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Mathematics 

(ABSTRACT) 

This dissertation is a study of two basic questions involving irreducible elements 

in algebraic number fields. The first question is: Given an algebraic integer 8 in a 

field with class number greater than two, how many different lengths of factorizations 

into irreducibles exist? The distribution into ideal classes of the prime ideals whose 

product is the principal ideal (@) determines the possible length of the factorizations 

into irreducibles. Chapter 2 gives precise answers when the field has class number 3 

or 4, as well as when the class group is an elementary 2-group of order 8. 

The second question is: In a normal extension, when are there rational primes 

which split completely and remain irreducible? Chapter 3 focusses on the bicyclic bi- 

quadratic fields. The imaginary bicyclic biquadratic fields which contain such primes 

are completely determined.
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Chapter I. Introduction 

In the field of rational numbers, every integer has a unique factorization into ir- 

reducible elements; i.e., unique prime factorization. However, in an arbitrary number 

field, an algebraic integer may have several distinct factorizations into irreducible el- 

ements. In fact, the number of irreducible factors occuring in different factorizations 

of an integer may not be the same, depending on the class structure for the field. If 

the field has class number 1 or 2, then the number of irreducible factors in the factor- 

izations of an integer is unique. In Chapter II we consider the problem of determining 

the number of different lengths of irreducible factorizations of an algebraic integer in 

fields with class number greater than 2. Theorems 7 and 8 give precise answers when 

the Davenport constant of the class group is 3 and Theorems 10 and 17 answer the 

question when the Davenport constant is 4. For each of these theorems, Section six 

gives explicit examples, showing how an integer may be found having a given number 

of irreducible factorizations with distinct lengths. 

In the field of rational numbers, the prime numbers are the irreducible elements. 

However, every other algebraic number field will contain rational primes which are 

reducible. Chapter III explores the question of which number fields contain rational 

primes which remain irreducible. Narkiewicz [13] has shown that such number fields 

must have a Galois group with a cyclic subgroup of index not exceeding the Daven- 

port constant of the class group. In particular, in a cyclic extension there are rational 

primes which remain prime and therefore are irreducible. Sliwa [19] gave a charac- 

terization of normal extensions K/Q containing irreducible rational primes using the 

Galois group G(K/Q), the class group H(K), and the action of G on H(Ky). 

The question becomes more interesting when restricted to the existence of rational 

primes which split completely in K and remain irreducible. A normal cyclic extension 

of degree | = 2,3 or 5 over the rational numbers is easily seen to have this property 

]
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if and only if it has class number greater than 1. In a bicylic biquadratic field K, a 

prime splits completely and remains irreducible if and only if its prime factors in each 

quadratic subfield of K are not principal in K. The detailed study of this condition in 

Chapter III yields a complete characterization of imaginary bicyclic fields containing 

irreducible rational primes which, as ideals, split completely.



Chapter II. Lengths of Irreducible Factorizations in Fields with 

Small Class Numbers 

81. Introduction. 

Every nonzero integer of an algebraic number field has a unique factorization into 

irreducible elements if and only if the field has class number 1. L. Carlitz [5] has shown 

that the number of irreducible factors occurring in a factorization is unique if and 

only if the class number of the field is less than or equal 2. For fields of class number 

greater than 2, Narkiewicz [14], Narkiewicz and Sliwa [15], and Allen and Pleasants [1] 

have obtained asymptotic estimates for the number of different lengths of irreducible 

factorizations. In this chapter we obtain explicit formulas for the number of different 

lengths of irreducible factorizations of an algebraic integer, when the ideal class group 

of the field has Davenport constant at most four. 

§2. Notation and Terminology. 

K: an algebraic number field. 

B: nonzero, nonunit, integer of K. 

(8): Number of different lengths of factorizations of @ into irredu- 

cible elements, where the length of an irreducible factorization 1s 

the number of irreducible factors. 

h: Class number of K. 

H: Ideal class group of K. 

X;(0 <i < h): Ideal classes of K’, where Xo denotes the principal class. 

o( X;): Order of the class X;. 

0;(8): Number of prime ideals (counting multiplicities) in X; which 

divide £. 

s = (): Number of prime ideals (counting multiplicities) which divide f. 

3



(2) = Pipe--- Ps: 

[p,]: 

S = S(B): 

Block: 

Block Product: 

Irreducible Block: 

D(H): 

w(F): 

4 

Factorization of (f) into prime ideals. 

The ideal class of pj. 

The sequence [p,], [p2],...,[ps] of ideal classes determined by 7. 

A finite sequence of elements of H whose product is Xo. 

If B= XX? Xp} and C = X5°X71...X;,"7' are blocks 

and 6;, c;are nonnegative integers then 

_ bo+co yrbite) bh—~1+¢h-1 BC =X"? X, 1 MT , 

A block which cannot be written as a product of two subblocks. 

The Davenport constant of H; i.e., the maximum length of an 

irreducible block of H. 

The free commutative semigroup generated by the set of all irre- 

ducible blocks of H. The elements of R can be represented as 

formal linear polynomials La;B; where each a; is a nonnegative 

integer and the B; range over all the irreducible blocks of H. 

If F € R, the weight of F, w(F), is the sum of the coefficients 

of F. 

83. Preliminary Results. 

Some general observations are made in this section, which apply to any number 

field, K. 

Lemma 1. If 8 = BoB, where 0;(8) = 0 for 1 <i < h and No(f1) = 0, then 

I(B) = (B1). 

Proor: Since every prime ideal factor of ( is principal, the number of irreducible 

elements in any factorization of 89 is No(o). Hence [( Go) = 1 and (8) = 1(6;).
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In view of Lemma 1, for the remainder of this chapter we will assume that 0o(8) = 

There is an obvious one-to-one correspondence between the set of all partitions 

of S into irreducible blocks and a subset R’ of R. The coefficient of an irreducible 

block B of an F in R’ is precisely the number of times the block B occurs in the given 

partition of S. 

Lemma 2. If F belongs to R' and some terms G = )_™, 6;B; of F are replaced with 

the terms G" = )7"_, ¢;C; in R subject to the condition that 

172, By! = T= Ci’ 

then the polynomial F’ obtained by this substitution also belongs to R’. 

Proor: Since F' corresponds to a partition of S into irreducible blocks, the product 

condition insures that F’ also corresponds to a partition of S. Thus F” belongs to R’. 

The substitution of Lemma 2 can be considered as a transformation on R’. The 

notation 

T(>- b; B;) = SC; 

t=1 j=l 

will be used to denote such transformations. 

Lemma 3. The number of different weights of elements of R’ is precisely I(8). 

Proor: For any F in R’,w(F) is precisely the number of irreducible elements in the y p 

factorization of 8 determined by the partition of S corresponding to F. 

Each element F' of R’ determines a solution to the Diophantine equation 

2y1 + 3y2 +--+ + Dyp-1 = (*) 

where y; is the number of irreducible blocks of length 7 + 1 which occur in F' and 

D = D(H). A non-negative integral solution to (*) will be called an admissible 

solution if it is determined by some F in R’.
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Lemma 4. [(@) is precisely the number of distinct sums of the form y; + y2+---+yp-1 

where (y1,°*+ ,Y¥p-1) runs through the set of admissible solutions to (*). 

Proor: Each F in RF’ gives an admissible solution to (*) with w(F) = y,+---+yp-1. 

Conversely, any admissible solution with y; +---+ yp_1 = t, corresponds to an F in 

RF’ with w(F) =t. The result follows from Lemma 3. 

84. Class groups of order 3 and 4. 

When H has order 3 or 4, it is shown that [(8) is a linear function of m = 

min{Q;(8)} such that X; € H has maximum order. 

Lemma 5. If H = Z3, then I(() is the number of solutions to 3z + 2y = s withO<z 

andQ<y<m. 

Proor: The irreducible blocks of H are X?(i = 1,2) and X,X 2. Hence the number 

of irreducible blocks of length 2 in any partition of S(8) is at most m. Thus /(f) is 

bounded above by the number of solutions to the equation satisfying the inequalities. 

Conversely, let (z, y) be a solution to the equation which satisfies the inequalities. 

Since (8) is a principal ideal, 24(8) + 222(8) = 0(mod 3). Thus 21(8) = 02(8) = 

m(mod 3) and so 2y = s = (8) + 92(8) = 2m(mod 3). Hence 

1 1 
F = 3(91(8) — wy) XT + 5 (M2(8) — y) Xz + yXi Xe 

is in R’ and corresponds to the solution (z,y). Since distinct solutions to (*) give 

distinct values of x + y, the result follows from Lemma 4. 

Lemma 6. If H = Z, Xx Zo, then I(8) is the number of solutions to 3z + 2y = s with 

O0O<x<mand0<y. 

Proor: Here the irreducible blocks are X?(i = 1,2,3) and X1X2X3. Since x denotes 

the number of irreducible blocks of length 3 in any partition of S, it is clear that 

x <m. The remainder of the proof is similar to that of Lemma 5.
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THEOREM 7. If H = Z3, then (8) = ™¥£ where € = s(mod 3) and1 <e< 3. 

Proor: If 32 + 2y = s, then 

y = 2s(mod 3) 

so y = 2s — 3t for some integer t and so r = 2t — s. It follows from Lemma 5 that 

  tam <t < # and £ <t. But 2 < 4%. Note that 2s — m = 0(mod 3) and that 

2s = 3 — e(mod 3) withO < 3—€ < 2, so that t < *St* — 2st¢ — 1]. By Lemma 5, 

2s +e 2s —m mt+e 
= —l1— l= . 

3 3 + 3 
      (8) 

TueoreoM 8. If H = Z, x Z2, then (8) = =f where € = s(mod 2) and € = 1 or 2. 

Proor: As in the preceding proof y = 2s — 3t and x = 2t — s. From Lemma 6, 

5 <t< 4™ andt < ae but sim < as Since (8) is a principal ideal, 0,(8) + 

03(B) = 02(8) + N3(8) = O(mod 2), so 2,(8) = 02(8) = N3(8) = m(mod 2). In 

particular, s = m(mod 2). Note that s = 2 — e(mod 2) with 2—e¢ = 0 or 1, so that 

t > sti-s = £41. By Lemma 6 

S+m S—E 

2 2 

mt+e 

2 
      (B) = +1) +1= 

We now consider the case H = Z,. Number the ideal classes so that o( X,) = 

o(X3) = 4 and o( X2) = 2. Let 2)(8) = k, N2(8) = land 03(8) =m. With no loss of 

generality, we may assume k > m. 

Lema 9. If H = Z4, then (8) < [2] +1. 

Proor: By Lemma 4, /(@) is bounded by the number of solutions to 

4r+3y+2z=s 

which give distinct values for 2 + y + z. Since y = s(mod 2),y = s — 2u for some 

integer u and 

27 +2z=-—s+3u so
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z=s+u(mod 2). Thus 

z=s+u-—2v and 

r=—s+urtv, so 

r+y+tz=s-—v. 

Since the irreducible blocks of H are X}(i = 1,3), X?Xo(i = 1,3), X;.X3 and X#, in 

any partition of S(8) the 1 X2 terms occur either as singletons in blocks of length 3 

or as pairs in blocks of length 2. Thus 1< y+2z,sou < Seat On the other hand, 

1 
z<om+ 5 (number of X,’s not used in blocks of length 3) 

=m-+ =( — y). Thus 

y +2z <1+42m and hence 

3s —1 3s —l 
r . 

4 
    _tev< 

2 

Thus there are at most [=] +1 distinct values of z+ y+2z where (z,y, z) is a solution 

to (*). This gives the desired bound for /(). 

[(m/2]+1 ifl>0 
TuEeoreM 10. If H = Z,, then I(8) = { im/4]+1 if =0 

Proor: First suppose / > 0. Since (() is a principal ideal, k + 21+ 3m = 0(mod 4) so 

k = m(mod 2). Also, k =m + 2I(mod 4) and 

s=k+l+m= I(mod 2). 

Let m = € = 2 + &9(mod 4) withO <e <3 and 0 <e€0,4 <1. Set 

_ 3s —1— 269 

7 4 

4v = 38s — 1 — 26 

v and note that 

= 3k 4+ 214+ 3m — 2€9
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= 2(m — €9) = 0(mod 4), 

so that v is an integer. First, we assume that / (and hence s) is even, so u = 5 — & 

is an integer. Using the equations given in the proof of Lemma 9, we obtain 

oH k-e + m—eE 

—\ 4 4 

_ 14+ 2€ 

2 

    

  — €. 

An element of R’ corresponding to this solution is 

    
kh _ l F= ( ; "| Xo4 ("3 "| XO 4 ey X2Xy + 6 X2Xy 4+ (; = a) N24 egX1X3. 

Since we will need a cubic term with positive coefficient, if €¢; = 0 apply the transfor- 

mation 

To(X4 + X2) = 2X2X, to F, 

giving the polynomial F’. Note that w(F’) = w(F"). 

Define the following transformations on R, 

T,(X} + X3X2) = X?X, + 2X1X3 

T2(X3 + X?X)) _ X3X, + 2X1 X3 

T3(X?X2 + X3X2) = 2X1 3 + X3. 

Note that each T; increases the weight of a polynomial by 1. Assume for the moment 

  that either e«, = 1 or k > m. Apply T2 followed by T; to F(F" if ¢, = 0) “>* times. 

Then apply 73 €, times. Since each T; increases the weight by 1, 

m—eE Mm — € 
(8) 22("=*) +a41= 5 +1= a] +1.  
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If k = m and €; = 0, apply T> followed by T; to F’ ™=* — 1 times, apply Tz one 

additional time and then apply 73 €; + 1 = 1 time. As above 

(9) 22("E*-1) 41 be 4141 

= (3+ 
Now, assume I, and hence s, is odd. Note that k = m+2 = 2(1 — e,) + e(mod 4) 

  with 0 < 2(11-—«q) +6 <3. Set u = and vy = 38-1=20 | 56 

    

_—k+m—2-22%  k+m—(2—2e + €— + 2€, + €) 

      

r = 
4 

_ k= Ql -a)te) , m=e_ beta (C42) | m= 

4 4 4 4 

y=l 

7a lait 260 

2 

An element of R corresponding to this solution is 

k+ 4e, — 2 — Fe (A2A 3) x44 (7S) X44 (1—@)X2X, 

[—1] 
+ 6X3 X, + (=) x? + €o.X1X3. 

  Apply T, followed by T, or Tz followed by 7, according as €; = 1 or 0, to F == 
4 

times. Apply 7; €, times, obtaining 

m—eE 

"9)>2(™=*) +at+1 

m 
= |—| 41. [a] + 

The first result is now immediate from Lemma 9. 

Now assume / = 0. Here s = k+m with k = m(mod 4). Moreover, any admissible 

solution of the Diophantine equation 4x + 3y + 2z = s must have y = 0. The 

Diophantine equation reduces to 

k 
Qe pee ™
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which has solution z = ktm —2z¢ witthO<z<m. ‘ence k-m <ar< Atm However, 

each admissible solution must correspond to an element of R’ of the form 

aX} + bX3 + cX,X3 

with zg =a+band z=c. Therefore, 

4b+c=mso z=c=m(mod 4). 

Thus 22 = £2" — z = "(mod 4) or 

r= ROMO od 2). 

Thus at most [=] +1 of the solutions to the Diophantine equation are admissible, so 

m 

(B)< B +1. 

On the other hand, 

    

k— _ 
F=( ; S) xt+ (7 =) X$4 XX 

corresponds to the solution x = Ktma2e = ¢«. Let 7, denote the transformation 

T4(X7 + X3) = 4X,X 3. Note that T,, which increases the weight of a polynomial by 

m—€ 

4 
  2, can be applied to F’ times. Hence 

(B) > +1   

and so equality must hold. 

85. Elementary class group of order 8. 

When H is an elementary abelian 2-group of rank 3, D(H) = 4 (see Olson [16]), 

so the Diophantine equation becomes 

4r+3y+2z=s. (*)
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Here, it will be shown that /(@) is a linear function in zo and yo where (Zo, yo, 20) is 

an admissible solution to (*) with r = zg maximal and y = yg maximal subject to 

L= 2X. 

Each element of H has a unique expression in the form X, = X?! x x} x XF 

with 0 <72,j,k <1, where X1, X2 and X3 generate H. Denote a using the 3 digits 

1-22-37 3-k and then omit any zero digits. Thus, for example Xj3 = X1 x X} x X3. 

There are 21 irreducible blocks of H, 7 of each length 2,3, and 4. Those of length 

2 are simply the squares of the non-identity elements of H. The irreducible blocks of 

length 3 and 4 are: 

X1X2X12,.X1X3X13, X1X23X123, X2X3X03, X2X13-X 123, X3412X 123, 

X12X13X93, X1 X2X3X123, X1X2X13X03, X1X3.X12X 23, X1.X12-N13-X123, X2X3X12X13, 

X2X12X23X423, and X3X13X23X123. 

