
U.S. State Tourism

Final Report

Abhinav Verelly, Ashutosh Bhattarai, Shane Grishaw, David Gruhn

CS 4624: Multimedia, Hypertext, and Information Access

Virginia Tech
Blacksburg, VA 24061

May 9, 2021

Instructor: Dr. Edward A. Fox

Client: Dr. Florian Zach

Table of Contents

Table of Figures
Table of Tables
Abstract - Executive Summary 1
Introduction 2

Teams Roles 3
Requirements 3

Data Extraction 3
Visualizations 4

Design 4
Extractor 5
Meta Tags CSV 5
External / Internal links CSV 5
Images CSV 6
Colors / Background Images CSV 6
Raw Text CSV 6
Custom Data Parser 6
Multi-File Processing 7

Implementation 7
Coding Environment 7
Language + Tools 7
Loading All Data + Config File 7
Extracting External / Internal Links 8
Extracting Images + Trackers 9
Extracting Raw Text 9
Extracting Colors 10
CSV Output - makeCSV(filename, columns_name, tabelInfo) 10
Log File 11
Visualization - Stacked Bar Chart 11
Visualization - Extracting Color from CSV Files 11
Visualization - Filtering Out / Validating Colors 11
Visualization - Getting the Frequency of the Colors 12
Visualization - Creating the Stacked Bar Chart 12
Visualization - Outputting JSON File 13

Assessment of Implementation 13
Jupyter Notebook 13

Data Extraction Process 14
Time Complexity 15

User’s Manual 15
Developer's Manual 20

Jupyter Installation 20
Library Installation 20
Loading files, Extraction, and CSV output 22
Handling Visualization - Extracting Color CSV Files and Storing 26

Methodology 31
Goals of our Users 31
Subtasks of our goals 32
Implementation-based services 32
Workflows 35

Lessons Learned 36
Timeline / Schedule 36
Problems 37
Solutions 38
Future Work 38

Acknowledgements 40
References 41

Table of Figures

Figure 1: ER Diagram depicting the system created 5
Figure 2: Example of a Completed JSON File 17
Figure 3: Colorado’s Completed Stacked Bar Chart 17
Figure 4: California’s Completed Stacked Bar Chart 18
Figure 5: Virginia’s Completed Stacked Bar Chart 18
Figure 6: Example of California’s Legend for the Stacked Bar Chart 19
Figure 7: Installing the required libraries 21
Figure 8: Running the cells in Jupyter Notebook 21
Figure 9: Our headerAndTime() method 22
Figure 10: loadFile() and reading in all Parquet file 23
Figure 11: directoryToChange variable that users need to change 23
Figure 12: Outputs each CSV to unique folder 23
Figure 13: Output of each Parquet file into unique directories 24
Figure 14: example of contents in output folder 24
Figure 15: makeCSV method and its usage 25
Figure 16: Sample output of log.txt 26
Figure 17: Load all Output Directories 26
Figure 18: Grabbing data from color CSV Files 27
Figure 19: Checking the colors extracted and validating them 28
Figure 20: Validating a color into Hex-Color format 28
Figure 21: Gets the frequency of the colors in a year 29
Figure 22: Gets the percentage of colors out of the total colors in a year. 29
Figure 23: Outputs a JSON File of the frequency type nested dictionary 30
Figure 24: Outputs a stacked bar chart and legend corresponding to the graph. 30
Figure 25: Gets the state name from the config file 31
Figure 26: Workflow Image 36

https://docs.google.com/document/d/19zEBd7o5eZo-lV-qek79ngaLXGHt9_h2/edit#heading=h.3ygebqi
https://docs.google.com/document/d/19zEBd7o5eZo-lV-qek79ngaLXGHt9_h2/edit#heading=h.3cqmetx
https://docs.google.com/document/d/19zEBd7o5eZo-lV-qek79ngaLXGHt9_h2/edit#heading=h.1rvwp1q
https://docs.google.com/document/d/19zEBd7o5eZo-lV-qek79ngaLXGHt9_h2/edit#heading=h.4bvk7pj
https://docs.google.com/document/d/19zEBd7o5eZo-lV-qek79ngaLXGHt9_h2/edit#heading=h.2r0uhxc
https://docs.google.com/document/d/19zEBd7o5eZo-lV-qek79ngaLXGHt9_h2/edit#heading=h.1664s55

Table of Tables

Table 1: Group members names and respective roles 4
Table 2: Total Time For Extraction 23
Table 3: Implementation Service Table 32
Table 4: Project Schedule 35

https://docs.google.com/document/d/19zEBd7o5eZo-lV-qek79ngaLXGHt9_h2/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/19zEBd7o5eZo-lV-qek79ngaLXGHt9_h2/edit#heading=h.sqyw64
https://docs.google.com/document/d/19zEBd7o5eZo-lV-qek79ngaLXGHt9_h2/edit#heading=h.4h042r0
https://docs.google.com/document/d/19zEBd7o5eZo-lV-qek79ngaLXGHt9_h2/edit#heading=h.pkwqa1

I. Abstract - Executive Summary

Each state in the United States has its own state-run website, which is used as a means
to attract new tourists to that location. Each of these sites is typically used to highlight
any big attractions in that state. Any travel tips, facts regarding that location, blog posts,
ratings from other individuals that have traveled there, or any other useful information
that may attract potential tourists are also included. These websites are maintained and
funded directly by occupancy taxes. Occupancy taxes are a form of state tax that an
individual pays whenever one stays in a hotel or visits any attractions in that state. As
such, the main goal of these websites is to attract new tourists to their location. These
websites are maintained and paid for by past tourists who have visited that state.

Funding for future state tourism is determined by how many previous tourists have
visited the state and paid the occupancy tax. Researchers need to be able to determine
which elements of the website are most beneficial in attracting tourists. This can be
determined by examining past tourism websites and looking for any patterns that would
determine what worked well and what didn’t. These patterns can then be used to
determine what was successful and use that information to make better-informed
decisions.

Our client, Dr. Florian Zach of the Howard Feiertag Department of Hospitality and
Tourism Management, plans to use the historical analysis done by our team, to
further help his research on trends in state tourism websites content. Different
iterations of each state tourism website are stored as snapshots on the Internet
Archive and can be accessed to see changes that took place in that website. Our
team was given Parquet files of these snapshots for the states of California,
Colorado, and Virginia dating back to 1998. The goal of the project was to assist
Dr. Zach by using these Parquet files to perform data extraction and visualization
on tourism patterns. This can then be expanded to other states’ tourism websites
in the future.

We used a combination of Python’s Pandas library, Jupyter Notebook, and
BeautifulSoup to examine and extract relevant pieces of data from the given
Parquet files. This data was extracted into various different categories, each with
its own designated folder. These categories were raw text, images, background
colors and background images, internal and external links, and meta tags. With
this data sorted into the appropriate folders, we are then able to determine
specific patterns such as what colored background was used the most. With our
data extraction portion of this project completed along with the visualization, we
hope to pass this on to future teams so that they are able to expand on our
current project for the rest of the states.

