The Design and Implementation of CHITRA92, a
System to Empirically Model Concurrent

Software Performance
by

Irishna Ganugapati
Thesis submitted to the faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
in

Computer Science
©XKrishna Ganugapati and V'PI & SU 1993

APPROVED:

"F'\
C)/}OK ~ r?zc".\—-;'

Dr. Marc Abrams, Chair

fzzwg/.{/“ &»&14 Q nyﬂ\a
/ Dr. %alvin J. Ribbens

Dr. Dénnis G. Kafura

April. 1993
Blacksburg, Virginia

6P€C/

LD

5656¢
V%E
) 993
C308%

,Spe(.

The Design and Implementation of CHITRA92, a System to
Empirically Model Concurrent Software Performance
by
Krishna Ganugapati
Committee Chairmaﬁ: Dr. Marc Abrams

Computer Science

(ABSTRACT)

With parallel and distributed computing entering the mainstream of computer science,
it is important to ensure that parallel application codes are optimized to achieve the best
possible performance. This thesis describes the design and implementation of CHITRA92,
the second generation of a performance analysis system for parallel programs. CHITRA92 is
unique in that it uses visualization techniques to analyze the dynamic activity of a program
and produces a semi-Mafkov chain model of the program’s behavior. This model can be
parameterized to predict behavior of a program and identify the performance bottlenecks

in the program. The important contributions of the CHITRA92 system are:

e The dynamic activity of a program is represented through a program ezecution se-
quence (PES) and a set of program parameters. A PES description language has been
defined to allow users to describe the structure of a PES state vector and instances of

the state vector.
e A PES is reduced to a semi-Markov chain model via a set of transformations.
e Visualization is used to assist in selecting which transforms to apply to a PES.

e The presence of periodic behavior in PES’s can be identified using spectral analysis

techniques.

ACKNOWLEDGEMENTS

I am deeply indebted to Dr. Marc Abrams, my advisor, for his constant guidance and
support throughout my graduate career. He has helped me in countless ways. He is more
than an advisor to his students, he is a friend to all of us.

I am grateful to Drs. Dennis Kafura and Cal Ribbens for their patience and flexibility
when it came to reading this thesis and serving on my thesis committee. They have made
many useful suggestions both in the final defense as well as in the manuscript.

I cannot begin to express my gratitude to members of the Chitra group for their cama-
raderie and friendship. Special thanks are due to Tim Lee who helped with portions of the
implementation. Alan Batongbacal cheerfully read through my final draft and I’m grateful
to him for this.

I’ve had the good fortune of making many great friends at Virginia Tech. I'd like to
thank all of them for making my stay here a memorable one.

I am grateful to the Department of Computer Science, Virginia Tech, and to the National
Science Foundation (grant CCR-9211342) for financial assistance in the form of teaching
and research assistantships.

And finally, I thank my parents, my sister Rama and my brother-in-law Sriram, but for

their encouragement, love, and support, I could never have become what I am today.

ii

TABLE OF CONTENTS

1 Introduction 1
1.1 Extant Performance Analysis Techniques. 3
1.1.1 Theoretical Techniques 3

1.1.2 Empirical Techniques 4

1.1.3 Hybrid Analysis e 5

1.2 Problem Statement e 6
1.3 Contributions L 7
2 Related Work 9
2.1 The Role of Visualization in Performance Analysis Systems 10
2.1.1 The Chitra Perspective on Visualization 12

2.2 ThelIPS-2System e 13
2.2.1 Objectives e e e e e e 13
2.22 Description e 14

2.3 JED . .. e 14
2.3.1 Objectives L e e e e e e 15
2.3.2 Description e 15

2.4 MemSpy e e e e e 16
2.4.1 Objectives 16
2.4.2 Description Lo e 16

2.5 PIE . . e e e 18
2.5.1 Objectives o o i e e e 18
2.5.2 Description e e e e e e e e e 18

v

CONTENTS

2.6 Mtool e
2.6.1 Objectives L e e e e e
2.6.2 Description L e e e e e e e

2.7 Pablo e
2.7.1 Objectives e e e
2.7.2 Description i e e e e

2.8 SUmMmMary e e e e e e e e e e e e e e e e e e e

Methodology

3.1 Program Execution Sequences (PES’s)

3.2 Semi-Markov Chains L

3.2.1 Why use homogeneous continuous-time semi-Markov chains?

3.3 Transformations e
3.3.1 Filteringo
3.3.2 Aggregation L e e e e
3.3.3 Clipping o o o e e e e
3.3.4 Projections L e

3.4 Model Construction e

3.5 Periodicityin PES’so
3.5.1 Discrete Fourier Transforms
3.5.2 Periodogramsin Chitra,

3.6 Summary e e e e e e

The CHITRA92 User Interface Metaphors

4.1 The CHITRA92 User Interface Principles
4.2 CHITRA92 VIiews ittt ittt et e et e
42,1 2D X-Ytimeview L oL e e e e
422 2D X-Yeventview
423 Text view. L e e e e

26
26
32
36
36
37
43
47
51
51
54
54
55
56

CONTENTS

424 FFT timeview. e 64
425 FFTeventview. i 64
4.2.6 Semi-Markov model view L. 0L, 64

4.3 Transformation Metaphors., 67
4.4 SUMMATY . . v v v v vt v e 69
5 The Architecture of the CHITRA92 System 70
5.1 Design Goals of CHITRA92 70
5.2 CHITRA92 Software Overview 73
5.3 CHITRA92 Pre-processor Software 76
5.3.1 Instrumentation of Parallel Programs 77
5.3.2 Describing a PESwith CSL 80
5.3.3 CSL Translator Qutput 82

5.4 The CHITRA92 Kernel 83
5.4.1 The PES Manager 83
5.4.2 The Transformation Manager 86
5.4.3 The Undo Manager, 93
5.4.4 The Transform List Manager 94
5.4.5 The Modeling Manager, 95

5.5 The CHITRA92 Visualization System 95
5.5.1 Visualization Software Overview 96

5.6 Summary e e e e e e e e e 99
6 Conclusions and Future Research 100
6.1 Summing up CHITRA92 o it ittt e e e 100
6.2 Beyond CHITRAO2 i et e i e e e e e e e e e e 102
6.2.1 Implementation Enhancements 103
6.2.2 Alternate Models Lo oo o o 103
6.2.3 Target Applications L 0oL 104

vi

CONTENTS

A Chitra Specification Language Grammar 106

B Notes on the CHITRA92 Source Code 108

vii

2.1

3.1
3.2
3.3
3.4

3.5

3.6

3.7
3.8

3.9

3.10
3.11

4.1
4.2
4.3
44

LIST OF FIGURES

Table comparing other performance analysis tools with CHITRA92.

Code fragment for a single philosopher in the Dining Philosophers problem.
2D Time Plot for a 2 philosopher Dining Philosophers problem.
Semi-Markov chain model for a 2 philosopher Dining Philosophers problem.
2D Time Plot 2 philosopher Dining Philosophers problem — after time domain
filtering. e e e e e e
Semi-Markov chain model of a 2 philosopher Dining Philosophers problem -
after time domain filtering.o 0.,
2D Time Plot 2 philosopher Dining Philosophers problem — after event do-

main filtering.

2D Time Plot 2 philosopher Dining Philosophers problem — after aggregation.

Semi-Markov chain model for a 2 philosopher Dining Philosophers problem
—after aggregation. L e
2D Time Plot 2 philosopher Dining Philosophers problem - after event do-
main clipping. L e e
Flowchart for model construction..00,

Semi-Markov chain model.o

Relationship between multiple views and PES instances.
2D X-Y time view for the two philosophers Dining Philosophers problem.
2D X-Y event view for the two philosophers Dining Philosophers problem. .

Text view for the two philosopher Dining Philosophers problem..

viii

25

31
33
34

41

42

44
48

49

50
52
53

59
61
62

LIST OF FIGURES

4.5

4.6

4.7

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Periodogram (time domain) view for the two philosopher Dining Philosophers
problem. L. e e e e e e
Periodogram (event domain) view for the two philosopher Dining Philoso-

phers problem. e

Semi-Markov model view for the two philosophers Dining Philosophers problem.

The CHITRA92 Performance Analysis System.
Phases in the instrumentation of programs.
Example CSL specification for a 2 philosopher Dining Philosophers problem.
Definition of a unit structure. Lo oL L
Occurrence distribution of program states for a two-philosopher Dining Philoso-
phers problem. e
Duration distribution of program states for a two-philosopher Dining Philoso-
phers problem. e
2D time view of a two-philosopher Dining Philosophers problem before pat-
tern matching. L L. e
2D time view of a two-philosopher Dining Philosophers problem after pattern
matching. L e e

2D time view of a two-philosopher Dining Philosophers problem after aggre-

5.10 Top-level interface for the CHITRA92 system.

ix

65

66
68

74

78

81

84

88

89

90

91

97

Chapter 1

Introduction

Massively parallel computer systems are rapidly replacing traditional vector supercom-
puters as viable means to solving large numeric and scientific problems. The next generation
of paralle] supercomputers will be predominantly high performance MIMD architectures
having potential performance that exceed three hundred gigaflops [22]. Connectionist ar-
chitectures are predicted to cross the teraflop barrier within the next decade [2].

With the advent of massively parallel distributed systems, it has become more impor-
tant than ever to optimize parallel applications so that they exploit maximum possible
parallelism while making a conservative use of system resources to execute at peak speeds.

Performance analysis techniques require

e defining performance metrics: these are criteria by which the performance of a pro-
gram is evaluated. Examples of performance metrics for a parallel program are its

speedup, its processor utilization, and its cache or primary memory reference patterns.

e locating performance bottlenecks: these are the causes for unsatisfactory performance

in a program.

e redesigning an application program to eliminate the performance bottlenecks or at

the very least, minimize their effect.

Typically, the program designer is interested in optimizing one or more performance
metrics, and seeks a configuration of the application that best satisfies these metrics. The
process of identifying a configuration that optimizes a set of performance metrics for an

application is called fine-tuning. While badly designed applications can waste substantial

CHAPTER 1. INTRODUCTION

amounts of computing resources, even correct programs need to be fine-tuned for maximum
efficiency. It is also important to analyze the performance of an application across multi-
ple computer systems to determine a suitable hardware configuration for the application.
From an application’s standpoint, the objective of performance analysis is to understand
how exactly the application’s design and the underlying system’s hardware influence the
application’s performance.

At present, no generally accepted method exists that can analyze the performance of an
application on parallel architectures. Some of the major stumbling blocks in characterizing

the behavior of parallel application are the following:

o The difference between the performance analysis of parallel applications and sequential
applications is that there exists the need to observe dynamic parallel behavior. In
the case of sequential applications, execution profilers can often correctly identify
bottlenecks in the program’s source code. This is not necessarily true in the case
of parallel applications, where the interaction of multiple threads of execution is the

primary reason for bad program performance.

e Advances in parallel system design have significantly increased the number of performance-
related parameters, such as the number of concurrently executing processes, or the
resources that are acquired by an executing application. Also, due to the diversity
in architectures and programming paradigms, these parameters rarely correspond be-

tween architectures.

e A program is said to show nondeterministic behavior if different runs of the program
may execute statements in different orders, consume different amount of resources and
even produce different outputs. The sequence of statements executed in the single run
of a program is called its program ezecution trajectory. Parallel programs are inher-
ently nondeterministic because concurrently executing processes within the program
usually compete for resources. This possibility of having different execution trajecto-

ries for the same application is another reason why program profiling is inadequate

CHAPTER 1. INTRODUCTION

for analyzing parallel applications.

1.1 Extant Performance Analysis Techniques

As mentioned earlier, no general method of performance analysis for parallel and dis-
tributed applications is available. There are a variety of techniques that claim some measure
of success in solving the analysis problem. We can broadly classify them as follows: theo-
retical techniques, experimental techniques, and hybrid analysis. Sections 1.1.1, 1.1.2, and

1.1.3 discuss each of these techniques in detail.

1.1.1 Theoretical Techniques

Most theoretical techniques build a model of the application’s behavior, given the pro-
gram’s source code and a set of data items, referred to as the program’s parameter set.
Examples of parameters are the number of executing processes in the program or a re-
source allocation policy. The model is solved by numerical or simulation techniques and
then subjected to analysis. Major modeling techniques used include queueing networks [9],
stochastic processes [43], timed or stochastic Petri nets [10, 19], and simulation models [9].
Performance metrics are computed from the model and then experimentally verified. Of-
ten different models are constructed for different input parameter sets and then integrated
together to form a parameterized version of the model. For a given input parameter set,
the model’s accuracy is determined by comparing its predictions of a metric’s value to the
actual computed value of the metric.

In [9], Abrams discusses why results from theoretical models do not justify the effort
that goes into constructing and then solving the model. First, it is usually cumbersome to
model parallel applications (an exception to this is found in [6]). It is next to impossible to
attempt any kind of scaling on the size of input supplied to the program or on the number of
available processing units because the time taken to solve the model is usually exponential

with respect to these parameters. Second, the model needs to be solved for every distinct

CHAPTER 1. INTRODUCTION

set of inputs and parameter values. Third, only limited classes of software can be modeled.

1.1.2 Empirical Techniques

The second approach to performance analysis of parallel applications that is fast gaining
acceptance in the research community is more intuitive than analytical. First, the dynamic
parallel activity of an application is captured by instrumenting the program’s source code.
The resulting program execution trace is then visualized. More often relationships between
data that are fairly obscure become apparent when perceiving them graphically. The advan-
tages of using graphics to display performance of parallel programs can be seen in JED [26],
Hyperview [28], IPS-2 [38] and several other performance visualization environments. The
insights obtained into program behavior are comparable to those obtained from traditional
modeling techniques.

This is not to say that visualization of dynamic parallel activity does not have its
disadvantages. The diversity of programming systems and architectures has resulted in
no standard implementation or analysis methodology for visualization systems. This has
encouraged the isolated development of tools that are too narrowly focused to have any
kind of general applicability. Secondly, the volume of trace data generated makes it very
hard to store and manipulate for analysis. This problem is further compounded by the
fact that there is the possibility of different program trajectories. The interpretation of the
application’s performance from the study of a single execution trace does not necessarily
hold for other traces of the same program’s execution. Thirdly, when time dependent data
is used, there is rarely any linking of the data to the source code that generated the data.

The single, biggest hurdle that empirical techniques face is the lack of a systematic
methodology to compute a performance metric from a trace. Another drawback of empirical
techniques is their tendency to focus on a single aspect of a program’s behavior and as such

cannot present a global picture of the program’s behavior.

CHAPTER 1. INTRODUCTION

1.1.3 Hybrid Analysis

Both empirical and theoretical analysis techniques have desirable properties that com-
plement one another. Theoretical techniques are tools that generate models of program
behavior. Their primary disadvantage lies in their inability to represent nondeterministic
behavior associated with programs. Experimental techniques such as visualization lack for-
mal methodologies to tune programs or predict their performance. They allow program
data to be represented using graphical images and rely on the perception of the analyst to
draw conclusions.

Visualization can be used effectively as a tool to assist in the theoretical modeling
process. Transforms can be defined based on visual presentations of a trace. Where the
execution trace of a program is difficult to comprehend and evades modeling, its structure
can be transformed into a simpler, more regular approximation that permits modeling.
Sections of the program trace that are deterministic in their behavior can be modeled
separately and then assembled together to form the complete model. Another example of a
powerful visual analysis technique is to compute and display a periodogram of the discrete
Fourier transform of an execution trace to identify periodicity in the trace.

This thesis is founded on the premise that it is appropriate to use a hybrid of empirical
and theoretical techniques in a methodology to analyze the behavior of a parallel program.
Rather than simply visualize an execution trace of a parallel program and hope to intuitively
understand the behavior of a metric, we construct a model of the parallel program from
multiple observations of the execution trace of the program for a given input parameter
set(s). The constructed empirical model should then be able to generate an execution tra-
jectory that closely matches an observed program trajectory. Another measure of accuracy
of the model is that metrics derived from the program model should closely match metrics
derived from an actual observation of the program.

There are several advantages in using a hybrid of theoretical and empirical performance

analysis techniques.

CHAPTER 1. INTRODUCTION

e The cost incurred in building a model of a program behavior for analysis is minimized.
This is because the observed execution trace that is input to the empirical model

construction process is itself a model of the program’s behavior.

e Visualization assists in partitioning the execution trace and studying sections of the
trace separately. Model construction can be done on separate components and then

integrated.

e Visual comparison of multiple execution traces (for the same or different input parame-
ter sets) is useful in both verifying similarities in traces and generating a parameterized

model.

1.2 Problem Statement

In his thesis [16], Doraswamy explored the possibility of using visualization to ana-
lyze parallel program behavior. As part of this effort, an experimental prototype system
Chitra91* was developed.

This thesis discusses the design and implementation of CHITRA92, a second generation
performance analysis system. The system is given a program and a set of execution traces,
each the result of monitoring the program’s execution for some parameter set. The system
generates an empirical model of the program’s behavior. The system also investigates
whether any form of deterministic behavior exists in the program being monitored. The
Chitra system therefore integrates performance analysis with visualization techniques to
generate empirical models of program behavior.

The design and implementation of the CHITRA92 system is the first step towards the
long term goal of the construction of a system which, given program traces collected from
multiple program execution observations, traces back from a graph of a performance metric

to sections of source code responsible for causing that behavior (as specified by the metric).

*Chitra is the Sanskrit word for pleasing paintings or pictures.

CHAPTER 1. INTRODUCTION

The efficacy of the system rests on how accurately the source code causing a bottleneck

could be identified starting from a metric identifying the bottleneck.

1.3 Contributions

The contributions of this thesis are as follows.

Portable Trace Format: One of the biggest problems in the development of performance
analysis systems is the unavailability of portable performance analysis tools across
different platforms, largely due to the lack of portable performance data traces. The
CHITRA92 system provides a trace description language that allows trace data to be

represented in text and binary formats.