Let kag = ON(X,). Since any three non-identity elements, not contained in a proper 

subgroup, generate H, we may choose X,; and X2 so that ky < ko < k, for a £ 1,2. 

Then choose X3 # X12 so that k3 is minimal among the remaining ky. 

LEMMA 11. Assume (Zo, Yo, 20) is an admissible solution to (*) with y = yo maximal 

forzr = 2. Ife = 2, = to9—1, y = y, and z = 2, is another admissible solution, then 

Yi S Yo 2. 

Proor: Let F, in R’ correspond to the solution (2, y1, 21). Suppose y; > yot 2. Tf Fj 

contains two different blocks of length 3, say X1X2X12 and X;X3Xj3, then applying 

To(X1XoX12 + X1X3X13) = X2X3X12X13 + X? 

gives an F corresponding to an admissible solution with x = zo and y = y; — 2 > yo, 

contradicting the choice of yg. Hence, we may assume that F, contains only one type 

of irreducible block of length 3, say X1X2%12.
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Suppose now that F; contains at least two types of square terms disjoint from 

X1X2Xq2, say X?, and X23. Applying 

Ty(X1X2X12 + X73 + XZ) = X1X2X13X93 + X12X13X03 

gives an admissible solution with r = zo and y = y; > yo, again contradicting the 

choice of yo. Therefore we may assume that F; contains at most one such square 

term, say X35. 

If F, contains the block X3X43X23X123 then applying 

T2(X3X13X03X123 + X1X2X12) = XyX2X3X123 + X12X13.X123 

yields an element of R’ with two types of blocks of length 3 corresponding to the 

admissible solution (2, yi, 21) which was seen to give a contradiction. 

Now suppose that F, contains the block X?, and a block of length 4 which does 

not contain X23, say X;X2X3X123. Applying 

T3(XyX2X3X123 + 2X1 X2X12 + X?3,) = X2X12X%23X123 + X1X3-X12X23 + x? + x3 

gives an admissible solution with z = zp and y = y; — 2 > Yo, again contradicting 

the maximality of yo. Thus F; can contain only one type of block of length 3, one 

type of block of length 2 which is disjoint from the block of length 3, and no block of 

length 4 disjoint from either. Therefore, if F, contains an X3, term, the only blocks 

of length 4 which can occur are: 

X1X2X43X03, X1X3X12X93, and. X2.X42X3.X123. 

Since X3,Xy3 and 493 can occur only in blocks of length 4, 4; = hig + ks + 

ki23. But every irreducible block of length 4 must contain at least one element of 

{ X13, X3, X123}, in particular, zg < ky3 + k3 + ki2g = 21 = Xo — 1. Thus we may 

assume F, contains no X2, block as well as no X3X13X23X 123 block.
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Now every block of length 4 in F; contains exactly two of the elements X3, X13, X23 

and X123. Moreover, since these elements can occur only in blocks of length 4, 2; = 

+ (ks + ki3 + ko3 + k123). Label the irreducible blocks of length 4 as A;,..., Az and let 

a; denote the maximum number of A; which can occur in a partition of S. Then 

a, + 42+ a3+ 47 < ks 

dg t+a,+as+az7< ky 

dg +a4+agt+ az < ko 

a, +a5+agt+az < kyo3 

where the blocks are labelled so that X, for a € {3,13, 23,123} occurs in block 

A; if and only if a; occurs in the inequality for kg. Thus 2(a; +--- + ag + 2a7) < 

k3 + ky3 + ko3 + ki3. In particular, tp < ay +--+ +47 < $(k3 + hig + hog + fiz) = 21, 

a contradiction. Thus no F, can exist with y; > yo + 2. 

Let re = —stut+ov,y = $—2u and z=s+u-—v bea parameterization of the 

solutions to (*) as in the proof of Lemma 9. 

LEMMA 12. Suppose x = @o0,y = Yo and z = Zo is an admissible solution to (*) with 

Zp maximal and yo maximal with x = zo. If u = up and v = vo are the values of the 

parameters corresponding to this solution, then v < vo for all admissible solutions to 

(*). 

Proor: Let (21,y1, 21) be an admissible solution with zp — 7; = t. It follows from 

Lemma 11 that y; < yo + 2¢ so that up — uy = (y1 — yo) <t. Thus, t = ro — 21 = 

(uo — ui) + (vo — v1) < t+ Vo — v1 and so v; < vp. 

Lemma 13. If xz = 21,y = yi and z = 2, is an admissible solution with z, maximal, 

then the corresponding v = v, is minimal for the set of all admissible solutions.
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Proor: Clearly 21 <)>, [42] = 0. Since () is principal 

ky + ky + ky3 + k103 = O(mod 2) 

ko + ki2 + ko3 + 123 = 0(mod 2) 

kg + ki3 + k23 + ki03 = 0(mod 2) 

and so, exactly 0,3,4 or 7 of the k,, are even (odd). Moreover, if exactly 3 or 4 of the k, 

are odd, the corresponding X,’s form an irreducible block of length 3 or 4 respectively. 

If all 7 k, are odd, then clearly they can be partitioned into one block of length 3 

and one of length 4. Hence there exists an admissible solution with 21 < 1,y, < 1 

and z1 =o. Since y; = s — 2u; and z; = —s + u;, + v; with 2; and y; minimal, wu, 

Maximizes u and v; minimizes v. 

Lemma 14. Let x = 29,y = yo and z = 29 be the admissible solution to (*) with 

X = Xp maximal and y = yo maximal with x = zo. Let x = 21,y = y; and z = 2% 

be the admissible solution to (*) with z; maximal. Then I(8) < zo — 21 + 83" +1. 

Moreover, x; < 1,y; <1 and 2, = 1 exactly when 4 or 7 ky are odd and y, = 1 

exactly when 3 or 7 k, odd. 

Proor: Let f = «+ y+ z where 4z 4+ 3y + 22 = s. Then f = *-xz=s-v. If 

(x,y,z) is an admissible solution to (*) then f is the weight of a corresponding F’ in 

R’. Now I(@) is the number of weights of F in R’. Since f = s — v, the maximal and 

minimal weights are obtained when v is minimal and maximal, respectively. From 

Lemma 12 and Lemma 13, these values are given by v = v, and v = vp respectively. 

Hence 

(8B) <1+f1—- fo 

§— ¥1 S — Yo 
    + Xo
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1 
= 1+ 20 — 21 + 5 (yo — m1) 

The exact values of x; and y; were determined in the proof of Lemma 13. 

In order to determine zg and yo, we construct an element F' in R’ of the form 

F= mA, + M7 Ag + m3A3 + mB + nC, + NC + n3C3 

where the A’s and B’s and C’s represent blocks of length 4,3 and 2 respectively. 

Chooge the A; and m;, as follows: Ay = X4X12X13X123, M1 = ky, Ag = X2X12X23-X123 

and mz = min{ko, ki2 — m1, k123 — m1}. If mg = kyo3 — m1, then Az = X7X3X12X43 

and m3 = min{k2—ma, k3, ki2 —(m1+mz2), ki3 —m,}, otherwise A3 = X3X13X03-X123 

and m3 = min{ks, ki3 — m1, ke3 — M2, ky23 — (mM, + m2) }. 

The choice for B depends on mz and mz as follows: 

If m2 = ko and m3 = kg or m3 = ky23 — (M1 + m2), then B = X42X13X23 and 

mag = min{ky2 — (m, + m2), kig — (my + m3), ke3 — (M2 + m3) }. 

If mz = kg and m3 = kyi3 — m, or m3 = ko3 — m3, then B = X3.X42X193 and 

ma = min{ks3 — m3, ki2g — (m1 + m2), ki23 — (mi + m2 + msz)}. 

If m2= ki — my, and m3= ki3 — my, Or m3 = ky103 _ (my + m3), then B= X7XA3X93 

and 

ma = min{ka — m2, k3 — m3, k23 — (m2 + m3)}. 

If m2 = ki — my, and m3 = kos — mg, OF M3 = ks, then B = X9X43.4123 and 

mg = min{ke — m2, kg — (m1 + mz), ki23 — (My + M2 + M3}. 

If mz = ky23 — m, and m3 = ky — mz or m3 = kz, then B = X12X43X23 and 

ma = min{ky, — (my + m2 + ms), kiz — (mi + m3), ko3 — m3}.
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If m2= k123 — my, and m3 = ky _ (my + m2) or m3 = ky3 —-m, then B= X7X3X93 

and 

ms = min{k, _— (m2 + ms), kz — m3, ko3 — mz}. 

The C; represent the remaining X, in S(() which must occur in pairs. 

LeMMa 15. The polynomial F defined above has minimal weight in R’. 

ProoF: In each case F’ corresponds to an admissible solution of 4r + 3y + 2z = s 

with z maximal and y maximal for the value of zc. By Lemma 12, the corresponding 

V = Uo is maximal. Since w(F) = z+ y + z = s — v is minimal when v is maximal, 

the result follows. 

Set €; = m,(mod 2) ¢; = 0 or 1 for 1 <i < 4. By Lemma 13, F’ = «A +e,B+ 

squares has maximal weight in R’, where € = 1 if exactly 4 or 7 k, are odd and « = 0 

if exactly 4 or 7 k, are even, €4 = 1 if exactly 3 or 7 ky are odd and e, = 0 if exactly 

3 or 7 ky are even. 

Lema 16. Let F and F’ be as above. If kyz #4 0 then for any integer y with w(F) < 

y < w(F") there exists an element F, in R' with w(F,) = 7. 

ProoFr: Suppose there is a series of transformations, which when applied to F' yields 

F". If each of these transformations increases the weight by at most one, then there 

is an F, with w(F,) = 7. Thus we must show that such a series exists. 

First assume m, = mz = m3 = 0. Here F = m4B+ squares. If mg <1, then F = 

F" and the lemmais trivially true. If m, > 1, then apply T4(2B) = Cy+C2+C3, ™4-+ 

times. Observe that each application of T, increases the weight by one. 

Now suppose at least two of m,,mz2 and m3 are positive, say mz > 0 and m, > 0 

or m3 > 0. Define T7(A; + A;) = Ai; + C + C’; e.g., T7(Ar + Ao) = X1X24X13X03 + 

Xf + XJp3-
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Note that 77(A; + Ai;) = A; + squares and that T7 increases the weight by one. 

One sequence of transformations taking F to F” is as follows: 

Apply T; to A; + A2 and then to A; + Aiz ™>* times, followed by T7 to A+ A3 

and then to A,+A23, ™2+—1 times and finally apply T, to A2+A3 and A3+A23™>* 

times. This yields 

Fy = €, A, + (2 — €2)Ao + €3A3 + m4B + squares. 

If €; = €2 = €3 = 0, then Fy = 2A. + m,4B+ squares and this can be dealt with as 

in the case of exactly one m;, mz or m3 being positive. Otherwise at least one ¢; # 0 

for some 2 < 3. Apply 77 €; +€3+1— 2 more times yielding F3 = A+m,B+ squares 

where A, the remaining block of length 4, depends on m,,m 2 and m3. Next apply 

Ty, ™4* times, yielding Fy = A+ e,B+ squares. If ¢, = 0 or A and B are disjoint, 

then no further transformations are possible. Otherwise, Tg(A + B) = B’+ squares 

can be applied one time. If mz = 0 and m > 0,m3 > 0, then interchanging Ag and 

A, in the above sequence of transformations yields the desired result. 

Now suppose exactly one of m,,mz2 or m3 is not zero, call it m. Then F = 

mA +m4,4B+ squares. If m = m3 and m, = 0, then since ki2 > 0, F' contains a X?, 

term, so the transformation 

Ts(A3 + Xf,) = X3X12X123 + X12X13X03 

can be applied. If m, = 0 and m #4 m3, then kz > 0, so k, > 0 for a > 2. If m, £0, 

then apply 

Ts( Ai + X?,) = X1Xo3X 123 + X12X13X23 = B' + B. 

If m2 4 0, then apply 

Ts(A2 + X?,) = X2X13X123 + X12X13X23 = B’ + B.
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Thus there is always a polynomial F, in R’ such that w(F’) = w(F>) and F2 contains 

a block of length 3. In fact, 

F, = (m—¢€5)A+(m4+65)B+€5B’ + squares 

where 5 = 1 if m4 = 0 and es = 0 otherwise. Now suppose that A and B are not 

disjoint. We can apply 7T,(A + B) = B’+ squares followed by 7T,(A + B’) = B+ 

squares for a total of m — €; transformations. Next apply 7,(2B) = C1 +C.+C3 

and 7,(2B’) = C, + C+ Cj as many times as necessary to get a polynomial F3 with 

the coefficients of the B and B’ terms to be 0 or 1. If F3 = B+ B’+ squares, then 

by applying the inverse of 7; we get Fy = A+ squares. Since 7 does not change the 

weight of a polynomial, w(F3) = w(F4) = w(F’). 

Now we must consider the case where the A and B are disjoint. This can occur 

only when A = Ay = X1X12X13X123 and B = X2X3X23. If m,; = 1, then 4 or 7 ky 

are odd and zp = z; = 1. Thus no transformation involving A will increase w(F’) and 

applying T, “4; times will yield F’ as in the case my = m2 = m3 = 0. If m, > 1, 

then by applying 

T2(A + B) = Ag + By = X9X12.423-4123 + X1X3X13 to F gives 

Fy = (m, — 1)Ai + Ao + (m4 — 1)B + Bi + squares. 

This is similar to the case where at least two of m,, m2 or mg are positive. 

THEOREM 17. If kj. # 0, then I(8) =m, + m2+m3+4+ ™>* + 6 where 6 = 1 if 0 or 3 

k, are odd and 6=0 if 4 or 7k, are odd. 

If kyg = 0, then (8) = ™>S +1. 

Proor: By Lemma 14 I(8) < zo — 2, + “5"# 4 1. By Lemma XVI, factorizations of 

all lengths between w(F’) and w(F’) occur when ki2 # 0 and equality holds. By our
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choice of F, x79 = m,+m2+mz3 and yo = m4. By Lemma 14 z; = 1 when 4 or 7 kg are 

odd and z, = 0 otherwise, so 6 = 1—z,. Since y; = €4, (8) = my+m2+m3+ ™>*+6. 

Since ky < ko < kyo, ky = ko = 0 and my = mg= 0 when ki = 0. Also 

B= X42X13X23 so m4 = 0. Thus F = m3A3+4+ squares and the only transformation 

possible is T3(2A3) = squares. Tg increases the weight by two and can be applied 

mi times. Thus there are “> + 1 weights of polynomials in FR’. 

Corotiary 18. If ky. #0 then I(8) = 1 if and only if one of the following is true: 

(a) Either 0 or 3 ky are odd, ky = kz = kg = 0 and min{kypg, ki3, ko3} < 1. 

(b) Exactly 4 k, are odd, ky = kz = 0,k3 = 1 and either ky3 = 1 or ky3 = 1. 

(c) All 7k, are odd, ky = ky = k3 = 1 and at least two of ky2, kg or kyo3 are 1. 

Proor: (a) From Theorem 17 (8) = m, + m2 +m34+ ™>4 +1 when 0 or 3 k, are 

odd. Thus if [(8) = 1,m, = mz = m3 = 0 and so ky = ky = kg = 0. Also mg = & 

and B= X42X13X3 so min{ ky, k13, ko3} < 1. 

Conversely, if no kg are odd with kj = kp = kz = 0, then m, is even and 

min{ky2, k13,k23} = 0. Thus m, = mz = m3 = m, = 0 and I(8) = 1. If exactly 3 k, 

are odd and ky = kp = ks = 0, then min{kio, kis, kos} = 1. Thus m, = m2 = m3 =0 

and m4 = €4 = 1 and so [(8) = 1. 

(b) Here Theorem 17 shows that 1(8) = m,; + m2+m 3+ ™>%. If (8) = 1, 

then m, = m2 = 0,m3 = 1 and mg = eg = O. Since Ags = X3X13X03X103 and 

B = X1.X13X23, it follows that kj = ky = 0,k3 = 1 and ky3 = 1 or hog = 1. 

Conversely, the given conditions force 1(8) = 1. 

(c) As above [(8) = m, + mz + m3 + ™>*. If (8) = 1, then F = Ay + B+ 

squares. Thus k; = 1. Because Ay = XX j2X13X123 and m2 = m3 = 0, at least two 

of ky2,ki3 and ky23 are one. Since kz < k3 < kg for a = 13 or 123, kp = kg = 1. 

Conversely, the given conditions force (8) = 1.
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Corotiary 19. If ki2 = 0, then 1(G) = 1 if and only if kz < 1. 