1

II. Introduction

Our goal for this project is to be able to extract data from past and present iterations of
the California, Colorado, and Virginia state tourism websites, www.visitcalifornia.com,
www.colorado.com, and www.virginia.org, respectively. Researchers would then analyze
the data to make valuable decisions regarding future iterations of the state website. This
goal can be broken down into two categories, one for each of our clients, Dr. Florian
Zach and Dr. Edward A. Fox, the professor of the CS 4624 (Multimedia, Hypertext, and
Information Access) capstone course. Dr. Florian Zach asked us to produce a system
that is able to extract as much information as possible from the previous iterations of
the state website. The information extracted includes raw text, images, background
colors with background images, internal and external links and meta tags. We would
then store the information in a location where there are patterns in the data to make
more informed decisions for future iterations of tourism websites. We created a
visualization model that can be presented to the class. For this goal, we chose to focus
on the colors that are present within each iteration of the website to determine the
frequency of each color being used.

For both goals, it was crucial that we were able to extract the data first. We were given
Parquet files of each iteration of Colorado, Virginia, and California websites to extract
data from. We decided to start working with the Colorado Parquet files first. These
Parquet files contained snapshots of each version of the Colorado website from the
1990s to 2019. After becoming familiar with the types of information that were present in
these Parquet files, we determined and planned the extraction process with Dr. Florian
Zach requested. We created a parser using Python’s Pandas library, Jupyter Notebook,
and BeautifulSoup which would sift through all of the Parquet files and pull out any
relevant information we desired [2][3][4][5].

We organized each of our data into their own CSV files from each Parquet file. We
analyzed and placed them within their own respective folders (e.g., all raw text for each
Parquet file went in the raw text folder). This organization would help Dr. Florian Zach
and future teams to pick up our work or gather the right information. In the visualization
aspect of our project, we grabbed all the color CSV files and then plotted a stacked bar
chart. The chart shows how much of each color was used within that year from the
tourism websites. Our hope is that the work we have completed, can allow future teams
to expand and further our work through extracting data and visualization.

2

A. Teams Roles

Our team was divided into three different roles, the Project Lead, Data Extractor, and
Data Visualizer (Table 1). The Project Lead worked as a liaison between Dr. Florian
Zach, Dr. Edward A. Fox and our team. The Project Lead also relayed any new or
pertinent information to the team in between scheduled meetings. The Data Extractor
role was responsible for developing the code that parses through the Parquet files and
creates designated CSV files for the desired data and places them into their own
designated folder. The Data Visualizer roles were responsible for taking the extracted
data and creating stacked bar charts with that data to better help visualize the results.
While each individual on the team had their own specific role, all team members were
present and helped out with each portion of the project and worked together to produce
any reports or presentations.

Team Member Role

Abhinav Verelly Project Lead,
Data Visualizer and Project Manager

Ashutosh Bhattarai Data Extractor (Meta Tags, Raw Text),

David Gruhn Data Extractor (Colors, Images, Links),
Meeting Scribe

Shane Grishaw Data Visualizer,
Data Processor

Table 1: Group members names and respective roles

III. Requirements

We will utilize a dump of website Parquet files, extracted from the previous team’s
WARC files of tourism websites. These snapshots will be in the form of file directories of
these Parquet files. We will then need to parse this data from the files using Python,
BeautifulSoup, and Pandas [2][3][5]. There will be a data extraction and visualization
part for this project.

A. Data Extraction

These Parquet files, mentioned above, are given to us by the previous year’s team. The
refactoring of these Parquet files is necessary, as it is difficult to read them. We were
then tasked to extract relevant information, pointed out by Dr. Florian Zach. Main

3

extraction elements included colors, image tags, meta tags, external/internal links, and
raw text of the files. We extracted specific items from these elements, like the word
count and the timestamp. The data was extracted using Python and its external libraries
[7]. Python’s Pandas helped read these Parquet files for the extraction. BeautifulSoup
was used to extract specific elements from these Parquet files [2][3][5].

B. Visualizations

The main prerequisite for running the visualization program is to have previously run the
data extractor on the Parquet files [2]. This is needed so we can accurately pull the data
needed to populate the chart. We used a stacked bar chart to view our data extraction
and structured the chart by years for all tourism websites. The previous group
structured their graphical representations to include seasonal visualization. This
visualization showed the changes occurring by months. We did not follow this approach,
as there would be a lot of graphs for one state. We would have to split each year to
have a separate stacked bar chart. The data from these tourism websites range from
the 1990s to 2019. Therefore, having to make a large amount of these graphs for one
state may be cumbersome. However, we were still able to see patterns of how colors
were used within each state by their specific year.

IV. Design

This section will focus on how the project was designed. Figure 1 shows an extended
ER Diagram (Entity-Relationship Diagram), that depicts how data is organized and how
the whole system works.

4

Figure 1: Extended ER Diagram depicting the data organization and system created

A. Extractor

Our main entity that branches out throughout our design is the Extractor, located in the
center of Figure 1. This represents the main part of the code that takes in the
parameters and necessary files to extract the data. It has a singular attribute “Command
Arguments”, which represents the website's base name. For example, www.google.com
would represent the base website. Any links containing a base website will be filtered
accordingly in the respective entities.

B. Meta Tags CSV

The Meta Tags CSV entity is connected to the Extractor entity with a “Creates”
relationship. This will be created by the Extractor with the following attributes.
“Timestamp” and “URL” serve as unique identifiers for the data that is extracted. “Meta
Description” and “Meta Keywords” serve as the desired data from the Parquet file to be
examined.

C. External / Internal links CSV

5

The External / Internal Links CSV makes use of the “Command Arguments”. They are
passed into the extractor to determine the difference between external and internal
links. It also includes the same unique identifiers that Meta Tags CSV utilizes. It has two
lists with two counters. Each list has a respective counter. For example, “Number
External Links” denotes the number of links in the list provided by “External Links.”
Likewise can be said for the internal link attributes “Number Internal Links” and “Internal
Links.”

D. Images CSV

The Images CSV shares similarities with the previous two entities discussed above. It
contains the unique identifiers “URL” and “Timestamp.” It also contains a list of images
represented by the “Images” attributes with a respective number of images in that list,
designated by the “Number Images” attribute. Lastly, it contains a unique attribute
denoted as “Number Trackers” that counts the number of pixel images found while
extracting the images.

E. Colors / Background Images CSV

The Colors / Background Images CSV is very similar to its counterpart External /
Internal Links CSV entity. It contains the unique identifiers “URL” and “Timestamp.” In
addition, it contains two lists as attributes “Number Colors” and “Background Images,”
which respectively have a counter denoted by the attributes “Number Colors” and
“Number Background Images.”

F. Raw Text CSV

The Raw Text CSV Entity contains the same unique identifiers “URL” and “Timestamp.”
The “Raw” attribute contains all the extracted raw text, which is sorted as a list of words.
The extracted raw text contains a counter that denotes how many words are contained
in the list of raw text. The length of the list is denoted by “Number Words”.

G. Custom Data Parser

Moving towards entities that have a relationship of “Has” with the Extractor, we find the
Custom Data Parser entity. Please take a look at “Assessment of Implementation” to
understand more about this entity. It is not abstracted from the bulk of the code, but
easily could be. One attribute it has is “Delimiters” to determine where to stop
extracting. It also contains “Parser Word,” which is the wanted attribute to be searched

6

for in the Parquet file. Lastly, we have “Data Positions,” which will be updated to show
where the found “Parser Word” is in the data.

H. Multi-File Processing

Similar to that of the Custom Data Parser, the “Multi-File Processing” entity has a “Has”
relationship with the Extractor entity. It has one attribute that is “File Directory” which
refers to the path where the data will be located and saved after final executions. Similar
to that of Custom Data Parser this is not abstracted from the code, but easily can be.