Visualization as a means to modeling: Most performance analysis systems consider
visualization to be synonymous with performance analysis. Chitra is unique in that
it uses visualization as a means to reduce a trace to a semi-Markov chain model. Six
different displays have been constructed to visualize an execution trace: X-Y plots in
the time and event domains, text displays, periodogram displays and Markov chain

displays.

Transformations: The CHITRA92 system provides a set of powerful transforms that take
an execution trace as input and generate a modified version of the execution trace
which is more amenable to modeling. There are four different kinds of transforms:
filter transforms to identify and remove random behavior in a trace, pattern aggrega-
tion transforms that identify and aggregate patterns, clipping transforms to identify

the steady-state in a trace, and user-defined projection transforms.

Identifying Periodicity: The CHITRA92 system uses spectral analysis techniques to iden-
tify periodic behavior in performance data trace by constructing periodograms in the

time and event domains.

CHAPTER 1. INTRODUCTION

Model Generation: The CHITRA92 system generates a discrete-space, homogeneous, semi-
Markov stochastic process model [12, 42] of an execution trace. This semi-Markov
chain model can be parameterized to predict program behavior at different input

parameter sets and, consequently, identify performance bottlenecks.

The rest of this thesis is organized as follows. Chapter 2 surveys other performance anal-
ysis systems and briefly discusses the role of visualization in parallel program performance
analysis. Chapter 3 introduces program execution sequences (PES’s), and semi-Markov
chains. A discussion of the methodology employed to transform an execution trace to a
model or an ensemble of execution traces into set of models is also presented. Chapter 5
discusses the design goals of the system and provides a functional description. Chapter 6

contains conclusions and discusses the future direction of the Chitra project.

Chapter 2
Related Work

There has been a substantial amount of work on performance analysis of parallel systems
and software in the last decade [25]. Visualization has been identified as one of the more
prominent tools to be used for performance analysis, so much so that there exists the
notion that performance visualization is synonymous with performance analysis studies.
The Chitra perspective is slightly different. We believe that visualization is extremely
useful in condensing performance data to make it amenable to analysis techniques. Section
2.1 gives a broad overview of the state of the art in performance visualization. The Chitra
perspective on visualization is then presented.

The CHITRA92 performance analysis environment is unique with respect to its funda-
mental goal of modeling performance data and prescribing a methodology to generate a
model of a program’s behavior. There have been a number of performance analysis systems
developed in the last decade that have influenced the development of the Chitra system.
Sections 2.2 to 2.7 review four systems that have heavily contributed to the design and
implementation of CHITRA92: IPS-2 [38], MemSpy [29], JED [26], PIE [30], Mtool [31],
and Pablo [22]. Each section describes the objectives of the system and gives a brief de-
scription. Finally, we evaluate these systems with respect to CHITRA92 on different criteria
such as the sophistication of the interface, the functionality of the system, the level at which

information is presented, and the tools supported by the system.

CHAPTER 2. RELATED WORK

2.1 The Role of Visualization in Performance Analysis Systems

Performance studies have always been tied to the design and implementation of large
hardware and software systems. Not only is performance analysis essential for benchmark-
ing parallel systems, it is invaluable in providing feedback that influences the development of
new generations of these systems. A serious problem that handicaps the performance anal-
ysis process for parallel systems and software is the volume and complexity of performance
data generated by these system. Sorting through and understanding this performance data
is a daunting task. There are two basic problems: first, there must be a way by which
an analyst can inspect the data itself, and secondly the data itself needs to be analyzed.
The first problem arises because of the volume of performance data that can be generated
by a parallel system or application. The second problem, analysis, requires modeling the
experimental data so as to understand the behavior of the phenomena that generated the
data.

Over the past decade, performance visualization has been closely tied to performance
analysis of parallel systems. Visualization has been defined as a method of computing that
allows performance data to be transformed into graphical form, thus allowing researchers
to observe their simulations and measurements. Many visualization tools have been built
for purposes such as program execution animation, data structure visualization, program
debugging, and performance analysis. The Voyeur system [45] and its forerunner Balsa
[13], and the Belvedere system [20] are all examples of systems that animate program
execution. The Instant Display system [21] and Moviola [18] are examples of program
debugging systems, while Hyperview [28], JED [26], IPS-2 [38] and Pablo [22] have been
developed with performance analysis in mind.

While performance visualization can be done in real-time, i.e. visualizing the data
while it is being generated, such systems are usually too complex to build and are usually
limited by the speed of the display hardware. Most well-known visualization systems are

postmortem: the performance data is collected from an execution run and analyzed after

10

CHAPTER 2. RELATED WORK

the program’s execution. The performance data can be visualized at speeds controlled by
the user. This overview is concerned only with postmortem systems.

Performance visualization consists of two stages: performance data collection and per-
formance data visualization [44]. Performance data collection is concerned with generation
of the data and its representation in a format that is easily accessible in the visualization
phase. The visualization phase is concerned with generating meaningful displays of the
data.

Data collection is performed by instrumenting a program and then running it. Instru-
mentation involves inserting probes at specific points in the program to extract information.
Probes can be inserted at the hardware, operating system or application level. Hardware
instrumentation usually involves having special purpose monitoring hardware within the
computer system to perform non-intrusive performance data capture. While hardware
instrumentation does provide accurate performance data, currently it is not widely used
because a user is restricted to collecting performance data on a platform that provides the
special-purpose hardware required. Examples of hardware instrumentation can be found
in Hyperview [28, 27] and TMP [40]. Hyperview provides a instrumentation backplane for
the Intel iPSC/2 Hypercube and TMP is a hardware instrumentation system used in a
680x0-based parallel architecture. Operating system instrumentation and application level
instrumentation are examples of software instrumentation. They are widely used but tend
to perturb the program execution and must be used judiciously. Pablo [22] and IPS-2
[38] are examples of performance analysis systems that have source code instrumentation
subsystems.

The structure of the performance data varies from system to system, but typically, a
performance data file (also known as a trace file) consists of a sequence of data records.
Each record contains an event, which is information collected by an instrumentation probe,
the time at which the event occurred, known as a timestamp and other relevant information
pertaining to the event. Timing information is usually provided by a system clock. If the

program is executed in parallel, then use of a system clock synchronized across multiple

11

CHAPTER 2. RELATED WORK

processors simplifies analysis.

The data display phase takes a performance data file and generates meaningful displays
of some facet of the program’s behavior as captured by the trace file. Examples of aspects
of the program trace file that can be displayed are the utilization of processors, the time the
program spent between any two specific events (e.g a procedure entry and the corresponding
exit) and a display of the chronological ordering of trace file events. Examples of some
displays include histograms of event occurrences, textual dumps of the trace file, X-Y plots,
kiviat graphs, LEDs, contour plots, and scatter plots [22].

Earlier in this chapter, we suggested that the volume and complexity of performance
data complicates the inspection of the data. Visualization effectively simplifies the process
of assimilating data because it increases the rate at which information is presented to the
user. However, allowing users to examine large quantities of data through histograms,
time-lines, or Gantt charts does not provide anything more than a superficial analysis of
the system under study. Our claim is that mere visualization does not imply a thorough

analysis of data.

2.1.1 The Chitra Perspective on Visualization

In most existing performance analysis systems, visualization plays the major role — it is
an end to itself. A parallel program performance analysis tool is summed up as an event
tracing facility to capture trace information and a visualization front end that offers a variety
of ways to display the collected trace data so as to lend insight into the relationships among
the data. In contrast, the objective of the CHITRA92 system is to generate a parameterized,
empirical model fitting a set of program execution traces and an input parameter set. The
efficacy and accuracy of the parameterized model is established by the accuracy of the
model’s predictions on a different values of the input parameter set.

Visualization is of immense help in assisting a user to apply transformations on a pro-
gram execution trace. Performance data is far more readily assimilated when presented

graphically than when output as large volumes of textual data. For example, identifying

12

CHAPTER 2. RELATED WORK

recurrent patterns in a 2D X-Y time plot of an execution trace is easier done than while
examining a text file of the trace data. Another example of where visualization is of great
use is in clipping off the transient portion of the trace.

The CHITRA92 system uses visualization as a means to generating an empirical model of
the behavior of the program. Chitra does not provide complex viewing systems which have
no purpose other than displaying some facet of program output. Chitra does not provide
a toolkit and expect that the user be left to assembling his/her performance analysis tools.
What we do provide is a methodology for performance analysis and the Chitra performance

analysis system is an organized collection of tools for realizing this methodology.

2.2 The IPS-2 System

IPS-2 [38, 37] is a performance measurement system being developed at the University

of Wisconsin, Madison. IPS-2 has goals very similar to those of CHITRA92.

2.2.1 Objectives

IPS-2 is a true performance diagnosis tool. It takes a program execution trace of a
parallel program and attempts to identify performance bottlenecks through two means of
analysis: critical path analysis and phase behavior analysis. Critical path analysis identifies
the longest path in the graph while phase behavior analysis sections the program into phases,
so that critical path analysis can be applied to each phase. IPS-2 is unique in that it allows
the programmer to link a performance bottleneck back to the source code responsible for
the bottleneck. The IPS-2 performance diagnosis tool has versions for parallel computer
systems, like the Sequent Symmetry, and for loosely coupled distributed computer systems

(e.g. network of workstations).

13

CHAPTER 2. RELATED WORK

2.2.2 Description

IPS-2 defines a computational hierarchy on the program being monitored. At the high-
est level is the program which can be thought of as a black box, having a set of inputs and
generating a set of outputs. The next level is the machine level, where the program can
be split into several concurrently executing processes on different processors (machines).
The third level is the process level which represents a program as a collection of communi-
cating processes. The fourth level is the procedure level where the distributed program is
represented as a sequentially executed procedure call chain. The fifth and final level is the
primitive activity level.

There are four basic components in IPS-2: instrumentation probes, the data pool, the
analysts and a user interface. The instrumentation probes generate trace data when in-
teresting events happen during program execution. The data pool stores trace data and
caches intermediate results from the analyst. The analyst is set of concurrently executing
processes that summarizes and evaluates the performance data. The user interface interacts
with user and presents results.

A number of instrumentation techniques have been provided. Two of them are notable.
The first is an enhanced gprof-style profiler which is used to record both procedure entry
events as well as procedure exit events. The second is a modified run-time library. All
instrumentation is done at the operating system level.

Each processor (parallel systems) or machine (distributed systems) contains a slave
analyst that analyzes trace data from all processes on that machine. A master analyst
process is responsible for collecting results from the slave analysts. The user interface to

the system is a front-end to the master analyst.

2.3 JED

(J)ust another (E)vent (D)isplay [26] is a simple trace visualization tool that was devel-

oped at the University of lllinois, Urbana-Champaign. It has been included as one of the

14

CHAPTER 2. RELATED WORK

four systems being reviewed because its design and functionality are illustrative of design

philosophies that are commonly found in most performance visualization tools.

2.3.1 Objectives

The objective of the JED project [26] was to design a simple event display tool that
provided basic trace management support, user-definable event specification, and a user-
customizable graphical presentation based on a standard Gantt chart display and a user-

extensible analysis and display architecture.

2.3.2 Description

The JED system is targeted toward parallel, multitask programs running on the Cedar
multiprocessor system. In this environment, parallel programs use the multitasking ca-
pabilities of the Xylem operating system to partition themselves into individual tasks for
execution on the Cedar clusters. A task can further take advantage of hardware concur-
rency support of upto eight processors on each cluster, an Alliant FX/8, to execute loops
in parallel.

The Cedar system has a built in performance data collection facility which is imple-
mented as a library of counting, timing, and tracing routines that use a trace buffering
run-time system for storing performance data. A trace file is provided for each executing
task — the trace file is an time ordered merge of the task’s eight processor trace streams.

The JED visualization system provides four separate components. A trace control com-
ponent is responsible for reading the trace, positioning within the trace and searching for
particular events. An event control component allows the association of names and graphic
icons to events. A task display component opens viewports on the trace and allows events
for tasks assigned to the viewports to be displayed in a Gantt chart-style form. Finally, the
event display component controls how events are shown when “selected” in the task display.
A standard event display is provided with the option to deselect it and select a user-defined

event display.

15

CHAPTER 2. RELATED WORK

JED implements efficient browsing to browse through large task event traces. These
include a per task control, indexing of task trace files and event caching.

JED is easily customizable. There are no semantics associated with the event format.
All event information is provided by the event definition file set up by the user. The user
can control how events are shown in the task displays, and finally the user can replace the

standard textual event display with a custom display.

2.4 MemSpy

While all of the other systems reviewed in this chapter are primarily execution trace
analyzers, MemSpy [29] is different because it analyzes an application based on its memory
reference behavior. MemSpy is a prototype tool developed at Stanford University which
helps programmers identify and fix bottlenecks in both sequential and parallel programs.
While most systems are involved in code oriented performance tuning, MemSpy is one of

few tools that perform data oriented as well as code oriented tuning of programs.

2.4.1 Objectives

MemSpy’s key philosophy is that while at the most basic level the memory reference
behavior of an application depends on the intrinsic nature of an application, the programmer
still has considerable flexibility in manipulating the algorithm, data structures, and program
structure to change the memory reference structure in order to better exploit the memory
hierarchy. MemSpy’s primary goals are that it separately reports processor and memory
time, so that programmers can discern where and when memory is the bottleneck, link
the bottleneck back to specific data objects, and code sections, and finally give memory

statistics at a level that allows the programmer to identify and fix the bottleneck.

2.4.2 Description

MemSpy is noted for the following features:

16

CHAPTER 2. RELATED WORK

e It provides both data and code oriented output.

e It initially focuses attention on the bottleneck areas by providing the fraction of the

time spent stalled on memory.
e It provides detailed information on the causes of poor memory performance.

¢ It is applicable to both parallel and serial applications.

MemSpy’s first action is to rank each code and data object in the program according
to the fraction of stall time they are responsible for. This metric is far more useful than
others because code or data segments with high miss rates but low total stall time (because
of few memory references) do not impact performance as much as segments with lower miss
rates but higher total stall time. The initial output table generated by MemSpy presents
a breakdown of memory stall time for each combination of code-segment and data object.
For each combination, detailed information such as miss rate, read and write statistics, and
statistics on local versus remote misses is generated. Finally a key feature is the breakdown

on types of cache misses. MemSpy identifies three different kinds of cache misses:
1. if a line in the cache has never been referenced by the processor,
2. if the line has been replaced out of the cache since its last reference, or
3. if the line has been invalidated since its last reference.

For each type of cache miss, MemSpy provides statistics which breakdown the misses oc-
curring due to each type of cache miss.

The trace information that is analyzed by MemSpy is available in two ways: simula-
tion or hardware tracing. The current prototype uses simulation to gather data. Work is

underway to provide a version that uses hardware tracing facilities.

17

CHAPTER 2. RELATED WORK

2.5 PIE

PIE [30] is a software development environment for debugging performance that pro-
vides programmers ways to observe how computations execute by making use of special

development and runtime visualization tools.

2.5.1 Objectives

The PIE system is a theoretical framework for developing techniques to predict, detect
and avoid performance degradation in parallel and distributed programs. PIE is imple-
mented on top of the Mach operating system. It supports languages such as C, Ada,
Fortran, C-threads, and MPC.

2.5.2 Description

PIE provides a customized visual editing system which allows a user to identify the
principal programming constructs within the program. After visualizing the source code,
PIE allows the selection of constructs by the user for automatic observation within the
program. All PIE’s instrumentation is currently done using software instrumentation tech-
niques. PIE then provides visualization utilities such as histograms and time-lines by which
the performance data can be visualized. An interesting aspect of the PIE system is that it
provides compensation algorithms by which the perturbation induced by the sensors and

instrumentation probes can be minimized.

2.6 Mtool

Mtool [31] is an integrated tool for isolating performance bottlenecks in shared memory
multiprocessor applications. Mtool uses low-overhead instrumentation methods and pro-
vides a variety of attention focusing mechanism for performance bottlenecks. The current
Mtool implementation runs on MIPS-chip systems like DEC workstations, SGI multipro-

cessors and the Stanford DASH multiprocessor.

18

CHAPTER 2. RELATED WORK

2.6.1 Objectives

The primary objective of Mtool is to characterize a program’s execution based on the

following execution time taxonomy:
1. Compute Time
2. Memory Overhead
3. Synchronization Overhead and
4. Extra Parallel Work

All of these categories of execution time analysis are supported for C programs (parallelized

with the ANL macros) and Fortran programs (parallelized by an optimizing compiler).

2.6.2 Description

The Mtool analysis of a program’s memory bottlenecks is done in two stages. In the first
stage, Mtool instruments the program at the basic blocks. Based on the instruction latencies
and a count of the number of times a basic block was executed, Mtool builds an execution
profile of the program based on the amount of time it spent in each block. This profile is
useful in identifying important regions of the program which need to be instrumented using
probes and to ensure that the instrumentation is minimized to prevent overly perturbing
the program’s execution.

After the initial run of the program, Mtool instruments the program to collect two
kinds of information: the time spent in selected loops, procedures and synchronization
calls, and the basic block counts. Memory losses are isolated by comparing the actual time
measurements to compute time estimates made using the basic block counts assuming an
ideal memory system. Synchronization overheads are calculated directly from the execution
time measurement of the synchronization calls. Finally, users can tag instructions as “extra
work”. The tool also automatically tags parallel control constructs as “extra work” within

the analysis.

19

CHAPTER 2. RELATED WORK

An window-based user interface displays information about bottlenecks hierarchically
at a whole program, process, procedure, loop and synchronization object level. Mtool also

provides the ability to link a memory overhead back to regions within the source code.

2.7 Pablo

Pablo [22] is a performance analysis environment being developed at the University
of Illinois, Urbana-Champaign. Pablo is designed to provide performance data capture,

analysis and presentation across several scalable parallel systems.

