
Threat Detection in Program Execution and
Data Movement: Theory and Practice

Xiaokui Shu

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science & Application

Danfeng Yao, Chair
Barbara G. Ryder

Naren Ramakrishnan
Patrick R. Schaumont

Trent Jaeger

April 6, 2016
Blacksburg, Virginia

Keywords: Cybersecurity, Program Anomaly Detection, Data Leak Detection
Copyright 2016, Xiaokui Shu

Threat Detection in Program Execution and
Data Movement: Theory and Practice

Xiaokui Shu

(ABSTRACT)

Program attacks are one of the oldest and fundamental cyber threats. They compromise
the confidentiality of data, the integrity of program logic, and the availability of services.
This threat becomes even severer when followed by other malicious activities such as data
exfiltration. The integration of primitive attacks constructs comprehensive attack vectors
and forms advanced persistent threats.

Along with the rapid development of defense mechanisms, program attacks and data leak
threats survive and evolve. Stealthy program attacks can hide in long execution paths to
avoid being detected. Sensitive data transformations weaken existing leak detection mecha-
nisms. New adversaries, e.g., semi-honest service provider, emerge and form threats.

This thesis presents theoretical analysis and practical detection mechanisms against stealthy
program attacks and data leaks. The thesis presents a unified framework for understanding
different branches of program anomaly detection and sheds light on possible future program
anomaly detection directions. The thesis investigates modern stealthy program attacks
hidden in long program executions and develops a program anomaly detection approach
with data mining techniques to reveal the attacks. The thesis advances network-based data
leak detection mechanisms by relaxing strong requirements in existing methods. The thesis
presents practical solutions to outsource data leak detection procedures to semi-honest third
parties and identify noisy or transformed data leaks in network traffic.

This work has been supported by grants ONR N00014-13-1-0016 and ARO YIP W911NF-
14-1-0535 as well as Security and Software Engineering Research Center (S2ERC).

Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Danfeng Yao, for her
guidance and support through my graduate study. Dr. Yao opens a door for me to create and
improve freely in system and network security. Without her encouragement and inspiration,
this dissertation would not have been possible.

I would like to thank my committee members, Dr. Barbara G. Ryder, Dr. Naren Ramakr-
ishnan, Dr. Patrick R. Schaumont, and Dr. Trent Jaeger, who contribute time and effort to
verify my models, give me writing suggestions, show me scientific discovery procedures, and
support my attendance to system security summer schools and workshops.

I would like to thank my friends Hao Zhang, Kui Xu, Karim Elish, Fang Liu, Ke Tian,
Tong Zhang, Long Cheng, Hussain Almohri, and Qingrui Liu, who help me dive into system
security and discuss related topics to strengthen my understandings of the field.

I would like to thank Dr. Benjamin Jantzen, who discusses autonomous scientific discovery
with me from the philosophical perspective and inspires me to develop the unified framework
for program anomaly detection in this thesis.

I would like to thank Dr. Changhee Jung for the discussion and comments on practical
tracing techniques in my program anomaly detection project.

I would like to acknowledge my collaborator Jing Zhang, who ports my code to CUDA and
helps me evaluate the scalability of my alignment-based data leak detection solution.

iii

Contents

1 Introduction 1

1.1 Cyber Threats Against Programs and Data 1

1.2 Program Anomaly Detection: Theory and Practices 3

1.2.1 Program Anomaly Detection in a Unified Framework 3

1.2.2 Discovery of Event Correlation in Program Behaviors Against Execu-
tion Anomalies . 4

1.3 Network-Based Data Leak Detection: Emerging
Paradigms and System Design . 5

1.3.1 Privacy-Preserving Data Leak Detection 5

1.3.2 Detection of Transformed Data Leaks 6

2 Literature Review 7

2.1 Defenses Against Program Attacks . 7

2.1.1 Program Anomaly Detection . 7

2.1.2 Malware Classification . 9

2.1.3 Event Correlation Analysis and Reasoning 9

2.1.4 Defenses Against Specific Categories of Attacks 10

2.2 Data Leak Detection . 10

2.2.1 Data Leak Detection with the Bag-of-words Model 10

2.2.2 Enforcing Sensitive Data Flow to Prevent Leaks 11

2.2.3 String Matching and Data Leak Detection 12

2.2.4 Alignment Algorithms Developed for Security Applications 12

iv

2.2.5 Parallelization of Security Applications 13

2.2.6 Privacy-preserving Data Leak Detection 13

2.2.7 General Privacy-preserving Frameworks 13

2.2.8 Discovering Traces of Data Leaks via Anomalous Traffic Detection . . 14

2.2.9 Remote Execution Verification . 14

3 Program Anomaly Detection in a Unified Framework 15

3.1 Introduction . 15

3.2 Formal Definitions for Program Anomaly Detection 17

3.2.1 Security Model . 17

3.2.2 Detection Capability . 18

3.2.3 Scope of the Norm . 19

3.2.4 Overview of My Unified Framework 20

3.3 Accuracy Limit of Program Anomaly Detection 21

3.3.1 The Ultimate Detection Machine . 22

3.3.2 The Equivalent Abstract Machine of An Executing Program 22

3.3.3 Usage and Discussion . 24

3.4 Abstractions of Existing Detection Methods 24

3.5 Unification Framework . 27

3.5.1 Major Precision Levels of Program Anomaly Detection 27

3.5.2 Sensitivity in a Nutshell . 30

3.6 Attack/Detection Evolution and Open Problems 31

3.6.1 Inevitable Mimicry Attacks . 31

3.6.2 Evolution From L-4 to L-1 . 31

3.6.3 Open Problems . 33

3.7 Control-Flow Enforcement Techniques . 34

3.7.1 Control-Flow Enforcement . 34

3.7.2 Legal Control Flows as the Scope of the Norm 34

3.7.3 Comparison of the Two Methods . 34

v

4 Program Event Correlation Discovery and Anomaly Detection 36

4.1 Introduction . 36

4.2 Security Model . 38

4.2.1 Aberrant Path Attack . 38

4.2.2 Anomalous Program Behaviors within
Large-scale Execution Windows . 40

4.2.3 Security Goals . 41

4.2.4 Basic Solutions and Their Inadequacy 42

4.3 Overview of my Approach . 42

4.3.1 Profiling Program Behaviors . 43

4.3.2 Architecture of My Approach . 44

4.4 Inter-/intra-cluster Detection . 45

4.4.1 Behavior Clustering (Training) . 45

4.4.2 Co-occurrence Analysis (Detection) 48

4.4.3 Intra-cluster Modeling (Training) . 48

4.4.4 Occurrence Frequency Analysis (Detection) 49

4.4.5 Discussion . 50

4.5 Implementation . 51

4.6 Evaluations . 52

4.6.1 Experiment Setup . 52

4.6.2 Discovering Real-World Attacks . 54

4.6.3 Systematic Accuracy Evaluation . 57

4.6.4 Performance Analysis . 59

5 Privacy-Preserving Detection of Sensitive Data Exposure 62

5.1 Introduction . 62

5.2 Model and Overview . 63

5.2.1 Security Goal and Threat Model . 63

5.2.2 Privacy Goal and Threat Model . 64

vi

5.2.3 Overview of Privacy-Enhancing DLD 65

5.3 Fuzzy Fingerprint Method and Protocol . 66

5.3.1 Shingles and Fingerprints . 66

5.3.2 Operations in My Protocol . 67

5.3.3 Extensions . 69

5.4 Analysis and Discussion . 70

5.5 Experimental Evaluation . 73

5.5.1 Accuracy Evaluation . 76

5.5.2 Runtime Comparison . 78

5.5.3 Sizes of Fuzzy Sets vs. Fuzzy Length 79

6 Fast Detection of Transformed Data Leaks 82

6.1 Introduction . 82

6.2 Models and Overview . 84

6.2.1 Technical Challenges . 84

6.2.2 Discussions on Existing Solutions . 85

6.2.3 Overview of My Approach . 86

6.3 Comparable Sampling . 86

6.3.1 Definitions . 86

6.3.2 My Sampling Algorithm . 88

6.4 Alignment Algorithm . 91

6.4.1 Requirements and Overview . 91

6.4.2 Recurrence Relation . 93

6.4.3 Weight Function . 94

6.4.4 Algorithm Analysis . 96

6.5 Evaluation on Detection Accuracy . 97

6.5.1 Implementation and Experiment Setup 97

6.5.2 Detecting Modified Leaks . 99

6.5.3 Low False Positive Rate . 103

vii

6.6 Parallelization and Evaluation . 105

6.6.1 Parallel Detection Realization . 105

6.6.2 Scalability . 107

6.6.3 GPU Acceleration . 107

6.6.4 Sampling Speedup . 109

7 Conclusions and Future Work 110

Bibliography 112

viii

List of Figures

3.1 The hierarchy of my program anomaly detection framework 21

3.2 Four approaches for improving a basic L-3 method (FSA) 32

4.1 sshd flag variable overwritten attack . 39

4.2 Examples of event co-occurrence and occurrence frequency relations 41

4.3 Overview of two-stage program anomaly detection 44

4.4 Clustering of program behavior instances . 53

4.5 Samples of normal and anomalous sshd traces 55

4.6 Detection rates of ReDoS attacks . 56

4.7 libpcre ROC of my approach and basic one-class SVM 58

4.8 Detection (analysis) overhead of my approach 60

5.1 Overview of privacy-preserving data-Leak detection model 65

5.2 Detection accuracy comparison . 75

5.3 Overhead of filters for detecting data leaks 78

5.4 The observed and expected sizes of fuzzy sets per fingerprint 80

6.1 Illustration of notations in the weight function fw() 95

6.2 Detection comparison of AlignDLD and collection intersection 100

6.3 Sensitivity values of the content under various transformation ratios 101

6.4 The detection success rate of AlignDLD in partial data leaks 102

6.5 Capability of differentiating real leak from coincidental matches 104

6.6 Parallel realization of my alignment algorithm 106

ix

6.7 High scalability of parallel sampling and alignment algorithms 107

6.8 Speedup of multithreading alignment and GPU-accelerated alignment 108

6.9 Alignment speedup through sampling . 109

x

List of Tables

3.1 Descriptions of symbols in M̃ . 22

3.2 Precision levels in my framework . 27

3.3 Terminology of sensitivity in program anomaly detection 30

4.1 Normal profile statistics . 52

4.2 Statistics of average single normal profile . 52

4.3 Overview of reproduced attacks . 54

4.4 Overview of detection results . 54

4.5 Deleterious patterns used in ReDoS attacks 56

5.1 Mean and standard deviations of the sensitivity per packet 76

6.1 Illustration of my sampling procedure . 88

6.2 Datasets in accuracy & scalability experiments 97

6.3 Semantics of true/false positives/negatives 98

6.4 Sampling rates of AlianDLD . 103

6.5 Throughput (in Mbps) of the Alignment operation on GPU 108

xi

Chapter 1

Introduction

1.1 Cyber Threats Against Programs and Data

Security problems in program executions, caused by program bugs, inappropriate program
logics, or/and improper system designs, are first perceived by the Air Force, the Advanced
Research Projects Agency (ARPA), and IBM in the early 1970s. Malicious user threat was
then conceived and described by Anderson in 1972 [7], and it achieved major recognition as a
real-world threat in the 1990s with the emergence of practical attacking techniques including
buffer overflow [143], return-into-libc [141], denial of service [153], etc. Defenses have been
proposed and adopted on hardware (e.g., NX bit), operating system (e.g., address space
layout randomization), compiler (e.g., canaries) and software architecture (e.g., sandbox).
On one hand, the defenses set barriers to exploiting a program. On the other hand, they
motivate attackers to develop stealthy attacks, using subtle control flow manipulation tactics
to exploit a program, or utilizing cunning usage patterns to conduct service abuse attacks.
As a result, many modern attacks circumvent existing defenses and set up new challenges
for attack detection and prevention solutions.

Many of the modern program attacks are deliberately planned and developed for profit. They
compromise the confidentiality of sensitive data (e.g., data leak), the integrity of program
logic (e.g., authentication bypass), the availability of services (e.g., denial of service), and
even the financial interests directly (click fraud). Widely deployed defense mechanisms,
such as anti-virus and Network Intrusion Detection Systems (NIDS), are mostly signature-
based and not sufficiently effective against many modern attacks, especially general or newly
developed attacks. Zero-day attacks, which take advantage of the gap between the discovery
of vulnerabilities and the deployment of specific countermeasures, pose severe threats with
respect to the aforementioned attack objectives. For instance, the OpenSSL Heartbleed bug
was publicly disclosed on April 7, 2014 with the patched library released [82]. However,
attackers have made use of this vulnerability before every affected server was patched around

1

Xiaokui Shu Chapter 1. Introduction 2

the globe. The Community Health Systems in the U.S. was breached and 4.5 million social
security numbers and addresses were leaked [64]. Canada Revenue Agency also reported the
leak of 900 social insurance numbers [52].

Data exfiltration – one of the most profitable cyber attack objectives – is becoming a signif-
icant and severe threat from 2010. Reports show that the number of leaked sensitive data
records has grown 10 times in the last 4 years, and it reached a record high of 1.1 billion
in 2014 [157]. A significant portion of the data leak incidents are due to human errors,
for example, a lost or stolen laptop containing unencrypted sensitive files, or transmitting
sensitive data without using end-to-end encryption such as PGP [94]. A recent Kaspersky
Lab survey shows that accidental leak by staff is the leading cause for internal data leaks in
corporates [109], and I focus on the detection of the accidental leaks.

This thesis presents both theoretical and technical advances in program anomaly detection
and data leak detection, the two important defenses against different elements in sophisti-
cated modern attack vectors.

Program anomaly detection models normal program behaviors and detects anomalous ones.
It is not restricted by attack signatures of known program attacks. Therefore, seeking anoma-
lous program behaviors is an effective means of detecting new and unknown program attacks.
Moreover, anomaly detection can reveal early phases of attacks, e.g., heap fengshui [176],
and helps prevent subsequent attack steps from happening. This thesis presents a unified
framework (Chapter 3) for understanding existing and future program anomaly detection
methods [169] and an advanced data mining approach (Chapter 4) for program anomaly de-
tection on long program execution traces [168]. The former serves as a guideline for develop-
ing new program anomaly detection approaches, and the latter validates my systematization
for program anomaly model development towards the theoretical accuracy limit.

Data leak detection is a basic countermeasure against data exfiltration or data loss, and it
serves as a primary step in building sophisticated leak prevention systems. Detecting and
preventing data leaks requires a set of complementary solutions, which may include data-
leak detection [15,92], data confinement [16,140,215], stealthy malware detection [103,106],
and policy enforcement [108]. Among these techniques, network-based data leak detection is
relatively practical and has been adopted by commercial products [76, 180]. Unfortunately,
many common issues in network-based data leak detection have not been systemically studied
in the literature. This thesis studies privacy-preserving data leak detection [166,167] as well
as the detection of transformed data leaks [165, 170–172]. The security model of privacy-
preserving data leak detection is established and the requirements for transformed data leak
detection is discussed. Two detection approaches are presented for privacy-preserving data
leak detection (Chapter 5) and the detection of transformed data leaks (Chapter 6).

In the remaining chapter, I brief the problems and my contributions in program anomaly
detection and network-based data leak detection, which include both theoretical and practical
advances in the fields. These methodology and techniques enable the detection of multiple
elements in complex modern attack vectors with various requirements.

Xiaokui Shu Chapter 1. Introduction 3

1.2 Program Anomaly Detection: Theory and Practices

Program attacks are one of the oldest and fundamental cyber threats, which constitute
one of the technical kernels of latest attack vectors and advanced persistent threats (APT).
Standard defenses built upon retrospects of observed and inspected attacks bear time lags
between emerging attacks and deployed countermeasures, while program anomaly detection
analyzes normal program behaviors instead of the threats. The latter discovers aberrant
executions caused by attacks, misconfigurations, program bugs, and unusual usage patterns.
The merit of anomaly detection is its independence from attack signatures, which enables
proactive defenses against new and unknown threats.

This thesis advances the area of program anomaly detection from both theoretical and prag-
matic aspects. In Chapter 3, I present a unified framework to describe the detection capabil-
ity of any program anomaly detection models [168]. My work on program anomaly detection
abstraction systematizes significant knowledge discovered in the last decades and provides a
unified understanding of detection capability across varieties of program anomaly detection
systems, which establishes a field map for program anomaly detection and provides guid-
ance for future model development. Guided by my framework, I present a program anomaly
detection system in Chapter 4 that leverages machine learning techniques to discover event
co-occurrences during program executions and to detect stealthy attacks that do not cause
illegal control flows [169]. I identify and overcome multiple challenges in modeling program
behaviors within extreme long execution trace segments including behavior space explosion,
diverse normal behaviors, long tail cluster distribution, and flexible tracing granularity.

1.2.1 Program Anomaly Detection in a Unified Framework

Problem: Despite the decades of research and development of program anomaly detection
models, the problem of program anomaly detection has not been formalized. Multiple pro-
gram anomaly detection branches have been established. While each of them is advanced
and supported by its theories and practices, it was difficult to compare the effectiveness of
models between branches [192]. In this thesis, I focus on systematizing knowledge of this area
and studying the following critical questions that have not been answered in the literature.

• How to formalize the detection capability of any detection method?

• What is the theoretical accuracy limit of program anomaly detection?

• How far are existing methods from the limit?

• How can existing methods be improved towards the limit?

Xiaokui Shu Chapter 1. Introduction 4

Contributions: I present a unified framework for program anomaly detection and answered
all the aforementioned questions in Chapter 3. The framework bridges program anomaly de-
tection and formal language theory [169]. Through my formalization, any program anomaly
detection method can be abstracted into a formal language, the detection capability of which
can be compared via Chomsky hierarchy. Detection capability and scope of the norm are
identified as two properties of a detection method in my formalization, and the framework
unifies deterministic and probabilistic detection approaches through different scopes of the
norm. I prove the theoretical accuracy limit of program anomaly detection with an abstract
machine M̃ . M̃ can distinguish any two execution paths as the program itself, thus it can
capture any anomalous program execution if properly trained. I summarize the evolution of
program anomaly detection using my framework and envision several directions for future
development from accuracy and practicality aspects.

1.2.2 Discovery of Event Correlation in Program Behaviors Against
Execution Anomalies

Problem: Modern stealthy exploits can achieve attack goals without introducing illegal con-
trol flows, e.g., tampering with non-control data and waiting for the modified data to prop-
agate and alter the control flow legally. Attacks can be constructed using normal program
execution trace fragments and buried in extreme long execution paths. Existing program
anomaly detection systems focusing on legal control flow attestation and short call sequence
verification are inadequate to detect such stealthy attacks. In this thesis, I point out the
need to analyze long program execution paths and discover event correlations in large-scale
execution windows among millions of instructions for detecting stealthy program attacks
such as non-control data attacks, and denial of service (DoS) attacks.

Contributions: I present a security model for efficient program behavior analysis through
event correlations in large-scale execution windows in Chapter 4. Guided by my framework
in Chapter 3, I invent a two-stage data mining approach for the recognition of diverse normal
call-correlation patterns as well as the detection of program attacks at both inter- and intra-
cluster levels [168]. This approach enables memorizing and reasoning call events in a large
time window. It extends the modeling capability of pushdown automaton (PDA) methods
by relaxing the memory of the detection system from the provisional stack to the entire
program execution history. I implement a prototype of my approach using Python, Pin,
and SystemTap, and demonstrate its effectiveness against three real-world attacks and four
categories of synthetic anomalies with less than 0.01% false positive rates and 0.1ms to
1.3ms analysis overhead per behavior instance (1k to 50k function or system calls).

The proposed method initializes context-sensitive language level detection approaches, but
it does not match the detection capability of the most precise context-sensitive language
approach, e.g., M̃ , due to the absence of element order reasoning in its abstract language,
Bach. Future improvement can be made to include the reasoning of order information in

Xiaokui Shu Chapter 1. Introduction 5

program traces for more precise detection.

1.3 Network-Based Data Leak Detection: Emerging
Paradigms and System Design

Inspecting network traffic and comparing it with tagged sensitive data is a common prac-
tice adopted by commercial network-based data leak detection products to detect inadver-
tent/accidental leaks. The process relies on an effective document deduplication technique,
i.e., shingling (producing n-grams) and fingerprinting (yielding hashes). A sensitivity score
is calculated based on the similarity between the two sets of fingerprints – Jaccard index or
other similarity measures can be used – to indicate whether the sensitive data is leaked.

In this thesis, I relax strong requirements and generalize the standard approach to meet
the settings in various deployment scenarios [165–167,170–172]. In Chapter 5, I remove the
requirement that data leak detection should be processed privately and design a scheme to
make the detection procedure transparent to the operator, which enables data leak detection
outsourcing to semi-honest third parties to leverage their economical computation power and
low system maintenance expenses. In Chapter 6, I generalize similarity measures between
sensitive data and network traffic fingerprint sets to achieve more accurate detection and
meet the high accuracy and performance standards of transformed data leak detection.

1.3.1 Privacy-Preserving Data Leak Detection

Problem: Straightforward detection realizations based on set similarity measures require
precise knowledge of the sensitive data, either in plaintext or fingerprints. However, this
requirement is undesirable, as it may threaten the confidentiality of the sensitive information.
If a detection system is compromised, it may expose the plaintext sensitive data (in memory).
In addition, the data owner may need to outsource the detection to semi-honest providers
without revealing the precise knowledge about the sensitive data.

Contributions: I present a scheme named fuzzy fingerprint to relax the requirement of precise
sensitive data used in the detection procedure in Chapter 5. Fuzzy fingerprints form a special
set of sensitive data digests that are prepared by the data owner and released to the semi-
honest data leak detection provider [166, 167]. The released digests are used to protect
sensitive data from being reversed to genuine fingerprints as well as from being identified
when actual leaks are detected. I describe how a cloud provider can offer their customers
data-leak detection as an add-on service with strong privacy guarantees. The advantage of
my method is that it enables the data owner to safely delegate the detection operation to
a semi-honest provider without revealing the sensitive data to the provider. I implement a
prototype of my privacy-preserving data leak detection protocol using fuzzy fingerprints and

Xiaokui Shu Chapter 1. Introduction 6

evaluated both accuracy and performance of the design in various data leak scenarios.

The proposed approach balances the computation of leak detection between the data owner
and the semi-honest service provider. The amount of computation remained at the data
owner fulfills the privacy goal. In other words, my current design does not allow all compu-
tation to be outsourced to the service provider, and it remains an open question to perform
privacy-preserving data leak detection without data owner in a practical manner.

1.3.2 Detection of Transformed Data Leaks

Problem: Transformation of sensitive data in network traffic poses a severe accuracy issue for
network-based data leak detection solutions. Transformations vary from pervasive character
substitution to data truncation (partial data leak). Standard countermeasures in the industry
rely on human effort to list popular transformations and to write mapping rules for improving
detection accuracy. However, this approach is not scalable and cannot be used for partial
leak detection where set similarity test does not apply. I point out the need to develop
a detection approach that can match generic leak transformations automatically. Regular
expression is not feasible, because transformation rules are unknown in the security model.

Contributions: I bring the idea of sequence alignment to data leak detection and create an
approach detecting generic transformed data leak in Chapter 6. My entire solution achieves
detection objectives including accuracy, performance, and utility by pairing a specialized
dynamic programming local alignment algorithm with a uniquely designed sequence sam-
pling algorithm [165,170–172]. This alignment-based design achieves high detection accuracy
against transformed data leaks: 100% detection rate and 0.8% false positive rate vs. 63.8%
detection rate and 8.9% false positive rate yielded by traditional set-based approaches. I
demonstrate the feasibility of performing data leak detection on high-performance coproces-
sors and the scalability of my design through a GPGPU prototype that achieves 400Mbps
detection throughput on one NVIDIA Tesla C2050 GPU.

The proposed approach utilizes alignment to tolerant transformations and sampling to
achieve good performance. The combination is effective for detecting large pieces of sensitive
data, e.g., contents of documents and emails. Alternative methods such as string matching
should be used when dealing with short and regular data, e.g., credit card information, where
transformation is usually not an issue. High-entropy sensitive data transformations such as
encryption are beyond the scope of my design, and host-based data tracking systems could
be combined to detect such threats.

Chapter 2

Literature Review

Defenses against program attacks and data leaks have been visited and studied in the liter-
ature. In this chapter, I review the development of two fields of defenses, namely program
anomaly detection (Section 2.1) and data leak detection (Section 2.2). I point out unresolved
issues in state-of-the-art solutions and discuss the differences between my approaches and
existing detection methods from both academia and industry. Besides existing solutions to
program anomaly detection and data leak detection, I discuss related fields, such as malware
classification, string matching, and privacy-preserving computation. Security models in the
related fields are explained and compared to the problems studied in this thesis.

2.1 Defenses Against Program Attacks

This section first reviews the development of existing program anomaly detection methods,
or host-based intrusion detection systems (Section 2.1.1). Then I discuss related fields such as
malware classification (Section 2.1.2), event correlation analysis (Section 2.1.3), and defenses
developed against specific attacks (Section 2.1.4).

2.1.1 Program Anomaly Detection

Conventional program anomaly detection systems (aka host-based intrusion detection sys-
tems) follow Denning’s intrusion detection vision [46]. They were designed to detect illegal
control flows or anomalous system calls based on two basic paradigms: n-gram-based dynamic
normal program behavior modeling and automaton-based normal program behavior analysis.
The former was pioneered by Forrest [61], and the latter was formally introduced by Sekar
et al. [160] and Wagner and Dean [192]. Other notable approaches include probabilistic
modeling methods pioneered by Lee and Stolfo [122] and dynamically built state machine

7

Xiaokui Shu Chapter 2. Literature Review 8

first proposed by Kosoresow and Hofmeyr [112]. Later work explored more fine-grained
models [13,72,74] and combined static and dynamic analysis [66].

Each paradigm leads to a fruitful line of models for detecting anomalous calls/returns in
program traces. The n-gram methods are based on an observation that short trace segments
are good indicators of normal program executions, which is true when detecting attacks with
injected anomalous calls, e.g. system() or exec(). However, it is impractical to increase n
for large-scale program trace analysis. The basic n-gram model was further studied in [60,93]
and sophisticated forms were developed, e.g., machine learning model [95, 122]; first-order
Markov model [217], [212]; hidden Markov model [68, 196]; and neural network [71]. Call
arguments were used to precisely define states in [132]. n-gram/lookahead pair frequencies
were studied in [91] and [90]. Beyond program anomaly detection, n-grams are also used
in malware detection [27]. Multithreading handling is discussed in [47]. And pH in [175]
mitigates attacks by delaying anomalous calls.

The other paradigm, i.e., automaton models, aims to model a program not limited to short
system call sequences. It builds an automaton or a pushdown automaton to read the entire
trace at a time. However, reading the entire trace is not equivalent to correlating events
in the transition history. All automaton models in literature are first-order and they only
verify each state transition on its own. Program counter and call stack information were
used by [55, 56, 160] to help precisely define each state (a system call) in an automaton.
Pushdown automaton or its equivalents were employed in many advanced models [55,66,74,
96,131]. Hidden procedure transition information is revealed by inserting flags in particular
procedures [74]. Call arguments are also added in an FSA model [72]. [65] improves FSA
methods by providing an event frequency analysis extension, and it successfully detects DoS
attacks.

Some FSA model develops into pure static analysis and enforcement solutions. One milestone
is control flow integrity (CFI) [1], which statically instruments a program and embeds the
checking for dynamic functions and jumps. It defeats advanced exploits such as return-
oriented programming (ROP) [161] and ROP without returns [34].

In Chapter 3, I show that all anomaly detection paradigms and branches can be unified, as
well as deterministic/probabilistic detection methods. I give a formal definition of program
anomaly detection, and provide a unified framework to explain any program anomaly detec-
tion method. Guided by my framework, I envision a new program anomaly detection branch
and propose a detection method in Chapter 4. The method validates my systematization in
Chapter 3 and detects stealthy program attacks hidden in long program traces not captured
by existing methods.

Xiaokui Shu Chapter 2. Literature Review 9

2.1.2 Malware Classification

Clustering and classification techniques are widely used in malware classification, e.g., [12,63,
149,150]. However, three unique perspectives distinguish the problem I study from malware
detection: i) normal program behaviors are modeled in my anomaly detection problem
instead of malicious ones; ii) inter-cluster detection seeking montage anomalies is critical
and unique to my anomaly detection problem; and iii) program specific information, e.g.,
procedure symbols and addresses, are useful to precisely define normal program behaviors
in my anomaly detection problem. But it is not general across multiple malware samples.
Instead, system call dependencies [12] and traffic event features [150] were used in malware
classification to define abstract malware behaviors. Advanced machine learning techniques,
e.g., graph mining [63] and episodes mining [107], were used to extract significant malware
behaviors as signatures. They are potentially useful for anomaly detection. However, it is
unclear how they can be tailored to achieve my goal in Chapter 4: capturing infrequent-yet-
important normal call patterns.

2.1.3 Event Correlation Analysis and Reasoning

Correlation analysis has been used in network intrusion detection system (NIDS) and botnet
discovery. Comprehensive classification and clustering techniques were developed by Perdisci
et al. to analyze related bytes in traffic payload [147, 148]. The problem is different from
mine in that there is no control flow semantics in most payloads, so NIDS uses n-gram or
lookahead pair underneath. The co-occurrence of synchronized and repetitive bot activities
was studied by Gu et al. [79]. I analyze the co-occurrence of program events to correlate
traversed control flow segments in program executions.

Causality reasoning on network events advances the relationship discovery procedure and
provides detailed insights into event relations. Hao et al. leveraged machine learning meth-
ods to detect malware activities through network traffic analysis [219, 220] and designed
visualization tools to aid security analysts identifying the threats [218]. This approach an-
alyzes a program as a black box from the network perspective. Therefore, the problem is
different from mine.

An interesting work by Gao [67] measures the distance between trace segments using align-
ment. An alignment compares two entire traces directly, thus event co-occurrence is taken
into account. However, the security models are different between mine and Gao’s. [67] is
built for a replica system or N-variant systems [42]. The replica provides one and the only
one reference of normal program behavior, which is different than detecting anomalies from
all normal behavior instances.

Xiaokui Shu Chapter 2. Literature Review 10

2.1.4 Defenses Against Specific Categories of Attacks

Defenses have been proposed against categories of attacks from the perspectives of hardware
(e.g., NX bit), operating system (e.g., address space layout randomization), compiler (e.g.,
canaries) and software architecture (e.g., sandbox) [182]. These defense are built upon the
understanding of specific categories of attacks and abstraction of the attacks. They do not
prevent attacks in new categories or program attacks that have not been studied. And they
they lead to an intertwined developments between intrusion and defense mechanisms.

For example, given the aforementioned defenses, program attacks were developed leverag-
ing unattended/uninspected execution elements, such as return-oriented programming [161],
jump-oriented programming [14, 34], and non-control data attacks [36]. These new attacks
were dissected and studied for developing defenses against them, e.g., Control-flow integrity
(CFI) [1], gadget defender [44,77], data integrity [5,216], and data-flow integrity [31]. How-
ever, new generation of non-control data attack, e.g., Control-Flow Bending [29], Data-
Oriented Exploit [86], are developed to circumvent the CFI mechanisms.

Other solutions against specific attacks include: integer overflow [24, 137, 195], DoS at-
tacks [156], and heap spraying was [49]. Swaddler [40] enforces logic sequences of high-level
tasks in web applications, e.g., tax calculation follows total calculation, through training
state-transition diagrams and statistical analysis representing properties of allowed work-
flow. This approach is inappropriate to be applied to program trace analysis, because of the
high complexity caused by large amounts of program events.

2.2 Data Leak Detection

In this section, I first present commercial data leak detection tools (Section 2.2.1) and sensi-
tive data flow enforcement in the literature (Section 2.2.2). String matching (Section 2.2.3),
alignment (Section 2.2.4) and security application parallelization (Section 2.2.5) are then
reviewed as three techniques tightly related to my transformed data leak detection solution.
Next, privacy-preserving needs and techniques are discussed with respect to my privacy-
preserving data leak detection solution (Section 2.2.6 and Section 2.2.7). Anomaly detection
approaches for identifying data leaks are discussed (Section 2.2.8), and problems similar to
leak detection such as remote execution verification are discussed at last (Section 2.2.9).
Data leak issues due to insufficient anonymization [89], query sanitization [37], or side chan-
nels [19] require different techniques and are not further discussed.

2.2.1 Data Leak Detection with the Bag-of-words Model

Network-based data-leak detection (DLD) typically performs deep packet inspection (DPI)
and searches for any occurrences of sensitive data patterns. DPI is a technique to analyze pay-

Xiaokui Shu Chapter 2. Literature Review 11

loads of IP/TCP packets for inspecting application layer data, e.g., HTTP header/content.
Alerts are triggered when the amount of sensitive data found in traffic passes a thresh-
old. The detection system can be deployed on a router or integrated into existing network
intrusion detection systems (NIDS).

Existing commercial tools and services for data leak prevention include Symantec DLP [180],
IdentityFinder [92], GlobalVelocity [75] and GoCloudDLP [76]. GlobalVelocity uses FPGA
to accelerate the system. Their algorithms are likely based on set intersection, or the bag-
of-words model. Set intersection operation is performed on two sets of n-grams, one from
the content and one from sensitive data. The set intersection gives the amount of sensitive
n-grams appearing in the content. The method has been used to detect similar documents
on the web [22, 155], shared malicious traffic patterns [26], malware [100], as well as email
spam [124]. The advantage of n-grams is the extraction of local features of a string, enabling
the comparison to tolerate discrepancies. Some advanced versions of the set intersection
method utilize Bloom filter [20], e.g., [180], which trades accuracy for space complexity and
speed. Bloom filter configured with a small number of hash functions has collisions, which
introduce additional unwanted false positives. IdentityFinder searches file systems for short
patterns of numbers that may be sensitive (e.g., 16-digit numbers that might be credit card
numbers). It does not provide any in-depth leak detection.

2.2.2 Enforcing Sensitive Data Flow to Prevent Leaks

Another category of approaches for data-leak detection is monitoring and enforcing the
sensitive data flows. The approaches include data flow analysis [203], and taint analysis [215],
legal flow marking [43], and file-descriptor sharing enforcement [140]. These approaches
are different from mine because they do not aim to provide a remote service. However, a
pure network-based solution cannot handle encrypted traffic [187], and these methods are
complementary to my approach in detecting different forms (e.g., encrypted) of data leaks.