V. Implementation

This section will focus on the implementation and design choices we made to extract
the data that was wanted by our client, Dr. Florian Zach.

A. Coding Environment

We were given the past group’s codebase, where they had utilized Jupyter Notebook as
their main coding environment. Although none of us were familiar with Jupyter
Notebook, for consistency purposes we decided to utilize it. Our client, Dr. Florian Zach
also had familiarity with Jupyter Notebook which would make passing off our result
easier. Jupyter Notebook is an IDE where there can be different cells for each line of
code/or a whole code block. Each cell can output different things depending on what
each cell contains. This allows us to run each cell that contains different outputs (such
as file names or debugging statements). In addition, we can easily make new changes
and see our updated results in real-time [4].

B. Language + Tools

Continuing with the given codebase from last year’s team, they utilized Python and
various libraries of Python which we decided to employ too. Python is a powerful
language that would allow us to output data in our choice of format, parse through
HTML, and allow us to perform data analysis on extracted data [7][10].

● Anaconda: Allows Windows users access to the code base [6]
● BeautifulSoup: Will allow us to parse HTML payloads [5]
● Pandas: Will allow us to read in Parquet files + output data into CSVs [3]

C. Loading All Data + Config File

7

The original codebase’s design required us to manually input the name of each Parquet
file. We decided to change the design to be more abstract and dynamic by requiring a
file path to the location of all the Parquet files. The user enters their file path, and the
program opens all Parquet files and starts reading them. You can change the host
website name in the config file. Please refer to the configuration file to understand
proper formatting. A brief example is to input the main host website name as
www.google.com inside the config.txt. Then our code will check each Parquet file’s links
contained therein. If all links have the same hostname as written in the config.txt, these
links are considered internal links. Any other links with different host names will be
considered external links, e.g., www.youtube.com. Likewise, the file path of where the
raw data is will need to be entered manually into the code at the top. All this goes into
our headerAndTime(df, webName) method. We take in a variable called df, which stores
the Parquet file that we open using a Pandas object. Then we call the function
.read_Parquet() on the Pandas object to read in the Parquet file [2][3].

D. Extracting External / Internal Links

Regarding extraction of all external and internal links, we utilize BeautifulSoup to parse
through the HTML in the Parquet file. The information we are extracting for each row of
the CSV file will be stored in a list. When naming our CSV files, we grab the timestamps
from each Parquet file, and we find the oldest date and the youngest date. For example,
the current Parquet file we are reading grabs 19980423 as the oldest timestamp, and
2018081 as the youngest timestamp. We then would use this to name our CSV file in
the format of oldest_youngest_website_datapoint.csv. Using our above example, we
would name our CSV file as 19980423-20180814_www.colorado.com_ExtIntLink.csv.
We will also have a dictionary that will store specific information corresponding to each
header in our CSV file for our link extraction. We have the following headers for links:
‘Timestamp', 'URL', 'Number_ExternalLinks', 'ExternalLinks', 'Number_InternalLinks',
and 'InternalLinks'. In our dictionary we store each information item into its specified
header category (e.g.,). Using𝑙𝑖𝑛𝑘𝐷𝑖𝑐𝑡[‘𝑁𝑢𝑚𝑏𝑒𝑟_𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙_𝐿𝑖𝑛𝑘𝑠'] = 𝑛𝑢𝑚𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙
find_all() method, we look for all body tags within the Parquet file as that is where all
links will be contained. Furthermore, all links in HTML are entered in the format of
a=”link”; therefore we once again find all instances of ‘a’ within all the body tags. We
assume that all links will start with http:// and we start grabbing all links. Once we have
grabbed everything we want, we append a dictionary to the list we made (e.g.,

). Our dynamic method for CSVs handles outputting a𝑙𝑖𝑛𝑘𝑠𝐼𝑛𝑓𝑜. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑙𝑖𝑛𝑘𝐷𝑖𝑐𝑡)
unique CSV for each data point that we are extracting. This method allows us to create
a CSV for external and internal links [2][5][10].

8

E. Extracting Images + Trackers

Regarding extraction of all images, we also utilize BeautifulSoup to parse through the
HTML in the Parquet file. For naming of our CSV files, we grab the timestamps from
each Parquet file, and we find the oldest date and the youngest date. For example, the
current Parquet file we are reading grabs 19980423 as the oldest timestamp, and
2018081 as the youngest timestamp. We then would use this to name our CSV file in
the format of oldest_youngest_website_datapoint.csv. Using our above example, we
would name our CSV file as 19980423-20180814_www.colorado.com_Images.csv.
As before, the information we are extracting for each row of the CSV file will be stored in
a list. We will also have a dictionary that will store specific information corresponding to
each header in our CSV file for our image extraction. We have the following headers for
images: ‘'Timestamp', 'URL', 'Number_Trackers', 'Number_Images', 'Images''. In our
dictionary we store each information into its specified header category (e.g.,

). Once again we use BeautifulSoup’s𝑖𝑚𝑎𝑔𝑒𝐷𝑖𝑐𝑡[‘𝑁𝑢𝑚𝑏𝑒𝑟_𝐼𝑚𝑎𝑔𝑒𝑠'] = 𝑛𝑢𝑚𝐼𝑚𝑎𝑔𝑒
find_all() method to find all images in HTML. One thing of note we discovered as we
extracted images were these entities we dubbed as trackers. These trackers are
embedded into images as pixels, and we later learned that they were trackers (hence
why we called them trackers) for advertisements. We determine if an image is a tracker
based on two slashes (//) whereas an image itself is one slash (/). Once we have
grabbed everything we want, we append a dictionary to our list (e.g.,

). Our dynamic method for CSVs handles outputting a𝑖𝑚𝑎𝑔𝑒𝐼𝑛𝑓𝑜. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑖𝑚𝑎𝑔𝑒𝐷𝑖𝑐𝑡)
unique CSV for each data point that we are extracting. This method allows us to create
a CSV for images and trackers [2][5][10].

F. Extracting Raw Text

Regarding extraction of all raw text, we also utilize BeautifulSoup to parse through the
HTML in the Parquet file. For naming of our CSV files, we grab the timestamps from
each Parquet file, and we find the oldest date and the youngest date. For example, the
current Parquet file we are reading grabs 19980423 as the oldest timestamp, and
2018081 as the youngest timestamp. We then would use this to name our CSV file in
the format of oldest_youngest_website_datapoint.csv. Using our above example, we
would name our CSV file as 19980423-20180814_www.colorado.com_Raw.csv.
As before, the information we are extracting for each row of the CSV file will be stored in
a list. We also have a dictionary that will store specific information corresponding to
each header in our CSV file for our raw text extraction. We have the following headers
for images: ‘Timestamp', 'URL', 'Number_Words', 'Raw’. In our dictionary we store each
information into its specified header category (e.g.,

). We use the body of our BeautifulSoup𝑟𝑎𝑤𝐷𝑖𝑐𝑡[‘𝑁𝑢𝑚𝑏𝑒𝑟_𝑊𝑜𝑟𝑑𝑠'] = 𝑤𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡

9

object to find all raw text by using the get_text() method, as we want to ignore the meta
tags and payload from the Parquet file. In addition, we use regex to filter out extraneous
and special characters ().𝑟𝑒. 𝑠𝑢𝑏('(? <! \𝑑)[,;: >< ›» >><< …/ + |&©/](?! \𝑑)', ' ', 𝑡𝑒𝑥𝑡)
Once we have grabbed everything we want, we append a dictionary to our list (e.g.,

). Our dynamic method for CSVs handles outputting a𝑟𝑎𝑤𝐼𝑛𝑓𝑜. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑟𝑎𝑤𝐷𝑖𝑐𝑡)
unique CSV for each data point that we are extracting. This method allows us to create
a CSV for raw text [2][5][10].