Proor: I(8) = 1 if and only if m3 = e€3. Since ky = kp = 0,m3 = kg and k3 = 0 or 

k3 = 1. Conversely, suppose kg < 1. Then m3 < 1 and m3 = ¢3. 

86. Examples. 

Let K be a number field with h > 2. Given any positive integer a, Sliwa [20] 

showed that it is possible to find an integer # such that 1(6) = a in K. In addition, 

Sliwa [18] has given asymptotic estimates for the number of non—associated integers 

Bin K with |N()| < z and I(8) =a. In this section, examples are given to illustrate 

how the results of this chapter may be used to determine such a . 

Example 1. K = Q(/—21), F = Q(V—1, V3, V7), and H ® Z, x Z,. Let p be a 
; , —21 ; ; 

rational prime such that (=) = 1. Then p = pyp2 in K. Since every class has 

order 2, both p; and py, are in the same class. Thus we may talk about the class of 

the prime ideals above p without ambiguity. By class field theory, we see that the 

prime ideals above 5, 11 and 19 represent the three distinct nonprincipal classes. Let 

n = 5-11-19. Theorem 7 shows that 1(3) = a where 8 = n°". 

Example 2. K = Q(./—105), F = Q(/—1, V3,V5, V7), and H = Z, x Zz x Zo. 

Again, every class has order 2, so we may refer to the class of the primes above a 

prime that splits in K. The primes: 11, 13, 19, 41, 43, 47 and 53 represent the 

seven non-principal classes of K. We will number the classes so that ideals with 

norms 11, 13 and 19 are in X,, X2 and X3 respectively. Let n = 41-43-47. Then 

ky = kp = kg = byo3 = 0 yg = bg = bog = 2, my = m2 = M3 = 0, mg = 2 and 6 = 1. 

Thus, Theorem 17 shows that I(n*~*) = a. 

Example 3. K = Q(V79) and H ~ Zs. Let p be a rational prime such that p = pip2 

in AK with neither p, nor pz principal. In this case, py and pz are in distinct classes. 

Since the divisors of 3 are nonprincipal in K, if we set n = p = 3 then Theorem 7
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shows that I(n°*~*) = a. 

Example 4. K = Q(/82) and H ~ Z,. In this field we may choose the primes above 

the ramified prime 2 to represent the class of order 2 and the primes above 3 to 

represent the two classes of order 4. Thus, if n = 2-3", m =r. It follows from 

Theorem 10 that [(n) = a where r = 2a — 2.



Chapter III: Bicyclic Biquadratic Fields Which Contain 

Irreducible Rational Primes 

81. Introduction. 

In an algebraic number field a rational prime may be irreducible, but still not 

generate a prime ideal. Proposition 9.6 of [13, p. 507] gives a necessary condition for 

a normal extension of the rational numbers to contain rational primes which do not 

ramify, but remain irreducible. Sliwa [19] gives a necessary and sufficient condition 

for the existence of irreducible rational primes in a normal extension K with Hilbert 

class field F’, based on a characterization of the Galois group G(F'/Q). In this chapter 

we are primarily interested in the existence of rational primes which split completely 

in a given algebraic number field, but are irreducible. Such primes will be called sci 

primes. 

It follows from Theorem 1 of §3 that a normal extension of the rationals of prime 

degree | = 2,3 or 5 contains sci primes if and only if its class number is greater than 

1. Moreover, any number field of degree greater than the Davenport constant of its 

class group does not contain sci primes. 

In general, it seems to be difficult to characterize the normal extensions of the 

rational numbers that contain sci primes. The simplest case where this question is 

nontrivial is the bicyclic, biquadratic fields. In Theorem 2 of this chapter we give 

sufficient conditions for such fields to contain sci primes. The last two sections of this 

chapter are devoted to obtaining precise conditions for imaginary bicyclic biquadratic 

fields to contain sci primes. 

If every ideal of a subfield k # Q of a number field K becomes principal in Kk, 

then K contains no sci primes. However, the converse is not true even when I 

is an imaginary bicyclic biquadratic field. Assuming all imaginary quadratic fields 

with class numbers 2, 4 and 8 are known, see [3, 4, 7], we show there are exactly 88 

23



24 

imaginary bicyclic biquadratic fields such that the converse of the above statement is 

false. Such fields will be called exceptional fields. 

§2. Notation. 

Q: 

M,N,E, K: 

k, ky: 

Pq: 

PL, Pi, qi: 

P,Q: 

Ee) 
eH) 
N(a@) = Nuytla): 

  

Rational number field. 

Number fields. 

Subfields of K. 

Hilbert class field of K. 

Class group of k;. 

Class number of k;. 

Discriminant of k;. 

Number of distinct prime divisors of Aj. 

Rational primes. 

Primes of k, k;. 

Primes of K. 

Frobenius automorphism for the prime $8 of EF. 

Frobenius automorphism for all the primes in F& lying above 

P in K. Here E/K must be abelian. 

The norm of a. We will drop the M/L when the extension is 

obvious. 

The remaining notation is only defined when K is an imaginary bicyclic biquadratic 

field, ko its real quadratic subfield and k, and kg its imaginary quadratic subfields. 

p: 

€: 

™1, M2: 

Unit index of K/kpo. 

Fundamental unit of ko. 

Principal factors of the discriminant of ko. We will take both 
values to be positive. 

Number of distinct prime divisors of (Aj, A).
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2”: \ Order of the subgroup of H(k;) which consists of the classes 
containing ideals that are principal in K. 

Qi; Order of the subgroup of the genus group of k; consisting of gen- 
era containing ideals that are principal in AK. We will assume that 
the imaginary subfields of K are numbered so that R, > Ro. 

G,, = G;: Group of characters for the field k;. Also the genus group for 
imaginary quadratic k,. 

ko = Co: Group of normalized characters for the real quadratic field ko. 
Also the genus group of ko. 

$= ‘ 1 if 2 is totally ramified in K, 
0 otherwise. 

\ = Mko) = 0 if p | Ao for some p = 3 (mod 4), 
Or 1 if pt Ao for all p = 3 (mod 4). 

83. General results. 

Lemma 1. Let K/k be a normal extension and N/k be an abelian extension. If E/K 

is an abelian extension with N C E and E/k normal and if p = P,...P, is a prime 

E/K _ [N/k 
P. ) val p ) fori = deg   

  
of k which splits completely in K then ( 

Proor: Let $8 be a prime of F lying over P,;. Since p splits completely in K, 

(Fe) by [Fd b= Ferd = GF): 

Lemma 2. Let k, K,N,E be as in Lemma 1 with [K : k] =n. If p is a prime of k 

which is unramified in E, then (=e) yo (AE) ; 

Proor: Let p= P,...P, in K where each P, has degree f over p, so fg =n. Let P; 
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be a prime of F lying over P; for each i = 1,...,g. Then 

E/K _ E/K 

(=) |. ~ (a) |. 

E/K 

II( P; Vy 

TE /K 

Ih. |B, 

Paar 

[srw] (4) 
CB") 

Lemma 3. If K/k is an extension of degree n and I is an ideal of k which is principal 

  

il 

  l 

r
e
 

e
,
 Il —_
 

  tl 

r
s
 

-.
 it _ 

    lI 
r
e
 

- 

in K, then every ideal in the class of I is principal in K. Moreover, I” is principal in 

k. 

Proor: If J] = (a) for some a € K and I ~ J, then J = ()/ for some 6 € k, so 

J = (Ba). Moreover, I” = Nxj,(I) = (Nxjz(@)). 

TuHeoreM 1. Let k/Q be a normal extension of prime degree | = 2,3 or 5 and N be 

the Hilbert class field of k. Suppose K/k is a cyclic extension with KN N = k and 

K/Q normal. If there exists a prime of k which does not become principal in K, 

then there are infinitely many rational primes which split into 1 primes in K and are 

irreducible. 

N/k 
Proor: Let q be a prime of k which does not become principal in K. Let tT = ("= ) 

and let o generate G(K/k). By assumption, NOK = k; thus G(K N/k) ~ G(K/k) x 

G(N/k). By the Cebotarev Density Theorem, the set of primes 8 of KN with 

Ae 
  = (o,T) has positive density. We may assume that $B is unramified over Q.
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Let p= BNQ and p = PNK. Since (0,7) € G(KN/k) and k/Q is normal, p splits 

completely in k, say p = p,...p; where p,; = p. Since (AZ) = (0,T)|k = 0, P 

stays prime in K. Also, (AE) = (o,7T)|w =7T yielding p ~ qin k. By Lemma 3, 

p does not become principal in K. Since K/Q is normal, each p; stays prime in K 

and no p; becomes principal in K. If 1 = 2 or 3, it is clear that p is irreducible in 

kK. Assume now | = 5 and pj 2 is principal in K. Since G(k/Q) is transitive on the 

prime factors of p, there exists an automorphism o of k/Q of the form o = (12abc) 

where {a,b,c} = {3,4,5}. Note o? maps pip2 to p,p, so that p, is principal in K, 

contrary to assumption. 

Coro.iary 1. If K is a normal quartic number field with quadratic subfield k, such 

that K ¢ N and there is a prime of k which does not become principal in K, then 

there are infinitely many rational primes which split into two primes in K and are 

irreducible. 

Proor: Immediate from Theorem 1 with | = 2, since K Z N implies KANN =k. 

For the remainder of this chapter, we specialize to the case where K is a bicyclic 

biquadratic field and kop, k;, and kz are its quadratic subfields. 

LemMa 4. Let p be a prime which splits completely in K. Then p is irreducible in K, 

if and only if, for each 1 = 0,1,2, the prime factors of p in k; are not principal in K. 

Proor: Suppose p = PoP; P,P3 in K and p; = P3N k; for 1 = 0,1,2. We may number 

Po, Py and P, so that p; = P;P3 for i = 0,1 and 2. If p is irreducible in K, then no 

subproduct of Py, P,, P2 and P3 is principal in K, so in particular, p; is not principal 

in K for 2 = 0,1, and 2. 

Conversely, assume no p;, 27 = 0,1 and 2, is principal in K. Then no subproduct 

consisting of one or two P,’s can be principal, so no subproduct of the P;,’s is principal. 

Thus p is irreducible in K.
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Lemma 5. If in each k;,2 = 1,2 there exists a prime p; which splits completely and is 

nonprincipal in K, then there is a rational prime q which splits completely in K and 

has prime factors in both ky and ky which are not principal in K. 

Proor: Let p; = PP! in K fori = 1,2, pi = P2Nk and pj = P, N ky. If for either 

F/K 
L ) #1, then set g =p; Q = pi NQ. Thus we may assume that 

(£IK) - (#iK) | 
Pi Pp J 

By hypothesis (=) #~ 1 and (==) #1. Thus (—) # 1 and so the 
2 

Pd 

1 IF 

ideal py pj is in a class of k, which does not become principal in K. Similarly, p.p} 

rk _ 

  2 = 1 or 2, 

    

    

  belongs to a class of kz which does not become principal in K. Let 7 = ( 

  

P,P» 
F/K F/K 
(=) ( f ) and use the Cebotarev Density Theorem to obtain a prime ideal 

1 2 

@ in F such that ae = T. Setg=QNQ and gq; = QN Kk; for: = 1,2. Since 

Fi/k;   T\|x = 1, q splits completely in K. By Lemma 1, Trlr, = ) for 2 = 1,2. Since 

  
F/K\ , F/ ky = t f = { ——]. H ~ i. (a) it follows from Lemma 1 that 7|,, ( pips ence qi ~ Pip} 

Similarly, q2 ~ pop}. Thus q splits completely in AK and has prime factors in both ky 

and ky which do not become principal in K. 

THEOREM 2. Assume that k, and kz satisfy the conditions of the previous lemma. [f, 

in addition, kp contains a prime ideal po which splits completely in K and belongs to 

an ideal class whose square is not principal in K, then K contains an sci prime. 

Proor: Let P be a prime divisor of po in K, py = PN and pp = PNky. If 

(==) Z1lF (=) we are done. Thus we may assume (=~) = 1. By 
1 2 , 

Lemma 5, there exists a prime Q in K of degree 1 and index 1 over Q such that 

¢ F/K 
(=) z1f (==) where q; = QN &; for 2 = 0,1,2. If (=) # 1, then 

1 2 0 
F/K F/K 

QN Q is an sci prime. Assume (=) =1landleto= (ae ) T= (a ). If 
0 
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F/K 
( l ) = 1, then set 6 = or’. If () #1, then set 9 = or. By the Cebotarev 

P2q2 P2qe2 

F/Q Density Theorem, there exists a prime £L of F' with c 

[; = £0 k; for: = 0,1,2. Since 6|x = 1, | splits completely in K. 

|=0 Let 1 = £NQ and 

We now show that / is irreducible in K. Let 7 = 1 or 2 so that 6 = or’. By 

Fi /k; Fy /k; 7 ; 
Lemma 1, ( l ) = 6|p = oT |p. = ( “2 so I; ~ q;p; in k;. Thus for 7 = 1, 

8) = (= (8) (AY = (8 
(i) (a) =) (RY 
)~ ) Y (GB) 

By Lemma 4, / is irreducible in K. 

Example: K = Q(/—13, V—14), ko = Q(V/182), ky = Q(./—13) and ky = Q(/—14). 

Here hy = hg = 2 and H(kp) is cyclic of order 4. We will show in the next section 

    

  

For 2 = 2, 

  

For 1 = 0, 

  

that no nonprincipal class of any subfield becomes principal in K. It follows from 

Theorem 2 that K contains sci primes. 

84. Classes which become principal. 

In this section we determine precisely which ideal classes of a quadratic subfield 

k of an imaginary bicyclic biquadratic field K become principal in K. Since only 

classes of order 1 or 2 in k can be principal in K, all classes which become principal 

are ambiguous for k/Q. When k is imaginary, all ambiguous classes contain an 

ambiguous ideal, i.e., an ideal whose prime factors are ramified over @. When & is 

real, either all or half of the ambiguous classes contain ambiguous ideals. However, 

when k is real, it follows from Washington [13] that at most one nonprincipal class of 

k can become principal in K.
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Since the problem is trivial unless h(k) > 1, we may assume that K 4 Q(V3, V/—3) 

and K £ Q(Vv2, V=2). 
We shall adopt the following notation for the remainder of this chapter: kp = 

Q(/m),ky = Q(./n) and ky = Q(Vn’) with n < 0, m > 0 and n’ = mn/d’. 

Here m,n, and n’ are square free elements of Q and d = (m,n). Also < 7 >= 

G(K/ko) and <0 >= G(K/ky). 

Lemma 6. If A = (a) is a nonzero principal ideal of K which is ambiguous for K/ko, 

then a can be chosen to have one of the following forms for some 8 € ko: 

(i) a= 8. 

(ii) a= Vas. 
(iii) a = (14+2)£. 

If, in addition, A is ambiguous for K/k,, then there is a unit  € ko such that 

a? = pa when (i) or (ii) hold and a’ = —ipa when (iii) holds. Moreover, 8 can be 

chosen so that uw = +€ with 7 = 0 or 1. 

Proor: Since A is ambiguous for K/ko, (a) = A = A™ = (a7). Thus a” = pa for 

= |u| = 1. Also K/Q some unit w in K. Since 7 is complex conjugation on K, 
    

ar . 
is abelian, so all conjugates of — have absolute value +1. Thus yp is a root of unity. 

a 

By our assumptions on K, p is a 2nd, 3rd, 4th or 6th root of unity. 

If u = 1, then a = a” anda E€ kp. If wp = —1, then a = af/n+ bn! = 

Jn (a4 ivi), for some a,b,€ Q. When p® = +1,(a*)’ = p?a® = ta®. Thus 

a® € ko or a® = \/ny where 7 € ko. Since [K : ko] = 2, either a = 8 or a = /nB for 

some £ € kp. 

Ife = ti and a = a+b/—m+e/m+ei, then a—b/—m+e/m—et = a” = tia = 

te t+c/—m Fb f/m + ai. Thus e = Fa and b = Fc, yielding a = (1 Fi)(at+ c/m). 

Since (1 —7)t =i +1, we may write a = (1+2)8 with 8 € ko.
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Now suppose that A is also ambiguous for K/k,. Then (a) = (a”) and a’ = wa 

for some unit w € K. Ifa = 8 ora = Jn, then B? = wf, sow = " € kp. Here 

we set up = w. If a = (1 +2), then (1 —2)8% = a? =wa =u(14+2)8 = w(l1 —2)8. 

Thus 6° = iwf. Setting p = iw = = we have pu € kg and a” = —ipa. 

Since  € ko, we may write up = +e7+?, where j = 0 or 1 and € is the fundamental 

unit of kg. Now 87 = uf, so (eB)? = (€)°B? = +(e) e478 = + Nx, /Q(€*)e? (eB). 

Hence, if 8 is replaced by ¢'8, then p = te’. 