Several tools are developed for securing sensitive information on mobile platforms [85, 140,
209]. The work in [140] describes an approach to control the sharing of sensitive files among
mobile applications such as Android apps. File descriptors (not the content) are stored,
tracked and managed. The access control on files is realized through policies. In [209], the
authors aim to detect the transmission of sensitive data that are not intended by smart-
phone users. The work analyzes mobile applications using symbolic execution. [85] describes
a visualization method for informing mobile users of information exposure. The potential
information exposure may be caused by improper setting and configuration of access poli-
cies. The visualization is through a novel avatar apparel approach. The security goals and
requirements in all these studies are different from mine, leading to different techniques.

Xiaokui Shu Chapter 2. Literature Review 12

2.2.3 String Matching and Data Leak Detection

Network intrusion detection systems (NIDS) such as Snort [158] and Bro [146] use regular
expressions to perform string matching [4, 17] in deep packet inspection [45, 127]. Nonde-
terministic finite automaton (NFA) with backtracking requires O(2n) time and O(n) space,
where n is the number of automaton states. Deterministic finite automaton (DFA) has a time
complexity of O(n) and a space complexity of O(2n) when used with quantification. Quan-
tification is for expressing optional characters and multiple occurrences in a pattern. DFA’s
space complexity can be reduced by grouping similar patterns into one automaton [185].
Further studies reduce the number of edges in D2FA [117] and CD2FA [118]. These improve-
ments provide a coefficient level of speedup.

However, neither DFA or NFA is designed to support arbitrary and unpredictable pattern
variations. In comparison, my solution based on sequence alignment covers all possible
pattern variations in long sensitive data without needing to explicitly specify them. Another
drawback of automata is that it provides binary results. In comparison, alignment provides
precise matching scores and allows customized weight functions. The proposed alignment
gives more accurate detection than approximate string matching (e.g., [8, 9]).

String matching techniques lead to straightforward data leak detection solutions such as
keyword search. For instance, iLeak is a system for preventing inadvertent information leaks
on a personal computer [110]. iLeak monitors the file access activities of processes and
searches for system call inputs that involve sensitive data. The sensitive data is matched
using the keyword search functionality provided by the operating system. This method
is easy to implement on a single machine, but it is not applicable to network-wide data
leak detection. It does not capture transformed data leaks as well due to the limitation of
automaton-based string matching methods.

2.2.4 Alignment Algorithms Developed for Security Applications

Alignment algorithms have been widely used in computational biology applications. In secu-
rity literature, NetDialign [104] based on the well-known Dialign algorithms [138] is proposed
for network privacy. It performs differential testing among multiple traffic flows. Kreibich
and Crowcroft presented an alignment algorithm for traffic intrusion detection systems such
as Bro [113]. It is a variant of Jacobson-Vo alignment that calculates the longest common
subsequence with the minimum number of gaps. Data leak detection differs from the above
network privacy and IDS problems, and it has new requirements. The alignment performs
complex inferences needed for aligning sampled sequences, and my solution is also different
from fast non-sample alignments in bioinformatics, e.g., BLAST [6].

Xiaokui Shu Chapter 2. Literature Review 13

2.2.5 Parallelization of Security Applications

Parallelization of conventional IDS has been explored on multi-core CPU, FPGA [186], and
GPU [99]. The work in [201] describes a multi-core CPU Snort optimization. IDS utilizes a
specialized pattern matching processor is reported in [38]. The work in [11] and [173] points
out the technical advantages of GPU (such as flexibility) over FPGA in network intrusion
detection. Several pattern matching algorithms have been implemented with GPU, e.g.,
Gnort [188] and a GPU version of Wu-Manber pattern matching algorithm [87]. The work
in [189] presents a GPU-based architecture for intrusion detection that can achieve high-
speed I/O performance. I also utilize GPU to parallelize my prototype. With parallel design
inherent in my algorithms, the prototype shows good scalability.

2.2.6 Privacy-preserving Data Leak Detection

There have been several advances in understanding the privacy needs [111] or the privacy
requirement of security applications [206]. In this thesis, I identify the privacy needs in an
outsourced data-leak detection service and tackle the unique data-leak detection problem in
an outsourced setting where the DLD provider is not fully trusted. Such privacy requirement
does not exist in traditional security applications, e.g., the virus signatures are non-sensitive
in the virus-scan paradigm [81].

Bloom filter is a space-saving data structure for set membership test [20], and it is a basic
building block of many network security solutions, e.g., [69], [194]. The fuzzy Bloom filter
introduced in [135] constructs a special Bloom filter that probabilistically sets the corre-
sponding filter bits to 1’s, which, on its own, does not prevent a DLD provider from learning
leaked data in the traffic.

Most of commercial data leak detection tools do not provide the privacy-preserving feature,
thus they cannot be outsourced. One exception is GoCloudDLP [76], which allows the
customers to outsource the detection to a fully honest DLD provider. My fuzzy fingerprint
method differs from these solutions and enables its adopter to provide data-leak detection
as a service without the fully trust in the service provider.

2.2.7 General Privacy-preserving Frameworks

Privacy-preserving keyword search [178] or fuzzy keyword search [123] provide string match-
ing approaches in semi-honest environments, but keywords usually do not cover enough
sensitive data segments for data-leak detection.

Besides my fuzzy fingerprint solution for data-leak detection, there are other privacy-preserving
techniques invented for specific processes, e.g., DNA matching [184], or for general purpose
use, e.g., secure multi-party computation (SMC). Similar to string matching methods dis-

Xiaokui Shu Chapter 2. Literature Review 14

cussed above, [184] uses anonymous automata to perform the comparison. SMC [210] is
a cryptographic mechanism, which supports a wide range of fundamental arithmetic, set,
and string operations as well as complex functions such as knapsack computation [211],
automated trouble-shooting [88], network event statistics [25, 199], private information re-
trieval [214], genomic computation [102], private database query [213], private join oper-
ations [28], and distributed data mining [97]. The provable privacy guarantees offered by
SMC comes at a cost regarding computational complexity and realization difficulty. The
advantage of my fingerprint filter approach is its concision and efficiency.

2.2.8 Discovering Traces of Data Leaks via Anomalous Traffic De-
tection

Anomaly detection in network traffic can be used to detect data leaks. Borders and Prakash
proposed a solution to detect any substantial amount of new information in the traffic [15],
and Fawcett analyzed entropy to identify anomalous leak patterns [53]. I present a signature-
based model to detect data leaks and focus on the design that can be outsourced. Thus, the
two approaches are different.

2.2.9 Remote Execution Verification

Another work similar to my outsourced data-leak detection is the verification of outsourced
execution. Du et al. proposed a solution testing whether deliberately sent chaff (surrounded
by normal input) is processed or not after harvest [48]. The goal is to verify whether the ser-
vice provider performs the operation, and it is different from the privacy goal in Chapter 5.

Chapter 3

Program Anomaly Detection in a
Unified Framework

3.1 Introduction

In this chapter, I formalize one area of intrusion detection, namely program anomaly detection
or host-based intrusion detection [163]. The area focuses on intrusion detection in the context
of program executions. It was pioneered by Forrest et al., whose work was inspired by the
analogy between intrusion detection for programs and the immune mechanism in biology [59].

Evaluating the detection capability of program anomaly detection methods is always chal-
lenging [192]. Individual attacks do not cover all anomalous cases that a program anomaly
detection system detects. Control-flow based metrics, such as average branching factor, are
developed for evaluating specific groups of program anomaly detection methods [192]. How-
ever, none of the existing metrics is general for evaluating an arbitrary program anomaly
detection system.

Several surveys summarized program anomaly detection methods from different perspectives
and pointed out relations among several methods. Forrest et al. summarized existing meth-
ods from the perspective of system call monitoring [60]. Feng et al. formalized automaton
based methods in [55]. Chandola et al. described program anomaly detection as a sequence
analysis problem [32]. Chandola et al. provided a survey of machine learning approaches
in [33]. The connection between an n-gram method and its automaton representation is first
stated by Wagner [193]. Sharif et al. proved that any system call sequence based method
can be simulated by a control-flow based method [163].

However, several critical questions about program anomaly detection have not been answered
by existing studies and summaries.

1. How to formalize the detection capability of any detection method?

15

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 16

2. What is the theoretical accuracy limit of program anomaly detection?

3. How far are existing methods from the limit?

4. How can existing methods be improved towards the limit?

I answer all these questions in this chapter. I unify any existing or future program anomaly
detection method through its detection capability in a formal framework. I prove the theoret-
ical accuracy limit of program anomaly detection methods and illustrate it in my framework.
Instead of presenting every proposed method in the literature, I select and explain existing
milestone detection methods that indicate the evolution of program anomaly detection. My
analysis helps understand the most critical steps in the evolution and points out the unsolved
challenges and research problems.

The contributions of this chapter are summarized as follows.

1. I formalize the general security model for program anomaly detection. I prove that
the detection capability of a method is determined by the expressiveness of its corre-
sponding language (Section 3.2).

2. I point out two independent properties of program anomaly detection: precision and the
scope of the norm. I explain the relation between precision and deterministic/probabilistic
detection methods (Section 3.2).

3. I present the theoretical accuracy limit of program anomaly detection with an abstract
machine M̃ . I prove that M̃ can characterize traces as precise as the executing program
(Section 3.3).

4. I develop a hierarchal framework unifying any program anomaly detection method
according to its detection capability. I mark the positions of existing methods in
my framework and point out the gap between the state-of-the-art methods and the
theoretical accuracy limit (Section 3.5).

5. I explain the evolution of program anomaly detection solutions. I envision future
program anomaly detection systems with features such as full path sensitivity and
higher-order relation description (Section 3.6).

6. I compare program anomaly detection with control-flow enforcement. I point my their
similarities in techniques/results and explain their different perspectives approaching
program/process security (Section 3.7).

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 17

3.2 Formal Definitions for Program Anomaly Detection

I formally define the problem of program anomaly detection and present the security model
for detection systems. Then I discuss the two independent properties of a program anomaly
detection method: the detection capability and the scope of the norm. Last, I give an
overview of my unified framework.

3.2.1 Security Model

Considering both transactional (terminating after a transaction/computation) and contin-
uous (constantly running) program executions, I define a precise program trace based
on an autonomous portion of a program execution, which is a consistent and relatively in-
dependent execution segment that can be isolated from the remaining execution, e.g., an
routine, an event handling procedure (for event-driven programs), a complete execution of a
program, etc.

Definition 3.2.1. A precise program trace T is the sequence of all instructions executed in
an autonomous execution portion of a program.

T is usually recorded as the sequence of all executed instruction addresses1 and instruction
arguments. In real-world executions, addresses of basic blocks can be used to record T
without loss of generality since instructions within a basic block are executed in a sequence.

I formalize the problem of program anomaly detection in Definition 3.2.2.

Definition 3.2.2. Program anomaly detection is a decision problem whether a precise pro-
gram trace T is accepted by a language L. L presents the set of all normal precise program
traces in either a deterministic means (L = {T | T is normal}) or a probabilistic means
(L = {T | P (T) > η}).

In Definition 3.2.2, η is a probabilistic threshold for selecting normal traces from arbitrary
traces that consist of instruction addresses. Either parametric and non-parametric proba-
bilistic methods can construct probabilistic detection models.

In reality, no program anomaly detection system uses T to describe program executions due
to the significant tracing overhead. Instead, a practical program trace is commonly used
in real-world systems.

Definition 3.2.3. A practical program trace T̈ is a subsequence of a precise program trace T.
The subsequence is formed based on alphabet Σ, a selected/traced subset of all instructions,
e.g., system calls.

1Instruction addresses are unique identifiers of specific instructions.

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 18

I list three categories of commonly used practical traces in real-world program anomaly de-
tection systems. The traces result in black-box, gray-box, and white-box detection approaches
with an increasing level of modeling granularity.

• Black-box level traces: only the communications between the process and the operating
system kernel, i.e., system calls, are monitored. This level of practical traces has the
smallest size of Σ among the three. It is the coarsest trace level while obtaining the
trace incurs the smallest tracing overhead.

• White-box level traces: all (or a part of) kernel-space and user-space activities of a
process are monitored. An extremely precise white-box level trace T̈ is exactly a
precise trace T where all instructions are monitored. However, real-world white-box
level traces usually define Σ as the set of function calls to expose the call stack activity.

• Gray-box level traces: a limited white-box level without the complete static program
analysis information [66], e.g., all control-flow graphs. Σ of a gray-box level trace only
contains symbols (function calls, system calls, etc.) that appear in dynamic traces.

I describe the general security model of a real-world program anomaly detection system in
Definition 3.2.4. The security model derives from Definition 3.2.2 but measures program
executions using T̈ instead of T.

Definition 3.2.4. A real-world program anomaly detection system Λ defines a language LΛ

(a deterministic or probabilistic set of normal practical program traces) and establishes an
attestation procedure GΛ to test whether a practical program trace T̈ is accepted by LΛ.

A program anomaly detection system Λ usually consist of two phases: training and de-
tection. Training is the procedure forming LΛ and building GΛ from known normal traces
{T̈ | T̈ is normal}. Detection is the runtime procedure testing incoming traces against
LΛ using GΛ. Traces that cannot be accepted by LΛ in the detection phase are logged or
aggregated for alarm generation.

3.2.2 Detection Capability

The detection capability of a program anomaly detection method Λ is its ability to detect
attacks or anomalous program behaviors. Detection capability of a detection system Λ is
characterized by the precision of Λ. I define precision of Λ as the ability of Λ to distin-
guish different precise program traces in Definition 3.2.5. This concept is independent of
whether the scope of the norm is deterministically or probabilistically established (discussed
in Section 3.2.3).

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 19

Definition 3.2.5. Given a program anomaly detection method Λ and any practical program
trace T̈ that Λ accepts, the precision of Λ is the average number of precise program traces T
that share an identical subsequence T̈.

My definition of program anomaly detection system precision is a generalization of average
branching factor (using regular grammar to approximate the description of precise program
traces) [192] and average reachability measure (using context-free grammar to approximate
the description of precise program traces) [72]. The generation is achieved through the using
of T, the most precise description of a program execution. average in Definition 3.2.5 can
be replaced by other aggregation function for customized evaluation.

I formalize the relation between the expressive power of LΛ (defined by detection method Λ)
and the detection capability of Λ in Theorem 3.2.1.

Theorem 3.2.1. The detection capability of a program anomaly detection method Λ is de-
termined by the expressive power of the language LΛ corresponding to Λ.

Proof. Consider two detection methods Λ1 (LΛ1) and Λ2 (LΛ2) where Λ1 is more precise than
Λ2, one can always find two precise program traces T1/T2, so that T1/T2 are expressed by
LΛ1 in two different practical traces T̈1Λ1/T̈2Λ1 , but they can only be expressed by LΛ2 as
an identical T̈Λ2 . Because the definition of the norm is subjective to the need of a detection
system, in theory, one can set T1/T2 to be normal/anomalous, respectively. In summary, Λ1

with a more expressive LΛ1 can detect the attack T2 via practical trace T̈2Λ1 , but Λ2 cannot.

Theorem 3.2.1 enables the comparison between detection capabilities of different detection
systems through their corresponding languages. It lays the foundation of my unified frame-
work. The more expressive LΛ describes a normal precise trace T through a practical trace
T̈, the less likely an attacker can construct an attack trace T′ mimicking T without being
detected by Λ.

3.2.3 Scope of the Norm

Not all anomaly detection systems agree on whether a specific program behavior (a precise
program trace T) is normal or not. Even given the set of all practical program traces Σ∗

with respect to a specific alphabet Σ (e.g., all system calls), two detection systems Λ1 and
Λ2 may disagree on whether a specific T̈ ∈ Σ∗ is normal or not. Σ∗ denotes the set of all
possible strings/traces over Σ.

Definition 3.2.6. The scope of the norm SΛ (of a program anomaly detection system Λ) is
the selection of practical traces to be accepted by LΛ.

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 20

While LΛ is the set of all normal practical traces, SΛ emphasizes on the selection process to
build LΛ, but not the expressive power (detection capability) of LΛ. SΛ does not influence
the detection capability of Λ.

For instance, VPStatic [55] (denoted as Λs) utilizes a pushdown automaton (PDA) to describe
practical program traces. Therefore, its precision is determined by the expressiveness of
context-free languages2. SΛs is all legal control flows specified in the binary of the program.
VtPath [56] (denoted as Λv) is another PDA approach, but SΛv is defined based on dynamic
traces. Since dynamic traces commonly forms a subset of all feasible execution paths, there
exists T̈ not in the training set of Λ2. Thus, T̈ will be recognized as anomalous by Λ2 yet
normal by Λ1. Because the precisions of Λ1 and Λ2 are the same, Λ2 can be made to detect
T̈ as normal by including T̈ in its training set (changing SΛv).

There are two types of scopes of the norm:

• Deterministic scope of the norm is achieved through a deterministic language
LΛ = {T̈ | T̈ is normal}. Program anomaly detection systems based on finite state
automata (FSA), PDA, etc. belong to this category.

• Probabilistic scope of the norm is achieved through a stochastic language LΛ =
{T̈ | P (T̈) > η}. Different probability threshold η results in different SΛ and different
LΛ/Λ. Program anomaly detection systems based on hidden Markov model, one-class
SVM, etc. belong to this category.

3.2.4 Overview of My Unified Framework

I develop a unified framework presenting any program anomaly detection method Λ. My
framework unifies Λ by the expressive power of LΛ.

I illustrate my unified framework in Fig. 3.1 showing its hierarchical structure3. In Fig. 3.1,
L-1 to L-4 indicate four major precision levels with decreasing detection capabilities ac-
cording to the expressive power of LΛ. The order of precision levels marks the potential
of approaches within these levels, but not necessarily the practical detection capability of a
specific method4. My design is based on both the well-defined levels in Chomsky hierarchy
and the existing milestones in the evolution of program anomaly detection.

L-1: context-sensitive language level (most powerful level)
2Context-sensitive languages correspond to pushdown automata.
3The hierarchy is reasoned via Chomsky hierarchy [39], which presents the hierarchical relation among

formal grammars/languages.
4For example, one detection approach Λa in L-2 without argument analysis could be less capable of

detecting attacks than an approach Λb in L-3 with argument analysis.

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 21

Õ
L-1

L-2

L-3

L-4

Path sensitivity

Flow sensitivity

co-oc

VPStatic, VtPath,
Dyck, DFAD

Statically built FSA

ESD

n-gram, dynamic DFA

Individual event analysis

Theoretical accuracy limit M

Figure 3.1: The hierarchy of my program anomaly detection framework. L-1 to L-4 are four
major precision levels with decreasing detection capabilities.

L-2: context-free language level

L-3: regular language level

L-4: restricted regular language level (least powerful level)

The restricted regular language corresponding to L-4 does not enforce specific adjacent el-
ements for any element in a string (program trace). Two optional properties within L-1,
L-2 and L-3 are path sensitivity and flow sensitivity (Section 3.5.2). I prove the theoreti-
cal accuracy limit (the outmost circle in Fig. 3.1) in Section 3.3 with an abstract detection
machine M̃ . I abstract existing methods in Section 3.4 and identify their positions in my
unified framework in Section 3.5. I present details of my framework and point out the con-
nection between levels in my framework and grammars in Chomsky hierarchy in Section 3.5.
I describe the evolution from L-4 methods to L-1 methods in Section 3.6.2.

3.3 Accuracy Limit of Program Anomaly Detection

I describe an abstract detection machine, M̃ , to differentiate between any two precise pro-
gram traces. Thus, M̃ detects any anomalous program traces given a scope of the norm. A
practical program trace T̈ that M̃ consumes is a precise program trace T. I prove that M̃ has
the identical capability of differentiating between traces (execution paths) as the program
itself. Therefore, M̃ is the accuracy limit of program anomaly detection models.

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 22

Table 3.1: Descriptions of symbols in M̃ . All sets are of finite sizes.

Name Description

Q States Set of states
Σ Input alphabet Set of input symbols
Γ Stack alphabet Set of symbols on the stack
A Register addresses Set of addresses of all registers
Ω Register alphabet Set of symbols stored in registers
δ Transition relation Subset of Q× (Σ ∪ {ε})× Γ× Ω∗ ×Q× Γ∗ × Ω∗

s0 Initial state State to start, s0 ∈ Q
Z Initial stack symbol Initial symbol on the stack, Z ⊆ Q

F Final states Set of states where T̈ is accepted, F ⊆ Q

ε denotes an empty string.
Ω∗ or Γ∗ denotes a string over alphabet Ω or Γ, respectively.

3.3.1 The Ultimate Detection Machine

The abstract machine M̃ is a 9-tuple M̃ = (Q,Σ,Γ, A,Ω, δ, s0, Z, F) where the symbols are
described in Table 3.1. M̃ operates from s0. If an input string/trace T̈ reaches a final state
in F , then T̈ is a normal trace.

M̃ consists of three components: a finite state machine, a stack Π, and a random-access
register Υ. In M̃ , both Π and Υ are of finite sizes. Indirect addressing, i.e., the value
of a register can be dereferenced as an address of another register, is supported by Υ and
A ⊂ Ω. Because a random-access register can simulate a stack, Π can be omitted in M̃
without any computation power loss. I keep Π in M̃ to mimic the execution of a real-
world program. It helps extend M̃ for multi-threading (Section 3.3.3) and unify M̃ in my
framework (Section 3.5.1).

A transition in M̃ is defined by δ, which is a mapping from (Σ ∪ {ε}) × Q × Γ × Ω∗ to
Q×Γ∗×Ω∗. Given an input symbol σ ∈ Σ∪ {ε}, the current state q ∈ Q, the stack symbol
γ ∈ Γ (stack top), and all symbols in the register {ωi | ωi ∈ Ω, 0 ≤ i ≤ |A|}, the rules in δ
chooses a new state q′ ∈ Q, pops γ, pushes zero or more stack symbols γ0γ1γ2 . . . onto the
stack, and update {ωi}.

3.3.2 The Equivalent Abstract Machine of An Executing Program

I state the precision of the abstract detection machine M̃ in Theorem 3.3.1 and interpreter
both sufficiency and necessity aspects of the theorem.

Theorem 3.3.1. M̃ is as precise as the target program; M̃ can detect any anomalous traces
if the scope of the norm is specified and M̃ is constructed.

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 23

Sufficiency: M̃ has the same computation power as any real-world executing program so
that LM̃ can differentiate any two precise program traces.

Necessity: detection machines that are less powerful than M̃ cannot differentiate any two
arbitrary precise program traces of the target program.

Although a Turing machine is commonly used to model a real-world program in execution,
an executing program actually has limited resources (the tape length, the random access
memory size or the address symbol count) different from a Turing machine. This restricted
Turing machine is abstracted as linear bounded automaton [84]. I prove Theorem 3.3.1 by
Lemma 3.3.1 and Lemma 3.3.2.

Lemma 3.3.1. A program that is executing on a real-world machine is equivalent to a linear
bounded automaton (LBA).

Lemma 3.3.2. M̃ is equivalent to a linear bounded automaton.

Proof. I prove that M̃ is equivalent to an abstract machine M̈ and M̈ is equivalent to an
LBA, so M̃ is equivalent to an LBA.

M̈ is an abstract machine similar to M̃ except that Υ (the register) in M̃ is replaced by two
stacks Π0 and Π1. size(Υ) = size(Π0) + size(Π1).

I prove that M̃ and M̈ can simulate each other below.

• One random-access register can simulate one stack with simple access rules (i.e., last
in, first out) enforced. Thus, Υ can be split into two non-overlapping register sections
to simulate Π0 and Π1.

• Π0 and Π1 together can simulate Υ by filling Π0 with initial stack symbol Z to its
maximum height and leaving Π1 empty. All the elements in Π0 are counterparts of
all the units in Υ. The depth of an element in Π0 maps to the address of a unit in
Υ. To access an arbitrary element e in Π0, one pops all elements higher than e in Π0

and pushes them into Π1 until e is retrieved. After the access to e, elements in Π1 are
popped and pushed back into Π0.

M̈ is equivalent to an LBA: M̈ consists of a finite state machine and three stacks, Π
(same as Π in M̃), Π0,Π1 (the two-stack replacement of Υ in M̃). M̈ with three stacks is
equivalent to an abstract machine with two stacks [144]. Two stacks is equivalent to a finite
tape when concatenating them head to head. Thus, M̈ is equivalent to an abstract machine
consisting of a finite state machine and a finite tape, which is a linear bounded automaton.

In summary, M̃ is equivalent to an LBA and Lemma 3.3.2 holds.

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 24

3.3.3 Usage and Discussion

Operation of M̃ : M̃ consists of a random-access register Υ and a stack Π. The design of M̃
follows the abstraction of an executing program. Π simulates the call stack of a process and
Υ simulates the heap. The transition δ in M̃ is determined by the input symbol, symbols in
Υ and the top of Π, which is comparable to a real-world process. Given a precise trace T of
a program, M̃ can be operated by emulating all events (instructions) of T through M̃ .

Multi-threading handling: although M̃ does not model multi-threading program execu-
tions, it can be easily extended to fulfill the job. The basic idea is to model each thread
using an M̃ . Threads creating, forking and joining can be handled by copying the finite
state machine and stack of an M̃ to a new one or merging two M̃s. δ needs to be extended
according to the shared register access among different M̃s as well as the joining operation
between M̃s.

Challenges to realize M̃ in practice: M̃ serves as a theoretical accuracy limit. It cannot
be efficiently realized in the real world because

1. The number of normal precise traces is infinite.

2. The scope of the norm requires a non-polynomial time algorithm to learn.

The first challenge is due to the fact that a trace T̈ of a program can be of any length, e.g., a
continuous (constantly running) program generates traces in arbitrary lengths until it halts.
Most existing approaches do not have the problem because they only model short segments
of traces (e.g., n-grams with a small n [60], first-order automaton transition verification [55]).

Pure dynamic analysis cannot provide a complete scope of the norm. The second challenge
emerges when one performs comprehensive static program analysis to build M̃ . For example,
one well-known exponential complexity task is to discover induction variables and correlate
different control-flow branches.

3.4 Abstractions of Existing Detection Methods

In this section, I analyze existing program anomaly detection models and abstract them
in five categories. I identify their precision (or detection capability) in my framework in
Section 3.5.

Finite state automaton (FSA) methods represent the category of program anomaly
detection methods that explicitly employs an FSA. Kosoresow and Hofmeyr first utilized a
deterministic finite state automaton (DFA) to characterize normal program traces [112] via

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 25

black-box level traces (building a DFA for system call traces). Sekar et al. improved the
FSA method by adopting a limited gray-box view [160]. Sekar’s method retrieves program
counter information for every traced system call. If two system calls and program counters
are the same, the same automaton state is used in the FSA construction procedure.

Abstraction: all FSA methods explicitly build an FSA for modeling normal program traces.
A transition of such an FSA can be described in (3.1). pi is an automaton state that is
mapped to one or a set of program states. Each program state can be identified by a system
call (black-box level traces) or a combination of system call and program counter (gray-box
level traces). s∗ denotes a string of one or more system calls.

pi
s∗−→ pi+1 (3.1)

n-gram methods represent the category of program anomaly detection methods those
utilize sequence fragments to characterize program behaviors. n-grams are n-item-long5

substrings6 of a long trace, and they are usually generated by sliding a window (of length
n) on the trace. The assumption underlying n-gram methods is that short trace fragments
are good features differentiating normal and anomalous long system call traces [61]. A basic
n-gram method tests whether every n-gram is in the known set of normal n-grams [60].

Abstraction: a set of n-gram (of normal program behaviors) is equivalent to an FSA
where each state is an n-gram [193]. A transition of such an FSA can be described in (3.2).
The transition is recognized when there exist two normal n-grams, (s0, s1, . . . , sn−1) and
(s1, . . . , sn−1, sn), in any normal program traces.

(s0, s1, . . . , sn−1)
sn−→ (s1, . . . , sn−1, sn) (3.2)

Since n-gram methods are built on a membership test, various deterministic [134, 197] and
probabilistic [51,196] means are developed to define the scope of the norm (the set of normal
n-grams) and perform the membership test. And system call arguments were added to
describe system calls in more details [27,177,183].

Pushdown automaton (PDA) methods represent the category of program anomaly
detection methods those utilize a PDA or its equivalents to model program behaviors. DPA
methods are more precise than FSA methods because they can simulate user-space call stack
activities [56].

An FSA connects control-flow graphs (CFGs) of all procedures into a monomorphic graph,
which lacks the ability to describe direct or indirect recursive function calls [78,192]. A PDA,
in contrast, keeps CFGs isolated and utilizes a stack to record and verify function calls or
returns [55,56,73]. Thus, it can describe recursions. However, only exposing the stack when

5n can be either a fixed value or a variable [134,198].
6Lookahead pair methods are subsequent variants of n-gram methods [93].

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 26

system calls occur is not enough to construct a deterministic DPA [55]. There could be
multiple potential paths transiting from one observed stack state Γi to the next stack state
Γi+1. Giffin et al. fully exposed all stack activities in Dyck model [74] by embedding loggers
for function calls and returns via binary rewriting.

Abstraction: a typical PDA method consumes white-box level traces [55] or gray-box level
traces [131]. The internal (user-space) activities of the running program between system
calls are simulated by the PDA. Denote a system call as s and a procedure transition as f .
I describe the general PDA transition in (3.3) where Γi/Γi+1 is the stack before/after the
transition, respectively.

pi,Γi
f or s−−−→ pi+1,Γi+1 (3.3)

System call arguments can be added to describe calls in more details like they are used in
previous models. In addition, Bhatkar et al. utilized data-flow analysis to provide complex
system call arguments verification, e.g., unary and binary relations [13]. Giffin et al. extended
system call arguments to environment values, e.g., configurations, and built an environment-
sensitive method [72].

Probabilistic methods differ from deterministic program anomaly detection approaches
that they use stochastic languages to define the scope of the norm (Section 3.2.3). Stochastic
languages are probabilistic counterparts of deterministic languages (e.g., regular languages).
From the automaton perspective, stochastic languages correspond to automata with proba-
bilistic transition edges.

Abstraction: existing probabilistic program anomaly detection methods are probabilistic
counterparts of FSA, because they either use n-grams or FSA with probabilistic transitions
edges. Typical probabilistic detection methods include hidden Markov model (HMM) [196,
205], classification methods [50, 114, 125, 139], artificial neural network [70], data mining
approaches [122], etc. Gu et al. presented a supervised statistical learning model, which
uses control-flow graphs to help the training of its probabilistic model [80].

Probabilistic FSA does not maintain call stack structures7, and it constrains existing prob-
abilistic approaches from modeling recursions precisely. In theory, FSA and probabilistic
FSA only differ in their scopes of the norm; one is deterministic the other is probabilistic.
The precision or detection capability of the two are the same as explained in Section 3.2.3.
Different thresholds in parametric probabilistic models define different scopes of the norm,
but they do not directly impact the precision of a model.

N-variant methods define the scope of the norm with respect to the current execution
path under detection. They are different from the majority of detection methods that define
the scope of the norm as all possible normal execution paths.

7Probabilistic PDA has not been explored by the anomaly detection community.

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 27

Table 3.2: Precision levels in my framework, from the most to the least accurate.

Precision Levels Limitationa Chomsky Level

L-1 methods Program execution equivalent Type-1 grammars
L-2 methods First-order reasoning Type-2 grammars
L-3 methods Cannot pair calls and returns Type-3 grammars
L-4 methods Individual event test Type-3 grammars
a The key feature that distinguishes this level from a level of higher precision.
b The restricted regular language does not enforce specific adjacent events for any event in a program

trace.

In N-variant methods, a program is executed with n replicas [42]. When one of them is
compromised, others – that are executed with different settings or in different environments
– could remain normal.

The anomaly detection problem in N-variant methods is to tell whether one of the concur-
rently running replicas is behaving differently from its peers; N-variant methods calculate
the behavior distance among process replicas. Gao et al. proposed a deterministic alignment
model [67] and probabilistic hidden Markov model [68] to calculate the distances.

Abstraction: existing N-variant models are FSA or probabilistic FSA equivalents. The
precision is limited by their program execution description based on n-grams. This descrip-
tion forms a deterministic/probabilistic FSA model underlying the two existing N-variant
methods.

3.5 Unification Framework

I develop a hierarchical framework to uniformly present any program anomaly detection
method in terms of its detection capability. I identify the detection capabilities of exist-
ing program anomaly detection methods (Section 3.4) and the theoretical accuracy limit
(Section 3.3) in my framework.

3.5.1 Major Precision Levels of Program Anomaly Detection

I abstract any program anomaly detection method Λ through its equivalent abstract machine.
Λ is unified according to the language LΛ corresponding to the abstract machine. I summarize
four major precision levels defined in my unified framework in Table 3.2. I describe them in
detail below in the order of an increasing detection capability.

L-4: restricted regular language level. The most intuitive program anomaly detection

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 28

model, which reasons events individually, e.g., a system call with or without arguments. No
event correlation is recorded or analyzed.

An L-4 method corresponds to a restricted FSA, which accepts a simple type of regular
languages L4 that does not enforce specific adjacent elements for any element in a string
(practical program trace T̈).

L-4 methods are the weakest detection model among the four. It is effective only when
anomalous program executions can be indicated by individual events. For example, sys_open()
with argument “/etc/passwd” indicates an anomaly.

A canonical example of L-4 methods is to analyze individual system events in system logs
and summarize the result through machine learning mechanisms [50].

L-3: regular language level. The intermediate program anomaly detection model, which
records and verifies first-order event transitions (i.e., the relation between a pair of adjacent
events in a trace, which is an extra feature over L-4 methods) using type-3 languages (regular
grammar).

An L-3 method corresponds to an FSA, which naturally describes first-order transitions
between states. Each state can be defined as one or multiple events, e.g., a system call,
n-grams of system calls. One state can be detailed using its arguments, call-sites, etc. The
formal language L3 used to describe normal traces in an L-3 method is a type-3 language.

L-3 methods consume black-box traces. The monitoring is efficient because internal activities
are not exposed. However, L-3 methods cannot take advantage of exposed internal activities
of an executing program. For example, procedure returns cannot be verified by L-3 methods
because L3 (regular grammar) cannot pair arbitrary events in traces; L-3 methods cannot
model recursions well.

