period's state variables in 

preceding periods. 

At a higher level, test generation could keep track of basic circuit operations, choosing among 

them to construct tests. 

Decision Numbers 

An optimization applicable to a backtracking algorithm is keeping track of decision numbers 

to assist in backtracking [9). Each choice is assigned a decision number greater than that of the 

previous choice. Goals from a choice are assigned the choice's decision number. Derived subgoals 

ar~ assigned the highest decision number involved in deriving them. (E.g., substituting a VIO value 

into a VIE expression gives a new VIE goal; the new goal is assigned the higher of the numbers 

from the VIO or original VIE goal.) At a conflict, backtracking backs up to the most recent choice 

involved in causing the conflict. This eliminates retrying more recent choices which would have 

no effect on the conflict, and which would waste time. 
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Chapter 6 

Conclusions 

The successes of the experimental test method implementation show that the chip-level fault 

model can be used in automatic test generation, and indicate that the test method can generate tests. 

Goals can indeed represent elements of the testing problem, specifically sensitization, justification, 

and propagation. The goal solving used can transform basic test requirements into complete tests, 

working directly from the HDL circuit description. 

The failures and weaknesses indicate that much work is still needed to develop a useful test 

generation method. Within the current framework of goal solving, improvements are needed in the 

time choice strategy and in the order of solving goals, to catch conflicts more quickly and reduce 

the number of new choices made before previous choices are validated. A new framework could 

organize goal solving more, to enable more consistent and efficient test generation. 
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f\.ppendix A 

USER'S Manual 

Introduction to Use1/ s Manual 

This is the user's manual for the experimental Pro Log implementation of the chip-level auto-

matic test generation method. 

VHDL Subset Allowed 

The test method uses a restricted, modified subset of VHDL for model description. Concur-

rent IF, CASE, and simple assignment statements are allowed. Objects can be bit and bit vector 

signals (1 and 0, no Z). Standard logical and unsigned arithmetic operations are provided. Oper-

ations also include concatenation and restricted slices and elements of vector expressions (slices and 
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vector elements are not allowed for assignment statement destination objects or for an edge clock 

(with a 'STABLE)). 

It is assumed that all assignments to a signal refer to the same driver. This is equivalent to 

putting all assignments to an object in one PROCESS statement, so there is only one driver. To 

maintain correct operation, the PROCESS statement would be sensitive to all signals used with it 

(this ensures that concurrent behavior is matched). 

Assignments are of the form H < signal> < = <expression> . H Any AFTER phrase is ig-

nored, and multiple values are not allowed. 

The use of 'STABLE is restricted. 'STABLE may be used only in an IF statement control 

expression. It must be used on an unsliced, unscripted signal. There may be only one 'STABLE 

in the expression, and the expression must not be of the form ( ... clk'STABLE) OR ( ... ). IF 

statements with 'STABLEs may not be nested. (These formations are not common, anyway.) 

In an IF expression with a 'STABLE, and in any source or control expressions under the IF's 

THEN clause, all objects are assumed to have a 'DELAYED, except the object with the 'STABLE, 

which is assumed not to. (This simply means that if an edge clock and a data input changes at the 

same time, the old data value is used.) 

There may be no combinational feedback; all sequential behavior must be explicitly modeled 

(a chip-level model would not have combinational feedback anyway). 

Using Other VHDL Constructs 

Though not included, some other VI-IDL constructs can be rewritten in terms of what is im-

plemented. 
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Translating into Internal F onn 

The input VHDL description must be translated into an internal form. 

The internal form consists of ProLog facts or rules representing things such as object declara-

tions, the type of each statement, and the structure of expressions in statements. The format of 

these rules is based on Virginia Tech ProLog's data formats. A knowledge of ProLog data struc-

tures and commands is recommended. See the Prolog user's manual [36). 

Note: ProLogis case sensitive; upper and lower case is different. Use boldface words below 

exactly as given, and be consistent with the case of user-defmed tokens such as signal names and 

statement IDs. Also, note the double parenthesis [ ((, )) J used in these ProLog rules. 

Declarations 

The name of the model is declared as ((modclname /1 <name of model> 11)). This is required, 

though used only for labeling output. There must also be a ((fileprefix 11 <filename> 11)) rule, where 

<filename> is the name field of the VAX/VMS filename to be used for output files. 

Objects are declared with (datatype), (statevar), (inputpin), and (outputpin) rules. 

The data type of an object is declared as ((datatype < objectname > <type>)), where 

< objectname > is the name of the object, and <type> is BIT for bits and BV for bit vectors. 

For a BV declaration, the length of the vector is specified with ((bYlength < objectname > 

<length>)), where <length> is the number of bits. (Starting and ending bit indices are not kept; 

it is assumed that the rightmost bit is bit 0 and the leftmost of n bits is bit n-1.) 

The only declaration rule which is not a direct translation of VHDL is the (statevar) rule. This 

rule specifies whether an object is a state variable. A state variable is any object whose value cannot 

be determined solely from the current values of other objects, or an object whose value depends 
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on its previous values. The form of the rule is ((statevar < objectname > t)) for state variables, and 

((statevar < objectname > nil)) for non-state variables. 

"In" and ,,out" ports are labeled with ((inputpin < objectname > )) and ((outputpin 

< objectname > )), respectively. (Bidirectional pins are not implemented, so there are no inout 

ports). An internal object has no (inputpin) or (outputpin) rule. 

Expressions 

After declarations, the structure of the code must be represented. The code contains ex-

pressions of literal values, objects, and micro-operations. These must be represented. 

Values 

Bit values are represented as (BIT "O") or (BIT "1"). Bit vectors are represented as (BY 

" < string>"), where < string> is consists of one or more ones and zeroes. 

Expressioll Elemellts 

Expressions consist of literals, objects, and operations. Literals are represented as (LIT 

<value>), where < value > is the representation of the value, as given above. Objects are re-

presented as (OBJ < objectname > ). (This appears redundant, but these distinctions are used in 

the program.) 

Expressions are represented as their parse trees, similar to prefix notation. An expression 

consisting of a binary operation and two arguments is represented as (<operation> < argl > 

< arg2 > ), where <operation> is the operation (see below), and < argl > and < arg2 > are the 

internal form representing the arguments of the operation. A unary operation has the form 
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(<operation> <argument>). For example, the expression "a AND (b OR er for bits becomes 

(BITAND (OBJ a) (BITOR (OBJ b) (OBJ c))). 

Table 3 on page 74 gives the micro-operations available. 

The BIT- operations must be used on bit arguments; BY- operations must be used on vectors. 

BVCAT concatenates two bit vectors. For vectors a and b, VHDL "a & b" becomes (BVCAT 

(OBJ a) (OBJ b)). BITBV converts a bit to a one-bit bit vector, usually used for concatenating a 

bit to a bit vector. For example, if a is a bit, the (BITBV (OBJ a)) is a vector of length one. 

BVSUBV (Bit Vector SUBVector) is used to take a slice or element of an object or expression. 

BVSUBV has a special representation. The form (BVSUBV <left bit no.> <right bit no.>) 

takes a slice of a vector; e.g., "a[3 downto 2J "becomes ((BVSUBV 3 2) (OBJ a)). (Note that the 

<operation> field is (BVSUBV 3 2), not just BVSUBV). The expression ((BVSUBV 3 3) means 

" a[3 downto 3] ". The form (BVSUBV <bit number>) takes a single bit of a vector, as in 

((BVSUBV 3) (OBJ a)). This form returns a bit; the previous form returns a vector, even if only 

1 bit wide. The distinction comes from VHDL. 

The 'ST ABLE attribute on a object is represented as (STABLE (OBJ < objectname > )). 

Thus, " c'ST ABLE " becomes (STABLE (OBJ c)). 

These representations for elements of expressions are used to describe expressions in state-

ments. 

Statements 

In rules describing statements, < stmtid > refers to the statement. This is an arbitrary token, 

so it does not actually matter what is used, as long as the same token is used for all rules for one 

statement, and each statement has a different token. Numbering the statements sequentially and 

using s l, s2, s3, etc. is suggested. 

The type of each statement 1s given as ((statcmcnttype < stmtid > <type>)), where 

< stmtid > is the id. of the statement, and <type> is IF, CASE, or ASSIGNMENT. 

USER'S Manual 73 



Table 3. Micro-Operations Available. 

BIT operations: 

BIT AND 
BITOR 
BIT NOT 
BITXOR 
BITEQV 

Vector operations: 

BVAND 
BVOR 
BVNOT 
BVXOR 
BVEQV 
BVEQ 
BVNEQ 

BVADD 
BVSUB 
BVLE 
BVLT 

Special operations 

BVCAT 
(BVSUBV <bit number>) 
(BVSUBV <left bit> <right bit>) 
BITBV 
STABLE 

-AND 
-OR 
- NOT 
- XOR (exclusive or) 
- XNOR (exclusive nor) 

- bit-by-bit AND 
- bit-by-bit OR 
- bit-by-bit NOT 
- bit-by-bit XOR 
- bit-by-bit XNOR 
- vector-wide equality 
- vector-wide inequality 

- unsigned addition 
- unsigned subtraction 
- unsigned less than 
- unsigned less than or equal 

- concatenation of two bit vectors 
- single bit of an object or expression 
- slice of an object or expression 
- convert bit to bit vector 
- 'STABLE attribute 

Note: BY ADD and BVSUB are not fully implemented. Partially-constrained values (vectors 
with one or more X bits) are not correctly justified. If test generation tries to used such a 
partially-constrained value, the test will be invalid. 
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Assignment statements have a destination object and a source expression. The destination 

object is specified as ((destinationobjcct < stmtid > < objectname > )) and the source expression 

as ((sourccxpression < stmtid > < expr > )), where < expr > is the internal form of the expression. · 

IF and CASE statements have control expressions, and have clauses containing other state-

ments. A control expression is specified with ((controlcxprcssion < stmtid > < expr > )). The 

statement controlled by the IF or CASE are given with (subordinaterange) rules. Each clause has 

a rule of the form ((subordinaterange < stmtid > < clauseid > <range>)). The field < clauseid > 

is THEN or ELSE for IF statement clauses. For a CASE statement, the < clauseid > is a list of 

the values in the clauses's WHEN phrase, enclosed by parentheses. Usually, CASEs use integers, 

but since integers are not implemented, they are translated to bit vectors. For example, "WHEN 

11214 = >"becomes, after translation to vectors, " ( (BV "001") (BV "010") (BV "100")) ". For a 

WHEN phrase value of "others, 0 the values must be explicitly listed, unless the WHEN clause is 

empty. The IntVal used in such a case statement is not needed. The <range> field lists state-

ments immediately under the clause. For example, in 

sl: IF x = 'o' THEN 
s2: y <= I 1' ; 
s3: IF z THEN 
s4: w <= 11 0111 ; 

ELSE 
sS: w <= "10"; 

END IF 
s6: z <= u· ' ELSE 

the subordinate range for statement sl's THEN clause is s2, s3 and s6, but not s4 and s5 (which 

are children of statement s3). The rule would be ((subordinaterangc st THEN (s2 s3 s6) )). 

One additional rule specifies whether a statement is controlled by a 'STABLE. If an IF 

statement contains a 'ST ABLE on some object, the form is ((undcrstablc2 < stmtid > 

< objectname > )), where < objectname > is the name of the object with the 'STABLE. For any 

statement under that IF, there is also an (understable2) rule, for that statement. (Note that if there 
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are two (or more) edge clocks, some statements will have (understable2) rules for one object, and 

some will have for the other object.) Any other statement must have ((understable2 < stmtid > 

nil)), specifying that it is not 'STABLE-controlled. 

Table 4 on page 77 summarizes these rules. 

These internal-form rules are entered into a standard VMS text file. The program assumes a 

default filetype of ".HDL" if not specified, so this filetype is recommended. The file must begin . 
with "(assert", and end \Vith ")"with the rules in between. (In Pro Log terms, the rules representing 

the description are asserted.) The rules are listed in any order. Comments may be entered to the 

right of a semicolon (;) on any line. 

Because of the nature of the work, there is little error checking for the input description. The 

usual symptom is that test generation will fail. Errors can be found by tracing execution, watching 

for failures when a goal should succeed. 

Running the Progranzs 

The test generation program runs in Virginia Tech Prolog on a DEC VAX under VMS. General 

knowledge of VMS is assumed, as is some familiarity with Virginia Tech Pro Log command formats 

and interrupt breaks. 

The DCL command file ATVG.COM runs the test generation programs. At the DCL "$" 

prompt, enter"@(< directory> )A TVG SETUP," where <directory> is the name of the directory 

containing the source files, to set up logical names and command symbols. ATVG.COM assumes 

the ProLog code resides in the same directory. Table 5 on page 78 lists the ProLog source files. 

Enter SETHDL <filename> to point to an HDL file. If not specified, and the default di-

rectory and a filetype of .HDL are assumed. Whatever VMS directory holds the .HDL file will be 

used for the xxx.AUX, xxx.FAULTS, and xxx.TESTS files, below. 
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Table 4. Summary of Translation Rules 

Declarations: 

(modelname "<model name>") 

(fileprcfix "<filename>") 
-filename part of HDL, TESTS, and FAULTS files 

(inputpin <object name>) 

(outputpin <object name>) 

(datatype <object name> <type>) 

- input ports only 

- output ports only 

- all objects 
<type> is BIT or BY 

(bYlcngth <object name> <vector length>) - bit vectors only 

(statevar <object name> <value>) - all objects 
<value> is t if object is state variable, nil otherwise 

Statement structure: 

(statcmenttype < stmtid > <type>) - all statements 
<type> is IF, CASE, or ASSIGNMENT 

(undcrstablc2 < stmtid > < stableobj >) - all statements 
< stableo bj > is nil if statement is not under 'ST AB LE 

Control statements only: 

( controlcxprcssion < stmtid > < expr >) 
< expr > is control expression or IF or CASE statement 

(subordinatcrange < stmtid > < clauseid > <range>) 
- for each clause of control statement 

< clauseid > is THEN or ELSE for IF statement, 
or list of WHEN values (nil if none) for CASE statement 

< range > is statements directly under clause 

Assignment statements only: 

(sourceexprcssion < stmtid > < expr >) 
< expr > is source expression of assignment statement 

(destinationobject < stmtid > <object>) 
<object> is object assigned by statement 
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Table 5. ProLog source files 

• ATVG.COM - command file to control ProLog files 

• BACKSOLVE.HC - goal-solving rules 

• BACKTRACK.HC - goal-solving supervisory routines 

• BACKUTIL.HC - unsolved goal list routines 

• BASICTEST.HC - basic test selection 

• BITOPS.HC - bit operation rules 

• BVOPS.HC - bit vector operation rules 

• COMPATIBLE.HC - conflict checks 

• DSBLIB.HC - library of assorted rules 

• EXPRRULES.HC - expression rules 

• HDLRULES.HC - HDL element extraction rules 

• INTOPS.HC - integer operation rules (not fully implemented) 

• LOOKUP.I-IC - micro-operation fault case and basic test lookup rules 

• OPRULES.HC - loads bitops, bvops 

• PICKF AUL TS.I-IC - fault listing rules 

• PRESCAN.HC - preprocessing rules 

• Tll\1ERULES.HC - time substitution rules 

• TRACE.I-IC - tracing rules 

• WAVEFORM.I-IC - waveform formatting rules 
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Enter SCAN to preprocess the file, to create an x.xx.AUX file. (The x.xx is the value given for 

((filcprcfix "x.xx")), and generally matches the filename of the .HDL file.) 

To list the faults, enter FAULTS. This generates a file x.xx.FAULTS, containing a list of faults 

for the HDL file. 

Enter TESTS to select basic tests. This will generate a file x.xx.TESTS, containing the basic 

test goals for each fault. 

To run the test generation program, enter SOLVE This will load the main program which runs 

interactively, and give the user the ProLog command prompt (":·n). 