2.7.1 Objectives

As projects go, Pablo is extremely ambitious. The fundamental ob jectives of the system
are to provide portability of the system across a variety of target platforms, to ensure that
the performance analysis environment is scalable*, and thirdly, to provide an extensible
performance analysis environment. The Pablo system classifies performance tool users as
novices, intermediate users, and expert users. While the base system is sufficient for novice
and intermediate users, expert users are expected not only to be able to reassemble existing

toolkit components, but also add their own toolkit components to the system.

2.7.2 Description

Pablo is best described as a toolkit for the construction of performance analysis environ-
ments. It consists of a portable source code instrumentation subsystem and a performance
data analysis subsystem with a trace data metaformat coupling the two subsystems. The
portable source code instrumentation is designed to support interactive specification of
source code instrumentation points. It consists of a graphical interface for source code

specification, modified C and Fortran parsers that emit instrumented code and a library

*It is imperative that as the parallel system increases in size that the performance analysis environment
should also scale commensurately.

20

CHAPTER 2. RELATED WORK

of trace capture templates whose members can capture performance data generated by the
instrumented source code when it actually executes on a parallel or distributed machine.

The performance analysis component of Pablo consists of a set of data transformation
modules that can be graphically interconnected to form an acyclic directed, data analysis
graph. Performance data flows through the graph nodes and is transformed to yield the
desired performance metrics. Each performance data transformation module consists of a
data transformation core (that performs the actual transform) and a data access “wrapper”
that can read and write a self-documenting data stream meta-format (SDDF'). The meta-
format contains internal definitions of data types, sizes and names, but does not include
embedded semantics.

All source code of the system has been written with portability as the primary objec-
tive. Also, because the data analysis modules communicate by message passing, individual
modules can execute in parallel allowing the construction of scalable data analysis graphs.

An interesting aspect of the Pablo system is a sonification component by which perfor-
mance data can be displayed by the use of sonic data presentation via a replay of sampled

sounds and the use of a sound synthesizer.

2.8 Summary

All of the above systems have proven successful in different environments, and as such
it is difficult to rate them against one another. We have identified the following criteria for

comparison:

1. Tools for gathering data

It is useful for any performance analysis system to provide tools to gather data.
JED is targeted specifically towards parallel programs on the Cedar multiprocessor
system and uses the Cedar performance measurement facility. JED, therefore, can
read only a fixed data format. MemSpy is a prototype tool and can currently evaluate

data provided by the Dash multiprocessor memory simulator. Mtool and PIE both

21

CHAPTER 2. RELATED WORK

provide different levels of source code and operating system instrumentation. Pablo
provides a portable instrumentation software system which allows graphical insertion
of software probes. Trace capture libraries are provided for the Intel Paragon and the
CM-5. Pablo’s Self Describing Data Format (SDDF) is also very useful for defining
performance data formats. IPS-2 provides a software instrumentation library, and
a modified version of gprof that collects both procedure entry as well as exit event
data. CHITRA92 does not provide any tools for data capture, but provides a trace
description language (CSL) very similar to Pablo’s SDDF, which allows trace data to

be both portable as well as efficient.

2. Tools for analysis

Because trace data is usually very large (often megabytes in length), it is useful to
provide analysis tools that assist a user in the dissemination of the data. JED provides
a control mechanism by which the user can specify which events are to be displayed.
MemSpy generates a variety of code and memory object statistics for memory cache
misses in single and multi-processor environments. Mtool provides analysis of an ap-
plication’s memory profile based on a taxonomy of execution times. PIE is unique in
that it provides compensation algorithms to minimize the effects of instrumentation
sensors on perturbing the program. Pablo’s analysis capabilities are wide-ranging but
depend on the data analysis graph that is constructed by the user. IPS-2 provides two
powerful analysis techniques that allow the user to locate bottlenecks in the program:
critical path analysis and phase behavior analysis. CHITRA92 provides transforma-
tions for filtering, aggregation, clipping and allows user-defined transformations to be
integrated into the system. It also provides spectral analysis techniques for identifying

periodic behavior, and generates an emprirical model of the program.

3. Sophistication of the interface

The sophistication of the interface is limited by the environment, e.g. the workstation

capabilities and the system support.

22

CHAPTER 2. RELATED WORK

JED is an event browser and provides a single Gantt chart-style display. MemSpy
is really a tool that provides analysis and does not have a interface of significance.
Mtool provides a simple window-based user interface. PIE is a visual programming
environment and provides a visual editing system and displays such as histograms
and time plots. Pablo has a wide range of graphical displays all which need to be
connected in the data analysis graph. CHITRA92 provides X-Y views, text views,
Fourier periodogram views, and empirical model views. Pablo and CHITRA92 both
provide multiple-view visualization systems. IPS-2 provides a graphic editor which
allows the programmer to modify the computational structure of the program being
measured through its program hierarchy. It also provides a flexible user interface that
allows the user to display performance metrics in graphical or tabular form or use the

automatic guidance techniques.

4. Level of information presented

The performance analysis tool can present information at different levels. The simplest
level of information that can be presented is through basic graphics displays and listing
of raw data. An intermediate level displays trace data in terms of the source program.
Symbol tables, call graphs, flow graphs and data dependence graphs are all examples
of intermediate level information presentation. The highest level of presentation is in

terms of a high-level model of program behavior.

Of the six systems reviewed, JED offers merely a Gantt chart-style display of perfor-
mance data. MemSpy qualifies as an intermediate level display because it generates
information on the influence of a program’s data objects and code objects on the
memory reference pattern of the program. IPS-2 scores high in this category because
it not only generates a high-level model of the program behavior using critical path
analysis and phase analysis, it also links program bottlenecks back to the offending
source code. PIE also provides source code links from the bottleneck, but has no

high-level model. A lot of the analysis is left to the intuition of the user. Mtool

23

CHAPTER 2. RELATED WORK

attempts to perform a comparison between the performance of the program on an
ideal memory system and the performance of an actual execution. The performance
bottleneck statistics are only at a high level, though it does have the ability to display
these statistics in a hierarchical manner based on the program’s structure. Pablo does
provide extremely powerful display interfaces and the ability to analyze a wide range
of data formats. Its biggest problem is that it does not support any kind of perfor-
mance analysis methodology. The user has to provides his/her own methodology to
generate a high-level model. CHITRA92 is another example of a system whose focus

is on generating a high-level model of the program using a semi-Markov chain.T.

Figure 2.1 is a table which summarizes our comparision of these six system with CHI-

TRA9O2.

tSource code linking is being planned in future versions of the system.

24

CHAPTER 2. RELATED WORK

Pablo

Chitra92

MemSpy

MTool

PIE

IPS-II

Tools for Tools for Sophistication
O
gathering data analysis of interface Output ther features
Source code Large # Muitt Build Users conflgure
Instrumentation | of xform disol ple data analysis system to suit
library modules play graph purpose
PES description
P Transforms Multiple Semi-markov Period

language, spectral . chal riodogram
translators analysis display n analysis of PES’s
Stmulator Code Minimal Stall time
for DASH memory interface for code

statistics data objects
Low overhead

Code Window-based| Frimary S od
software memo bottle ource code

Ty user Interface neck linki

Istrumentation | o oouoe statistics ng
OS/Source Code | Perturbation| gy ¢omrqms Some Visual
instrumentation | minlmizatfon) 1y plots statistics, programming

routines no model environment

Critical Critical
OS/Source Code Graphical Souree code
instrumentation | Path, phase editor path, phase

analysis analysis linking
CEDAR Control Gantt chart Gantt charts
trace faclity events display

Figure 2.1: Table comparing other performance analysis tools with CHITRA92.

25

Chapter 3
Methodology

This chapter introduces and explains several key concepts that are unique to the CHi-
TRA92 performance analysis system. In doing so, we also present the methodology used to
model a parallel or distributed program.

We first discuss in detail the notion of a program ezecution sequence (PES), which is
fundamental to CHITRA92 performance analysis system. We then describe semi-Markov
chain model of a PES and our reasons for doing so. Next, we describe four transforms
which serve as powerful tools for reducing a PES to a form that generates a simpler model.
We also discuss techniques for identifying periodicity in a PES, and finally we propose steps

that should be followed to generate a semi-Markov model of a PES.

3.1 Program Execution Sequences (PES’s)

Consider a sequential program executing on a uniprocessor architecture. We can asso-
ciate with each program a function from the input domain to the output domain. To do so,
we formalize the notion of state (the concept of memory (that binds identifiers to values),
input and output). For simplicity, we assume that the program deals only with integer
values and booleans which may result from boolean expressions. Symbol Z stands for the
set of integers and the symbol L stands for the undefined value.

For any given sequential program P, P’s state sp is formalized by a triple
sp = (memp,ip,op),

where:

26

CHAPTER 3. METHODOLOGY

e memp is a function that gives the value of each program variable (if /dp denotes the

set of P’s variables, then memp : Idp — ZU 1).

e ip and op are the input streams and output streams respectively.

Let us associate with our sequential program a set of data items called program pa-
rameters, whose values can be modified every time the program is executed. Examples
of program parameters are program constants and input data items to the program. We
will denote the set of program parameters as {zg,...,%;,...,Zk}, where z; is a program
parameter whose value can be modified, for 0 <1 < k.

Any sequential program execution can therefore be modeled by a sequence of states and
a set of program parameters. Let Pgp denote an execution of the sequential program P.

Then

PE = ((SOsSlyS%-'-73n)7{x0az11$25-"’xn})a

where (g, 81, 82, - . ., 8,) represent the state sequence of P and {zo, z1, 22, .. .,2,} represents
the set of input parameters to Pg. A program instruction is therefore simply a transition
function that maps one program’s state to the next state in the sequence. In a sequential
program, the given input parameter set uniquely determines the state sequence.

We can extend this notion of state from sequential to parallel programs as well. Let us
assume that our parallel programs execute on a MIMD architecture. In our model of parallel
programs, a parallel program is a program where multiple threads (or processes) interact,
competing for and sharing resources. A thread (or a process) is a code fragment scheduled
by the underlying operating system. Instead of a triple to define state as in a sequential
program, we have an n-tuple which provides an instantaneous description of the program.
This n-tuple represents the program state of the executing program. Each component in
the program state is simply a state sp; for each of the n executing threads in the program
0<i:<n~-1.

For a parallel program P, its program state sp is an n-tuple providing an instantaneous

description of the program. We have

27

CHAPTER 3. METHODOLOGY

8P = (SP0,5P1,8P2; - - -5 SP(n=1))
where

e sp is the program state of the parallel program.

o sp; where 0 < i < (n — 1) represents the state of thread 7 at some time instant. We
can further expand sp; = (memp;, ip;, 0p;) where memp; is a function that gives the
value of each program identifier for thread i, ip; and op; are the input streams and

output streams respectively for thread :.

The model of a parallel program’s execution is not as straightforward as the model for
a sequential program. A parallel program’s execution can be represented by one of many
state sequences for the same set of input parameters. Each state sequence represents one
possible execution of the program. The possibility of multiple execution sequences exists
because parallel programs are inherently non-deterministic in their behavior. Let Pr denote

an execution of P. Then we have:

PE = ({Ro,Rl,RQ,Rg,. . .,RM},{.’IJO,SL‘l,(IIQ,. ..,illn})

where

o {Ro, R1, Ra,..., Ry} represent the set of program state sequences. Pg will choose
some program state sequence R; where 0 < ¢ < M. The set of program state sequences

illustrates the nondeterministic nature of P’s execution.
o {20,21,22,...,Z,} represents the set of input parameters to P.
In practice, the program state of a program is the instantaneous description of the

program. For any program, this information might consists of hundreds of memory variables

28

CHAPTER 3. METHODOLOGY

(local or global), several input and output streams, and code pointers to the next instruction
to be executed in each of the concurrent threads.

Under ideal circumstances, an instrumentation system could capture every program
state of the program for a given input parameter set and execution trajectory to answer
all performance questions. However because the state space could be very large, we specify
events in the program that are of interest to us and generate a subset of the program state
space. The program state is therefore an n-tuple where each component represents some
information relevant to the performance study. For each program execution, and input
parameter set, we can generate a program ezecution sequence (PES), which is a sequence
of ordered pairs — each ordered pair consisting of a program state s; and an entry time
e; which represents the time the execution trajectory entered program state s;. We can
map a PES into two constituent sequences: a program state sequence (also called a symbol
sequence) and an occupancy time sequence. The program state sequence consists of the
sequence of all program states in the PES, and the occupancy time sequence is a sequence

of the occupancy times of the states in the program state sequence.

Consider the PES
I = (s0,€0),(51,€1),(82,€2)s. ;s (Sm,€m)-
The symbol sequence corresponding to [is
I, = 50,51,825-««y8m—1
and its program occupancy time sequence is
I, = (e1 —eg),(e2 —e1),(e3 —€2),...(em — €m—1).

Note that the last state s,, is not present in the program state sequence. This is because

its occupancy time cannot be computed. The two sequences, I and [, are equal in length.

Example 3.1.1 Consider Dijkstra’s “Dining Philosophers” problem [{]. The problem can

be stated as follows:

29

CHAPTER 3. METHODOLOGY

N philosophers spend their lives thinking and eating. The philosophers share a common
dining room where there is a circular table surrounded by N chairs, each belonging to a
philosopher. In the center of the table is a large bowl of spaghetti, and the table is laid with
N forks. Whenever a philosopher is hungry, he enters the dining rooom, sits on his own
chair, and picks up the fork on the left of his place and on the right of his place to eat. When
he has finished, he puts down both forks and leaves the room. Therefore, a philosopher can
eat only when neither of his neighbors is eating. The problem is to write the algorithm for
Philosopher; 0 < i< N — 1.

The implementation of the dining philosophers problem using threads (Two examples
of threads packages are Cthreads, a threads package for distributed programming that is
provided with the Mach operating system [33], and Presto, a C++ threads package for
parallel programming [11]) is straightforward. FEach philosopher is represented as thread
which is forked off by the parent task and then detached. Since forks are shared resources that
adjacent philosophers can access, they must be protected using mutual exclusion variables
such as semaphores.

The solution outline is as follows:

e A philosopher i is represented as a thread. It performs in an always-true loop, the

thinking, fork acquiring, eating and fork releasing functions.

o A fork is represented as a semaphore. Accessing a fork corresponds to locking the

semaphore. Releasing a fork corresponds to unlocking the semaphore.

Figure 3.1 shows a code fragment for a single thread representing a philosopher for
N = 5. The following symbols represent instrumentation points within a thread: A1l implies
philosopher i acquiring the ith fork, A2 implies acquiring the i + 1th fork, E implies eating,
R1 implies releasing the ith fork, R2 implies releasing the i+1th fork, and T implies thinking.
For N = 2, a sample PES for the above problem, I is as follows:

I = (A2T,1550),(ET,1560),(EAL,1570),(R1AL,1585), (R2A1,1597), (R2A2,1601),

30

CHAPTER 3. METHODOLOGY

#define MAXPHIL 5
#tdefine TRUE 1

semaphore forksi MAXPHIL];

void philosopher(int i)

{
while (TRUE)
{
think(); /* Think (T) %/
sem_lock(forks[i%MAXPHIL]); /* Acquire ith fork (A1)x/
sem lock(forks[(i+1)%MAXPHIL]); /* Acquire (i+1)th fork (A2) x/
eat(); /+ Fat - (E) +/
sem_unlock(forks[i%MAXPHIL)); /+ Release ith fork (R1) */
sem_unlock(forks[(i+1)%MAXPHIL]); /* Release (i+1)th fork (R2) */
}
}

Figure 3.1: Code fragment for a single philosopher in the Dining Philosophers problem.

31

CHAPTER 3. METHODOLOGY
(TA2,1607),(TE,1621), (A1E,1633), (A1R1,1651), (A2R1, 1668), (A2R2, 1669),
(A2T,1685), (ET,1686),(EA1,1695), (R1A1,1711), (R242,1723), (T A2,1731),

(TE,1735),(ALE, 1745), (ALR1,1760)

We can split I into its two constituent sequences.

The program state sequence is

I, = (A2T,ET,FA1,R1A1,R2A1,R2A2,TA2,TE,A1E,A1R1, A2R1,

A2R2,A2T,ET,FAl, R1A1, R2A2,TA2, TE, A1E, A1R1)
and the program state occupancy time sequence is
I, = (10,10,15,12,4,6,14,12,18,17,1,16,1,9,16,12,8,4,10,15)

Figure 3.2 1s a time plot of PES I, Figure 3.3 is the semi-Markov chain model of I.

3.2 Semi-Markov Chains

CHITRA92 uses semi-Markov chains as its model of program behavior. In this section
we briefly review the theory of semi-Markov processes. For more information, the reader is
referred to the literature [42, 12].

A stochastic process can be defined as a set of random variables X (t), where the random
variables are indexed by the time parameter ¢. To completely describe a stochastic process
three issues must be addressed: the state space, the indez (time) parameter, and the sta-
tistical dependencies among the random variables for different values of the time parameter
L.

The state space refers to the set of possible values (states) that X (¢) may take. If the
set of states is finite or countable, then we say that the process is a discrete-state process
or a chain. On the other hand, if the set of states are over a finite or infinite continuous

interval, then the process is a continuous-state process.

32

CHAPTER 3. METHODOLOGY

Program States

2D Time Plot - Dining Philosophers {(N=2)

12
10 4 A AR
8 -
5 -
4-
T - Think
i Al - Acquire Fork 1
2 - ET A2 - Acquire Fork 2
E - Eat
- R1 -Release Fork 1
AT R2 -Release Fork 2
0 Y
1500 1600 1800

Tine [micvorecs)

Figure 3.2: 2D Time Plot for a 2 philosopher Dining Philosophers problem.