Canonical L-3 methods include DFA program anomaly detection [112], n-grams methods [61],
statically built FSA [160], and FSA with call arguments [27].

L-2: context-free language level. The advanced program execution model, which veri-
fies first-order event transitions with full knowledge (aware of any instructions) of program
internal activities in the user space.

An L-2 method corresponds to a PDA, which expands the description of an FSA state with
a stack (last in, first out). Procedure transitions (nested call-sites) can be stored in the
stack so that L-2 methods can verify the return of each function/library/system call. The
formal language L2 used to describe normal traces in an L-2 method is a type-2 (context-free)
language.

Gray-box or white-box traces are required to expose program internal activities (e.g., pro-
cedure transitions) so that the stack can be maintained in L-2 methods. Walking the stack
when a system call occurs is an efficient stack expose technique [56]. However, the stack

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 29

change between system calls is nondeterministic. A more expensive approach exposes every
procedure transition via code instrumentation [74], so that the stack is deterministic.

Canonical L-2 methods include VPStatic [55], VtPath [56], and Dyck [74]. Moreover, Bhatkar
et al. applied argument analysis with data-flow analysis (referred to by us as DFAD) [13], and
Giffin et al. correlated arguments and environmental variables with system calls (referred to
by us as ESD) [72].

L-1: context-sensitive language level. The most accurate program anomaly detection
model in theory, which verifies higher-order event transitions with full knowledge of program
internal activities.

L-1 methods correspond to a higher-order PDA, which extends a PDA with non-adjacent
event correlations, e.g., induction variables.

I develop Theorem 3.5.1 showing that higher-order PDA and M̃ (Section 3.3) are equivalent
in their computation power. The proof of Theorem 3.3.1 points out M̃ and linear bounded
automaton (LBA) are equivalent. Therefore, these three are abstract machines representing
the most accurate program anomaly detection.

The formal language L1 used to describe normal traces in an L-1 method is a type-1 (context-
sensitive) language.

I formally describe an L-1 method, i.e., M̃ , in Section 3.3. Any other LBA or M̃ equivalents
are also L-1 methods.

Theorem 3.5.1. L-1 methods are as precise as the target executing program.

I provide a proof sketch for Theorem 3.5.1. First, M̃ is as precise as the executing program
(Theorem 3.3.1 in Section 3.3). Next, I give the sketch of the proof that the abstract
machine of L-1 methods, i.e., a higher-order PDA, is equivalent to M̃ : a higher-order PDA
characterizes cross-serial dependencies [18], i.e., correlations between non-adjacent events.
Therefore, it accepts context-sensitive languages [164], which is type-1 languages accepted
by M̃ .

Although the general context-sensitive model (higher-order PDA or M̃) has not been realized
in the literature, Shu et al. demonstrated the construction of a constrained context-sensitive
language model (co-oc in Fig. 3.1) [168]. The model quantitatively characterizes the co-
occurrence relation among non-adjacent function calls in a long trace. Its abstraction is the
context-sensitive language Bach [152].

Probabilistic detection methods and my hierarchy are orthogonal. The reason is
that probabilistic models affect the scope of the norm definition, but not the precision of
the detection (explained in Section 3.2.3). For instance, a probabilistic FSA method (e.g.,
HMM [196,205], classification based on n-grams [50,139]) is an L-3 method. It cannot model
recursion well because there is no stack in the model. The precision of a probabilistic FSA

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 30

Table 3.3: Terminology of sensitivity in program anomaly detection.

Calling context Flow Path Environment

Sensitive Objects Call sites Instruction Branch Arguments
order dependency configurations

Precision Levela L-4 L-3 L-2 L-2
Descriptionb RL RL CFL CFL

a The least precise level required to specify the sensitivity.
b The least powerful formal language required for describing the sensitivity.

RL: regular language. CFL: context-free language.

method is the same as the precision of a deterministic FSA method, except that the scope
of the norm is defined probabilistically. A similar analysis holds for N-variant methods. All
existing N-variant methods [67,68] are L-3 methods.

Instruction arguments are part of events in T. However, argument analysis does not
increase the precision level of a detection method, e.g., an n-gram approach with argument
reasoning is still an L-3 approach.

3.5.2 Sensitivity in a Nutshell

I describe optional properties (sensitivities) within L-1 to L-3 in my hierarchical framework
with respect to sensitivity terms introduced from program analysis. I summarize the termi-
nology of sensitivity in Table 3.3 and explain them and their relation to my framework.

Calling context sensitivity concerns the call-site of a call. In other words, it distinguishes
a system/function call through different callers or call-sites. Calling-context-sensitive
methods8 are more precise than non-calling-context-sensitive ones because mimicked
calls from incorrect call-sites are detected.

Flow sensitivity concerns the order of events according to control-flow graphs (CFG).
Only legal control flows according to program binaries can be normal, e.g., [160]. Flow
sensitive methods bring static program analysis to anomaly detection and rule out
illegal control flows from the scope of the norm.

Path sensitivity concerns the branch dependencies among the binary (in a single CFG
or cross multiple CFGs). Infeasible paths (impossibly co-occurring basic blocks or
branches) can be detected by a path-sensitive method. Full path sensitivity requires

8Calling context sensitivity (or context sensitivity in short) in program analysis should be distinguished
from the term context-sensitive in formal languages. The latter characterizes cross-serial dependencies in a
trace, while the former identifies each event (e.g., a system call) in a trace more precisely.

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 31

exponential time to discover. Existing solutions take some path-sensitive measures,
e.g., Giffin et al. correlated less than 20 branches for a program in ESD [72].

Environment sensitivity correlates execution paths with executing environments, e.g.,
arguments, configurations, environmental variables. Several types of infeasible paths
such as an executed path not specified by the corresponding command line argument
can be detected by an environment-sensitive method [72]. Environment sensitivity is
a combination of techniques including data-flow analysis, path-sensitive analysis, etc.

3.6 Attack/Detection Evolution and Open Problems

In this section, I describe the evolution of program anomaly detection systems using the
precision levels in my framework. New solutions aim to achieve better precision and eliminate
mimicry attacks. I point out future research directions from both precision and practicality
perspectives.

3.6.1 Inevitable Mimicry Attacks

Mimicry attacks are stealthy program attacks designed to subvert program anomaly detection
systems by mimicking normal behaviors. A mimicry attack exploits false negatives of a
specific detection system Λ. The attacker constructs a precise trace T′ (achieving the attack
goal) that shares the same practical trace T̈Λ with a normal T to escape the detection.

The first mimicry attack was described by Wagner and Soto [193]. They utilized an FSA
(regular grammar) to exploit the limited detection capability of n-gram methods (L-3 meth-
ods). In contrast, L-2 methods, such as [55, 56, 74], invalidate this type of mimicry attacks
with context-free grammar description of program traces. However, mimicry attacks using
context-free grammars, e.g., [58, 115], are developed to subvert these L-2 methods.

As program anomaly detection methods evolve from L-4 to L-1, the space for mimicry attacks
becomes limited. The functionality of mimicry attacks decreases since the difference between
an attack trace and a normal trace attenuates. However, an attacker can always construct
a mimicry attack against any real-world program anomaly detection system. The reason is
that the theoretical limit of program anomaly detection (L-1 methods) cannot be efficiently
reached, i.e., M̃ described in Section 3.3 requires exponential time to build.

3.6.2 Evolution From L-4 to L-1

A detection system Λ1 rules out mimicry traces from a less precise Λ2 to achieve
a better detection capability. I describe the upgrade of detection systems from a lower

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 32

s1

 f1

 f2

s2

 f1

 f2

 f3

s3

 f1

 f2

s2

 f1

 f2

 f4

 f5

s4

 f1

 f2

 f4

 f5

s3

 f1

 f2

s1

 f1

 f2

 f4

s1

 f1

 f2

 f4

③ PDA expands a state
vertically with a stack.

① n-gram expands
a state horizontally.

④ Revealing relations
among non-adjacent states.

.

② Describing a call
with its arguments.

Figure 3.2: Four approaches for improving a basic L-3 method (FSA).

precision level to a higher precision level. Intuitively, L-3 methods improve on L-4 methods
as L-3 methods analyze the order of events. I summarize four features to upgrade an L-3
method (abstracted as a general FSA) to L-2 and L-1 methods in Fig. 3.2.

1 expanding a state horizontally (with neighbor states)

2 describing details of states (call-sites, arguments, etc.)

3 expanding a state vertically (using a stack)

4 revealing relations among non-adjacent states

The four features are not equally powerful for improving the precision of an anomaly detection
method. 1 and 2 are complementary features, which do not change the major precision
level of a method. 3 introduces a stack and upgrades an L-3 method to an L-2 method. 4
discovers cross-serial dependencies and establishes a context-sensitive language [164], which
results in an L-1 method.

Most of the existing program anomaly detection methods can be explained as a basic L-3
method plus one or more of these features. L-3 with 1 yields an n-gram method [61]. L-3
with 2 was studied in [132]. L-3 with 3 is a basic L-2 method. More than one feature
can be added in one program anomaly detection system. L-3 with 1 and 2 was studied by
Sufatrio and Yap [177] and Gaurav et al. [183]. L-3 with 2 and 3 was studied by Bhatkar

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 33

et al. [13] and Giffin et al. [72]. M̃ (described in Section 3.3) provides 3 and 4 as basic
features. 2 can be added to M̃ to describe each state in more details.

3.6.3 Open Problems

I point out several open problems in program anomaly detection research.

Precision As illustrated in my framework (Fig. 3.1), there is a gap between the theoret-
ical accuracy limit (the best L-1 method) and the state-of-the-art approaches in L-2 (e.g.,
ESD [72]) and constrained L-1 level (e.g., co-oc [168]).

L-2 models: existing detection methods have not reached the limit of L-2 because none of
them analyze the complete path sensitivity. Future solutions can explore a more complete
set of path sensitivity to push the detection capability of a method towards the best L-2
method.

L-1 models: higher-order relations among states can then be discovered to upgrade an L-2
method to L-1. However, heuristics algorithms need to be developed to avoid exponential
modeling complexity. Another choice is to develop constrained L-1 approaches (e.g., co-
oc [168]), which characterize some aspects of higher-order relations (e.g., co-occurrence but
not order).

Probabilistic models: existing probabilistic approaches, i.e., probabilistic FSA equivalents,
are at precision level L-3. Probabilistic PDA and probabilistic LBA can be explored to
establish L-2 and even L-1 level probabilistic models.

Practicality In contrast to the extensive research in academia, the security industry has
not widely adopted program anomaly detection technologies. No products are beyond L-3
level with black-box traces [83]. The main challenges are eliminating tracing overhead and
purifying training dataset.

Tracing overhead issue: L-2 and L-1 methods require the exposure of user-space program
activities, which could result in over 100% tracing overhead on general computing plat-
forms [10]. However, Szekeres et al. found that the industry usually tolerates at most 5%
overhead for a security solution [182].

Polluted training dataset issue: most existing program anomaly detection approaches assume
the training set contains only normal traces. Unless the scope of the norm is defined as legal
control flows, which can be extracted from the binary, the assumption is not very practical
for a real-world product. A polluted training dataset prevents a precise learning of the scope
of the norm for a detection model, which results in false negatives in detection.

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 34

3.7 Control-Flow Enforcement Techniques

Control-flow enforcements, e.g., Control-Flow Integrity (CFI) [1] and Code-Pointer Integrity
(CPI) [119], enforce control-flow transfers and prevent illegal function calls/pointers from
executing. They evolve from the perspective of attack countermeasures [182]. They are
equivalent to one category of program anomaly detection that defines the scope of the norm
as legal control flows [163].

3.7.1 Control-Flow Enforcement

Control-flow enforcement techniques range from the protection of return addresses, the pro-
tection of indirect control-flow transfers (CFI), to the protection of all code pointers (CPI).
They aim to protect against control-flow hijacks, e.g., stack attacks [126]. I list milestones in
the development of control-flow enforcement techniques below (with an increasing protection
capability).

1. Return address protection: Stack Guard [41], Stack Shield [190].

2. Indirect control-flow transfer protection: CFI [1], Modular CFI [142].

3. All code pointer protection: CPI [119].

3.7.2 Legal Control Flows as the Scope of the Norm

In program anomaly detection, one widely adopted definition of the scope of the norm SΛ

is legal control flows (Section 3.2.3); only basic block transitions that obey the control flow
graphs are recognized as normal. The advantage of such definition is that the boundary of
SΛ is clear and can be retrieved from the binary. No labeling is needed to train the detection
system. This definition of SΛ leads to a fruitful study of constructing automata models
through static program analysis9, e.g., FSA method proposed by Sekar et al. [160] and PDA
method proposed by Feng et al. [56].

3.7.3 Comparison of the Two Methods

I discuss the connection and the fundamental difference between control-flow enforcement
and program anomaly detection.

Connection Modern control-flow enforcement prevents a program from executing any illegal
control flow. It has the same effect as the category of program anomaly detection that defines

9Dynamically assigned transitions cannot be precisely pinpointed from static analysis.

Xiaokui Shu Chapter 4. Program Anomaly Detection in a Unified Framework 35

the scope of the norm as legal control flows. From the functionality perspective, control-
flow enforcement even goes one step further; it halts illegal control flows. Program anomaly
detection should be paired with prevention techniques to achieve the same functionality.

Difference A system can either learn from attacks or normal behaviors of a program to
secure the program. Control-flow enforcement evolves from the former perspective while
program anomaly detection evolves from the latter. The specific type of attacks that control-
flow enforcement techniques tackle is control-flow hijacking. In other words, control-flow
enforcement techniques do not prevent attacks those obey legal control flows, e.g., brute force
attacks. Program anomaly detection, in contrast, detects attacks, program bugs, anomalous
usage patterns, user group shifts, etc. Various definitions of the scope of the norm result
in a rich family of program anomaly detection models. One family has the same detection
capability as control-flow enforcement.

Chapter 4

Program Event Correlation Discovery
and Anomaly Detection

4.1 Introduction

In this chapter, I present a program anomaly detection approach for detecting modern ex-
ploits that are developed with subtle control flow manipulation tactics to escape existing
detection mechanisms. One example is the sshd flag variable overwritten attack (an exam-
ple of non-control data attacks [36]). An attacker overwrites a flag variable, which indicates
the authentication result, before the authentication procedure. As a result, the attacker
bypasses critical security control and logs in after a failed authentication.

Besides the aforementioned sshd attack, stealthy attacks can also be constructed based on
existing exploits. Wagner and Soto first diluted a compact exploit (several system calls)
into a long sequence (hundreds of system calls) [193]. Kruegel et al. further advanced
this approach by building an attack into an extremely long execution path [115]. In their
proposed exploit, the attacker accomplishes one element of an attack vector, relinquishes the
control of the target program, and waits for another opportunity (exploited vulnerability) to
construct the next attack element. Therefore, the elements of the attack vector are buried
in an extreme long execution path (millions of instructions). I refer stealthy attacks whose
construction and/or consequence are buried into long execution paths and cannot be revealed
by any small fragment of the entire path as aberrant path attacks.

Existing anomaly detection solutions, e.g., [55, 56, 60, 74] are effective as long as an attack
can be discovered in a small detection window on attack traces, e.g., an invalid n-gram
or an illegal control flow transition (the latter can be accompanied by data-flow analysis).
The aforementioned diluting attack [193] may be detected if it involves illegal control flows.
However, there does not exist effective solutions for detecting general aberrant path attacks,
because these attacks cannot be revealed in a small detection window on traces.

36

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 37

Mining correlations among arbitrary events in a large-scale execution window is the key to
the detection of aberrant path attacks that are buried in long execution paths. The scale of
the window may vary from thousands to millions of instructions. However, straightforward
generalization of existing approaches is inadequate for large-scale execution window analysis
because of two challenges described below.

Training scalability challenge: existing automaton-based methods are first-order and only
verify state transition individually. One needs a linear bounded automaton or a Turing
machine to enforce the relation among arbitrary events. The generalization results in expo-
nential time complexity for training. n-gram based methods (e.g., lookahead pair, practical
hidden Markov model) have a similar exponential convergence complexities in terms of n;
large n (e.g., 40) usually leads to false positives due to insufficient training.

Behavior diversity challenge: real-world programs usually realize various functionalities,
which result in diverse program behaviors within large-scale execution windows. The dis-
tance between a normal program behavior and an anomalous one can be less than the
distance between two normal ones. The diversity of normal behaviors makes traditional
single-threshold probabilistic methods (e.g., hidden Markov model, one-class SVM) difficult
to fine-tune for achieving both a low false positive rate and a high detection rate.

To defend against aberrant path attacks, I propose a detection approach that analyzes pro-
gram behaviors in large-scale execution windows. My approach maps program behavior in-
stances extracted from large-scale execution windows into data points in a high-dimensional
detection space. It then leverages specifically designed machine learning techniques to i) rec-
ognize diverse program behaviors, ii) discover event correlations, and iii) detect anomalous
program behaviors in various subspaces of the detection space.

In addition to the binary representation of event relations in an execution window, my ap-
proach further models quantitative frequency relations among occurred events. Some aberrant
path attacks deliberately or unintentionally result in anomalous event frequency relations,
e.g., Denial of Service (DoS), directory harvest attack. The advantage of modeling frequency
relations over individual event frequencies (used in existing anomaly detection [65]) is the
low false positive rates in case of program/service workload variation.

The contributions of my work are summarized as follows.

• I study the characteristics of aberrant path attacks and identify the need to analyze
program behaviors in large-scale execution windows. I present a security model for
efficient program behavior analysis through event correlations in large-scale execution
windows. The security model covers the detection of two types of anomalous pro-
gram behaviors abstracted from four known categories of aberrant path attacks. The
first type contains events (and their corresponding control-flow segments) that are in-
compatible in a single large-scale execution window, e.g., non-control data attacks.
The second type contains aberrant relations among event occurrence frequencies, e.g.,
service abuse attacks.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 38

• I design a two-stage detection approach to discover anomalous event correlations in
large-scale execution windows and detect aberrant path attacks. My approach con-
tains a constrained agglomerative clustering algorithm for addressing the behavior di-
versity challenge and dividing the detection problem into subproblems. My approach
addresses the scalability challenge by utilizing fixed-size profiling matrices and by esti-
mating normal behavior patterns from an incomplete training set through probabilistic
methods in each cluster. The unique two-stage design of my approach enables effective
detections of i) legal-but-incompatible control-flow segments and ii) aberrant event
occurrence frequency relations at inter- and intra-cluster levels.

• I implement a prototype of my approach on Linux and evaluate its detection capability,
accuracy, and performance with sshd, libpcre and sendmail. The evaluation contains
over 22,000 normal profiles and over 800 attack traces. My approach successfully
detects all attack attempts with less than 0.01% false positive rates. I demonstrate the
high detection accuracy of my clustering design through the detection of four types of
synthetic anomalies. My prototype takes 0.3ms to 1.3ms to analyze a single program
behavior instance, which contains 1k to 50k function/system call events.

4.2 Security Model

I describe the attack model, explain my security goals, and discuss three basic solutions
toward the goals in this section.

4.2.1 Aberrant Path Attack

I aim to detect aberrant path attacks, which contain infeasible/inconsistent/aberrant execu-
tion paths but obey legitimate control-flow graphs. Aberrant path attacks can evade existing
detection mechanisms because of the following properties of the attacks:

• not conflicting with any control-flow graph
• not incurring anomalous call arguments
• not introducing unknown short call sequences

Aberrant path attacks are realistic threats and gain popularity since early-age attacks have
been efficiently detected and blocked. Concrete aberrant path attack examples are:

1. Non-control data attacks hijack programs without manipulating their control data
(data loaded into program counter in an execution, e.g., return addresses). One such
attack, first described by Chen et al. [36], takes advantage of an integer overflow vul-
nerability found in several implementations of the SSH1 protocol [120]. Illustrated in

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 39

1: void do_authentication(char *user, ...) {

2: int authenticated = 0;

...

3: while (!authenticated) {

4: type = packet_read();

5: switch (type) {

...

6: case SSH_CMSG_AUTH_PASSWORD:

...

7: if (auth_password(user, password)) {

8: memset(password, 0, strlen(password));

9: xfree(password);

10: log_msg("...", user);

11: authenticated = 1;

12: break;

}

13: memset(password, 0, strlen(password));

14: debug("...", user);

15: xfree(password);

16: break;

...

}

17: if (authenticated) break;

...

Figure 4.1: sshd flag variable overwritten attack [36].

Fig. 4.1, an attacker can overwrite the flag integer authenticated when the vulnera-
ble procedure packet_read() is called. If authenticated is overwritten to a nonzero
value, line 17 is always True and auth_password() on line 7 is no longer effective.

2. Workflow violation attacks can be used to bypass access control [40], leak critical in-
formation, disable a service (e.g., trigger a deadlock), etc. One example is presentation
layer access control bypass in web applications. If the authentication is only enforced
by the presentation layer, an attacker can directly access the business logic layer (below
presentation layer) and read/write data.

3. Exploit preparation is a common step preceding the launch of an exploit payload. It
usually utilizes legal control flows to load essential libraries, arranges memory space
(e.g., heap feng shui [176]), seeks addresses of useful code and data fragments (e.g.,
ASLR probing [162]), and/or triggers particular race conditions.

4. Service abuse attacks do not take control of a program. Instead, the attacks utilize
legal control flows to compromise the availability (e.g., Denial of Service attack), con-

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 40

fidentiality (e.g., Heartbleed data leak [82]), and financial interest (e.g., click fraud) of
target services.

4.2.2 Anomalous Program Behaviors within
Large-scale Execution Windows

Aberrant path attacks cannot be detected by analyzing events in small windows on pro-
gram traces. I define semantically meaningful execution windows and unearth aberrant path
attacks in large-scale execution windows.

Definition 4.2.1. An execution window W is the entire or an autonomous portion of a
transactional or continuous program execution.

Execution windows can be partitioned based on boundaries of program functionalities, e.g.,
login, session handling, etc. Since aberrant path attacks can lead to delayed attack con-
sequences, e.g., non-control data attacks, the analysis should be performed on large-scale
execution windows. One such window could contain tens of thousands of system calls and
hundreds of times more function calls.

I give some examples of practical large-scale execution window partitioning for security
analysis purposes:

1. partitioning by routines/procedures/functions,
2. partitioning by threads or forked processes,
3. partitioning by activity intervals, e.g., sleep(),
4. an entire execution of a small program.

In large-scale execution windows, I abstract two common anomalous behavior patterns of
aberrant path attacks.

1. Montage anomaly is an anomalous program behavior composed of multiple legitimate
control flow fragments that are incompatible in a single execution.

One example of a montage anomaly is the sshd flag variable overwritten attack pre-
sented in Fig. 4.1. The attack incurs an execution path that contains two incompatible
execution segments: i) fail-auth handling (line 13-16) and ii) pass-auth execution
(line 18-).

2. Frequency anomaly is an anomalous program behavior with aberrant ratios/relations
between/among event occurrence frequencies. Normal relations among frequencies are
established by: i) mathematical relations among induction variables that are specified
in the binary (e.g., Fig. 4.2b), and ii) normal usage patterns of the program.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 41

call s1 call s2

y = -1 y = 1

x<0

call s3 call s4

y<0

other calls other calls

yes no

yes no

(a) The executions of s1
and s3 occur in the same
run, similarly for s2 and s4.

call s1

0<x<n
no

call s2

0<x<n
no

call s3

0<x<n
no

(b) s1, s2 and s3 occur
at the same frequency in a
run.

Figure 4.2: Examples of event co-occurrence and occurrence frequency relations.

One example of a frequency anomaly is a directory harvest attack against a mail server.
The attack probes legitimate usernames on the server with a batch of emails targeting
possible users. The attack results in an aberrant ratio between event frequencies in the
server’s handling procedures of existent/nonexistent receivers.

Sometimes an event occurrence frequency alone can indicate an attack, e.g., DoS.
However, the workload of a real-world service may vary rapidly, and the individual
frequencies are imprecise to model program behaviors.

4.2.3 Security Goals

The key to the detection of montage anomalies and frequency anomalies is to model and
analyze the relations among control-flow segments that occur in a large-scale execution win-
dow. I further deduce two practical security goals for detecting aberrant path attacks. The
deduction is based on the fact that events (e.g., call, jmp, or generic instructions) in dynamic
program traces mark/indicate the control-flow segment to which they belong.

1. Event co-occurrence analysis examines the patterns of co-occurred events in a large-
scale execution window1. I illustrate an event co-occurrence analysis in Fig. 4.2a. Rules
should be learned that events ⟨s1, s3⟩ or ⟨s2, s4⟩ always occur together, but not ⟨s1, s4⟩
or ⟨s2, s3⟩.

1I define the co-occurrence of events in the scope of an execution window, not essentially at the same
time.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 42

2. Event occurrence frequency analysis examines the event occurrence frequencies and the
relations among them. For instance, s1, s2 and s3 always occur at the same frequency
in Fig. 4.2b. Another type of event occurrence frequency relation is generated utterly
due to specific usage patterns (mail server example in Sect. 4.2.2), which can be only
learned from dynamic traces.

4.2.4 Basic Solutions and Their Inadequacy

There are several straightforward solutions providing event co-occurrence and occurrence
frequency analysis. I point out their limitations, which help motivate my work.

Basic Solution I: One can utilize a large n in an n-gram approach (either deterministic
approaches, e.g., [61], or probabilistic approaches, e.g., hidden Markov model [68,196]). This
approach detects aberrant path attacks because long n-grams are large execution windows.
However, it results in exponential training convergence complexity and storage complexity.
Unless the detection system is trained with huge number of normal traces, which is exponen-
tial to n, a large portion of normal traces will be detected as anomalous. The exponential
convergence complexity explains why no n-gram approach employs n > 40 in practice [60].

Basic Solution II: One can patch existing solutions with frequency analysis components to
detect some aberrant path attacks, e.g., DoS. The possibility has been explored by Hubballi
et al. on n-grams [91] and Frossi et al. on automata state transitions [65]. Their solutions
successfully detect DoS attacks through unusually high frequencies of particular n-grams and
individual automata state transitions. However, the underlying detection paradigms restrict
the solutions from correlating arbitrary events in a long trace. Thus, their solutions do not
detect general aberrant path attacks.

Basic Solution III: One can perform episodes mining within large-scale execution windows.
It extends existing frequent episode mining [107,122] by extracting episodes (featured subse-
quences) at all frequencies so that infrequent-but-normal behaviors can be characterized. In
order to analyze all episodes (the power set of events in a large-scale execution window), this
approach faces a similar exponential complexity of training convergence as Basic Solution I.

4.3 Overview of my Approach

I present an overview of my approach analyzing event co-occurrence and event occurrence
frequencies in large-scale execution windows. I develop a constrained agglomerative clus-
tering algorithm to overcome the behavior diversity challenge. I develop a compact and
fixed-length matrix representation to overcome the scalability problem for storing variable-
length trace segments. I utilize probabilistic methods to estimate normal behaviors in an
incomplete training dataset for overcoming the training scalability issue.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 43

4.3.1 Profiling Program Behaviors

I design my approach to expose user-space program activities (executed control flow seg-
ments) via call instructions. call and ret2 are responsible for call stack changes and
provide a natural boundary for determining execution windows as discussed in Section 4.2.2.

I denote the overall activity of a program P within an execution window W as a behavior
instance b. Instance b recorded in a program trace is profiled in two matrices:

Definition 4.3.1. An event co-occurrence matrix O is an m × n Boolean matrix recording
co-occurred call events in a behavior instance b. oi,j = True indicates the occurrence of the
call from the i-th row symbol (a routine) to the j-th column symbol (a routine). Otherwise,
oi,j = False.

Definition 4.3.2. A transition frequency matrix F is an m×n nonnegative matrix contain-
ing occurrence frequencies of all calls in a behavior instance b. fi,j records the occurrence
frequency of the call from the i-th row symbol (a routine) to the j-th column symbol (a
routine). fi,j = 0 if the corresponding call does not occur in W .

For one specific b, O is a Boolean interpretation of F that

oi,j =

{
True if fi,j > 0
False if fi,j = 0

(4.1)

O and F are succinct representations of the dynamic call graph of a running program. m and
n are total numbers of possible callers and callees in the program, respectively. Row/column
symbols in O and F are determined through static analysis. m may not be equal to n, in
particular when calls inside libraries are not counted.

Bitwise operations, such as AND, OR, and XOR apply to co-occurrence matrices. For example,
O′ ANDO′′ computes a new O that oi,j = o′i,j AND o

′′
i,j .

Profiles at different granularities Although designed to be capable of modeling user-
space program activities via function calls, my approach can also digest coarse level program
traces for learning program behaviors. For example, system calls can be traced and profiled
into O and F to avoid excessive tracing overheads in performance-sensitive deployments. The
semantics of the matrices changes in this case; each cell in O and F represents a statistical
relation between two system calls. The detection is not as accurate as my standard design
because system calls are coarse descriptions of program executions.

2ret is paired with call, which can be verified via existing CFI technique. I do not involve the duplicated
correlation analysis of ret in my model, but I trace ret to mark function boundaries for execution window
partitioning.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 44

Co-occu. Analysis

Occu. Freq. Analysis

Behavior Instance Recognition

Behavior Profiling

A
n
o
m

a
lie

s

Program Traces (Unknown)

Normal

Behavior Clustering

Intra-cluster Modeling

Program Traces (Normal)

S
ta

ti
c
 A

n
a
ly

s
is

Training Phase Detecting Phase

Figure 4.3: Overview of two-stage program anomaly detection. Information flows among
operations in two stages and two phases of my program anomaly detection approach illus-
trated.

4.3.2 Architecture of My Approach

My approach consists of two complementary stages of modeling and detection where mon-
tage/frequency anomalies are detected in the first/second stage, respectively.

The first stage models the binary representation of event co-occurrences in a large-scale
execution window via event co-occurrence matrix O. It performs event co-occurrence analysis
against montage anomalies. It consists of a training operation Behavior Clustering and
a detection operation Co-occurrence Analysis.

The second stage models the quantitative frequency relation among events in a large-scale
execution window via transition frequency matrix F . It performs event occurrence frequency
analysis against frequency anomalies. It consists of a training operation Intra-cluster
Modeling and a detection operation Occurrence Frequency Analysis.

I illustrate the architecture of my approach in Fig. 4.3 and brief the functionalities of each
operation below.

1. Behavior Profiling recognizes target execution windows {W1,W2, . . . } in traces
and profiles b from each W into O and F . Symbols in F and O are retrieved via static
program analysis or system call table lookup.

2. Behavior Clustering is a training operation. It takes in all normal behavior in-
stances {b1, b2, . . . } and outputs a set of behavior clusters C = {C1, C2, . . . } where
Ci = {bi1 , bi2 , . . . }.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 45

3. Intra-cluster Modeling is a training operation. It is performed in each cluster.
It takes in all normal behavior instances {bi1 , bi2 , . . . } for Ci and constructs one deter-
ministic model and one probabilistic model for computing the refined normal boundary
in Ci.

4. Co-occurrence Analysis is an inter-cluster detection operation that analyzes O (of
b) against clusters in C to seek montage anomalies. If behavior instance b is normal,
it reduces the detection problem to subproblems within a set of behavior clusters
Cb = {Cb1 , Cb2 , . . . }, in which b closely fits.

5. Occurrence Frequency Analysis is an intra-cluster detection operation that an-
alyzes F (of b) in each Cb to seek frequency anomalies. Behavior instance b is normal
if F abides by the rules extracted from Cb and F is within the normal boundary
established in Cb.

4.4 Inter-/intra-cluster Detection

I detail the training/modeling and detection operations in my two-stage approach. The key
to the first stage is a customized clustering algorithm, which differentiates diverse program
behaviors and divides the detection problem into subproblems. Based on the clustering,
inter-/intra-cluster detection is performed in the first/second stage, respectively.

4.4.1 Behavior Clustering (Training)

I develop a constrained agglomerative clustering algorithm that addresses two special needs
to handle program behavior instances for anomaly detection: i) long tail elimination, and
ii) borderline behavior treatment. Standard agglomerative clustering algorithms result in
a large number of tiny clusters in a long-tail distribution (shown in Section 4.6.1). Tiny
clusters do not provide sufficient numbers of samples for statistical learning of the refined
normal boundary inside each cluster. Standard algorithms also do not handle borderline
behaviors, which could be trained in one cluster and tested in another, resulting in false
alarms.

My algorithm (presented below) clusters program behavior instances based on the co-occurred
events shared among instances. To deal with the borderline behavior issue, I alter the stan-
dard process into a two-step process:

1. generate scopes of clusters in an agglomerative way (line 13-28), and

2. add behavior instances to generated clusters (line 30-44).

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 46

Require: a set of normal program behavior instances B and a termination threshold Td. dist()
is the distance function between behaviors/clusters. pen() is the penalty function for long tail
elimination.

Ensure: a set of behavior clusters C.
1: h← ∅heap

2: v ← ∅hashtable

3: V ← ∅set

4: for all b ∈ B do
5: O ← Ob

6: v[O]← v[O] + 1
7: for all O′ ∈ V do
8: dp ← dist(O,O′)× pen(v[O], v[O′])
9: push ⟨dp, O, v[O], O′, v[O′]⟩ onto h

10: end for
11: add O to V
12: end for
13: while h ̸= ∅heap do
14: pop ⟨dp, O1, vO1 , O2, vO2⟩ from h
15: break if dp > Td

16: if O1 ∈ V and O2 ∈ V then
17: continue if vO1 < v[O1] or vO2 < v[O2]
18: O ← O1 OR O2

19: v[O]← v[O1] + v[O2]
20: remove O1 from V
21: remove O2 from V
22: for all O′ ∈ V do
23: dp ← dist(O,O′)× pen(v[O], v[O′])
24: push ⟨dp, O, v[O], O′, v[O′]⟩ onto h
25: end for
26: add O to V
27: end if
28: end while
29: w[O]← ∅set for all O ∈ V
30: for all b ∈ B do
31: O ← Ob

32: m← MAXINT
33: for all O′ ∈ V do
34: if O OR O′ = O′ then
35: if dist(O,O′) < m then
36: m← dist(O,O′)
37: V ′ ← {O′}
38: else if dist(O,O′) = m then
39: add O′ to V ′

40: end if

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 47

41: end if
42: end for
43: add b to w[O] for all O ∈ V ′

44: end for
45: C← {w[O] for all O ∈ V }

The basic idea of my agglomerative clustering algorithm is to put each behavior in a cluster
(line 4 to line 12) and then merge the nearest clusters (line 13 to line 28) until the stopping
criteria is reached (line 15). I use a lazily updated heap h in my clustering algorithm to
minimize the calculation and sorting of distances between intermediate clusters. Each entry
in h contains the distance between two clusters and h is sorted based on the distance. The
design of the lazily updated heap ensures that a previously merged cluster is not removed
proactively in h until the entry containing it is popped and abandoned.