Lemma 7. Let A = (a) be a principal ideal of K which is ambiguous for both K/k, 

and K/ko. Let 8 and pu be determined as in Lemma 6. Then for some c € Q: 

A = (c), (c/n) or (c(1+7)) if = 1, 

A = (em), (eVn’) or (c(1 + i), fm) if u = —1 and 

A = (c(e? £1)), (eVn(e? £1)) or (c(1 +2)(e? £1)) if = te. 

Proor: When p = 1,8" = 8 and 8B € ki N kyo = Q. Thus 8 = c for some c € 

Q. If p = —1, then B = cfm. When p = +e, let B = a+ b6/m and e = ut 

vi/m with a,b,u,v € Q. Then a—b/m = 8? = pB = (ut vJ/m)(a t+ b fm) = 

+ [(ua + bum) + (ub+ av)f/m] and —b = +(ub+ av) so —av = b(u+1). Hence 

—vB = but 1) —vbf/m = bl{(u—vf/m+]1] = b(e* +1). Setting c = —b/v yields 

PB = c(e? +1). The results follow from Lemma 6. 

Lemma 8. If p = +e, then N(e) = +1. 

Proor: Since 8° = te8, B = te? 8? = (He’)(te)B and e't? = N(e) = +1. 

When N(e) = +1, there are two integers a, and a2, unique up to associates, such 

that ajaq = /me or V4me and € = a?/N(a,) = —a3/N(a2), see Barrucand and 

Cohn [2]. Since e(e? +1) =€+1, € = (€4+1)/(e? +1) = (€+1)?/N(e4 1). Similarly, 

e = —(e— 1)?/N(e—1). Thus (€ +1) = (ri)(a1) and (€ — 1) = (r2)(a@2) for some
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rational integers ry and rz. Set my = |N(a1)| and m2 = IN(a2)). Then m,; and m, 

are called principal factors of the discriminant of ko. 

Let C' be an ideal class of the imaginary quadratic subfield k, which becomes 

principal in A. By Lemma 3, Cis an ambiguous class for k,/Q. Since k, is imaginary, 

every ambiguous class is strongly ambiguous, so we may choose an ideal A in C such 

that A is an ambiguous ideal for k,/Q. By removing rational factors, we may assume 

that A is square free and only divisible by prime ideals which are ramified over Q. 

Lemma 9. Let A be a square free ideal of k,, without rational factors, which be- 

comes principal in K and is ambiguous for k,/Q. If w = te, then Ny,jQ(A) = 

my, —n/my,, —4n/m1,m2, —n/mz2 or —4n/m2, except when i € K, then m,/2, 2m,, 

m,/2, and 2m are also possible. 

Proor: Set a = N,,/Q(A) and note that a divides the discriminant of k; and that a 

is square free. It follows from Lemma 7 and the remarks preceding this Lemma that 

ais c’r?mo, —c?r?nmpo or c?r?2mpo where r is a rational integer and mp = m, or mp. 

2r? — 1 and a = m, or m2. In the other cases, c?r*d? = 1 where In the first case, c 

d = (n,mo) or d = (2,mo). Hence a = —nmo/d* or a = 2mo/d*. By assumption 

aln or al4n. If aln,a = —nmp/d’, and i ¢ K, then mg also divides n and mp = d 

yielding a = —n/mo. Similarly, if al4n but a { n, then mp = a = O (mod 2) and 

a= —4n/mo. If i € K and a = 2mo/d?, then d = 1 or 2, so a = 2m or mo/2. 

Lemma 10. Ifi ¢ K, then the unit index p = 2 if and only ifn = —m, or n = —my. 

When i € K, p = 2 if and only if 2 is a principal factor in kp. 

Proor: In Kuroda [12] it is shown that //e = 1/2 (/N(e+1) + —N(e— D) = 

1/2(r1.f/my + r2,/mg). In Satz 12 of [12], it is shown that p = 2 if and only if there 

exists a root of unity w € K with w ¢ K such that /we € K. Ifi ¢ K, takew = —1 

and \/—e € K if and only if /—m, and /—m2 € K, i.e., if and only if n = —m, or
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—mz and n’ = —m, or —m,. If i € K, the result is immediate from Satz 13 of [12]. 

THEOREM 3. Let D be the set of divisors of Ag and let N be defined as follows: 

{1,-n} ift¢ K and p=1, 
N=<¢ {1,2} ift€ K and p=1, 

{1} if p = 2. 

Then |DMN| is the number of classes of the real subfield kg which are principal in 

K. 

Proor: Let A be an ideal of kp which is principal in K. Then A is ambiguous for 

K/ko. By Lemma 6, A = (a) where a = (a+6,/m), /n(a+b./m) or (1+2)(a+b/m). 

In the first case A is principal in ko. In the second and third cases A = (a+ b\/m)B 

where N(B) = —n or N(B) = 2. If N(B) = —n, then in K, B = (/n). Since (Jn) 

is an ambiguous ideal for K/Q, B is ambiguous for kj/Q. Thus —n € D. If p= 1 

and 2 ¢ K, then —n # m,mj, nor m2; hence, B is not principal in ko. If i € K or 

p = 2, then B is principal in kp. 

Similarly if: € K and N(B) = 2, then B = (1+7) in K and B is ambiguous for 

K/Q. Thus 2 € D. If p = 1, then B is not principal in kg, but the class containing B 

becomes principal in K. However, if p = 2, B is principal in kg and no nonprincipal 

class is principal in K. 

TuHEorEM 4. Let D be the set of divisors of the discriminant of the imaginary quadratic 

field k = Q(./n) and let M be defined as follows: 

{1,m} ift ¢@ K and p = 2 or N(e) = —1 
{1,2} ift € K and p= 2 or N(e) = —1 
{1,m31,m2,m} ift¢ K,p=1 and N(e) = 41 

{1,m1,2,2m,} ifte€ K,p=1 and N(e) = +41. 

Then |D 1M M| is the number of classes of k which are principal in K. 

M= 

Proor: Let C be a nonprincipal class of k which becomes principal in K’. Since k is 

imaginary, we may choose an ambiguous ideal A in C’ such that A is square free, that 

is Nxjq(A) € D.
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Ifz ¢ K and N(e) = —1, then it follows from Lemmas 7 and 8 that = —1 and 

A = (Vm) or A= (Vn) in K. Thus Nyjg(A) = m or —n’. Since d?n’ = mn, these 

norms represent ideals from the same class. It follows that one nonprincipal class 

of k becomes principal in K if and only ifm € D. Ifi € K and N(e) = —1, then 

p= +1 and A = (Ym),A = (142), or A = ((1+72)m) in K. But n = —m, so 

(./m) = (./—m) is principal in k. Since C is nonprincipal in k, A = (1+). Thus an 

ideal of k becomes principal if and only if k contains an ambiguous ideal with norm 

2. If N(e) = +1 and p = 2, then as in Lemma 9, Ny/g(A) can also be m; or m2, but 

this ideal is in the principal class of k by Lemma 10. Thus the only possibilities for 

a nonprincipal ideal A are the same as above. 

If N(e) = +1 and p = 1, then by Lemma 10, neither principal factor of ko is 

the norm of a ramified principal ideal of k. If i ¢ K, then Lemmas 7 and 9 give the 

possible values of Nxjg(A) as: m, —n’, m1, m2, —n/my,, —n/me, —4n/m 1, —4n/m2. As 

above the ideals with norms m and —n’ are in the same class. Likewise, the ideals with 

norms m, and —n/m,, m2 and —n/m2,m, and —4n/m,, and m2 and —4n/mz are in 

the same class. Thus the numbers m,my,, and mz represent all of the possible distinct 

classes which become principal in K. Since the prime divisors of A are ramified over 

Q, each number occurs as the norm of A if and only if it is in D. It follows that 

|D ™M| is the number of classes of k which are principal in K. 

If 7 € K, then the ideal with norm m is principal in k. Since p = 1, Lemma 10 

shows 2 is not a principal factor of kg so 2,m ,, and mz are distinct. The possibilities 

for N(A) are: 2,m/2,2m,mj,,m/2,2m,, m2, m2/2, and 2m2. The ideals of k having 

norms 2,m/2, and 2m are necessarily in the same class. Also ideals of k having norms 

my, and mg, or m,/2,m2/2,2m,, and 2mz are in the same class. However, if they exist, 

ambiguous ideals with norms, mj , 2, and 2m, must be in distinct nonprincipal classes 

which become principal in K. Thus |DMM| is the number of classes of k which are
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principal in Kk. 

The order of the subgroup of H(k;) consisting of those classes which are principal 

in & will be denoted by 2” for 7 = 0,1 and 2. Theorems 3 and 4 tell us that 

O<ro<land0<r; < 2 for2 = 1,2. Relations between the r;’s with be obtained 

in the following corollaries. To simplify notation, we will number the imaginary 

quadratic subfields so that rg < rj. 

Corottary 1. Suppose r; = 2. Then ro = 1 if and only if n' = —1 or —2, ho > 1, 

p= 1 and 2|Ao. If hz > 1, then r2 = 1 if and only if 2 is totally ramified and 2 is a 

principal factor of kg. Alsorg+r2 <1. 

Proor: By Theorem 4, r; = 2 when there are nontrivial principal factors m,; and m, 

such that m,-m2|A,. By Theorem 3, ro = 1 if and only if p = 1 and n|Ag when: ¢ K 

or 2|Ay when 7 € K. Since m|Aj, if n|Ao, then n’ = —1 or n’ = —2. Conversely, the 

conditions are sufficient to have ro = 1. However, when kz = Q(t) or kz = Q(/—2), 

hp =1 and rz =0. 

Suppose rz = 1, then m,|Ay. However m,|A; and m,|Ao, so m, = 2 is the only 

possibility. If re = 1, then hz > 1 and n’ 4 —1 or —2. Thus rg +r2 <1. 

Corotiary 2. If ry = 1, then rz = 1 if and only if hz > 1 and one of the following 

conditions is satisfied: 

a) m =2 or m, = 2 and 2 is totally ramified in K, 

b) m,|A, and m2|Ao, 

c) m|Ay,m, = 2,2 ¢ A, but 2{A. 

Proor: Suppose hy > 1 som # —n. Since r; = 1, exactly one of m,mj, or m2 

divides A,. In order to have a class become principal from kz as well, p = 1 and 

one of these numbers must divide Aj. Up to renumbering the imaginary quadratic 

subfields, conditions a, 6 and c are the only way this can occur.
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Corotiary 3. If ro = 1 and n’ < —2, then r; # 2. Moreover, r; = 1 if and only if 

m,|A,. Also ry = rg = 1 if and only if 2 is totally ramified in K and one of the 

following conditions is satisfied: 

a) m, = 2, 

b) m, = —2n and m2 = —n'/2, 

c) my, = —n/2 and m2 = —2n’, 

d) m, = —n/2 and mz = —n’'/2. 

Proor: Suppose rp = 1 and hz > 1. It follows from Theorem 3 that p = 1 and n|Ao 

with n # —m, or —mz. Since n’ < —2 and mn = d’n', m ¢ Ay. Hence ry # 2. 

From Theorem 4 we see that r; = 1 if and only if m;/A;. Moreover, if r; = r2 = 1, 

then either m, = 2,2|A, and 2|A, or m,|A,, m1 ¢{ Ag, but m2|A>2. In the first case, 

2 is obviously totally ramified in AK. Assume m,|A,; and m2|A9. Let p be an odd 

prime with pln, then p|m but p { n’ so p ¢ m2. It follows that p|m, if and only 

if pln. Similarly, for an odd prime q,q|mz if and only if g|n’. Since m; # —n and 

mz # —n',m, = —2n or —n/2 and mz = —2n’ or —n'/2. In each case 2|A; for 2 = 0,1 

and 2. If my = —2n and m2 = —2n’ then m = mym2/4 = nn’ = 3 (mod 4). But 2 

is totally ramified in K, so n = n' = 3 (mod 4) contradicting m = 3 (mod 4). Thus 

m, and m2 cannot both be even, leaving conditions 6,c and d. 

Since p = 1, the converse follows immediately from Theorem 4. 

§5 Applications of Genus Theory. 

In many cases Theorems 2, 3 and 4 enable us to determine whether or not an 

imaginary bicyclic biquadratic field AK contains sci primes. However, when the square 

of every ideal in each subfield is principal in K, these theorems do not apply. For 

example, we shall see that 53 is an sci prime in K = Q(/—15, V10) even though 

ho = hy = ho = 2. On the other hand, we shall see that K = Q(V/—22, /—35)
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does not contain sci primes even though each subfield contains a prime which splits 

completely and remains nonprincipal in A. The genus structure of the quadratic 

subfields will be used to obtain these results and determine which imaginary K contain 

sci primes. 

The genus of an ideal A of norm a in a quadratic field k = Q(Vd) is determined 

by the values of Hilbert’s norm residue symbols. If l,,...,1, are the prime divisors 

a,   for 2 = 1,...,t (see 

(*) is the usual 

of the discriminant of k, then k has generic characters 

Hancock [7] for details). When I; is odd and (a,/;) = 1, (“*) 
  

Legendre symbol. Similarly, if a is odd and J; = 2 

=) if d = 3 (mod 4), 

2 . 
=) if d/2 = 1 (mod 4), 
a 

=) if d/2 =3 (mod 4). 
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To simplify notation, define ( 

    

  

Jal) 
_— 2 2 1 1(a,d), then (4) = (=84LE). also (be) = (Sef) = 

The sequence a yess ““) is called the character system of the integer a 
1 t 

  in k. When a is the norm of an ideal in k, then J];_, (“*) = +1. The collection 

of all 2'-! possible character systems with positive product form a group with the 

obvious multiplication. This group is called the group of characters for the field k 

and denoted by G,. 

When k is imaginary or when k is real and \ = 1, then the character-system for 

the ideal A is the character-system of a = Nzsg(A) in k. However, if k is real and 

\ = 0, then the character-system of A must be normalized. One way to accomplish 

this is as follows: Suppose 1, = 3 (mod 4). Then for each J; = 3 (mod 4) we replace
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    (=) with the product (=) (“*) in the character-system. If d = 3 or d/2 =3 

(mod 4), then the character at 2 is also normalized in the same manner. Since the 

normalized character at 1, will be always positive, we need only consider the remaining 

t — 1 characters. Again these t — 1 values must have positive product when a is the 

norm of an ideal in k. The collection of all 2'~* such possible normalized systems will 

be called the group of normalized characters of k and denoted by G\. 

All ideals in a given class have the same normalized character-system and all 

classes with the same character—system belong to one genus. Thus there is a one-to- 

one correspondence between the genera of k and the group of (normalized) characters 

of k, with the genus of an ideal determined by its character-system. The principal 

class belongs to the principal genus which has a character-system consisting of only 

positive units. It is worthy of note that the square of every class is in the principal 

genus and every class in the principal genus is the square of some class. 

In order for a rational prime p to split completely in k, the character-system of 

p in each subfield must have positive product. If, in addition, the character-system 

of p in each k; places a prime factor p; of p in a genus which contains no class which 

becomes principal in k, then p is an sci prime. If for some i,p; is in a genus which 

only contains primes which become principal in K, then p is reducible in K. 

In the first example, K = Q(/—15, V10), the primes above 53 belong to the 

nonprincipal genus in all three quadratic subfields while Theorems 3 and 4 show that 

all nonprincipal classes of each subfield remain nonprincipal in A. Thus 53 is an sci 

prime. 

For K = Q(/—22, /—35) we number the subfields so that ko = Q(V770), ki = 

Q(/—22) and kz = Q(./—35). The possible character systems for ideals in each of 

the subfield are listed in the chart below.
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Since ho = 4 and hy = hz = 2, each field has one class per genus. Thus K contains 

sci primes if and only if in each subfield the class belonging to the genus listed on the 

last line of the chart does not become principal in K. By Theorem 3 the ideals of ko 

with norm 22 and 35 become principal in K. However, an easy computation shows 

that these ideals are in the genus of kp which is listed on the bottom line. Thus every 

prime which splits completely in K belongs to an ideal class in some subfield that is 

principal in AK. Hence K contains no sci primes. 

THEOREM 5. If each quadratic subfield of K contains primes that split completely in 

K, but do not become principal in K and if, for some j, there is a class in the principal 

genus of k; that does not become principal in K, then K contains sci primes. 

Proor: Since K/k is unramified for at most one subfield, we may assume that K/ko 

and K/k, are ramified extensions. 

If 7 = 0 or 2, then the class group of this field has a cyclic factor of odd order or 

it contains an element of order 4 whose square is the element of the principal genus 

which does not become principal in K. Since A/k; is ramified, every class contains 

primes which split in kK. Thus Theorem 2 may be applied to show that 4 has sci 

primes. 