G. Extracting Colors

Regarding extraction of colors, we had to make our parser as there wasn’t a built-in
BeautifulSoup method to grab all colors the way we intended for this project. For the
naming of our CSV files, we grab the timestamps from each Parquet file, and we find
the oldest date and the youngest date. For example, the current Parquet file we are
reading grabs 19980423 as the oldest timestamp, and 2018081 as the youngest
timestamp. We then would use this to name our CSV file in the format of
oldest_youngest_website_datapoint.csv. Using our above example, we would name our
CSV file as 19980423-20180814_www.colorado.com_Colors.csv. As before, the
information we are extracting for each row of the CSV file will be stored in a list. We also
have a dictionary that will store specific information corresponding to each header in our
CSV file for our raw text extraction. We have the following headers for images:
'Timestamp', 'URL', 'Number_Colors', "Colors". In our dictionary we store each
information into its specified header category (e.g.,

). Our parser goes through all of the HTML𝑐𝑜𝑙𝑜𝑟𝐷𝑖𝑐𝑡[‘𝑁𝑢𝑚𝑏𝑒𝑟_𝐶𝑜𝑙𝑜𝑟𝑠'] = 𝑐𝑜𝑙𝑜𝑟𝐶𝑜𝑢𝑛𝑡
code and looks for any instances of the word “bgcolor” and “background-color”. We then
read what is immediately after these words and store that information as the color. Once
we have grabbed everything we want, we append a dictionary to our list (e.g.,

). Our dynamic method for CSVs handles outputting a𝑐𝑜𝑙𝑜𝑟𝐼𝑛𝑓𝑜. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑜𝑙𝑜𝑟𝐷𝑖𝑐𝑡)
unique CSV for each data point that we are extracting. This method allows us to create
a CSV for colors [2][5][10].

H. CSV Output - makeCSV(filename, columns_name, tabelInfo)

Regarding outputting all files, we made a method in order to make this aspect modular.
We passed in the filename that we wanted for each CSV file output (filename). Then we
passed in all the headers that we wanted in the CSV file (columns_name). Lastly, we
passed the information we are extracting for each row of the CSV file which we store in
a list (tableInfo).

10

I. Log File

Regarding our log file, we write what Parquet file we have finished processing so far
(Figure 11). This allowed us to debug in case our code broke; we would know which
Parquet file caused the issue. We simply used the built in methods in Python to read
and create a file as we were extracting each Parquet file [2][7].

J. Visualization - Stacked Bar Chart

After speaking with the client, Dr. Florian Zach, we decided to display our data using a
stacked bar chart. It has weights within a bar that correspond to the amount of color
shown for a specific bar. We decided to make the chart by using the years from the
Parquet File’s website data [2]. We used years instead of months, because the graphs
would be a lot larger and the color frequency data would be cluttered. It was also more
convenient to have a chart for each state’s color visualization, rather than multiple
charts for a specific year. More visuals on how the stacked bar chart is generated can
be shown in Figure 21.

K. Visualization - Extracting Color from CSV Files

We have a file reader that goes through and finds all the “color.csv” files from each
output directory. The method “loadFile()” (Figure 17) checks for the Parquet file and will
store these CSV files in a list to open all files. We use a for loop to go through the list of
all Parquet files. We then check for “colors.csv” files, and make a dictionary with the key
being the year of the websites and the value being the color for that associated year.
The method “calculate()” does this exactly. This method will create a dictionary that will
hold the year and color information from the methods above [2].

L. Visualization - Filtering Out / Validating Colors

In the “colorConvert_Frequency()” method, we go through the value of the dictionary
above and check if the color is in the right Hex-Color format, using Matplotlib’s API. We
use Matplotlib for colors that appear to be in word form rather than traditional Hex-Color
format. We use the method “matplotlib.colors.cnames[“color”]” to get the Hex-Color
format. If it's not in color format, we validate that it is in the right Hex-Color format. Some
CSS style sheets display color tags in unique ways. One case we found with CSS
sheets, was the instance of “TRANSPARENT”. This is typically the color’s opacity and
doesn't necessarily have a color designation. Dr. Florian Zach thought it would be a
great idea to include this within the color visualization. This word however fails the
Hex-Color format validation. Therefore, we had to manually add this into our new

11

dictionary with the correct formatted colors. The “isrgbcolor()” validates the color, if it is
in Hex-Color format. This method returns a Boolean, so when a color is validated, then
we can add the color to a new dictionary with the correct color format. The addition of a
color is then set by the corresponding year of the website. The color has to be set to the
right Hex-Color value format. We then add these newly corrected colors into a newly
converted dictionary, (“convertedDict[keyValues].append(values)”) [2][11].

M. Visualization - Getting the Frequency of the Colors

The methods “getFreqColor()” and “newFun()” take in a dictionary that will then be
converted into a nested dictionary, with an extra value as the frequency and/or
percentage of colors within the corresponding key. In this case the key will be the year
of the website's data. The format of the dictionary will look like (“{year : {#color : freq},
{#color2 : freq2}}”). The “getFreqColor()” method will simply count the number of
occurrences of each color for the associated year. The “newFun()” method will get the
percentage of each color from the total of all colors for the specific year. We created
these two helper methods for two different visualization outputs. The “getFreqColor()”
method is used for output of the JSON file, whereas the “newFun()” method is used for
the stacked bar chart. These percentages are used to assign the weights for the
stacked bar chart. Both of these methods output a modified version of the nested
dictionary in Python. Finally, we use collections from Python to order the dictionary from
the latest to earliest years. This makes it easier to set up the graph and also makes a
more usable JSON file object [3][12].

N. Visualization - Creating the Stacked Bar Chart

From the nested dictionary, we create a graph using Matplotlib’s API. We set the
weights with the colors list from the dictionary and also use the percentage to calculate
the weight sizes for each bar. Referring to Section Visualization - Stacked Bar Chart,
each bar of the graph corresponds to the year of the websites. The Y-axis corresponds
with the percentage of colors. We create a legend alongside the graph. This is because
the graph is slightly larger than intended for the legend. We wanted to make the graph
as clear and readable as possible. We use Matplotlib’s “savefig” method to make a
JPEG image of the graph to output to the user’s directory. The method “export_legend”
will output a JPEG image of the legend to go alongside with the graph for the state. We
designate the name by the state that is used for extraction. We have a list of all US
states and territories that will be used to check with the config’s file’s tourism website
URL [11].

12

O. Visualization - Outputting JSON File

Another part of our visualization is to create a JSON file that shows our nested
dictionary. Since dictionaries in Python have a similar format as a JSON object, having a
JSON file allows for future research on color extraction. You can use it to plot graphs
with just the frequency count of colors rather than percentages. This is something that
we can leave with other future groups and research teams to use. We create the JSON
file by using the “json.dumps” method in JSON. Using the formation tools with
“json.dumps”, you can format the JSON object however you like. The whole method for
creating a JSON file is shown by “json.dumps(overallDictionary, sort_keys=True,
allow_nan = True, indent=4)”. Like the stacked bar chart and legend for the graph, we
also output the JSON object into the same user directory. It is denoted by the
corresponding state’s name from the config file [7][12].