The scope of a cluster C = {bi | 0 ≤ i ≤ k} is represented by its event co-occurrence matrix
OC . OC records occurred events in any behavior instances in C. It is calculated using (4.2)
where Obi is the event co-occurrence matrix of bi.

OC = Ob1 OR Ob2 OR . . . OR Obk , 0 ≤ i ≤ k (4.2)

The distances between i) two behavior instances, ii) two clusters, and iii) a behavior instance
and a cluster are all measured by their co-occurrence matrices O1 and O2 in (4.3) where |O|
counts the number of True in O.

dist(O1, O2) =
Hamming(O1, O2)

min(|O1|, |O2|)
(4.3)

Hamming distance alone is insufficient to guide the cluster agglomeration: it loses the se-
mantic meaning of O, and it weighs True and False the same. However, in co-occurrence
matrices, only True contributes to the co-occurrence of events.

I explain the unique features of my constrained agglomerative clustering algorithm over the
standard design:

• Long tail elimination A standard agglomerative clustering algorithm produces clusters
with a long tail distribution of cluster sizes – there are a large number of tiny clusters,
and the unbalanced distribution remains at various clustering thresholds. Tiny clus-
ters provide insufficient number of behavior instances to train probabilistic models in
Intra-cluster Modeling.

In order to eliminate tiny/small clusters in the long tail, my algorithm penalizes
dist(O1, O2) by (4.4) before pushing it onto h. |Ci| denotes the size of cluster Ci.

pen(|C1|, |C2|) = max(log(|C1|), log(|C2|)) (4.4)

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 48

• Penalty maintenance The distance penalty between C1 and C2 changes when any size
of C1 and C2 changes. In this case, all entries in h containing a cluster whose size
changes should be updated or nullified.

I use a version control to mark the latest and deprecated versions of clusters in h. The
version of a cluster C is recorded as its current size (an integer). It is stored in v[O]
where O is the event co-occurrence matrix of C. v is a hashtable that assigns 0 to an
entry when the entry is accessed for the first time. A heap entry contains two clusters,
their versions and their distance when pushed to h (line 9 and line 24). An entry is
abandoned if any of its two clusters are found deprecated at the moment the entry is
popped from h (line 17).

• Borderline behavior treatment It may generate a false positive when i) dist(b, C1) =
dist(b, C2), ii) b is trained only in C1 during Intra-cluster Modeling, and iii)
a similar behavior instance b′ is tested against C2 in operation Occurrence Fre-
quency Analysis (intra-cluster detection).

To treat this type of borderline behaviors correctly, my clustering algorithm duplicates
b in every cluster, which b may belong to (line 30-44). This operation also increases
cluster sizes and results in sufficient training in Intra-cluster Modeling.

4.4.2 Co-occurrence Analysis (Detection)

This operation performs inter-cluster detection to seek montage anomalies. A behavior
instance b is tested against all normal clusters C to check whether the co-occurred events in
b are consistent with co-occurred events found in a single cluster. An alarm is raised if no
such cluster is found. Otherwise, b and its most closely fitted clusters Cb = {C1, . . . , Ck} are
passed to Occurrence Frequency Analysis for intra-cluster detection.

An incoming behavior instance b fits in a cluster C if Ob OR OC = OC where OC and Ob are
the event co-occurrence matrices of C and b. The detection process searches for all clusters
in which b fits. If this set of clusters is not empty, distances between b and each cluster in
this set are calculated using (4.3). The clusters with the nearest distance (there could be
more than one cluster) are selected as Cb.

4.4.3 Intra-cluster Modeling (Training)

Within a cluster C, my approach analyzes behavior instances through their transition fre-
quency matrices {Fb | b ∈ C}. The matrices are vectorized into data points in a high-
dimensional detection space where each dimension records the occurrence frequency of a
specific event across profiles. Two analysis methods reveal relations among frequencies.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 49

The probabilistic method. I employ a one-class SVM, i.e., ν-SVM [159], to seek a frontier
F that envelops all behavior instances {b | b ∈ C}.

1. Each frequency value is preprocessed with a logarithmic function f(x) = log2 (x+ 1)
to reduce the variance between extreme values (empirically proved necessary).

2. A subset of dimensions are selected through frequency variance analysis (FVA)3 or
principle component analysis (PCA)4 before data points are consumed by ν-SVM.
This step manages the curse of dimensionality, a common concern in high-dimensional
statistical learning.

3. I pair the ν-SVM with a kernel function, i.e., radial basis function (RBF)5, to search
for a non-linearly F that envelops {b | b ∈ C} tightly. The kernel function transforms a
non-linear separating problem into a linearly separable problem in a high-dimensional
space.

The deterministic method. I employ variable range analysis to measure frequencies of
events with zero or near zero variances across all program behaviors {b | b ∈ C}.

Frequencies are discrete integers. If all frequencies of an event in different behavior instances
are the same, PCA simply drops the corresponding dimension. In some clusters, all behavior
instances (across all dimensions) in C are the same or almost the same. Duplicated data
points are treated as a single point, and they cannot provide sufficient information to train
probabilistic models, e.g., one-class SVM.

Therefore, I extract deterministic rules for events with zero or near zero variances. This
model identifies the frequency range [fmin, fmax] for each of such events. fmin can equal to
fmax.

4.4.4 Occurrence Frequency Analysis (Detection)

This operation performs intra-cluster detection to seek frequency anomalies: i) deviant rela-
tions among multiple event occurrence frequencies, and/or ii) aberrant occurrence frequen-
cies. Given a program behavior instance b and its closely fitted clusters Cb = {C1, . . . , Ck}
discovered in Co-occurrence Analysis, this operation tests b in every Ci (0 ≤ i ≤ k)
and aggregates the results using (4.5).

∃C ∈ C Nclt(b, C)⇒ b is normal (4.5)
3FVA selects dimensions/events with larger-than-threshold frequency variances across all behavior in-

stances in C.
4PCA selects linear combinations of dimensions/events with larger-than-threshold frequency variances,

which is a generalization of FVA.
5Multiple functions have been tested for selection.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 50

The detection inside C is performed with 3 rules, and the result is aggregated into Nclt(b, C).

Nclt(b, C) =

{
True normal by all 3 rules
False anomalous by any rule (4.6)

• Rule 1: normal if the behavior instance b passes the probabilistic model detection. The
frequency transition matrix F of b is vectorized into a high-dimensional data point and
tested against the one-class SVM model built in Intra-cluster Modeling. This
operation computes the distance d between b and the frontier F established in the
ν-SVM. If b is within the frontier or b is on the same side as normal behavior instances,
then d > 0. Otherwise, d < 0. d is compared with a detection threshold Tf that
Tf ∈ (−∞,+∞). b is abnormal if d < Tf .

• Rule 2: normal if the behavior instance b passes the range model detection. Events in b
with zero or near zero variances are tested against the range model (the deterministic
method) built in Intra-cluster Modeling. b is abnormal if any event frequency
of b exceeds its normal range.

• Rule 3: presumption of innocence in tiny clusters. If no frequency model is trained in
C because the size of C is too small, the behavior instance b is marked as normal. This
rule generates false negatives. It sacrifices the detection rate for reducing false alarms
in insufficiently trained clusters.

4.4.5 Discussion

My program anomaly detection approach is a context-sensitive language parser from the for-
mal language perspective, i.e., Bach language parser [152]. In comparison, existing automata
methods are at most context-free language parsers (pushdown automata methods) [55]. n-
gram methods are regular language parsers (finite state machine equivalents [193]). Exist-
ing probabilistic methods are stochastic languages parsers (probabilistic regular language
parsers).

A context-sensitive language parser is more precise than a context-free language parser or
a regular language parser in theory. It is accepted by a linear bounded automaton (LBA),
which is a restricted Turing machine with a finite tape. The advantage of a context-sensitive
parser is its ability to characterize cross-serial dependencies, or to correlate far away events
in a long program trace.

My approach explores the possibility to construct an efficient program anomaly detection
approach on the context-sensitive language level. Potential mimicry attacks could be con-
structed to exploit the gap between Bach and the most precise program execution description.
However, it is more difficult to do so than constructing mimicry attacks against regular or

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 51

context-free language level detection tools. For example, padding is a simple means to con-
struct regular language level mimicry attacks, and my approach can detect padding attacks.
My analysis characterizes whether two function calls should occur in one execution window,
so padding rarely occurred calls can be detected. My approach recognizes the ratios between
call pairs in one execution window. Thus, excessive padding elements can be discovered.

Potential mimicry attacks may exploit the monitoring granularity of a detection approach.
My current approach utilizes call instructions to mark control-flow segments, which can be
generalized to any instruction for detecting mimicry attacks that do not involve call in any
part of their long attack paths. Another potential threat is machine learning poisoning [207],
which could exploit the boundary of the probabilistic scope of the norm (Section 3.2.3).

4.5 Implementation

I implement a prototype of my detection approach on Linux (Fedora 21, kernel 3.19.3). The
static analysis is realized through C (ParseAPI [145]). The profiling, training, and detection
phases are realized in Python. The dynamic tracing and behavior recognition are realized
through Intel Pin, a leading dynamic binary instrumentation framework, and SystemTap,
a low-overhead dynamic instrumentation framework for Linux kernel. Tracing mechanisms
are independent of my detection design; more efficient tracing techniques can be plugged in
replacing Pin and SystemTap to improve the overall performance in the future.

Static analysis before profiling: symbols and address ranges of routines/functions are dis-
covered for programs and libraries. The information helps to identify routine symbols if
not found explicitly in dynamic tracing. Moreover, I leverage static analysis to list legal
caller-callee pairs.

Profiling: My prototype i) verifies the legality of events (function calls) in a behavior instance
b and ii) profiles b into two matrices (Sect. 4.3.1). The event verification filters out simple
attacks that violate control flows before my approach detects stealthy aberrant path attacks.
I implement profile matrices in Dictionary of Keys (DOK) format to minimize storage space
for sparse matrices.

Dynamic tracing and behavior recognition: I develop a Pintool in JIT mode to trace function
calls in the user space and to recognize execution windows within entire program executions.
My Pintool is capable of tracing i) native function calls, ii) library calls iii) function calls in-
side dynamic libraries, iv) kernel thread creation and termination. Traces of different threads
are isolated and stored separately. My Pintool recognizes whether a call is made within a
given routine and on which nested layer the given routine executes (if nested execution of
the given routine occurs). This functionality enables the recognition of large-scale execution
windows through routine boundary partitioning.

I demonstrate that my approach is versatile recognizing program behaviors at different gran-

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 52

Table 4.1: Normal profile statistics.

Program Version Events in Profile Execution Window #(N.P.)

sshd 1.2.30 function calls routine boundary 4800
libpcre 8.32 function calls library call 11027
sendmail 8.14.7 system calls† continuous operation 6579

N.P. is short for normal profile.
†Function calls are not traced due to its complex process spawning logic. Customization

of my Pintool is needed to trace them.

Table 4.2: Statistics of average single normal profile.

Program #(Symbols) #(Event) #(Unique Event)

sshd 415 34511 180
libpcre 79 44893 45
sendmail 350 1134 213

ularities. I develop a SystemTap script to trace system calls with timestamps. It enables
execution window partitioning via activity intervals when the program is monitored as a
black box.

4.6 Evaluations

To verify the detection capability of my approach, I test my prototype against different
types of aberrant path attacks (Sect. 4.6.2). I investigate its detection accuracy using real
and synthetic program traces (Sect. 4.6.3). I evaluate the performance of my prototype with
different tracing and detection options (Sect. 4.6.4).

4.6.1 Experiment Setup

I study three programs/libraries (Table 4.1) in distinct categories. I demonstrate that my
approach is a versatile detection solution to be applied to programs and dynamic libraries
with various large-scale execution window definitions and event definitions. I detail the
programs/libraries and their training dataset (normal profiles) in Table 4.2 and below.

• [sshd] Execution window definition: program activities of sshd within routine
do_authentication(). The routine do_authentication() is called in a forked thread

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 53

1

10

100

1000

10000

C
lu

st
er

 s
iz

e
Standard Ours

(a) libpcre cluster size distribution (sorted in
descending order).

s
s
h
d

l
i
b
p
c
r
e

s
e
n
d
m
a
i
l

Td 1.6 2.0 1.6
|C| 6 29 20

(b) Overview of program be-
havior clustering.

Figure 4.4: Clustering of program behavior instances.

after a client initializes its connection to sshd. All session activities are within the exe-
cution window if the authentication is passed. Normal runs cover three authentication
methods (password, public key, rhost), each of which contains 800 successful and 800
failed connections. 128 random commands are executed in each successful connection.

• [libpcre] Execution window definition: program activities of libpcre when a library
call is made. Library calls are triggered through grep -P. Over 10,000 normal tests
are used from the libpcre package.

• [sendmail] Execution window definition: a continuous system call sequence wrapped
by long no-op (no system call) intervals. sendmail is an event-driven program that
only emits system calls when sending/receiving emails or performing a periodical check.
I set up this configuration to demonstrate that my detection approach can consume
various events, e.g., system calls. I collect over 6,000 normal profiles on a public
sendmail server during 8 hours.

I list clustering threshold Td used for the three studied programs/libraries in Fig. 4.4b6. |C|
denotes the number of clusters computed with the specific Td. In Fig. 4.4a, I demonstrate the
effectiveness of my constrained agglomerative clustering algorithm to eliminate tiny clusters.
The standard agglomerative clustering approach results in a long-tail distribution of cluster
sizes shown in Fig. 4.4a.

In operation Occurrence Frequency Analysis, the detection threshold Tf is deter-
mined by a given false positive rate (FPR) upper bound, i.e., FPRu, through cross-validation.
In the training phase of cross-validation, I perform multiple random 10-fold partitioning.
Among distances from all training partitions, Tf is initialized as the kth smallest distance
within distances7 between a behavior instance and the ν-SVM frontier F . k is calculated

6The value is empirically chosen to keep a balance between an effective recognition of diverse behaviors
and an adequate elimination of tiny clusters.

7The distance can be positive or negative. More details are specified in Rule 1 (Sect. 4.4.4).

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 54

Table 4.3: Overview of reproduced attacks.

Attack Name Target Attack Settings

flag variable overwritten sshd an inline virtual exploit that matches a username
ReDoS libpcre 3 deleterious patterns paired with 8-23 input strings
directory harvest attack sendmail probing batch sizes: 8, 16, 32, 64, 100, 200, and 400

Table 4.4: Overview of detection results.

Attack Name #(Attack Attempt) Detection Rate FPRu

flag variable overwritten 800 100% 0.0001
ReDoS 46 100% 0.0001
directory harvest attack 14 100% 0.0001

FPRu is the false positive rate upper bound (details in Sect. 4.6.1).

using FPRu and the overall number of training cases. The FPR is calculated in the detection
phase of cross-validation. If FPR > FPRu, a smaller k is selected until FPR ≤ FPRu.

4.6.2 Discovering Real-World Attacks

I reproduce three known aberrant path attacks to test the detection capability of my ap-
proach. My detection approach detects all attack attempts with less than 0.0001 false posi-
tive rate. The overview of the attacks and detection results are presented in Table 4.3 and
Table 4.4, respectively.

Flag Variable Overwritten Attack

Flag variable overwritten attack is a non-control data attack. An attacker tampers with
decision-making variables. The exploit takes effect when the manipulated data affects the
control flow at some later point of execution.

I reproduce the flag variable overwritten attack against sshd introduced by Chen et al. [36].
I describe the attack in Sect. 4.2.1, bullet (a) and in Fig. 4.1. I simplify the attack procedure
by placing an inline virtual exploit in sshd right after the vulnerable routine packet_read():

if (user[0] == ’e’ && user[1] == ’v’ && user[2] == ’e’) authenticated = 1;

This inline virtual exploit produces the immediate consequence of a real exploit – overwriting
authenticated. It does not interfere with my tracing/detection because no call instruction
is employed. For each attack attempt, 128 random commands are executed after a successful
login.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 55

Normala Normalb Attack
.
auth_p > xfree auth_p > xfree auth_p > xfree

do_auth > xfree do_auth > debug do_auth > debug

do_auth > log_msg do_auth > xfree do_auth > xfree

do_auth > p_start do_auth > p_start do_auth > p_start

p_start > buf_clr p_start > buf_clr p_start > buf_clr

.
phdtw > buf_len phdtw > buf_len phdtw > buf_len

do_auth > do_autd do_auth > p_read do_auth > do_autd

.

aA successfully authenticated session.
bA failed (wrong password) authentication.
“caller > callee” denotes a function call.
Routine names are abbreviated to save space.

Figure 4.5: Samples of normal and anomalous sshd traces.

My approach (configured at FPRu 0.0001) successfully detects all attack attempts in inter-
cluster detection (Co-occurrence Analysis)8. I present normal and attack traces inside
the execution window (selected routine do_authentication()) in Fig. 4.5 to illustrate the
detection.

In Fig. 4.5, the Attack and Normalb bear the same trace prior to the last line, and the Attack
and Normala bear the same trace after (including) the last line. My approach detects the
attack as a montage anomaly: the control-flow segment containing do_auth > debug should
not co-occur with the control-flow segment containing do_auth > do_authed (and following
calls) in a single execution window.

In the traces, there are identical 218 call events including library routines (36 calls ex-
cluding library ones) between the third line and the last line in Fig. 4.5. I test an n-gram
detection tool, and it requires at least n = 37 to detect the specific attack without libraries
routine traced. The 37-gram model results in an FPR of 6.47% (the FPR of my approach is
less than 0.01%). This indicates that n-gram models with a large n is difficult to converge
at training. I do not test automaton-based detection because they cannot detect the attack
in theory. The attack does not contain any illegal function calls.

Regular Expression Denial of Service

Regular expression Denial of Service (ReDoS) is a service abuse attack. It exploits the
exponential time complexity of a regex engine when performing backtracking. The attacks

8One-class SVM in Occurrence Frequency Analysis only detects 3.8% attack attempts if used alone.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 56

Table 4.5: Deleterious patterns used in ReDoS attacks.

Deleterious Pattern #(attack)

Pattern 1 ^(a+)+$ 15
Pattern 2 ((a+)*)+$ 8
Pattern 3 ^(([a-z])+.)+[A-Z]([a-z])+$ 23

0

0.2

0.4

0.6

0.8

1

Pattern1 Pattern2 Pattern3 Pattern1 Pattern2 Pattern3

D
et

ec
ti

o
n

 R
at

e

0.01

0.001

0.0001

FVA PCA

FPR

Figure 4.6: Detection rates of ReDoS attacks.

construct extreme matching cases where backtracking is involved. All executed control flows
are legal, but the regex engine hangs due to the extreme complexity.

I produce 46 ReDoS attack attempts targeting libpcre9. Three deleterious patterns are
used (Table 4.5). For each deleterious pattern, attacks are constructed with an increasing
length of a in the input string starting at 6, e.g., aaaaaaaab. I stop attacking libpcre at
different input string lengths so that the longest hanging time periods for different deleterious
patterns are about the same (a few seconds). A longer input string incurs a longer hanging
time; it results in a more severe ReDoS attack than a shorter one.

ReDoS attacks are detected in intra-cluster detection operation (Occurrence Frequency
Analysis) by the probabilistic method, i.e., ν-SVM. I test my approach with both PCA and
FVA feature selection (Sect. 4.4.3, the probabilistic method, bullet b). The detection results
(Fig. 4.6) show that my approach configured with PCA is more sensitive than it configured
with FVA. My approach (with PCA) detects all attack attempts at different FPRs10. The
undetected attack attempts (with FVA) are all constructed with the small amount of a in
the input strings, which do not result in very severe ReDoS attacks.

9Internal deep recursion prevention of libcpre is disabled.
10No attack is detected if only Co-occurrence Analysis is performed.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 57

Directory Harvest Attack

Directory harvest attack (DHA) is a service abuse attack. It probes valid email users through
brute force. I produce 14 DHA attack attempts targeting sendmail. Each attack attempt
consists of a batch of closely sent probing emails with a dictionary of possible receivers. I
conduct DHA attacks with 7 probing batch sizes from 8 to 400 (Table 4.3). Two attack
attempts are conducted for each batch size.

My approach (configured at FPRu 0.0001) successfully detects all attack attempts with
either PCA or FVA feature selection10. DHA attacks are detected in intra-cluster detec-
tion (Occurrence Frequency Analysis) by the probabilistic method, i.e., ν-SVM. The
attacks bypass the inter-cluster detection (Co-occurrence Analysis) because invalid
usernames occur in normal training dataset.

This experiment demonstrates that my approach can consume coarse program behavior
descriptions (e.g., system calls) to detect attacks. Most of the probing emails do not have
valid receivers. They result in a different processing procedure than that for normal emails;
the batch of DHA emails processed in an execution window gives anomalous ratios between
frequencies of valid email processing control flows and frequencies of invalid email processing
control flows. In sendmail, these different control flows contain different sets of system calls,
so they are revealed by system call profiles. More precise detection requires the exposure of
internal program activities, such as function calls.

4.6.3 Systematic Accuracy Evaluation

I systematically demonstrate how sensitive and accurate my approach is through receiver op-
erating characteristic (ROC). Besides normal program behaviors ground truth (Sect. 4.6.1),
I generate four types of synthetic aberrant path anomalies. I first construct F ′ for each
synthetic anomalous behavior instance b′, and then I use (4.1) to derive O′ (of b′) from F ′11.

1. Montage anomaly : two behavior instance b1 and b2 are randomly selected from two
different behavior clusters. For a cell f ′

i,j in F ′, if one of f1i,j (of F1) and f2i,j (of F2)
is 0, the value of the other is copied into f ′

i,j. Otherwise, one of them is randomly
selected and copied.

2. Incomplete path anomaly : random one-eighth of non-zero cells of a normal F are
dropped to 0 (indicating events that have not occurred) to construct F ′.

3. High-frequency anomaly : three cells in a normal F are randomly selected, and their
values are magnified 100 times to construct F ′.

11The synthetic anomalies are tested not in the normal program behavior set. The generated profiles are
defined to be anomalous (outside the scope of the normal program behaviors) for testing purposes.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 58

Our approach (w/ FVA) Our approach (w/ PCA)

One-class SVM (w/ FVA) One-class SVM (w/ PCA)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1

High-frequency anomaly Low-frequency anomaly

Incomplete path anomalyMontage anomaly

Figure 4.7: libpcre ROC of my approach and basic one-class SVM. X-axis is false positive
rate, and y-axis is detection rate.

4. Low-frequency anomaly : similar to high-frequency anomalies, but the values of the
three cells are reduced to 1.

To demonstrate the effectiveness of my design in handling diverse program behaviors, I
compare my approach with a basic one-class SVM (the same ν-SVM and same configurations,
e.g., kernel function, feature selection, and parameters, as used in my Intra-cluster
Modeling operation).

I present the detection accuracy results on libpcre in Fig. 4.7, which has the most compli-
cated behavior patterns among the three studied programs/libraries12. In any subfigure of
Fig. 4.7, each dot is associated with a false positive rate (multi-round 10-fold cross-validation
with 10,000 test cases) and a detection rate (1,000 synthetic anomalies). I denote an anomaly

12Results of the other two programs share similar characteristics as libpcre and are not presented.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 59

result as a positive.

Taking the montage anomaly libpcre ROC figure (the first subfigure) as an example, I
describe the process of ROC curve computation. First, I pick up an FPR and train the four
detection systems to obtain proper parameters, e.g., Tf , so that different ν-SVMs in different
clusters yield the same FPR. 10-fold cross-validation is used in the training. Second, every
trained detection system is tested against synthetic anomalies (montage anomalies in this
case). Each point in the ROC figure is computed with 10,000 test cases in repeated 10-fold
cross-validations and 1,000 synthetic anomalies in system testing. The two steps are applied
for different FPRs until the whole figure is drawn.

TPR = TP/(TP + FN) (4.7)

TPR = FP/(FP + TN) (4.8)

Fig. 4.7 shows the effectiveness of my clustering design. The detection rate of my prototype
(with PCA13) is usually higher than 0.9 with FPR less than 0.01. Because of diverse patterns,
basic one-class SVM fails to learn tight boundaries that wrap diverse normal patterns as
expected. A loose boundary results in false negatives and low detection rates.

4.6.4 Performance Analysis

Although performance is not a critical issue for the training phase, a fast and efficient
detection is important for enabling real-time protection and minimizing negative user ex-
perience [136]. The overall overhead of a program anomaly detection system comes from
tracing and analysis in general.

I evaluate the performance of my analysis procedures (inter- and intra-cluster detections)
with either function call profiles (libpcre) or system call profiles (sendmail). I test the
analysis on all normal profiles (libpcre: 11027, sendmail: 6579) to collect overhead for
inter-cluster detection alone and the combination of inter- and intra-cluster detection14.
The analysis of each behavior instance is repeated 1,000 times to obtain a fair timing. The
performance results in Fig. 4.8 illustrate that

• It takes 0.1ms to 1.3ms to analyze a single behavior instance, which contains 44893
function calls (libpcre) or 1134 system calls (sendmail) on average (Table 4.1).

• The analysis overhead is positively correlated with the number of unique events in a
profile (Table 4.1), which is due to my DOK implementation of profile matrices.

13PCA proves itself more accurate than FVA in Fig. 4.7.
14PCA is used for feature selection. FVA (results omitted) yields a lower overhead due to its simplicity.

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 60

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(C.A.+F.A.) (C.A.)
0.7

0.8

0.9

1

1.1

1.2

1.3

(C.A.+F.A.) (C.A.)D
et

ec
ti

ng
ti

m
e

pe
r

be
ha

v-
io

r
in

st
an

ce
(m

ill
is

ec
on

d)

(a) libpcre (b) sendmail

C.A.+F.A.: Inter- and intra-cluster detection combined.
C.A.: Inter-cluster detection only.

Figure 4.8: Detection (analysis) overhead of my approach.

• Montage anomalies takes less time to detect than frequency anomalies, because they
are detected at the first stage (Co-occurrence Analysis).

Compared with the analysis procedure, dynamic function call tracing incurs a noticeable
overhead. sshd experiences a 167% overhead on average when my Pintool is loaded. A
similar 141% overhead is reported by Jalan and Kejariwal in their dynamic call graph Pin-
tool Trin-Trin [98]. Advanced tracing techniques, e.g., probe mode pintool, branch target
store [202], etc., can potentially reduce the tracing overhead to less than 10% toward a
real-time detection system.

Another choice to deploy my detection solution is to profile program behaviors through
system calls as I demonstrate using sendmail. System calls can be traced through SystemTap
with near-zero overhead [181], but it sacrifices the capability to reveal user-space program
activities and downgrades the modeling/detection accuracy.

My approach can support offline detection or forensics of program attacks, in which case
accuracy is the main concern instead of performance [179]. My Pintool enables analysts to
locate anomalies within execution windows, and my matrices provide caller information for
individual function calls. This information helps analysts quickly reduce false alarms and
locate vulnerable code segments.

Summary I evaluate the detection capability, accuracy, and performance of my detection
prototype on Linux.

• My approach successfully detects all reproduced aberrant path attack attempts against
sshd, libpcre and sendmail with less than 0.0001 false positive rates.

• My approach is accurate in detecting different types of synthetic aberrant path anoma-

Xiaokui Shu Chapter 3. Program Event Correlation Discovery 61

lies with a high detection rate (> 0.9) and a low false positive rate (< 0.01).

• My approach analyzes program behaviors fast; it only incurs 0.1ms to 1.3ms analysis
overhead (excluding tracing) per behavior instance (1k to 50k function/system calls in
my experiments).

Chapter 5

Privacy-Preserving Detection of
Sensitive Data Exposure

5.1 Introduction

In this chapter, I present a data-leak detection solution which can be outsourced and deployed
in a semi-honest detection environment where the detection does not require the sensitive
data in plaintext. I design, implement, and evaluate my fuzzy fingerprint technique that
enhances data privacy during data-leak detection operations. My approach is based on a fast
and practical one-way computation on the sensitive data (SSN records, classified documents,
sensitive emails, etc.). It enables the data owner to securely delegate the content-inspection
task to DLD providers without exposing the sensitive data. Using my detection method,
the DLD provider, who is modeled as an honest-but-curious (aka semi-honest) adversary,
can only gain limited knowledge about the sensitive data from either the released digests,
or the content being inspected. Using my techniques, an Internet service provider (ISP)
can perform detection on its customers’ traffic securely and provide data-leak detection as
an add-on service for its customers. In another scenario, individuals can mark their own
sensitive data and ask the administrator of their local network to detect data leaks for them.

In my detection procedure, the data owner computes a special set of digests or fingerprints
from the sensitive data and then discloses only a small amount of them to the DLD provider.
The DLD provider computes fingerprints from network traffic and identifies potential leaks
in them. To prevent the DLD provider from gathering exact knowledge about the sensitive
data, the collection of potential leaks is composed of real leaks and noises. It is the data
owner, who post-processes the potential leaks sent back by the DLD provider and determines
whether there is any real data leak.

This chapter details my solution and provides extensive experimental evidences and theoret-
ical analyses to demonstrate the feasibility and effectiveness of my approach. My contribu-

62

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 63

tions are summarized as follows.

1. I describe a privacy-preserving data-leak detection model for preventing inadvertent
data leak in network traffic. My model supports detection operation delegation and
ISPs can provide data-leak detection as an add-on service to their customers using my
model.

I design, implement, and evaluate an efficient technique, fuzzy fingerprint, for privacy-
preserving data-leak detection. Fuzzy fingerprints are special sensitive data digests
prepared by the data owner for release to the DLD provider.

2. I implement my detection system and perform extensive experimental evaluation on 2.6
GB Enron dataset, Internet surfing traffic of 20 users, and also 5 simulated real-world
data-leak scenarios to measure its privacy guarantee, detection rate and efficiency. The
results indicate high accuracy achieved by my underlying scheme with very low false
positive rate. The results also show that the detection accuracy does not degrade
much when only partial (sampled) sensitive-data digests are used. In addition, I give
an empirical analysis of my fuzzification as well as of the fairness of fingerprint partial
disclosure.

5.2 Model and Overview

I abstract the privacy-preserving data-leak detection problem with a threat model, a security
goal and a privacy goal. First I describe the two most important players in my abstract
model: the organization (i.e., data owner) and the data-leak detection (DLD) provider.

• Organization owns the sensitive data and authorizes the DLD provider to inspect the
network traffic from the organizational networks for anomalies, namely inadvertent
data leak. However, the organization does not want to directly reveal the sensitive
data to the provider.

• DLD provider inspects the network traffic for potential data leaks. The inspection
can be performed offline without causing any real-time delay in routing the packets.
However, the DLD provider may attempt to gain knowledge about the sensitive data.

I describe the security and privacy goals in Section 5.2.1 and Section 5.2.2.

5.2.1 Security Goal and Threat Model

I categorize three causes for sensitive data to appear on the outbound traffic of an organiza-
tion, including the legitimate data use by the employees.

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 64

• Case I Inadvertent data leak: The sensitive data is accidentally leaked in the outbound
traffic by a legitimate user. This thesis focuses on detecting this type of accidental data
leaks over supervised network channels. Inadvertent data leak may be due to human
errors such as forgetting to use encryption, carelessly forwarding an internal email and
attachments to outsiders, or due to application flaws (such as described in [105]). A
supervised network channel could be an unencrypted channel or an encrypted channel
where the content in it can be extracted and checked by an authority. Such a channel
is widely used for advanced NIDS where MITM (man-in-the-middle) SSL sessions are
established instead of normal SSL sessions [101].

• Case II Malicious data leak: A rogue insider or a piece of stealthy software may steal
sensitive personal or organizational data from a host. Because the malicious adversary
can use strong private encryption, steganography or covert channels to disable content-
based traffic inspection, this type of leaks is out of the scope of my network-based
solution. Host-based defenses (such as detecting the infection onset [204]) need to be
deployed instead.

• Case III Legitimate and intended data transfer: The sensitive data is sent by a legit-
imate user intended for legitimate purposes. In this thesis, I assume that the data
owner is aware of legitimate data transfers and permits such transfers. So the data
owner can tell whether a piece of sensitive data in the network traffic is a leak using
legitimate data transfer policies.

The security goal in this thesis is to detect Case I leaks, that is inadvertent data leaks over
supervised network channels. In other words, I aim to discover sensitive data appearance
in network traffic over supervised network channels. I assume that: i) plaintext data in
supervised network channels can be extracted for inspection; ii) the data owner is aware
of legitimate data transfers (Case III); and iii) whenever sensitive data is found in network
traffic, the data owner can decide whether or not it is a data leak. Network-based security
approaches are ineffective against data leaks caused by malware or rogue insiders as in Case
II, because the intruder may use strong encryption when transmitting the data, and both
the encryption algorithm and the key could be unknown to the DLD provider.

5.2.2 Privacy Goal and Threat Model

To prevent the DLD provider from gaining knowledge of sensitive data during the detection
process, I need to set up a privacy goal that is complementary to the security goal above. I
model the DLD provider as a semi-honest adversary, who follows my protocol to carry out
the operations, but may attempt to gain knowledge about the sensitive data of the data
owner. My privacy goal is defined as follows. The DLD provider is given digests of sensitive
data from the data owner and the content of network traffic to be examined. The DLD
provider should not find out the exact value of a piece of sensitive data with a probability

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 65

1. Preprocess and
prepare fuzzy
fingerprints

2. Release fingerprints

3. Monitor outbound network traffic

4. Detect

5. Report all data-leak alerts
6. Postprocess and
identify true
leak instances

DLD Provider Data Owner

Figure 5.1: Overview of privacy-preserving data-Leak detection model.

greater than 1
K

, where K is an integer representing the number of all possible sensitive-data
candidates that can be inferred by the DLD provider.