33

CHAPTER 3. METHODOLOGY

320202 02026202020
OO0

OO-O-O-O-O-E-E-6-

Figure 3.3: Semi-Markov chain model for a 2 philosopher Dining Philosophers problem.

34

CHAPTER 3. METHODOLOGY

The second issue is the index (time) parameter. If the permitted times at which tran-
sitions can be made from one state to another are finite or countable then the stochastic
process is called a discrete-(time) process. If these transitions can be made at any finite
interval in time, then the stochastic process is referred to as a continuous-parameter pro-
cess. A discrete-time stochastic process is often referred to as a stochastic sequence and the
random variable is denoted by X, rather than X (t).

The final issue which serves to truly distinguish between stochastic processes is the re-
lationship between the random variables that constitute the stochastic process. There are
several types of stochastic processes that are characterized by different kinds of dependency
relationships among their random variables. Examples are stationary processes, indepen-
dent processes, Markov processes, birth-death processes, homogeneous processes and non-
homogeneous processes, semi-Markov processes, and renewal processes. We restrict our
discussion to Markov and semi-Markov processes.

A Markov process with a discrete state space is referred to as a Markov chain. A set of
random variables forms a Markov chain if the probability of the next state being in some
state z,41 depends only on the current value of the state z,, and not on any previous values.
Thus the random sequence has a dependency which extends backwards one unit in time.
The same dependency holds for continuous-time Markov chain except that the transitions
between states may take place at any time instant, whereas for a discrete-time Markov chain
the time instants at which state changes may occur are assigned integers 0,1,2,...,n. Also,
a homogeneous Markov chain is one for which the transition probabilities are independent
of time.

Because the Markovian property requires that the past history be completely summa-
rized by the current state, it imposes a strict restriction on the distribution of time that
a process may remain in a particular state. For continuous time Markov chains the occu-
pancy time can only be exponentially distributed, while for discrete-time Markov chains,
the occupancy time can only geometrically distributed.

We can relax that restriction by permitting an arbitrary distribution of time that the

35

CHAPTER 3. METHODOLOGY

process may remain in a state. A discrete-time (or continuous-time) Markov chain where
an arbitrary state occupancy time distribution is permitted is called a semi-Markov chain.
However the condition of computing transition probabilities only from the current state
still holds. At the instants when a transition occurs, a semi-Markov chain behaves like an

ordinary Markov chain.

3.2.1 Why use homogeneous continuous-time semi-Markov chains?

To model a PES, it is necessary to map every program state to a model state. The
model requires a transition function to map the current model state to a subsequent model
state. In Chapter 1, we argued that parallel programs are inherently nondeterministic.
Nondeterminism in a parallel program can correspond to random events such as process
contention for resources or context switches. However, there are sections of the program
that are deterministic as well. The execution of a sequence of program statements is one
such example.

The choice of model, therefore, hinges on its ability to model nondeterministic behavior
as well as deterministic behavior. The ideal model will be able to model deterministic as well
as random behavior equally by combining deterministic as well as probabilistic transition
functions [43, 19].

Chitra uses as its program behavior model a homogeneous, continuous time semi-Markov
chain. Semi-Markov processes are appropriate because they model general state occupancy
time distributions and therefore, are quite flexible. The strong Markov requirement that
state transitions rates be determined solely on the basis of the current state is acceptable

in theory.

3.3 Transformations

The representation of a program as a PES is the first step to constructing a semi-Markov

chain model of the program. While it is possible to generate a model from the PES, such

36

CHAPTER 3. METHODOLOGY

a model is not very useful because it rarely produces an execution trajectory that closely
matches the input PES. To produce a satisfactory model of a PES, it is necessary to first
transform the PES.

A transformation maps an input PES I to an output PES O. More precisely, a transform
maps an input symbol sequence and an input occupancy time sequence, denoted I and 1,
to an output symbol sequence and an output occupancy time sequence, denoted O, and 0,,
respectively. The transformation function may or may not take as input other parameters
besides the PES itself. The output of a PES transformation is always another PES. A
composition of transformations may therefore be applied on an input PES.

Applying transforms is an iterative and exploratory process. Sometimes the application
of a sequence of transforms results in an unsatisfactory model being generated. The effects
of the transform then need to be undone and an alternate set of transforms should be
applied.

A generic transformation for a PES can be written as follows:

0 := A({POaPhP?s e ’pn}a I)

where

e A is a transformation function on the input PES,

e [is an input PES and O is an output PES, and

o {po,p1,P2,..-,Pn} are an optional set of parameters to the transformation function.

We describe four different types of transformations used in Chitra which satisfy the above
criteria. They are filtering, aggregation, clipping and projections. They are described in
sections 3.3.1, 3.3.2, 3.3.3 and 3.3.4 respectively.

3.3.1 Filtering

Most programs exhibit some form of random behavior. Examples of occurrences of

random behavior in executing programs are resource contention, context switches and page

37

CHAPTER 3. METHODOLOGY

faults. The state of the program is no longer deterministic. Random behavior in a program
manifests itself as sequences of program states that occur rarely.

Filters are transforms that can be used to identify random behavior in a PES by locat-
ing these infrequently occurring sequences. In most PES’s, the program spends most of its
execution time in a few states, termed dominant states. The program periodically passes
through these dominant states, but between these states the program makes transitions
through dissimilar subsequences that usually occur randomly. A dominant state that pre-
ceeds such a randomly occurring subsequence in the symbol sequence of the PES is called
the predecessor state and the dominant state that succeeds the subsequence is termed the
successor state.

Note that two (or more) such dissimilar subsequences can have the same predecessor
and successor states. Each sequence represents the path taken by the program execution
sequence as it moves from the predecessor state to the successor state. In terms of occupancy
time spent in these states, the duration is small in comparison with the total duration of
the PES, and in terms of the number of occurrences of these states, they are few in number.

The purpose of a filter transform is to replace these randomly occurring subsequences by
a composite state, the filter aggregate state. Every subsequence having the same predecessor

state and the successor state is replaced with the same filter aggregate state.

Consider the PES
I = (s0,¢€0),(s1,€1,(52:€2),+-5(Sm,€m)-
Its program state sequence is
Is = 80,51552y-+-38m~1,
and its program occupancy time sequence is

Io = (81 - 80), (62 - 61),(63 - 62), .. .(em - €m_1).

38

CHAPTER 3. METHODOLOGY

Time domain filtering

Let the sum of all times in the occupancy time sequence be 7. For each program state s,
let h(s) denote the occupancy time of s in the PES. Let t¢4reshota be the threshold occupancy
time such for each state s, if h(s) is less than t;,esn014, then every instance of s in [is filtered

out of I. The filtering process is defined as follows

e Run identification: Every subsequence of filtered out states in I constitutes a
run in the PES. Let there be n runs after applying the time-domain filter on I:
(R1, Ra,...,R,). For each run R;, let the predecessor state be given by Pred(R;),
and the successor state be given by Succ(R;). Let the null program state be denoted
by ¢, i.e. if R; has no predecessor state, then Pred(R;) = ¢ or if it has no successor

state, then Succ(R;) = ¢.

e Run replacement: All runs that have the same predecessor and successor states are
replaced by the same newly generated filter aggregate state in the transformed output

PES. The replacement is performed until all runs in the PES are eliminated.

Example 3.3.1 Recall the PES of Example 3.1.1.

I = (A2T,1550),(ET,1560),(EAL,1570),(R1A1,1585),(R2A1,1597), (R2A2,1601),
(T A2,1607),(TE,1621),(A1E,1633),(A1R1,1651), (A2R1, 1668), (A2R2, 1669),
(A2T,1685), (ET, 1686),(EA1,1695), (R1A41,1711), (R2A2,1723), (T A2,1731),
(TE,1735),(A1E, 1745), (A1R1,1760).

Its program state sequence is

I, = (A2T,ET,EAL,R1A1,R2A1, R2A2,TA2,TE, A1E, A1R1, A2R1,
A2R2, A2T,ET, EALl, R1A1, R2A2,TA2, TE, ALE, A1R1),

39

CHAPTER 3. METHODOLOGY

and the program state occupancy time sequence is
I, = (10,10,15,12,4,6,14,12,18,17,1,16,1,9,16,12,8,4,10,15).

The h(s)/T value for A1E is .147 and the h(s)/T value for EAl is .157. The occupancy
time fraction is less than .147 for all other states. If we set a tihreshota value such that
tinreshold /T = 0.147 then all other states will be filtered out of I if we apply a time domain

filter with t hreshold on I. We can identify four runs, three of which are distinct. They are
1. Ry = (A2T,ET), Pred(Ry) = ¢, Succ(Ry) = EA1
2. Ry = (R1A1,R2A1,R2A2,TA2,TE), Pred(Ry) = EAl, Suce(R,) = A1E
3. R3 = (R1A1,R2A2,TA2,TE), Pred(R3) = EAl, Succ(R3) = A1E
4. Ry = (A1R1,A2R1,A2R2, A2T,ET), Pred(R4) = A1E, Succ(R4) = EAl

Notice that runs Ro and R3 have the same predecessor and successor states. Let T'1 be the
filter aggregate state that replaces run Ry. Let T2 replace runs R, and R3 and let T3 replace
run R4. The resulting output PES is

O = (T1,1550),(EAL,1570),(T2,1585), (ALE, 1633),(T3,1651), (EAl, 1695),

(T2,1711),(A1E,1745),(A1R1,1760).
Its program state sequence is
Os = (T1,FAl,T2,A1E,T3,EA1,T2,A1E, A1R1),
and the program state occupancy time sequence is
O, = (20,15,48,18,44,16,34,15).
Figure 3.4 is a time plot of the PES, O, after applying the above time domain filter on I

and Figure 3.5 is the semi-Markov chain model of O.

40

CHAPTER 3. METHODOLOGY

2D Time PlotDiving Philosophers [N = 2)

T1 = A2T,EY

T2=R1A1,R20A1,TA2, TER1AL,R2A2, TA2,TE
T3 = AIR1,AZR1, A2R2, A2T,ET

Fiker Tim e Threshold = 14.7 %

20
g T
Ji]
@
]
Eu Al R1
2 10 1
o
T -Think
Al - Acquire Fork 1
£2 - Acquire Fork 2
E -Eat
EA EAl R1 -Release Fork 1
R2 - Release Fork 2
1] T —
1500 Time [in microsecs) 00 1800

Figure 3.4: 2D Time Plot 2 philosopher Dining Philosophers problem — after time domain

filtering.

41

CHAPTER 3. METHODOLOGY

T2

0.5 0.5

) (5

Figure 3.5: Semi-Markov chain model of a 2 philosopher Dining Philosophers problem -
after time domain filtering.

42

CHAPTER 3. METHODOLOGY

Event domain filtering

Let the number of occurrences of each program state s, be given by n(s). Let niaresnotd be
the threshold number of occurrences such that for each state s if n(s) is less than nipreshold,
then every instance of s in I of filtered out of I. The filtering process is the same as that

of time-domain filtering.

Example 3.3.2 Now consider the PES in Ezample 3.1.1. If we apply an event domain

filter, where nipreshola = 2, we get two new runs:
1. Ry = (T1), Pred(Ry) = (—1), Succ(R;) = EAL, and
2. R, = (I'3,TE}), Pred(R2) = ALE, Succ(R;) = FAL.
Let T4 replace run Ry and let T5 replace run Ry. The resulting output PES is

O = (T4,1550),(EA1,1570),(T2,1585), (ALE,1633),(T5,1651), (EAl, 1695),

(T2,1711),(A1E, 1745), (A1R1,1760).
Its program state sequence is
Os = (T4,EA1,T2,A1E,T5,EA1,T2,A1E, A1R1)
and the program state occupancy time sequence is
O, = (20,15,48,18,44,16,34,15).

Figure 3.6 is a time plot of the PES, O, after applying the above event domain filter on I.

3.3.2 Aggregation

While filters are useful for identifying random behavior in a PES, aggregation is useful
in identfying deterministic behavior in a PES. Recall that a dominant state is a state which

either occurs very often in a PES or is a state which has a very large occupancy time.

43

CHAPTER 3. METHODOLOGY

2D Tivae PlotDining Philosophevs [N = 2)

T4=T1
5=13 '
T2:=12 Filter Esent Threshold = 2
20
T5
%]
g
m
L}
£
© 10 -
on
g
o
T -Think
Al - Acquire Fork 1
A2 - Acquire Fork 2
E -Eat
R1 -Release Fork 1
RZ -Releass Fork 2
0 . — ‘
1300 1600 1700 1800

Time [microscconds)

Figure 3.6: 2D Time Plot 2 philosopher Dining Philosophers problem — after event domain
filtering.

CHAPTER 3. METHODOLOGY

The aggregation transform is used to identify and combine subsequences of dominant states
within a PES. Once a dominant state subsequence has been identified, the aggregation
transform replace all such identical subsequences with a new composite state, the pattern
aggregate state.

Notice that the filter transform and the aggregation transform have complementary
roles. If a PES is predominantly random in behavior, then successive filter transforms can
be applied on the PES before generating the empirical model of the PES and if the PES
shows predominantly deterministic behavior, then all deterministic subsequences can be
combined by applying successive aggregation transforms.

Consider the PES
I = (s0,€0),(s1,€1),(82,€2)s--,(Sm,€m)-

Its program state sequence is

I, = $0,81,82,--.58m-1,
and its program occupancy time sequence is

I, = (e1—e€p),(e2—¢€1),(e3—€2),...(em — €m—1).

Let us define a subsequence A such that

A = (ag,a1,az,...,a,),

where each a; in A is a program state for all 0 < ¢ < n. The aggregation transform scans
I for every occurrence of the pattern A in /. The sequence A is then replaced by a new
pattern aggregate state denoted s4. This is repeated for every occurrence of A in I. Every
occurrence of s4 is assigned the timestamp associated with the first state in the subsequence

that matches A.

45

CHAPTER 3. METHODOLOGY

Example 3.3.3 Recall the PES of Example 3.1.1.

I = (A2T,1550),(ET,1560),(EA1,1570),(R1A1,1585), (R2A1,1597), (R2A2,1601),
(TA2,1607),(TE,1621), (ALE, 1633),(A1R1,1651), (A2R1, 1668), (A2R2, 1669),
(A2T,1685), (ET, 1686), (EA1,1695), (R1A1,1711), (R2A2, 1723), (T A2,1731),
(TE,1735),(A1E, 1745), (A1R1, 1760)

Its program state sequence is

I, = (A2T,ET,EAl,R1AL1, R2A1, R2A2,TA2, TE,A1FE, A1R]1, A2R]1,

A2R2,A2T,ET,EA1,R1A1, R2A2,TA2,TE, A1E, A1R1)
and the program state occupancy time sequence is
I, = (10,10,15,12,4,6,14,12,18,17,1,16,1,9,16,12,8,4,10, 15).
Let us define an aggregation subsequence
A = R2A2,TA2,TE.
Applying an aggregation transform with A yields the output PES

O = (A2T,1550),(ET,1560),(EAl,1570), (R1A1,1585), (R2A1,1597),
(Z,1601), (ALE, 1633), (A1R1,1651), (A2R1,1668), (A2R2,1669),
(A2T,1685),(ET,1686), (EAL,1695), (R1A1,1711),(Z,1723),

(A1FE,1745),(A1R1,1760),
where
Z = (R2A2,TA2,TE).
O’s program state sequence is

I, = (A2T,ET,EA1,R1A1,R2A1,Z, A1E, A1R1, A2R1,

A2R2, A2T, ET, EA1, R1A1,Z, A1E, ALR1)

46

CHAPTER 3. METHODOLOGY

and the program state occupancy time sequence is
Os = (10,10,15,12,4,32,18,17,1,16,1,9,16,12,8,4,10, 15).

Figure 3.7 is a time plot of the PES, O, after applying the above aggregation transform on
I and Figure 3.8 is the semi-Markov chain model of O.

3.3.3 Clipping

The clipping transform deletes an initial and a final portion of the symbol sequence.
The corresponding occupancy times are deleted from the occupancy time sequence. The
clipping transform is useful in eliminating the initial and final (transient) portions of a
PES, during which threads are being initiated and terminated. Clipping is also useful when
program execution consists of several phases, because a different homogeneous chain model

can be generated for each phase.

Clipping (event domain) Consider a PES I. Let n; and n; denote the ith and the fth
program state in ;. Then an event domain transform will remove all ordered pairs before
the ith program state and all events after the fth program state, resulting in an output

PES, O.

Clipping (time domain) Consider a PES I. Let t; and t; be any two time stamps.
Then a time domain clipping transform will remove all ordered pairs that have an entry

time stamp value less than ¢; or greater that ¢y resulting in an output PES, O.

Example 3.3.4 Recall the PES I from Fzample 3.1.1. Applying an event mode clipping

transform with n; = ny = 8 to I, we generate an output PES
O = (Al1E,1633),(A1R1,1651),(A2R1,1668),(A2R2,1669).
Its program state sequence is
I, = (Al1E,Al1R1,A2R1, A2R2)

47

CHAPTER 3. METHODOLOGY

2D Time Plot Dining Philosophers (N =2)
After aggregating Z = R2A2, TA2, TE

20
Yy
.
n
oD
10
£
e
o
2
o
T - Think
Al - Acquirel
A2 - Acquire2
E - Eat
R1 -Releasel
R2 -Release 2
0 T T
1500 1600 1700 1800

Time [micvosecs)

Figure 3.7: 2D Time Plot 2 philosopher Dining Philosophers problem — after aggregation.

48

CHAPTER 3. METHODOLOGY

Figure 3.8: Semi-Markov chain model for a 2 philosopher Dining Philosophers problem -
after aggregation.

49

CHAPTER 3. METHODOLOGY

and the program state occupancy time sequence is
O, = (18,17,1,16).

Figure 3.9 is a time plot of the resulting PES, O, after clipping I with n; = ny = 8.