ProLog Command Entry: ProLog commands may be entered at command prompts, interrupt 

prompts, or user break prompts. The command prompt is n;. n. This prompt means no execution 

is pending. The interrupt prompt is "< 0 > n, H < 1 > n, etc. Entering control-C at any time in 

ProLog interrupts execution and gives an interrupt prompt. At any Hcr:H prompt from the program 

(used to acknowledge a message), entering any character before the <CR> (carriage return) gives 

a user break prompt (0 ack > 0 
). At an interrupt prompt, t continues execution and nil aborts all 

pending execution. At a break prompt, t continues execution (nil forces a local failure and usually 

is not used.) 

Commands are: 

• (dotest) ·run tests 

• (showfaults) · list faults in the .FAULTS file 

• (mytracc ... ) • set tracing options 

• (sctbrcak ... ) • set breakpoints 

• (clcarbrcak ... ) • clear breakpoints 

• (startlog ... ) • start log of terminal output 

• (quit) • exit ProLog interpreter 
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Generating Test Vectors 

To generate a test, enter (dotest) <CR> (<CR> means carriage return) at the command 

prompt (":-"). The program will ask for the fault number. At that point, enter the number of the 

fault to test, and press <CR> . The program will display the fault, and begin solving. 

If the program succeeds in finding a test, it writes the test vector goals in the current default 

directory to x.xxnn.VCTR, and the formatted waveform to xx.x.nn.WAVE, where x.xx is the filename 

given in the ((fileprefix xxx)) rules, and nn is the fault number. If test generation fails, no files are 

written. 

Displaying the Fault List 

To display the fault list (to see fault numbers) from within the program, enter (showfaults). 

Tracing Goal Solving 

Commands are provided for tracing various parts of execution of the program. 

Tracing is set with (mytrace) or (mytracc <type> <level>) commands. Types are: 

trying - display each goal when selected to be solved 

solve - display each goal immediately before solving it 

subgoals - display subgoals returned from solving a goal 

backtrack - display message when trying alternate options 

(not incompletely implemented) 

already - display message for goals found to be already solved 

unsolvable - display message for goals found to be unsolvable 
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(not incompletely implemented) 

incompat • display message showing conflict 

subs · display goals before and after object value substitution 

The types trying and subgoals are of the most interest to the user. 

There are three levels: 0, I, and 2. Zero means do nothing, I means display a message, and 2 

means to prompt the user with "er:" to a·::knowledge the message by hitting <CR>. 

Breakpoints 

Breakpoints may be set as follows: 

• (setbreak level <level>) • break right before solving reaches a depth< level> 

• (sctbrcak goal < goaltype >) · break before solving any goal of that type 

• (sctbreak timesubs) · break before substituting times 

• (setbrcak rule < rulenarne >) · break before executing a certain rule 

Breaks for level and goal are usually used for running test generation up to a point, then stopping 

to change tracing to observe execution step by step. Timcsubs and rule breakpoints are mostly used 

for debugging. To break on several items, enter a (setbreak ... ) command for each. 

Breakpoints are cleared with the (clcarbrcak ... ) command. The arguments are the same are 

for (setbreak) commands. To clear multiple breakpoints of one type, multiple (clearbreak) com-

mand must be used. 
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Keeping a Log 

The (startlog "<filename>") command is used to start a log of whatever Pro Log displays 

on the terminal. The command ( closelog log) closes the log file. 

Exiting Prolog 

The (quit) command exits ProLog, returning the user to DCL. 

JV/ odifyi11g the Fault JV/ ode/ 

Fault modes for each micro-operation are defined in LOOKUP.HC, with the 

(lookupfaultmodes) rules. The form is ((lookupfaultmodes <micro-op name> < faultmodes 

list>)), where <micro-op name> is the name of the operation (e.g. BIT AND, BVADD) and 

< faultmodes list> is a parenthesized list ("nil" if empty) of failure modes for the micro-operation. 

Each mode is just name to match in a (lookuptest) rule. Usually, this name is the name of a ex-

isting micro-operation to which the intended operation fails; but since it only matches a corre-

sponding name in a (lookuptest) rules, it could be anything. 

Micro-operation sensitization conditions are given in (lookuptest) rules. The format is given 

in the ProLog file LOOKCP.HC. These rules give the sensitization condition by specifying a value 

to which a given expression must evaluate. The expression may be constructed from the micro-

operation expressions. These rules also give the good and bad result, as symbolic functions of the 

argument values. 
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Appendix B 

Circuit lVIodels and Fault Lists 

This appendix lists the .HDL files and annotated fault lists for the circuit models used in the 

research. The .HDL files are ProLog input files; the VHDL description is given in each file as 

ProLog comments. The ProLog rules describing the VHDL description follow the VHDL. Circuit 

diagrams are included for CCNT2, CKT A, and CKTCV ( Figure 2 on page 96, Figure 3 on page 

100, and Figure 4 on page 105). The fault list is the output file from the FAULTS command. 

Brief comments indicate exclusion, success, or failure for each fault attempted. 

Exclusion reasons are as follows: 

• Excluded - inverted clock: would clock on opposite edge 

• Excluded - clocks on any edge: would clock on rise or fall, not just intended edge 

• Excluded - continuous clocking: would clock at infinite frequency 

• Excluded - clocks on high: would clock infinitely when high 

• Excluded - clocks on high or edge: would clock when high, or on any edge 

• Excluded - clocks on high unless edge: would clock when high, except at edge 

Failure reasons are as follows: 
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• Failed; can't DNE under STUCK: can't avoid statements under STUCK clause 

• Failed; faulty micro-op: MICROOP or STUCKDATA fault prevents execution of statements 

to justify or propagate test 

• Failed; STUCK prevents preload: statements needed for preloading are inaccessible because 

of STUCK fault 

Circuit Models and Fault Lists 84 



ADDER Description 

ENTITY Adder( 
a, 
b 
: IN BIT_VECTOR(3 DOWNTO 0); 

c: OUT BIT_ VECTOR(3 DOWNTO 0) 
) IS 

END Adder; 

ARCHITECTURE Arch OF Adder is 

PROCESS(a,b) 
; BEGIN 
; sl: c < = ADD(a,b) 

END BLOCK; 

; END Adder; 
(assert 

( (file prefix "adder")) 
((modelname "Simple adder, vectors")) 

((datatype a BV)) ((bvlength a 4)) ((statevar at)) 
((inputpin a)) 

((datatype b BV)) ((bvlength b 4)) ((statevar b t)) 
((inputpin b)) 

((datatype c BV)) ((bvlength c 4)) ((statevar c nil)) 
((outputpin c)) 

( (statement s I)) 
((statementtype sl ASSIGNMENT)) 
((sourceexpression sl (BVADD (OBJ a) (OBJ b)))) 
((destinationobject sl c)) 
((understable2 sl nil)) 

) ; end assert 
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ADDER Fault List 

"Simple adder, vectors" 
(I ASSNCNTL sl) 
(2 MICROOP (sl • "") BVADD BVSUB) 
(3 MICROOP (sl • "") BVADD BVXOR) 
(4 STUCKDATA (sl • "'} (BV "0000")) 
(5 STUCKDATA (sl • "} (BV "1111")) 
(6 STUCKDATA (sl • L) (BV "0000")) 
(7 STUCKDATA (sl • L) (BV "1111")) 
(8 STUCKDATA (sl • R) (BV "0000")) 
(9 STUCKDATA (sl • R) (BV "1111")) 
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ADD R2 Description 

ENTITY Addr2 
(al ,a2,a3,a4, 
bl ,b2,b3,b4, 
cO: IN BIT; 
s l ,s2,s3,s4, 
c4: OUT BIT) IS 

END Addr2; 

ARCHITECTURE Arch OF addr2 is 

PROCESS (al ,a2,a3,a4,b l,b2,b3,b4,c0,c l ,c2,c3,s l ,s2,s3) 
SIGNAL cl, 

c2, 
c3: BIT; 

, BEGIN 
; sl: sl = al XOR (bl XOR cO); 
; s2: cl = (al AND bl) OR (cO AND (al XOR bl)); 
; s3: s2 = a2 XOR (b2 XOR cl); 
; s4: c2 = (a2 AND b2) OR (cl A0:D (a2 XOR b2)); 
; s5: s3 = a3 XOR (b3 XOR c2); 
; s6: c3 = (a3 AND b3) OR (c2 AND (a3 XOR b3) ) ; 
; s7: s4 = a4 XOR (b4 XOR c3); . 
; s8: c4 = (a4 AND b4) OR (c3 AND (a4 XOR b4)); 

END BLOCK; 

; END Arch; 
(assert 

((modelname "Gate-Level Adder")) 
((filcprefix "addr2")) 

((datatype al BIT)) ((statevar alt)) ((inputpin al)) 

((datatype a2 BIT)) ((statevar a2 t)) ((inputpin a2)) 

((datatype a3 BIT)) ((statevar a3 t)) ((inputpin a3)) 

((datatype a4 BIT)) ((statevar a4 t)) ((inputpin a4)) 

((datatype bl BIT)) ((statevar bl t)) ((inputpin bl)) 

((datatype b2 DIT)) ((statevar b2 t)) ((inputpin b2)) 

((datatype b3 BIT)) ((statevar b3 t)) ((inputpin b3)) 

((datatype b4 BIT)) ((statevar b4 t)) ((inputpin b4)) 

((datatype cO BIT)) ((statevar cO t)) ((inputpin cO)) 

((datatype sl BIT)) ((statevar sl nil)) ((outputpin sl)) 

((datatype s2 BIT)) ((statevar s2 nil)) ((outputpin s2)) 
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((datatype s3 BIT)) ((statevar s3 nil)) ((outputpin s3)) 

((datatype s4 BIT)) ((statevar s4 nil)) ((outputpin s4)) 

( (data type c 1 BIT)) ( ( statevar cl nil)) 

((datatype c2 BIT)) ((statevar c2 nil)) 

((datatype c3 BIT)) ((statevar c3 nil)) 

((datatype c4 BIT)) ((statevar c4 nil)) ((outputpin c4)) 

)(assert 

( (statement s 1)) 
((statcmenttype sl ASSIGNMENT)) 
((destinationobject sl sl)) 
((sourceexpression sl (BITXOR (OBJ al) 

(BITXOR (OBJ bl) (OBJ cO))))) 
( ( understable2 s 1 nil)) 

((statement s2)) 
((statementtype s2 ASSIGNMENT)) 
( ( destinationo bject s2 cl)) 
((sourceexpression s2 (BITOR (BIT AND (OBJ al) (OBJ bl)) 

(BITAND (OBJ cO) 
(BITXOR (OBJ al) 

(OBJ bl)))))) 
((understable2 s2 nil)) 

((statement s3)) 
((statementtype s3 ASSIGNMENT)) 
( ( destinationo bject s3 s2)) 
((sourceexpression s3 (BITXOR (OBJ a2) 

(BITXOR (OBJ b2) (OBJ cl))))) 
((understable2 s3 nil)) 

((statement s4)) 
((statementtype s4 ASSIGNMENT)) 
((destinationobject s4 c2)) 
((sourceexpression s4 (BITOR (BIT AND (OBJ a2) (OBJ b2)) 

(BITAND (OBJ cl) 
(BITXOR (OBJ a2) 

(OBJ b2)))))) 
((understable2 s4 nil)) 

((statement s5)) 
((statementtype s5 ASSIGNMENT)) 
((destinationobject s5 sJ)) 
((sourceexpression s5 (BITXOR (OBJ a3) 

(BITXOR (OBJ b3) (OBJ c2))))) 
((understable2 s5 nil)) 

( (statement s6)) 
((statementtype s6 ASSIGNMENT)) 
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((destinationobject s6 c3)) 
((sourceexpression s6 (BITOR (BITAND (OBJ a3) (OBJ b3)) 

(BITAND (OBJ c2) 

((understable2 s6 nil)) 

((statement s7)) 

(BITXOR (OBJ a3) 
(OBJ b3)))))) 

((statementtype s7 ASSIGNMENT)) 
((destinationobject s7 s4)) 
((sourceexpression s7 (BITXOR (OBJ a4) 

(BITXOR (OBJ b4) (OBJ c3))))) 
((understable2 s7 nil)) 

((statement s8)) 
((statementtype s8 ASSIGNMENT)) 
((destinationobject s8 c4)) 
((sourceexpression s8 (BITOR (BITAND (OBJ a4) (OBJ b4)) 

(BITAND (OBJ c3) 
(BITXOR (OBJ a4) 

(OBJ b4)))))) 
((understable2 s8 nil)) 