Assume now that every class in the principal genus of ko and of ke is principal 

in K. Thus 7 = 1. If K/k, is ramified, the result follows as above. Hence we may 

assume that K/k, is unramified. This occurs only when Gp and G2 have no common
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characters so Go X G2 C G,;. Moreover, the elements of Go x G2 correspond to the 

genera of k, which contain primes that split completely in AK. Here kg and kz, must 

each have a genus which contains no ideals that. become principal in K. There exists 

an element a in Gp x G2 which corresponds to this genus in both kp and kz. Since 

the principal genus of k, contains a class that does not become principal in K, every 

other genus of k; contains such a class. Let p be a rational prime whose divisors in 

k, belong to a class in a@ which does not become principal in k,, then p must be an 

scl prime. 

Corotiary 1. Assume h; > 2" for 1 = 0,1,2 and that for some j there is a class in 

the principal genus of k; which does not become principal in K. Then K contains sci 

primes if and only if one of the following holds: 

a) K/k, is ramified, 

b) hy/|Gy| > 27-®, 
/ / 

c) r; =2 and (=) + (=) < 2, 
my m2 

d) r; = 2, (=) = (=) = 1 and h, > 8, 
my m2 

/ 

e) r; =1 and ~ =-—-1, 

3 N
e
 

n! 

f) r; = 1, (=) = +1 and h; > 4. 

Proor: Suppose a) holds. Since K/k; is ramified for 7 = 0,1 and 2, every class in 

each subfield contains primes which split completely in AK. There is a class in the 

principal genus of k; which is not principal in A. Thus Theorem 5 applies to show 

that AK contains sci primes. 

Next suppose that b) holds. Since h,/|G,| is the number of classes in each genus 

of k, and 27!~-*: is the number of classes in the principal genus which are principal in 

K, not all classes in the principal genus of k, can be principal in A. Thus k, contains 

primes which split completely in K and are not principal. Theorem 5 applies to show
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that AK contains sci primes. 

Assume for the remainder of the proof that h,/|G,| = 2~*! and that K/k, is 

unramified. This implies that ho/|G6| > 27-*° or h2/|G2| > 272-%2 and it follows 

from Theorem 4 that r; > 0. In order to use Theorem 5, we must show that each 

of conditions c), d), e), and f) implies the existence of classes in k, which do not 

become principal in K, but contain primes that split completely in K. If ry = 2 and 

(=) + (=) < 2, then only half of the classes of kj which become principal in K 

contain primes which split completely in K. Since h,/2 > 27!~!, k, contains classes 

which do not become principal yet split completely in K. If (=) = (=) = +1, 

then all the classes which become principal in K, split completely in Kk. Thus when 

hy = 8, all the classes which split in K become principal in kK’. It follows that K_ 

contains sci primes if and only if h, > 8. 
/ 

If r; = 1 and (=) = —1, the nonprincipal class of ky which becomes principal 
m 

in K does not split in K. Thus h; > 2" implies that K contains sci primes. On the 
n' 

other hand, if (=) = +1, then the nonprincipal class which becomes principal in K 

splits completely in K. Here k; contains primes which do not become principal in 

and do split completely in K, if and only if h; > 4. 

Since K contains sci primes only if, in each subfield there are primes which split 

completely in K and are not principal in K, it is necessary that one of the condition 

a), b), c), d), e), or f) holds. 

Let G be a subgroup of G; x G2 such that a € G if: 

1) For each odd prime | dividing A; and Ag, the values of the common character at 

l are equal. 

2) For 1 = 2 dividing A; and A, but not Ao, the values of the common character at 

2 are equal. 

If 2 is totally ramified in K(é = 1), then an element of G will contain two distinct
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characters at 2 and they are not considered to be a common character. Thus |G| = 

Qttte—2-s+> where s — 6 is the number of common characters. 

If | is a prime divisor of Ap such that 1 ¢ (A,, A), then there is exactly one 

coordinate of a € G corresponding to the prime I. 

Define a function f; : G — Go by fi(a@) = @ where the coordinate at / in @ is the 

coordinate at | in a. If 2 is totally ramified, then the character value at 2 in 8 in the 

product of the values for the characters at 2 in G; and G2. Now, ( is an element of 

Go if the product of the character values is +1. Since each element in G; and G2 must 

satisfy the product condition, a has an even number of negative coordinates. The 

common coordinates are required to have the same sign, so the number of negative 

values in the non-common coordinates of a is also even. These are precisely the 

coordinates which determine the sign of the product in £. 

Since we are interested in Gg not Go, we will define fo : Go — Gg to be the 

normalization map and f = f, 0 fo: G — Gp. Notice that f; and fo are both 

homomorphisms in each coordinate. Thus f,, fo and f are homomorphisms. While 

fi may not be onto, fo is clearly onto and we will show that f is onto as well. 

Lemma 11. If (A,, Az) #1, then f; is onto. 

Proor: Let 8 € Go, then 6 has an even number of coordinates with negative values. 

If 2 is not totally ramified or if 8 has a positive 2-coordinate, then the negative 

coordinates of @ may be partitioned into two subsets, those coordinates which occur 

in G, and those which occur in Gz. These sets have the same parity. If each has an 

even number of elements, then choose a; € G; and a2 € G2 such that all common 

characters, and the character at 2, if 2 is totally ramified, are positive. For all other 

coordinates set them equal to the values in @. If the parity is odd, then choose a, and 

a2 such that the values at one common character or the characters at 2 are negative
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and all other common characters have positive values. Again set all other coordinates 

equal to the values in 7. In this way we obtain a = (a, a2) such that f;(a) = £. 

If 2 is totally ramified and the 2-coordinate of ( is negative, then the 2-coordinate 

of a; must be the negative of the 2-coordinate of a2 and the partitioning as above of 

all the negative coordinates except that at 2 gives sets with opposite parity. Choose 

an a, € G, so that all common coordinates have positive value, the value of the 

2-coordinate is the product of the values of the other coordinates of 8 from G, and 

the remaining coordinates have values identical to their values in @. Choose az € Gz 

in a similar manner. This gives an a € G which maps to £. 

LEMMA 12. The function f is always onto. 

Proor: If (A;,A2) > 1, then the result follows from Lemma 11 and the remarks 

proceeding it. 

Suppose (A,, Ay) = 1. Then either A; or A, is odd. Assume A, is odd. Then 

|n| = 3 (mod 4) and there is a prime 1], = 3 (mod 4) such that 1,|A,. Also 1,|Ap and 

the character-system for ky must be normalized. Let u be the number of characters of 

ko which are normalized and note that u is even. Let ],,...,1, be the prime divisors of 

Ao corresponding to these characters and use J, to normalize. Since |n| = 3 (mod 4), 

an odd number of these /; must divide A;, and hence, an odd number must divide Ag. 

For B’ € Go, choose 6 € Go such that fo(f8) = 6’. Partition the coordinates of @ into 

two sets, one corresponding to the prime divisors of A, the other corresponding to 

the prime divisors of A . If each set has an even number of negative coordinates, then 

there is an a € Go with f,(a) = 8 so f(a) = 6’. If both sets have an odd number 

of negative coordinates, then form a new £ by changing the signs of the coordinates 

at 1,,...,1,. We now have a @ with an even number of negatives in each set and 

fo(B) = B’. As above choose a € G with f(a) = f.
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Lemma 13. The kernel, K;, of f has order 2°~. 

Proor: |G;| = 2471, |G | = 2-1 and |G4| = 2%-?+*. Using the definition of s and 6 

we can write to = ty} +t2 -—28+6. From above, |G| = 2¢~!+t2—1-(s-§) — gtatta-2-s+5 _ 

IG 
IGo| 

We will use f to determine if there is a rational prime p and a genus in each 

Q*ts~2 so |K;| = = 2°,   

subfield containing a prime ideal p; above p which does not become principal in Kk. 

To this end we will call a genus of k; bad or good depending on whether or not it 

contains a class of k; which is principal in K. Let B; be the set of bad genera of kj. 

An element of G will be called bad if the restriction to G; or Gz induces a bad genus; 

otherwise, it will be called good. The function f will be called good if there exists at 

least one good element of G which is mapped to a good element of G5. Obviously, if 

f is good, infinitely many sci primes exist. 

Let 2** denote the number of bad genera in k; for 1 = 0,1,2. Since each class 

is contained in a genus and the bad classes form a subgroup of the class group, B; 

is a subgroup of the genus group and R; < r; for 2 = 0,1,2. Thus the Corollaries 

to Theorem 4 can be used to determine the maximum values for Ro, R; and R, and 

under what conditions these values can occur. Since f is good only if each k; contains 

a good genus, we may assume R; < t; —1 for: = 1 and 2, Ro < tp -2+4+ 4, and 

that each discriminant has an odd prime divisor. We will also assume that R, > Ro, 

renumbering the imaginary fields if necessary. 

LEMMA 14. The number of bad elements of G is at most b where 

» 2o-s (Qhitte-1 4 QRetu-1) 1 ift; $s—b F to. 
| 26-8 (QRitte 4 gt-1) _ 4] iftp =s—6. 

Proor: Suppose t; 4 s—6. Then 24:~!~(-4) elements of G induce a single element of 

G2, and 2” (2%-1-(s-8)) elements of G induce elements of Bz. Similarly, if t2 4 s—6,
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then 2”: (Q'2-1-(s-8)) elements of G induce elements of B,. Since the principal element 

of G induces the principal element of G, and G2, 1 is subtracted from the count and 

line 1 follows. However, if tg = s—6, then an element of G, is induced by at most one 

element of G and only half the elements of G; are induced by elements of G. Since 

the bad genera of k,; form a subgroup of G), either all or half of the elements of B, 

are induced by elements of G. Thus, at most, 2”! elements of G induce elements of 

B,. Since tz = s — 6, (Ao, Az) = 1. It follows from Theorem 4 that no nonprincipal 

-1—-(s-6) elements of G induce ideal of k, becomes principal in K, i.e. Rg = 0. Thus 2% 

the bad element in G2. Since this includes the principal element of G, 1 must be 

subtracted and line 2 follows. 

Define a function 

_ Dtitte—2 _ 9t2-1+Ri _ Ot1-1+R2 + gs— _ 928+Ro—(5+4) if ty A 8 fF to or 6 = | 

g= Qtitt2—2 _ 9tet+Ri _ gti-1 4 ote _ 92te+Ro—(6+A) if tz = s and 6 = 0. 

THEOREM 6. For a given field K, if g > 0, then f is good. 

Proor: The number of good elements of G is at least |G| — b. Also f maps 2%°|K;,| 

elements of G to bad elements of Gj. By Lemma 13, || = 2°-*. Since the principal 

element of G is counted in both b and |K,|, g = 2°-°(|G| — 6 — 2%°|K;|) > 0 implies 

that there are more good elements in G than can be mapped to elements of Bo; thus 

f is good. 

Corotiary 1. If s— 6 =0, then f is good when g > 1 — 2™+2, 

Proor: Since s—6 = 0, B, x B, C G and 2*:+*2 elements of G induce bad elements in 

both G, and G2. Thus the estimate for 6 in Lemma 14 can be improved by 2%:+2 —] 

elements. 

Corotary 2. If s—6=1, then f is good when g > 2(1 — 2+F2-1), 

Proor: Since s — 6 = 1, k; and kz have one common character X. Because X : B; —
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{+1} for « = 1,2 is a group homomorphism, either all or exactly half the elements of 

B; will have value +1 at X. Thus |B, x B,NG| > 1/2|B, x By| = 2":+*2-1, Again the 

estimate for b can be improved and f is always good when g > 2°-°(1 — 27:+#2-1) — 

2(1 — 271+%2-7), 

Corotiary 3. If |K;| > |G2| and R, = 1 or if |K;| > |G,| and R, > 1, then f is good 

when g > —2°-°. 

Proor: Suppose |/;| > |G2|. By looking at the inducement map to G2 restricted to 

Ks, we see that either every element of G2 is induced by an element in Ky or the 

principal element of G2 is induced by two or more elements in Ky. Since R2 = 1, at 

least one nonprincipal element of Ky induces an element in Bz. Thus f is good when 

g = —2°°. 

The proof is identical for |K;| > |Gi]. 

Coro.iary 4. If tz = 2 and R, = 0, then f is good when g > —2":. Ifs —6 =?t, = 2, 

then g > —2":+1 is sufficient. If tg = 2 and Ro = 1, then g > —2**-*-> is sufficient. 

Proor: Let Bi be the subgroup of G containing those elements which induce bad 

elements of G; fori = 1 or 2. Since tz = 2, Bj consists of those elements with positive 

values at both coordinates in G2. Hence the product of any 2 elements of G — Bj, is 

in B). In particular, [Bi : Bi N Bi] < 2. Thus f is good when g > —2°-°-}|Bi|. It 

follows from Lemma 14 that 

Bi] = QRitte—-I-(s-) if t2 As — 6. 
NM | gRitte-(s-8) if f2 =s—6. 

Similarly, [K; : K; Bi] < 2. Thus f is good when g > —2°°"'+*0lk;| = 

__92s—6—1+Ro~d _ _92s—5-d when Ro —]. 

Corotiary 5. Iftg + 1 =3 and R, = 2, then f is good when g > —2". 

Proor: When R, = 2, Theorem 4 requires that m|Ay. Since to + \ = 3, there exists
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either a prime pi; = 1 (mod 4) or two primes p2 = p3 = 3 (mod 4) which divide m. 

In the first case, an element is in Ky if and only if its character value at p,; is +1. 

Thus any two elements of Bj which are not in Ky, have a product which is in Ky. 

In the second case, pz normalizes the character at p3, so an element of G is in Ky 

if and only if the character value at p2 equals the character value at p3. Again, the 

product of two elements not in K; is in K;. Thus [B, : B}N Ky] < 2. It follows that 

|B, 1 Kr| > 1/2|By|. Thus f is good when g > —2°~* (2%), 

Corotiary 6. If tz = 2, t9 +A = 3 and R, = 2, then f is good when g > —8 429-641, 

Proor: Corollary 4 estimates |B} Bj| and Corollary 5 estimates |B, M K;|. Since 

Lemma 14 assumed that only the principal element was in B} N BLM Ky, we may 

improve our estimate by |B, N B3| + |B, N K;| —2. 

Corotuary 7. If s = tz, then f is good when g > —2°~* (2)+2-* _ 1). 

Proor: If 6 = 0, then G ® Go x Go. If 6 = 1, then G & Gj x G. where the 2- 

coordinate of Gj is the 2—coordinate of G; and the other coordinates of Gj are the 

remaining coordinates of Go. Note that the 2-coordinate of Go is the product of the 

2-coordinates of G, and G%. Let a € G2. If 6 = 0, then there exists 8 € G such 

that 8 has positive values for all coordinates of Go and the coordinates of G2 have 

the same values as a. If 6 = 1, then there exists a 8 € G such that 6 induces a, 

the 2-coordinate of Gj equals the 2-coordinate of G2 and all other coordinates have 

positive values. Since ( belongs to Ky, the inducement map to G? is still surjective 

when restricted to Ky. 

Since s = to, |Ky| = 2°-* = 29-1. 21-4 = |G,|- 2!~*. Thus the inducement map 

restricted to K; has kernel of order 2!~. It follows that |B, Ky| = 2't¥2-*. Since 

the principal element of G is included in Bj M Ky, we may improve the estimate by 

QitRe-d _ 1,
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Coroiary 8. [ft, = s, tp+\ = 3 and R, = 2, then f is good when g > —2°~* (2)-At Re) 

ProoF: Since s = tg, an element of G; is induced by at most one element of G and 

either half or all the elements of G, are induced by elements of G. Thus either 2 or 

4 elements of G induce elements of B,. If 2 elements of B, are not induced, then 

we may improve the estimate of b by 2. If 4 elements of B, are induced, then as in 

Corollary 5, at least 2 of these are in K,. 

From the proof of Corollary 7, we see that every element of G2 is induced by 

2'- elements of Ky. Thus 2!~*+%2 elements of Ky induce elements of Bz. Since the 

principal element was included in both improved estimates, b may be reduced by only 

(23 -—A+R2 ) . 

Corotiary 9. If t; = tg = 3, tp) = 4, s—A=1, Ro = R, =1 and R, = 0, then f is 

good. 

Proor: Here t, + t2 = to + 2s — 6 implies 6 = 0,s = 1,\ = 0,|G| = 8,|K,| = 2 and 

|Gi| = |G2| = |Go| = 4. Hence each element of G (respectively G2) is induced by 

exactly 2 elements of G. If B = B, U Bj, then |B| < 4+ 2-—1=5 where the —1 is 

necessary because the principal element of G induces a bad element in both G; and Go. 