2D Time Plot Dining Philosophers (N = 2)
After Clipping ni = nf= 8

15

Program States

T -Think

Al - Acquire Fork1

A2 - Acquire Fork 2
E - Eat

R1 -Release Fork 1
R2 -Release Fork 2

1500 1600 1700 1800

Time [microsccs)

Figure 3.9: 2D Time Plot 2 philosopher Dining Philosophers problem — after event domain
clipping.

50

CHAPTER 3. METHODOLOGY

3.3.4 Projections

Projections are special-purpose transforms that are defined by the user. A user may
wish to provide transforms for specific types of PES’s. As an example of a projection,
consider a PES P which has m components and let us define a value i. A projection of this
form takes the PES P and 7 as inputs, to create a new PES without the ith component of

P.

3.4 Model Construction

The PES’s and transformations discussed in sections 3.1 and 3.3 form the building blocks
for constructing a semi-Markov chain model of the PES. The first step is to represent a
program as a PES. The transformations are then applied on the PES. Initially the transient
portions of the PES are clipped off. Following this, sequences of program states that occur
frequently are aggregated and randomly occurring sequences are filtered from the PES. This
process is repeated until the user is satisfied with the semi-Markov chain model generated
by the resultant PES. The PES initially consists of only program states. At the end of the
transformation process, the PES has three different kinds of states: basic program states,
filter aggregate states, and pattern aggregate states. Figure 3.10 shows a flowchart of this
process.

The semi-Markov chain model is constructed by mapping every state in the final PES
to a stochastic state. For each stochastic state, the mean occupancy time and transition

probabilities are computed from the PES.

Example 3.4.1 Figure 3.11 shows the semi-Markov chain model for the PES of the two-
philosopher Dining Philosophers problem after applying the time-domain and event-domain

filters in Examples 3.3.1 and 3.3.2.

51

CHAPTER 3. METHODOLOGY

(Decide objectives of performance study) * "satifactory" means:

- metric compute from

(Choose metric(s) to satisfy the objective J model sufficiently close

2 to metric computed from PES,
[Choose state vector to satisfy the metric) and
(Generate PES(s)J - output state space is

sufficiently small and

(Locate and clip off the transient portions J simple to permit
insight

Apply transforms that preserve ability to calculate metric: l
- Filter (time) - Filter (event) - Aggregate - Project - Clip

\
l Generate semi-Markov model. Compute the following: J

- state transition rates - occupancy time distributions _

Output model satisfactory? *
Yes No
Y <_Applied transform unsatisfacto
Stop

Yes

[Undo previously applied transformj—-

Figure 3.10: Flowchart for model construction.

52

CHAPTER 3. METHODOLOGY

PES Model: T2:

()

&
in

T4: TS:

99@@@@6@@

Figure 3.11: Semi-Markov chain model.

53

>
tn

CHAPTER 3. METHODOLOGY

3.5 Periodicity in PES’s

Most physical phenomena exhibit cyclic behavior of some sorts. As part of our analysis,
we are interested in determining whether a PES exhibits cyclic behavior. To do this, we use
Discrete Fourier Transforms (DFTs) for analyzing periodicity in a PES. We review DFTs

briefly in the next section.

3.5.1 Discrete Fourier Transforms

Consider a series of real numbers gg, g1,-..,9nv—1. We can write the series formally for
0<j<N -1,
N/2 N/2
g; = aop+ Z ay cos(kj - 27 /N) + Z bisin(kj - 27 /N).
k=1 k=1

The upper summation limit N/2 should be written as [N/2], and if N is even, we omit

the by, term. The numbers a; and b, are defined by

1 N-1
g = 'ﬁ 2_: g;,
1=0
1 N-1
an/p2 = N Z gjcos(jm)
1=0
and for 1 < k < N/2, we have

9 N-1
— Z gjcos(jk2r [N),
N “
7=0
by = _]\Tng sin(jk27 /N).

=0

ak

The a’s and b’s are called the finite, or discrete Fourier transforms of the g’s and the
latter are called the inverse finite (discrete) Fourier transforms of the a’s and b’s. For
the discrete Fourier Transforms, the g values are assumed to have been sampled every

A time units. The quantity 7 = NA is called the record length or fundamental period.

54

CHAPTER 3. METHODOLOGY

The fundamental circular frequency is defined as 1/7. Therefore, at the point jA, the
sum defining g; is taken over frequencies that are integer multiples of the fundamental
frequency. The highest multiple of the fundamental is N/2 corresponding to a highest
frequency of N/2-1/T = 1/(2A), called the Nyquist frequency.

Power for a Discrete Series

The power at frequency & for a discrete sequence is

Py Na?,

Py

N
(@i +61).0 <k < N/2
where 0 < k < N/2, but when N is even
PN/2 = Na?V/Z'

A plot of the power versus the frequency of a discrete series is called a periodogram.
Power is plotted against frequency k/T which varies from 0 to 1/(2A).
3.5.2 Periodograms in Chitra

Chitra supplies two types of periodograms — periodograms in the event domain and

periodograms in the time domain, to assist in identifying periodicity in a PES.

Event domain Periodograms: In the event domain, the g; values are obtained from
the value of each individual, distinct component in the PES. The timestamp of each state
vector is ignored. Thus, the value of NV is determined by the size of the PES itself. To adapt
these values to the discrete fourier transform, A is assumed to be 1. The periodogram is

plotted against frequency which varies from 0 to 1/2.

Time domain Periodograms: In the time domain, the value of A (the sampling dura-
tion) can be pre-set as can the value of N (the number of samples). The periodogram is

plotted against frequency which ranges from 0 to 1/(2A).

55

CHAPTER 3. METHODOLOGY
3.6 Summary
This chapter presents the methodology underlying the CHITRA92 performance analysis

system for parallel programs. Some of the salient features of the Chitra methodology are

as follows:

e A program’s execution is represented as a program execution sequence (PES) and an

associated program parameter set.
e A program can be modeled as a continuous-time homogeneous semi-Markov chain.

o [t is desirable to transform a PES before mapping it to a semi-Markov chain model.
Four different transforms have been developed: filtering, clipping. aggregation and

projections.

e The Chitra methodology has a novel approach to identifying periodic behavior in
a PES: a periodogram of the DFT of the PES is computed and the peaks in the

periodogram are used to determine frequencies at which periodic behavior is suspected.

56

Chapter 4

The CHITRA92 User Interface Metaphors

Chapter 3 discussed the methodology of the Chitra performance analysis environment.
This chapter, describes the realization of the methodology of Chapter 3 as a concrete system.
More specifically, we describe tangible metaphors for the concepts presented earlier. The
CHITRA92 system allows the user to manipulate instances of a PES; an instance can be
thought of as user concept that is useful to explore multiple transformation paths of a PES.

Users may load multiple instances of the same PES, and manipulate them differently.

4.1 The CHITRA92 User Interface Principles

The CHITRA92 user interface is founded on the following principles:

e The CHITRA92 user interface should provide a unified and consistent approach to

realizing the Chitra methodology.

e The CHITRA92 system should provide the ability to to display a single PES instance

or several PES instances simultaneously.

e The CHITRA92 system should provide the ability to compare different sequences of

transforms of the same base PES and compare the resultant models.

o The CHITRA92 system should allow the user to select and apply transforms (discussed
in Chapter 3, on an instance of a PES. The ability to undo the effect of a transform

should also be provided.

e The user should allow visual editing of PES instances. Transforms are normally

invoked through the visualization interface.

57

CHAPTER 4. THE CHITRA92 USER INTERFACE METAPHORS

e The user interface should permit expansion in terms of new transforms and new display

mechanisms for PES’s.

e The transforms should be orthogonal with respect to the views i.e. the same trans-

forms should be applicable on a PES from different views.

e The user interface should be highly interactive and have as low a response time as

possible.

4.2 CHITRA92 Views

The visualization system’s primary responsibility is to display the PES instances that
have been loaded into the system. It must also be able to display a PES instance in different
windows at the same time. To do this, we introduce the idea of a view. A view is a visual
representation of a PES instance, with a menu system that allows a user to manipulate the
PES instance, and set options to control the display of the PES. The visualization system
could therefore be described as a view manager that controls multiple views.

Figure 4.1 shows the relationship between multiple views and multiple PES instances.
Several views can display information from a single PES instance, but the converse of a
single view showing information from multiple PES instances is not allowed. The PES
instance-view relationship is strictly one-to-many.

The CHITRAO2 visualization system currently supports six different kinds of views. We

provide a brief description of each view in the following subsections.

4.2.1 2D X-Y time view

A 2D X-Y time view displays a PES instance as a two-dimensional X-Y plot. Each pro-
gram state is represented by a unique y-coordinate value. The association of y-coordinates
to program states is arbitrary. The x-coordinate represents timing information. The dis-
tance along the x axis between two adjacent states is proportional to the time spent in the

first state.

58

CHAPTER 4. THE CHITRA92 USER INTERFACE METAPHORS

View List (Many) X PES List (One)
1
|
\ A Current View Types
2 | 1-2D Time Plot
— , 2 - 2D Event Plot
PR 3 - Ascii Plot
3 ' > B 4 - Model Plot
__J 5§ - FFT(Time) Plot
— ‘ 6 - FFT (Event) Plot
4
— C PES ->{Views}
r—y—\
1 A ->{1,2}
\. y, B -> {3}
C->1{4,1}
(_!;\ D ,
5] D> {5}
E -> {6,4}
‘ F-> {2}
(" N
6 E
N——
\
4
~— F
RN
2

Figure 4.1: Relationship between multiple views and PES instances.

59

CHAPTER 4. THE CHITRA92 USER INTERFACE METAPHORS

The 2D X-Y time view is useful in understanding the execution behavior of a program.
It also conveys the relative occurrence of program states and the relative occupancy times.
Figure 4.2 shows a 2D X-Y time view for a two-philosopher Dining Philosophers’ problem.
The time view allows the user to access the transformation manager in the kernel. This
allows the user to select a transform from the view menu and apply it on the PES instance
being viewed. Interfaces to the filtering (time domain), aggregation and clipping (time

domain) transforms are supported.

4.2.2 2D X-Y event view

A 2D X-Y event view is similar to a 2D X-Y time view. Again, each program state
is represented by a unique y-coordinate value. However, the distance along the X-axis
between adjacent states is always the same. This is because this view is intended to display
the causal relationship between states. The event view also permits the user to access the
transformation manager from its menu system. The event view menu provides interfaces to
filtering (event domain), aggregation and clipping (event domain). Figure 4.3 shows a 2D

X-Y event view for the two philosopher Dining Philosophers problem.

4.2.3 Text view

A text view displays a textual timestamped ordering of PES data records. Each line of

information in the text view contains the following information:
e the data record number,

the entry timestamp: time instant at which the program entered this program state,

the program state id assigned by the PES mapping system,

the type of the program state (whether it is an ordinary program state, a filter aggre-

gate state, or a pattern aggregate state), and

the state vector that the program state corresponds to.

60

THE CHITRA92 USER INTERFACE METAPHORS

CHAPTER 4.

File Transform Options

Help

RLXXSALY

g b ' Ly - (o
DE R I B IS

e I

LY

1

Ly oty vy ™

MM ST L2460 SR DB RS6 TIEE 5

(2]

m
4
-
]
E
W
J
v
£
4
M
4
Lo
S
¥
~
W
k]
3
£

ilosophers problem.

ing Ph

1n

D

iew for the two philosophers

2D X-Y time v

2

4

igure

F

61

THE CHITRA92 USER INTERFACE METAPHORS

CHAPTER 4.

Help :

T 08 Cv 'l lm b P 0 ™ D Fy e b
B3 0 0 P F4 O 0 R S F ™ ™

()
<
o
ot
-+
o
=
[
(=]
o
2]
o
g
[
f—
©
—y
ol
L

ilosophers problem.

ing Ph

ining

ilosophers D

the two ph
62

iew for

2D X-Y event v

.

3

.

4

igure

F

CHAPTER 4. THE CHITRA92 USER INTERFACE METAPHORS

File Transform Options Help

PRt i A A A A B P N 0 R P NI

: fvent No, Timestamp Prog, State Prog. State

0 u,U
1 843
2 26430
3 30028
4 163482
5 183502
B 183521
7 212558
5 366024
g 366041
10 366044
1 366053 10 T,A2 .
12 366063 11 T.E
13 548563 12 AL,E
14 548574 13 AL,R1
15 548591 14 AZ,R1
16 548531 15 A2,R2
17 548607 4 A2,T
18 548508 5 E,T
19 731100 16 RL,T

O~k o

Figure 4.4: Text view for the two philosopher Dining Philosophers problem.
63

CHAPTER 4. THE CHITRA92 USER INTERFACE METAPHORS

Figure 4.4 shows the text view for the two-philosopher Dining Philosophers problem. Like
the 2D X-Y views, the text view also provides interfaces to the transformation routines in

the kernel.

4.2.4 FFT time view

The FFT time view displays a time domain periodogram of the discrete Fourier trans-
form series of a PES instance. A histogram is used for displaying the periodogram, where
the height of a bar indicates the cumulative power for the range of frequencies represented by
the bar. The occurrence of spikes in the periodogram indicates a concentration of spectral
energy for those range of frequencies which indicates that the PES has a high probability
of being periodic at those frequencies. Figure 4.5 shows a time domain periodogram for the
Dining Philosophers’ problem.

The FFT time view menu system allows a user to set the sampling rate and also the
number of samples that the user wishes to collect before computing the discrete Fourier

transform.

4.2.5 FFT event view

The FFT event view displays an event domain periodogram of the discrete Fourier
transform series of a PES instance. This is very similar to the FFT time view, the only
difference being that samples for computing the discrete Fourier transform of the PES are
taken on an event basis. Successive samples in the data set are computed using the values
of successive program states. The FFT event view is therefore a fast but less accurate
estimate of the PES’s periodic behavior. Figure 4.6 shows an event domain periodogram

for the Dining Philosophers problem.

4.2.6 Semi-Markov model view

The sixth and final view in the visualization system is the semi-Markov model view.

This view displays the semi-Markov model of a PES instance as N X N matrix, M odel,

64

CHAPTER 4. THE CHITRA92 USER INTERFACE METAPHORS

s SN L5 Ly

Figure 4.5: Periodogram (time domain) view for the two philosopher Dining Philosophers
problem.

65

CHAPTER 4. THE CHITRA92 USER INTERFACE METAPHORS

X050

Figure 4.6: Periodogram (event domain) view for the two philosopher Dining Philosophers
problem.

66

CHAPTER 4. THE CHITRA92 USER INTERFACE METAPHORS

where N is the number of distinct program states in a possibly modified PES instance,
and Model(t,7) is the probability that the program makes a transition from the program
state 7 to the program state j. Figure 4.7 shows a semi-Markov model view for the Dining

Philosophers problem.

4.3 Transformation Metaphors

For every transformation defined in Chapter 3, there exists an equivalent user-interface

metaphor. We describe them as follows:

1. Clipping: In the 2D X-Y time and event views a bounding box is selected and the
region outside the bounding box is removed from the PES instance. In the Text view,
clipping can be performed in a finer fashion: here the user specifies the specific range
of data records in the PES instance to be retained, either textually or by highlighting

the region to be retained with the mouse.

2. Aggregation: In the 2D X-Y time and event views, a bounding box is drawn around
the region that contains a subsequence of program states in a PES instance. The
selected subsequence of states is now used as a pattern to identify all other identical
subsequences to aggregate. In the text view this is performed by selecting with the

mouse the sequence of states that is to be used as a pattern.

3. Filtering: For all views, filtering is facilitated by displaying a histogram containing
either the distribution of program state occurrence counts or occupancy times. In the
time domain, the user is allowed to select a threshold occupancy time value and in

the event domain, a threshold occurrence count value for filtering.

4. Projections: Projections are facilitated by providing the user with dialog boxes to
input the name of the instance and associated parameters to the projection. There is

no visual representation for a projection transform.

67

CHAPTER 4. THE CHITRA92 USER INTERFACE METAPHORS

Show Help

Figure 4.7: Semi-Markov model view for the two philosophers Dining Philosophers problem.

CHAPTER 4. THE CHITRA92 USER INTERFACE METAPHORS

The process of modifying a PES via a graphical interface is called visual editing of a PES.

Thus the transforms can be applied on a PES visually or textually.

4.4 Summary

The important features of the CHITRA92 user interface are as follows:
1. A user is allowed to load multiple instances of a PES into the system.

2. The user interface provides the ability to apply and/or undo transformations on a

PES instance, and to generate a semi-Markov chain model of the PES instance.

3. The CHITRA92 visualization system provides the top-level interface to the system and
access to the PES instances via views. Views provide interfaces by which the user can
apply a transformation on a PES instance. The views supported include: 2D X-Y
time views, 2D X-Y event views, Text views, FFT (time) views, FFT (event) views

and semi-Markov model views.

4. The X-Y views represent temporal and causal relationships of program states within

a PES.
5. The Text view is an time-ordered textual display of a PES instance.
6. The FFT views display periodograms in the time and event domains.

7. The semi-Markov chain represents the state transition matrix of a PES instance.

69

Chapter 5
The Architecture of the CHITRA92 System

Chapter 3 discussed the Chitra methodology to model concurrent software. Chapter 4
presented the user interface of the system. In this chapter, we describe the architecture of
CHITRA92 that implements the user interface described in Chapter 4.

This chapter discusses the overall design of the system, the internal components, and
other implementation specifics. Section 5.1 describes the design goals that guided the imple-
mentation of the CHITRA92 system. Section 5.2 gives an overview of the CHITRA92 system
software. The system is divided into three functional components. The first component is
the pre-processor software which is responsible for representing performance data as PES’s.
The pre-processor software includes a translator that converts a human-readable, textual
specification of a PES to binary form. The sgcond software component is the CHITRA92
kernel. The kernel is responsible for managing multiple instances of PES’s that have been
loaded into the system, applying transforms to PES instances and keeping track of the list
of transforms that have been applied to a modified PES, and generating the semi-Markov
model of a reduced PES. Finally, the third component of the system is the wvisualization
system which supports a variety of graphical displays of PES data. Sections 5.3, 5.4, and 5.5
describe the CHITRA92 pre-processor software, the CHITRA92 kernel, and the CHITRA92

visualization system respectively.