) 
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ADDR2 Fault List 

"Gate-Level Adder" 
(1 ASSNCNTL sl) 
(2 MICROOP (sl - "") BITXOR BITEQV) 
(3 MICROOP (sl - R) BITXOR BITEQV) 
(4 ASSNCNTL s2) 
(5 I\IICROOP (s2 - "") BITOR BITAND) 
(6 MICROOP (s2 - L) BITAND BITOR) 
(7 MICROOP (s2 - R) BITAND BITOR) 
(8 MICROOP (s2 - RR) BITXOR BITEQV) 
(9 ASSNCNTL s3) 
(10 MICROOP (s3 - "") BITXOR BITEQV) 
(11 MICROOP (s3 - R) BITXOR BITEQV) 
( 12 ASSNCNTL s4) 
(13 MICROOP (s4 - "") BITOR BITAND) 
( 14 MICROOP (s4 - L) BIT AND BITOR) 
(15 MICROOP (s4 - R) BITAND BITOR) 
(16 MICROOP (s4 - RR) BITXOR BITEQV) 
( 17 ASSNCNTL s5) 
(18 MICROOP (s5 - "") BITXOR BITEQV) 
(19 I\llCROOP (s5 - R) BITXOR BITEQV) 
(20 ASSNCNTL s6) 
(21 MICROOP (s6 - "") BITOR BITAND) 
(22 MICROOP (s6 - L) BIT AND BITOR) 
(23 MICROOP (s6 - R) BITAND BITOR) 
(24 MICROOP (s6 - RR) BITXOR BITEQV) 
(25 ASSNCNTL s7) 
(26 MICROOP (s7 - "") BITXOR BITEQV) 
(27 MICROOP (s7 - R) BITXOR BITEQV) 
(28 ASSNCNTL s8) 
(29 MICROOP (s8 - "") BITOR BITAND) 
(30 MICROOP (s8 - L) BIT AND I31TOR) 
(31 l\lICROOP (s8 - R) l3ITAND BITOR) 
(32 MICROOP (s8 - RR) BITXOR BITEQV) 
(33 STUCKDAT A (s 1 - "") (BIT "O")) 
(34 STUCKDATA (sl - "")(BIT''!")) 
(35 STUCKDATA (sl - L) (BIT "O")) 
(36 STUCKDATA (sl - L) (BIT "l")) 
(37 STUCKDATA (sl - R) (BIT "O")) 
(38 STUCKDATA (sl - R) (BIT"!")) 
(39 STUCKDATA (sl - RL) (BIT "O")) 
(40 STUCKDATA (sl - RL) (BIT ''l")) 
(41 STUCKDATA (sl - RR) (BIT "O")) 
(42 STUCKDATA (sl - RR) (BIT 'T')J 
(43 STUCKDATA (s2 - "")(BIT "O")) 
(44 STUCKDATA (s2 - "")(BIT "l")) 
(45 STUCKDATA (s2 - L) (BIT "O")) 
(46 STUCKDATA (s2 - L) (BIT "1")) 
(47 STUCKDATA (s2 - LL) (BIT "O")) 
(48 STUCKDATA (s2 - LL) (BIT "1")) 
(49 STUCKDATA (s2 - LR) (BIT "O")) 
(50 STUCKDATA (s2 - LR) (BIT"!")) 
(51 STUCKDA TA (s2 - R) (BIT "O")) 
(52 STUCKDATA (s2 - R) (BIT"!")) 
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(53 STUCKDATA (s2 - RL) (BIT HO")) 
(54 STUCKDATA (s2 - RL) (BIT Hn) 
(55 STUCKDATA (s2 - RR) (BIT "O")) 
(56 STUCKDATA (s2 - RR) (BIT "l")) 
(57 STUCKDATA (s2 - RRL) (BIT "O")) 
(58 STUCKDATA (s2 - RRL) (BIT "l")) 
(59 STUCKDATA (s2 - RRR) (BIT "O")) 
(60 STUCKDATA (s2 - RRR) (BIT T')) 
(61 STUCKDATA (s3 - '"') (BIT "O")) 
(62 STUCKDATA (s3 - H") (BIT "l")) 
(63 STUCKDATA (s3 - L) (BIT "O")) 
(64 STUCKDATA (s3 - L) (BIT "l")) 
(65 STUCKDATA (s3 - R) (BIT "O")) 
(66 STUCKDATA (s3 - R) (BIT "l")) 
(67 STUCKDATA (s3 - RL) (BIT "O")) 
(68 STUCKDATA (s3 - RL) (BIT "l")) 
(69 STUCKDATA (s3 - RR) (BIT "O")) 
(70 STUCKDATA (s3 - RR) (BIT "l")) 
(71 STUCKDATA (s4 - "")(BIT "O")) 
(72 STUCKDATA (s4 - "") (BIT "l")) 
(73 STUCKDATA (s4 - L) (BIT "O")) 
(74 STUCKDATA (s4 - L) (BIT Hl")) 
(75 STUCKDATA (s4 - LL) (BIT "O")) 
(76 STUCKDATA (s4 - LL) (BIT "l")) 
(77 STUCKDATA (s4 - LR) (BIT "O")) 
(78 STUCKDATA (s4 - LR) (BIT "l")) 
(79 STUCKDATA (s4 - R) (BIT "O")) 
(80 STUCKDATA (s4 - R) (BIT "l")) 
(81 STUCKDATA (s4 - RL) (BIT "O")) 
(82 STUCKDATA (s4 - RL) (BIT "l'')) 
(83 STUCKDATA (s4 - RR) (BIT "O")) 
(84 STUCKDATA (s4 - RR) (BIT "l")) 
(85 STUCKDATA (s4 - RRL) (BIT "O")) 
(86 STUCKDATA (s4 - RRL) (BIT T')) 
(87 STUCKDATA (s4 - RRR) (BIT "O")) 
(88 STUCK DAT A (s4 - RRR) (BIT "l")) 
(89 STUCKDAT A (s5 - H") (BIT "O'')) 
(90 STUCKDATA (s5 - H") (BIT 0 1")) 
(91 STUCKDATA (s5 - L) (BIT 0 0")) 
(92 STUCKDATA (s5 - L) (BIT "l")) 
(93 STUCKDATA (s5 - R) (BIT "O")) 
(94 STUCKDATA (s5 - R) (BIT "l")) 
(95 STUCK DAT A (s5 - RL) (BIT HO")) 
(96 STUCKDATA (s5 - RL) (BIT Hl")) 
(97 STUCKDAT A (s5 - RR) (BIT "O")) 
(98 STUCKDATA (s5 - RR) (BIT "l")) 
(99 STUCKDATA (s6 - "")(BIT "O")) 
(100 STUCKDATA (s6 - "")(BIT "l")) 
(101 STUCKDATA (s6 - L) (BIT "O")) 
(102 STUCKDATA (s6 - L) (BIT "l")) 
(103 STUCKDATA (s6 - LL) (BIT "O")) 
(104 STUCKDATA (s6 - LL) (BIT T')) 
(105 STUCKDATA (s6 - LR) (BIT "O")) 
( 106 STUCK DATA (s6 - LR) (BIT "l")) 
(107 STUCKDATA (s6 - R) (BIT "O")) 
(108 STUCKDATA (s6 - R) (BIT "l")) 
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(109 STUCKDATA (s6 - RL) (BIT "O")) 
(110 STUCKDATA (s6 - RL) (BIT "1")) 
(111 STUCKDATA (s6- RR) (BIT "O")) 
(112 STUCKDATA (s6- RR) (BIT "l")) 
(113 STUCKDAT A (s6 - RRL) (BIT "O")) 
(114 STUCKDATA (s6 - RRL) (BIT "l")) 
(115 STUCKDATA (s6 - RRR) (BIT "O")) 
(116 STUCKDATA (s6- RRR) (BIT "l")) 
(117 STUCKDAT A (s7 - "") (BIT "O")) 
(118 STUCKDATA (s7 - "")(BIT "l")) 
(119 STUCKDATA (s7 - L) (BIT "O")) 
(120 STUCKDATA (s7 - L) (BIT "1")) 
( 121 STUCK DATA (s7 - R) (BIT "O")) 
( 122 STUCKDATA (s7 - R) (BIT "l")) 
(123 STUCKDATA (s7 - RL) (BIT "O")) 
(124 STUCKDATA (s7 - RL) (BIT "l")) 
( 125 STUCKDAT A (s7 - RR) (BIT "O")) 
(126 STUCKDATA (s7 - RR) (BIT "l")) 
(127 STUCKDATA (s8 - "")(BIT "O")) 
(128 STUCKDATA (s8 - "")(BIT "l")) 
(129 STUCKDATA (s8 - L) (BIT "O")) 
(130 STUCKDATA (s8 - L) (BIT "l")) 
(131 STUCKDATA (s8 - LL) (BIT "O")) 
( 132 STUCKDATA (s8 - LL) (BIT 'T')) 
(133 STUCKDATA (s8 - LR) (BIT "O")) 
(134 STUCKDATA (s8 - LR) (BIT "1")) 
(135 STUCKDATA (s8 - R) (BIT "O")) 
(136 STUCKDATA (s8 - R) (BIT "l")) 
(137 STUCKDATA (s8 - RL) (BIT "O")) 
(138 STUCKDATA (s8 - RL) (BIT "l")) 
(139 STUCKDATA (s8 - RR) (BIT "O")) 
(140 STUCKDATA (s8 - RR) (BIT "l")) 
(141 STUCKDATA (s8 - RRL) (BIT "O")) 
(142 STUCKDATA (s8 - RRL) (BIT "1")) 
( 143 STUCK DATA (s8 - RRR) (BIT "O")) 
(144 STUCKDATA (s8 - RRR) (BIT "l")) 
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CCNT2 Description 

(See diagram, Figure 2 on page 96.) 

,, ENTITY controlled_ctr( 

" .. 
" .. 
" .. 
" 
" .. 
" 

elk, 
strb : IN BIT; 
con: IN BIT_ VECTOR(! DOWNTO O); 
data: IN BIT_ VECTOR(! DOWNTO O); 
count: OUT BIT_VECTOR(l DOWNTO 0)) is 

,, END controlled_ctr; 

" .. 
" ,, ARCHITECTURE Arch OF controlled_ctr IS 

" .. 
" 
" .. 
" 
" .. 
" .. 
" .. 
" 

PROCESS (clk,strb,con,data,consig,count,lim); 
SIGNAL 

en : BOOLEAN; ?? 
dir:?? (up,down) 
lim 

: BITVECTOR(l DOWNTO 0); 
loadflag: BOOLEAN 

;; BEGIN 
;; sOl: IF strb='l' AND NOT strb'STABLE THEN 
;; s02: CASE IntVal(con) IS .. 
" ;; s03: 

" ;; s04: 

" ;; s05: 
;; s06: .. 
" ;; s07: 
;; s08: .. 
" 
" 
" ;; s09: 
;; slO: 
;; s 11: .. 
" 
" ;; s12: 
;; sl3: 
;; s14: 

" ;; s15: .. 
" .. 
" 
" ;; s16: 
;; sl 7: 

" 

WHEN 0 = > 
count < = "00"; 

WHEN 1 = > 
loadflag < = TRUE; 

WHEN 2 = > 
en<= TRUE; 
dir < = up; 

WHEN 3 = > 
en<= TRUE; 
dir < = down; 

END CASE; 
END IF; 

IF (strb = 'O' AND NOT strb'STABLE) AND loadflag THEN 
lim < = data; 
loadflag < = FALSE; 

END IF; 

IF (clk='l' AND NOT clk'STABLE) AND en THEN 
IF dir= up THEN 

count < = ADD(count,"01"); 
ELSE 

count < = SUB(count,"01"); 
END IF; 

END IF; 

IF count = lim THEN 
en <=FALSE; 

END IF; 
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.. 
" ;; END PROCESS; 
;; END Arch; 
(assert 

((modelname "Controlled Counter (2)")) 
((fileprefix "CCNT2")) 

((datatype elk BIT)) ((statevar elk t)) ((inputpin elk)) 

((datatype strb BIT)) ((statevar strb t)) ((inputpin strb)) 

((datatype con BV)) ((bvlength con 2)) ((statevar cont)) ((inputpin con)) 

((datatype data BV)) ((bvlength data 2)) ((statevar data t)) ((inputpin data)) 

((datatype count BV)) ((bvlength count 2)) ((statevar count t)) 
((outputpin count)) 

( (data type en BIT)) ( ( statevar en t)) 

((datatype dir BIT)) ((statevar dirt)) 

((datatype lim BV)) ((bvlength 1irn 2)) ((statevar 1irn t)) 

((datatype loadflag BIT)) ((statevar loadflag t)) 

((statementtype sl IF)) ((understable2 sl strb)) 
((controlexpression sl (BITAND (BITEQV (OBJ strb) (LIT (BIT "1"))) 

(BITNOT (STABLE (OBJ strb)))))) 
((subordinaterange sl THEN (s2))) 
((subordinaterange sl ELSE nil)) 

((statementtype s2 CASE)) ((understable2 s2 strb)) 
((controlexpression s2 (OBJ con))) 
((subordinaterange s2 ((BV "00")) (s3))) 
((subordinaterange s2 ((BV "01")) (s4))) 
((subordinaterange s2 ((BV "10")) (s5 s6))) 
((subordinaterange s2 ((BV "11")) (s7 s8))) 

((statementtype s3 ASSIG'.'JMENT)) ((understable2 s3 strb)) 
((destinationobject s3 count)) ((sourceexpression s3 (LIT (BV "00")))) 

((statementtype s4 ASSIGNMENT)) ((understable2 s4 strb)) 
((destinationobject s4 loadflag)) ((sourceexpression s4 (LIT (BIT"!")))) 

((statcmenttype s5 ASSIGNMENT)) ((undcrstable2 s5 strb)) 
((destinationobject s5 en)) ((sourceexpression s5 (LIT (BIT "1")))) 

((statementtype s6 ASSIGNMENT)) ((understable2 s6 strb)) 
((destinationobject s6 dir)) ((sourceexpression s6 (LIT (BIT "O")))) 

((statcmenttype s7 ASSIGNMENT)) ((understable2 s7 strb)) 
((destinationobjcct s7 en)) ((sourceexpression s7 (LIT (BIT "1")))) 
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((statementtype s8 ASSIGNMENT)) ((understable2 s8 strb)) 
((destinationobject s8 dir)) ((sourceexpression s8 (LIT (BIT "1")))) 

((statementtype s9 IF)) ((understable2 s9 strb)) 
((controlexpression s9 (BIT.AND (BITAND (BITEQV (OBJ strb) (LIT (BIT "O"))) 

(BITNOT (STABLE (OBJ strb)))) 
(OBJ loadflag) ))) 

((subordinaterange s9 THEN (slO sl 1))) 
((subordinaterange s9 ELSE nil)) 

((statementtype slO ASSIGNMENT)) ((understable2 slO strb)) 
((destinationobject slO fun)) ((sourceexpression slO (OBJ data))) 

((statementtype sl 1 ASSIGNMENT)) ((understable2sl1 strb)) 
((destinationobject sl 1 loadflag)) ((sourceexpression sl 1 (LIT (BIT "O")))) 

((statementtype s12 IF)) ((understable2 sl2 elk)) 
((controlexpression sl2 (BITAND (BITAND (BITEQV (OBJ elk) (LIT (BIT ,,l"))) 

(BITNOT (STABLE (OBJ elk)))) 
(OBJ en)))) 

((subordinaterange sl2 THEN (sl3))) 
((subordinaterange sl2 ELSE nil)) 

((statementtype sl3 IF)) ((understable2 sl3 elk)) 
((controlexpression sl3 (I3ITEQV (OBJ dir) (LIT (BIT "O"))))) 

((subordinaterange sl3 THEN (sl4))) 
((subordinaterange sl3 ELSE (sl5))) 

((statementtype sl4 ASSIGNl\IENT)) ((understable2 s14 elk)) 
(( dcstinationobject s 14 count)) 
((sourceexpression sl4 (BVADD (OBJ count) 

(LIT (BV "01''))))) 

((statementtype sl5 ASSIGNMENT)) ((understable2 sl5 elk)) 
((destinationobject sl5 count)) 
((sourceexpression sl5 (BVSUB (OBJ count) 

(LIT (BV "01"))))) 

((statementtype sl6 IF)) ((understable2 sl6 nil)) 
((controlexpression sl6 (BVEQ (OBJ count) (OBJ fun)))) 
((subordinaterange sl6 THEN (sl7))) 
( ( subordinaterange s 16 ELSE nil)) 

((statementtype sl7 ASSIGNMENT)) ((umlcrstable2 sl7 nil)) 
((destinationobject s 17 en)) ((sourceexprcssion s 17 (LIT (BIT "O")))) 
) ; end assert 
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CCNT2 Fault List 

HControlled Counter (2)" 
(I STUCKTHEN sI) Excluded - continuous clocking 
(2 STUCKELSE sI) Failed; STUCK prevents preload 
(3 MICROOP (sI - n") BITAND BITOR) Excluded - clocks on high or any edge 
(4 l\UCROOP (sI - L) BITEQY BITXOR) Excluded - inverted clock 
(5 l\.UCROOP (sl - R) BITNOT BITBUF) Excluded - clocks on high unless edge 
(6 DEADCLAUSE s2 ((BY nII"))) Overflow; can't load EN flag 
(7 DEADCLAUSE s2 ((BY "10"))) Overflow; 
(8 DEADCLAUSE s2 ((BY "OI"))) Failed; DEAD prevents preload 
(9 DEADCLAUSE s2 ((BY "00"))) Overflow; multiple loads 
(10 ASSNCNTL s3) Overflow; can't preload 
( 11 ASSNCNTL s4) Overflow; fault interferes with preload 
(12 ASSNCNTL s5) Overflow; bad initial choices for count and limit 
(13 ASSNCNTL s6) Overflow; also, BYADD/BYSUB not fully implemented 
(14 ASSNCNTL s7) Overflow; multiple loads; bad initial choices 
(15 ASSNCNTL s8) Overflow; multiple loads; possible bad choices 
( 16 STUCK THEN s9) Excluded - continuous clocking 
(17 STUCKELSE s9) Overflow; endless loop (OBSEXEC needs loop cuts) 
(18 MICROOP (s9 - "") BITAND BITOR) Excluded - clocks on high or any edge 
(19 MICROOP (s9 - L) BITAND BITOR) Excluded - clocks on high or any edge 
(20 MICROOP (s9 - LL) BITEQY BITXOR) Excluded - inverted clock 
(21 MICROOP (s9 - LR) BITNOT BITBUF) ·Excluded - clocks on high unless edge 
(22 ASSNCNTL slO) Overflow; two-phase delays conflict detection 
(23 ASSNCNTL sI I) Failed; endless loop (OBSEXEC needs loop checks) 
(24 STlJCKTHEN sl2) Excluded - continuous clocking 
(25 STUCKELSE sl2) Successful 
(26 MICROOP (sl2 - "") BITAND BITOR) Excluded - clocks on high or any edge 
(27 MICROOP (sl2 - L) BITAND BITOR) Excluded - clocks on high or any edge 
(28 MICROOP (sl2 - LL) BITEQY BITXOR) Excluded - inverted clock 
(29 MICROOP (sl2 - LR) BITNOT BITBUF) Excluded - clocks on high unless edge 
(30 STUCKTHEN sl3) Overflow; bad inequality choices; ADD/SUB incorrect 
(31 STlJCKELSE sl3) Overflow; bad inequality choices; ADD/SUB incorrect 
(32 MICROOP (s13 - "") BITEQY BITXOR) Overflow; bad inequality choices 
(33 ASSNCNTL s14) Overflow; bad inequality choices; delayed conflict detection 
(34 MICROOP (sl4 - "") BYADD BYSUB) Overflow; bad inequality choice 
(35 MICROOP (s14 - "") BY ADD BYXOR) Overflow; bad inequality choice 
(36 ASSNCNTL sI5) Overflow; nonoptimal first choice; delayed fault detection 
(37 MICROOP (sl5 - "") BYSUB BYADD) Overflow; bad inequality choices 
(38 STUCKTHEN s16) Overflow; multiple loads; bad inequality choice 
(39 STUCKELSE s16) Overflow; multiple loads; bad inequality choice 
(40 l\HCROOP (sl6 - H") BYEQ BYNEQ) Overflow; multiple loads; bad inequality choi 
ce 
(41 ASSNCNTL sI7) Overflow; multiple loads 
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CKT A Description 

; (See diagram, Figure 3 on page 100.) 
; File CIRCUIT A.HDL -

ENTITY CircuitA is 
(datain, 
clockl, 
clock2 
: IN BIT; 

andout: OUT BIT) 
END CircuitA; 

ARCHITECTURE Arch OF CircuitA is 

PROCESS(clockl,clock2,ql,q2) 
SIGNAL 

ql, 
q2 
: BIT; 

, BEGIN 
; 1: IF (clockl=T AND NOT clockl'STABLE) THEN 
; 2: ql < = datain; 
; 3: IF (clock2='1' AND NOT clock2'STABLE) THEN 
; 4: q2 < = ql; 
; 5: andout < = ql AND q2; 

END PROCESS; 

; END Arch; 
(assert 

( ( fileprcfix "ck ta")) 
((modelname "Circuit A")) 

((datatype datain BIT)) ((statevar datain t)) ((inputpin datain)) 

((datatype clock! BIT)) ((statevar clockl t)) ((inputpin clockl)) 

((datatype clock2 BIT)) ((statevar clock2 t)) ((inputpin clock2)) 

((datatype qi BIT)) ((statevar qi t)) 

((datatype q2 BIT)) ((statevar q2 t)) 

((datatype andout BIT)) ((statevar andout nil)) ((outputpin andout)) 

((statement s 1)) 
((statementtype sl IF)) 

((controlexpression sl (BITAND (BITEQV (OBJ clock!) (LIT (BIT"!"))) 
(BITNOT (STABLE (OBJ clock!)))))) 