VI. Assessment of Implementation

This section will address concerns and possible errors that may be present in the code
that should be looked at in the future to determine certainty in the data. This is due to
the fact that the data set is extremely large and will be expanded to work on every
state's website. We cannot say with clear certainty the code will work without failure.
Based on testing and our personal usage the code is working as expected, but may be
lacking data or parsing data incorrectly in edge cases. All concerns will be addressed
below in the following sections, in addition to addressing concerns with the tech stack.

A. Jupyter Notebook

The use of Jupyter Notebooks was talked about in the implementation section. To
summarize, the main reason it was chosen was because the previous group chose it as
their development environment, thus to build onto that we maintained usage of the
Jupyter Notebook. The following issues were noticed when using Jupyter Notebooks:

● Lack of the ability to use command arguments from Python’s built-in system.args
● Difficulty in using GitLab for version control

Focusing on the first of the two issues listed above, due to how the Jupyter Notebook
creates the file and runs the processes, there was no easy way to implement arguments
to the main function. Likewise, there was no ability for us to use a terminal to run our
code on or a way for us to port our code into a Python file that could be run on the
command line. This led to the creation of a configuration file that would input needed
parameters for the program. This configuration file is extremely rudimentary, which

13

could lead to issues if users do not use the file as intended. This process could be
worked on further, but due to time constraints and this being a Jupyter Notebook related
issue this process was not further refined.

Focusing on the second of the two issues listed above, we noticed due to how Jupyter
Notebooks creates the IPYNB file, it includes output with the provided code. So any use
of a version control system like GitLab will lead to continuous changes as outputs may
be different across different developers’ testing purposes. However, this will be shown
on the main file as changes. We began using a version control system on Discord by
discussing changes in a comment under the file we uploaded manually. This led to
some issues relating to Unicode encoding when outputting the CSV file as we utilized
two different operating systems: MacOS and Windows. This issue was addressed, but
may come up in the future when developing code through this system.

B. Data Extraction Process

The main bulk of the code focusing on data extraction used BeautifulSoup to determine
parts wanted from the Parquet files provided. We can say with fair certainty that
BeautifulSoup is grabbing the parts we wanted from the respective sources as we
designed, but we cannot say with extreme certainty that it is not missing parts from the
data. If, for example, whoever encoded the websites for the tourist website did not use
normal conventions, BeautifulSoup may miss those data pieces. Likewise, data may be
encapsulated in places that are not conventional to normal HTML standards, which
means it will not be found in most of our approaches to everything except the extraction
of background colors. The extraction of background colors uses a custom in-house
parser on the Parquet payload. The reason for this is because we needed to find every
instance of “bg-color” and “background-color” (HTML styling names), which can be
located in a variety of tags throughout the Parquet payload. The in-house parser purely
looks for these two styling arguments. If for some reason these two styling attributes
were misspelled or abstracted into a CSS custom styling, then this parser will be unable
to determine the background color and will ignore this data. This is purely a concern, but
this does not mean it is a problem we have observed ourselves in our usage.

Another concern with the code created is the lack of extensive error checking. If as
described above there are HTML conventions that are not standard, our error checking
should be able to handle that [10]. However, there is still a possibility that this is not the
case. This may lead to major problems in usage of the code, which should be noted and
worked on by future teams. In addition, the structure of our code is not abstract. Many
things were not created with methods or functions in mind when they should have been.
For example, some code is repeated with slight variations, which could have easily

14

been abstracted into a method with different parameters. Additionally, some variables
may be hard to understand as they were quickly switched to adjust for more needed
extraction when developing the code. Some parts of the code should be abstracted into
methods to help maintainability and iron out possible bugs when expanding the code
base. Thus, future groups should work on maintainability and cleaning up the code.
Some aspects of the code are abstracted which are mentioned in the implementation
section.

The last concern we have is with our custom data parser. Based on the implementation
it should be able to handle any work, but due to it not being abstracted into a method it
may be hard to use by future groups. Additionally, based on the implementation it
should be able to find anything that uses standard HTML conventions, but from usage
we have found that not all of the data provided is in this formula, i.e., splicing data
based on delimiters [10].

C. Time Complexity

The sheer amount of data has led to realizations that our code could be more efficient in
fetching this data. Specifically, the custom data parser we created is extremely
inefficient as it parses the whole payload for specific keywords, then outputs those
positions to be grabbed by a following process. Based on how BeautifulSoup extracts
data it may suffer from this same dilemma [5]. Future groups working on this project
should attempt to find a way to simplify the process or link the processes to the config
file arguments, so not all of the data is always extracted if it is not necessary. Likewise,
the use of the Jupyter Notebook may be affecting the time to complete the application
[4]. It seems to create extra steps in the execution of the program through its usage of
blocks and data output points.

VII. User’s Manual

In order to have a system able to run the code please follow the Developer’s Manual
installation instructions to set up your Jupyter Notebook [4]. Unfortunately, the code is
not developed with its own GUI or compiled into an .exe for easy usage. Future groups
may want to look into implementing these features.

After following the Developer’s Manual and setting up a workspace with the wanted raw
data and file “extractAll_openAllFiles” you are able to begin setting up the code. Two
things need to be changed before execution can be done. First the config.txt file must
be updated with the wanted website URL or hostname. The example config.txt will
already include www.colorado.com, which can be updated to any hostname that another

15

tourism website may have. Make sure to include the “www.” when inputting this into the
config file in addition to the website’s extension (e.g., .com). Do not include anything
before the “www.” Next update the directorToChange variable located in block 5 with the
directory that contains the Parquet files as shown in Figure 6 [2].
You are now able to run the code by selecting Kernel->Restart & Run All. If an error
occurs with the config file, it will be preceded by a print statement denoting a possible
error in using the system. Please follow along with those instructions and adjust
accordingly.

Our program is divided into two parts, a data extraction portion and a visualization
portion. When running the two programs for this application, start by running the
extractAll program. Without running extractAll first, the visualization program will not
have any data present to be used in constructing the stacked bar chart. The extractAll
program will output a folder for each Parquet file. This folder will contain CSV files with
their respective data changes. This spring semester, we decided to create a
visualization of frequency colors shown on tourism websites. The program,
visualizationFirstStage, will output a JSON file (Figure 2), and two JPEG images [2][12].

The two JPEG images will include the stacked bar chart for the color visualization of
tourism websites, as well as the legend that supports the chart with the different colors
found. Examples of a finalized stacked bar graph can be seen in Figure 3, Figure 4, and
Figure 5, and an example of a finished legend JPEG can be seen in Figure 6. The
naming format for these files are based on the tourism website’s specific state. The
stacked bar chart will be designated by the state name. The naming format for the
legend of the char will just start with “legend” followed by the state name.

16

Figure 2: Example of a Completed JSON File

Figure 3: Colorado’s Completed Stacked Bar Chart

17

Figure 4: California’s Completed Stacked Bar Chart

Figure 5: Virginia’s Completed Stacked Bar Chart

18

Figure 6: Example of California’s Legend for the Stacked Bar Chart

Figure 2 shows an example of the JSON file output, from running the visualizer
application [12]. The stacked bar chart visualizations in the three states can be used to
display the variance of colors in each year (Figure 3, Figure 4, Figure 5). From
analyzing the colors in later years, we see that there is a more increase of white and
lighter tone colors. Figure 5 shows an example of how a legend for California's stacked
bar chart will output. Like the stacked bar chart for each state, the legend is outputted
as a JPEG image format.