5.1 Design Goals of CHITRA92

The fundamental requirements of the CHITRA92 system architecture are that it be

scalable, modular, portable and versatile. We explain each requirement in detail.

70

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM
1. Scalability
There are two issues to be considered here.

The first issue is with respect to the performance analysis environment itself. The
system should permit multiple PES’s to be analyzed during a single session. There
should also be no problem in displaying multiple views of the same PES simultane-
ously. Because PES analysis is always done in comparison to the analysis performed
on other PES’s with the same or with different input parameter sets, simultaneous

viewing of PES’s is very important.

The second issue is more difficult to address. With the trend towards massively parallel
computing, the number of processors on most MIMD architectures ranges from two
to greater than 2000 processors [1]. By increasing the number of target processors,
a programmer increases program performance without making significant changes to
the hardware or software. As the parallel system scales in size and performance,
the performance analysis environment should scale as well. Scaling the performance
environment implies that the system should be able to effectively capture and display
data from a large number of processors. Current display and analysis techniques

definitely do not scale commensurately for massively parallel applications [22].

2. Modularity

Our experience with performance analysis systems for parallel programs suggests that
while parallel architectures and programming paradigms are fairly well established,
novice users rarely get access to such computing. It is only fairly expert programmers
and researchers who require and have access to massively parallel computing. Such
users are concerned with extracting the maximum amount of performance from their
programs and the underlying architecture. At the very minimum, these users are
concerned with identifying performance bottlenecks, computing performance metrics
and comparing these metrics with other metrics. Such users require an enviroment

that provides a collection of tools that can be configured to suit their purpose.

71

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

Secondly, performance data comes in a variety of formats and the requirements of
performance environment users are too complex to be completely provided for by any

system. Ultimately users will wish to modify the system itself.

It is important, therefore, that the user be allow to extend or modify the system (right
down to the level of system source code). In order to do so, the system must be highly

modular and permit modifications to be performed quickly and seamlessly.

3. Portability

Any tool that expects some semblance of recognition among the research community
must be widely and easily available. With the increasing number of diverse program-
ming environments available to researchers, a performance tool should be portable

and simple to use.

Performance analysis tools for parallel programs have two primary goals. The first
goal is to allow an application developer to fine-tune his application program in order
to obtain maximum performance on a particular target architecture. The second goal
is to ensure that the application can be run on an variety of architectures and that

the the performance of the application can be studied across different architectures,

For both goals, it is necessary that the same performance analysis studies be performed
on different platforms. Because performance analysis is probably the last resort for an
application developer, it is very important to see that the same performance evaluation

tools are present on all platforms.

4. Data-transportability

The performance analysis system should be designed so that it accepts data in a
transparent manner. It should not matter where the performance data comes from.
For example, consider a program executing ou a shared bus multiprocessor computer
system like the Sequent Symmetry. To conduct a performance study of this program,

we collect performance data from the Sequent Symmetry. However, the performance

72

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

analysis environment resides on a DECStation 5000 system. For the performance
environment to be data-transportable, it should be possible to transfer the data from

the Sequent to the DECStation and still be able to analyze it.

5.2 CHITRA92 Software Overview

As described in the previous section, the fundamental design goals in the design of the
CHITRA92 system are that it be portable, scalable, modular, and versatile. In this section,
we describe the functional components of the system and show how they together satisfy the
design requirements outlined in the previous section. The CHITRA92 software consists of
three major components: a pre-processor software system, a kernel that performs analyses
and transformations on PES’s and a visualization system. Figure 5.1 shows the organization
of these three components with respect to one another.

In Section 5.1, we said that the system should be portable across multiple platforms.
For the CHITRA92 system to be portable implies that the PES’s must also be portable.
Portability is best achieved by using a textual representation of the PES. Text files, however,
are neither efficient to access nor are they compact to store (a compact representation is
required because PES’s may be many megabytes in size). A binary representation format
satisfies both these requirements. However, differences among machine architectures such
as byte-ordering and word sizes make binary representations non-portable. The CHITRA92
pre-processor software has been designed to eliminate this problem. The pre-processor
software provides a specification language (Chitra Specification Language) which allows
a user to describe the structure and record the actual data of a PES in text format. A
translator which converts the text specification to a binary representation of the PES is
also provided

The second major component is the CHITRA92 kernel. The primary goal of the CHi-
TRA92 system is to model the input PES as a semi-Markov chain after transforming it

suitably. Therefore, the system should provide a set of transformation techniques that the

73

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

A. Chitra Visualization B. Chitra Kernel C. Chitra Pre-Processor
System
2D X-Y
Time
Transformation
& Undo CSL Spec. Files
Manager
2D X-Y
Event
Text
CSL
PES Manager
CSL Translator
FFT
Time >
Event >
Modeling Manager
g PES Files
Model ‘

The Chitra Performance Analysis System

Figure 5.1: The CHITRA92 Performance Analysis System.

74

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

user can select and apply on a PES. Once the PES has been modified, the semi-Markov
chain model must be generated. The CHITRA92 kernel provides both a transformations
subsystem and a modeling subsystem for this purpose. The CHITRA92 kernel also manages
multiple instances of PES’s and keeps track of the list of transforms that have been applied
to PES instances.

The third software component is the CHITRA92 visualization system. Performance data
from programs running for a few seconds can be several megabytes in size. It is difficult to
comprehend large volumes of data textually. Graphical displays assist users in a major way
by providing meaningful displays that can be quickly comprehended. Visual displays are
also useful for displaying information such as the distribution of the number of occurrences of
program states or the occupancy time spent in a program state. The CHITRA92 visualization
system also provides a set of graphical displays of the PES which allow the user to select
and apply transforms on a PES. Currently CHITRA92 supports six different displays. Each
display is called a wview. The different types of views are 2D X-Y time views, 2D X-Y
event views, text views, FFT (time) views, FFT (event) views and semi-Markov model
views. Each of these views have appropriate interfaces to the transformations module in
the CHITRA92 kernel.

The visualization system is also responsible for providing the user with a top-level in-
terface, information displays for pattern aggregates and filter aggregates, color and font
selection mechanisms, and other miscellaneous interfaces to the CHITRA92 kernel.

The entire CHITRA92 system has been implemented in C, C++4, and Fortran. The
visualization system uses the OSF/Motif 1.1 toolkit*, the MIT Athena toolkit, and the X11
Window systemt!. Because of the wide-spread availability of the X11 Window System and
the Motif toolkit, portability across a wide-range of systems is achieved.

Also, all of the visualization and transformation modules are self-contained and inde-

pendent. While the current version of the CHITRA92 system runs on a single workstation,

*OSF /Motif and Motif are trademarks of the Open Software Foundation, Inc..
tThe X Window System is a trademark of the Massachusetts Institute of Technology.

75

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

it should not be difficult to implement a distributed version of the system, ensuring that the
performance analysis environment scales commensurately with the parallel program being

analyzed.

5.3 CHITRA92 Pre-processor Software

The CHITRA92 pre-processor software is responsible for preparing a program execution
sequence (PES) for the CHITRA92 kernel. Chapter 3 defines a PES qualitatively to explain
the Chitra methodology. In this section, we describe it from an implementation standpoint.

The PES representation of CHITRA92 differs from the representation that most other
performance analysis and visualization systems use. Most performance analysis tools for
parallel programs view the parallel program as a sequence of events. The parallel program
is instrumented in a non-intrusive manner to produce a trace file of events. Each trace
file record consists of a globally synchronized timestamp, a processor id, an event id, and
associated event specific information.

The CHITRA92 PES, on the other hand, consists of a number of data records. Each
record consists of a timestamp and a state vector. Each state vector consists of a user-defined
number of components. Each component represents some piece of program information (e.g.
local or global variables, message queues, a pointer to the next instruction being executed
in a thread). An example is recording the position of the code pointer in all concurrently
executing threads of a parallel program. Other systems would have to use a single record
for each thread’s code pointer because of the restriction that each record can record data
only for a single process. The CHITRA92 PES is, in a sense, a spatially enhanced trace file,
because it provides information at a given timestamp for all tnreads in a single data record.

The CHITRA92 pre-processor software is responsible for the following actions:

1. Chitra Specification Language: The Chitra Specification Language is a PES de-
scription language that allows a user to describe the structure and the data of a PES.

CSL supports specifying the number and data type of the components of the PES

76

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

state vector.

2. The CSL Translator: The CSL specification of a PES allows portability because
of its text format. However, because text data cannot be efficiently processed, a
translator is provided for the CSL language which allows the user to convert from

text to binary formats.

In the following subsections we briefly discuss parallel program instrumentation, the
Chitra Specification Language and the CSL Translator. The next subsection is a brief

discussion on instrumenting parallel programs.

5.3.1 Instrumentation of Parallel Programs

Most performance analysis environments provide an instrumentation facility that assists
in the generation of performance data from a target application. There are several ways to
instrument programs. The easiest and most flexible method is a software technique — source
code instrumentation. The programmer inserts instrumentation source code at appropriate
points in his code, compiles the code and links it to a software instrumentation library with
function calls that record event information at runtime. If the program is moved to another
architecture, the instrumented version can still be used for generating performance data
as long as the instrumentation library is also ported to the new platform. The problem
with source code instrumentation is that it introduce perturbations that could distort the
trace. If the error introduced in the generated trace data is minimal (a good estimate is
less than 10 percent error [23, 31]) then the trace is assumed to be a fairly good estimate.
Currently, most performance data capture systems provide source code instrumentation
software [38, 37, 22]. Figure 5.2 shows the various stages of activity in instrumenting source
code of parallel programs.

At the other end of the spectrum is hardware instrumentation. In a broad sense, hard-
ware instrumentation implies using special hardware to capture program information. While

hardware instrumented traces are very accurate representations of the program’s behavior,

77

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

Phase I - From Program to Performance Data(outside Chitra)

Program
+ Instrumentation
Instrumentation Library
Compiler Object | Linker Target
Code Machine

N

Performance Data Trace File

Phase II - From Trace File to Binary PES File (Pre-Processor)

Performance CSL CSL Spec CSL Binary PES File
Trace Data File Repn. File Translator +
— > —————> .
Ascii Description File
Ascii Data Binary Data

Figure 5.2: Phases in the instrumentation of programs.

78

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

hardware instrumentation implies non-portability because hardware vendors tend to pro-
vide non-standard trace monitoring hardware. Some of the more commonly known hard-
ware instrumentation techniques include parallel traps, high-resolution real-time clocks,
special-purpose registers and monitor buffers [25]. Currently, hardware instrumentation
techniques are seldom used because of the effort involved in procuring this kind of special-
purpose hardware. With the rapidly decreasing cost and proliferation of high-performance,
application-specific, VLSI chips and as the need for accurate trace data increases, hardware
monitoring should have an increased presence in the performance analysis field.

A compromise between hardware and software instrumentation techniques is also of in-
terest. More and more of the instrumentation of programs can be automated with better
compiler technology. By making the instrumentation facility visible to the compiler, opti-
mized code can be generated keeping in mind the need for instrumentation (more memory
buffers can be allocated to store portions of the event trace and file writes can be minimized).

While we have plans to integrate an instrumentation library in the future, CHITRA92
does not provide one. This is because the instrumentation library introduces portability
problems. However much one may wish for a portable trace data capturing process, one
cannot ignore the fundamental differences between machine architectures which make this
very difficult. Identifying similarities* and creating a compatible set of instrumentation
routines is left as an open problem.

Instead of an instrumentation library, CHITRA92 allows trace data in any form and
from any source to be post-processed after the program’s execution to generate a PES. The
performance trace data is incorporated into a CSL specification for the PES. Next, the CSL
specification of the PES is converted into a binary representation. The binary PES file is
then loaded into the CHITRA92 system for visualization and analysis. In Figure 5.2, this is

indicated as Phase II.

‘A good example of the difficulty involved is comparing shared bus multiprocessors and distributed
message passing architectures to create a trace capture library with the same instrumentation routines.

79

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

5.3.2 Describing a PES with CSL

The single most important concern for representing performance data in CHITRA92 is to
provide a format offering ease of representation and portability across multiple platforms.
For CHITRA92 to be portable, the performance data must be machine and programming
language independent. Therefore it is necessary to take into account differences in archi-
tectures such as byte ordering and word sizes.

The volume of performance data generated from instrumented parallel programs is usu-
ally very high (in the order of several million bytes of data). Therefore, the representation
format should allow fast access to data records and minimize the storage space required for
data records.

Finally, the representation format of the PES can change. More data types or data
record types may be required. It should be easy to add new data record or component
types or modify existing types to the PES.

CHITRA92 addresses all of the above issues by defining a PES description language
— the Chitra Specification Language (CSL). A CSL translator, which converts a textual
specification of PES to binary format, has been integrated into the system. A CSL source
file specifies the structure and content of a PES.

A CSL specification file consists of the program name and list of sections. Currently,
a CSL specification contains two sections. The first section is the Setup section and the
second is the Trace section.

The Setup section describes the structure of the PES state vector. For the each compo-
nent in the state vector of the PES, the data type of the component and the range of values
that the component can take are specified. Optionally, the user can associate identifiers
with each of the values of the component. The Trace section contains the actual PES
data records. Each data record in the PES consists of a time stamp and a state vector of
components as defined in the Setup section.

Figure 5.3 shows a sample CSL specification file. This file describes the structure and

80

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

Program Dining;
begin
Setup:
maxcomps = 2

Component 0-1 = ’Philosopher’, 8, char;

0 = Think, T;
1 = Acql, Al;
2 = Acq2, A2;
3 = Eat, E;

4 = Rell, R1;
5 = Rel2, R2;
6 = Undef, U;
7 = Finis, F

Trace:
2720243847 < 0,7 >
2720244697 < 0,1 >
2720244727 < 0,2 >
2720244747 < 0, 3 >
2720244766 < 0,4 >

2720268758 < 1,2 >
2720268767 < 1, 3 >
2720268776 < 1,4 >
2720268801 < 1,5 >
2720268810 < 1,6 >
2720268819 < 1,8 >

end.

Figure 5.3: Example CSL specification for a 2 philosopher Dining Philosophers problem.

81

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

content of a two philosopher Dining philosophers’ PES.

Within the Setup section, the number of components is 2. Each component is described
by a name (“Philosopher”) and a type (“char”). Both components 0 and 1 have the same
number of possible values (8). The individual values (and their associated identifiers) are 0
(Think, T), 1 (Acql, Al), 2 (Acq2, A2), 3 (Eat, E), 4 (Rell, R1), 5 (Rel2, R2), 6 (Undef,
U}, and 7 (Finis, F).

The Trace section contains the actual program trace, every record consisting of a times-
tamp and the state vector of the program at that timestamp. The state vector is represented
as (2o, &1,...,Tn_1), where z; is the ith component value. In the figure, the first data record

in the Trace section is is 272024387(0, 7).

5.3.3 CSL Translator Output

Representing PES’s as CSL specifications allows performance data to be portable across
platforms. However text specifications are neither compact nor efficient to process. The
CSL translator’s primary purpose is to generate output representations of a PES that can be
quickly processed by the kernel PES-reader modules. The CSL translator’s primary purpose
is to generate two output files, one binary and one text8, that can be easily accessed by
the system file reader modules. The text file is called the setup file. The setup file stores
the program name, the number of components, the possible values that the component
may take, and the long and short identifiers for each of the component’s values. Since
information in the setup file is read only once (when the PES is loaded into the system),
this representation is acceptable from an efficiency standpoint. The binary file is called the
trace file. The trace file consists of several records; each record consists of a time stamp
and a state vector of size N where N represents the number of components specified in the

CSL specification.

§For the release version of Curina92, a PES will be represented as a single binary file

32

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

5.4 The CHITRA92 Kernel

The CHITRAO2 kernel consists of four interacting subsystems that manage any number
of instances of PES’s that have been loaded into the system. The primary subsystem is
the PES manager which performs several house-keeping functions such as loading a PES
instance from its constituent PES binary and ASCII files, mapping the state vectors in
the PES to program states based on an appropriate mapping function, managing multiple
PES instances and invoking methods from other subsystems. The second subsystem is the
transformation manager, which implements all the functions that apply a transformation on
a PES. The transformation manager allows the user to select an appropriate transform and
then applies it on the selected PES. Other important subsystems include the undo manager
which performs inverse transformation operations on a PES instances, the transform list
manager which keeps track of the transforms that have been applied on a PES instance,
and a modeling manager that is responsible for constructing the semi-Markov chain model

of a reduced PES instance. Each of these subsystems is discussed in detail.

5.4.1 The PES Manager

The PES manager is the heart of the CHITRA92 kernel. It performs the following

functions.

1. Mapping

We designed the system for PES’s with between 500 to 1500 unique state vectors.
These state vectors are mapped to unique identifiers called program states. Mapping
the state vectors to program states ensures easy and rapid access to a state vector.
The PES manager’s first action upon encountering a PES is to convert the PES state

vectors into program states. The mapping function(s) can specified by the user

YAt the time of this writing, the mapping function is a incrementer, which returns a value one greater
than the value returned for the previous invocation of the function.