((subordinaterange sl THEN (s2) )) 
((subordlnatcrange sl ELSE nil)) 

( ( understable2 s 1 clock 1)) 
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((statement s2)) 
((statementtype s2 ASSIGNMENT)) 

((sourceexpression s2 (OBJ datain) )) 
( ( destinationo bject s2 q 1)) 

((understable s2)) 
((understable2 s2 clockl)) 

((statement s3)) 
((statementtype s3 IF)) 

((controlexpression s3 (BITAND (BiTEQV (OBJ clock2) (LIT (BIT nl"))) 
(BITNOT (STABLE (OBJ clock2)))) )) 

((subordinaterange s3 THEN (s4) )) 
((subordinaterange s3 ELSE nil )) 

((understable2 s3 clock2)) 

((statement s4)) 
((statementtype s4 ASSIGNMENT)) 

((sourceexpression s4 (OBJ ql) )) 
((destinationobject s4 q2)) 

((understable s4)) 
((understable2 s4 clock2)) 

((statement s5)) 
((statementtype s5 ASSIGNMENT)) 

((sourceexpression s5 (BITAND (OBJ ql) (OBJ q2)) )) 
((destinationobject s5 andout)) 

((understable2 s5 nil)) 

) ; end assert 
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Cl(T A Fault List 

"Circuit A" 
(1 STUCKTHEN sl) 
(2 STUCKELSE sl) 
(3 MICROOP (sl - "") BITAND BITOR) 
(4 MICROOP (sl - L) BITEQV BITXOR) 
(5 MICROOP (sl - R) BITNOT BITBUF) 
(6 ASSNCNTL s2) 
(7 STUCKTHEN s3) 
(8 STUCKELSE s3) 
(9 ivIICROOP (s3 - "") BITAND BITOR) 
(10 MICROOP (s3 - L) BITEQV BITXOR) 
(11 MICROOP (s3 - R) BITNOT BITBUF) 
(12 ASSNCNTL s4) 
(13 ASSNC~TL s5) 
(14 MICROOP (s5 - "") BITAND BITOR) 
(15 STUCKDATA (sl - "")(BIT "O")) 
(16 STUCKDATA (sl - "")(BIT "1")) 
(17 STUCKDATA (sl - L) (BIT "O")) 
(18 STUCKDATA (sl - L) (BIT "l")) 
(19 STUCKDATA (sl - LL) (BIT "O")) 
(20 STUCKDATA (sl - LL) (BIT "I")) 
(21 STUCKDATA (sl - LR) (BIT "O")) 
(22 STL'CKDATA (sl - LR) (BIT "1")) 
(23 STUCKDATA (sl - R) (BIT "O")) 
(24 STlJCKDATA (sl - R) (BIT "1")) 
(25 STUCKDATA (sl - RL) (BIT "O")) 
(26 STUCKDATA (sl - RL) (BIT 'T')) 
(27 STUCKDATA (s2 - '"')(BIT "O")) 
(28 STUCKDATA (s2 - "")(BIT "1")) 
(29 STUCKDA TA (s3 - "") (BIT "O")) 
(30 STUCK DAT A (s3 - "") (BIT "1")) 
(31 STUCKDATA (s3 - L) (BIT "O")) 
(32 STUCKDATA (s3 - L) (BIT "l")) 
(33 STUCKDATA (s3 - LL) (BIT "O")) 
(34 STUCKDATA (s3 - LL) (BIT "l")) 
(35 STUCKDATA (s3 - LR) (BIT "O")) 
(36 STUCKDATA (s3 - LR) (BIT "l")) 
(37 STUCKDATA (s3 - R) (BIT "O")) 
(38 STUCK DAT A (s3 - R) (BIT "1 ")) 
(39 STUCKDATA (s3 - RL) (BIT "O")) 
(40 STUCKDATA (s3 - RL) (BIT "l")) 
(41 STUCKDATA (s4 - "")(BIT "O")) 
(42 STlJCKDATA (s4 - "")(BIT "I")) 
(43 STUCKDATA (sS - "")(BIT "O")) 
(44 STUCKDATA (sS - "")(BIT "l")) 
(45 STUCKDATA (sS - L) (BIT "O")) 
(46 STUCKDATA (s5 - L) (BIT "l")) 
(47 STUCKDATA (sS - R) (BIT "O")) 
(48 STUCKDATA (s5 - R) (BIT "l")) 
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Excluded - continuous clocking (but successful) 
Failed; STUCK prevents preload 
Excluded - high or edge 
Excluded - inverted clock 
Excluded - clocks on high unless edge 
Overflow; many 2-phase tries 
Excluded - continuous clocking 
Successful, but 2-phase 
Excluded - high or edge 
Excluded - inverted clock 
Excluded - clocks on high unless edge 
Successful 
Overflow; bad time choices; two-phase slows conflict det 
Successful 
Failed; faulty micro-op 
Excluded - continuous clocking 
Failed; faulty micro-op 
Excluded - clocks on any edge 
Failed; faulty micro-op 
Excluded - clocks on any edge 
Excluded - inverted clock 
Not a fault 
Failed; faulty micro-op 
Excluded - clocks on high 
Excluded - clocks on high 
Failed; faulty micro-op 
Failed; faulty micro-op 
Failed; faulty micro-op 
Failed; faulty micro-op 
Excluded - continuous clocking 
Failed; faulty micro-op 
Excluded - clocks on any edge 
Failed; faulty micro-op 
Excluded - clocks on any edge 
Excluded - inverted clock 
Not a fault 
Failed; faulty micro-op 
Excluded - clocks on high 
Excluded - clocks on high 
Failed; faulty micro-op 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
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CKTCV Description 

; (See diagram, Figure 4 on page 105.) 

; File CKTCV.HDL 

ENTITY RegMux( 
clock : IN BIT; 
cmd, 
mp 
: IN BIT_VECTOR(l DOWNTO O); 

c: OUT VIT_VECTOR(l DOWNTO 0) 
) IS 

END RegMux; 

ARCHITECTURE Arch OF RegMux IS 

PROCESS( clock,cmd,inp,a,b) 
, BEGIN 
; s I: IF clock= 'I' AND NOT clock'ST ABLE THEN 
; s2: CASE cmd IS 
; s3: WHEN "00" = > p < = inp; -- load control register p 
; s4: WHEN "01" = > a < = inp; -- load a register 
; s5: WHEN "10" = > b < = inp; -- load b register 

' ; s6: 
; s7: 
' ; s8: 

WHEN "11" = > -- load c according top 
IF p = "00" THEN 

c <=a; 
ELSE 

c < = b; 
END IF; 

END CASE; 
END IF; 

END PROCESS; 
; END Arch; 
(assert 

( ( ftleprefix "cktcv")) 
((modelname "Circuit V - Latched Multiplexer with Vectors")) 

((datatype clock BIT)) ((statevar clock t)) ((inputpin clock)) 

((datatype inp I3V)) ((bvlength inp 2)) ((statevar inp t)) 
((inputpin inp)) 

((datatype cmd I3V)) ((bvlength cmd 2)) ((statevar cmd t)) 
((inputpin cmd)) 

((datatype a BV)) ((bvlength a 2)) ((statevar at)) 

((datatype b BV)) ((bvlcngth b 2)) ((statcvar b t)) 

((datatype p I3V)) ((bvlength p 2)) ((statevar p t)) 

((datatype c BV)) ((bvlength c 2)) ((statevar c t)) 
((outputpin c)) 
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((statement sl)) 
((statementtype sl IF)) 
((controlexpression sl (BIT AND (BITEQV (OBJ clock) (LIT (BIT *I"))) 

(BITNOT (STABLE (OBJ clock)))))) 
((subordinaterange sl THEN (s2) )) 
((subordinaterange sl ELSE nil)) 
((understable2 sl clock)) 

((statement s2)) 
((statementtype s2 CASE)) 
((controlexpression s2 (OBJ cmd))) 
((subordinaterange s2 ((BV "00")) (s3) )) 
((subordinatcrange s2 ((BV "01")) (s4) )) 
((subordinaterange s2 ((BV nlO")) (s5) )) 
((subordinaterange s2 ((BV "11")) (s6) )) 
((understable s2)) 
((understable2 s2 clock)) 

((statement s3)) 
((statementtype s3 ASSIGNMENT)) 
((sourceexpression s3 (OBJ inp))) 
((destinationobject s3 p)) 
((understable s3)) 
((understable2 s3 clock)) 

((statement s4)) 
((statementtype s4 ASSIGNMENT)) 
((sourceexpression s4 (OBJ inp))) 
((destinationobject s4 a)) 
((understable s4)) 
((understable2 s4 clock)) 

((statement s5)) 
((statementtype s5 ASSIGNMENT)) 
((sourceexpression s5 (OBJ inp))) 
((destinationobject s5 b)) 
((understable s5)) 
((understable2 s5 clock)) 

((statement s6)) 
((statementtype s6 IF)) 
((controlexpression s6 (BVEQ (OBJ p) (LIT (BV noon))) )) 
((subordinaterange s6 THEN (s7) )) 
((subordinaterange s6 ELSE (s8) )) 
((undcrstable s6)) 
((understable2 s6 clock)) 

((statement s7)) 
((statementtype s7 ASSIGNMENT)) 
((sourccexpression s7 (OBJ a))) 
((destinationobject s7 c)) 
((understable s7)) 
((undcrstable2 s7 clock)) 
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((statement s8)) 
((statementtype s8 ASSIGNMENT)) 
((sourceexpression s8 (OBJ b))) 
((destinationobject s8 c)) 
((understable s8)) 
((understable2 s8 clock)) 

) ; end assert 
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CKTCV Fault List 

"Circuit V - Latched Multiplexor with Vectors" 
(1 STUCKTHEN sl) 
(2 STUCKELSE sl) 
(3 MICROOP (sl - "") BITAND BITOR) 
(4 :\tlCROOP (sl - L) BITEQV BITXOR) 
(5 MICROOP (sl - R) BITNOT BITBUF) 
(6 DEADCLAUSE s2 ((BV "11"))) 
(7 DEADCLAUSE s2 ((BV "10"))) 
(8 DEADCLAUSE s2 ((BV "01"))) 
(9 DEADCLAUSE s2 ((BV "00"))) 
(10 ASSNCNTL s3) 
(11 ASSNCNTL s4) 
(12 ASSNCNTL s5) 
(13 STCCKTHEN s6) 
( 14 STUCKELSE s6) 
(15 MICROOP (s6 - "") BVEQ BVNEQ) 
(16 ASSNCNTL s7) 
(17 ASSNCNTL s8) 
(18 STUCKDATA (sl - "")(BIT "O")) 
(19 STUCKDATA (sl - "")(BIT "l")) 
(20 STUCKDATA (sl - L) (BIT "O")) 
(21 STUCKDATA (sl - L) (BIT 'T')) 
(22 STUCKDATA (sl - LL) (BIT "O")) 
(23 STUCKDATA (s 1 - LL) (BIT ''!")) 
(24 STUCKDATA (sl - LR) (BIT "O")) 
(25 STUCKDATA (sl - LR) (BIT "l")) 
(26 STUCKDATA (sl - R) (BIT "O")) 
(27 STUCKDATA (s 1 - R) (BIT "l")) 
(28 STUCKDATA (sl - RL) (BIT "O")) 
(29 STCCKDATA (sl - RL) (BIT "l")) 
(30 STUCKDATA (s2 - "") (BV "00")) 
(31 STUCKDATA (s2 - "") (BV "11")) 
(32 STlJCKDAT A (s3 - "") (BV "00")) 
(33 STUCKDATA (s3 - "") (BV "11")) 
(34 STUCKDATA (s4 - "") (BV "00")) 
(35 STUCKDATA (s4 - "") (BV "11")) 
(36 STUCKDAT A (s5 - "") (BV "00")) 
(37 STUCKDATA (s5 - "") (BV "11")) 
(38 STUCKDATA (s6 - "")(BIT "O")) 
(39 STUCKDATA (s6 - "")(BIT "l")) 
(40 STUCKDATA (s6 - L) (BV "00")) 
(41 STUCKDATA (s6 - L) (BV "11")) 
(42 STUCKDATA (s6 - R) (BV "00")) 
(43 STUCKDATA (s6 - R) (BV "11")) 
(44 STUCKDATA (s7 - "") (BV "00")) 
(45 STCCKDATA (s7 - "") (BV "11")) 
(46 STUCKDATA (s8 - "") (BV "00")) 
(47 STUCKDATA (s8 - "") (BV "11")) 
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Excluded - continuous clocking 
Failed; STUCK prevents EXEC for preload 
Excluded - clocks on high or edge 
Excluded - inverted clock 
Excluded - clocks on high unless edge 
Successful (contorted, but works) 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful, but 2-phase when not necessary 
Failed; faulty micro-op 
Excluded - continuous clocking 
Failed; faulty micro-op 
Excluded - clocks on any edge 
failed; faulty micro-op 
Excluded - clocks on any edge 
Excluded - inverted clock 
Not a fault 
Failed; faulty micro-op 
Excluded - clocks on high 
Excluded - clocks on high 
Failed; faulty micro-op 
Failed; faulty micro-op 
Failed; faulty micro-op 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
l'\ot a fault 
Successful 
Successful 
Successful 
Successful 
Successful 
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CNT R Description 

ENTITY Counter( 
clrbar, 
clock : IN BIT; 
ql, 
q2, 
q3: OUT BIT) IS 

END Counter; 

ARCHITECTURE Arch OF Counter IS 

PROCESS(clrbar,clock) 
, BEGIN 
; sl: IF clrbar= 'O' THEN 
; s2: q 1 < = 'O'; 
; s3: q2 < = 'O'; 
; s4: q3 < = 'O'; 

' ; s5: 
; s6: 
; s7: 
; s8: 

ELSE 
IF clock='l' AND NOT clock'STABLE THEN 

ql < = NOT ql; 
ef¥ = q2 XOR ql; 
q3 < = q3 XOR (ql AND q2); 

END IF 
END IF 

END PROCESS; 

; END Arch; 
(assert 

((fileprefix "cntr")) 
( (modelname 'pfhree-Bit Counter I")) 

((datatype clrbar BIT)) ((statevar clrbar t)) ((inputpin clrbar)) 