I present a privacy-preserving DLD model with a new fuzzy fingerprint mechanism to improve
the data protection against semi-honest DLD provider. I generate digests of sensitive data
through a one-way function, and then hide the sensitive values among other non-sensitive
values via fuzzification. The privacy guarantee of such an approach is much higher than 1

K

when there is no leak in traffic, because the adversary’s inference can only be gained through
brute-force guesses.

The traffic content is accessible by the DLD provider in plaintext. Therefore, in the event
of a data leak, the DLD provider may learn sensitive information from the traffic, which is
inevitable for all deep packet inspection approaches. My solution confines the amount of
maximal information learned during the detection and provides quantitative guarantee for
data privacy.

5.2.3 Overview of Privacy-Enhancing DLD

My privacy-preserving data-leak detection method supports practical data-leak detection as
a service and minimizes the knowledge that a DLD provider may gain during the process.
Fig. 5.1 lists the six operations executed by the data owner and the DLD provider in my
protocol. They include Preprocess run by the data owner to prepare the digests of sensitive
data, Release for the data owner to send the digests to the DLD provider, Monitor and
Detect for the DLD provider to collect outgoing traffic of the organization, compute digests
of traffic content, and identify potential leaks, Report for the DLD provider to return data-
leak alerts to the data owner where there may be false positives (i.e., false alarms), and
Postprocess for the data owner to pinpoint true data-leak instances. Details are presented

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 66

in the next section.

The protocol is based on strategically computing data similarity, specifically the quantitative
similarity between the sensitive information and the observed network traffic. High similarity
indicates potential data leak. For data-leak detection, the ability to tolerate a certain degree
of data transformation in traffic is important. I refer to this property as noise tolerance. My
key idea for fast and noise-tolerant comparison is the design and use of a set of local features
that are representatives of local data patterns, e.g., when byte b2 appears in the sensitive
data, it is usually surrounded by bytes b1 and b3 forming a local pattern b1, b2, b3. Local
features preserve data patterns even when modifications (insertion, deletion, and substitu-
tion) are made to parts of the data. For example, if a byte b4 is inserted after b3, the local
pattern b1, b2, b3 is retained though the global pattern (e.g., a hash of the entire document)
is destroyed. To achieve the privacy goal, the data owner generates a special type of digests,
which I call fuzzy fingerprints. Intuitively, the purpose of fuzzy fingerprints is to hide the
true sensitive data in a crowd. It prevents the DLD provider from learning its exact value.
I describe the technical details next.

5.3 Fuzzy Fingerprint Method and Protocol

I describe technical details of my fuzzy fingerprint mechanism in this section.

5.3.1 Shingles and Fingerprints

The DLD provider obtains digests of sensitive data from the data owner. The data owner uses
a sliding window and Rabin fingerprint algorithm [154] to generate short and hard-to-reverse
(i.e., one-way) digests through the fast polynomial modulus operation. The sliding window
generates small fragments of the processed data (sensitive data or network traffic), which
preserves the local features of the data and provides the noise tolerance property. Rabin
fingerprints are computed as polynomial modulus operations, and can be implemented with
fast XOR, shift, and table look-up operations. The Rabin fingerprint algorithm has a unique
min-wise independence property [23], which supports fast random fingerprints selection (in
uniform distribution) for partial fingerprints disclosure.

The shingle-and-fingerprint process is defined as follows. A sliding window is used to generate
q-grams on an input binary string first. The fingerprints of q-grams are then computed.

A shingle (q-gram) is a fixed-size sequence of contiguous bytes. For example, the 3-gram
shingle set of string abcdefgh consists of six elements {abc, bcd, cde, def, efg, fgh}. Local
feature preservation is accomplished through the use of shingles. Therefore, my approach
can tolerate sensitive data modification to some extent, e.g., inserted tags, small amount of
character substitution, and lightly reformatted data. The use of shingles for finding duplicate

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 67

web documents first appeared in [21,22].

The use of shingles alone does not satisfy the one-wayness requirement. Rabin fingerprint is
utilized to satisfy such requirement after shingling. In fingerprinting, each shingle is treated
as a polynomial q(x). Each coefficient of q(x), i.e., ci (0 < i < k), is one bit in the shingle.
q(x) is mod by a selected irreducible polynomial p(x). The process shown in (5.1) maps a
k-bit shingle into a pf -bit fingerprint f where the degree of p(x) is pf + 1.

f = c1x
k−1 + c2x

k−2 + . . .+ ck−1x+ ck mod p(x) (5.1)

From the detection perspective, a straightforward method is for the DLD provider to raise
an alert if any sensitive fingerprint matches the fingerprints from the traffic1. However,
this approach has a privacy issue. If there is a data leak, there is a match between two
fingerprints from sensitive data and network traffic. Then, the DLD provider learns the
corresponding shingle, as it knows the content of the packet. Therefore, the central challenge
is to prevent the DLD provider from learning the sensitive values even in data-leak scenarios,
while allowing the provider to carry out the traffic inspection.

I propose an efficient technique to address this problem. The main idea is to relax the
comparison criteria by strategically introducing matching instances on the DLD provider’s
side without increasing false alarms for the data owner. Specifically, i) the data owner
perturbs the sensitive-data fingerprints before disclosing them to the DLD provider, and ii)
the DLD provider detects leaking by a range-based comparison instead of the exact match.
The range used in the comparison is pre-defined by the data owner and correlates to the
perturbation procedure. I define the notions of fuzzy length and fuzzy set next and then
describe how they are used in my detailed protocol in Section 5.3.2.

Definition 5.3.1. Given a pf -bit-long fingerprint f , the fuzzy length pd (pd < pf) is the
number of bits in f that may be perturbed by the data owner.

Definition 5.3.2. Given a fuzzy length pd, and a collection of fingerprints, the fuzzy set
Sf,pd of a fingerprint f is the set of fingerprints in the collection whose values differ from f
by at most 2pd − 1.

In Definition 5.3.2, the size of the fuzzy set |Sf,pd| is upper bounded by 2pd , but the actual
size may be smaller due to the sparsity of the fingerprint space.

5.3.2 Operations in My Protocol

1. Preprocess: This operation is run by the data owner on each piece of sensitive data.
1In reality, data-leak detection solutions usually utilize more complex statistical models to raise alerts in-

stead of alerting individual fingerprints. Statistical approaches, e.g., packet sensitivity in Section V, eliminate
accidental matches.

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 68

(a) The data owner chooses four public parameters (q, p(x), pd,M). q is the length
of a shingle. p(x), is an irreducible polynomial (degree of pf + 1) used in Rabin
fingerprint. Each fingerprint is pf -bit long and the fuzzy length is pd. M is
a bitmask, which is pf -bit long and contains pd 0’s at random positions. The
positions of 1’s and 0’s in M indicate the bits to preserve and to randomize in
the fuzzification, respectively.

(b) The data owner computes S, which is the set of all Rabin fingerprints of the piece
of sensitive data.

(c) The data owner transforms each fingerprint f ∈ S into a fuzzy fingerprint f ∗

with randomized bits (specified by the mask M). The procedure is described as
follows: for each f ∈ S, the data owner generates a random pf -bit binary string
ḟ , mask out the bits not randomized by ḟ ′ = (NOT M) AND ḟ (1’s in M indicate
positions of bits not to randomize), and fuzzify f with f ∗ = f XOR ḟ ′. The overall
computation is described in (5.2).

f ∗ = ((NOT M) AND ḟ) XOR f (5.2)

All fuzzy fingerprints are collected and form the output of this operation, the
fuzzy fingerprint set, S∗.

2. Release: This operation is run by the data owner. The fuzzy fingerprint set S∗

obtained by Preprocess is released to the DLD provider for use in the detection,
along with the public parameters (q, p(x), pd,M). The data owner keeps S for use in
the subsequent Postprocess operation.

3. Monitor: This operation is run by the DLD provider. The DLD provider monitors
the network traffic T from the data owner’s organization. Each packet in T is collected
and the payload of it is sent to the next operation as the network traffic (binary) string
T̃ .

The payload of each packet is not the only choice to define T̃ . A more sophisticated ap-
proach could identify TCP flows and extract contents in a TCP session as T̃ . Contents
of other protocols can also be retrieved if required by the detection metrics.

4. Detect: This operation is run by the DLD provider on each T̃ as follows.

(a) The DLD provider first computes the set of Rabin fingerprints of traffic content
T̃ based on the public parameters. The set is denoted as T.

(b) The DLD provider tests whether each fingerprint f ′ ∈ T is also in S∗ using the
fuzzy equivalence test (5.3).

E(f ′, f ∗) = NOT (M AND (f ′ XOR f ∗)) (5.3)

E(f ′, f ∗) is either True or False. f ′ XOR f ∗ gives the difference between f ′ and
f ∗. M AND (f ′ XOR f ∗) filters the result leaving only the interesting bits (preserved

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 69

bits with 1’s in M). Because XOR yields 0 for equivalent bits, NOT is used to turn
0-bits into 1’s (and 1’s into 0’s). The overall result from (5.3) is read as a boolean
indicating whether or not f ′ is equivalent to a fuzzy fingerprint f ∗ ∈ S∗.
(5.2) and (5.3) are designed in a pair, and M works the same in both equations
by masking out fuzzified bits at same positions in each f , f ∗ and f ′. All f ′ with
True values are record in a set T̂.

(c) The DLD provider aggregates the outputs from the preceding step and raises alerts
based on a threshold. My concrete aggregation formula is given in section 5.5.

5. Report: If Detection on T̃ yields an alert, the DLD provider reports the set of
detected candidate leak instances T̂ to the data owner.

6. Postprocess: After receiving T̂, the data owner test every f ′ ∈ T̂ to see whether it
is in S. A precise likelihood of data leaking is computed at the data owner’s, which I
discuss more in section 5.5.

In the protocol, because Sf∗,pd , the fuzzy set of f ∗, includes the original fingerprint f , the true
data leak can be detected (i.e., true positive). Yet, due to the increased detection range,
multiple values in Sf∗,pd may trigger alerts. Because Sf∗,pd is large for the given network
flow, the DLD provider has a low probability of pinpointing the sensitive data, which can be
bounded as shown in Section 5.4.

The Detect operation can be performed between T and S∗ via set intersection test with
a special equivalence test function (e.g. Formula 5.5 in Section 5.5 as one realization). The
advantage of my method is that the additional matching instances introduced by fuzzy fin-
gerprints protect the sensitive data from the DLD provider; yet they do not cause additional
false alarms for the data owner, as the data owner can quickly distinguish true and false
leak instances. Given the digest f of a piece of sensitive data, a large collection T of traffic
fingerprints, and a positive integer K ≪ |T |, the data owner can choose a fuzzy length pd
such that there are at least K − 1 other distinct digests in the fuzzy set of f , assuming
that the shingles corresponding to these K digests are equally likely to be candidates for
sensitive data and to appear in network traffic. A tight fuzzy length (i.e., the smallest pd
value satisfying the privacy requirement) is important for efficient Postprocess operation.
Due to the dynamic nature of network traffic, pd needs to be estimated accordingly. There
exists an obvious tradeoff between privacy and detection efficiency – large fuzzy set allows a
fingerprint to hide among others and confuses the DLD provider, yet this indistinguishability
results in more work in Postprocess. I provide quantitative analysis on fuzzy fingerprint
including empirical results on different sizes of fuzzy sets.

5.3.3 Extensions

Fingerprint Filter I develop this extension to use Bloom filter in the Detect operation for

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 70

efficient set intersection test. Bloom filter [20] is a well-known space-saving data structure
for performing set-membership test. It applies multiple hash functions to each of the set
elements and stores the resulting values in a bit vector; to test whether a value v belongs
to the set, the filter checks each corresponding bit mapped with each hash function. Bloom
filter in combination with Rabin fingerprint is referred to by us as the fingerprint filter. I
use Rabin fingerprints with variety of modulus’s in fingerprint filter as the hash functions,
and I perform extensive experimental evaluation on both fingerprint filter and bloom filter
with MD5/SHA in Section 5.5.

Partial disclosure Using the min-wise independent property of Rabin fingerprint, the data
owner can quickly disclose partial fuzzy fingerprints to the DLD provider. The purpose of
partial disclosure is two-fold: i) to increase the scalability of the comparison in the Detect
operation, and ii) to reduce the exposure of data to the DLD provider for privacy. The
method of partial release of sensitive data fingerprints is similar to the suppression technique
in database anonymization [3, 35].

This extension requires a good uniform distribution random selection to avoid disclosure
bias. The min-wise independence feature of Rabin fingerprint guarantees that the minimal
fingerprint is coming from a (uniformly distributed) random shingle. The property is also
valid for a minimum set of fingerprints and so the data owner can just select r smallest
elements in S∗ to perform partial disclosure. The r elements are then sent to the DLD
provider in Release operation instead of S∗. I implement the partial disclosure policy,
evaluate its influence on detection rate, and verify the min-wise independence property of
Rabin fingerprint in Section 5.5.

5.4 Analysis and Discussion

I analyze the security and privacy guarantees provided by my data-leak detection system, as
well as discuss the sources of possible false negatives – data leak cases being overlooked and
false positives – legitimate traffic misclassified as data leak in the detection. I point out the
limitations associated with the proposed network-based DLD approaches.

Privacy Analysis My privacy goal is to prevent the DLD provider from inferring the exact
knowledge of all sensitive data, both the outsourced sensitive data and the matched digests
in network traffic. I quantify the probability for the DLD provider to infer the sensitive
shingles as follows.

A polynomial-time adversary has no greater than 2
pf−pd

n
probability of correctly inferring a

sensitive shingle, where pf is the length of a fingerprint in bits, pd is the fuzzy length, and
n ∈ [2pf−pd , 2pf] is the size of the set of traffic fingerprints, assuming that the fingerprints
of shingles are uniformly distributed and are equally likely to be sensitive and appear in the
traffic.

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 71

I explain my quantification in two scenarios:

1. There is a match between a sensitive fuzzy fingerprint f ∗ (derived from the sensitive
fingerprint f) and fingerprints from the network traffic. Because the size of fuzzy set
Sf,pd is upper bounded by 2pd (Definition 5.3.2), there could be at most 2pd (sensitive
or non-sensitive) fingerprints fuzzified into the identical f ∗. Given a set (size n) of
traffic fingerprints, the DLD provider expects to find K fingerprints matched to f ∗

where K = n
2
pf × 2pd .

(a) If f corresponds to a sensitive shingle leaked in the traffic, i.e., f is within the
K traffic fingerprints, the likelihood of correctly pinpointing f from the K fin-
gerprints is 1

K
, or 2

pf−pd

n
. The likelihood is fare because both sensitive data and

network traffic contain binary data. It is difficult to predict the subspace of the
sensitive data in the entire binary space.

(b) If the shingle form of f is not leaked in the traffic, the DLD provider cannot use
the K traffic fingerprints, which match f ∗, to infer f . Alternatively, the DLD
provider needs to brute force f ∗ to get f , which is discussed as in the case of no
match.

2. There is no match between sensitive and traffic fingerprints. The adversarial DLD
provider needs to brute force reverse the Rabin fingerprinting computation to obtain
the sensitive shingle. There are two difficulties in reversing a fingerprint: i) Rabin
fingerprint is a one-way hash. ii) Multiple shingles can map to the same fingerprint.
It requires to searching the complete set of possible shingles for a fingerprint and
to identify the sensitive one from the set. This brute-force attack is difficult for a
polynomial-time adversary, thus the success probability is not included.

In summary, the DLD provider cannot decide whether the alerts (traffic fingerprints matched
f ∗) contain any leak or not (case i.a or i.b). Even if it is known that there is a real leak in the
network traffic, the polynomial-time DLD provider has no greater than 2

pf−pd

n
probability of

correctly pinpointing a sensitive shingle (case i.a).

Alert Rate I quantify the rate of alerts expected in the traffic for a sensitive data entry
(the fuzzified fingerprints set of a piece of sensitive data) given the following values: the
total number of fuzzified sensitive fingerprints τ , the expected traffic fingerprints set size n,
fingerprint length pf , fuzzy length pd, partial disclosure rate ps ∈ (0, 1], and the expected
rate α, which is the percentage of fingerprints in the sensitive data entry that appear in the
network traffic. The expected alert rate R is presented in (5.4).

R =
αpsKτ

n
=

αpsτ

2pf−pd
(5.4)

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 72

R is used to derive threshold Sthres in the detection; Sthres should be lower than R. The
overhead of my privacy-preserving approach over traditional fingerprinting data-leak detec-
tion solutions is tightly related to R and Sthres, because there is an extra Postprocess
step in my approach after the DLD provider detects potential leaks. The less potential leaks
the DLD provider reports back to the data owner, the less overhead is introduced by my
privacy-preserving approach, while the less privacy is achieved since K is small.

Collisions Collisions may be due to where the legitimate traffic happens to contain the
partial sensitive-data fingerprints by coincidence. The collision may increase with shorter
shingles, or smaller numbers of partial fingerprints, and may decrease if additional features
such as the order of fingerprints are used for detection. A previous large-scale information-
retrieval study empirically demonstrated the low rate of this type of collisions in Rabin
fingerprint [22], which is a desirable property suggesting low unwanted false alarms in my
DLD setting. Collisions due to two distinct shingles generating the same fingerprint are
proved to be low [21] and are negligible.

Space of sensitive data The space of all text-based sensitive data may be smaller than the
space of all possible shingles. Yet, when including non-ASCII sensitive data (text in UTF-8
or binaries), the space of sensitive data can be significantly expanded. A restricted space
limits K and can expose the fuzzified fingerprint. For instance, one may assume that a
password has higher entropy than normal English shingles, thus a fuzzy fingerprint of a
password rules out much space of Sf,pd where normal English lives. The full space with a
variety of text encodings and binaries ensures that the major space is still there shadowing
the fuzzy fingerprint.

Short polynomial modulus A naive alternative to the fuzzy fingerprint mechanism is to use
a shorter polynomial modulus to compute Rabin fingerprints (e.g., 16-bit instead of 32-
bit). This approach increases collisions for fuzzification purpose. However, one issue of this
approach is that true positive and false positives yield the same fingerprint value due to col-
lision, which prevents the data owner from telling true positives apart from false positives.
In addition, my fuzzy fingerprint approach is more flexible from the deployment perspec-
tive, as the data owner can adjust and fine-tune the privacy and accuracy in the detection
without recomputing the fingerprints. In contrast, the precision is fixed in the naive shorter
polynomial approach unless fingerprints are recomputed.

Limitations: I point out three major limitations of my detection approach within my threat
model.

Modified data leak The underlying shingle scheme of my approach has limited power to
capture heavily modified data leaks. False negatives (i.e., failure to detect data leak) may
occur due to the data modification (e.g., reformatting). The new shingles/fingerprints may
not resemble the original ones, and cannot be detected. As a result, a packet may evade the
detection. In my experiments, I evaluate the impact of several types of data transformation
in real world scenarios. The modified data-leak detection problem is a general problem
for all comparison-based data-leak detection solutions. More advanced content comparison

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 73

techniques than shingles/fingerprints are needed to fully address the issue.

Dynamic sensitive data For protecting dynamically changing data such as source code or
documents under constant development or keystroke data, the digests need to be continuously
updated for detection, which may not be efficient or practical. I raise the issue of how
to efficiently detect dynamic data with a network-based approach as an open problem to
investigate by the community.

Selective fragments leak The partial disclosure scheme may result in false negatives, i.e., the
leaked data may evade the detection because it is not covered by the released fingerprints.
This issue illustrates the tradeoff among detection accuracy, privacy guarantee and detection
efficiency. Fortunately, it is expensive for an attacker to escape the detection with partial
disclosure. On one hand, Rabin fingerprint guarantees that every fingerprint has the same
probability to be selected and released through its min-wise independence property. Delib-
erately choosing unreleased segments from sensitive data is not easy. On the other hand,
even figuring out which fingerprints are not released, one needs leaking inconsecutive bytes
to bypass the detection. It usually makes no sense to leak inconsecutive bytes from sensitive
data. Some format, e.g., binary, may be destroyed through the leaking.

5.5 Experimental Evaluation

I implement my fuzzy fingerprint framework in Python, including packet collection, shin-
gling, Rabin fingerprinting, as well as partial disclosure and fingerprint filter extensions. My
implementation of Rabin fingerprint is based on cyclic redundancy code (CRC). I use the
padding scheme mentioned in [154] to handle small inputs. In all experiments, the shingles
are in 8-byte, and the fingerprints are in 32-bit (33-bit irreducible polynomials in Rabin
fingerprint). I set up a networking environment in VirtualBox, and make a scenario where
the sensitive data is leaked from a local network to the Internet. Multiple users’ hosts (Win-
dows 7) are put in the local network, which connect to the Internet via a gateway (Fedora).
Multiple servers (HTTP, FTP, etc.) and an attacker-controlled host are put on the Inter-
net side. The gateway dumps the network traffic and sends it to a DLD server/provider
(Linux). Using the sensitive-data fingerprints defined by the users in the local network, the
DLD server performs off-line data-leak detection. The speed aspect of privacy-preserving
data-leak detection is another topic and I study it in [128].

In my prototype system, the DLD server detects the sensitive data within each packet on
basis of a stateless filtering system. I define the sensitivity of a packet in (5.5), which is
used by the DLD provider in Detection. It indicates the likelihood of a packet containing

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 74

sensitive data.

Spacket =
|≫
pd

S̈∗ ∩≫
pd

T|

min(|S∗|, |T|)
× |S

∗|
|S̈∗|

(5.5)

T is the set of all fingerprints extracted in a packet. S∗ is the set of all sensitive fuzzy
fingerprints. For each piece of sensitive data, the data owner computes S∗ and reveals a
partial set S̈∗ (S̈∗ ⊆ S∗) to the DLD provider. The operator ≫

t
indicates right shifting

every fingerprint in a set by t bits, which is the implementation of a simple mask M in my
protocol (Section 5.3.2). |S∗|/|S̈∗| estimates the leaking level of S∗ according to the revealed
and tested partial set S̈∗. When too few fuzzy fingerprints are revealed, e.g., 10%, the samples
may not sufficiently describe the leaking characteristic of the traffic, and the estimation can
be imprecise. For each packet, the DLD server computes Spacket (Spacket ∈ [0, 1]). If it is
higher than a threshold Sthres ∈ (0, 1), T is reported back to the data owner, and the data
owner uses (5.6) to determine whether it is a real leak in Postprocess.

Spacket =
|S ∩ T|

min(|S|, |T|)
(5.6)

The difference between (5.5) operated by the DLD provider and (5.6) by the data owner is
that the original fingerprints S are used in (5.6) instead of the sampled and fuzzified set S̈∗

in (5.5), so the data owner can pinpoint the exact leaks.

The use of Spacket and Sthres for detection is important because individual shingles or fin-
gerprints are not accurate features to represent an entire piece of sensitive data. Sensitive
data can share strings with non-sensitive data, e.g., formatting strings, which results in oc-
casionally reported sensitive fingerprints. Spacket is an accumulated score and Sthres filters
out packets with occasionally discovered sensitive fingerprints.

The evaluation goal is to answer the following questions:

1. Can my solution accurately detect sensitive data leak in the traffic with low false
positives (false alarms) and high true positives (real leaks)?

2. Does using partial sensitive-data fingerprints reduce the detection accuracy in my sys-
tem?

3. What is the performance advantage of my fingerprint filter over traditional Bloom
filter with SHA-1?

4. How to choose a proper fuzzy length and make a balance between the privacy need
and the number of alerts?

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 75

0

10

Category 1 Category 2 Category 3 Category 4

Blackdoor Keylogger Mal-extension Wiki [all]

Wiki [out] Blog [all] Blog [out]

(a)

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
ve

ra
ge

 s
e

n
si

ti
vi

ty
(o

f
al

l s
e

n
si

ti
ve

 p
ac

ke
ts

)

Sampling rate

0

5

10

15

20

25

30

35

40

45

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
et

e
ct

e
d

 #
 o

f
se

n
si

ti
ve

 p
ac

ke
ts

Sampling rate

Figure 5.2: Detection accuracy comparison, in terms of (a) the averaged sensitivity and
(b) the number of detected sensitive packets. X-axis is the partial disclosure rate, or the
percentage of sensitive-data fingerprints revealed to the DLD server and used in the detection.
[out] indicates outbound traffic only, while [all] means both outbound and inbound traffic
captured and analyzed.

In the following subsection, I experimentally addressed and answered all the questions. For
the first three questions, I present results based on the Spacket value calculated in (5.6). The
first and second questions are answered in Section 5.5.1. The third question is discussed in
Section 5.5.2. The last question is designed to understand the properties of fuzzification and
partial disclosure, and it is addressed in Section 5.5.3.

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 76

Table 5.1: Mean and standard deviations of the sensitivity per packet. For Exp.1, the higher
sensitivity, the better; for the other two (negative control), the lower sensitivity, the better

Dataset Exp.1 Exp.2 Exp.3

Spacket Mean 0.952564 0.000005 0.001849
Spacket STD 0.004011 0.000133 0.002178

5.5.1 Accuracy Evaluation

I evaluate the detection accuracy in simple and complex leaking scenarios. First I test the
detection rate and false positive rate in three simple experiments where the sensitive data
is leaked in its original form or not leaked. Then I present accuracy evaluation on more
complex leaking experiments to reproduce various real-world leaking detection scenarios.

Simple leaking scenarios. I test my prototype without partial disclosure in simple leaking
scenarios, i.e., S̈∗ = S∗. I generate 20,000 personal financial records as the sensitive data and
store them in a text file. The data contains person name, social security number, credit card
number, credit card expiration date, and credit card CVV.

To evaluate the accuracy of my strategy, I perform three separate experiments using the
same sensitive dataset:

Exp.1 True leak A user leaks the entire set of sensitive data via FTP by uploading it to a
remote FTP server.

Exp.2 No leak The non-related outbound HTTP traffic of 20 users is captured (30 minutes
per user), and given to the DLD server to analyze. No sensitive data (i.e., zero true
positive) should be confirmed.

Exp.3 No leak The Enron dataset (2.6 GB data, 150 users’ 517,424 emails) as a virtual
network traffic is given to the DLD server to analyze. Each virtual network packet
created is based on an email in the dataset. No sensitive data (i.e., zero true positive)
should be confirmed by the data owner.

The detection results are shown in Table 5.1. Among the three experiments, the first one
is designed to infer true positive rate. I manually check each packet and the DLD server
detects all 651 real sensitive packets (all of them have sensitivity values greater than 0.9).
The sensitivity value is less than one, because the high-layer headers (e.g., HTTP) in a packet
are not sensitive. The next two experiments are designed to estimate the false positive rate. I
found that none of the packets has a sensitivity value greater than 0.05. The results indicate
that my design performs as expected on plaintext.

Complex leaking scenarios. The data owner may reveal a subset of sensitive data’s finger-
prints to the DLD server for detection, as opposed to the entire set. I are particularly

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 77

interested in measuring the percentage of revealed fingerprints that can be detected in the
traffic, assuming that fingerprints are equally likely to be leaked2. I reproduce four real-world
scenarios where data leaks are caused by human users or software applications.

Exp.4 Web leak: a user posts sensitive data on wiki (MediaWiki) and blog (WordPress)
pages.

Exp.5 Backdoor leak: a program (Glacier) on the user’s machine (Windows 7) leaks sen-
sitive data.

Exp.6 Browser leak: a malicious Firefox extension FFsniFF records the information in
sensitive web forms, and emails the data to the attacker.

Exp.7 Keylogging leak: a keylogger EZRecKb exports intercepted keystroke values on a user’s
host3. It connects to a SMTP server on the Internet side and sends its log of keystrokes
periodically.

In these four experiments, the source file of TCP/IP page on Wikipedia (24KB in text) is
used as the sensitive data. The detection is performed at various partial disclosure rate.
The subset of the sensitive fingerprints is selected randomly. The sensitivity threshold is
Sthres = 0.05.

Fig. 5.2 shows the comparison of performance across various size of fingerprints used in the
detection, in terms of the averaged sensitivity per packet in (a) and the number of detected
sensitive packets in (b). These accuracy values reflect results of the Postprocess operation.

The results show that the use of partial sensitive-data fingerprints does not much degrade
the detection rate compared to the use of full sets of sensitive-data fingerprints. However,
extreme small sampling rates, e.g., 10%, may not provide sufficient numbers of fingerprints
to describe the leaking characteristic of the traffic. The packet sensitivity estimation (|S|/|S̈|
in (5.6)) magnifies the signal (the real sensitivity of a packet) as well as the noise produced
by fingerprint sampling. The precision could be affected and drops, e.g., 6 packets with 10%
vs. 3 packets with 100% for Keylogger in Fig. 5.2 (b).

In Fig. 5.2 (a), the sensitivities of experiments vary due to different levels of modification by
the leaking programs, which makes it difficult to perform detection. WordPress substitutes
spaces with +’s when sending the HTTP POST request. EZRecKb inserts function-key as
labels into the original text. Typing typos and corrections also bring in modification to
the original sensitive data. In Fig. 5.2 (b), [all] results contain both outbound and inbound
traffic and double the real number of sensitive packets in Blog and Wiki scenarios due to
HTML fetching and displaying of the submitted data.

2Given the subset independence property, sensitive-data’s fingerprints are equally likely to be selected for
detection.

3EZRecKb records every key stroke and replaces the function keys with labels, such as [left shift].

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 78

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000 1100D
et

e
ct

io
n

 t
im

e
 p

er
 p

ac
ke

t
(m

ill
is

e
co

n
d

)

Length of sensitive data per packet (bytes)

FF[2] FF[6] FF[10] BF[2] BF[6] BF[10]

(a) Detection Time

0

0.05

0.1

0.15

0.2

0 100 200 300 400 500 600 700 800 900 1000 1100

O
ve

ra
ll

fi
lt

e
r

b
u

ild
in

g
ti

m
e

 (
se

co
n

d
s)

Length per sensitive data file (bytes)

FF[2] FF[6] FF[10] BF[2] BF[6] BF[10]

(b) Filter Building Time

Figure 5.3: Overhead of filters for detecting data leaks. The detection time is averaged from
100 packets against all 10 pieces of sensitive data.

5.5.2 Runtime Comparison

My fingerprint filter implementation is based on the Bloom filter library in Python (Pybloom).
I compare the runtime of Bloom filter provided by standard Pybloom (with dynamically

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 79

selected hash function from MD5, SHA-1, SHA-256, SHA-384 and SHA-512) and that of
fingerprint filter with Rabin fingerprint. For Bloom filters and fingerprint filters, I test their
performance with 2, 6, and 10 hash functions. I inspect 100 packets with random content
against 10 pieces sensitive data at various lengths – there are a total of 1,625,600 fingerprints
generated from the traffic and 76,160 pieces of fingerprints from the sensitive data.

I present the time for detection per packet in Fig. 5.3 (a). It shows that fingerprint filters
run faster than Bloom filters, which is expected as Rabin fingerprint is easier to compute
than MD5/SHA. The gap is not significant due to the fact that Python uses a virtualization
architecture. I have the core hash computations implemented in Python C/C++ extension,
but the remaining control flow and function call statements are in pure Python. The perfor-
mance difference between Rabin fingerprint and MD5/SHA is largely masked by the runtime
overhead spent on non-hash related operations.

In Fig. 5.3 (a), the number of hash functions used in Bloom filters does not significantly
impact their runtime, because only one hash function is operated in most cases for Bloom
filters. Pybloom automatically chooses SHA-256 for Bloom filter with 6 hash functions and
SHA-384 for Bloom filter with 10 hash functions. One hash is sufficient to distinguish 32-bits
fingerprints. MD5 is automatically chosen for the Bloom filter with 2 hash functions, which
gives more collisions and the second hash could be involved. I speculate this is the reason
why Bloom filter with 2 hashes is slower than Bloom filters with 6 or 10 hashes. All of my
fingerprint filters use 32-bit Rabin fingerprint functions. The small output space requires
more than one hash for a membership test, so there is more significant overhead when a
fingerprint filter is equipped with more hashes (6 vs. 2 and 10 vs. 6).

The filter construction time is shown in Fig. 5.3 (b). It shares similar characteristics with
the detection time. Filters with more hash functions require more time to initialize, because
every hash function need to be computed. The construction of fingerprint filters, especially
assigning the irreducible polynomials p(x) for each Rabin fingerprint, is written in pure
Python, which is significantly slower than SHA-256 and SHA-384 encapsulated using Python
C/C++ extension.

5.5.3 Sizes of Fuzzy Sets vs. Fuzzy Length

The size of fuzzy set corresponds to the K value in my definition of privacy goal. The higher
K is, the more difficult it is for a DLD provider to infer the original sensitive data using
my fuzzy fingerprinting mechanism – the fingerprint of the sensitive data hides among its
neighboring fingerprints.

I empirically evaluate the average size of the fuzzy set associated with a given fuzzy length
with both Brown Corpus (text) and real-world network traffic (text & binary).

• Brown Corpus: The Brown University Standard Corpus of Present-Day American

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 80

0

1000

2000

3000

4000

5000

6000

7000

8000

14 15 16 17 18 19 20 21 22 23 24 25 26 27

A
vg

. S
iz

e
o

f
th

e
 f

u
zz

y
Se

t

Fuzzy length (bits)

Brown Corpus Network Traffic

Expon. (Brown Corpus) Expon. (Network Traffic)

Observed (Brown)

Expected (Brown)

Observed (Network traffic)

Expected (Network traffic)

Figure 5.4: The observed and expected sizes of fuzzy sets per fingerprint. Experiments in
Brown Corpus dataset (in blue) and network traffic (in red) with different fuzzy lengths.

English [62]. It contains 500 samples of English text across 15 genres, and there are
1,014,312 words in total.

• Network traffic: 500MB Internet traffic dump collected by us on a single host. It
includes a variety of network traffic: multimedia Internet surfing (images, video, etc.),
binary downloading, software and system updates, user profile synchronization, etc.

I aim to show the trend of how the fuzzy-set sizes changes with the fuzzy length, which
can be used to select the optimal fuzzy length used in the algorithm. I compute 32-bit
fingerprints from the datasets, and then count the number of neighbors for each fingerprint.
Fig. 5.4 shows the estimated and observed sizes of fuzzy sets for fuzzy lengths in the range
of [14, 27] for 218,652 and 189,878 fingerprints generated from the Brown Corpus dataset
and the network traffic dataset. The figure shows that the empirical results observed are
very close with the expected values of the fuzzy set sizes computed based on my analysis in
Section 5.4. This close fit also indicates the uniform distribution of the fingerprints.