83

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

typedef struct unit

{

int maxthreads; /* maz components in the PES x/

int id; /* id of the PES instance */

char binary file[80]; /* Name of the PES x/

PSTRINGS pst_string; /* Pointer to the Value-Id table x/
PNODE pst_head; /* Pointer to the Mapper */

char undofile[80]; /* Backup file for Undo Manager */
PPSNODE pst_oldpshead; /x Pointer to the Program State Table */
PFILTER pst_oldfilstart; /* Pointer to the Filter List x/

char display file[80]; /* Display File for the Unit */
PPSNODE pst_pshead; /« Pointer to the Current Program State Table */
PFILTER pst filstart; /* Pointer to the Current Filter List x/

unsigned long maxtimestamp; /x Time stamp of Last state vector */
int maxevents; /* Mazimum Number of Fvents in the PES */

int maxprogramstate; /*x Nezt global program state */

struct unit *pst_next;

}UNIT, * PUNIT;

Figure 5.4: Definition of a unit structure.

84

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM
2. Loading

The PES manager is responsible for loading a binary PES into the system. Once
a PES has been loaded into the system, the user has an instance of the PES for
analysis. The PES manager can load multiple instances of the same PES, to allow
users to construct different models of a PES at the same time. No portion of the

kernel ever modifies the actual PES file of a program.

PES instances are implemented as units within the kernel. A unit is a structure that
keeps track of all information associated with a PES instance. Figure 5.4 shows the
definition of a unit structure. The kernel permits a PES instance to be constructed

in three different ways.

(1) The simplest and most common is the map-and-load where the PES file is mapped

and loaded into the kernel.

(2) The PES manager uses a pre-defined state vector-program state map to map the

PES file and then loads it into the kernel.

(3) The PES manager reads in a list of transforms along with the PES and applies

each of the transforms in the list to the target PES.

3. Other House-keeping functions

The PES manager is also responsible for keeping track of all PES instances in the
kernel. An integer id is assigned to every active PES instance in a session and this
id is used to distinguish between two instances of the same PES. All active units are
kept in a list. When a new instance of a PES is created, its associated unit is added
to the list and and when a PES instance is discarded from the system, its associated

unit is removed from the list.

Every PES instance has a display file associated with it. The display file contains a set

of records, where each record consists of the timestamp and the program state instead of

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

the state vector it maps to. The display file is modified whenever a transform is applied,

and is used to construct the semi-Markov chain model of the PES instance.

5.4.2 The Transformation Manager

CHITRA92’s primary goal is to reduce a program execution sequence to model form
through the successive application of user-selected transformations on a PES instance. Thus,
the two primary software subsystems are the PES manager and the transformation manager.
The transformation manager consists of several routines each of which takes a PES instance
and a set of parameters as input and generates a new PES instance in place of the original.

All of the transforms discussed in Chapter 3 have been implemented in the system.

1. Filtering Transform

A filter aggregate transform can be applied to a PES instance both in the time domain
and in the event domain. Filter aggregation is based on the premise that in most cases
a program spends most of its time in a subset of the program states. Other program
states are of interest merely because they are part of the transition sequence from one
dominant program state to another. In the time domain, a filter aggregate transform
takes as its input a PES instance and a threshold occurrence count value, and in the
event domain, a filter aggregate transform takes as its input a PES instance and a
threshold occurrence count value. All runs of program states in the instance, whose
number of occurrences is less than the threshold, and have the same predecessor state
and successor state are replaced by a composite state called the filter aggregate state.
Similarly, in the time domain. a filter aggregate transform takes as its input a PES
instance and a threshold occupancy time. All runs of program states in the instance,
whose occupancy time is less than the threshold, and have the same predecessor state

and successor state are replaced by a filter aggregate state.

The unit associated with the instance keeps track of all the filter states in the PES

instance. For each filter state, the predecessor dominant state, the successor dominant

86

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

state, and the list of all sequences of filtered states that constitute the filter state and
the number of occurrences of each sequence of filtered states are stored. Storing
the number of occurrences of each filter state sequence is useful in computing the

probability of a transition being made through that sequence.

The transformation manager also provides methods which the user can invoke to com-
pute the occurrence count and the state occupancy duration for every program state
in the PES. Figures 5.5 and 5.6 show system generated histograms of the occurrence

counts and the occupancy times for a two-philosopher Dining Philosophers problem.

2. Pattern Aggregation Transform

Aggregation is the process by which a sequence of program states are combined to form
a new composite program state. Every occurrence of the same sequence of program
states in the PES instance is also replaced by the composite state as a new global
program state. An aggregation transform takes as its input a PES instance and a
sequence of global program states called a pattern, and modifies the PES instance
such that every occurrence of the pattern in the PES instance is replaced by a new

program state called the pattern aggregate state.

The aggregation transform has been implemented using the KMP fast pattern-matching
algorithm [47, 48]. Subsequences within a PES can be identified and tagged in linear

time.

Three stages of aggregation are illustrated: before pattern matching (Figure 5.7)
matching, after pattern matching (Figure 5.8), and aggregating the patterns in the
PES instance (Figure 5.9).

3. Clipping Transform

Clipping is the process by which transient portions (initial and final) of a PES are
removed. A clipping transform takes as its input a PES instance and a bounding

region specified either as beginning timestamp and a ending timestamp (in the time

87

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

Help

SR
-.I .+ ‘_.|
NP

WAk ishng

X-Axis: Occurrence Range; Y-Axis: Number of Prog.States

20 -
11184
4 116+
14 -
12

...

88
Figure 5.5: Occurrence distribution of program states for a two-philosopher Dining Philoso-
phers problem.

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

File Projection Views Options

SRRRRT N XRIRSIARES EXREE TR

8
4
0

| I ! i 1 i

1
010,0 30,0 50,0 70,0 90,0

1] i L)

i i
110.0 140.0

10 20 30 40 5 60 70 80

Figure 5.6: Duration distribution of prograr%gsta,tes for a two-philosopher Dining Philoso-
phers problem.

THE ARCHITECTURE OF THE CHITRA92 SYSTEM

CHAPTER 5.

Help

File Transform Options

T b Bwop by ok fA oD
LU B B I

[
Ly |

o Es

ool gk op e

& SREEIE

&
:
:
7
e
2
b1
5
:
F3
m
:
&+
7

ilosophers problem before pattern

ing Ph

1n

ilosopher D

iew of a two-ph

: 2D time v

7

5

igure

F

matching.

90

THE ARCHITECTURE OF THE CHITRA92 SYSTEM

CHAPTER 5.

a5

Help

1ons

i
¥
4
!
:
]
b
:
b}
¥
el
3
g

Opt

@i ba Bx g lm 3 fm ok
§1 7454 71 7§ T4 74 64 ©4 A T PR TS

File Transform

ilosophers problem after pattern

ing Ph

1n

ilosopher D
91

iew of a two-ph

1ime VvV

2D ti

8

5

igure

matching.

F

THE ARCHITECTURE OF THE CHITRA92 SYSTEM

CHAPTER 5.

Help |

5
g
3
¥
|
.
7
Z
W
;
X
m
T
3

Tao0a P oy ARy N
T3 79 59 93 73 t4 f f4 ™

File Transform Options

ilosophers problem after aggrega-

ing Ph

ilosopher Din
92

iew of a two-ph

2D time v

9

5

igure

F
tion.

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

domain) or a beginning event id and an ending event id (in the event domain) and
modifies the PES such that those portions of the instance that lie outside the bounding

region are removed from the PES instance.

4. Projection Transform(s) Projections are special-purpose transforms that a user
may decide to incorporate into the CHITRA92 system. An example of a projection
is a transform that collapses the state vector of a PES by removing one or more
components The CHITRA92 system provides a facility by which the user can define

new transformation modules and link them to the system.

5.4.3 The Undo Manager

Undoing is the process by which a previously applied transform is undone and the PES
instance existing before the application of the transform is restored. If a transformation
can be thought of as a function that takes as its input a PES and a set of input parameters
and returns as its output a new PES, then the undo manager provides the corresponding
inverse function for the transformation. Undoing is a useful feature for the kernel to provide
because it facilitates an iterative approach to transforming a PES instance. If a user is
dissatisfied with the result of a transformation on a PES instance, then the corresponding
undo transform function can be invoked to restore the PES instance to its previous state.

All inverse functions to the previously discussed transformations have been provided.
These include the undo operation for filtering, aggregation, clipping and projections.

The undo manager works by making a backup of all information that is contained in
a unit before applying a transformation. Once the transformation is complete, if the user
desires, the backup information of the unit can be copied into the unit by the undo manager

to restore the original PES.

93

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

5.4.4 The Transform List Manager

The CHITRA92 kernel keeps track of all the transformations applied on a PES starting
from the time it was loaded into the system. The transform list manager provides functions
by which new transforms can be appended to the transform list or removed from the list.

The transform list manager performs two important functions:

1. Saving a modified PES instance

The resolution of a PES into model form is accomplished through the application of
several transforms. This is a trial-and-error process and make take several sessions.

It is necessary to save the modified PES instance across work sessions.

The kernel does not save the display file itself between sessions. Instead, the transform
list until that point is written to disk. To restore a PES instance to its last modified
state, the PES manager loads the PES file set and the transform list file. Each of
the transforms are applied successively (automatically while the user waits), until the

saved state of the PES instance is obtained.

2. Multi-level Undo The kernel undo manager currently supports only a one-level
undo, meaning that only the effects of the most recently applied transform can be
undone. The undo manager and the transform list manager can interact together
to provide a multi-level undo, where the effects of more than one transform can be

undone.

If a modified PES instance has to be undone over several transformations, then the
transform list manager can extract each transform starting from the first and succes-
sively apply them to a new instance of the original PES. This process can be repeated

until the required PES instance is obtained.

94

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

5.4.5 The Modeling Manager

The modeling manager is responsible for generating a continuous-time, homogeneous
semi-Markov chain model of a PES instance. For a PES instance the following information

is generated:

1. A state transition matrix where the rows and columns correspond to unique program
states in a PES instance. Every entry, (¢,7), in the state transition matrix is a
probability estimate of a transition being made from the program state corresponding

to the ith row in the state transition matrix to the jth column in the matrix.

2. For every unique program state of the PES instance, the following information is

computed:

e The program state id and the state vector that the program state maps to in the
PES. If the program state is a pattern aggregate state o a filter aggregate state,
then more information such as the subsequence of program states that comprises

the composite state is determined.
e The number of occurrences of the program state in the PES instance
e The total occupancy time of the program state in the PES instance.

o The mean occupancy time, the minimum occupancy time, the maximum occu-
pancy time and the standard deviation of the occupancy time for the program

state.

5.5 The CHITRA92 Visualization System

The final component of the CHITRA92 system is the visualization system. This system
forms the front-end to the entire performance analysis system and is the largest in terms of

total lines of code.

95

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

5.5.1 Visualization Software Overview

At the lowest level, the visualization system comprises of several graphical views of
PES instances. Examples of views are barcharts, histograms, X-Y graphs, text dumps, and
planar graphs.

The visualization system has been implemented as a X11 application. It uses the
OSF/Motif widget set, the Athena widget set and the Xt toolkit. The visualization system
supports color and grey scale terminals, although it is preferable to use a color workstation
for the system.

The top level interface of the CHITRA92 system is shown in Figure 5.10. It consists of

three display regions: the root menu system, the PES instance list, and the message area.
The root menu system consists of four main menu items: |File|, | Projection|, | Views j, and
ptions|

The menu item contains the following items:

1. |Load PES | allows the user to perform one of three functions: loads a text CSL, via
translation of the CSL specification into a binary representation of the PES, load an
instance of the PES binary file; and load an instance of PES via a saved transform

list file.

2. [Close selected PES | allows the user to close an instance of a PES and free all system

resources associated with it.

3. |Save selected PES | saves the transform list associated with an instance of a PES to

a file.

4. |About selected PES| provides statistics such as the name of the PES instance, the

number of components in the instance the name of the display file, the maximum
number of program states, the cumulative number of events in the instance and the

total duration of the instance.

5. ‘About Chitral provides information about the CHITRA92 system.

96

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

File Projection Vieus Options

Help

ST IR

Selected PES

Figure 5.10: Top-level interface for the CHITRA92 system.

97

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

6. terminates execution of the current Chitra92 session.

The menu item provides a list of all available user defined transforms offered

by the system. If a user selects a particular transform, a dialog box allows the user to enter
the parameters to be provided for the transform.

The menu item allows the user to construct a graphical display of the selected
PES. CHITRA92 provides 2D X-Y displays, periodogram displays, text displays and state
transition matrix displays.

The allows the user to retrieve information about the currently selected PES
instance such as pattern aggregate state information, filter aggregate state information, and
the transformation list of the PES instance.

The second display area is a list box which displays the currently available PES instances
that the user can select and work on. When a user loads a PES instance into the system,
the name of the PES instance appears in the list box. Similarly, when the user closes a PES
instance, the name of the PES instance is removed from the list box.

The third display area is the message area where system related information is presented.

The six types of views can be invoked on an active PES instance or when a PES is

loaded into the system for the first time. Each of the views have the following menu items:

1. which allows the user to refresh the view, query the system for information

about the PES instance being viewed, and close the view.

2. which allows the user to select and apply a transform on the PES instance

being viewed. The undo option can also be selected from this menuitem.

3. which allows the use.r to select various options which modify the views
settings. For example, the line style in a 2D X-Y view can be changed and the X-Y

axes can be displayed or hidden.

98

CHAPTER 5. THE ARCHITECTURE OF THE CHITRA92 SYSTEM

5.6 Summary

The important features of the CHITRA92 architecture are as follows:

1. The primary goals of the CHITRA92 system are that it be portable across multiple
platforms, be scalable, easily extensible and versatile enough to support performance

data from different architectures.

2. The PES description language CSL allows performance data to be ported across a
variety of platforms because the CSL specifications are ASCII files that are easily

portable.

3. The translator output consisting of two files derived from a single CSL specification
file solves two problems. The ASCII setup file allows a user to edit the setup file, if
required, without regenerating the binary trace file. The binary trace file allows for

compactness in the data representation and fast and efficient access.

4. The CHITRA92 kernel consists of several interacting subsystems: the PES manager
manages multiple instances of PES’s and is responsible for loading a PES into the
system; the transformations manager provides routines that can invoked to transform
a PES and the modeling manager is responsible for generating the semi-Markov chain

model of a PES instance.

5. The CHITRA92 visualization system provides the top-level interface to the system and
access to the PES instances via views. Views provide interfaces through which the
user can apply a transformation on a PES instance. The views supported include:
2D X-Y time views, 2D X-Y event views, Text views, FFT (time) views, FFT (event)

views and semi-Markov model views.

99

Chapter 6

Conclusions and Future Research

6.1 Summing up CHITRA92

The goal of this thesis was to design and implement a performance analysis environment,
that allows a user to model parallel program behavior as semi-Markov chains. We have suc-
cessfully implemented the CHITRA92 Performance Analysis Environment on DECStations
using the X11 Window System and the OSF/Motif 1.1 toolkit.

We summarize the important and unique contributions of the CHITRA92 performance

analysis environment.

1. Model generation

Visualization systems have become prominent in performance analysis studies of par-
allel programs. OQur contention is that while visualization systems are very useful in
exploiting perceptive and intuitive abilities of humans to comprehend large volumes
of data, they really do not help in the analysis. The notion of generating a model
of the input PES is a novel approach. Modeling makes two significant contributions
to the study of PES’s. First, models are valuable tools in predicting PES behavior.
The usefulness of the model is based on how accurate its predictions are for different
input parameter sets. The second contribution is subtler. While visualization assists
in increasing the ability of humans to comprehend large volumes of data, modeling
performs the converse. A model of a large PES captures all of the characteristics
of the PES but its representation is concise. The understanding obtained from the
model however is the same or more likely better than that obtained from examining

the data itself.

100

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

CHITRA92 generates a semi-Markov model of an input PES. The model provides
statistics such as maximum and minimum occupancy times of a program state, the
mean occupancy time and the number of occurrences of the program state. The

transition frequencies from one program state to the next are also computed.

2. Transformations

The CHITRA92 system provides four very powerful transformations which assist a user
in reducing a PES so as to make it easy for semi-Markov chain model construction.
Pattern aggregation allows the identification of determinism within an PES. Filter
aggregation allows the identification and elimination of randomly occurring subse-
quences, and/or possible noise signals. The clipping transform allows the user to
select the steady-state portion of the system for analysis. Finally, the system’s design

allows user-defined transforms (projections) to be easily integrated into the system.

3. Studying periodicity in PES’s

The system treats any PES as a time-series data set and applies spectral analysis
techniques to determine the existence of periodic behavior in a PES. The discrete
Fourier transform of the time-series data is computed and a periodogram of the DFTS
is generated. The occurrence of spikes within the periodogram indicate a concentration
of energy, which in turn implies that the maximum possible periodicity is exhibited at
the frequency of the spike. To our knowledge, no existing system performs this kind

of analysis.

4. Visualization of PES’s

Most existing performance analysis environments use visualization as a solution to the
performance analysis problem. We believe that such an assumption is wrong. Visual-
ization systems go a long way towards raising the upper bound on data that human
beings can intuitively comprehend (this is clearly illustrated by the fact that graph-

ical displays can present greater amounts of information that can be comprehended

101

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

by a human as compared to textual dumps). Analysis (exemplified by modeling) is
something that humans cannot intuitively perform. Visualization therefore is not an
end to itself. It can be used effectively to assist in the analysis of the problem, which
is how it is in the CHITRA92 performance analysis environment. 2D X-Y views, Text
views, Fourier views, and Semi-Markov views can be used effectively to generate an
accurate model of a PES. The system also allows a user to load multiple instances of

PES’s and have multiple views of a single instance of a PES.

5. PES description language

The biggest concern in the design of the system is that it be easy to use and widely
available. CHITRA92’s design goals of portability, scalability and versatility all reflect
this concern. The solution offered by the system is that it provides a PES description
language (CSL). While portability of the system itself has been ensured by using stan-
dard and widely available software development tools, PES’s have been made portable
by allowing two representation formats — text (in the form of a CSL specification) and
binary. The text representation ensures portability and the binary ensures efficient

access and storage of a PES.