19

VIII. Developer's Manual

A. Jupyter Installation

Similar to the Spring 2020 US Tourism group, our installation process is relatively the
same. On MacOS, it would be easier to install homebrew [8] to install Jupyter Notebook
and the Python subsidiaries as necessary. For Windows users the process begins by
installing Anaconda Navigator [6].

B. Library Installation

MacOS
Once you have Jupyter Notebook installed and can open up an actual notebook, you
need to install the various libraries that we use. The following libraries are necessary:
pyarrow, Pandas, BeautifulSoup [3][5][9]. Install these in your coding environment by
doing the following commands:

pip install pyarrow
pip install pandas
pip install bs4

If you have Python version 3 or newer, do the following:

pip3 install pyarrow
pip3 install pandas
pip3 install bs4

Your Jupyter Notebook should say these libraries have been installed as shown in
Figure 7. In order to run the cells, click on restart and run all as shown in Figure 8.

Windows
Once Anaconda Navigator is installed, go ahead and launch Jupyter Notebook, which
should open a web directory on your C drive [4][6]. Navigate to where your workspace is
that should include any raw data and our provided code, for example,
Desktop->CS4264-Workspace. Once here, click the New Button located at the top right
and select Python 3. A file should be created titled Untitled.ipynb. Click on this file and a
blank cell should be seen. In the cell, input as follows:

20

pip install pyarrow

Then click Kernel->Restart & Run All. Now restart Jupyter Notebook. Then navigate
back to your workspace. You should be able to run the provided code we created [4].

In order to run your cells in Jupyter Notebook, click on Kernel and then Restart & Run
All as shown in Figure 8. Figure 7 shows how everything should appear after you have
finished installing. You can also install these dependencies on your command prompt,
however we recommend installing on the Notebook environment. We found that
installing libraries on the terminal leads to the issue of having to always reinstall the
same libraries every time one closes/opens up a new session of Jupyter Notebook [4].

Figure 7: Installing the required libraries

21

Figure 8: Running the cells in Jupyter Notebook

C. Loading files, Extraction, and CSV output

The Jupyter notebook file (.ipynb extension) called extractAll_openAllFiles.ipynb
contains all our code for loading all files, extraction, and CSV output. The notebook
starts off with our headerAndTime(df,webName) as shown in Figure 9 [4]. This method
handles all our extraction (please see the implementation section to understand how we
extract the various data). We’ve left each different extraction process in each of its own
comment blocks so one can easily identify what extraction part they are looking at.

Figure 9: Our headerAndTime() method

22

loadFile(pathDir) in our notebook handles the logic for reading in all Parquet files shown
in Figure 10. Our code works so that users can store all their Parquet files into a folder
and just provide the path to the folder (in the directoryToChange variable as seen in
Figure 11) [2]. You can also add the host name of the website in the configuration file.
Changing the file path will need to be manually updated in this method. Replace the
‘directoryToChange ’ variable that is already present.

Figure 10: loadFile() and reading in all Parquet file

Figure 11: directoryToChange variable that users need to change

We also handle output in an easier to understand and efficient manner. We output each
CSV into a unique folder with the same name as the Parquet file. We handle this part of
the code in the loop that deals with reading in the Parquet file shown in Figure 12. We
also print out the directory each time as we run the code for debugging purposes to
ensure we are outputting each CSV to the correct directory. You can refer to this image
for how the folders look once the Parquet files have been read (Figure 13). How the
CSVs will look inside each of the unique directories is shown in Figure 14 [2].

Figure 12: Outputs each CSV to unique folder

23

Figure 13: Output of each Parquet file into unique directories

Figure 14: example of contents in output folder

Moving onto the CSV output portion, this part is handled by the makeCSV(filename,
columns_name, tableInfo) method. Without repeating the same information in the
implementation section, this method makes it flexible so any new data extraction that
can be done in the future, can simply use this method in order to create a CSV file.
Figure 15 shows our makeCSV() method as well as how we use it.

24

Figure 15: makeCSV method and its usage

In terms of timing for the output, we loaded and read in eight sample Parquet files (for
the state of Colorado). Each Parquet file yields a CSV file (in our case we output 5 CSV
files: colors, images, links, raw text, meta tags), and the total size of the 8 Parquet files
came out to be 1.3505gb. It took 41 minutes to finish reading and outputting the CSV
contents for all of the Parquet files. Our total time for extractions for the other states as
well as number of Parquet files can be seen in Table 2. We also output a log file that
will keep track of what Parquet files have been read, along with a counter of the number
of Parquet files read (Figure 16) [2].

25

State Number Of Parquet
File

Total File size Total Time For
Extraction

Colorado (Not all
files)

8 1.3505 GB ~41 minutes

Colorado 23 2.43 GB ~130 minutes

California 14 3.49 GB ~202 minutes

Virginia 160 7.47 GB ~270 minutes
Table 2: Total Time For Extraction

Figure 16: Sample output of log.txt

D. Handling Visualization - Extracting Color CSV Files and Storing

We read the color CSV files, by going through and finding all the output directories. This
is achieved by the function loadFile() in Figure 17. We then are able to open the
directories and find the color CSV files. This is then used for the overall visualization.
Figure 18 goes through opening these output directories and grabbing the colors and
corresponding websites years to put into a dictionary in Python [7].

26

Figure 17: Load all Output Directories

Figure 18: Grabbing data from color CSV Files

27

Figure 19: Checking the colors extracted and validating them

Figure 20: Validating a color into Hex-Color format

28

Figure 19 goes in depth into the “colorConvert_Frequency()” method. This method goes
through the colors of the dictionary’s value to check if it needs to be in Hex-Color
format. Figure 20 shows the Hex-Color validation method. We use this to validate the
color if it is in the correct Hex-Color format. If this method is true, we can add it to a
newly modified dictionary to hold the new color values with the corresponding years.

Figure 21: Gets the frequency of the colors in a year

Figure 22: Gets the percentage of colors out of the total colors in a year.

Figure 21 will calculate the frequency of all the color values in a dictionary by using
Python’s “setdefault” method in a dictionary [7]. This method, “getFreqColor()”, returns a
new nested dictionary with the format, (“{year : {#color : freq}, {#color2 : freq2}}”).
Figure 22 also returns a nested dictionary. However the frequency of color is replaced
by the total percentage of each color from each year. The color frequency will be divided
by the total number of color frequencies found for each year. The dictionary format will
be the same as Figure 21, but will have percentages, (“{year : {#color : percent1},
{#color2 : percent2}}”). Figure 21 is used for the output of a JSON File with the same
format, whereas Figure 22 is used to visualize the stacked bar chart [7][12]. The nested
dictionaries created are also sorted from oldest to newest by year.

29

E. Handling Visuzaliation: Making the Stacked Bar Chart and JSON File

Figure 23: Outputs a JSON File of the frequency type nested dictionary

Figure 24: Outputs a stacked bar chart and legend corresponding to the graph.

30

The code shown in Figure 23 will output a JSON file of the nested dictionary with the
frequency of colors. It had been indented and formatted to allow for a clear and
readable JSON file [12]. This file can be used to plot different types of graphs if needed
by future groups and research teams. The code shown in Figure 24 will create a
stacked bar chart that will help visualize the color extraction data. Examples of how a
finished stacked bar chart appears can be seen in Figure 3, Figure 4, and Figure 5 in
the User Manual section. Figure 24 also shows how to convert the graph into a separate
JPEG image file. The method “savefig()” on line 330 does just that. We also create a
legend for the graph and output it as a separate JPEG image for convenience. This
legend will include the colors used from the dictionary to show the different color
weights for each bar in the graph.