((datatype clock BIT)) ((statevar clock t)) ((inputpin clock)) 

((datatype ql BIT)) ((statevar ql t)) ((outputpin ql)) 

((datatype q2 BIT)) ((statevar q2 t)) ((outputpin q2)) 

((datatype q3 BIT)) ((statevar q3 t)) ((outputpin q3)) 

((statement s l)) 
((statementtype sl IF)) 
((controlexpression sl (BITEQV (OBJ clrbar) (LIT (BIT "O"))) )) 
((subordinaterange sl THEN (s2 s3 s4) )) 
((subordinaterange sl ELSE (s5) )) 
((understable2 sl nil)) 

((statement s2)) 
((statcmcnttype s2 ASSIGNMENT)) 
((sourceexpression s2 (LIT (BIT "O")) )) 
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((destinationobject s2 ql)) 
((understable2 s2 nil)) 

((statement s3)) 
((statementtype s3 ASSIGNMENT)) 
((sourccexpression s3 (LIT (BIT "O")) )) 
((destinationobject s3 q2)) 
((understable2 s3 nil)) 

((statement s4)) 
((statementtype s4 ASSIGNMENT)) 
((sourceexpression s4 (LIT (BIT "O")) )) 
((destinationobject s4 q3)) 
((understable2 s4 nil)) 

( (statement s5)) 
((statementtype s5 IF)) 
((controlexpression s5 (BITAND (BITEQV (OBJ clock) (LIT (BIT Hl"))) 

(BITNOT (STABLE (OBJ clock))) ) )) 
((subordinaterange s5 THEN (s6 s7 s8) )) 
((subordinaterange s5 ELSE nil)) 
((understable2 s5 clock)) 

((statement s6)) 
((statementtype s6 ASSIGNMENT)) 
((sourceexpression s6 (BITNOT (OBJ ql)) )) 
(( dcstinationobject s6 q 1 )) 
( ( undcrstable s6)) 
((understable2 s6 clock)) 

((statement s7)) 
((statementtype s7 ASSIGNMENT)) 
((sourcecxpression s7 (BITXOR (OBJ q2) (OBJ ql)) )) 
((destinationobject s7 q2)) 
( ( understable s7)) 
((understable2 s7 clock)) 

( (statement s8)) 
((statementtype s8 ASSIGNMENT)) 
((sourceexpression s8 (BITXOR (OBJ q3) (BITAND (OBJ ql) (OBJ q2))) )) 
((destinationobject s8 q3)) 
((understablc s8)) 
((understable2 s8 clock)) 

) ; end assert 
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CNT R F au/t List 

"Three-BIT Counter 1" 
(1 STUCKTIIEN sl) 
(2 STUCKELSE sl) 
(3 MICROOP (sl - ,,,,) BITEQV BITXOR) 
(4 ASSNCNTL s2) 
(5 ASSNCNTL s3) 
(6 ASSNCNTL s4) 
(7 STUCKTHEN s5) 
(8 STCCKELSE s5) 
(9 MICROOP (s5 - "") BIT AND BITOR) 
(10 MICROOP (s5 - L) BITEQV BITXOR) 
(11 ~HCROOP (s5 - R) BITNOT BITBUF) 
(12 ASSNCNTL s6) 
(13 MICROOP (s6 - "") BITNOT BITBUF) 
(14 ASSNCNTL s7) 
(15 MICROOP (s7 - "") BITXOR BITEQV) 
(16 ASSNCNTL s8) 
(17 MICROOP (s8 - "") BITXOR BITEQV) 
(18 MICROOP (s8 - R) BITAND BITOR) 
(19 STUCKDATA (sl - "")(BIT "O")) 
(20 STUCKDATA (sl - "")(BIT "l")) 
(21 STUCKDATA (sl - L) (BIT "O")) 
(22 STUCKDATA (sl - L) (BIT "l")) 
(23 STUCKDATA (sl - R) (BIT "O")) 
(24 STUCKDATA (sl - R) (BIT"!'')) 
(25 STUCK DA TA (s2 - "") (BIT "O")) 
(26 STlJCKDATA (s2 - "")(BIT "1")) 
(27 STlJCKDATA (s3 - "")(BIT "O")) 
(28 STlJCKDATA (s3 - "")(BIT "I")) 
(29 STUCK DA TA (s4 - "") (BIT "O")) 
(30 STUCKDAT A (s4 - '"') (BIT "I")) 
(31 STlJCKDATA (s5 - "")(BIT "O")) 
(32 STlJCKDATA (s5 - "")(BIT "l")) 
(33 STUCKDATA (s5 - L) (BIT "O")) 
(34 STUCKDATA (s5 - L) (BIT "1 ")) 
(35 STUCKDATA (s5 - LL) (BIT "O'')) 
(36 STUCKDATA (s5 - LL) (BIT "I")) 
(37 STUCKDATA (s5 - LR) (BIT "O'')) 
(38 STUCKDATA (s5 - LR) (BIT "I")) 
(39 STUCKDAT A (s5 - R) (BIT "O")) 
(40 STUCKDATA (s5 - R) (BIT "l")) 
(41 STL'CKDATA (s5 - RL) (BIT "O")) 
(42 STUCKDATA (s5 - RL) (BIT "l")) 
(43 STUCKDATA (s6 - '"')(BIT "O")) 
(44 STUCKDATA (s6 - "'')(BIT "I")) 
(45 STUCKDATA (s6 - L) (BIT "O")) 
(46 STlJCKDATA (s6 - L) (BIT "l")) 
(47 STUCKDATA (s7 - "")(BIT "O")) 
(48 STUCKDATA (s7 - '"')(BIT "l")) 
( 49 STUCKDAT A (s7 - L) (BIT "O")) 
(50 STUCKDATA (s7 - L) (BIT "l")) 
(51 STUCKDATA (s7 - R) (BIT "O")) 
(52 STUCKDATA (s7 - R) (BIT "1")) 

Circuit Models and Fault Lists 

Failed; can't ONE under STUCK 
Failed; loop cuts 
Failed; faulty micro-op 
Failed; loop cuts; many tries 
Successful 
Failed; loop cuts 
Excluded - continuous clocking 
Successful 
Excluded - clocks on any edge or high 
Excluded - inverted clock 
Excluded - when high (unless edge) 
Successful 
Successful 
Failed; loop cuts 
Overflow; bad inequality choice 
Failed; loop cuts 
Failed; loop cuts 
Failed; loop cuts 
Failed; faulty micro-operation 
Failed; faulty micro-operation 
Failed; faulty micro-operation 
Failed; faulty micro-operation 
Not a fault 
Failed; faulty micro-operation 
Not a fault 
Successful 
Not a fault 
Successful 
Not a fault 
Successful 
Successful 
Excluded - continuous clocking 
Successful 
Excluded - clocks on any edge 
Successful 
Excluded - clocks on any edge 
Excluded - inverted clock 
Not a fault 
Successful 
Excluded - clocks on high 
Excluded - clocks on high 
Successful 
Successful 
Failed; faulty micro-op 
Failed; faulty micro-op 
Successful 
Failed; faulty micro-op 
Successful 
Failed; faulty micro-op 
Failed; faulty micro-op 
Failed; faulty micro-operation 
Successful 
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(53 STUCKDATA (s8 - *") (BIT "O")) 
(54 STUCKDATA (s8 - '"') (BIT 0 in)) 
(55 STUCKDATA (s8 - L) (BIT "O")) 
(56 STUCKDATA (s8 - L) (BIT "I")) 
(57 STUCKDATA (s8 - R) (BIT "O")) 
(58 STUCKDATA (s8 - R) (BIT "l'')) 
(59 STUCKDATA (s8 - RL) (BIT "O")) 
(60 STUCKDATA (s8 - RL) (BIT''!")) 
(61 STUCKDATA (s8 - RR) (BIT "O")) 
(62 STUCKDATA (s8 - RR) (BIT "I")) 

Circuit Models and Fault Lists 

Failed; faulty micro-operation 
Successful 
Failed; faulty micro-operation 
Succeeded (with help) 
Failed; faulty micro-operation 
Successful 
Failed; faulty micro-operation 
Failed; faulty micro-operation 
Failed; faulty micro-operation 
Failed; faulty micro-operation 

110 



CNT RV Description 

ENTITY CounterV( 
clrbar, 
clock 
: IN BIT; 

count: OUT BIT_VECTOR(2 DOWNTO 0) 
) IS 

END CounterV; 

ARCHITECTURE Arch OF Couul;:rv IS 

PROCESS(clrbar,clock) 

, BEGIN 
; s 1: IF clrbar = 'O' THEN 
; s2: count < = "000"; 

' ; s3: 
; s4: 

ELSE 
IF clock='!' AND NOT clock'STABLE THEN 

count < = BVADD(count,"001") 
END IF 

END IF 
END BLOCK; 

; END Arch; 
(assert 

((fileprefix "cntrv")) 
((modelname "Three-Bit Vector Counter")) 

((datatype clrbar BIT)) ((statevar clrbar t)) ((inputpin clrbar)) 

((datatype clock BIT)) ((statevar clock t)) ((inputpin clock)) 

((datatype count BV)) ((bvlength count 3)) ((statevar count t)) 
((outputpin count)) 

((statement s 1)) 
((statcmenttype sl IF)) 
((controlexpression sl (BITEQV (OBJ clrbar) (LIT (BIT "O"))))) 
((subordinatcrange sl THEN (s2))) 
((subordinaterange sl ELSE (s3) )) 
(( understable2 s 1 nil)) 

( (statement s2)) 
((statementtype s2 ASSIGNMENT)) 
((sourceexpression s2 (LIT (BV "000")) )) 
((destinationobject s2 count)) 
((understable2 s2 nil)) 

((statement s3)) 
((statementtype s3 IF)) 
((controlexpression s3 (BIT AND (BITEQV (OBJ clock) (LIT (BIT "l "))) 
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(BITNOT (STABLE (OBJ clock))) ) )) 
((subordinaterange s3 THEN (s4) )) · 
((subordinaterange s3 ELSE nil )) 
((understable2 s3 clock)) 

((statement s4)) 
((statementtype s4 ASSIGNMENT)) 
((sourceexpression s4 (BVADD (OBJ count) (LIT (BV HOOl"))) )) 
((destinationobject s4 count)) 
((understable s4)) 
((understable2 s4 clock)) 

) ; end assert 
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CNTR V Fault List 

"Three-BIT Vector Counter"' 
( 1 STUCKTI IEN s 1) 
(2 STUCKELSE sl) 
(3 MICROOP (sl • "") BITEQV BITXOR) 
(4 ASSNCNTL s2) 
(5 STUCKTHEN s3) 
(6 STUCKELSE s3) 
(7 MICROOP (s3 • "") BIT AND BITOR) 
(8 MICROOP (s3 - L) BITEQV BITXOR) 
(9 MICROOP (s3 • R) BITNOT BITBUF) 
(10 ASSNCNTL s4) 
(11 MICROOP (s4 • "") BVADD BVSUB) 
(12 MICROOP (s4 - "") BVADD BVXOR) 
(13 STUCKDATA (sl - "")(BIT "O")) 
(14 STUCKDATA (sl - '")(BIT''!")) 
(15 STUCKDATA (sl • L) (BIT "O")) 
(16 STUCKDATA (sl • L) (BIT "l")) 
(17 STUCKDATA (sl • R) (BIT "O")) 
(18 STUCKDATA (sl - R) (BIT "l")) 
(19 STUCKDATA (s2 • "") (BV "000")) 
(20 STUCKDATA (s2 - "") (BV "111")) 
(21 STUCKDATA (s3 ·'")(BIT "O")) 
(22 STUCKDATA (s3 - "")(BIT "1")) 
(23 STUCKDATA (s3 • L) (BIT "O")) 
(24 STUCKDATA (s3 • L) (BIT "l")) 
(25 STUCKDATA (s3 - LL) (BIT "O")) 
(26 STUCKDATA (s3 - LL) (BIT "l")) 
(27 STUCKDATA (s3 - LR) (BIT "O")) 
(28 STUCKDATA (s3 ·LR) (BIT "l")) 
(29 STUCKDATA (s3 - R) (BIT "O")) 
(30 STUCKDATA (s3 · R) (BIT "1")) 
(31 STUCKDATA (s3 • RL) (BIT "O")) 
(32 STUCKDATA (s3 - RL) (BIT "1')) 
(33 STUCKDATA (s4 • "") (BV "000")) 
(34 STUCKDATA (s4 - '") (BV .. 111")) 
(35 STUCKDA TA (s4 - L) (BV "000')) 
(36 STUCKDATA (s4- L) (BV "111')) 
(37 STUCKDATA (s4 - R) (BV "000")) 
(38 STUCKDATA (s4 - R) (BV .. 111")) 

Circuit Models and Fault Lists 

Failed; can't DNE under STUCK 
Wrong; BVADD/BVSUB not fully implemented 
Failed; faulty micro-op; tries many 
Successful 
Excluded • continuous clocking 
Wrong; BVADD/BVSUB not fully implemented 
Excluded - clocks on high or edge 
Excluded - inverted clock 
Excluded - clocks on high unless edge 
Overflowed interpreter 
Successful 
Failed; faulty micro-op 
Failed; faulty micro-op 
Failed; faulty micro-op 
Failed; faulty micro-op 
Failed; faulty micro-op 
Not a fault 
Failed; faulty micro-op 
Not a fault 
Successful 
Wrong; BVADD/BVSUB not fully implemented 
Excluded - continuous clocking 
Wrong; BVADD/BVSUB not fully implemented 
Excluded - clocks on any edge 
Wrong; BVADD/BVSUB not fully implemented 
Excluded - clocks on any edge 
Excluded - inverted clock 
Not a fault 
Wrong; BVADD/BVSUB not fully implemented 
Excluded - clocks on high 
Excluded - clocks on high 
Wrong; BVADD/BVSUB not fully implemented 
Failed; faulty micro-op 
Failed; faulty micro-op 
Failed; faulty micro-op 
Successful 
Basic test invalid 
Basic test invalid 
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DFF Description 

; File dff.HDL - internal form for D flip-flop description 

; D Flip-flop VHDL Description 

' ; s2: 
; s3: 
; s4: 

' ; s5: 
; s6: 
; s7: 

' ; s8: 
; s9: 

ENTITY DFF( 
clrbar, 
set bar, 
data, 
clock: IN BIT; 
q, 
qbar: OUT BIT 
) IS 

END DFF; 

ARCHITECTURE Arch OF DFF IS 

PROCESS(clrbar,setbar,data,clock) 
BEGIN 

IF clrbar = 0 THEN 
q < = O; 
qbar < = I; 

ELSE 
IF setbar = 0 THEN 

q < = I; 
qbar < = O; 

ELSE 
IF (NOT clock'ST ABLE) AND (clock = 

q < = data; 
; s 10: qbar < = NOT data; 

END IF 
END IF 

END IF 
END PROCESS; 

; END Arch; 
(assert 

( ( fileprefix "dff")) 
((modelname "D Flip-Flop with Set and Clear")) 

I) THEN 

((datatype clrbar BIT)) ((statevar clrbar t)) ((inputpin clrbar)) 

((datatype setbar BIT)) ((statevar setbar t)) ((inputpin setbar)) 

((datatype clock BIT)) ((statevar clock t)) ((inputpin clock)) 

((datatype data BIT)) ((statevar data t)) ((inputpin data)) 

((datatype q BIT)) ((statevar qt)) ((outputpin q)) 

((datatype qbar BIT)) ((statevar qbar t)) ((outputpin qbar)) 

((statement s2)) 
((statcmenttype s2 IF)) 
((controlexpression s2 (BITEQV (OBJ clrbar) 
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(LIT (BIT "O")) 
) )) 

((subordinaterange s2 THEN (s3 s4) )) 
((subordinaterange s2 ELSE (s5) )) 
((understable2 s2 nil)) 

((statement s3)) 
((statementtype s3 ASSIGNMENT)) 

((sourceexpression s3 (LIT (BIT "O")) )) 
((destinationobject s3 q)) 

((understable2 s3 nil)) 

( (statement s4)) 
((statementtype s4 ASSIGNMENT)) 