If either |B| < 5 or |BNK;| > 1, then there are at least |G|—|B|—2|K,|+|BNK,;| > 1 

good elements of G mapped to good elements of Go and f is good. Thus we may 

assume |B| = 5 and |BN K;| =1. Now |G|—|B|—|K;|+|BN K;| = 2, so there are 

exactly two good elements a; and a2 of G—K;. If f(a1) # f(az), then either f(a;) 

or f(a2) is good. Thus we may assume f(a) = f(a) or equivalently ayaq € Ky. 

Since a; # a2 and |BN K;| = 1, a1- ao ¢ B. Let C be the subgroup of G generated 

by a, and ag. Then |C| = 4. Also Bi is a subgroup of G of order 4. Since G is an 

elementary 2-group of order 8, |B, NC| = 2 or 4, contradicting the assumption that 

Q1,Q@2 and a1qQ2 are good. Thus f(a;) # f(a2).
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Corotiary 10. If Rp = Ry = 1,8 =rA=1,6 =0,to > 3,t) > 3 and ty = 2, then f is 

good. 

Proor: Since Rp = 1 and s — 6 = 1,2 is ramified in k, and ky and m = nn’. Thus 

—l\. ; ; ; 
(=) is the common character of k, and kj. Since R,; = 1, G; contains a nonprin- 

cipal bad element which is determined by m, or mg. Since \ = 1,m,y = m2 = 1 
—] —] ; 

(mod 4), so (=) = (=) = +1 and all elements of B} have positive value for this 
m4 m2 

character. Since t2 = 2, all elements of Bj also have positive value for this common 

character. Thus |G| — |B, U Bj| > 2. However, Go has only one nonprincipal bad 

element and |K,| = 1, so f is good. 

TuHeoreM 7. If Ro = 0, tp) > 3—A and t; > R; +2 fori = 1 and 2, then f is good 

except possibly for the values listed below: 

  

Proor: Let z = 247! and y = 27! then 

ry — 2Rag — QRry + 29-§ — 228-54) if t; As At, or 6=1, 

a=a(ew) = { cy — a — 2Ritly 4 Qy — Q2-Ay? if t2 = s,6 = 0. 

Here the values of z,y, and 2°~° are related by t; +t, = to + 28 — 6. 

If R,; = 2, then it follows from Theorem 4 that either s = t2 or 6 = 0 and 

s =t,—1. The latter can occur only if (Ap, Az) = 4. If, in addition, R2 = 1, then 

it follows from Corollary 1 to Theorem 4 that s = t2,6 = 1 and m, = 2. In this case 

g = ry—22—3y—2)-*y? and ty; = t2+to—1. Thus t, > t2+2—-—A and z > 2?-ry Since
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g is an increasing function of z on our domain, g > 2?~*y? — 23-Ay — 3y — 21-47? = 

y(2i-Ay — 23-4 — 3). If A = 0, « > 4y > 16. Thus g > 0 except when xz = 16 

and y = 4. However, f is good at this point by Corollary 7 to Theorem 6. When 

A=1,z2 > 2y > 8. Thus \ = 1,z = 8 and y = 4 is the only case where f may be 

bad, yielding line (a) of the chart. 

Next, suppose R; = 2 and R, = 0. If s—6 = to, then 6 = 0 and x > 23-*y. Thus 

g=ry—-2r— Sy + 2y _ Q2-Ay? > Q3-Ay? _ (2° 4 6) y — Q2-Ay? > 0 

when y > 4+. However, when \ = 1,z = 16 and y = 2 or 4, then g = —4 or —8 

and f is good by Corollaries 4 and 8 to Theorem 6, respectively. Also, g > 0 when 

xz > 16. Thus y = 2 and z = 2*~ are the only cases where f may be bad, yielding 

lines b) and d) of the chart. 

If s—6=t,—1, then g = ry — 2 — 3y — 2°-y*. Hence x > 2'+°-4y and g > 0 

except when 6-—A=1,2 = 8,y=2o0r6—XA=0,2 = 8,y = 2 or 4. However, when 

6 = X Corollaries 2 and 5 to Theorem 6 show f is good. When 6 = 1,A = 0,2 = 8, 

and y = 2, line (c) is obtained. 

Since R, = 2, n/|A,. Thus s—6>t,—1. 

Next, consider the case Ry = Rz = 1. By Theorem 4 and its first. two Corollaries, 

s—6#t 2. Thus if s = tg, then 6 =1, and ty = tp —6+te >2-—A4te. If A =), 

then r > 4y, and g > y(2y — 9) > 0 except when z = 16,y = 4. Here g = —4 and 

f is good by Corollary 3 to Theorem 6. When = 1,z > 2y, so g > 0 except when 

x =8,y = 4. By Corollary 7 to Theorem 6, f is good in these circumstances. 

If s = t2—1, then t; > 1—(6+A)+¢t,. Thus when \ = 6 =0, g = ry—2r-—y-y’, 

x > 2y and g > 0 except when r = 8,y = 4. Here g = —4 and f is good by Corollary 

3 to Theorem 6. If 6+ A= 1, then x > ysog > y(1/2y-—4+27°) > 0 when y > 8. 

If y = 4, then g = 22 — 164 2?-° > 0 for x > 8. Hence t; = tz = 3, tp) = 3 — A and
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6+ A = 1, yields lines e) and f) of the chart. Let 6+ \ = 2 and by renumbering ky 

and ko if necessary, assume zr > y. Thus g > 0 except when z = y = 4. Here g = —2 

and f is good by Corollary 2 to Theorem 6. 

Let s=t, —2 and t; >t. If6+A=0 then g > 0 except when r = y = 4. Here 

again g = —2 and Corollary 2 to Theorem 6 tells us that f is good. If 6+A > 1, then 

g > ry — 2x — 2y + 1/4y —1/8y? > 7/8y? — 15/4y > 0 

when y > 4. Ife =y =4,6=1 and \ = 0, then g = —1, but s—6 = 0 and Corollary 

1 to Theorem 6 shows that f is good. If AX = 1, then g > 0 on our domain. Since g is 

a decreasing function of s, g > 0 for z,y > 4 and s < t, —2. 

Finally, let Ry = 1, Rp = 0. Here the numbering of k; and kz is fixed, so we must 

consider the cases t) > t) and t, < t, separately. First let t; > t2 and s = ty. As 

above, t; > ta +3—(6+4). If6+.2 =0, then z > 8y so g = ry—2z—4y+2y—4y’ > 

2y(2y — 5) > 0 except when y = 2 and z = 16. In this case g = —4 and f is good by 

Corollary 7 to Theorem 6. If 6 = 1 and \ = 0, then g > 0 except when x = 8,y = 2. 

Here f is good by Corollary 7 to Theorem 6. If A = 1, then g > 0 except when 

§=0, e=8and y =2o0ré=1,2 =4 and y = 2. This yields lines g) and h) of the 

chart. 

When s = t2—1,2 > 2!-+)y and g = cy —z—2y42-%y—2-Ot My? Tf x > Qy, 

then g > 0 unless g = 4 and y = 2. If 6+ A = 0 this yields line (i) of the chart. When 

6 =1 and \ = 0, then s —6 = 0 and g = —1 so Corollary 1 to Theorem 6 shows f is 

good. If A = 1, then g > 0 on our domain. Suppose now z = y, so6+.A>0. Thus 

g > 0 except when 1 = 0,6 = 1 andz=y = 4. Here g = —2. Since |G,| = |Kyl, 

Corollary 3 to Theorem 6 shows that f is good. 

Ifs<t,;—-2and2>y, then g > ry—z— 2y4+271~5y — 2-2-8 Ay? > 0 for x > 4 

and y > 2.
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Assume now tz > t; > 3. Then y > 22 and g > 22? —5xr + 25~* — 2?8-(5+)_ Hence 

g => 0 for s <t, —1. Thus we may assume s = ¢. Since R, = 1, 2 is totally ramified 

in K,so 6=1. Hence tg = tp) +28 —6—t, >t) +2—A, so y > 27-2. Therefore, 

g= Q?-Ag?  ¢ — Ag 47 —Q0-V7? = (2' zx _ 2°-*) > 0 

for x > 4. 

If Ry = Ry = 0, then g > 0 on our domain. 

Corotiary 1. Lines a), b), c), d), f) and g) of Theorem 7 are always good. (The proof 

for lines a), c) and d) assumes the list of imaginary quadratic fields with one class 

per genus is complete. ) 

Proor: In line (a) Ry = 2 and R, = 1, thus by Theorem 4 and Corollary 1 to it, m 

and n’ must divide A, and 2 is a principal factor in kp. Since 1 = 6 = 1, tp = 2 and 

t; = 4,m = 2p, with p; = 1 (mod 4), and n = —2°p,p2p3 with p;p2p3 = 1 (mod 4) 

and c= 0or 1. Here R; = 1; and Rz = re so each of ky and ky must have at most 

one bad class in a given genus. Thus if either k; or kz has more than one class per 

genus, then there exists a good class in the principal genus of that field. Since K/k, 

is ramified, Corollary 1 to Theorem 5 shows that K contains sci primes. Thus we 

may assume that both k, and kz have only one class per genus. From the list of such 

fields the only possible example is m = 2-17,n = —3-7-17 and n’ = —2-3-7. Since 

(=) = (=) = +1 and €3 = (=) = —1, it follows that the elements of G 

corresponding to 2, 17 and 34 are distinct elements of the kernel of f. Since |G| = 8 

and |,| = 4, there are three elements of G— Ky which induce nonprincipal elements 

in Gz. Since only one of these is bad, K must contain sci primes. 

In line (b), to = 3,t) = 5,t2 = s = 2 and X= 6 =0. Thus there are five distinct 

primes with p,p2p3|Ao, p1Pp2P3Paps|A1 and p4ps|A2. In order to have A = 6 = 0 the 

following congruences must hold: p; = p2 = ps = 3 (mod 4), p3 = pg =1 (mod 4) or
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any p; may be 2. Here G & Go x G2 C G; as shown in the chart below: 

Oo 2 

I+
} 

(+
 q 

= 
; 
: 

+
]
 

| 
|+
} 

| 

  

Thus only lines 7 and 8 of G—K are possibly good. Hence, if K has no sci primes, 

then lines 7 and 8 of G must correspond to classes of ki which become principal in K. 

Since the elements which become principal in K form a group, line 2 must contain 

the third nonprincipal class that becomes principal. Thus we assume that these three 

lines must be the character system in k, for the principal factors m,, mz and mymz. 

Since no nonprincipal classes of kp or kz can become principal in Kh, Theorem 5 

applies to show K’ has sci primes whenever any quadratic subfield has more than one 

class per genus. Thus we may assume that all three quadratic subfields have one class 

per genus. Since p,; and p2 are symmetric, we may number these primes so that pg is 

not a principal factor of kg. Thus, (2) = (2) =-—1. 
Ps P3 

First, assume that m, = p3 and m2 = pyp2. Then (2) = (2) = —] and since 
P3 P3 

ps # 3 (mod 4) (2) = (2) = —1. Hence neither m, nor m, can be on lines 7 or 
P1 P2 

8, so KC must contain sci primes in this case. 

Next, assume that m, = p; and mz = p2p3, so (2) = +1. Thus we may assume 
P3 

that p; is on line 2. Let us assume for the moment that all p; are odd. Thus p; = ps = 

3 (mod 4) so (2) =— (2) (2) = —1. Since m\mz and p4ps are on the same 
Pi Pa Ps 

line, they must be on line 8, so mz = pgp3 is on line 7. Thus (22) _ (222) _ 

3 4 
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(22) _ (=) = —1, which implies that (=) = (2) 7 (2) ~ (*). 7 Ps P4Ps 
Ps ms " . P2 

Ps 
= +1 then ps and p, are in the same genus of k, so p3p,4 is in the principal 

genus. If Po\ _ —1, then po and py, are in the same genus so pop, is in the principal 
Ps 

genus. This contradicts k, having only one class per genus. 

—_ z—1 2 

Now assume p; = 2. If nis even, then the character at ps is (=) = (-l) =? (=) ; 
x 

so the above computations are still valid, and either p3p4 or p2p4 will be in the prin- 

cipal genus of k,. Similar results are obtained with p; = 2 for 1 = 1,2,3 or 4 and n 

even. Assume now n is odd. If ps; = 2, then the character at ps is (-1/xr). Since 

—1 
Mm, = Pr, (2) = +1 but (=) = —l, so p; is not on any of lines 2, 7 or 8. 

P3 P1 

Similarly, if pp = 2, then (—1/z) is the character at po. Also m = pip3, So m2 = p3. 

—] 
But (2) = +1 while (=) = +1, so pz is not on line 2, 7 or 8. If p; = 2, then 

1 P3 

(—1/z) is the character at p,. Since Pi \ — +1, we may assume that p, belongs on 
P3 

lines 2. Since pop3 = paps = 3 (mod 4), we may assume both pop3 and paps belong 

on line 8. Thus (2) = (2) ; (2) =— (2) and @ =— (2). It follows 
P2 P2 P3 P3 P4 Pa 

that (22) = (%) =~ (2) = (2). Atso, (2) = (2) =-1. 1 (H) = 41 
P2 P2 P4 Ps P3 Ps P2 

then we have the following character values: 

G_@_@ © © 
  

  

P2 

P4       
  

Thus pop, is on line 2, so 2p2p4 is on line 1, contradicting that there is only one class 

per genus in ky. Similarly, if Pa \ — _1 we have the following character values: 

GMGmOmGmG! 
+ —_ 

  

  

P3 

P4        
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SO p3p4 is On line 1, contradicting that there is only one class per genus in ky. 

Suppose now m, = 2p2 and mz = 2p3. Here both m and n must be odd and p, = 2. 

2 —1 — 
Since (2) = +1, 2p. can not be on line 7 or 8. Also, (—) = ( I ) = —l, 

P3 P2P3 P4Ps 

Thus if K contains no sci primes, 2p, is on line 2 and pap3 and p4ps are on line 8. It 

  

follows that the character systems for p2,p3,p4 and ps will be as above. 

In line (c) there are three distinct odd primes p,, p2 and p3 with 2p; p2|Ao, 2p1p2p3|A1 

and 2p3|A. where pp = 3 (mod 4). We have the following character tables: 

  

  

  

  

G, Go Go, pi = 1 (mod 4) Go, pi = 3 (mod 4) 

2 Pi P2 D3 2 P3 2p2 Pi Pip2 2 
+ + + +/+ + + + + + 
-— + =- +] H+ + + - ~ 
+ + ~ -{[- - + + - ~ 
-— + 4+ =] = = + + + + 
+o -~ +/+ +4 ~ ~ + + 
- = + +) +4 «4 - ~ - = 
+ = + -]f- = - ~ - - 
- - - -|[- - - ~ + +           
If p) = 1 (mod 4), then A will contain no sci primes only if lines 2, 7 and 8 

of G, are bad and kp and k, have only one class per genus. If 2 is not a principal 

factor of ko, then (=) = —1. Here we assume kz has one class per genus, hence 
P1 

2 
(= = —1l. Thus, 2 is on line 7 or 8 and f is good. If 2 is a principal factor of ko, 

3 
2 

then (=) = (=) = +1 and 2 is on line 2. However, ky = Q(./—357) is the only 
Pi P3 

known imaginary quadratic field where this occurs. Here p, = 17, pp = 3 and ps3 = 7 

SO (=) = —l, (2) = +1. Thus p3 is not on line 7 or 8 and f is good. 
P3 P2 

If p, = 3 (mod 4), then f is good only if line 3 or 7 is good in G. If 2 is not a 

2 2 2 
principal factor of ko, then ( ) = —1 so €, of (=). Since kz has one class 

PiPp2 P1 P2 

  

per genus, (= = —l. Thus 2 is on line 3 or 7 and f is good. If 2 is a principal 
P3 

, 2 2 
factor of ko, then since p, and pp are not principal factors of ko, (=) = (=) =-l. 

1 2
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Also (=) = +1, so 2 is on line 5. However, there is no known imaginary quadratic 
P3 

field with one class per genus meeting these conditions. 

In line (d) there are four distinct primes such that p,p2|Ao, pipep3p4|A1 and 

p3sp4|A2. Since A = 1,p, # 3 # po (mod 4). Also Ry = 2 implies N(e) = +1, 

Mm, = p, and m2 = po. The following chart shows the genus structure: 

Go G2 
  

  

  

+
4
5
 

1+
 4

hy
 

1+
) 

41
5 

1+
 

14
/8
 

      
  

If the last line is good, then K will contain sci primes. Since m, = py, (2) = +1. 
P2 

This implies that neither p; nor p2 is on line 4. However, the product p,p2 will be on 

line 4 exactly when (2) = (2) # (2) = (2). Note that either line 3 or 4 
P3 Pa Pa P3 

of G is good, so Theorem 5 applies to show sci primes exist whenever any quadratic 

subfield has more than one class per genus. Since p3 = p, = 3 (mod 4) is not possible, 

assuming the list of imaginary quadratic fields with one class per genus is complete, 

no such fields exist. 