Figure 25: Gets the state name from the config file

Figure 25 shows how the file designation for the Stacked bar chart, the legend for the
chart, and the JSON file are produced [12]. They are named by the state they
correspond with, in the config file from data extraction. The “getStateName()” method
will read through the config file and compare the state from the tourism website with the
list of all United State’s states and territories. This allows for the files to be uniquely
named and easy to find and understand.

IX. Methodology

As a group, we were tasked to complete a Methodology assignment to better grasp the
problem at hand. This section describes how we dissected the problem down to
something more approachable. It allowed us to understand the scope of the problem. In
addition, it allowed us to organize our development efforts in a more concise manner.
Likewise, it allowed us to show our thoughts with our client, Dr. Florian Zach. We have
three sections which each accomplish different things. Our first section, goal of our
users, will describe the goals for each type of user for our system. The second section,
subtasks of our goals, breaks down each goal into a more simplified and manageable

31

set of tasks and subtasks. The third section, implementation based services, we made a
table to showcase how each task is implemented. The fourth section, Workflows, uses
the third section’s table to create a list of workflows. These workflows will then cover
each service denoted by the table for each goal. We also have a visual of the workflow
to show the system.

A. Goals of our Users

a. Data Extractor - The ability to use the system to parse through different
types of HTML data to extract the wanted information.

b. Data Visualizer - The ability to use the data extracted to create
visualizations of the data based on various groupings or subsections.

B. Subtasks of our goals

a. Extract Data - Be able to view the data in a readable fashion to be worked
on

i. Parse through raw HTML to extract necessary components
A. Extract external/internal link structure
B. Extract meta tags
C. Extract raw text

a. Determine word count
D. Extract Images

a. Determine image count
b. Determine Tracker count

E. Extract color schemes ->
a. Grab Background images
b. Grab Background-color and bg-color colors

F. Output a log file with contents of extraction for tracking
purposes

ii. Scale extraction process + Simplify Time Complexity
A. Extract through each state
B. Allow all Parquet to be read from a directory instead of

manually and output all files in unique directory

b. Visualize Color Data Comparison - Compare color schemes of different
tourist websites

32

i. Visualization: Output a stacked bar chart to represent comparison
of colors

A. Output a JPEG version of the stacked bar chart.
B. Output a legend for the map with color names for the

different weights of the stacked bar chart.
ii. Output JSON for nested dictionary of {year: {color_name: fr}}

C. Implementation-based services

Service
ID

Service Name Input file
name(s)

Input file
Ids
(comma-
sep)

Output file name Output
file ID

Libraries;
Functions;
Environments

API
endpoint
(if
applicable)

Extract
Externa
l /
Internal
Links

Extract Data: Go
through Parquet file
and grab all Internal
links + external links.
Determine how many
external links there
are and how many
internal links there are

Parquet File 1 _ExtlntLinks.csv 2 Jupyter
Notebook for
coding
environment,
Pandas to read
in Parquet files,
BeautifulSoup to
parse through
HTML, CSV to
output files as
CSV

N/A

Extract
Meta
tags

Extract Data: Go
through Parquet files
and grab Meta Tags.
From the meta tags,
filter out the content
associated with
name=”description”
and name=”keywords”

Parquet File 1 _Meta.csv 3 Jupyter
Notebook for
coding
environment,
Pandas to read
in Parquet files,
BeautifulSoup to
parse through
HTML, CSV to
output files as
CSV

N/A

Extract
Raw
text

Extract Data: Go
through Parquet file
and grab all of Raw
Text and determine
word count. When
determining word
count, exclude any of
these characters:
,;:><›»>><<…/+|&©/

Parquet File 1 _RawTxt.csv 4 Jupyter
Notebook for
coding
environment,
Pandas to read
in Parquet files,
BeautifulSoup to
parse through
HTML, CSV to
output files as
CSV

N/A

33

Extract
Images

Extract Data: Go
through Parquet files
and grab all Images
(use any tags that
include format src=, in
order to not exclude
any images). There
are also trackers that
are embedded into
images for AD
purposes, grab
frequency of those as
well.

Parquet File 1 _Images.csv 5 Jupyter
Notebook for
coding
environment,
Pandas to read
in Parquet files,
BeautifulSoup to
parse through
HTML, CSV to
output files as
CSV

N/A

Extract
Colors

Extract Data: Go
through Colors

Parquet File 1 _Colors.csv 6 Jupyter
Notebook for
coding
environment,
Pandas to read
in Parquet files,
BeautifulSoup to
parse through
HTML, CSV to
output files as
CSV

N/A

Log File Log File: Will
showcase which
Parquet file has been
read, how many files
has been read for
tracking purposes
especially with larger
data sets

N/A N/A log.txt 7 Built in Python
functions to read
and write out a
file

N/A

Read in
other
state
Parquet
file

Scale Extraction:
Read in Parquet files
for different states (we
are given 3 but we
were working on one
state’s Parquet file)

Parquet File 1 N/A N/A Jupyter
Notebook for
coding
environment, ,
Pandas to read
in Parquet files,
BeautifulSoup to
parse through
HTML, CSV to
output files as
CSV

N/A

Read in
multiple
Parquet
files at
once

Scale Extraction:
Read in all Parquet
files from one
directory and output
each file into its own
unique directory

All Parquet
Files

1 N/A N/A Jupyter
Notebooks for
coding
environment,
glob and os to
read in all files in
a directory and
output all files in
each unique
directory

N/A

34

Visualiz
e
Colors

Visualization:
Compare color
schemes of different
tourist websites with a
stacked bar chart

All_Color.csv
output file for
each Parquet
file

6
(referring
to all the
Color
CSVs we
output)

_colorNestedDict.js
on
legend_from_{state}
.jpeg
{sate}.jpeg

10,11
and 12
(Referr
ing to
the
JSON
and
image
+
legend
of the
bar
graphs
)

Jupyter
Notebooks for
coding
environment,
glob and os to
read in all Colors
CSV files from
all directories,
Pandas used for
index data for
our graph,
collections used
for sorting
dictionaries,
matplotlib for
actually plotting
our data, json for
outputting our
nested
dictionary as a
json object.

N/A

Table 3: Implementation Service Table

Note - {state} stands for visualization of respective state names.

D. Workflows

a. Workflow #1:

User → Goal 1 → Workflow 1
Workflow 1 = Service 1A + Service 1B + Service 1C + Service 1D +
Service 1E + Service 1F:

Service 1A: Extract Data: Go through Parquet file and grab all Internal
links + external links. Determine how many external links there are and
how many internal links there are

Service 1B: Extract Data: Go through Parquet files and grab Meta Tags.
From the meta tags, filter out the content associated with
name=”description” and name=”keywords”

Service 1C: Extract Data: Go through Parquet file and grab all of Raw Text
and determine word count. When determining word count, exclude any of
these characters: ,;:><›»>><<…/+|&©/

35

Service 1D: Extract Data: Go through Parquet files and graball
Images(use any tags that include format src=, in order to not exclude any
images). There are also trackers that are embedded into images for AD
purposes, grab frequency of those as well.

Service 1E: Extract Data: Go through Colors

Service 1F: Export the data into CSV files

b. Workflow #2

User → Goal 2 → Workflow 2
Workflow 2 = Service 2A + Service 2B + Service 2C

Service 2A: Visualization: Output JSON object from the color dictionary

Service 2B: Visualization: Output a Jpeg file of the Stacked bar chart from
Jupyter Notebook.