One question that has been raised is to what kind of an audience is the CHITRA92
system targeted to. Most software developers are intimately acquainted with the underlying
architecture as well as the system software of their development platform. Novice users or
intermediate-level users typically work with pre-existing applications. They are usually
interested in the results and not in the performance of the software, much less in optimizing
its performance. CHITRA92 is performance analysis system for programs and, consequently,

is targeted towards software developers.

6.2 Beyond CHITRA92

We have successfully completed two generations of systems in the Chitra project -

CHITRA91 and CHITRA92. Work is already underway for the third generation of the Chitra

102

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

project. CHITRA93 is expected to be released by the end of 1993. A variety of both models
as well as features are being planned for CHITRA93. We have broadly classified further
research into three classes. Firstly, semi-Markov chains, while sufficient for some classes of
resource-sharing, cyclic programs, cannot model most other classes of programs. The study
of alternate models is therefore very important. The second area of research is in extension
of the architecture of the CHITRA92 system. For example, synchronized views of PES’s is a
useful feature for examining multiple execution runs of the same program. From enhancing
the existing implementation of the system, a number of research issues arise. The third
important area of research is to study a greater variety of applications. Our knowledge of
the behavior of programs can increase only if a wider range of applications are studied.

We discuss each of these research areas briefly.

6.2.1 Implementation Enhancements

There are number of enhancements that can be made to the system. First, a greater
variety of views can be incorporated into the visualization system. Two useful views are a
planar graph layout of the semi-Markov model and synchronized 2D X-Y view of multiple
instances of PES’s. Secondly, the transformation subsystem can be enhanced by adding
more transformations as the need arises. For example, as of now projections are applied to
a unmodified PES and inorder to apply them to modified PES’s, we need to decide how the
projection will treat existing aggregate states in the modified PES. Thirdly, greater support
is required for the PES representation both within the CSL translator and in the binary
and text files. Finally, for the system to be scalable, a parallel version of the system should

be developed.

6.2.2 Alternate Models

Four new possible models for PES’s are currently being studied. The first is to use
decision trees to identify determinism in a PES. Decision trees determine the influence that

a previous program state has in the PES making a particular transition. The second is

103

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

to model each component of a state vector independently and create a composite model
by gluing together the individual models appropriately. The individual models could be
semi-Markov chains themselves. The third modeling strategy is to compute rules by which
deterministic subsequences within the PES could be predicted. The last modeling technique

is to model a PES as a quasi-stationary stochastic process.

6.2.3 Target Applications

A large number of real world applications ranging from problems in operating systems
to large-scale scientific and numeric applications are being studied. Some of the more

interesting problem domains are described below:

1. Transaction processing

Performance data traces have been obtained from instrumented versions of IBM’s
order placement system, developed in CICS. Efforts are being made to modify the

trace data obtained so that it is suitable for analysis by the CHITRA92 system.

2. Numeric and scientific applications

Two well-known numerical analysis problems - gaussian elimination and large size ma-
trix multiplications, are being used to study the possibility of predicting the existence
of deterministic subsequences within a PES. Another interesting scientific problem
being studied is the simulation of the dynamic response of a gas turbine compression
system operating under stable, unstable and reverse flow conditions. This particular

application has been parallelized to run on a 4-node transputer bed [55].

3. Communication Protocols

CHITRA92 has already been used on data generated from an instrumented TCP/IP
package developed for IBM PC-compatibles. This study will be continued during
1993. The goal here is to determine what specific factor limits the performance of

the TCP/IP suite [8, 3]. Two other communication protocols are being studied. The

104

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

first is a study to tune the performance of an MPEG player from the University of
California at Berkeley, and the second is to assist in the design and development of

NMFS, a network multimedia file system protocol.

4. Parallel discrete-event simulation

Two studies are being undertaken in the area of discrete-event simulation [24]. The
first is to model the behavior of Lubachevsky’s bounded lag problem [34, 35] and the
second is to study the quality of native code automatically generated from a parallel

simulation program specification.

5. Operating Systems

The Chitra project was initiated with a study of the Dining Philosophers problem
(16, 7, 3]. More examples of the Dining Philosophers problem are being studied
as well as variations on the Dining Philosophers such as the Drinking Philosophers

problem.

Performance diagnosis for parallel programs still remains an open problem. Parallel pro-
gramming will not enter the mainstream of computing unless there are tools that can help
identify bottlenecks in parallel program source code. Constructing models of program be-
havior is a promising approach to this problem. It is our hope that the Chitra project

eventually provides a collection of tools and services that can do this.

105

Appendix A

Chitra Specification Language Grammar

The following is the grammar for the Chitra Specification Language.

(program)
(program_name)
(block)
(setup)
(mazcomponents)

(component_list)

(component)
(component_name)

(id_range)
(id)
(state_names)

(statename)

(trace)

(program_name); (block). EOF

PROGRAM IDENTIFIER

BEGIN (setup)(trace)END

SETUP : {mazcomponents){component list){thread_list)
MAXCOMPONENTS =INTEGER
(component){component list)

| (component)

COMPON ENT((component_name)(state_names)
(id_-range) = STRINGCONST,INTEGER,
(id), (id_-range)

| tid)

INTEGER - INTEGER

| INTEGER

(statename); (state_names)

| (statename)

INTEGER=IDENTIFIER

TRACE : (trace_component list)

106

APPENDIX A. CHITRA SPECIFICATION LANGUAGE GRAMMAR

(trace_component list)

(trace_component)
(time_stamp
(state_vector)
)

(integer_list

(trace_component)(trace.component list)
| (trace_component)
(time_stamp)(statevector)

INTEGER

(integer_list)

INTEGER, (integer_list)

| INTEGER

107

Appendix B

Notes on the CHITRA92 Source Code

1. Tim Lee was responsible for the design and implementation of the model view in the

system.
2. The backend for theCSL translator is currently under development by Horacio Cadiz.

3. The FFT routines are from the book: Numerical Methods and Software by David

Kahaner, Cleve Moler and Stephen Nash.

4. The histogram widget is from the Free Widget Foundation, coordinated by Brian

Totty, Department of Computer Science, University of Illinois, Urbana-Champaign.

Wherever appropriate within the code, copyright notices have been retained to acknowl-

edge these contributions.

108

(1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

REFERENCES

Gordon Bell, “Ultracomputers, A Teraflop Before Its Time,” Communications of the
ACM, Vol 29, No. 12, Aug. 1992, pp. 27-47.

W. D. Hillis and G. L. Steele Jr., “Data Parallel Algorithms,” Communications of
the ACM, Vol 35, No. 8, Dec. 1986, pp 1170-1201.

M. Abrams, N. Doraswamy, and A. Mathur, “Chitra: Visual Analysis of Parallel and
Distributed Programs in the Time, Event, and Frequency Domains,” IEEE Trans-
actions on Parallel and Distributed Systems, Vol. 3, No. 6, pp 672-684, November
1992.

M. Abrams and A. K. Agrawala, “Performance Study of Distributed Resource Sharing
Algorithms,” IEEFE Dist. Processing Technical Committee Newsletter, Vol. 7, No. 3,
pp- 18-26, Nov. 1985.

M. Abrams, “Design of a Measurement Instrument for Distributed Systems,” Re-
search Report RZ1639, IBM Research Division, Zurich Research Laboratory, 1987.

M. Abrams and A. K. Agrawala, “Geometric Performance Analysis of Mutual Exclu-
sion,” Department of Computer Science, Virginia Tech, TR 90-58, 1990.

M. Abrams and N. Doraswamy, “An Introduction to Visualizing Program Execution
Dynamics with Chitra,” Department of Computer Science, Virginia Tech, TR 92-23,
May 1992.

M. Abrams and Q. Chen, “A New View on What Limits TCP/IP Throughput in
Local Area Networks,” Department of Computer Science, Virginia Tech, TR 91-23,
1991, submitted for publication.

M. Abrams, Diagnosing Parallel and Distributed Software Performance Problems,”
National Science Foundation Innovative Grant Proposal, Department of Computer
Science, Virginia Tech, November 1991.

G. Balbo, G. Chiola, S. C. Bruell, and P. Chen, “An Example of Modeling and
Evaluation of a Concurrent Program Using Colored Stochastic Petri Nets: Lamport’s
Fast Mutual Exclusion Algorithm,” IEEE Trans. on Parallel and Distributed Systems
3, pp. 221-240, March 1992.

109

REFERENCES

[11]

[12]

[13]

[14]

18]

[16]

[18]

(19]

(20]

[21]

(22]

B. N. Bershad, E. D. Lazowska, and H. M. Levy, “Presto: A System for Object-
Oriented Parallel Programming,” TR 87-09-01, Dept. of Computer Science, Univ. or
Washington, Sept. 1987.

U. N. Bhat, Elements of Applied Stochastic Processes, 2nd. ed, New York: John
Wiley, 1984, pp. 290-294.

M. H. Brown, Algorithm Animation, MIT Press, Cambridge, MA, Ph.D. thesis, De-
partment of Computer Science, Brown University, 1988.

S.D. Carson and P. F. Reynolds Jr., “The Geometry of Semaphore Programs,” ACM
TOPLASVol. 9, No. 1, Jan. 1987.

Jack Dongarra, Orlie Brewer, James Arthur Kohl, and Samuel Fineberg, “A Tool
to Aid in the Design, Implementation, and Understanding of Matrix Algorithms for
Parallel Processors,” Journal of Parallel and Distributed Computing , Vol. 9, No. 2,
pp. 185-202, June 1990.

N. Doraswamy, Chitra: A Visualization System to Analyze the Dynamics of Parallel
Programs, M..S. thesis, Dept. of Computer Science, Virginia Tech, Dec. 1991.

A. Duda, G. Harrus, Y. Haddad, G. Bernard, “Estimating Global Time in Distributed
Systems,” Proc. 7th Int. Conf. on Distributed Computing Systems, Berlin, pp. 299-
306, Sept. 1987.

Robert J. Fowler, Thomas J. LeBlanc and John M. Mellor-Crummey, “An Integrated
Approach to Parallel Program Debugging and Performance Analysis on Large-Scale
Multiprocessors,” Proceedings of Workshop on Parallel and Distributed Debugging,
ACM SIGPLAN Notices Vol. 24, No. 1, pp. 163-73, Jan. 1989.

M. A. Holliday and M. K. Vernon, “A Generalized Timed Petri Net Model for Per-
formance Analysis,” in Proc. Int. Workshop on Timed Petri Nets, Cat. No. 2187-3,
pp- 181-90, Turin, July 1985.

Alfred A. Hough and Janice E. Cuny, “Belvedere: Prototype of a Pattern-oriented
Debugger for Highly Parallel Computation,” Proc. of the 1987 Intl. Conf. on Parallel
Processing, pp. 735-8, 1987.

Thomas J. LeBlanc, John M. Mellor-Crummey, “Debugging Parallel Programs with
Instant Replay,” IFFE Transactions on Computers, Vol. C-36, No. 4, pp. 471-82,
April 1987.

Daniel A. Reed, Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Keith A. Shields,
and Bradley W. Schwartz, The Pablo Performance Analysis Environment,” submitted
for publication, August 1992.

110

REFERENCES

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

Allen D. Malony, D. A. Reed, and H. A. G. Wijshofl, Performance Measurement Intru-
sion and Perturbation Analysis,” IEEFE Trans. on Parallel and Distributed Systems,
Vol 3, No. 4, July 1992.

Anup Mathur and Marc Abrams, Toward a Machine Assisted Software Performance
Diagnosis Methodology,” Department of Computer Science, Virginia Tech, TR 93-12,
April 1993.

Blaine Gaither, “Instrumentation for Future Parallel Systems,” in Instrumentation
for Future Parallel Systems, ed. M. Simmons and R. Koskela, ACM Press, pp. 111-
120, 1989.

Allen D. Malony, “JED: Just an Event Display,” in Performance Instrumentation and
Visualization, ed. M. Simmons and R. Koskela, ACM Press, pp. 99-114, 1989.

Allen D. Malony, Performance Observability, Ph.D. thesis, Computer Science Dept.,
Univ. of lllinois, Aug. 1990.

Allen D. Malony and Daniel A. Reed, “Visnalizing Parallel Computer System Per-
formance,” CSRD Tech. Report No. 812, Computer Science Dept., Univ. of Hlinois,
March 1988.

Margaret Martonosi, Anoop Gupta, and Thomas Anderson, “MemSpy: Analyzing
Memory System Bottlenecks in Programs,” Proc. ACM SIGMETRICS, Newport, RI,
pp- 1-12, June 1992.

Ted Lehr, Zary Segall et. al., “Visualizing Performance Debugging,” IEEE Computer,
pp 38-51, October 1989.

Aaron J. Goldberg and John L. Hennessy, “Mtool: An Integrated System for Perfor-
mance Debugging Shared memory Multiprocessor Applications,” I[EEE Transactions
on Parallel and Distributed Systems, Vol. 4, No. 1, pp 28-40, January 1993.

Bershad, B.N., Lazowska, E.D., and Levy, H.M, “PRESTO: A system for Object-
Oriented Parallel Programming,” Technical Report 87-09-01., Department of Com-
puter Science, University of Washington, Seattle, Washington, Jan. 1988.

Gary Miller and Kathy Walrath, NeX T Operating System Software, NeXT Computer,
1990.

Lubachevsky, B., “Efficient distributed event-driven simulations of multiple loop net-
works,” Comm. ACM., vol. 32, no. 1,111-123, Jan. 1989.

Lubachevsky, B., “Synchronization Barrier and Related Tools for Shared Memory
Parallel Programming,” International Journal of Parallel Programming, vol. 19, no.
3,226-250, July. 1990.

111

REFERENCES

[36] Charles E. McDowell and David P. Helmbold, “Debugging Concurrent Programs,”
ACM Computing Surveys, Vol. 21, No.4, pp. 593-622, Dec. 1989.

(37] B. Miller and C. Q. Yang, IPS: An Interactive and Automatic Performance Measure-
ment Tool for Parallel and Distributed Programs,” in Proc. of the 7th International
Conference on Distributed Computing Systems, September 1987.

[38] Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstead, Sek-See Lim,
and Timothy Torzewski, “IPS-2: The Second Generation of a Parallel Program Mea-
surement System,” IEEE Transactions on Parallel and Distributed Systems, Vol. 1,
No. 2, pp. 206-17, April 1990.

[39] William C. Brantley and Henry Y. Chang, “Support Environment for RP3 Perfor-
mance Monitor,” in Performance Instrumentation and Visualization, ed. M. Simmons
and R. Koskela, ACM Press, pp. 99-114, 1989.

[40] D. Wybranietz and D. Haban, Monitoring and Measuring Distributed Systems,” in
Performance Instrumentation and Visualization, ed. M. Simmons and R. Koskela,
ACM Press, pp. 27-46, 1989.

[41] Carlo Ghezzi and Mehdi Jazayeri, Programming language concepts, 2nd. ed, New
York: John Wiley, 1987.

[42] L. Kleinrock, Queueing Systems Vol. I: Theory, 2nd. ed, New York: John Wiley, 1984,
pp. 290-294.

[43] B. Plateau, “On the Stochastic Structure of Parallelism and Synchronization Models
for Distributed Algorithms,” Proc. SIGMETRICS, Austin, pp. 147-154, Aug. 1985.

[44] Sekhar R. Sarukkai. “Performance Visualization and Prediction of Parallel Super-
computer Programs: An Interim Report,” TR 318, Computer Science Dept., Indiana
Univ., Nov. 1990.

[45] David Socha, Mary L. Bailey, and David Notkin, “Voyeur: Graphical Views of Par-
allel Programs,” in Proc. of Workshop on Parallel and Distributed Debugging, ACM
SIGPLAN Notices, Vol. 24, No. 1, pp. 206-15, Jan. 1989.

[46] Allan M. Tuchman, Michael W. Berry, “Matrix Visualization in Design of Numerical
Algorithms,” ORSA Journal on Computing, Vol. 2, No. 1, pp. 84-92, Winter 1990.

[47] D. E. Knuth, J. H. Morris, V. R. Pratt, Fast pattern matching in strings,” SIAM
Journal on Computing, Vol. 6, pp 323-350, June 1977.

[48] Udi Manber, Introduction to Algorithms: A Creative Approach, Addison Wesley Pub-
lishing Company, Reading, Mass., 1989.

112

REFERENCES

[49] Open Software Foundation, OSF/Motif Programmer’s Reference Manual, Prentice
Hall, Englewood Cliffs, NJ

[50] Doug McMinds, Mastering OSF/Motif Widgets, Addison Wesley Publishing Com-
pany, Reading, Mass., 1992.

[51] Adrian Nye, X toolkit intrinsics programming manual, O’Reilly and Associates, 1990.
[52] Adrian Nye, X toolkit intrinsics reference manual, O’Reilly and Associates, 1990.
[53] Adrian Nye, Xlib programming manual, O’Reilly and Associates, 1990.

[54] Adrian Nye, Xlib reference manual, O’Reilly and Associates, 1990.

[55] John K. Harvell, Walter F. O’Brien, “Computational Considerations associated with
the development of Near-Real-Time Dynamic Simnulations for Propulsion Applica-
tions,” in Proceedings of the 30th Aerospace Sciences Meeting and Ezhibit, ATAA
92-0560, January 1992.

113

VITA

Krishna Ganugapati was born on June 3, 1966 in Manchester, United Kingdom. He
spent his early childhood in the UK and in Australia. He received a Bachelor’s degree in
Computer Science and Engineering with distinction from the University of Mysore, India
in 1988. From November 1988 to July 1990, he worked as a Software Design Engineer in
PSI Data Systems, India where he had the opportunity to write software for Groupe Bull’s
peripherals division in Belfort, France. He received the MS degree in Computer Science from
the Department of Computer Science, Virginia Polytechnic Institute and State University
in May 1993.

Immediate plans for Krishna include a position with Microsoft Corporation, Redmond,

Washington.

114