In line (f) there exist three odd primes such that 2p; p2|Ao, 2p; p3|41 and 2p2p3|A2 

where pp = 3 (mod 4). Since r; # 2, if any quadratic subfield has more than one 

class per genus, then Theorem 5 applies. We consider the cases p; = 1 (mod 4) and 

Pp; = 3 (mod 4) separately.
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Gi G2 G5 case I Go case II 

2 Pi D3 P2 D3 2:po Pr Pi * Peo 2 
+ + +/+ + ++i! + ~4 + + 
+ + +f/- - +f + + - - 
- + -f|- + -] + + + + 
- + =| + - =|] + + - - 
- - +/+ 4 44; - = ~ - 
- +f- - +] - = + + 
+o = = f= + =f = = - - 
+ - -|f+ - -|] - - + +             

Case I: p, = 1 (mod 4). Here m = p,p2 or 2p, p2. In order for f to be bad, lines 7 and 

8 must be bad in G, and line 6 bad in G9. If m; = 2, then (2) = +1, so 2 is not on 
Pi 
2 2 

lines 7 and 8 in G. If 2 is not a principal factor of ko, then (—) = —1. If one = —l, 
P1 3 

then 2 is on lines 7 and 8 in G,, making them good. Otherwise, (4) = +1 implies 2 
P3 

is on line 6 in G2, making it good. 

Case Il: p;) = 3 (mod 4). Here m = 2p, pe, ps = 3 (mod 4) and the character of 2 in 

ko is (=), Without loss of generality, n = —p,p3 and n’ = —2pop3. Here f will be bad 

if and only if lines 4 and 7 of G are bad. Suppose m,; = 2 and m2 = pypo, then the 

2 2 
primes above p,; and py are not in the principal genus of ko, so (—) = (—) = —1. If 

P1 P2 

K contains no sci primes, then 2 must be on lines 7 and 8 in G), yielding (5) = —]. 
3 

—2 2 
Since (—) = -—(— 

P3 P3 

one class per genus. 

) = +1, ps is either on line 1 or 4 of G2. Thus kz has more than 

If m, # 2, then (2) # (2). Suppose (2) = +1, then since 2 is not the norm of 
Pi P2 Pr 

a principal ideal of ky, (2) = —1. Thus 2 is on line 4 of G,, making that line good. 
P3 

2 , ; 
(2) = +1, then from G2, (—) = —1. Thus 2 is on line 7 
P2 

2 
Similarly, if (—) = —1 and imilarly, i () bs 

of G, making it good. 

In line (g) there exist four primes with pip, | Ao, pipepsps | Ai and p3pq | Ao. 

Since \ = 1, m = pip. with p, # 3, po # 3 (mod 4). Moreover, p3 # ps (mod 4). 

The structure of G ® Go Xx G2 is given below:
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Go G2 

  

  

  

  1 
+4
{5
 

l
+
+
f
s
 

i+
) 

41
8 

(
+
1
 

+
S
 

    
  

Here f is good if line 4 of G is good. If N(e) = +1, then m, = p; and m2 = p 

with () = +1. Since r; = 2 and R, = 1, ky has a nonprincipal bad class in the 

principal genus. Hence m, m, or mz is on line 1 of G. Since neither m, nor m, can 

be on line 4, it is good. 

Assume now that N(e) = —1, so Ry =r; = 1. Whenever any quadratic subfield 

has more than one class per genus, Theorem 5 applies to show that K contains sci 

primes. Thus we may assume (2) = (22) = —l. If n’ = —p3p4 is one line 4, then 

() = (Py # (P) = (P38), If (Ps) = "EL then the primes above p,; and p3 are in 
P2 P4 P4 Pi Pi 

distinct classes of kj but are in the same genus. If (>) = —1, then p2 and p3 have 

the same character system in k,, contrary to one class per genus. If n’ = —p,4 and 

—] —l 
p3 = 2, then the character at p3 is (—). Since (—) = +1, line 4 is good and K 

v P4 
contains sci primes. 

THEOREM 8. If t; > AR; +2 fori = 1,2 and typ > 4—A with Ro = 1, then f is good 

except possibly for the values listed below: 

  

  

  

Ry Ry to ty to S 6 X 

(a) | 1 |/0)/4t/3i)/2~)i1isi1+i/ 0 
(b) | 0 | o |] 4] 2424/0) 0 74) 0 
(c) | 0 | o | 3} 27/2;1)14i 
(4) | o | o | 4] 3 | 2/141 [0                     

Proor: Since Ry = 1, Theorem 3 shows that n | Ap. Thus 6 < s <1 and s—6 =1 if 

and only if 2 is ramified in k, and kz but n and n’ are odd. If \ = 1, then every prime 

dividing Ao is congruent to 1 or 2 (mod 4) son #1 (mod 4), n’ #1 (mod 4), and 

2 is ramified in k, and ky. Thus \ = 1 implies s = 1.
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Suppose s = 1 and 6 = 0. Here R,; = R2 = 1 is impossible by Corollary 3 to 

Theorem 4; hence, we may assume Rz = 0. Each element of Gj is induced by 27? 

elements of G. Hence, G has at least 

GI — | Bs] — [Bi] + [By n By] > aote-s —Rite-2 9-9 4 1 = gy 

good elements. If g; is at least 2|K’;| = 2?-+, then f is good. By hypothesis, t; +t: = 

to t+ 2s—6 >6—-—A, tt) > Ry +2 and t, > 2. By direct computation it is seen that 

g, > 2?-* when t) + t2 = 64+ R, —X. Since g; is an increasing function of t, + t2, we 

need only consider the case t} + t2 = 6—A and R, = 1. If A = 0, then Corollary 9 

to Theorem 6 applies when t; = t2 = 3 and Corollary 4 to Theorem 6 applies when 

t) = 4, tg = 2 to show f is good. If \ = 1, then tg = t, = 3, tg = 2 and Corollary 10 

to Theorem 6 applies to show f is good. 

Assume now that s —- 6 = 0, so G = G, x G,. Here there are exactly g. = 

(24-1 _ 271 )(Q'2-1 _ 9R2) good elements of G. Since at most 2!'+*~* —1 good elements 

of G can map to bad elements of G4, f will be good whenever gz > 2't+*-4. By 

hypothesis, tj + t2 = tp +2s—6 >4—A4 8 andt; > R; +2 fori = 1,2. By direct 

computation, gz > 2!+*-* whenever t; + t2 = 5—A+-s. Since gz is an increasing 

function of t; + t2, we need only consider the cases where t) + tg = 4—A+=s. Since 

4—\+s=3,4o0r5andt, +t, >4+ RA, + Ro, equality can only occur when R, = 1, 

R, = 0 and t) + t2 = 5, or Ry = Rp = 0 and ¢t; + tg = 4 or 5. These values where 

equality holds are exactly those listed in the statement of the Theorem. 

Coro.iary 1. Line (d) of Theorem 8 is always good. 

Proor: Here s = 6 = 1, A = 0 and three odd primes divide the discriminant of K. 

Let 2p;p2 | A; and 2p3 | Ag. The structure of G is given below:
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G2 
  

  

Gy 
2 Pi P2 2 P3 

+ + + + + 

+ _ _ + + 

— + _ + + 

_ — + + + 

+ + + _ _ 
+ _ _ _ _ 

~ + — — — 

— — + —_— —         
Since R,; = R, = 0, the last three lines of G are good. Hence f is good if it 

maps one of these lines to a good element of Go. Thus it is sufficient to show that 

f maps two of these lines to distinct nonprincipal elements of Go. Since 4 = 0, 

pi = 3 (mod 4) for some 7 = 1,2 or 3. Also |Ay| = 2°-* = 2. If ps = 1 (mod 4), or 

Pi = p2 = 1 (mod 4), then no good element of G is in Ky, thus f is good. If ps = 3 

(mod 4), then n’ = —2p3 and either n = 3 or m = 3 (mod 4). Either way, pi = po 

(mod 4). Thus the only remaining case to consider is py = po = p3 = 3 (mod 4). 

There line 6 corresponds to an element of Ky, but lines 7 and 8 give distinct elements 

of Go. Thus f is good. 

THEOREM 9. Assume that K/k, is ramified and that h; > 2% fori =0,1,2. Then 

contains sci primes unless all classes in the principal genus of each k; (i = 0,1, 2) are 

principal in K and one of the following conditions holds: 

7,e,1. m = pips, 2 = —pip2p3, n' = —papsps with p, # 3, py = 1, p2 F ps (mod 4), 

(@) =41, (7) =-1, (4) = (F) #2) = (F), andy == 1. 
P4 P3 P2 Pa P3 9 9 

7,h, I. m= 2p2; n= —2 PiP2; n= = —2)- “Pi; with A =p2= 1 (mod 4), () = () = 

+1, () = —-1, N(e) =4+1, 711 = 2, andr, =1. 

7,i,1. m = piprpa, N = —Pi Pops, n' = —pspa with p, #1 F pa, P2 F 3, Ps F Pa (mod 4), 

= (F) =F) = 4h (2) = (B) = Land == 1 
7,i,2. M = Popa, N = —pop3, n’ = —p3p4 with po = p3 = 1, pa = 3 (mod 4), () =



7,1,3. 

,a,1. 

8,a,2. 

8,a,3. 

8,b,1. 
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P4 P2 
—)=41, (—) =—-1, andr, =r, = 1. 
Ce Cs * ? p 

Mm = Pip2, N= —Pi Pops, n' = —ps with p, = 3, p2 = ps = 1 (mod 4), oe = +1, 
3 

P2 2 2 . P1 2 P1 ) = ~1, (~) = (—), either (4) = +1 and (—) = -1 or (@) = -1, and 
Ce C on mee on rh an on of Cn an 

T1 + rT? < 2. 

m = 2°pipop3, n = —2pipo, n’ = —2'~°ps, with py = 3, po = p3 = 1 (mod 4), 
P3 2 2 2 P1 P3 
—j)=— (—) = (—) = +1, —j)r-=(—)=-(—)= —l, d = = = l. C ( (" (? one ( > and T9 =T1 = 12 , 

m = 2p) p2p3, N = —Pip2, n’ — 2p3 with p, = pp = 3, ps = 1 (mod 4), (—) = +l, 
3 

2 2 
—)=(—)=-1, andrg = ry = 72 = 1. 
CD Cy ° : ; 

m = 2°pipop3, n = —2'-°pipo, n' = —2p3 with p, = p2 = p3 = 3 (mod 4), 

2 P3 P3 P1 2 2 

(—) = +1, (=) = (=) =-1, (=) = (— —)ro=mM= m= 1. Ds Ce one ne C#G) o=T1=712 

m = piprpsp4°, N = —pip2, n' = —ps3p4° with py = 3, po = 1, ps # 3, px 1 

(mod 4), (@) = (@) = 41, (72) = -1, (74) 4. (7) < 2, m9 =1, andr +r <2. 
P3 P2 P2 P2 P3 

. 2 2 
.m = 2p po, n = —2p,, n' = —po, with py = pp = 1 (mod 4), ? = (> = +1, 

1 2 
(2) =—l,andro=r=1r2, = 1. 
P2 

Here c = 0 or 1 and c = 0 can only occur as an exponent of the prime 2. Also 

the number of each condition signifies the line of Theorem 7 or 8 that yielded it. For 

example, the quadratic fields given on line 8,c,1 have the R;, t;, s, 6 and X values 

listed on line (c) of Theorem 8. 

Proor: Since K/k,; is ramified, we may apply Theorem 5 to show that if for some 

j,k; has a good class in the principal genus, then K contains sci primes. Thus we 

may assume that for each k;, 27'-*' is the number of classes per genus. Under this 

assumption, h; > 2" is equivalent to each k; containing a good genus, i.e., t; > 24+ R; 

for 7 = 1 and 2 and tj) > 3—A+ Ry. Thus Theorems 7 and 8 and their Corollaries 

list all possible cases where K does not contain sci primes. 

First, assume that line (e) of Theorem 7 holds. Since tp = 2 and \ = 1, m = pi pg
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with p) # 3 and ps = 1 (mod 4). Since t; = tg = 3 and s = 2, n = —pip2 with 

Pi = P2 = 1 (mod 4) or n = —pypop3 with pp # p3 (mod 4). The fields have the 

genus structure shown below: 

  

  

  

  

Gy G2 Go 
Pi P2 P3 P2 P3 P4 P1 P4 

+ + + + + + + + 

+ _ — _ — + + + 

      
  

On line (e) we have RA, = R2 = 1, so we must have N(e) = +1. Hence m, = py, 

M2 = p, and (e) = +1. Thus K contains no sci primes if and only if p, belongs to 

line 3 or 4 in G; and p, belongs to line 4 or 3 in Gp. 

If n = —pip2, then p3 = 2 and the character at pg is (=). Since py = pa = 1 

(mod 4), neither p; nor p4 can be on line 3. In this case, K must contain sci primes. 

Thus we may assume n = —p pops. If (2) = (23) # (72) = (Py, then p, is on line 
P2 P4 P4 P3 

3 or 4 in G, and pg is on the other in G2. Since k, has one class per genus, p;, p2 and 

p3 are on distinct nonprincipal lines of G;. Thus (?) = —]. This is consistent with 
P3 

kz containing one class per genus. 

Next assume that line (h) of Theorem 7 holds. Since 6 = A = 1 and to = 2, 

m = 2p, with pp = 1 (mod 4). In addition, t; = 3 and tg = s = 2 son = —2°p;p2 and 

n' = —2!'~“p, with c= 0 or 1 and p,; = 1 (mod 4). This leads to the genus structure 

shown below: 
  

  

  

Gy Go Go 
2 Pi P2 2 Pi 2 P2 

+ + + + + + + 

— — + — — + + 

— + — + + — — 
+ — — — — — —         
  

If N(e) = —1, then r; = 1 and ro = ro = 0. Thus ko, ky, and kz have one class
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per genus. It follows that (=) = (=) = —1. Hence, 2 is one line 4 of G,. But the 

prime divisors of 2 in k,; do not become principal in K, so line 4 is good. Thus we 

may assume N(e) = +1. Since m, = 2, the prime divisor of 2 in ky becomes principal 

in K and must be in the principal genus of k2. Since (=) = (S) = +1, the prime 

divisors of 2 belong to the principal genus in k,. Thus p2 determines the bad element 

of G,;. Thus K contains no sci primes when (C) = -—]. Part 7,h,1 of the Theorem 

follows. 

Assume line (i) of Theorem 7 holds. Since tp = t; = 3, tg = 2, s = 1 and 

6 = \ = 0, there are exactly four primes dividing the discriminant of K/Q. We may 

number these primes so that p,pops4 | Ao, pipop3 | Ai and psp, | Ag with ps # pg 

(mod 4). 

The genus structure is given below: 

  

Gi Gy Go Gi 
  

  

  

  

0 

Pi#1l1#p2 (mod4) | pi $1 Fp, (mod 4) 
Pi P2 P3 P3 P4 P1P2 D4 Pipa P2 

+ + + + + + + + + 

- _ + + + + + _ _ 

- + _ _ - - _ + + 
+ — _ — — — — — —_         
  

If p, #1 # po (mod 4) and py #3 (mod 4), then the character at p; normalizes 

the character at p2. Since k, has only one bad nonprincipal genus and kp and k2 have 

none, f will always be good. 

Now assume that the character at ps in Go is normalized. This occurs when 

pi #1 # ps and pp ¥ 3 (mod 4). Here f will be good only if line 4 of G, is good. 

Since rg = 0, we may assume that kp has one class per genus. Also R2 = 0 implies 

(Pay = +1 if and only if p4 is a principal factor in ko. 
P3 

First assume that m = p,popy. Here n = —p,p2p3, M1, = Pi, P2 OF pip2 and
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mo t Ay. If m, = p,, then (-) = +1, so p; is not on line 4. If p, is not a 
2 

principal factor of ko, then ( Pi) = —1. Thus p2 cannot be on line 4. However, when 
P2 

M1 = Pip2 and mz = p4, m, can be on line 4. This occurs when (2) = (2) = +1 
2 P P3 

P2 P1. 
and (—-) = (—) = —1. one owe 

Next let m = pops, n = —p2p3, p1 = 2 and the character at p; be (—). Since 
x 

m ¢ Aj, ky; has one class per genus and p2 cannot be on line 1 of G;. Thus (—) =+1 
P2 

implies pz belongs on line 4 of G;. Thus K contains no sci primes if and only if p2 

is a principal factor of kg. This occurs when (7) = +1. As above (74) = +1 and 
(PB) _y Pa D3 

P3 

Finally let m = p,po, n = —pyp2p3, n' = —p3 = 3 (mod 4) and the character at p, 

—1 
be (—). If m, = p; and m2 = po, then r; = 2, so k, has two classes per genus. Since 

(Py) = +1, line 4 is bad only if pz is on it. Hence (72) = —1. Also R, = 1 implies 
2 P3 

(=) = +1. Since the prime divisors of 2 in kg and kz are not in the principal genus, 
P3 
2 2 

(—) =(—) =-1. If m, # py, then (74) = —l. Also m, + A, so line 4 of G, is bad 
P2 P3 P2 

if and only if m and p3 belong on line 4. Hence (72) = +1 and (P) = (2) = —l. 
P2 P2 P1 

Since R, = 0, kp has two classes per genus exactly when 2 is a principal factor of ko. 