((sourceexpression s4 (LIT (BIT 0 1°)) )) 
((destinationobject s4 qbar)) 

((understable2 s4 nil)) 

((statement s5)) 
((statementtype s5 IF)) 
((controlexpression s5 (BITEQV (OBJ setbar) 

(LIT (BIT "O")) 
) )) 

((subordinaterange s5 THEN (s6 s7) )) 
((subordinaterange s5 ELSE (s8) )) 

((undcrstable2 s5 nil)) 

((statement s6)) 
((statcmcnttype s6 ASSIGN:V1ENT)) 

((sourceexpression s6 (LIT (BIT "I")))) 
( ( destinationo bject s6 q)) 

((understable2 s6 nil)) 

((statement s7)) 
((statemcnttype s7 ASSIGNMENT)) 

((sourceexpression s7 (LIT (BIT "O")) )) 
((destinationobject s7 qbar)) 

((understable2 s7 nil)) 

((statement s8)) 
((statementtype s8 IF)) 
((controlexpression s8 (BIT AND (BITNOT (STABLE (OBJ clock))) 

(BITEQV (OBJ clock) 
(LIT (BIT "I")) ) 

) )) 
((subordinaterange s8 THEN (s9 slO))) 
((subordinaterange s8 ELSE () )) 
((understable2 s8 clock)) 

((statement s9)) 
((statementtype s9 ASSIGNMENT)) 
((sourceexpression s9 (OBJ data) )) 
(( destinationobject s9 q)) 
((undcrstable s9)) 
((undcrstable2 s9 clock)) 
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((statement slO)) 
((statementtype slO ASSIGNMENT)) 
((sourceexpression slO (BITNOT (OBJ data)))) 
((destinationobject slO qbar)) 
(( undcrstable s 10)) 
((understable2 slO clock)) 

) ; end assert 

Circuit Models and Fault Lists 116 



DFF Fault List 

HD Flip-Flop with Set and ClearH 
( 1 STUCKTHEN s2) 
(2 STUCKELSE s2) 
(3 MICROOP (s2 - "") BITEQV BITXOR) 
(4 ASSNCNTL s3) 
(5 ASSNCNTL s4) 
(6 STUCKTHEN s5) 
(7 STUCKELSE s5) 
(8 MICROOP (s5 - "") BITEQV BITXOR) 
(9 ASS~CNTL s6) 
(10 ASSNCNTL s7) 
( 11 STUCKTHEN s8) 
(12 STl.JCKELSE s8) 
(13 MICROOP (s8 - "") BITAND BITOR) 
(14 MICROOP (s8 - L) BITNOT BITBUF) 
(15 MICROOP (s8 - R) BITEQV BITXOR) 
(16 ASSNCNTL s9) 
(17 ASSNCNTL slO) 
(18 MICROOP (slO - "") BITNOT BITBUF) 
(19 STUCKDATA (s2 - H") (BIT "O")) 
(20 STl.JCKDATA (s2 - "")(BIT "lH)) 
(21 STl.JCKDATA (s2 - L) (BIT "O")) 
(22 STUCKDATA (s2 - L) (BIT HI")) 
(23 STliCKDATA (s2 - R) (BIT "O")) 
(24 STUCKDATA (s2 - R) (BIT "l")) 
(25 STUCKDATA (s3 - '"') (BIT "O")) 
(26 STUCKDATA (s3 - H") (BIT "l")) 
(27 STUCKDATA (s4 - H") (BIT "O")) 
(28 STUCK DAT A (s4 - "") (BIT T')) 
(29 STl.JCKDAT A (s5 - "") (BIT "O")) 
(30 STUCKDATA (s5 - "") (BIT "I")) 
(31 STUCKDATA (s5 - L) (BIT "O")) 
(32 STUCKDATA (s5 - L) (BIT "I")) 
(33 STUCK DAT A (s5 - R) (BIT "O")) 
(34 STUCKDATA (s5 - R) (BIT "I")) 
(35 STUCKDATA (s6 - "") (BIT 110")) 
(36 STUCKDATA (s6 - ")(BIT 11 1")) 
(37 STUCKDATA (s7 - H") (BIT "OH)) 
(38 STUCKDATA (s7 - "")(BIT HI")) 
(39 STlJCKDATA (s8 - "H) (BIT HO")) 
(40 STUCKDATA (s8 - ,,,,) (DIT 111")) 
(41 STUCKDATA (s8 - L) (BIT HO")) 
(42 STUCKDATA (s8 - L) (BIT"!")) 
(43 STUCKDATA (s8 - LL) (BIT 110")) 
(44 STUCKDATA (s8 - LL) (BIT 'T')) 
(45 STUCKDATA (s8 - R) (BIT 110")) 
(46 STUCKDATA (s8 - R) (BIT T')) 
(47 STUCKDATA (s8 - RL) (BIT "O")) 
(48 STUCKDATA (s8 - RL) (BIT "l")) 
(49 STUCKDATA (s8 - RR) (BIT "O")) 
(50 STUCKDATA (s8 - RR) (BIT "l")). 
(51 STUCKDATA (s9 - "")(BIT "O")) 
(52 STUCKDATA (s9 - "")(BIT 11 1")) 

Circuit i\fodels and Fault Lists 

Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Excluded - continuous clocking 
Successful 
Excluded - clocks on high or edge 
Excluded - clocks on high unless edge 
Excluded - inverted clock 
Successful, but 2-phase before trying others 
Successful, but 2-phase before trying others 
Successful 
Successful 
Successful 
Successful 
Successful 
Not a fault 
Successful 
Not a fault 
Successful 
Successful 
Not a fault 
Successful 
Successful 
Successful 
Successful 
Not a fault 
Successful 
Successful 
Not a fault 
Not a fault 
Successful 
Successful 
Excluded - continuous clocking 
Successful 
Excluded - clocks on high 
Excluded - clocks on high 
Successful 
Successful 
Excluded - clocks on any edge 
Successful 
Excluded - clocks on any edge 
Excluded - inverted clock 
Not a fault 
Successful 
Successful 
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(53 STUCKDATA (slO - '} (BIT HO}) 
(54 STUCKDATA (slO - "'}(BIT HI}) 
(55 STUCKDATA (slO - L) (BIT HO}) 
(56 STUCKDATA (slO - L) (BIT *I}) 

Circuit Models and Fault Lists 

Successful 
Successful 
Successful 
Successful 
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FNTST Description 

, 

ENTITY FnTst 
( 
in: IN BIT; 
out : OUT BIT) IS 

END FnTst; 

ARCHITECTURE Arch OF FnTst IS 

PROCESS(in,a,x,y) 
SIGNAL a,x,y : BIT; 

BEGIN 
; sl: a < = in; 
; s2: x < = a; 
; s3: y < = a; 
; s4: out < = x AND y' 

END BLOCK; 

; END Arch; 
(assert 

((fileprefix "fntst")) 
((modelname "Test model for reconvergent fanout")) 

((datatype in BIT)) ((statevar int)) ((inputpin in)) 

((datatype a BIT)) ((statevar a nil)) 

((datatype x BIT)) ((statevar x nil)) 

((datatype y BIT)) ((statevar y nil)) 

((datatype out BIT)) ((statevar out nil)) ((outputpin out)) 

( (statement s 1)) 
((statemcnttype sl ASSIGNMENT)) 
((sourceexpression sl (OBJ in) )) 
((destinationobject sl a)) 
((undcrstable2 sl nil)) 

((statement s2)) 
((statementtype s2 ASSIGNMENT)) 
((sourceexpression s2 (OBJ a))) 
(( destinationobject s2 x)) 
((understable2 s2 nil)) 

((statement s3)) 
((statementtype s3 ASSIGNMENT)) 
((sourceexpression s3 (OBJ a) )) 
((destinationobject s3 y)) 
((understable2 s3 nil)) 

((statement s4)) 
((statementtype s4 ASSIGNMENT)) 
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((sourceexpression s4 (BIT AND (OBJ x) (OBJ y)) )) 
((destinationobject s4 out)) 
((understable2 s4 nil)) 

) ; end assert 
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FNTST Fault List 

"Test model for reconvergent fanout" 
(1 ASSNCNTL sl) 
(2 ASSNCNTL s2) 
(3 ASSNCNTL s3) 
(4 ASSNCNTL s4) 
(5 MICROOP (s4 - '"') BIT AND BITOR) 
(6 STUCKDATA (sl - "J (BIT "OJ) 
(7 STUCKDATA (sl - HJ (BIT "I")) 
(8 STUCKDAT A (s2 - HJ (BIT "0°)) 
(9 STUCKDATA (s2 - HJ (BIT 0 1°)) 
(10 STUCKDATA (s3 - "0

) (BIT "O")) 
(11 STUCKDATA (s3 - "J (BIT "l")) 
(12 STUCKDATA (s4 - "J (BIT "O")) 
(13 STUCKDATA (s4 - "J (BIT "l")) 
(14 STUCKDATA (s4 - L) (BIT "O")) 
(15 STUCKDATA (s4 - L) (BIT "l'')) 
(16 STUCKDATA (s4 - R) (BIT "O")) 
(17 STUCKDATA (s4 - R) (BIT "1")) 

Circuit Models and Fault Lists 

Failed; reconvergent fanout 
Failed; redundant fault 
Failed; redundant fault 
Successful 
Failed; redundant fault 
Failed; reconvergent fanout 
Failed; reconvergent fanout 
Successful 
Failed; redundant fault 
Successful 
Failed; redundant fault 
Successful 
Successful 
Successful 
Failed; redundant fault 
Successful 
Failed; redundant fault 
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PR TY Descriptioll 

; File PRTY.HDL - sample parity generator 
ENTITY Parity( 

a: IN BIT_VECTOR(7 DOWNTO O); 
p: OUT BIT) IS 

END Parity; 

ARCHITECTURE Arch OF parity IS 

PROCESS(a) 
; BEGIN 
; sl: out < = ((a(O) xor a(l)) xor (a(2) xor a(3))) xor 

((a(4) xor a(5)) xor (a(6) xor a(7))); 
END PROCESS; 

; END Arch; 
(assert 

((fileprefix "PRTY")) 
((modelname "Parity generator")) 

((datatype in BV)) ((bvlength in 8)) ((statevar int)) 
((inputpin in)) 

((datatype out BIT)) ((statevar out nil)) ((outputpin out)) 

( (statement s l)) 
((statementtype sl ASSIGNMENT)) 
((destinationobject sl out)) 
((sourceexpression sl (BITXOR (BITXOR (BITXOR ((BVSUBV 0) (OBJ in)) 

((BVSUBV 1) (OBJ in))) 

)) 
( ( understable2 s l nil)) 

) ; end assert 

(BITXOR ((13VSUBV 2) (OBJ in)) 
((BVSUBV 3) (OBJ in)))) 

(BITXOR (BITXOR ((BVSUBV 4) (OBJ in)) 
((BVSUBV 5) (OBJ in))) 

(BITXOR ((BVSUBV 6) (OBJ in)) 
((BVSUBV 7) (OBJ in))))) 
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PRTY Fault List 

"Parity generator" 
(I ASSNCNTL sl) 
(21\IICROOP (sl - "") BITXOR BITEQV) 
(3 MICROOP (sl - L) BITXOR BITEQV) 
(4 MICROOP (sl - LL) BITXOR BITEQV) 
(5 MICROOP (sl - LR) BITXOR BITEQV) 
(6 MICROOP (sl - R) BITXOR BITEQV) 
(7 MICROOP (sl - RL) BITXOR BITEQV) 
(8 !vtlCROOP (sl - RR) BITXOR BITEQV) 
(9 STUCKDATA (sl - "")(BIT "O")) 
(IO STUCKDATA (sl - "")(BIT "I")) 
(11 STUCKDATA (sl - L) (BIT "O")) 
(12 STUCKDATA (sl - L) (BIT "I")) 
(13 STUCKDATA (sl - LL) (BIT "O")) 
(14 STUCKDATA (sl - LL) (BIT "I")) 
(15 STUCKDATA (sl - LLL) (BIT "O")) 
(16 STUCKDATA (sl - LLL) (BIT''!")) 
(17 STUCKDATA (sl - LLLL) (BV "00000000")) 
(18 STUCKDATA (sl - LLLL) (BV "11111111")) 
(19 STUCKDATA (sl - LLR) (BIT "O")) 
(20 STUCKDATA (sl - LLR) (BIT "I")) 
(21 STUCKDATA (sl - LLRL) (BV "00000000")) 
(22 STUCKDATA (sl - LLRL) (BV "11111111")) 
(23 STUCKDATA (sl - LR) (BIT "O")) 
(24 STUCKDATA (sl - LR) (BIT "I")) 
(25 STUCKDATA (sl - LRL) (BIT "O")) 
(26 STUCKDATA (sl - LRL) (BIT "I")) 
(27 STUCK DA TA (s I - LRLL) (BV "00000000")) 
(28 STUCKDATA (sl - LRLL) (BV "11111111")) 
(29 STUCKDATA (sl - LRR) (BIT "O")) 
(30 STUCKDATA (sl - LRR) (BIT''!")) 
(31 STUCKDATA (sl - LRRL) (BY "00000000")) 
(32 STUCKDATA (sl - LRRL) (BV "11111111")) 
(33 STUCKDATA (sl - R) (BIT "O")) 
(34 STUCKDATA (sl - R) (BIT "l")) 
(35 STUCKDATA (sl - RL) (BIT "O")) 
(36 STUCKDATA (sl - RL) (BIT "l")) 
(37 STUCKDATA (sl - RLL) (BIT "O")) 
(38 STUCKDATA (sl - RLL) (BIT "I")) 
(39 STUCKDATA (sl - RLLL) (BV "00000000")) 
(40 STUCKDATA (sl - RLLL) (BV "11111111")) 
(41 STUCKDATA (sl - RLR) (BIT "O")) 
(42 STUCKDATA (sl - RLR) (BIT"!")) 
(43 STUCKDATA (sl - RLRL) (BV "00000000")) 
(44 STUCKDATA (sl - RLRL) (BY "11111111")) 
(45 STUCKDATA (sl - RR) (BIT "O")) 
(46 STUCKDATA (sl - RR) (BIT "I")) 
(47 STUCKDATA (sl - RRL) (BIT "O")) 
(48 STUCKDATA (sl - RRL) (BIT "I")) 
(49 STUCKDATA (sl - RRLL) (BV "00000000")) 
(50 STUCKDATA (sl - RRLL) (BV "11111111")) 
(51 STUCKDATA (sl - RRR) (BIT "O")) 
(52 STUCKDATA (sl - RRR) (BIT "I")) 

Circuit Models and Fault Lists 

Successful 
Successful, but 2-phase 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
Successful 
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(53 STUCKDATA (sl - RRRL) (BV "00000000")) 
(54 STUCKDATA (sl - RRRL) (BV "11111111")) 

Circuit Models and Fault Lists 

Successful 
Successful 
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SHFT Description 

; File SHIFT.HDL - try a shift register 

ENTITY Shift( 
clock, 
clear, 
leftin, 
rightin, 
control, 
dO, 
dl, 
d2, 
d3 
: IN BIT; 

rightout, 
leftout 
: OUT BIT) IS 

END Shift; 

ARCHITECTURE Arch OF Shft IS 

PROCESS(clear,clock,q0,q3) 
SIGNAL 

qO, 
ql, 
q2, 
q3: BIT 

, BEGIN 
; sl: IF clear= 'O' THEN 
; s2: qO < = 'O'; 
; s3: ql < = 'O'; 
; s4: q2 < = 'O'; 
; s5: q3 < = 'O'; 
, ELSE 
; s6: IF NOT clock'STABLE AND clock= 'I' THEN 
; s7: CASE control IS 

' ; s8: 
; s9: 
; s!O: 
; s 11: 
' ; sl2: 
; sl3: 
; sl4: 
; s 15: 

; sl6: 
; sl 7: 
; s 18: 
; sl9: 

WHEN "00" = > -- hold 
null; 

WHEN "O 1 H = > -- shift left 
q3 < = q2; 
q2 < = ql; 
ql < = qO; 
qO < = leftin; 

WHEN "10" = > -- shift right 
q3 < = rightin; 
q2 < = q3; 
ql < = q2; 
qO < = ql; 