The fuzzy set is small when the fuzzy length is small, which is due to the sparsity nature
of Rabin fingerprints. Given an estimated composition of traffic content, the data owner
can use the result of this experiment to determine the optimal fuzzy length. In the datasets
evaluated in the experiments, for fuzzy length of 26 and 27 bits, the K values are above 1,500
and 3,000, respectively. Because the data owner can defuzzify in Postprocess very quickly,
the false positives can be sifted out by the data owner. I also find that for a fixed fuzzy
length the distribution of fuzzy-set sizes follows a Gaussian distribution. Different datasets
may have different K size characteristics. I demonstrate the feasibility of estimating the

Xiaokui Shu Chapter 5. Privacy-Preserving Data Leak Detection 81

fuzzy set sizes, which illustrates how fuzzy fingerprintings can be used to realize a privacy
goal.

Summary My detection rates in terms of the number of sensitive packets found do not
decrease much with the decreasing size of disclosed fingerprint sets in Fig. 5.2, even when
only 10% of the sensitive-data fingerprints are used for detection. My experiments evaluate
several noisy conditions such as noise insertion – MediaWiki-based leak scenario, and data
substitution – for the keylogger- and WordPress-based leak scenarios. The results indicate
that my fingerprint filter can tolerate these three types of noises in the traffic to some degree.
My approach works well especially in the case where consecutive data blocks are leaked (i.e.,
local data features are preserved). When the noises spread across the data and destroy
the local features (e.g., replacing every space with another character), the detection rate
decreases as expected. The use of shorter shingles mitigates the problem, but it may increase
false positives. How to improve the noise tolerance property in those conditions remains an
open problem. My fuzzy fingerprint mechanism supports the detection of data-leak at various
sizes and granularities. I study the fuzzy set size and also verify the min-wise independence
property of Rabin fingerprint, which are the building blocks of my fuzzy fingerprint method.

Chapter 6

Fast Detection of Transformed Data
Leaks

6.1 Introduction

In this chapter, I present a high-performance detection method for addressing the following
two challenges in network-based data leak detection. My method follows the basic network-
based data leak detection paradigm and searches for the occurrences of plaintext sensitive
data in the content of network traffic (retrieved by deep packet inspection techniques [45,
127]). It alerts users and administrators of the identified data exposure vulnerabilities.

• Data transformation. The exposed data in the content may be unpredictably trans-
formed or modified by users or applications, and it may no longer be identical to the
original sensitive data, e.g., insertions of metadata or formatting tags, substitutions
of characters, and data truncation (partial data leak). Thus, the detection algorithm
needs to recognize different kinds of sensitive data variations.

• Scalability. The heavy workload of data leak screening is due to two reasons.

1. Long sensitive data patterns. The sensitive data (e.g., customer information,
documents, source code) can be of arbitrary length (e.g., megabytes).

2. Large amount of content. The detection needs to rapidly screen content (e.g.,
gigabytes to terabytes). Traffic scanning is more time sensitive than storage scan-
ning, because the leak needs to be discovered before the message is transmitted.

My solution to the detection of transformed data leaks is a sequence alignment algorithm,
executed on the sampled sensitive data sequence and the sampled content being inspected.

82

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 83

The alignment produces scores indicating the amount of sensitive data contained in the con-
tent. My alignment-based solution measures the order of n-grams. It also handles arbitrary
variations of patterns without an explicit specification of all possible variation patterns. Ex-
periments show that my alignment method substantially outperforms the set intersection
method in terms of detection accuracy in a multitude of transformed data leak scenarios.

I solve the scalability issue by sampling both the sensitive data and content sequences before
aligning them. I enable this procedure by providing the pair of a comparable sampling algo-
rithm and a sampling-oblivious alignment algorithm. The comparable sampling algorithm
yields constant samples of a sequence wherever the sampling starts and ends. The sampling-
oblivious alignment algorithm infers the similarity between the original unsampled sequences
with sophisticated traceback techniques through dynamic programming. The algorithm in-
fers the lost information (i.e., sampled-out elements) based on the matching results of their
neighboring elements. Evaluation results show that my design boosts the performance, yet
only incurs a very small amount of mismatches.

Existing network traffic sampling techniques, e.g., [57], only sample the content. The prob-
lem I am dealing with differs from existing sampling problems that both sensitive data
and content sequences are sampled. The alignment is performed on the sampled sequences.
Therefore, the samples of similar sequences should be similar so that they can be aligned.
I define a comparable sampling property, where the similarity of two sequences is preserved.
For example, if x is a substring of y, then x′ should be a substring of y′, where x′ and y′

are sampled sequences of x and y, respectively. None of the existing sampling solutions
satisfies this comparable sampling requirement. Deterministic sampling, e.g., [191], does not
imply comparable sampling, either. The key to my comparable sampling is to consider the
local context of a sequence while selecting items. Sample items are selected deterministi-
cally within a sliding window. The same sampled items are selected in spite of different
starting/ending points of sampling procedures.

Both of my algorithms are designed to be efficiently parallelized. I parallelize my proto-
type on a multicore CPU and a GPU. I demonstrate the strong scalability of my design
and the high performance of my prototypes. My GPU-accelerated implementation achieves
nearly 50 times of speedup over the CPU version. My prototype reaches 400Mbps analysis
throughput. This performance potentially supports the rapid security scanning of storage
and communication required by a sizable organization.

In this chapter, I formalize the description and analysis of my comparable sampling algorithm
and sampling-oblivious alignment algorithm in Section 6.3 and Section 6.4. I detail the
design of both algorithms and conduct extensive experiments to systematically understand
how sensitive my system is in response to data transformation in various degrees (Section 6.5)
and how scalable the system is detecting different sizes of the sensitive data (Section 6.6).

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 84

6.2 Models and Overview

In my data leak detection model, I analyze two types of sequences: sensitive data sequence
and content sequence.

• Content sequence is the sequence to be examined for leaks. The content may be data
extracted from file systems on personal computers, workstations, and servers; or pay-
loads extracted from supervised network channels (details are discussed below).

• Sensitive data sequence contains the information (e.g., customers’ records, proprietary
documents) that needs to be protected and cannot be exposed to unauthorized parties.
The sensitive data sequences are known to the analysis system.

In this chapter, I focus on detecting inadvertent data leaks (Case I in Section 5.2.1), and I
assume the content in file system or network traffic (over supervised network channels) is
available to the inspection system. A supervised network channel could be an unencrypted
channel or an encrypted channel where the content in it can be extracted and checked by
an authority. Such a channel is widely used for advanced NIDS where MITM (man-in-the-
middle) SSL sessions are established instead of normal SSL sessions [101]. I do not aim
at detecting stealthy data leaks that an attacker encrypts the sensitive data secretly before
leaking it. Preventing intentional or malicious data leak, especially encrypted leaks, requires
different approaches and remains an active research problem [15].

6.2.1 Technical Challenges

High detection specificity. In my data-leak detection model, high specificity refers to
the ability to distinguish true leaks from coincidental matches. Coincidental matches are
false positives, which may lead to false alarms. Existing set-based detection is orderless,
where the order of matched shingles (n-grams) is ignored. Orderless detection may generate
coincidental matches, and thus having a lower accuracy of the detection. In comparison,
my alignment-based method has high specificity. For example, a detection system can use
3-grams to represent the sensitive data.

Sensitive data abcdefg
3-grams abc, bcd, cde, def, efg

Then, consider the content streams 1 and 2 below. Stream 1 contains a true leak, whereas
stream 2 does not.

Content stream 1abcdefg...
Content stream 2efg...cde...abc...

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 85

However, set intersection between 3-grams of the sensitive data and the 3-grams of content
stream 2 results in a significant number of matching 3-grams (efg, cde, and abc), even
though they are out of order compared to the sensitive data pattern. This problem is
eliminated in alignment, i.e., the content stream 2 receives a low sensitivity score when
aligned against the sensitive data.

Pervasive and localized modification. Sensitive data could be modified before it is
leaked out. The modification can occur throughout a sequence (pervasive modification).
The modification can also only affect a local region (local modification). I describe some
modification examples:

• Character replacement, e.g., WordPress replaces every space character with a + in
HTTP POST requests.

• String insertion, e.g., HTML tags inserted throughout a document for formatting or
embedding objects.

• Data truncation or partial data leak, e.g., one page of a two-page sensitive document
is transmitted.

6.2.2 Discussions on Existing Solutions

None of existing techniques satisfies the two requirements. I discuss automata-based string
matching and set intersection on n-grams below, the two most important techinques that
could be used to detect long and inexact data leak.

Directly applying automata-based string matching, e.g., [4, 116, 208], to data leak detection
is inappropriate and inefficient, because automata are not designed to support unpredictable
and arbitrary pattern variations (Section 2.2.3). In data leak detection scenarios, the trans-
formation of leaked data (in the description of regular expression) is unknown to the detection
method. Creating comprehensive automata models covering all possible variations of a pat-
tern is infeasible, which leads to O(2n) space complexity (for deterministic finite automata)
or O(2n) time complexity (for nondeterministic finite automata) where n is the number of
automaton states. Therefore, automata approaches cannot be used for detecting long and
transformed data leaks.

Set intersection on n-grams is widely used in commercial leak detection tools. However,
set intersection is orderless, i.e., the ordering of shared n-grams is not analyzed. Thus, set-
based detection generates undesirable false alerts, especially when n is set to a small value
to tolerant data transformation. In addition, set intersection cannot effectively characterize
the scenario when partial data is leaked, which results in false negatives. Therefore, none of
the existing techniques is adequate for detecting transformed data leaks.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 86

6.2.3 Overview of My Approach

My work presents an efficient sequence comparison technique needed for analyzing a large
amount of content for sensitive data exposure. My detection approach consists of a com-
parable sampling algorithm and a sampling oblivious alignment algorithm. The pair of
algorithms computes a quantitative similarity score between the sensitive data and the con-
tent. Local alignment – as opposed to global alignment [151] – is used to identify similar
sequence segments. The design enables the detection of partial data leaks.

My detection runs on continuous sequences of n bytes (n-grams). n-grams are obtained from
the content and sensitive data, respectively. Local alignment is performed between the two
(sampled) sequences to compute their similarity. The purpose of my comparable sampling
operation is to enhance the analysis throughput. I discuss the tradeoff between security and
performance related to sampling in my evaluation sections. Finally, I report the content that
bears higher-than-threshold similarity with respect to sensitive patterns. Given a threshold
T , content with a greater-than-T sensitivity is reported as a leak.

6.3 Comparable Sampling

In this section, I define the sampling requirement needed in data leak detection. Then I
present my solution and its analysis.

6.3.1 Definitions

One great challenge in aligning sampled sequences is that the sensitive data segment can be
exposed at an arbitrary position in a network traffic stream or a file system. The sampled
sequence should be deterministic despite the starting and ending points of the sequence to
be sampled. Moreover, the leaked sensitive data could be inexact but similar to the original
string due to unpredictable transformations. I first define substring and subsequence relations
in Definition 6.3.1 and Definition 6.3.2. Then I define the capability of giving comparable
results from similar strings in Definition 6.3.3.

Definition 6.3.1. (Substring) a substring is a consecutive segment of the original string.

If x is a substring of y, one can find a prefix string (denoted by yp) and a suffix string
(denoted by ys) of y, so that y equals to the concatenation of yp, x, and ys. yp and ys could
be empty.

Definition 6.3.2. (Subsequence) subsequence is a generalization of substring that a subse-
quence does not require its items to be consecutive in the original string.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 87

One can generate a subsequence of a string by removing items from the original string and
keeping the order of the remaining items. The removed items can be denoted as gaps in the
subsequence, e.g., lo-e is a subsequence of flower (- indicates a gap).

Definition 6.3.3. (Comparable sampling) Given a string x and another string y that x is
similar to a substring of y according to a similarity measure M , a comparable sampling on
x and y yields two subsequences x′ (the sample of x) and y′ (the sample of y), so that x′ is
similar to a substring of y′ according to M .

If I restrict the similarity measure M in Definition 6.3.3 to identical relation, I get a specific
instance of comparable sampling in Definition 6.3.4.

Definition 6.3.4. (Subsequence-preserving sampling) Given x as a substring of y, a subsequence-
preserving sampling on x and y yields two subsequences x′ (the sample of x) and y′ (the
sample of y), so that x′ is a substring of y′.

Because a subsequence-preserving sampling procedure is a restricted comparable sampling,
so the subsequence-preserving sampling is deterministic, i.e., the same input always yields
the same output. The vice versa may not be true.

In Example 1 with two sequences of integers, I illustrate the differences between a comparable
sampling algorithm and a random sampling method, where a biased coin flipping at each
position decides whether to sample or not. The input is a pair of two similar sequences.
There is one modification (9 to 8), two deletions (7) and (3), and suffix padding (1, 4) in the
second sequence. Local patterns are preserved in a comparable sampling method, whereas the
random sampling does not. The local patterns can then be digested by my sampling-oblivious
alignment algorithm to infer the similarity between the two original input sequences.

Example 1. Comparable sampling.

Inputs:
1 1 9 4 5 7 3 5 9 7 6 6 3 3 7 1 6
1 1 9 4 5 7 3 5 8 6 6 3 7 1 6 1 4

Comparable sampling may give:
1 1 - 4 - - 3 5 - - - - 3 3 - 1 -
1 1 - 4 - - 3 - - 6 - 3 - 1 - 1 4

Random sampling may give:
1 - - 4 - - 3 5 - 7 - 6 - - 7 1 -
- 1 9 - 5 - - 5 - 6 - 3 7 - 6 1 -

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 88

Table 6.1: Illustration of my sampling procedure.

Step w mc mp en eo Sampled list

0 [1, 5, 1, 9, 8, 5] 1, 1, 5 N/A N/A N/A <-, -, -, -, -, -, -, -, -, ->

1 [5, 1, 9, 8, 5, 3] 1, 3, 5 1, 1, 5 3 1 <1, -, -, -, -, -, -, -, -, ->

2 [1, 9, 8, 5, 3, 2] 1, 2, 3 1, 3, 5 2 5 <1, -, -, -, -, -, -, 2, -, ->

3 [9, 8, 5, 3, 2, 4] 2, 3, 4 1, 2, 3 4 1 <1, -, 1, -, -, -, -, 2, -, ->

4 [8, 5, 3, 2, 4, 8] 2, 3, 4 2, 3, 4 N/A N/A <1, -, 1, -, -, -, -, 2, -, ->

6.3.2 My Sampling Algorithm

I present my comparable sampling algorithm. The advantage of my algorithm is its context-
aware selection, i.e., the selection decision of an item depends on how it compares with its
surrounding items according to a selection function. As a result, the sampling algorithm is
deterministic and subsequence-preserving.

My comparable sampling algorithm takes in S, an input list of items (preprocessed n-grams
of sensitive data or content1), and outputs T , a sampled list of the same length; the sampled
list contains null values, which correspond to items that are not selected. The null regions
in T can be aggregated, and T can be turned into a compact representation L. Each item
in L contains the value of the sampled item and the length of the null region between the
current sampled item and the preceding one.

T is initialized as an empty list, i.e., a list of null items. The algorithm runs a small sliding
window w on S. w is initialized with the first |w| items in S (line 2 in Algorithm 1). The
algorithm then utilizes a selection function to decide what items in w should be selected
for T . The selection decision is made based on not only the value of that item, but also
the values of its neighboring items in w. Therefore, unlike a random sampling method
where a selection decision is stochastic, my method satisfies the subsequence-preserving and
comparable sampling requirements.

In Algorithm 1, without loss of generality, I describe my sampling method with a specific
selection function f = min(w,N). f takes in an array w and returns the N smallest items
(integers) in w. f is deterministic, and it unbiasedly selects items when items (n-grams)
are preprocessed with the min-wise independent Rabin’s fingerprint [23]. f can be replaced
by other functions that are also min-wise independent. The selection results at each sliding
window position determine what items are chosen for the sampled list. The parameters N
and |w| determine the sampling rate. collectionDiff(A,B) in lines 10 and 11 outputs the
collection of all items of collection A that are not in collection B. The operation is similar to
the set difference, except that it works on collections and does not eliminate duplicates.

T output by Algorithm 1 takes the same space as S does. Null items can be combined, and
1I preprocess n-grams with Rabin’s fingerprint to meet the min-wise independent requirement of selection

function f described next. Each item in S is a fingerprint/hash value (integer) of an n-gram.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 89

Algorithm 1 A subsequence-preserving sampling algorithm.
Require: an array S of items, a size |w| for a sliding window w, a selection function f(w,N) that

selects N smallest items from a window w, i.e., f = min(w,N)
Ensure: a sampled array T
1: initialize T as an empty array of size |S|
2: w ← read(S, |w|)
3: let w.head and w.tail be indices in S corresponding to the higher-indexed end and lower-indexed

end of w, respectively
4: collection mc ← min(w,N)
5: while w is within the boundary of S do
6: mp ← mc

7: move w toward high index by 1
8: mc ← min(w,N)
9: if mc ̸= mp then

10: item en ← collectionDiff(mc,mp)
11: item eo ← collectionDiff(mp,mc)
12: if en < eo then
13: write value en to T at w.head’s position
14: else
15: write value eo to T at w.tail’s position
16: end if
17: end if
18: end while

T is turned into a compact representation L, which is consumed by my sampling-oblivious
alignment algorithm in the next phase.

I show how my sampling algorithm works in Table 6.1. I set my sampling procedure with a
sliding window of size 6 (i.e., |w| = 6) and N = 3. The input sequence is 1,5,1,9,8,5,3,2,4,8.
The initial sliding window w = [1,5,1,9,8,5] and collection mc = {1,1,5}.

Sampling Algorithm Analysis

My sampling algorithm is deterministic, i.e., given a fixed selection function f : same inputs
yield the same sampled string. However, deterministic sampling (e.g., [191]) does not nec-
essarily imply subsequence preserving. One can prove using a counterexample. Consider a
sampling method that selects the first of every 10 items from a sequence, e.g., 1-st, 11-th,
21-st, . . . It is deterministic, but it does not satisfy the subsequence-preserving requirement.
Some sampling methods such as coresets [2, 54] do not imply determinism.

My sampling algorithm is not only deterministic, but also subsequence-preserving as pre-
sented in Theorem 6.3.1.

Theorem 6.3.1. Algorithm 1 (denoted by Ψ) is subsequence-preserving. Given two strings
x and y, where x is a substring of y, then Ψ(x) is a substring of Ψ(y).

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 90

of Theorem 6.3.1. Let L[m : n] denote the substring of L starting from the m-th item and
ending at the n-th item. Consider strings L1 and L2 and their sampled sequences S1 and S2,
respectively. I prove that the theorem holds in four cases below.

Case 1: L2 equals to L1. Because my comparable sampling algorithm is deterministic,
the same string yields the same sampled sequence. Thus, the theorem holds.

Case 2: L2 is a prefix of L1. The sampling of L1 can be split into two phases.

Phase 1 The head of the sliding moves within L1[size(win) : size(L2)], i.e., from the
start of L1 to the exact position in L1 where L2 ends. Since L2 is a prefix of
L1, and the window only moves within the scope of the prefix, the sample of L1

generated in this subprocess is the same as S2, the final sample of L2.

Phase 2 The head of the sliding window moves within L1[size(L2) + 1 : size(L2) +
size(win)]. The tail of the sample window sweeps L1[size(L2)− size(win) + 1 :
size(L2)] and yields zero or more sampled items on S1[size(L2)−size(win)+1 :
size(L2)].

S1[1 : size(L2) − size(win)] is solely generated in Phase 1. Thus, it is the same as S2[1 :
size(L2) − size(win)]. In Phase 2, I know that S1[size(L2) − size(win) + 1 : size(L2)]
contains zero or more sample items than S2[size(L2) − size(win) + 1 : size(L2)]. Thus,
S2[size(L2)−size(win)+1 : size(L2)] is a substring of S1[size(L2)−size(win)+1 : size(L2)].
The theorem holds.

Case 3: L2 is a suffix of L1. The proof is similar to Case 2. The sampling of L1 can be
split into two phases.

Phase 1 The tail of the sliding window moves within L1[size(L1)−size(L2)+1 : size(L1)−
size(win)]. The generated sampled sequence is the same as S2, which is the final
sample of L2.

Phase 2 The tail of the sliding window moves within L1[size(L1)−size(L2)−size(win)+
1 : size(L1)−size(L2)]. The head of the window sweeps L1[size(L1)−size(L2)+
1 : size(L1) − size(L2) + size(win)] and yields zero or more sampled items on
L1[size(L1)− size(L2) + 1 : size(L1)− size(L2) + size(win)].

S1[size(L1) − size(L2) + size(win) + 1 : size(L1) − size(L2)] is the same as S2[size(L1) −
size(L2) + size(win) + 1 : size(L1) − size(L2)]. In addition, S2[size(L1) − size(L2) + 1 :
size(L1) − size(L2) + size(win)] is a substring of S1[size(L1) − size(L2) + 1 : size(L1) −
size(L2) + size(win)]. Thus, the theorem holds.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 91

Case 4: All others. This case is when L2 is a substring of L1, but not a prefix or suffix,
i.e., L2[1 : size(L2)] = L1[m : n]. I align L1 and L2 and cut the two strings at a position
where they are aligned. Denote the position in L2 by k. I obtain L2[1 : k] as a suffix of
L1[m : m + k] and L2[k + 1 : size(L2)] as a prefix of L1[m + k + 1 : n]. Based on the
proofs in Case 2 and Case 3, I conclude that S2[1 : k] is a substring of S1[m : m+ k], and
S2[k + 1 : size(L2)] is a substring of S1[m+ k + 1 : n]. Thus, S2 is a substring of S1.

In summary, Theorem 6.3.1 holds in all cases. □

My algorithm is unbiased, meaning that it gives an equal probability for every unit in
the string to be selected. To achieve bias-free property, I hash inputs using a min-wise
independent function, namely Rabin’s fingerprint [154]. It guarantees that the smallest N
items come equally from any items in the original string. This hashing is performed in
Preprocessing operation in my prototypes.

The complexity of sampling using the min(w,N) selection function is O(n log |w|), or O(n)
where n is the size of the input, |w| is the size of the window, The factor O(log |w|) comes
from maintaining the smallest N items within the window w.

Sampling rate α ∈ [N|w| , 1] approximates N
|w| for random inputs, where |w| is the size of the

sliding window, and N is the number of items selected within the sliding window. For
arbitrary inputs, the actual sampling rate depends on the characteristics of the input space
and the selection function used. The sampling rate in my evaluations on common Internet
traffic is around 1.2 N

|w| .

Sufficient number of items need to be sampled from sequences in order to warrant an accurate
detection. My empirical result in Section 6.5.2 shows that with 0.25 sampling rate my
alignment method can detect as short as 32-byte-long sensitive data segments.

6.4 Alignment Algorithm

In this section, I describe the requirements for a sample-based alignment algorithm and
present my solution.

6.4.1 Requirements and Overview

I design a specialized alignment algorithm that runs on compact sampled sequences La and
Lb to infer the similarity between the original sensitive data sequence Sa and the original
content sequence Sb. It needs to satisfy the requirement of sampling oblivion, i.e., the
result of a sampling-oblivious alignment on sampled sequences La and Lb should be consistent
with the alignment result on the original Sa and Sb.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 92

Conventional alignment may underestimate the similarity between two substrings of the
sampled lists, causing misalignment. Regular local alignment without the sampling oblivion
property may give inaccurate alignment on sampled sequences as illustrated in Example 2.

Example 2. Sampling-oblivious alignment vs. regular local alignment

Original lists:
5627983857432546397824366
5627983966432546395

Sampled sequences need to be aligned as:
--2---3-5---2---3-7-2-3--
--2---3-6---2---3--

However, regular local alignment may give:
23523723

23623

Because values of unselected items are unknown to the alignment, the decision of match or
mismatch cannot be made solely on them during the alignment. I observe that leaked data
region is usually consecutive, e.g., spans at least dozens of bytes. Thus, my algorithm achieves
sampling oblivion by inferring the similarity between null regions (consecutive sampled-out
elements) and counts that similarity in the overall comparison outcomes between the two
sampled sequences. The inference is based on the comparison outcomes between items
surrounding null regions and sizes of null regions. For example, given two sampled sequences
a–b and A–B, if a == A and b == B, then the two values in the positions of the null regions
are likely to match as well. In case of mismatch surrounding the null region, penalty is
applied. My experimental results confirm that this inference mechanism is effective.

I develop my alignment algorithm using dynamic programming. A string alignment prob-
lem is divided into three prefix alignment subproblems: the current two items (from two
sequences) are aligned with each other, or one of them is aligned with a gap. In my algo-
rithm, not only the sampled items are compared, but also comparison outcomes between
null regions are inferred based on their non-null neighboring values and their sizes/lengths.
The comparison results include match, mismatch and gap, and they are rewarded (match)
or penalized (mismatch or gap) differently for sampled items or null regions according to a
weight function fw().

My alignment runs on sampled out elements. I introduce i) extra fields of scoring matrix
cells in dynamic programming, ii) extra steps in recurrence relation for bookkeeping the null
region information, and iii) a complex weight function estimating similarities between null
regions.

Security Advantages of Alignment. There are three major advantages of my alignment-
based method for detecting data leaks: order-aware comparison, high tolerance to pattern

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 93

variations, and the capability of partial leak detection. All features contribute to high
detection accuracy.

• Order-aware comparison. Existing data leak filtering methods based on set intersection
are orderless. An orderless comparison brings undesirable false alarms due to coinci-
dental matches, as explained in Section 6.2. In comparison, alignment is order-aware,
which significantly reduces the number of false positives.

• High tolerance to pattern variations. The optimal alignment between the sensitive
data sequence and content sequence ensures high accuracy for data leak detection.
The alignment-based detection tolerates pattern variations in the comparison, thus can
handle transformed data leaks. The types of data transformation in my model include
localized and pervasive modifications such as insertion, deletion, and substitution, but
exclude strong encryption.

• Capability of detecting partial leaks. Partial data leak is an extreme case of truncation
in transformation. In set-intersection methods, the size of sensitive data and that of
the inspected content are usually used to diminish the score of coincidental matches,
which incurs false negatives when only partial sensitive data is leaked. Local alignment
searches for similar substrings in two sequences, thus it can detect a partial data leak.

6.4.2 Recurrence Relation

I present the recurrence relation of my dynamic program alignment algorithm in Algorithm 2.
For the i-th item Li in a sampled sequence L (the compact form), the field Li.value denotes
the value of the item and a new field Li.span denotes the size of null region between that
item and the preceding non-null item. My local alignment algorithm takes in two sampled
sequences La and Lb, computes a non-negative score matrix H of size |La|-by-|Lb|, and
returns the maximum alignment score with respect to a weight function. Each cell H(i, j)
has a score field H(i, j).score and two extra fields recording sizes of neighboring null regions,
namely nullrow and nullcol.

The intermediate solutions are stored in matrix H. For each subproblem, three previous
subproblems are investigated: i) aligning the current elements without a gap, which leads
to a match or mismatch, ii) aligning the current element in La with a gap, and iii) aligning
the current element in Lb with a gap. A cell candidate h is generated for each situation;
its score h.score is computed via the weight function fw (lines 1 to 3 in Algorithm 2). The
other two fields, nullrow and nullcol, are updated for each candidate cell (lines 4 to 9). This
update may utilize the null region value stored in the span field of an item. All three cell
candidates hup, hleft, and hdia are prepared. The cell candidate having the highest score is
chosen as H(i, j), and the score is stored in H(i, j).score.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 94

Algorithm 2 Recurrence relation in dynamic programming.
Require: A weight function fw, visited cells in H matrix that are adjacent to H(i, j): H(i− 1, j−

1),H(i, j − 1), and H(i− 1, j), and the i-th and j-th items Lai ,Lbj in two sampled sequences La

and Lb, respectively.
Ensure: H(i, j)
1: hup.score← fw(Lai , -, H(i− 1, j))
2: hleft.score← fw(-,Lbj ,H(i, j − 1))

3: hdia.score← fw(Lai ,Lbj ,H(i− 1, j − 1))
4: hup.nullrow ← 0
5: hup.nullcol ← 0
6: hleft.nullrow ← 0
7: hleft.nullcol ← 0

8: hdia.nullrow ←

0, if Lai = Lbj
H(i− 1, j).nullrow

+ Lai .span+ 1, else

9: hdia.nullcol ←

0, if Lai = Lbj
H(i, j − 1).nullcol

+ Lbj .span+ 1, else

10: H(i, j)← arg max
h.score

hup

hleft

hdia

11: H(i, j).score← max

{
0
H(i, j).score

6.4.3 Weight Function

A weight function computes the score for a specific alignment configuration. My weight
function fw() takes three inputs: the two items being aligned (e.g., La

i from sensitive data
sequence and Lb

j from content sequence) and a reference cell c (one of the three visited
adjacent cells H(i − 1, j − 1), H(i, j − 1), or H(i − 1, j)). It then outputs a score of an
alignment configuration. One of La

i and Lb
j may be a gap (−) in the alignment. The

computation is based on the penalty given to mismatch and gap conditions and reward
given to match conditions. My weight function differs from the one in Smith-Waterman
algorithm [174] in its ability to infer comparison outcomes for null regions. This inference is
done efficiently accordingly to the values of their adjacent non-null neighboring items. The
inference may trace back to multiple preceding non-null items up to a constant factor.

In my fw(), r is the reward for a single unit match, m is the penalty for a mismatch, and g
is the penalty for a single unit aligned with a gap. As presented in Section 6.4.2, the field
value is the value of a sampled item (e.g., x.value or y.value in fw() below), and the field
span stores the length of the null region preceding the item. For the input cell c, the fields nr

(short for nullrow) and nc (short for nullcol) record the size of the accumulated null regions

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 95

c

hdia

x

y

Milestone Cell of c x.n
c.nr

y.
n

c.
n

c

x

y

j+k+l
l

k+l

c.nc

c.nr x.n

y.n

 (b) Scoring Matrix View(a) Sampled Stream View

sens

traffic

Figure 6.1: Illustration of the notation used in the weight function fw(), the match case (i.
e., x.value = y.value) in the alignment view (a) and matrix view (b). The milestone cell in
(b) is for inference due to sampling.

in terms of row and column from the nearest milestone cell (explained next in my traceback
strategy) to the current cell. diff(m,n) = |m − n|. Values p, q, l, k, and j serve as weight
coefficients in my penalty and reward mechanisms. I detail my weight function fw() below
and illustrate the lengths l, k and j for the match case in Figure 6.1.

1. (Gap) hup

fw(x,−, c) = c.score+m× p+ g × q

where
p = min(c.nr + x.span+ 1, c.nc)

q = diff(c.nr + x.span+ 1, c.nc)

2. (Gap) hleft

fw(−, y, c) = c.score+m× p+ g × q

where
p = min(c.nr, c.nc + y.span+ 1)

q = diff(c.nr, c.nc + y.span+ 1)

3. (Mismatch) hdia|x.value ̸= y.value

fw(x, y, c) = cell.score

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 96

4. (Match) hdia|x.value = y.value

fw(x, y, c) = cell.score

+ r × l

+m× k

+ g × j

where
l = min(x.span, y.span) + 1,

k = min(c.nr, c.nc)− l,

j = diff(c.nr, c.nc) + diff(x.span, y.span) + l

Traceback in my weight function is for inferring matching outcomes based on preceding null
regions, including the adjacent one. My traceback operation is efficient. It extends to a
constant number of preceding null regions. To achieve this property, I define a special type
of cells (referred to as milestone cells) in matrix H with zero nullrow and nullcol fields. These
milestone cells mark the boundary for the traceback inference; the subproblems (upper left
cells) of a milestone cell are not visited. A milestone cell is introduced in either match or
gap cases in fw.

6.4.4 Algorithm Analysis

The complexity of my alignment algorithm is O(|La||Lb|), where |La| and |Lb| are lengths
of compact representations of the two sampled sequences. The alignment complexity for a
single piece of sensitive data of size l is the same as that of a set of shorter pieces with a
total size l, as the total amounts of matrix cells to compute are the same.

In a real-world deployment, the overall sensitive data sequence Sa is usually close to a fixed
length, and more attention is commonly paid to the length of the content sequence Sb. In
this case, the complexity of my alignment is O(|Lb|) where Lb is the sampled list of Sb. I
experimentally evaluate the throughput of my prototype in Section 6.6, which confirms the
O(|Lb|) complexity in the analysis.

The correctness of my alignment is ensured by dynamic programming and the recurrence
relation among the subproblems of string alignment. The preciseness of similarity inference
between sampled-out elements is achieved by my specifically designed weight function. Em-
pirical results show that the alignment of sampled sequences La and Lb is very close to the
alignment of original sequences Sa and Sb, confirming the sampling oblivion property.

My alignment of two sampled sequences achieves a speedup in the order of O(α2), where
α ∈ (0, 1) is the sampling rate. There is a constant damping factor due to the overhead
introduced by sampling. The expected value is 0.33 because of the extra two fields, besides

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 97

Table 6.2: Datasets in accuracy & scalability experiments

Dataset Size Details

A. Enron [30] 2.6 GB 517,424 email (with full headers and bodies) of 150 users
B. Source-code 3.8 MB 288 source files in projects tar, net-tools, gzip, procps,

and rsync

C. HTTP requests 12 MB HTTP requests of 20 users (30-minute Internet activities
recorded for each user)

D. MiscNet 500MB Miscellaneous web traffic containing text and multimedia
content

the score field, to maintain for each cell in H. I experimentally verify the damping factor in
my evaluation.

Permutation-based data transformation (e.g., position swaps) affects the alignment precision
and reduces the overall detection accuracy.

6.5 Evaluation on Detection Accuracy

I extensively evaluate the accuracy of my solution with several types of datasets under a
multitude of real-world data leak scenarios. My experiments in this section aim to answer
the following questions.

1. Can my method detect leaks with pervasive modifications, e.g., character substitution
throughout a sensitive document?

2. Can my method detect localized modifications, especially partial data leaks?

3. How specific is my detection, that is, the evaluation of false positives?

4. How does my method compare to the state-of-the-art collection intersection method
in terms of detection accuracy?

6.5.1 Implementation and Experiment Setup

I implement a single-threaded prototype (referred to as AlignDLD system) and a collection
intersection method (referred to as Coll-Inter system), which is a baseline. Both systems are
written in C++, compiled using g++ 4.7.1 with flag -O3. I also provide two parallel versions
of my prototype in Section 6.6 for performance demonstration.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 98

Table 6.3: Semantics of true/false positives/negatives.