Service 2C: Visualization: Output a Jpeg file of a legend of the colors, from
the extraction, from the Stacked Bar chart.

c. Workflow Diagram Below

Figure 26: Workflow Image

X. Lessons Learned

36

A. Timeline / Schedule

Date Event

3-Feb Client Meeting - Discuss research goals for upcoming milestone

9-Feb Flush out research goal / Finalize tools and technology / Flush out deliverable

2/9 -
2/14 Research Period for the project with scope set

15-Feb Client Meeting - Meeting in regards to current work

2/15 -
2/22 Began extraction of raw text and external links

22-Feb Client Meeting - Updates / Discuss wanted format of extracted data

2/23 -
2/28 Extraction for Raw Text completed. Working on other parts of the extraction.

28-Feb Presentation 1 - Project Description / Requirements / Planning

2/28 -
3/8 Extraction for External Links completed.

8-Mar Client Meeting -Showcase POC / Discuss wanted Visualization /
Comparisons

9-Mar Extract -> raw text / content length / meta tags / file formats / Colors and
Background-color / Images

3/9 -
3/22

Finish extracting colors and images. Raw text, Meta tags, and
External/Internal Links extraction completed.

22-Mar Client Meeting - Updates / Showcase of our extraction / mock-up
visualization design and implementation from POC

23-Mar Extraction of all needed elements completed, upon clients request / Created
multi-file processor / scope set for scalability and visualization

1-Apr Presentation 2 - Project design / Initial Implementation / Plan

26-Apr Client Meeting - Updates / Followup / Extension of Milestone

2-May Final Presentation

5-May Project completed and submitted all documentation needed for Class

Table 4: Project Schedule

37

B. Problems

One of the problems that we faced had to do with the continued issue of Covid-19 and
with online classes. Doing such a large project and not being able to meet in person
caused issues in terms of performing consistent work throughout each week.

Another problem we faced was the large learning curve of understanding our tools.
None of our team members had used Jupyter Notebook. Although we were familiar with
Python, parsing HTML from a Parquet file was a new area for us [2][10]. Just getting to
open up a Parquet file was a challenge in itself. The preexisting code base from May
2020’s team gave us a starting point, but lack of clear comments as well as overall
design choice stalled us for a bit. Having to manually paste in the name of the Parquet
file confused us as a design choice and took time away from us extracting to make
reading in Parquet files abstract. The overall wait time needed to read in a file, extract,
and output all the CSVs was a minimum of 30 minutes (or more). This wait time
increased with the addition of more Parquet files, as well as larger sized Parquet files
[2].

C. Solutions

We dealt with working around Covid-19, by meeting up with the group on a weekly
basis. We met with our client every other week to show our overall progress of the
project, as well as presenting our MVP (Minimum Viable Product) for our project. By
using tools such as Zoom and Discord, we had effortless communication with our group
and our client. We used Google Calendar to set deadlines for client meetings, as well as
code meetings for the group.

The expected large learning curve of all the technical tools was a relatively small
problem. Throughout our collegiate years at Virginia Tech, we had become familiar with
different programming language frameworks. Overall, our group had a decent
understanding of Python. This helped us understand how Jupyter Notebook works and
how to better utilize the cells for printing out important feedback [4]. As a group, we had
experience with Parquet files. We now have a better understanding of Parquet files and
how to utilize them. BeautifulSoup is a very useful tool for web scraping with Python.
We found that BeautifulSoup helps us with reading Parquet files and extracting needed
data from them [2][5][7]. We solved the issues faced with the previous team’s code of
having to read in a Parquet file one at a time, by refactoring and changing the code to
allow for multiple files to be read [2]. This helped with convenience and allowed for
better performance overall.

38

D. Future Work

There are several areas for improvement. Our team has managed to extract internal
and external links, raw text, meta tags content for description and keywords meta tags,
colors, and images along with ad trackers. We hope that our codebase can further help
with extracting other pieces of information from the Parquet files. We also hope our
code base can easily output all the data we have extracted for different state Parquet
files. However, the timing and performance of this could be further improved upon.
Future teams should be able to take our codebase and apply that to extract information
from other state’s Parquet files in order to help with researching state tourism efforts [2].
This addition can allow research teams to see the variance of colors in all states
through the stacked bar charts. Future teams should take a look at the Assessment of
Implementation section, for optimization and refactoring concerns.

One key problem we noticed was overall performance of the application when running
the two files for data extraction and visualization. For some state’s Parquet files, it could
take anywhere from one to almost four hours. Future teams and research could help
improve the performance of our two programs. An applicable solution to speedup
performance may be to use different sorting and recursion algorithms for the
application. There are also ways to go through third-party applications and/or a different
API than Python that may help with reading through directories and files on a computer
[2][7].

39

XI. Acknowledgements

Florian Zach, Ph.D. - Assistant Professor in the Howard Feiertag Department of
Hospitality and Tourism Management. Email: florian@vt.edu

Xinyue (Cyrus) Wang - Ph.D. Student in the Department of Computer Science. Email:
xw0078@vt.edu

NSF IIS-1619028, Global Event and Trend Archive Research (GETAR)

NSF CMMI-1638207, Coordinated, Behaviorally-Aware Recovery for Transportation and
Power Disruptions (CBAR-tpd)

US State Tourism Spring 2020 Team, http://hdl.handle.net/10919/98257

US State Tourism Spring 2019 Team, http://hdl.handle.net/10919/92622

40

XII. References

[1] Doan, Viet, et al. “Tourism Destination Websites.” VTechWorks, Virginia Tech, 8 May
2019, http://hdl.handle.net/10919/92622, accessed 4/23/2021.

[2] “Apache Parquet.”, Apache Software Foundation, 2018, Parquet.apache.org/,
accessed 4/23/2021.

[3] “Pandas - Python Data Analysis Library.” Pandas, NumFOCUS, 2020,
pandas.pydata.org/, accessed 4/23/2021.

[4] “Project Jupyter.” 2020, jupyter.org/, accessed 4/23/2021.

[5] Richardson, Leonard. “Beautiful Soup Documentation.” Beautiful Soup 4.9.0
Documentation, 2020, www.crummy.com/software/BeautifulSoup/bs4/doc/, accessed
4/23/2021.

[6] “The World's Most Popular Data Science Platform.” Anaconda, 2020,
www.anaconda.com/, accessed 4/23/2021.

[7] Van Rossum, G. & Drake, F.L., 2009. Python 3 Reference Manual, Scotts Valley, CA,
https://docs.python.org/3/reference/, accessed 4/23/2021.

[8] Howall, M., Homebrew., 2021, https://brew.sh/, accessed 4/23/2021.

[9] Cloud, P., pyarrow. PyPI., 2021, https://pypi.org/project/pyarrow/, accessed
4/23/2021.

[10] Heikkinen, I., HTML. HTML Standard. 2021, https://html.spec.whatwg.org/,
accessed 4/23/2021.

[11] J. D. Hunter, "Matplotlib: A 2D Graphics Environment", Computing in Science &
Engineering, vol. 9, no. 3, pp. 90-95, 2007. accessed 4/23/2021.

[12] Pezoa, F. et al., 2016. Foundations of JSON schema. In Proceedings of the 25th
International Conference on World Wide Web. pp. 263–273. accessed 4/23/2021.

41