WHEN Hl 1" = > -- parallel load 
q3 < = d3; 
q2 < = d2; 
ql < = dl; 
qO < = dO; 

END CASE; 
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END IF; 
END IF; 

; s20: leftout < = q3; 
; s21: rightout < = qO; 

END PROCESS; 
; END Arch; 
(assert 

((fileprefix "shft")) 

-- explicit output 
-- explicit output 

((modclname "Bidirectional Parallel/Serial In Serial Out Shift Register")) 

((datatype clock BIT)) ((statevar clock t)) ((inputpin clock)) 

((datatype clear BIT)) ((statevar clear t)) ((inputpin clear)) 

( (data type lcftin BIT)) ( ( statevar leftin t)) 
((inputpin leftin)) 

((datatype rightin BIT)) ((statevar rightin t)) ((inputpin rightin)) 

((datatype control BV)) ((bvlength control 2)) ((statevar control t)) 
( (inputpin control)) 

((datatype dO BIT)) ((statevar dO t)) ((inputpin dO)) 

((datatype dl BIT)) ((statevar dl t)) ((inputpin dl)) 

((datatype d2 BIT)) ((statevar d2 t)) ((inputpin d2)) 

((datatype d3 BIT)) ((statevar d3 t)) ((inputpin d3)) 

((datatype qO BIT)) ((statevar qO t)) 

((datatype ql BIT)) ((statevar ql t)) 

((datatype q2 BIT)) ((statevar q2 t)) 

((datatype q3 BIT)) ((statevar q3 t)) 

((datatype leftout BIT)) ((statevar lcftout nil)) ((outputpin leftout)) 

((datatype rightout BIT)) ((statevar rightout nil)) ((outputpin rightout)) 

((statement sl)) 
((statementtype sl IF)) 
((controlexpression sl (BITEQV (OBJ clear) (LIT (BIT "O"))) )) 
((subordinaterange sl THEN (s2 s3 s4 s5) )) 
((subordinaterange sl ELSE (s6))) 

((understable2 sl nil)) 

((statement s2)) 
((statementtype s2 ASSIGN:\IENT)) 

((destinationobject s2 qO)) 
((sourceexpression s2 (LIT (BIT "O")) )) 

((understable2 s2 nil)) 
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((statement s3)) 
((statementtype s3 ASSIGNMENT)) 

((destinationobject s3 ql)) 
((sourceexpression s3 (LIT (BIT nO")) )) 

((understable2 s3 nil)) 

((statement s4)) 
((statementtype s4 ASSIGNMENT)) 

((destinationobject s4 q2)) 
((sourceexpression s4 (LIT (BIT non)) )) 

((understable2 s4 nil)) 

((statement s5)) 
((statementtype s5 ASSIGNMENT)) 

((destinationobject s5 q3)) 
((sourceexpression s5 (LIT (BIT "O")) )) 

((understable2 s5 nil)) 

((statement s6)) 
((statementtype s6 IF)) 
((controlexpression s6 (BITAND (BITNOT (STABLE (OBJ clock))) 

(BITEQV (OBJ clock) (LIT (BIT "1")))))) 
((subordinaterange s6 THEN (s7) )) 
((subordinaterange s6 ELSE nil )) 

((understable2 s6 clock)) 

((statement s7)) 
((understable s7)) 

((statementtype s7 CASE)) 
((controlexpression s7 (OBJ control) )) 
((subordinaterange s7 ((BV HOO")) nil )) 
((subordinaterange s7 ((BV "01")) (s8 s9 slO sll) )) 
((subordinaterange s7 ((BV "10")) (sl2 sl3 s14 s15) )) 
((subordinaterange s7 ((BV "11")) (s16 sl7 s18 sl9) )) 

((understable2 s7 clock)) 

((statement s8)) 
((understable s8)) 

((statcmenttype s8 ASSIGNMENT)) 
((destinationobject s8 q3)) 
((sourceexprcssion s8 (OBJ q2) )) 
((understable2 s8 clock)) 

((statement s9)) 
(( understable s9)) 

((statementtype s9 ASSIGNMENT)) 
((destinationobject s9 q2)) 
((sourceexprcssion s9 (OBJ ql))) 
((understablc2 s9 clock)) 

((statement slO)) 
((understable slO)) 

((statementtype slO ASSIGNMENT)) 
( ( destinationo bject s 10 q 1)) 
((sourceexpression slO (OBJ qO) )) 
((understablc2 slO clock)) 
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((statement sll)) 
((understable sl I)) 

((statcmenttype sl I ASSIGNMENT)) 
((destinationobject sll qO)) 
((sourceexpression sll (OBJ leftin) )) 
((understable2 sl I clock)) 

((statement sl2)) 
((understable sl2)) 

((statementtype sl2 ASSIGNMENT)) 
((destinationobjcct sl2 q3)) 
((sourceexpression sl2 (OBJ rightin) )) 
( ( understable2 s 12 clock)) 

((statement sl3)) 
((understable s13)) 

((statementtype sl3 ASSIGNMENT)) 
((destinationobject sl3 q2)) 
((sourceexpression sl3 (OBJ q3) )) 
((undcrstable2 sl3 clock)) 

((statement sl4)) 
((understable s14)) 

((statementtype sl4 ASSIGNMENT)) 
( ( destinationo bject s 14 q 1)) 
((sourceexpression sl4 (OBJ q2) )) 
((understable2 s14 clock)) 

((statement s 15)) 
((understable sl5)) 

((statementtype sl5 ASSIGNMENT)) 
((destinationobject sl5 qO)) 
((sourceexpression sl5 (OBJ ql) )) 
( ( undcrstablc2 s 15 clock)) 

((statement sl6)) 
(( understable s 16)) 

((statementtype sl6 ASSIGNMENT)) 
((destinationobject sl6 q3)) 
((sourceexpression s16 (OBJ d3) )) 
((understable2 sl6 clock)) 

((statement sl 7)) 
( ( understab le s 17)) 

((statementtype sl 7 ASSIGNMENT)) 
((destinationobject s17 q2)) 
((sourceexpression sl 7 (OBJ d2) )) 
((understable2 s 17 clock)) 

((statement sl8)) 
(( understable s 18)) 

((statcmenttype s18 ASSIGNMENT)) 
( ( destinationo bject s 18 q 1)) 
((sourceexpression sl8 (OBJ dl))) 
((understable2 s18 clock)) 
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((statement sl9)) 
((understable s 19)) 

((statcmenttype sl9 ASSIGNMENT)) 
((destinationobject sl9 qO)) 
((sourceexpression sl9 (OBJ dO) )) 
( ( understable2 s 19 clock)) 

( (statement s20)) 
((statementtype s20 ASSIGNMENT)) 

((destinationobject s20 leftout)) 
((sourceexpression s20 (OBJ q3) )) 
((understable2 s20 nil)) 

( (statement s2 l)) 
((statcmenttype s21 ASSIGNMENT)) 

((destinationobject s21 rightout)) 
((sourceexpression s21 (OBJ qO) )) 

((understable2 s21 nil)) 

) ;end assert 
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SHFT Fault List 

HBidirectional Parallel/Serial In Serial Out Shift Registern 
(1 STUCKTHEN sl) Failed; can't DNE under STUCK 
(2 STUCKELSE sl) Successful, but 2-phase 
(3 MICROOP (sI - "H) BITEQV BITXOR) Failed; faulty micro-op 
(4 ASSNCNTL s2) Successful 
(5 ASSNCNTL s3) Successful 
(6 ASSNCNTL s4) Successful 
(7 ASSNCNTL s5) Successful 
(8 STUCKTHEN s6) Excluded - continuous clocking 
(9 STUCKELSE s6) Successful 
(10 .MICROOP (s6 - 'IH) BITAND BITOR) Excluded - clocks on high or edeg 
(I I MICROOP (s6 - L) BITNOT BITBUF) Excluded - clocks on high unless edge 
(12 l\HCROOP (s6 - R) BITEQV BITXOR) Excluded - inverted clock 
(13 DEADCLAUSE s7 ((BV "II"))) Successful 
(14 DEADCLAUSE s7 ((BV "10"))) Successful 
(15 DEADCLAUSE s7 ((BV "01"))) Successful 
(16 DEADCLAUSE s7 ((BV "00"))) Not a fault 
(17 ASSNCNTL s8) Successful 
(18 ASSNCNTL s9) Successful 
(19 ASSNCNTL slO) Successful 
(20 ASSNCNTL sI l) Successful 
(21 ASSNCNTL s12) Successful 
(22 ASSNCNTL s 13) Successful 
(23 ASSNCNTL sl4) Successful 
(24 ASSNCNTL s15) Successful 
(25 ASSNCNTL sI6) Successful, but 2-phase before trying others 
(26 ASSNCNTL sl7) Successful, but 2-phase before trying others 
(27 ASSNCNTL sl8) Successful, but 2-phase before trying others 
(28 ASSNCNTL sl9) Successful, but 2-phase before trying others 
(29 ASSNCNTL s20) Overflowed interpreter 
(30 ASSNCNTL s21) Overflowed interpreter 
(31 STUCKDATA (sl - "") (BIT "O")) Failed; faulty micro-op 
(32 STlJCKDATA (sI - "'")(BIT "n) Failed; faulty micro-op 
(33 STUCKDATA (sI - L) (BIT "O")) Failed; faulty micro-op 
(34 STCCKDATA (sl - L) (BIT "l'')) Failed; faulty micro-op 
(35 STUCKDATA (sl - R) (BIT "O")) Failed; faulty micro-op 
(36 STUCKDATA (sI - R) (BIT "l")) Failed; faulty micro-op 
(37 STUCKDATA (s2 - "")(BIT HOH)) Not a fault 
(38 STUCKDATA (s2 - "") (BIT "l")) Successful 
(39 STUCK DAT A (s3 - "") (BIT "O")) Not a fault 
(40 STUCKDATA (s3 - "")(BIT T')) Successful 
( 41 STUCK DAT A (s4 - "") (BIT "O")) Not a fault 
(42 STUCKDATA (s4 - ... ,,) (BIT "l")) Successful 
(43 STUCKDATA (s5 - "")(BIT "O")) Not a fault 
( 44 STUCK DAT A (s5 - "") (BIT 0 1 ")) Successful 
(45 STUCKDATA (s6 - "'")(BIT HO")) Successful 
(46 STUCKDATA (s6 - "")(BIT HI")) Excluded - continuous clocking 
(47 STUCKDATA (s6 - L) (BIT "O")) Successful 
(48 STUCKDATA (s6 - L) (BIT "1")) Excluded -
(49 STUCKDATA (s6 - LL) (BIT "O")) Excluded -
(50 STUCKDATA (s6 - LL) (BIT "1")) Successful 
(51 STUCKDATA (s6 - R) (BIT HO'')) Successful 
(52 STUCKDATA (s6 - R) (BIT HlH)) Exclued - clocks on any edge 
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(53 STUCKDATA (s6 • RL) (BIT "O")) 
(54 STUCKDATA (s6 • RL) (BIT "l")) 
(55 STUCKDATA (s6 ·RR) (BIT "O")) 
(56 STUCKDATA (s6 ·RR) (BIT "l")) 
(57 STUCKDATA (s7 ·"")(BY "00")) 
(58 STUCKDATA (s7 ·"")(BY "11")) 
(59 STUCKDATA (s8 - "'")(BIT HO")) 
(60 STUCKDATA (s8 ·"'")(BIT "1")) 
(61 STUCKDATA (s9 ·"'")(BIT "O")) 
(62 STUCKDATA (s9 - "")(BIT Hl")) 
(63 STUCKDATA (slO - H") (BIT "O")) 
(64 STUCKDATA (slO ·"")(BIT "l")) 
(65 STUCKDATA (sl 1 ·"'")(BIT "O")) 
(66 STUCKDATA (sll ·"")(BIT "l")) 
(67 STUCKDATA (sl2 ·"")(BIT "O")) 
(68 STUCKDATA (sl2. H") (BIT"!")) 
(69 STUCKDATA (sl3 ·"")(BIT "O")) 
(70 STUCKDATA (sl3 - "")(BIT 0 1")) 
(71 STUCKDATA (sl4 ·,,,,)(BIT "O")) 
(72 STUCKDATA (sl4 ·"")(BIT "l")) 
(73 STUCKDATA (sl5 ·"")(BIT "O")) 
(74 STUCKDATA (sl5 ·"")(BIT "l")) 
(75 STUCKDATA (sl6 ·"")(BIT "O")) 
(76 STUCKDATA (sl6 - "")(BIT Hl")) 
(77 STUCKDATA (sl7 ·"")(BIT "O")) . 
(78 STUCKDATA (sl7 ·"")(BIT "lH)) 
(79 STUCKDATA (sl8 ·"")(BIT "O")) 
(80 STUCKDATA (sl8 ·'"')(BIT"!")) 
(81 STUCKDATA (sl9 ·"'')(BIT "O")) 
(82 STUCKDATA (sl9. nn) (BIT "l'')) 
(83 STUCKDATA (s20 - '"') (BIT non)) 
(84 STUCKDATA (s20 - H} (BIT "l")) 
(85 STUCKDATA (s21 • "") (BIT "O")) 
(86 STUCKDATA (s21 ·"")(BIT "l")) 
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SHFTV Description 

; File SHIFTV.HDL - try a shift register 

ENTITY ShiftV 
(clock, 
clear, 
leftin, 
rightin, 
control 
: IN BIT; 

d: IN BIT_VECTOR(J DOWNTO O); 
rightout, 
leftout 
: OUT BIT) IS 

END ShiftV; 

ARCHITECTURE Arch OF Shiftv IS 

PROCESS( clear ,clock,q) 
SIGNAL q:BIT_VECTOR(J DOWNTO O); 

, BEGIN 
; sl: IF clear= 'O' THEN 
; s2: q < = "0000"; 

' ; s6: 
; s7: 

' ; s8: 

' ; sl2: 

' ; sl6: 

ELSE 
IF NOT clock'STABLE AND clock='l' THEN 

CASE control IS 
WHEN "00" = > -- no op. 

null; 
WHEN "O 1" = > -- shift left 

q < = q(2 downto 0) & (leftin); 
; what is VHDL for BIT-BV 

WHEN "IO" = > -- shift right 
q < = (rightin) & q(J downto l); 

; what is VHDL for BIT-BV 
WHEN "11" = > -- parallel load 

q < = d; 
END CASE; 

END IF; 
, END IF; 
; s20: leftout < = q(J); 
; s21: rightout < = q(O); 

END PROCESS; 

; END Arch; 
(assert 

((fileprefix "shftv")) 
((modclname "Bidirectional Parallel/Serial In Serial Out Shift Register")) 

((datatype clock BIT)) ((statevar clock t)) ((inputpin clock)) 

((datatype clear BIT)) ((statevar clear t)) 
((inputpin clear)) 

Circuit Models and Fault Lists 132 



((datatype leftin BIT)) ((statevar leftin t)) ((inputpin leftin)) 

((datatype rightin BIT)) ((statevar rightin t)) ((inputpin rightin)) 

((datatype control BY)) ((bvlength control 2)) ((statevar control t)) 
( (inputpin control)) 

((datatype d BY)) ((bvlength d 4)) ((statevar d t)) 
((inputpin d)) 

((datatype q BY)) ((bvlength q 4)) ((statevar qt)) 

( (data type lcftout BIT)) ( ( statevar leftout nil)) ( ( outputpin leftout)) 

((datatype rightout BIT)) ((statevar rightout nil)) ((outputpin rightout)) 

( (statement s l)) 
((statementtype sl IF)) 
((controlexpression sl (BITEQY (OBJ clear) (LIT (BIT "O"))) )) 
((subordinaterange sl THEN (s2) )) 
((subordinaterange sl ELSE (s6) )) 
((understable2 sl nil)) 

((statement s2)) 
((statementtype s2 ASSIG~MENT)) 

((destinationobject s2 q)) 
((sourceexpression s2 (LIT (BY "0000")) )) 

((understable2 s2 nil)) 

((statement s6)) 
((statementtype s6 IF)) 
((controlexpression s6 (BIT AND (BITNOT (STABLE (OBJ clock))) 