True Leak No Leak

Leak detected TP FP
No leak detected FN TN

• AlignDLD: my sample-and-align data leak detection method with sampling parameters
N = 10 and |w| = 100. 3-grams and 32-bit Rabin’s fingerprints2 are used.

• Coll-Inter: a data leak detection system based on collection intersection3, which is
widely adopted by commercial tools such as GlobalVelocity [75] and GoCloudDLP [76].
8-grams and 64-bit Rabin’s fingerprints are used, which is standard with collection
intersection.

I use four datasets (Table 6.2) in my experiments. A. Enron and B. Source-code are used
either as the sensitive data or the content to be inspected. C. Outbound HTTP requests and
D. MiscNet are used as the content. Detailed usages of these datasets are specified in each
experiment.

I report the detection rate in Equation (6.1) with respect to a certain threshold for both
AlignDLD and Coll-Inter systems. The detection rate gives the percentage of leak incidents
that are successfully detected. I also compute standard false positive rate defined in Equa-
tion (6.2). I detail the semantic meaning for primary cases, true positive (TP), false positive
(FP), true negative (TN), and false negative (FN), in Table 6.3.

Detection rate (Recall) =
TP

TP + FN
(6.1)

False positive rate =
FP

FP + TP
(6.2)

I define the sensitivity S ∈ [0, 1] of a content sequence in Equation (6.3). It indicates the
similarity of sensitive data D and content CD′ with respect to their sequences Sa and Sb after
Preprocess. ξ is the maximum score in the alignment, i.e., the maximum score calculated
in the scoring matrix of my dynamic programming alignment. r is the reward for one-unit
match in the alignment (details in Section 6.4.3).

S =
ξ

r ×min (|Sa|, |Sb|)
(6.3)

2Rabin’s fingerprint is used for unbiased sampling discussed in Section 6.3.2.
3Set and collection intersections are used interchangeably.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 99

I reproduce four leaking scenarios in a virtual network environment using VirtualBox. I
build a virtual network and deploy the detection systems at the gateway of the virtual
network. The detection systems intercept the outbound network traffic, perform deep packet
inspection, and extract the content at the highest known network layer4. Then the detection
systems compare the content with predefined sensitive data to search for any leak.

1. Web leak: a user publishes sensitive data on the Internet via typical publishing services,
e.g., WordPress,

2. FTP: a user transfers unencrypted sensitive files to an FTP server on the Internet,

3. Backdoor: a malicious program, i.e., Glacier, on the user’s machine exfiltrates sensi-
tive data,

4. Spyware: a Firefox extension FFsniFF [200] exfiltrates sensitive information via web
forms.

It is not a challenge to detect intact data leaks. My AlignDLD system successfully detects
intact leaks in all these leaking scenarios with a small sampling rate between 5% and 20%.
In the following subsections, I analyze the detection accuracy to answer the questions at the
beginning of this section.

6.5.2 Detecting Modified Leaks

I evaluate three types of modifications: i) real-world pervasive substitution by WordPress,
ii) random pervasive substitution, and iii) truncated data (localized modifications).

Pervasive Substitution

I test AlignDLD and Coll-Inter on content extracted from three kinds of network traffic.

1. Content without any leak, i.e., the content does not contain any sensitive data.

2. Content with unmodified leak, i.e., sensitive data appearing in the content is not mod-
ified.

3. Content with modified leaks caused by WordPress, which substitutes every space with
a “+” in the content.

4The content is obtained at the TCP layer when unknown protocols are used at higher network layers.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 100

0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

N
o

rm
al

iz
e

d
 F

re
q

u
e

n
cy

Sensitivity

Coll-Inter [leak w/o modification]

Coll-Inter [leak w/ WordPress]

Coll-Inter [content w/o leak]

(a) AlignDLD (our method)

(b) Collection Intersection (Coll-Inter, baseline)

Best Threshold

0.2

Recall
Leak w/ WordPress

100%

False Positive
Content w/o leak

0.8%

Best Threshold

0.14

Recall
Leak w/ WordPress

63.8%

False Positive
Content w/o leak

8.9%

0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

N
o

rm
al

iz
e

d
 F

re
q

u
e

n
cy

Sensitivity

AlignDLD [leak w/o modification]
AlignDLD [leak w/ WordPress]
AlignDLD [content w/o leak]

Figure 6.2: Detection comparison of AlignDLD and collection intersection, leak through
WordPress in AlignDLD (a) and collection intersection (b). In each subfigure, each of the
3 curves shows the distribution of sensitivity values under one of 3 scenarios: leak with-
out transformation, leak with WordPress transformation, or content without leak. With
a threshold of 0.2, AlignDLD detects all the leaks. In comparison, collection intersection
performs worse as shown in the table on the right.

The sensitive dataset in this experiment is English text, 50 randomly chosen email messages
from the Enron dataset5. The content without leak consists of other 950 randomly chosen
Enron email messages. I compute the sensitivities of the content according to Equation (6.3).

I evaluate and compare my AlignDLD method with the Coll-Inter method. The distributions
of sensitivity values in all 6 experiments are shown in Figure 6.2. The table to the right of each
figure summarizes the detection accuracy under a chosen threshold. The dotted lines in both
Figure 6.2 (a) and (b) (on the left) represent the content without leak. Low sensitivities are
observed in them by both systems as expected. The dashed lines (on the right) represent the
content with unmodified leak. High sensitivities are reported by both systems as expected.

The solid lines in Figure 6.2 represent the detection results of leaks with WordPress modifi-
5Headers are included.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 101

(a) AlignDLD (our method)

(b) Collection Intersection (Coll-Inter, baseline)

0%

20%

40%

60%

80%

100%

0.10 0.20 0.30 0.40 0.50

R
e

ca
ll

Sensitivity Threshold

1/8

1/12

1/16

0%

20%

40%

60%

80%

100%

0.10 0.20 0.30 0.40 0.50

R
e

ca
ll

Sensitivity Threshold

1/8

1/12

1/16

Figure 6.3: Sensitivity values of the content under various transformation ratios. A. Enron
dataset. Transformation ratio (X-axis) denotes the fraction of leaked sensitive data that is
randomized.

cations. My AlignDLD method (in Figure 6.2 (a)) gives much higher sensitivity scores to the
transformed data leak than the Coll-Inter method. AlignDLD detects all transformed
email leaks with a threshold of 0.2, i.e., it achieves 100% recall. The false positive rate
is low. In contrast, Coll-Inter in Figure 6.2 (b) results in a significant overlap of sensitivity
values between messages with no leak and messages with transformed leaks. Its accuracy is
much lower than that of AlignDLD, e.g., 63.8% recall and a 10 times higher false positive
rate. Further analysis of false positives caused by coincidental matches (dotted lines on the
left) is given in Section 6.5.3.

Random and Pervasive Substitution

The sensitive data in this experiment is the same as above, i.e., randomly chosen 50 Enron
emails (including headers). For the content sequences, I randomize one byte out of every m
bytes, where m ∈ {8, 12, 16}. The smaller m is, the harder the detection is, as the similarity

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 102

0%

20%

40%

60%

80%

100%

<= 0.60 0.65 0.70 0.75 0.80

R
e

ca
ll

Sensitivity Threshold

1000B

500B

250B

128B

64B

32B

Figure 6.4: The detection success rate of AlignDLD in partial data leaks. Detection under
various detection thresholds. Each content sequence contains a consecutive portion of a 1KB
sensitive text, ranging from 32 bytes to 1KB. AlignDLD achieves 100% detection rates when
the threshold is equal or smaller than 0.6.

between the content and sensitive data becomes lower. The detection results with respect
to various thresholds are shown in Figure 6.3.

The recall values decrease as the substitution frequency increases for both the alignment
and collection intersection methods as expected. My alignment method degrades more
gracefully under the pervasive substitution scenario. For example, under threshold
0.3, the detection rate is over 80% even when one out of every 8 bytes is substituted. The
collection intersection cannot detect the leak (0% detection rate) in the same scenario.

Data Truncation

In data truncation or partial data leak scenarios, consecutive portions of the sensitive data
are leaked. In this experiment, a content sequence contains a portion of sensitive text. The
total length of the sensitive text is 1KB. The size of the leaked portion appearing in the
content sequence ranges from 32 bytes to 1KB. Each content sequence is 1KB long with
random padding if needed.

I measure the unit sensitivity S̃ ∈ [0, 1] on segments of content sequences. Unit sensitivity S̃
is the normalized per-element sensitivity value for the aligned portion of two sequences. It is
defined in Equation (6.4), where ξ̃ is the maximum local alignment score obtained between
aligned segments S̃a and S̃b, which are sequence segments of sensitive data D and content
CD′ . The higher S̃ is, the better the detection is. Threshold l is a predefined length describing

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 103

Table 6.4: Sampling rates of AlianDLD. A.Enron and B.source-code data sets. |w| = 100

N 2 3 5 10 20 40

Enron 2.83% 4.14% 6.67% 12.32% 22.78% 43.1%
S.Code 2.81% 4.01% 6.30% 11.81% 22.33% 43.04%

the shortest segment to invoke the measure. l = 16 in my experiments.

S̃ =
ξ̃

r ×min (|S̃a|, |S̃b|)
where min (|S̃a|, |S̃b|) ≥ l (6.4)

The detection results are shown in Figure 6.4, where X-axis shows the threshold of sensitivity,
and Y-axis shows the recall rates of AlignDLD. Content with longer sensitive text is easier to
detection as expected. Nevertheless, my method detects content with short truncated
leaks as small as 32 bytes with high accuracy. The detection rate decreases with
higher thresholds. I observe that high thresholds (e.g., higher than 0.6) are not necessary for
detection when 8-byte shingles are used; false positives caused by coincidental matches are
low in this setup. These experiments show that my detection is resilient to data truncation.

6.5.3 Low False Positive Rate

The purpose of this experiment is to evaluate how specific my alignment-based data leak
detection is, i.e., reporting leaks and only leaks. I compute and compare the amount of
coincidental matches (defined in Section 6.2) found by my method and the collection in-
tersection method. I conduct two sets of experiments using A. Enron and B. Source-code
datasets. In A. Enron, I use 50 random email messages (including headers) as the sensitive
data and other 950 messages as the content. In B. Source-code, I use 5 random files as the
sensitive data and other 283 files as the content. None of the contents contain any inten-
tional leaks. Sensitivity scores are computed for each email message and source code file.
Small amounts of coincidental matches are expected in these two datasets, because of shared
message structures and C/C++ code structures.

I test the impact of sampling in this experiment. I chose screen size N = 2, 3, 5, 10, 20, 40 and
window size |w| = 100. The sampling rates (Table 6.4) on the two datasets are similar when
rounded to percentages. This is because Rabin’s fingerprint maps any n-gram uniformly to
the item space before sampling.

I measure the signal-to-noise ratios (SNRdB) between sensitive scores of real leaks and sensi-
tive scores of non-leak traffic. I calculate SNRdB as in Equation 6.5, where the signal value is
the averaged sensitivity score of traffic containing leaks, and the noise value is the averaged

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 104

0

2

4

6

8

10

12

14

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
N

R
 (

d
B

)

A
v
e
ra

g
e
 S

e
n

s
it

iv
it

y

Sampling Rate

(a) Enron

Traffic w/ Leak Traffic w/o Leak SNR

0

2

4

6

8

10

12

14

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
N

R
 (

d
B

)

A
v
e
ra

g
e
 S

e
n

s
it

iv
it

y

Sampling Rate

(b) Source-code

Traffic w/ Leak Traffic w/o Leak SNR

Figure 6.5: Capability of differentiating real leak from coincidental matches, experiments for
AlignDLD with different sampling rates and Coll-Inter.

sensitivity score of regular traffic with no leaks.

SNRdB = 10 log10
Signal
Noise

(6.5)

The results in Figure 6.5 show that the sensitivities are equal or less than 0.1 for almost
all detection using my AlignDLD system. With a reasonable threshold (e.g., 0.2), none of

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 105

these coincidental matches triggers a false alarm. The detection capability of my approach
is generally stable with respect to different sampling rates. I observe that sampling rates
have a noticeable but insignificant impact on the results. SNRdB slightly increases when the
sampling rate is small, e.g., 3%.

My previous experiments in Section 6.5.2 show that thresholds ≥ 0.2 give a strong separa-
tion between true leaks and coincidental matches. Thus, the evidence shows that my method
achieves high recall with zero or low false positive rate. In comparison, the collection inter-
section method reports higher sensitivity scores for the content without any leak, e.g., 62%
for Enron emails. High sensitivity scores in coincidental matches lead to a high false positive
rate for the collection intersection method as illustrated in Figure 6.2.

Summary. The experimental results provide strong evidences supporting that my method is
resilience against various types of modifications evaluated. My alignment algorithm provides
a high specificity (i.e., low number of coincidental matches), compared to the collection
intersection method. My approach is capable of detecting leaks of various sizes, ranging
from tens of bytes to megabytes.

6.6 Parallelization and Evaluation

In order to achieve high analysis throughput, I parallelize my algorithms on CPU as well as
on general-purpose GPU platforms. In this section, I aim to answer the following questions:

1. How well does my detection scale? (Sections 6.6.2 and 6.6.3)

2. What is the speedup of sampling? (Section 6.6.4)

6.6.1 Parallel Detection Realization

I implement two parallel versions of my prototype on a hybrid CPU-GPU machine equipped
with an Intel Core i5 2400 (Sandy-Bridge micro-architecture) and an NVIDIA Tesla C2050
GPU (Fermi architecture with 448 GPU cores):

1. a multithreading AlignDLD program on CPU 6,

2. a parallel AlignDLD program on GPU 7.
6The multithreaded CPU version is written in C, compiled using gcc 4.4.5 with flag -O2.
7The GPU version is written in CUDA compiled using CUDA 4.2 with flag -O2 -arch sm 20 and NVIDIA

driver v295.41.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 106

a

iLa

iL 1

a

iL 2

a

iL 1

a

iL 2

b

jL 1

b

jL

b

jL 1

Current cell

Dependent cell

Concurrent
Diagonal

b

jL 2

Figure 6.6: Parallel realization of my alignment algorithm. La
i and Lb

j are the current items to
be aligned. All cells on the concurrent diagonal of (La

i ,Lb
j) can be computed simultaneously.

Smith-Waterman alignment was parallelized in OpenGL [129] and CUDA [133]. My parallel
alignment algorithms differ from the existing ones, as I address several implementation issues
in parallel computing due to my complex weight function.

In the multithreading CPU version, I parallelize both the Sampling and Alignment pro-
cedures with the pthread library. I parallelize the Sampling operation by loading different
strings onto different threads. Long streams are split into multiple substrings. Substrings
are sampled in parallel by different threads and then assembled for output. Alignment is
the most time-consuming procedure and is made parallel on both CPU and GPU.

I use a parallelized score matrix filling method to compute a diagonal of cells at the same
time. My parallel matrix filling strategy is illustrated in Figure 6.6. The scoring matrix is
filled from the top left corner to the bottom right corner. At any stage of the process, cells
on the concurrent diagonal (dashed lines in Figure 6.6) can be computed simultaneously.
My strategy is a variant of the standard Smith-Waterman parallelism [130]. Dependent cells
in my algorithm include traditional three adjacent cells as well as all previous cells on the
diagonal that is orthogonal to the concurrent diagonal.

The alignment between a sampled sensitive data sequence and a sampled content sequence
is assigned to a block of threads on the GPU, and every thread in the block is responsible
for an element on the moving diagonal. This method consumes linear space and is efficient.
It allows us to fully utilize the memory bandwidth, putting reusable data into fast but small
(32KB in my case) shared memory on GPU.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 107

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4

S
p

e
e

d
u

p
 (

ti
m

e
s

)

Number of CPU threads

sampling alignment ideal

Figure 6.7: High scalability of parallel sampling and alignment algorithms.

6.6.2 Scalability

In this experiment, I parallelize Sampling and Alignment in AlignDLD through various
numbers of threads. The times of speedup in analyzing A. Enron dataset are reported in
Figure 6.7. The results show the close-to-ideal scalability for Sampling when parallelized
onto an increasing number of threads. My unoptimized multithreaded CPU Alignment
scales up less well in comparison, which I attribute to poor memory cache utilization. The
score matrices are too large to fit into the cache for some alignments. The interaction between
threads may evict reusable data from the cache. These operations in turn may cause cache
misses. An optimized program should possess better data locality to minimize cache misses,
and the optimization can be achieved in real-world detection products.

6.6.3 GPU Acceleration

I evaluate the performance of the most time-consuming Alignment procedure on a GPU
with 448 cores grouped in 14 stream multiprocessors and a quad-core CPU. Times of speedup
in detecting sensitive data of types txt, png, or pdf8 against A. Enron or D. MiscNet traffic,
respectively, are shown in Figure 6.8. The result shows that the GPU-accelerated Align-
ment achieves over 40 times of speedup over the CPU version on large content datasets (for
both A. Enron and D. MiscNet). GPU speedup with A. Enron data is nearly 50 times of
the CPU version.

Due to the limited bandwidth between CPU and GPU, data transfer is the bottleneck of
my GPU implementation and dominates the execution time. A common strategy to solve

843KB txt data, 21KB png data, and 633KB pdf data.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 108

1 1 13.59 3.29 3.4

44.36 47.93 47.98

0

20

40

60

txt png pdf

sp
e

e
d

u
p

type of sensitive data…

single-threading CPU multithreading CPU GPU

1 1 1
3.59 3.29 3.4

44.36
47.93 47.98

0

10

20

30

40

50

txt png pdf

S
p

e
e
d

u
p

Type of sensitive data

(a) Enron

1 1 12.78 3.18 2.82

34.6

42.51 41.59

0

10

20

30

40

50

txt png pdf

Type of sensitive data

(b) MiscNet

Figure 6.8: Speedup of multithreading alignment and GPU-accelerated alignment, compared
with the single thread version on different combinations of sensitive data and traffic data.

Table 6.5: Throughput (in Mbps) of the Alignment operation on GPU.

Sensitive data size (KB) 250 500 1000 2500

Sampling rate
0.03 426 218 110 44
0.12 23 11 5 2

the issue is to overlap data transfer and kernel execution or to batch the GPU input [99].
Another possible approach from the hardware perspective is to use a CPU-GPU integrated
platform, such as AMD APU or Intel MIC, which benefits from the shared memory between
CPU and GPU [121].

I report the throughput of Alignment in my GPU implementation under various param-
eters. Other procedures – that are faster than alignment – can be carried out in parallel
with Alignment in real-world deployment. I randomly generate sensitive data pieces, 500
bytes for each, and run the detection against 500MB misc network traffic (D. MiscNet). The
results in Table 6.5 show that I can achieve over 400Mbps throughput on a single GPU. This
throughput is comparable to that of a moderate commercial firewall. More optimizations on
data locality and memory usage can be performed in real-world detection products.

Xiaokui Shu Chapter 6. Transformed Data Leak Detection 109

1

10

100

1000

10000

0 1 2 3 4 5 6 7

S
p

e
e
d

 U
p

 (
ti

m
e
s
)

Sampling Rate (-log)

HTTP

Enron

MiscNet

Figure 6.9: Alignment speedup through sampling.

6.6.4 Sampling Speedup

I measure the performance gain brought by sampling and compare the empirical results with
the theoretical expectation. Measurements are performed on A. Enron, C. HTTP, and D.
MiscNet datasets. Figure 6.9 shows the speedup of Alignment through different sampling
rates α (0.5, 0.25, 0.125, . . .). − log2 α is shown on the X-axis. The well fitted lines (R2 at
0.9988, 0.9977 and 0.9987) from the results have slope coefficients between 1.90 and 2.00,
which confirms the α2 speedup by my sampling design. I calculate the damping factor 0.33
from intercept coefficients of fitted lines.

Chapter 7

Conclusions and Future Work

In this dissertation, I presented theories and defense mechanisms to understand and advance
program anomaly detection and network-based data leak detection – two important defense
paradigms against sophisticated attack vectors and modern cyber threats. Program anomaly
detection discovers program attacks without the knowledge of attack signatures. Network-
based data leak detection seeks sensitive data in insecure or inappropriate transmitting
channels for potential leaks.

My theoretical work presented in Chapter 3 provided a general framework for systematically
analyzing i) the detection capability of any model, ii) the evolution of existing solutions, iii)
the theoretical accuracy limit, and iv) the possible future paths toward the limit. It filled a
gap in the literature to unify deterministic and probabilistic models with my formal definition
of program anomaly detection. According to my unified framework, most existing detection
approaches belong to the regular and the context-free language levels. More accurate context-
sensitive language models can be explored with pragmatic constraints in the future. My
framework has the potential to serve as a roadmap and help researchers approach the ultimate
program defense without attack signature specification.

My event correlation analysis approach presented in Chapter 4 is a two-stage anomaly detec-
tion method that unearths attacks from extreme long program traces. The significance of this
work is its capability to discover subtle program inconsistencies efficiently. This work vali-
dated my systematization of program anomaly detection and advanced the state-of-the-art
program anomaly detection by demonstrating the effectiveness of large-scale program be-
havioral modeling and enforcement against runtime anomalies that are buried in extremely
long execution paths.

I proposed fuzzy fingerprint, a privacy-preserving data-leak detection model, in Chapter 5.
Using special digests, the exposure of the sensitive data is kept to a minimum during the
detection. I realized a prototype based on my approach and conducted extensive experiments
to validate the accuracy, privacy, and efficiency of our solutions. The application of the

110

Xiaokui Shu Chapter 7. Conclusions and Future Work 111

privacy-preserving approach is described in the cloud computing environments, where the
cloud provider naturally serves as the DLD provider.

I presented a content inspection technique for detecting leaks of sensitive information in
chapter 6. My detection approach is based on aligning two sampled sequences for similarity
comparison. The technical enabler is a new comparable sampling technique. It preserves
local features of inputs and thus supports the similarity comparison between two sampled
sequences. This unique property allows the local alignment of shorter sampled sequences to
efficiently compute their similarity and detect leaks. The experimental results suggested that
the alignment method is useful for detecting multiple common data leak scenarios where the
leaked data is transformed. The parallel CPU and GPU versions of my prototype provided
substantial speedup and indicate high scalability of my design.

For future work, I plan to further advance practical solutions for both program anomaly
detection and data leak detection. With the help of the latest hardware, e.g., Intel Processor
Tracing, it is possible to achieve practical user-space monitoring with less than 5% over-
head. The combination of fast tracing and my event correlation analysis method will enable
the development of accurate real-time incidence response systems that can autonomously
recognize and interrupt ongoing attacks. Host-based data tracking and network-based data
leak detection methods are complimentary, and I plan to leverage the characterization of
sensitive data in host-based methods to assist my network-based solutions detect rapidly
changing sensitive data such as source code.

Bibliography

[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity.
In Proceedings of the ACM Conference on Computer and Communications Security,
pages 340–353, 2005.

[2] Pankaj K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems
in high dimensions. In SODA, pages 1481–1489, 2010.

[3] Gagan Aggarwal, Tomás Feder, Krishnaram Kenthapadi, Rajeev Motwani, Rina Pan-
igrahy, Dilys Thomas, and An Zhu. Anonymizing tables. In Database Theory-ICDT
2005, pages 246–258. Springer, 2005.

[4] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to biblio-
graphic search. Commun. ACM, 18(6):333–340, 1975.

[5] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing memory error
exploits with WIT. In Security and Privacy, 2008. SP 2008. IEEE Symposium on,
pages 263–277, May 2008.

[6] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J Lipman.
Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[7] James P Anderson. Computer security technology planning study. Technical report,
DTIC Document, 1972.

[8] Mikhail J. Atallah, Frédéric Chyzak, and Philippe Dumas. A randomized algorithm
for approximate string matching. Algorithmica, 29(3):468–486, 2001.

[9] Mikhail J. Atallah, Elena Grigorescu, and Yi Wu. A lower-variance randomized algo-
rithm for approximate string matching. Inf. Process. Lett., 113(18):690–692, 2013.

[10] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood, A. Jaleel,
Chi-Keung Luk, G. Lyons, H. Patil, and A. Tal. Analyzing parallel programs with Pin.
Computer, 43(3):34–41, March 2010.

[11] Zachary K. Baker and Viktor K. Prasanna. Time and area efficient pattern matching
on FPGAs. In FPGA, pages 223–232, 2004.

112

Xiaokui Shu 113

[12] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Krugel, and
Engin Kirda. Scalable, behavior-based malware clustering. In NDSS, 2009.

[13] S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly detection. In Proceedings
of IEEE Symposium on Security and Privacy, May 2006.

[14] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-oriented
programming: A new class of code-reuse attack. In Proceedings of ASIACCS, pages
30–40, 2011.

[15] Kevin Borders and Atul Prakash. Quantifying information leaks in outbound web
traffic. In Security & Privacy, 2009 30th IEEE Symposium on, pages 129–140. IEEE,
2009.

[16] Kevin Borders, Eric Vander Weele, Billy Lau, and Atul Prakash. Protecting confi-
dential data on personal computers with storage capsules. Ann Arbor, 1001:48109,
2009.

[17] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762–772, October 1977.

[18] Joan Bresnan, Ronald M Kaplan, Stanley Peters, and Annie Zaenen. Cross-serial
dependencies in Dutch. In The formal complexity of natural language, pages 286–319.
Springer, 1987.

[19] Eric Brier, Quentin Fortier, Roman Korkikian, K. W. Magld, David Naccache, Guil-
herme Ozari de Almeida, Adrien Pommellet, A. H. Ragab, and Jean Vuillemin. De-
fensive leakage camouflage. In CARDIS, pages 277–295, 2012.

[20] Andrei Broder and Michael Mitzenmacher. Network applications of Bloom filters: A
survey. Internet mathematics, 1(4):485–509, 2004.

[21] Andrei Z Broder. Some applications of Rabins fingerprinting method. In Sequences II,
pages 143–152. Springer, 1993.

[22] Andrei Z. Broder. Identifying and filtering near-duplicate documents. In COM ’00:
Proceedings of the 11th Annual Symposium on Combinatorial Pattern Matching, pages
1–10, London, UK, 2000. Springer-Verlag.

[23] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-
wise independent permutations. J. Comput. Syst. Sci., 60(3):630–659, 2000.

[24] David Brumley, Dawn Xiaodong Song, Tzi cker Chiueh, Rob Johnson, and Huijia Lin.
RICH: Automatically protecting against integer-based vulnerabilities. In NDSS, 2007.

Xiaokui Shu 114

[25] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos. SEPIA:
Privacy-preserving aggregation of multi-domain network events and statistics. Network,
1:101101, 2010.

[26] Min Cai, Kai Hwang, Yu-Kwong Kwok, Shanshan Song, and Yu Chen. Collaborative
Internet worm containment. IEEE Security and Privacy, 3(3):25–33, 2005.

[27] Davide Canali, Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mihai
Christodorescu, and Engin Kirda. A quantitative study of accuracy in system call-
based malware detection. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis, pages 122–132. ACM, 2012.

[28] Bogdan Carbunar and Radu Sion. Joining privately on outsourced data. In Secure
Data Management, pages 70–86. Springer, 2010.

[29] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. Control-flow bending: On the effectiveness of control-flow integrity. In 24th
USENIX Security Symposium (USENIX Security 15), pages 161–176, Washington,
D.C., August 2015. USENIX Association.

[30] Vitor R. Carvalho and William W. Cohen. Preventing information leaks in email. In
SDM, 2007.

[31] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforcing data-
flow integrity. In Proceedings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, pages 147–160, Berkeley, CA, USA, 2006. USENIX
Association.

[32] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete sequences:
A survey. IEEE TKDE, 24(5):823–839, May 2012.

[33] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.
ACM Computing Surveys (CSUR), 41(3):15, 2009.

[34] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav
Shacham, and Marcel Winandy. Return-oriented programming without returns. In
Proceedings of the 17th ACM conference on Computer and communications security,
pages 559–572. ACM, 2010.

[35] Rui Chen, Benjamin Fung, Noman Mohammed, Bipin C Desai, and Ke Wang. Privacy-
preserving trajectory data publishing by local suppression. Information Sciences,
231:83–97, 2013.

[36] Shuo Chen, Jun Xu, Emre C Sezer, Prachi Gauriar, and Ravishankar K Iyer. Non-
control-data attacks are realistic threats. In Proceedings of the 14th conference on
USENIX Security Symposium, volume 14, pages 12–12, 2005.

Xiaokui Shu 115

[37] Yikan Chen and David Evans. Auditing information leakage for distance metrics. In
SocialCom/PASSAT, pages 1131–1140, 2011.

[38] Young H. Cho and William H. Mangione-Smith. A pattern matching coprocessor for
network security. In DAC, pages 234–239, 2005.

[39] Noam Chomsky. Three models for the description of language. IRE Transactions on
Information Theory, 2(3):113–124, 1956.

[40] Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and Giovanni Vigna. Swaddler:
An approach for the anomaly-based detection of state violations in web applications.
In Recent Advances in Intrusion Detection, pages 63–86. Springer, 2007.

[41] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. StackGuard: Au-
tomatic adaptive detection and prevention of buffer-overflow attacks. In Proceedings
of USENIX Security, volume 7, pages 5–5, 1998.

[42] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack David-
son, John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-variant systems: A se-
cretless framework for security through diversity. In Proceedings of USENIX Security,
volume 15, 2006.

[43] Jason Croft and Matthew Caesar. Towards practical avoidance of information leakage
in enterprise networks. USENIX HotSec (August 2011), 2011.

[44] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Ropdefender: A detection
tool to defend against return-oriented programming attacks. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security, ASIACCS
’11, pages 40–51, New York, NY, USA, 2011. ACM.

[45] Lorenzo De Carli, Robin Sommer, and Somesh Jha. Beyond pattern matching: A
concurrency model for stateful deep packet inspection. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, pages 1378–
1390. ACM, 2014.

[46] Dorothy E Denning. An intrusion-detection model. Software Engineering, IEEE Trans-
actions on, pages 222–232, 1987.

[47] Anne Dinning and Edith Schonberg. An empirical comparison of monitoring algorithms
for access anomaly detection. ACM, 1990.

[48] Wenliang Du and Michael T Goodrich. Searching for high-value rare events with
uncheatable grid computing. In Applied Cryptography and Network Security, pages
122–137. Springer, 2005.

Xiaokui Shu 116

[49] Manuel Egele, Peter Wurzinger, Christopher Kruegel, and Engin Kirda. Defending
browsers against drive-by downloads: Mitigating heap-spraying code injection attacks.
In DIMVA, pages 88–106, 2009.

[50] D. Endler. Intrusion detection. applying machine learning to Solaris audit data. In
Proceedings of the 14th Annual Computer Security Applications Conference, pages 268–
279, December 1998.

[51] E. Eskin, Wenke Lee, and S.J. Stolfo. Modeling system calls for intrusion detection with
dynamic window sizes. In Proceedings of DARPA Information Survivability Conference
and Exposition II, volume 1, pages 165–175, 2001.

[52] Pete Evans. Heartbleed bug: Rcmp asked revenue canada to delay news of sin thefts.
CBC News, April 2014.

[53] Tyrell Fawcett. ExFILD: A tool for the detection of data exfiltration using entropy and
encryption characteristics of network traffic. PhD thesis, University of Delaware, 2010.

[54] Dan Feldman, Morteza Monemizadeh, Christian Sohler, and David P. Woodruff. Core-
sets and sketches for high dimensional subspace approximation problems. In SODA,
pages 630–649, 2010.

[55] Henry Hanping Feng, Jonathon T Giffin, Yong Huang, Somesh Jha, Wenke Lee, and
Barton P Miller. Formalizing sensitivity in static analysis for intrusion detection. In
Security and Privacy, 2004. Proceedings. 2004 IEEE Symposium on, pages 194–208.
IEEE, 2004.

[56] Henry Hanping Feng, Oleg M Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo Gong.
Anomaly detection using call stack information. In Security and Privacy. Proceedings.
the Symposium on, pages 62–75. IEEE, 2003.

[57] Domenico Ficara, Gianni Antichi, Andrea Di Pietro, Stefano Giordano, Gregorio Pro-
cissi, and Fabio Vitucci. Sampling techniques to accelerate pattern matching in net-
work intrusion detection systems. In Communications (ICC), 2010 IEEE International
Conference on, pages 1–5. IEEE, 2010.

[58] Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg Kolesnikov, and Wenke Lee.
Polymorphic blending attacks. In Proceedings of the 15th USENIX Security Sympo-
sium, pages 241–256, 2006.

[59] S. Forrest, A.S. Perelson, L. Allen, and R. Cherukuri. Self-nonself discrimination in a
computer. In Proceedings of the 1994 IEEE Computer Society Symposium on Research
in Security and Privacy, pages 202–212, May 1994.

[60] Stephanie Forrest, Steven Hofmeyr, and Anil Somayaji. The evolution of system-
call monitoring. In Computer Security Applications Conference, 2008. ACSAC 2008.
Annual, pages 418–430. IEEE, 2008.

Xiaokui Shu 117

[61] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A Longstaff. A
sense of self for unix processes. In Security and Privacy, 1996. Proceedings., 1996
IEEE Symposium on, pages 120–128. IEEE, 1996.

[62] W Nelson Francis and Henry Kucera. Brown corpus manual. Brown University De-
partment of Linguistics, 1979.

[63] Matt Fredrikson, Somesh Jha, Mihai Christodorescu, Reiner Sailer, and Xifeng Yan.
Synthesizing near-optimal malware specifications from suspicious behaviors. In Secu-
rity and Privacy, 2010 IEEE Symposium on, pages 45–60. IEEE, 2010.

[64] Sam Frizell. Report: Devastating Heartbleed flaw was used in hospital hack. Time
Magazine, August 2014.

[65] Alessandro Frossi, Federico Maggi, Gian Luigi Rizzo, and Stefano Zanero. Selecting
and improving system call models for anomaly detection. In Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 206–223. Springer, 2009.

[66] Debin Gao, Michael K. Reiter, and Dawn Song. On gray-box program tracking for
anomaly detection. In Proceedings of USENIX Security, volume 13, pages 8–8, 2004.

[67] Debin Gao, Michael K Reiter, and Dawn Song. Behavioral distance for intrusion
detection. In Proceedings of the International Symposium on Research in Attacks,
Intrusions and Defenses, pages 63–81. Springer, 2006.

[68] Debin Gao, Michael K Reiter, and Dawn Song. Behavioral distance measurement using
hidden Markov models. In Proceedings of the International Symposium on Research in
Attacks, Intrusions and Defenses, pages 19–40, 2006.

[69] Shahabeddin Geravand and Mahmood Ahmadi. Bloom filter applications in network
security: A state-of-the-art survey. Computer Networks, 57(18):4047–4064, 2013.

[70] Anup K. Ghosh and Aaron Schwartzbard. A study in using neural networks for anomaly
and misuse detection. In Proceedings of USENIX Security, volume 8, pages 12–12, 1999.

[71] Anup K Ghosh, James Wanken, and Frank Charron. Detecting anomalous and un-
known intrusions against programs. In 14th Annual Computer Security Applications
Conference, 1998. Proceedings., pages 259–267. IEEE, 1998.

[72] Jonathon T Giffin, David Dagon, Somesh Jha, Wenke Lee, and Barton P Miller.
Environment-sensitive intrusion detection. In Proceedings of the International Sympo-
sium on Research in Attacks, Intrusions and Defenses, pages 185–206, 2006.

[73] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. Detecting manipulated remote
call streams. In Proceedings of USENIX Security, pages 61–79, 2002.

Xiaokui Shu 118

[74] Jonathon T Giffin, Somesh Jha, and Barton P Miller. Efficient context-sensitive in-
trusion detection. In NDSS, 2004.

[75] Global Velocity Inc. http://www.globalvelocity.com/.

[76] GoCloudDLP. GTB Technologies Inc. http://www.goclouddlp.com/.

[77] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and Geor-
gios Portokalidis. Size does matter: Why using gadget-chain length to prevent code-
reuse attacks is hard. In 23rd USENIX Security Symposium (USENIX Security 14),
pages 417–432, San Diego, CA, August 2014. USENIX Association.

[78] Rajeev Gopalakrishna, Eugene H Spafford, and Jan Vitek. Efficient intrusion detection
using automaton inlining. In Security and Privacy, 2005 IEEE Symposium on, pages
18–31. IEEE, 2005.

[79] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke Lee.
BotHunter: Detecting malware infection through IDS-driven dialog correlation. In
USENIX Security, volume 7, pages 1–16, 2007.

[80] Zhongshu Gu, Kexin Pei, Qifan Wang, Luo Si, Xiangyu Zhang, and Dongyan Xu.
LEAPS: Detecting camouflaged attacks with statistical learning guided by program
analysis. In Proceedings of the Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, pages 491–502, 2014.

[81] Fang Hao, Murali Kodialam, TV Lakshman, and Hui Zhang. Fast payload-based flow
estimation for traffic monitoring and network security. In Architecture for networking
and communications systems, 2005. ANCS 2005. Symposium on, pages 211–220. IEEE,
2005.

[82] The Heartbleed bug, http://heartbleed.com/.

[83] Steven Hofmeyr. Primary response technical white paper. http://www.ttivanguard.
com/austinreconn/primaryresponse.pdf.

[84] John E Hopcroft. Introduction to automata theory, languages, and computation. Pear-
son Education India, 1979.

[85] Roberto Hoyle, Sameer Patil, Dejanae White, Jerald Dawson, Paul Whalen, and Apu
Kapadia. Attire: conveying information exposure through avatar apparel. In CSCW
Companion, pages 19–22, 2013.

[86] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai Liang.
Automatic generation of data-oriented exploits. In 24th USENIX Security Symposium
(USENIX Security 15), pages 177–192, Washington, D.C., August 2015. USENIX As-
sociation.

http://www.globalvelocity.com/
http://www.goclouddlp.com/
http://heartbleed.com/
http://www.ttivanguard.com/austinreconn/primaryresponse.pdf
http://www.ttivanguard.com/austinreconn/primaryresponse.pdf

Xiaokui Shu 119

[87] Nen-Fu Huang, Hsien-Wei Hung, Sheng-Hung Lai, Yen-Ming Chu, and Wen-Yen Tsai.
A GPU-based multiple-pattern matching algorithm for network intrusion detection
systems. In AINA Workshops, pages 62–67, 2008.

[88] Qiang Huang, David Jao, and Helen J Wang. Applications of secure electronic voting
to automated privacy-preserving troubleshooting. In Proceedings of the 12th ACM
conference on Computer and communications security, pages 68–80. ACM, 2005.

[89] Zhengli Huang, Wenliang Du, and Biao Chen. Deriving private information from
randomized data. In SIGMOD Conference, pages 37–48, 2005.

[90] N. Hubballi. Pairgram: Modeling frequency information of lookahead pairs for sys-
tem call based anomaly detection. In Communication Systems and Networks (COM-
SNETS), 2012 Fourth International Conference on, pages 1–10, Jan 2012.

[91] N. Hubballi, S. Biswas, and S. Nandi. Sequencegram: n-gram modeling of system
calls for program based anomaly detection. In Communication Systems and Networks
(COMSNETS), 2011 Third International Conference on, pages 1–10, Jan 2011.

[92] Identity Finder. http://www.identityfinder.com/.

[93] Hajime Inoue and Anil Somayaji. Lookahead pairs and full sequences: a tale of two
anomaly detection methods. In Proceedings of the 2nd Annual Symposium on Infor-
mation Assurance, pages 9–19, 2007.

[94] Ponemon Institute. 2013 cost of data breach study: Global analysis.

[95] Md Rafiqul Islam, Md Saiful Islam, and Morshed U Chowdhury. Detecting unknown
anomalous program behavior using API system calls. In Informatics Engineering and
Information Science, pages 383–394. Springer, 2011.

[96] Jafar Haadi Jafarian, Ali Abbasi, and Siavash Safaei Sheikhabadi. A gray-box dpda-
based intrusion detection technique using system-call monitoring. In Proceedings of
the 8th Annual Collaboration, Electronic messaging, Anti-Abuse and Spam Conference,
pages 1–12. ACM, 2011.

[97] Geetha Jagannathan and Rebecca N Wright. Privacy-preserving distributed k-means
clustering over arbitrarily partitioned data. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining, pages 593–
599. ACM, 2005.

[98] Rohit Jalan and Arun Kejariwal. Trin-Trin: Who’s calling? a Pin-based dynamic
call graph extraction framework. International Journal of Parallel Programming,
40(4):410–442, 2012.

http://www.identityfinder.com/

Xiaokui Shu 120

[99] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin Kim,
Sungryoul Lee, Yung Yi, and KyoungSoo Park. Kargus: a highly-scalable software-
based intrusion detection system. In ACM Conference on Computer and Communica-
tions Security, pages 317–328, 2012.

[100] Jiyong Jang, David Brumley, and Shobha Venkataraman. BitShred: feature hashing
malware for scalable triage and semantic analysis. In Proceedings of the 18th ACM
conference on Computer and communications security, CCS ’11, pages 309–320, New
York, NY, USA, 2011. ACM.

[101] Yeongjin Jang, Simon Chung, Bryan Payne, and Wenke Lee. Gyrus: A framework
for user-intent monitoring of text-based networked applications. In Proceedings of the
23rd USENIX Security Symposium, pages 79–93, 2014.

[102] S. Jha, L. Kruger, and V. Shmatikov. Towards practical privacy for genomic compu-
tation. In IEEE Symposium on Security and Privacy, 2008.

[103] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection and
monitoring through VMM-based “out-of-the-box” semantic view reconstruction. ACM
Transactions on Information and System Security (TISSEC), 13(2):12, 2010.

[104] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David Wetherall, Gabriel Maganis, and
Tadayoshi Kohno. Privacy Oracle: a system for finding application leaks with black box
differential testing. In ACM Conference on Computer and Communications Security,
pages 279–288, 2008.

[105] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David Wetherall, Gabriel Maganis, and
Tadayoshi Kohno. Privacy oracle: a system for finding application leaks with black
box differential testing. In Proceedings of the 15th ACM conference on Computer and
communications security, pages 279–288. ACM, 2008.

[106] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel, and
Giovanni Vigna. Revolver: An automated approach to the detection of evasive web-
based malware. In USENIX Security Symposium, 2013.

[107] Sandeep Karanth, Srivatsan Laxman, Prasad Naldurg, Ramarathnam Venkatesan,
J. Lambert, and Jinwook Shin. Pattern mining for future attacks. Technical Report
MSR-TR-2010-100, Microsoft Research, 2010.

[108] Gunter Karjoth and Matthias Schunter. A privacy policy model for enterprises. In
Computer Security Foundations Workshop, 2002. Proceedings. 15th IEEE, pages 271–
281. IEEE, 2002.

[109] Kaspersky Lab. Global corporate IT security risks, 2014. http://media.kaspersky.
com/en/business-security/Kaspersky_Global_IT_Security_Risks_Survey_
report_Eng_final.pdf.

http://media.kaspersky.com/en/business-security/Kaspersky_Global_IT_Security_Risks_Survey_report_Eng_final.pdf
http://media.kaspersky.com/en/business-security/Kaspersky_Global_IT_Security_Risks_Survey_report_Eng_final.pdf
http://media.kaspersky.com/en/business-security/Kaspersky_Global_IT_Security_Risks_Survey_report_Eng_final.pdf

Xiaokui Shu 121

[110] Vasileios P. Kemerlis, Vasilis Pappas, Georgios Portokalidis, and Angelos D. Keromytis.
iLeak: A lightweight system for detecting inadvertent information leaks. In Proceedings
of the 6th European Conference on Computer Network Defense (EC2ND), October
2010.

[111] Jon Kleinberg, Christos H Papadimitriou, and Prabhakar Raghavan. On the value
of private information. In Proceedings of the 8th conference on Theoretical aspects of
rationality and knowledge, pages 249–257. Morgan Kaufmann Publishers Inc., 2001.

[112] Andrew P Kosoresow and Steven A Hofmeyr. Intrusion detection via system call traces.
IEEE software, 14(5):35–42, 1997.

[113] Christian Kreibich and Jon Crowcroft. Efficient sequence alignment of network traffic.
In Internet Measurement Conference, pages 307–312, 2006.

[114] C. Kruegel, D. Mutz, W. Robertson, and F. Valeur. Bayesian event classification for
intrusion detection. In Proceedings of the 19th Annual Computer Security Applications
Conference, pages 14–23, December 2003.

[115] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni
Vigna. Automating mimicry attacks using static binary analysis. In Proceedings of the
14th conference on USENIX Security Symposium-Volume 14, pages 11–11. USENIX
Association, 2005.

[116] Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan S. Turner, and George Vargh-
ese. Curing regular expressions matching algorithms from insomnia, amnesia, and
acalculia. In ANCS, pages 155–164, 2007.

[117] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan S.
Turner. Algorithms to accelerate multiple regular expressions matching for deep packet
inspection. In SIGCOMM, pages 339–350, 2006.

[118] Sailesh Kumar, Jonathan S. Turner, and John Williams. Advanced algorithms for fast
and scalable deep packet inspection. In ANCS, pages 81–92, 2006.

[119] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and
Dawn Song. Code-pointer integrity. In Proceedings of USENIX OSDI, pages 147–163,
2014.

[120] Jeffrey P. Lanza. SSH CRC32 attack detection code contains remote integer overflow.
Vulnerability Notes Database, 2001.

[121] K. Lee, H. Lin, and W. Feng. Performance characterization of data-intensive kernels
on AMD fusion architectures. Computer Science-Research and Development, pages
1–10, 2012.

Xiaokui Shu 122

[122] Wenke Lee and Salvatore J Stolfo. Data mining approaches for intrusion detection. In
Proceedings of the 7th conference on USENIX Security Symposium, pages 6–6. USENIX
Association, 1998.

[123] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Fuzzy keyword
search over encrypted data in cloud computing. In INFOCOM, 2010 Proceedings IEEE,
pages 1–5. IEEE, 2010.

[124] Kang Li, Zhenyu Zhong, and Lakshmish Ramaswamy. Privacy-aware collaborative
spam filtering. IEEE Transactions on Parallel and Distributed systems, 20(5), May
2009.

[125] Yihua Liao and V.Rao Vemuri. Use of k-nearest neighbor classifier for intrusion detec-
tion. Computers & Security, 21(5):439–448, 2002.

[126] Christopher Liebchen, Marco Negro, Per Larsen, Lucas Davi, Ahmad-Reza Sadeghi,
Stephen Crane, Mohaned Qunaibit, Michael Franz, and Mauro Conti. Losing control:
On the effectiveness of control-flow integrity under stack attacks. In Proceedings of
ACM CCS, 2015.

[127] Po-Ching Lin, Ying-Dar Lin, Yuan-Cheng Lai, and Tsern-Huei Lee. Using string
matching for deep packet inspection. IEEE Computer, 41(4):23–28, 2008.

[128] Fang Liu, Xiaokui Shu, Danfeng Yao, and Ali Raza Butt. Privacy-preserving scanning
of big content for sensitive data exposure with MapReduce. In Proceedings of the 5th
ACM Conference on Data and Application Security and Privacy (CODASPY), pages
195–206, San Antonio, TX, USA, March 2015.

[129] W. Liu, B. Schmidt, G. Voss, A. Schroder, and W. Muller-Wittig. Bio-sequence
database scanning on a GPU. In Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, pages 8–pp. IEEE, 2006.

[130] Yongchao Liu, Douglas Maskell, and Bertil Schmidt. CUDASW++: optimizing Smith-
Waterman sequence database searches for CUDA-enabled graphics processing units.
BMC Research Notes, 2(1):73, 2009.

[131] Zhen Liu, Susan M Bridges, and Rayford B Vaughn. Combining static analysis and
dynamic learning to build accurate intrusion detection models. In Information As-
surance, 2005. Proceedings. Third IEEE International Workshop on, pages 164–177.
IEEE, 2005.

[132] Federico Maggi, Matteo Matteucci, and Stefano Zanero. Detecting intrusions through
system call sequence and argument analysis. IEEE Transactions on Dependable and
Secure Computing, 7(4):381–395, 2010.

Xiaokui Shu 123

[133] S.A. Manavski and G. Valle. CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC bioinformatics, 9(Suppl
2):S10, 2008.

[134] Carla Marceau. Characterizing the behavior of a program using multiple-length n-
grams. In Proceedings of NSPW, pages 101–110, 2000.

[135] Christoph P Mayer. Bloom filters and overlays for routing in pocket switched networks.
In Proceedings of the 5th international student workshop on Emerging networking ex-
periments and technologies, pages 43–44. ACM, 2009.

[136] J. Sukarno Mertoguno. Human decision making model for autonomic cyber systems.
International Journal on Artificial Intelligence Tools, 23(06):1460023, 2014.

[137] David Moore, Colleen Shannon, Douglas J Brown, Geoffrey M Voelker, and Stefan
Savage. Inferring internet Denial-of-Service activity. ACM Transactions on Computer
Systems (TOCS), 24(2):115–139, 2006.

[138] B. Morgenstern, A. Dress, and T. Werner. Multiple DNA and protein sequence
alignment based on segment-to-segment comparison. Proc. Natl. Acad. Sci. U.S.A.,
93(22):12098–12103, Oct 1996.

[139] Darren Mutz, Fredrik Valeur, Giovanni Vigna, and Christopher Kruegel. Anomalous
system call detection. ACM Trans. Inf. Syst. Secur., 9(1):61–93, February 2006.

[140] Adwait Nadkarni and William Enck. Preventing accidental data disclosure in modern
operating systems. In Proceedings of the 20th ACM Conference on Computer and
Communications Security (CCS), 2013.

[141] Nergal. The advanced return-into-lib(c) exploits. Phrack magazine, 11(58), 2001.

[142] Ben Niu and Gang Tan. Modular control-flow integrity. SIGPLAN Notices, 49(6):577–
587, June 2014.

[143] Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49), 1996.

[144] Christos H Papadimitriou. Computational complexity. John Wiley and Sons Ltd.,
2003.

[145] The Paradyn Project, http://www.paradyn.org/.

[146] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
Networks, 31(23-24):2435–2463, 1999.

[147] R. Perdisci, Guofei Gu, and Wenke Lee. Using an ensemble of one-class SVM classifiers
to harden payload-based anomaly detection systems. In Data Mining, 2006. ICDM
’06. Sixth International Conference on, pages 488–498, Dec 2006.

http://www.paradyn.org/

Xiaokui Shu 124

[148] Roberto Perdisci, Davide Ariu, Prahlad Fogla, Giorgio Giacinto, and Wenke Lee. Mc-
PAD: A multiple classifier system for accurate payload-based anomaly detection. Com-
puter Networks, 53(6):864 – 881, 2009.

[149] Roberto Perdisci et al. VAMO: towards a fully automated malware clustering validity
analysis. In Proceedings of the 28th Annual Computer Security Applications Confer-
ence, pages 329–338. ACM, 2012.

[150] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral clustering of http-based
malware and signature generation using malicious network traces. In NSDI’10, pages
26–26. USENIX Association, 2010.

[151] V. O. Polyanovsky, M. A. Roytberg, and V. G. Tumanyan. Comparative analysis of
the quality of a global algorithm and a local algorithm for alignment of two sequences.
Algorithms Mol Biol, 6(1):25, 2011.

[152] Geoffrey K. Pullum. Context-freeness and the computer processing of human lan-
guages. In Proceedings of the 21st Annual Meeting on Association for Computational
Linguistics, ACL ’83, pages 1–6, Stroudsburg, PA, USA, 1983. Association for Com-
putational Linguistics.

[153] Josh Quittner. Panix attack. Time Magazine, September 2006.

[154] M. O. Rabin. Fingerprinting by random polynomials. Technical report, Center for
Research in Computing Technology, Harvard University, 1981. TR-15-81.

[155] Lakshmish Ramaswamy, Arun Iyengar, Ling Liu, and Fred Douglis. Automatic de-
tection of fragments in dynamically generated web pages. In Proceedings of the 13th
international conference on World Wide Web, pages 443–454. ACM, 2004.

[156] Paruj Ratanaworabhan, V. Benjamin Livshits, and Benjamin G. Zorn. NOZZLE: A
defense against heap-spraying code injection attacks. In USENIX Security Symposium,
pages 169–186, 2009.

[157] RiskBasedSecurity. Data breach quickview: 2014 data breach trends, February 2015.

[158] Martin Roesch. Snort: Lightweight intrusion detection for networks. In LISA, pages
229–238, 1999.

[159] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and
John C Platt. Support vector method for novelty detection. In NIPS, volume 12,
pages 582–588, 1999.

[160] R Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni. A fast automaton-
based method for detecting anomalous program behaviors. In Security and Privacy,
2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 144–155. IEEE, 2001.

Xiaokui Shu 125

[161] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM conference on Computer
and communications security, pages 552–561. ACM, 2007.

[162] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and
Dan Boneh. On the effectiveness of address-space randomization. In Proceedings of
the 11th ACM Conference on Computer and Communications Security, CCS ’04, pages
298–307, New York, NY, USA, 2004. ACM.

[163] Monirul Sharif, Kapil Singh, Jonathon Giffin, and Wenke Lee. Understanding precision
in host based intrusion detection. In Recent Advances in Intrusion Detection, pages
21–41. Springer, 2007.

[164] Stuart M Shieber. Evidence against the context-freeness of natural language. Springer,
1987.

[165] Xiaokui Shu, Fang Liu, and Danfeng Yao. Rapid screening of big data against inad-
vertent leaks. In Shui Yu and Song Guo, editors, Big Data Concepts, Theories and
Applications. Springer International Publishing, March 2016.

[166] Xiaokui Shu and Danfeng Yao. Data leak detection as a service. In Proceedings of the
8th International Conference on Security and Privacy in Communication Networks
(SecureComm), pages 222–240, Padua, Italy, September 2012.

[167] Xiaokui Shu, Danfeng Yao, and Elisa Bertino. Privacy-preserving detection of sensitive
data exposure. IEEE Transactions on Information Forensics and Security (TIFS),
10(5):1092–1103, May 2015.

[168] Xiaokui Shu, Danfeng Yao, and Naren Ramakrishnan. Unearthing stealthy program
attacks buried in extremely long execution paths. In Proceedings of the 2015 ACM
Conference on Computer and Communications Security (CCS), pages 401–413, Denver,
CO, USA, October 2015.

[169] Xiaokui Shu, Danfeng Yao, and Barbara G. Ryder. A formal framework for program
anomaly detection. In Proceedings of the 18th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID), pages 270–292, Kyoto, Japan, November
2015.

[170] Xiaokui Shu, Jing Zhang, Danfeng Yao, and Wu-chun Feng. Rapid and parallel content
screening for detecting transformed data exposure. In Proceedings of the Third Inter-
national Workshop on Security and Privacy in Big Data (BigSecurity), pages 191–196,
Hongkong, China, April 2015.

[171] Xiaokui Shu, Jing Zhang, Danfeng Yao, and Wu-chun Feng. Rapid screening of trans-
formed data leaks with efficient algorithms and parallel computing. In Proceedings of

Xiaokui Shu 126

the 5th ACM Conference on Data and Application Security and Privacy (CODASPY),
pages 147–149, San Antonio, TX, USA, March 2015. Extended abstract.

[172] Xiaokui Shu, Jing Zhang, Danfeng Yao, and Wu-chun Feng. Fast detection of trans-
formed data leaks. IEEE Transactions on Information Forensics and Security (TIFS),
11(3):528–542, March 2016.

[173] Randy Smith, Neelam Goyal, Justin Ormont, Karthikeyan Sankaralingam, and Cris-
tian Estan. Evaluating GPUs for network packet signature matching. In ISPASS,
pages 175–184, 2009.

[174] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
J. Mol. Biol., 147(1):195–197, Mar 1981.

[175] Anil Somayaji and Stephanie Forrest. Automated response using system-call delays.
In Proceedings of the 9th USENIX Security Symposium, volume 70, 2000.

[176] Alexander Sotirov. Heap feng shui in javascript. Black Hat Europe, 2007.

[177] Sufatrio and RolandH.C. Yap. Improving host-based IDS with argument abstraction
to prevent mimicry attacks. In Recent Advances in Intrusion Detection, volume 3858 of
Lecture Notes in Computer Science, pages 146–164. Springer Berlin Heidelberg, 2006.

[178] Wenhai Sun, Wenjing Lou, Y Thomas Hou, and Hui Li. Privacy-preserving keyword
search over encrypted data in cloud computing. In Secure Cloud Computing, pages
189–212. Springer, 2014.

[179] S.C. Sundaramurthy, J. McHugh, X.S. Ou, S.R. Rajagopalan, and M. Wesch. An
anthropological approach to studying CSIRTs. IEEE Security & Privacy, 12(5):52–60,
September 2014.

[180] Symantec. Symantec data loss prevention, 2015. http://www.symantec.com/
data-loss-prevention.

[181] Systemtap overhead test, https://sourceware.org/ml/systemtap/2006-q3/
msg00146.html.

[182] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal war in mem-
ory. In Proceedings of IEEE S & P, pages 48–62, 2013.

[183] Gaurav Tandon and Philip K. Chan. On the learning of system call attributes for
host-based anomaly detection. International Journal on Artificial Intelligence Tools,
15(6):875–892, 2006.

http://www.symantec.com/data-loss-prevention
http://www.symantec.com/data-loss-prevention
https://sourceware.org/ml/systemtap/2006-q3/msg00146.html
https://sourceware.org/ml/systemtap/2006-q3/msg00146.html

Xiaokui Shu 127

[184] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Celik. Privacy
preserving error resilient DNA searching through oblivious automata. In Proceedings of
the 14th ACM conference on Computer and communications security, pages 519–528.
ACM, 2007.

[185] Nathan Tuck, Timothy Sherwood, Brad Calder, and George Varghese. Deterministic
memory-efficient string matching algorithms for intrusion detection. In INFOCOM,
2004.

[186] Jan van Lunteren. High-performance pattern-matching for intrusion detection. In
INFOCOM, 2006.

[187] Vijay Varadharajan. Internet filtering-issues and challenges. IEEE Security & Privacy,
8(4):0062–65, 2010.

[188] Giorgos Vasiliadis, Spyros Antonatos, Michalis Polychronakis, Evangelos P. Markatos,
and Sotiris Ioannidis. Gnort: High performance network intrusion detection using
graphics processors. In RAID, pages 116–134, 2008.

[189] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. MIDeA: a multi-
parallel intrusion detection architecture. In Proceedings of the 18th ACM conference
on Computer and communications security, CCS ’11, pages 297–308, New York, NY,
USA, 2011. ACM.

[190] Vendicator. StackShield. http://www.angelfire.com/sk/stackshield/.

[191] U. Vishkin. Deterministic sampling – a new technique for fast pattern matching. In
Proceedings of the twenty-second annual ACM symposium on Theory of computing,
STOC ’90, pages 170–180, New York, NY, USA, 1990. ACM.

[192] David Wagner and R Dean. Intrusion detection via static analysis. In Security and
Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 156–168.
IEEE, 2001.

[193] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detection
systems. In Proceedings of the 9th ACM Conference on Computer and Communications
Security, CCS ’02, pages 255–264, New York, NY, USA, 2002. ACM.

[194] Bing Wang, Shucheng Yu, Wenjing Lou, and Y Thomas Hou. Privacy-preserving
multi-keyword fuzzy search over encrypted data in the cloud. In IEEE INFOCOM,
2014.

[195] Tielei Wang, Tao Wei, Zhiqiang Lin, and Wei Zou. IntScope: Automatically detecting
integer overflow vulnerability in x86 binary using symbolic execution. In NDSS, 2009.

http://www.angelfire.com/sk/stackshield/

Xiaokui Shu 128

[196] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting intrusions
using system calls: Alternative data models. In Security and Privacy. Proceedings. the
IEEE Symposium on, pages 133–145. IEEE, 1999.

[197] Kyubum Wee and Byungeun Moon. Automatic generation of finite state automata
for detecting intrusions using system call sequences. In Proceedings of MMM-ACNS,
2003.

[198] Andreas Wespi, Marc Dacier, and Hervé Debar. Intrusion detection using variable-
length audit trail patterns. In Proceedings of RAID, pages 110–129, 2000.

[199] Peter Williams and Radu Sion. Usable PIR. In NDSS, 2008.

[200] Candid Wuest and Elia Florio. Firefox and malware: When browsers attack. Technical
report, Symantec Corporation, October 2009.

[201] Benjamin Wun, Patrick Crowley, and Arun Raghunath. Parallelization of Snort on
a multi-core platform. In Peter Z. Onufryk, K. K. Ramakrishnan, Patrick Crowley,
and John Wroclawski, editors, Proceedings of the 2009 ACM/IEEE Symposium on
Architecture for Networking and Communications Systems, ANCS 2009, Princeton,
New Jersey, USA, October 19-20, 2009, pages 173–174. ACM, 2009.

[202] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. CFIMon: Detecting violation
of control flow integrity using performance counters. In Proceedings of the Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, pages 1–
12, June 2012.

[203] Gaoyao Xiao, Jun Wang, Peng Liu, Jiang Ming, and Dinghao Wu. Program-object
level data flow analysis with applications to data leakage and contamination forensics.
In Proceedings of the Sixth ACM on Conference on Data and Application Security and
Privacy, pages 277–284. ACM, 2016.

[204] Kui Xu, Danfeng Yao, Qiang Ma, and Alexander Crowell. Detecting infection on-
set with behavior-based policies. In Network and System Security (NSS), 2011 5th
International Conference on, pages 57–64. IEEE, 2011.

[205] Kui Xu, Danfeng Yao, Barbara G. Ryder, and Ke Tian. Probabilistic program modeling
for high-precision anomaly classification. In Proceedings of IEEE CSF, 2015.

[206] Shouhuai Xu. Collaborative attack vs. collaborative defense. In Collaborative Com-
puting: Networking, Applications and Worksharing, pages 217–228. Springer, 2009.

[207] Weilin Xu, Yanjun Qi, and David Evans. Automatically evading classifiers: A case
study on pdf malware classifiers. In NDSS, 2016.

Xiaokui Shu 129

[208] L. Yang, R. Karim, V. Ganapathy, and R. Smith. Improving NFA-based signature
matching using ordered binary decision diagrams. In 13th International Symposium
on Recent Advances in Intrusion Detection (RAID), September 2010.

[209] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X Sean Wang.
AppIntent: Analyzing sensitive data transmission in Android for privacy leakage de-
tection. In Proceedings of the 20th ACM Conference on Computer and Communications
Security (CCS), 2013.

[210] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations of
Computer Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

[211] Danfeng Yao, Keith B Frikken, Mikhail J Atallah, and Roberto Tamassia. Private
information: To reveal or not to reveal. ACM Transactions on Information and System
Security (TISSEC), 12(1):6, 2008.

[212] Nong Ye and X Li. A markov chain model of temporal behavior for anomaly detec-
tion. In Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information
Assurance and Security Workshop, volume 166, page 169. Oakland: IEEE, 2000.

[213] Xun Yi, Md. Golam Kaosar, Russell Paulet, and Elisa Bertino. Single-database private
information retrieval from fully homomorphic encryption. IEEE Trans. Knowl. Data
Eng., 25(5):1125–1134, 2013.

[214] Xun Yi, Russell Paulet, and Elisa Bertino. Private Information Retrieval. Synthesis
Lectures on Information Security, Privacy, and Trust. Morgan & Claypool Publishers,
2013.

[215] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: capturing system-wide information flow for malware detection and anal-
ysis. In Proceedings of the 14th ACM conference on Computer and communications
security, pages 116–127. ACM, 2007.

[216] Suan Hsi Yong and Susan Horwitz. Protecting C programs from attacks via invalid
pointer dereferences. In Proceedings of the 9th European Software Engineering Confer-
ence Held Jointly with 11th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ESEC/FSE-11, pages 307–316, New York, NY, USA, 2003.
ACM.

[217] Stefano Zanero. Behavioral intrusion detection. In Computer and Information Sciences,
pages 657–666. Springer, 2004.

[218] Hao Zhang, Maoyuan Sun, Danfeng Yao, and Chris North. Visualizing traffic causality
for analyzing network anomalies. Proceedings of International Workshop on Security
and Privacy Analytics, pages 37–42, 2015.

Xiaokui Shu 130

[219] Hao Zhang, Danfeng Yao, and Naren Ramakrishnan. Detection of stealthy malware
activities with traffic causality and scalable triggering relation discovery. In Proceedings
of the 9th ACM symposium on Information, computer and communications security,
pages 39–50. ACM, 2014.

[220] Hao Zhang, Danfeng Yao, Naren Ramakrishnan, and Zhibin Zhang. Causality rea-
soning about network events for detecting stealthy malware activities. Computers &
Security, 58:180–198, 2016.

	Introduction
	Cyber Threats Against Programs and Data
	Program Anomaly Detection: Theory and Practices
	Program Anomaly Detection in a Unified Framework
	Discovery of Event Correlation in Program Behaviors Against Execution Anomalies

	Network-Based Data Leak Detection: Emerging Paradigms and System Design
	Privacy-Preserving Data Leak Detection
	Detection of Transformed Data Leaks

	Literature Review
	Defenses Against Program Attacks
	Program Anomaly Detection
	Malware Classification
	Event Correlation Analysis and Reasoning
	Defenses Against Specific Categories of Attacks

	Data Leak Detection
	Data Leak Detection with the Bag-of-words Model
	Enforcing Sensitive Data Flow to Prevent Leaks
	String Matching and Data Leak Detection
	Alignment Algorithms Developed for Security Applications
	Parallelization of Security Applications
	Privacy-preserving Data Leak Detection
	General Privacy-preserving Frameworks
	Discovering Traces of Data Leaks via Anomalous Traffic Detection
	Remote Execution Verification

	Program Anomaly Detection in a Unified Framework
	Introduction
	Formal Definitions for Program Anomaly Detection
	Security Model
	Detection Capability
	Scope of the Norm
	Overview of My Unified Framework

	Accuracy Limit of Program Anomaly Detection
	The Ultimate Detection Machine
	The Equivalent Abstract Machine of An Executing Program
	Usage and Discussion

	Abstractions of Existing Detection Methods
	Unification Framework
	Major Precision Levels of Program Anomaly Detection
	Sensitivity in a Nutshell

	Attack/Detection Evolution and Open Problems
	Inevitable Mimicry Attacks
	Evolution From L-4 to L-1
	Open Problems

	Control-Flow Enforcement Techniques
	Control-Flow Enforcement
	Legal Control Flows as the Scope of the Norm
	Comparison of the Two Methods

	Program Event Correlation Discovery and Anomaly Detection
	Introduction
	Security Model
	Aberrant Path Attack
	Anomalous Program Behaviors within Large-scale Execution Windows
	Security Goals
	Basic Solutions and Their Inadequacy

	Overview of my Approach
	Profiling Program Behaviors
	Architecture of My Approach

	Inter-/intra-cluster Detection
	Behavior Clustering (Training)
	Co-occurrence Analysis (Detection)
	Intra-cluster Modeling (Training)
	Occurrence Frequency Analysis (Detection)
	Discussion

	Implementation
	Evaluations
	Experiment Setup
	Discovering Real-World Attacks
	Systematic Accuracy Evaluation
	Performance Analysis

	Privacy-Preserving Detection of Sensitive Data Exposure
	Introduction
	Model and Overview
	Security Goal and Threat Model
	Privacy Goal and Threat Model
	Overview of Privacy-Enhancing DLD

	Fuzzy Fingerprint Method and Protocol
	Shingles and Fingerprints
	Operations in My Protocol
	Extensions

	Analysis and Discussion
	Experimental Evaluation
	Accuracy Evaluation
	Runtime Comparison
	Sizes of Fuzzy Sets vs. Fuzzy Length

	Fast Detection of Transformed Data Leaks
	Introduction
	Models and Overview
	Technical Challenges
	Discussions on Existing Solutions
	Overview of My Approach

	Comparable Sampling
	Definitions
	My Sampling Algorithm

	Alignment Algorithm
	Requirements and Overview
	Recurrence Relation
	Weight Function
	Algorithm Analysis

	Evaluation on Detection Accuracy
	Implementation and Experiment Setup
	Detecting Modified Leaks
	Low False Positive Rate

	Parallelization and Evaluation
	Parallel Detection Realization
	Scalability
	GPU Acceleration
	Sampling Speedup

	Conclusions and Future Work
	Bibliography