(BITEQY (OBJ clock) (LIT (BIT"!")))))) 
((subordinaterange s6 THEN (s7) )) 
((subordinaterange s6 ELSE nil )) 
((understable2 s6 clock)) 

((statement s7)) 
((understable s7)) 
((statementtype s7 CASE)) 
((controlexprcssion s7 (OBJ control))) 
((subordinaterange s7 ((BY "00")) nil )) 
((subordinaterange s7 ((BY "Ol")) (s8) )) 
((subordinaterange s7 ((BY "10")) (sl2) )) 
((subordinaterangc s7 ((BY "11")) (sl6) )) 
((understable2 s7 clock)) 

((statement s8)) 
((undcrstable s8)) 
((statementtype s8 ASSIGNMENT)) 

((destinationobject s8 q)) 
((sourceexpression s8 (BYCAT ((BYSUBY 2 0) (OBJ q)) (BITBY (OBJ leftin))) )) 

((undcrstable2 s8 clock)) 
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((statement sl2)) 
(( understable s 12)) 
((statementtype s12 ASSIGNMENT)) 

((destinationobject sl2 q)) 
((sourceexpression s12 (BVCAT (BITBV (OBJ rightin)) 

((BVSUBV 3 l) (OBJ q) )) )) 
(( understable2 s 12 clock)) 

((statement s 16)) 
((understable sl6)) 
((statementtype s16 ASSIGNMENT)) 

( ( destinationo bject s 16 q)) 
((sourccexpression sl6 (OBJ d))) 

( ( understable2 s 16 clock)) 

( (statement s20)) 
((statcmenttype s20 ASSIGNMENT)) 

((destinationobject s20 leftout)) 
((sourceexpression s20 ((BVSUBV 3) (OBJ q)) )) 

((understable2 s20 nil)) 

( (statement s21)) 
((statementtype s21 ASSIGNMENT)) 

( ( destinationobject s21 rightout)) 
((sourceexpression s21 ((BVSUBV 0) (OBJ q)))) 

((understable2 s21 nil)) 

) ;end assert 
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SHFTV Fault List 

"Bidirectional Parallel/Serial In Serial Out Shift Recister" 
(1 STUCKTHEN sl) F;ied; can't DNE under STUCK 
(2 STCCKELSE sl) Successful, but 2-phase 
(3 MICROOP (sl - "") BITEQV BITXOR) Failed; faulty micro-op 
(4 ASSNCNTL s2) Successful 
(5 STUCKTHEN s6) Excluded - continuous clocking 
(6 STUCKELSE s6) Successful 
(7 MICROOP (s6 - "") BITAND BITOR) Excluded - clocks on high or edge 
(8 MICROOP (s6 - L) BITNOT BITI3CF) Excluded - clocks on high unless edge 
(9 MICROOP (s6 - R) BITEQV BITXC::>R) Excluded - inverted clock 
(10 DEADCLAUSE s7 ((BV "!!"))) Successful 
(II DEADCLAUSE s7 ((BV "10"))) Successful 
(12 DEADCLAUSE s7 ((BV "01"))) Successful 
(13 DEADCLAUSE s7 ((BV "00"))) Not a fault 
(14 ASSNCNTL s8) Successful 
(15 ASSNCNTL sl2) Successful 
(16 ASSNCNTL sl6) Successful, but 2-phase 
( 17 ASSNCNTL s20) Overflowed; bad choices and much backtracking 
(18 ASSNCNTL s21) Overflowed; bad choices and much backtracking 
(19 STUCKDATA (sl - "")(BIT "O")) Failed; faulty micro-op 
(20 STUCKDATA (sl - "")(BIT 'T')) Failed; faulty micro-op 
(21 STUCK DAT A (s 1 - L) (BIT "O")) Failed; faulty micro-op 
(22 STUCK DA TA (s l - L) (BIT "!'')) Failed; faulty micro-op 
(23 STUCKDATA (sl - R) (BIT "O")) Not a fault 
(24 STUCKDATA (sl - R) (BIT "l")) Failed; faulty micro-op 
(25 STUCKDATA (s2 - "") (BV "0000")) Not a fault 
(26 STUCKDATA (s2- "") (BV "1111")) Successful 
(27 STUCKDATA (s6 - "") (BIT "O")) Successful 
(28 STUCKDATA (s6 - "") (BIT "l ")) Excluded - continuous clocking 
(29 STUCKDATA (s6 - L) (BIT "O")) Successful 
(30 STUCKDATA (s6 - L) (BIT "l")) Excluded - clocks on high 
(31 STUCK DAT A (s6 - LL) (BIT "O")) Excluded - clocks on high 
(32 STUCKDATA (s6 - LL) (BIT "!")) Successful 
(33 STUCKDAT A (s6 - R) (BIT "O")) Successful 
(34 STUCKDATA (s6 - R) (BIT "l")) Excluded - clocks on any edge 
(35 STUCKDATA (s6 - RL) (BIT "O")) Successful 
(36 STUCKDATA (s6 - RL) (BIT "l")) Excluded - clocks on any edge 
(37 STUCKDATA (s6 - RR) (BIT "O")) Excluded - inverted clock 
(38 STUCKDATA (s6 - RR) (BIT "l")) Not a fault 
(39 STUCKDATA (s7 - "") (BV "00")) Failed; faulty micro-op 
(40 STUCKDATA (s7 - "") (BV "11")) Failed; faulty micro-op 
(41 STUCKDATA (s8 - "") (BV "0000")) Successful 
(42 STUCKDATA (s8 - "") (BV "1111")) Successful 
( 43 STUCK DATA (s8 - L) (BV "000")) Successful 
(44 STUCKDATA (s8 - L) (BV "111")) Successful 
(45 STUCKDATA (s8 - LL) (BV "0000")) Successful 
(46 STUCKDATA (s8 - LL) (BV "1111")) Successful 
( 47 STUCK DATA (s8 - R) (BV "O")) Successful 
(48 STUCKDATA (s8 - R) (BV "1")) Successful 
( 49 STUCK DATA (s8 - RL) (BIT "O")) Successful 
(50 STUCKDATA (s8 - RL) (BIT "n) Successful 
(51 STUCKDATA (sl2 - "") (BV "0000")) Successful 
(52 STUCKDATA (sl2 - "") (BV "1111")) Successful 
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(53 STUCKDATA (s12 - L) (BV "O")) 
(54 STUCKDATA (s12 - L) (BV "l")) 
(55 STUCKDATA (sl2 - LL) (BIT "O")) 
(56 STUCKDATA (s12 - LL) (BIT 11 1")) 
(57 STUCK DA TA (s12 - R) (BV "000")) 
(58 STUCKDATA (sl2 - R) (BV "111")) 
(59 STUCKDATA (sl2 - RL) (BV "000011

)) 

(60 STUCKDATA (sl2 - RL) (BV 11 1111")) 
(61 STUCKDATA (s16- "") (BV "0000")) 
(62 STUCKDATA (s16 - "'') (BV "1111")) 
(63 STUCKDATA (s20 - "")(BIT "O")) 
(64 STUCKDATA (s20 - "'')(BIT "I'')) 
(65 STUCKDATA (s20 - L) (BV "0000')) 
(66 STUCKDATA (s20 - L) (BV "1111")) 
(67 STUCKDATA (s21 - "")(BIT "O")) 
(68 STUCKDATA (s21 - '"')(BIT "1")) 
(69 STUCKDATA (s21 - L) (BV "0000")) 
(70 STUCKDATA (s21 - L) (BV 11 1111")) 
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UAR TO Description 

; File UARTO.HDL ·Transmit Half of a Simple UART 

ENTITY Uart( 
reset, 
wrstrb, •• write strobe 
clock 
: IN BIT; 

databus: IN BIT_VECTOR(l DOWNTO O); 
dataout : 0 UT BIT 
txbusy: OUT BIT ··transmit busy/enable flag 
) IS 

END Uart; 

ARCHITECTURE Arch OF Uart IS 

PROCESS( ... ) 
SIGNAL 

txcnt: BIT_VECTOR(2 DOWNTO O); 
txreg: BIT_ VECTOR(3 DOWNTO O); 

•• transmit bit couner 

; BEGIN 
; sOI: IF reset='O' THEN 
, ·• reset transmit side to wait for byte 
; s02: txbusy < = 'O'; •• clear transmit busy flag 

' ; s03: 
; s04: 
; s05: 
; s06: 

' ; s07: 
; s08: 
; s09: 
; slO: 
; s 11: 
; sl2: 

ELSE 
IF wrstrb='l' AND NOT wrstrb'STABLE THEN ··write strobe 

txcnt < = nll"; •• set count for: start + data + stop 
txreg < = "I" & databus & "O";·· (R to L) start, data, stop 
txbusy < = 'I'; ·· transmitting 

END IF; 

IF (clock= 'I' AND .NOT clock'STABLE) AND txbusy= 'I' THEN 
dataout < = txreg(O); •• output low bit 
txreg < = "1" & txreg(3 downto l); ··shift bits over 
txcnt < = BVSUB(txcnt,"01"); ··count bits out 
IF txcnt = "00" THEN •• note delta delay! 

txbusy < = 'O'; •• done transmitting 
END IF; 

END IF; 
END IF 

END PROCESS; 

; END ARch; 
(assert 

((fileprefix "UARTO")) 
((modelname "Simple UART: Transmit Half")) 

((datatype reset BIT)) ((statevar reset t)) ((inputpin reset)) 

((datatype wrstrb BIT)) ((statevar wrstrb t)) ((inputpin wrstrb)) 

((datatype clock BIT)) ((statcvar clock t)) ((inputpin clock)) 

Circuit Models and Fault Lists 137 



((datatype databus BV)) ((bvlength databus 2)) ((statevar databus t)) 
((inputpin databus)) 

((datatype dataout BIT)) ((statevar dataout t)) ((outputpin dataout)) 

((datatype txbusy BIT)) ((statevar txbusy t)) ((outputpin txbusy)) 

((datatype txcnt DV)) ((bvlength txcnt 2)) ((statevar txcnt t)) 

((datatype txreg BV)) ((bvlength txreg 4)) ((statevar txreg t)) 

( (statement s 1)) 
( ( statementtype s I IF)) 
((controlexpression sl (BITEQV (OBJ reset) (LIT (BIT "O"))))) 
((subordinaterange sl THEN (s2) )) 
((subordinaterange sl ELSE (s3 s7))) 
((understable2 sl nil)) 

( (statement s2)) 
((statementtype s2 ASSIGNMENT)) 
((destinationobject s2 txbusy)) 
((sourcecxpression s2 (LIT (BIT "O")) )) 
((understable2 s2 nil)) 

((statement s3)) 
((statementtype s3 IF)) 
((controlexpression s3 (BITAND (BITEQV (OBJ wrstrb) 

(LIT (BIT"!"))) 
(BITNOT (STABLE (OBJ wrstrb)))) )) 

((subordinaterange s3 THEN (s4 s5 s6) )) 
((subordinaterange s3 ELSE () )) 
((understable2 s3 wrstrb)) 

((statement s4)) 
((statementtype s4 ASSIGNMENT)) 
((destinationobject s4 txcnt)) 
((sourceexpression s4 (LIT (BV "11")) )) 
((understable s4)) 
((undcrstable2 s4 wrstrb)) 

((statement s5)) 
((statementtype s5 ASSIGNMENT)) 
((destinationobject s5 txreg)) 
((sourceexpression s5 (BVCA T (LIT (BV "l ")) 

(BVCAT (OBJ 1.htabus) 
(LIT (BV "O")))) )) 

((understable s5)) 
((understable2 s5 wrstrb)) 

((statement s6)) 
((statcmenttype s6 ASSIGNMENT)) 
((destinationobject s6 txbusy)) 
((sourceexpression s6 (LIT (BIT"!")))) 
((understable s6)) 
((understable2 s6 wrstrb)) 
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((statement s7)) 
((statementtype s7 IF)) 
((controlexpression s7 (BITAND 

(BIT AND (BITEQV (OBJ clock) (LIT (BIT 'T'))) 
(BITNOT (STABLE (OBJ clock)))) 

(BITEQV (OBJ txbusy) (LIT (BIT "l")))) )) 
((subordinaterange s7 THEN (s8 s9 slO sll) )) 
((subordinaterange s7 ELSE () )) 
((understable2 s7 clock)) 

((statement s8)) 
((statcmenttype s8 ASSIG?"MENT)) 
((destinationobject s8 dataout)) 
((sourcccxpression s8 ((BVSUBV 0) (OBJ txreg)))) 
((undcrstable s8)) 
((undcrstable2 s8 clock)) 

((statement s9)) 
((statementtype s9 ASSIGNMENT)) 
( ( destinationo bject s9 txreg)) 
((sourccexprcssion s9 (BVCAT (LIT (BV "l")) · 

((BVSUBV 3 1) (OBJ txreg))))) 
((understable s9)) 
((understable2 s9 clock)) 

( (statement s 10)) 
((statemcnttypc slO ASSIGNMENT)) 
( ( dcstinationobject s 10 txcnt)) 
((sourceexpression slO (BVSUB (OBJ txcnt) (LIT (BV "01"))))) 
((understable slO)) 
((understable2 s!O clock)) 

((statement sl 1)) 
( ( statcmenttype s 11 IF)) 
( ( understable s 11)) 
((controlexpression sl 1 (BVEQ (OBJ txcnt) (LIT (BV "00"))) )) 
((subordinaterange sl 1 THEN (sl2) )) 
((subordinatcrange sl 1 ELSE())) 
((undcrstable2 sl 1 clock)) 

((statement s12)) 
((statementtype sl2 ASSIGNMENT)) 
( ( destinationo bject s 12 txbusy)) 
((sourcccxprcssion sl2 (LIT (BIT "O")))) 
((undcrstable sl2)) 
((understable2 sl2 clock)) 

) ; end assert 
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UARTO Fault List 

HSirnple UART: Transmit Half" 
(1 STUCKTHEN sl) 
(2 STUCKELSE sl) 
(3 MICROOP (sl - HH) BITEQV BITXOR) 
(4 ASSNCNTL s2) 
(5 STUCKTHEN s3) 
(6 STUCKELSE s3) 
(7 MICROOP (s3 - '"') BITAND BITOR) 
(8 MICROOP (s3 - L) BITEQV BITXOR) 
(9 MICROOP (s3 - R) BITNOT BITBUF) 
( 10 ASSNCNTL s4) 
(11 ASSNCNTL s5) 
( 12 ASSNCNTL s6) 
(13 STUCKTHEN s7) 
(14 STUCKELSE s7) 
(15 MICROOP (s7 - m') BITAND BITOR) 
(16 MICROOP (s7 - L) BIT AND BITOR) 
(17 MICROOP (s7 - LL) BITEQV BITXOR) 
(18 MICROOP (s7 - LR) BITNOT BITBUF) 
(19 MICROOP (s7 - R) BITEQV BITXOR) 
(20 ASSNCNTL s8) 
(21 ASSNCNTL s9) 
(22 ASSNCNTL slO) 
(23 MICROOP (slO - "'') BVSUB BVADD) 
(24 STUCKTHEN sll) 
(25 STUCKELSE sll) 
(26 l\HCROOP (sl 1 - "") BVEQ DVNEQ) 
(27 ASSNCNTL s12) 

Circuit Models and Fault Lists 

Failed; can't DNE under STUCK 
Successful, but 2-phase 
Failed; faulty micro-op 
Successful 
Excluded - continuous clocking 
Successful 
Excluded - clocks on high or edge 
Excluded - clocks on high unless edge 
Excluded - inverted clock 
Failed; can't preload 
Failed; can't preload 
Overflow; can't preload 
Excluded - continous clocking 
Failed; load under opposite from STUCK 
Excluded - clocks on high or edge 
Excluded - clocks on high or edge 
Excluded - inverted clock 
Excluded - clocks on high unless edge 
Failed; faulty micro-op 
Overflow; multiple loads 
Overflow (crashed) 
Overflow; bad inequality choices 
Overflow; multiple loads; bad choices 
Overflow; multiple loads;· needs better C/0 
Overflow; multiple loads 
Successful 
Overflow; multiple loads 
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