2 2 
Thus (—) = (—). Line 7,i,3 follows. 

P2 P3 

Assume now that line (a) of Theorem 8 holds. Since tp = 4, 4; = 3, t2 = 2, 

s=6=1 and A =0, there exist exactly three odd primes dividing the discriminant 

of K/Q. These primes can be numbered so that 2p; pop3 | Ao, 2pip2 | Ai and 2pz3 | Ao. 

Note, at least one pj; = 3 (mod 4) and we have four cases depending on which primes 

satisfy this congruence. 

The following genus structures result:
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G, Go G5, case I , case II Go, case III o, case IV 

2 Pi__P2 2 ps 2pi_P2 ps | Pipe p3 2 2P1__PiP2 Pips 2p3_ Pi _P2 
++ +i]++i]+++ | t+ + +l) + +f hUthCUd)hdehUtlCUrt+ 
+o -]+ 4+] -- 4+ | + + +] - + - | + - | 
-+-]/+4+]/--+4+ }/- + -] - - + | - + - 
--=-4+/+ 4+] 4+4+4+ )/- 4 -) + - - | - - + 
+++)--|/ -+- 4+ - ~- | - 4+ - | + + = 4 

4+--]--) +-- | + - =~ | + 4+ + | + = | 
~+4+-/--|) +-- |- - +) + -=- - | = + = 
-~-+ --}]| -~-+-/]- - +/| - - + [| - - +               

Here p, = 3, po = p3 = 1 (mod 4) in case J; py = p2 = 3, p3 = 1 (mod 4) in case II; 

Pi = p2 = p3 = 3 (mod 4) in case III; and py = pp = 1, p3 = 3 (mod 4) in case IV. 

First consider Case I. Since pyp, = 3 (mod 4), n = —2p,p2 and m = 2°pi pops. 

In order for K to have no sci primes, the character system for m, must be line 8 of 

G, and lines 6 and 7 must be bad in Go. If m, = 2, then (2) = (2) = +1. Thus 
P2 P3 

K contains no sci primes if and only if (=) = (P3) = —1 and (23) = +1. Since the 

primes above p; in k; do not become principal in kK, (e) = _1 yielding line 8,a,1. 

Suppose m2 = p3 # —n’, then the prime above 2 in kz becomes principal in AK. Thus 

2 determines a bad class in each k;. Since R, = 0, (=) = +1. Thus 2 cannot be 

on line 6 and 7 of Go, so K has sci primes. Hence we may assume that the prime 

os . Ca 2 
divisors of 2 in each k; are not principal in AK. From G2 we see that (—) = —1. If 

3 

(4) = +1, then 2 is on line 8 of G, showing that it is good. On the other hand, if 
P2 

(—) = —1, then 2 is on lines 6 and 7 in G5, so these lines are good. 
P2 

Next consider case IJ. Here m = 2p, p2p3 and if K contains no sci primes, then 

line 6 must be bad in G, and lines 7 and 8 be bad in G5. 

If m, = 2, then (——) = (2) = +1. Since 2 is not the norm of a principal ideal 
9 9 PiP2 P3 

of ki, (—) = (—) = -1, placing 2 on line 6 of G,. If n = —2p,po, then the character 
Pi 

, . 72 —2 —2 ; Pr Po, . 
t2inG —) and (—) = (—) = +1. Since (—) = —(—), either p; or pg is at 2 in Gy is ([) and (—) = (>) (PB) = -(2), either py ot ps 

on line 1 of G,;. Therefore, one class per genus in k, implies n = —p,p2. Thus pi p2
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2 

P1P2 

  determines the nonprincipal bad element of G5. Since ( ) = +1, pipe is on lines 7 

and 8 of G6, yielding line 8,a,2. 

Assume now that 2 is not a principal factor of kg. If 2 determines a bad element 

in the genus group of each k;, then 2 must be on line 1 of Go, i.e., (=) = +1. Since 

2 can not be on lines 7 and 8 of Go, they are good. If the primes above 2 in the 

quadratic subfields do not become principal in K, then any line corresponding to 2 

is good. From Ge, we see that (=) = —]. Thus 2 is either on line 6 of G, or it is on 

lines 7 and 8 of G5. 

Next consider case IIT. Here n’ = —2p3, m = 2°p,p2p3 and the character at 2 in 

Go is either (=) or (<2). K contains sci primes if line 7 or 8 is good in both G, and 

2 2 2 
Go. If my, = 2, then (—) = (—) = (—), so 2 is not on line 7 or 8 of G,;. However, 

Pi P2 P3 

if m2 = p3, the prime above 2 is each k; becomes principal in AK. Since (—) = +1, 
P3 

2 2 , ; 
f is bad when (—) # (—). In order to have neither p, nor pz on the same line as 2 

Pi P2 
; 2 ; 2 . 
in Gi, (7) # (—). Since mz = p3 and (—) = +1, it follows that (3) = (3) = —], 

P2 P2 P3 P1 P2 

yielding line 8,a,3. 

For the remaining possible principal factors of kg, we need to consider the cases 

where n is odd and even separately. First let n = —p,p2. Here the character at 2 in 

. ,—l ; eye —2 ; 
G, is (—) and in Gp it is (—). In order to have m, = p,, (—) = (PF) = (-) is 

x x 9 P1 P2 P3 

necessary. If p,; is on line 7 in Gj, then (2) = —1. Thus (—) = —(—) = +1, so 2 
P2 P1 P1 

is on line 1 or 7 of G,. Either way, k; has two classes per genus and K contains sci 

primes. If p, is on line 8 in G,, then f is bad if and only if pz (and 2p3) are on line 

. —2, pe P1 2 2 . 
7 of Gh. Since (—)(—) = +1 and (—) = +1, (—) = +1 and (—) = —1. Thus 2 is j. Since (—)(22) (By = 41, (5) (=) 
also on line 8 in G,. Again k, contains a good class in each genus. 

—l 
If m, = 2p, and f is bad, then 2p, must be on line 7 or 8 of G;. Since () =-—l, 

1
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; ; , 2 2 
pi is on the other. This puts 2 on line 6, so (—) = (—) = —1l. Also, kz has one 

P1 P2 
2 

class per genus, so (—) = —1. Thus the prime above 2 in ko is in the principal genus 
P3 

contradicting one class per genus. 

Now let n = —2p,;p2 and m = p,pep3. Here the characters at 2 in Gp and G are 

—1 —2 ; 
(—) and (—), respectively. If m, = p,, then (74) = (2 

i PF oe (D2 not on line 8 of G,. Suppose p, is on line 7 of G,. Then CO = (%) = +1, so po is 
1 2 

—] 
) = (—) = -1, so p; is 

1 

on line 1 or 7 of G,. Either way, k; has a good class in each genus. 

If m, = 2p, and mz = 2pop3, then 2 is not the norm of an ideal in any k; which 

becomes principal in A. Thus we may assume that () = —1 and 2 is not on 

line 1 in G,; or Go. If f is bad then 2p, and pg are on line 7 or 8 in G,. Thus 

(2) = _(=*) = +1 placing 2 on line 8 in G,. This yields (2) = —1, so 2 is on line 
P2 P2 Pi 

8 of Go also. Hence K contains sci primes. 

Finally assume that p; = pp = 1 and p3 = 3 (mod 4). Since Ro = R, = 1, there 

is always at least one good line of G that maps to a good line of Go, so f is good. 

Next we assume line (b) of Theorem 8 holds. Since to = 4, ti = tg = 2, and s = 

6 = 0, there exist four primes dividing the discriminant of K/Q with p,popspq4 | Ao, 

Pip2 | Ai, and p3p4 | Ag. Note that neither p; = pz nor p3 = pa (mod 4) is possible. 

Thus we may assume p; = 3, pp = 1, ps # 3 and py # 1 (mod 4). The following 

chart shows the genus structure: 
  

  

  

Gy Go Gr 
P1 P2 P3 P4 PiPa P2 P3 
+ + + + + + + 

+ + — — _ + — 

— — + + — — + 
— — — —_ + ~— —_—         
  

If K contains no sci primes, then —n and —n’ must be on line 4 of Go. Since 

every bad class of k, must be in the principal genus, p; or pe is a principal factor of
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ko if and only if Ge = +1. Similarly, p3 or p4 is a principal factor of kp if and only 

if (4) = 41. Thus s(~ ) + (> >) <2 
P3 

Suppose first that n’ = _ and pg = 2. Then K contains no sci primes exactly 

when p3 is on line 4 of Go. Thus (>) = +1 and (>) = —l. If m, = 2, then 
1 2 

, oo, 2 ; , ; 
ow) = +1. If 2 is not a principal factor of kg, then (—) = —1. Since 2 is not on line 

2 P3 
2 

4 of Go, () = +1. Line 8,b,1 with c = 0 follows. 
2 

Suppose now that n’ = —p3p4. Then n and n’ are on line 4 of Gj if and only if 

PiP2 P3P4 P1 P4 P3 P1 
—)= = —1 or equivalent] = —). If +1, then from Ce) a) = or easoletty (5) = (59 = (5). TES) = 

above p; or p2 is a principal factor of ko. Thus either ( Pry — +lo r(M) = (Py = +1. 
P3 P4 P2 

Assume (2) = —l. If (P) = —1, then ($2) = +1 and (P) = +1 implying pp is a 
P2 P3 Pips P3 p 

principal factor of ko, contradicting that (> = —1. Thus (+) = +1, yielding line 
2 P3 

8,b,1 with c= 1. 

Finally, assume line (c) of Theorem 8 occurs. Since t] = tg = 2, to = 3 and 

s=6=A=1,m = 2pipo, 2p, | Ay and 2p, | Ag with py = po =1 (mod 4). Without 

  

  

  

          

loss of generality, n = —2p, and n' = —p». This gives the following genus structure: 

Gy G2 Go 
2 PA 2 P2 2 Pi P2 
+ + )+ + i) + + + 
+ + — - — + — 
— — + + — — + 
— — — — + — — 

Again K contains no sci primes if and only if pe is on line 4 of Go. If N(e) = —1, 

then r; = ry = 0, so (2) = —l. Hence, p, is not on line 4 of Go. Similarly, if 
P2 

N(e) = +1 and 2 is not a principal factor of kp then (- ) = —1, so line 4 of G is 

2 2 ; 
good. However, if m,; = 2 and m2 = pip2, then or )= = +1. Hence, pe is on 

line 4 of Go if and only if (S) = =— 
2 

Lemma 15. If hj; > 2" fori = 0,1,2 and K/k, is unramified, then K contains sci



69 

primes except possibly when h,/|G,| = 271-71 and Ry, 11, to, t1, tz have the values 

listed below: 
  

—
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N
O
L
S
 

          

In line (b) we also require \ = 0. 

Proor: If hy/|G,| > 2-* or hy > 2+1, then K has sci primes by Corollary 1 to 

Theorem 5. Since K/k; is unramified, 6 = 0 and s = ta, so ty = tgp + te. If tp > 3— A 

and t2 > 2, then by Theorem 7 and its Corollary, K contains sci primes. Thus we 

may assume h,/|G,| = 27-* and hy = 27+}. Since |G,| = 2471, t; = R, +2. If 

ry = 2, then by Theorem 4, tp > 2, so ty > 3. If ry = 1, then t; > 2. The values 

listed in the chart follow. 

Lemma 16. Lines (a), (b), (d) and (e) of Lemma 15 are always good assuming that the 

known list of imaginary quadratic fields containing one class per genus is complete. 

ProorF: In each of lines (a), (b), (d) and (e), k, must contain one class per genus. In 

lines (d) and (e), t; = 3. In all known cases where t, = 3 and k, has one class per 

genus, either kg or kz has class number one. 

In lines (a) and (b), t; = 4.and ry = 2, so N(e) = +1. In line (a), ¢2 = 1 and for all 

known cases, hz = 1 except when ky = Q(V15), ky = Q(./—345) and kz = Q(/—23). 

In this case m; = 6 and m2 = 10. Since (= = —1, Corollary 1(c) to Theorem 

5 shows that K contains sci primes. For line (b) all known cases with to = t2 = 2, 

\ = 0 and k, containing one class per genus have ho = 1 for all choices of ko. 

THEOREM 10. If h; > 2" fori = 0,1,2 and K/k, is unramifed, then K contains sci
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primes except when h,/|G;| = 2%~* and m, n and n' meet one of the following 

conditions: 

i) m = pi°p2, Nn = —pi°pep3, n' = —p3 with N(e) = +1, c = 0 or 1, (c = 0 

only if py = 2 and po = 3 (mod 4)), either py = 2 or py = po, p3 = 3 (mod 4) 

Pi P2 pi 
—_j) = = +1, and — = —l,or (Py = (2 2) 

li) m= py, Nn = —pip2, n’ = —p2 with p,; = 1, pp =3 (mod 4) and (2) = 
P2 

+1. 

Proor: We need only consider the fields where h,/|G,| = 2~* and the discrimants 

of ko, kj and kz have the number of prime divisors listed in lines (c) and (f) of Lemma 

15. 

In line (c) k; has the genus structure shown below: 
  

  

  

    
  

Gi 
Pi P2 P3 

+ + + 
— — + 
+ — —_— 

—_— + — 

Moreover, m = p\°p2, n = —pi°p2p3 and n’ = —p3 where p3 = 3 (mod 4) and 

either p, = 2 or py = pz (mod 4). Since ry = 2, N(e) = +1 with m, = p, and 

m2 = p'~°p2. We may assume k, has two classes per genus. Here the first two 

lines of G; correspond to the classes containing primes which split completely in K. 

Thus K contains no sci primes if and only if (=) = () = +1. If c = 0, then 
3 3 

Pi = 2, po = 3 (mod 4), m, = 2 and m2 = 2p2. The above statement is equivalent to 

(2) = (P) = +1. Since pp = 3 (mod 4), po is on line 2. Thus each of the genera 
P3 P3 

corresponding to the top two lines of G; contains two bad classes. If c = 1, then the 

above condition becomes (*) = (=) = +1. When p, = 2 and p2 = 3 (mod 4), the 
3 3 

—2 —2 2 ; ; 
character at p; is (—). Since (—) # (—), 2 and pg are not both on line 1. Again, 

v P2 P2 
each of the top two lines of G; contains two bad classes. Similarly if p; = pz = 3
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(mod 4), then (F) f () and the result follows. If pp = 1 (mod 4), then we need 
2 1 

() = (>) = —1 to ensure that exactly two bad classes belong to each of these 
2 1 

genera. 

If line (f) of Lemma 15 holds, then m = py, n = —pip2 and n’ = —p. with 

pi = 1 and pp = 3 (mod 4). Here only the principal genus of k, contains primes 

which split in kK. Thus K contains no sci primes when k, has two classes per genus 

Pi 
and (—) = +1. one 

§6 Conclusions and Numerical Results. 

In this section it is our objective to determine all imaginary bicyclic biquadratic 

fields K such that h; > 2% for « = 0,1,2 and K contains no sci primes, i.e. to 

determine all exceptional fields. It follows from Theorems 9 and 10 that if h, > 8 or 

K/k, is ramified and hz > 4, then K is not an exceptional field. A well known result 

of Heilbronn [10] shows that there are only finitely many imaginary quadratic fields 

with bounded class number. Therefore, there are only finitely many exceptional fields 

Kk. 

If K is an exceptional field, then Theorem 9 and 10 showr;—R,; < 1 for? = 1, 2, 1.e. 

k, and kg have at most two classes per genus. Dickson [7, p. 85] listed 65 imaginary 

quadratic fields containing one class per genus. It is a long standing conjecture that 

this list is complete. Chowla and Briggs [6] and Grosswald [8], among others, give 

results in support of this conjecture. We need to know only those imaginary quadratic 

fields with two classes per genus having class number 4 or 8. In [3], Buell showed that 

for imaginary quadratic fields with discriminant greater than —4 x 10°, 54 have class 

number 4 and 131 have class number 8. Those fields with class number 4 are listed 

in [4]. Of the fields with class number 8, 13 have one class per genus while 54 have 

two classes per genus.
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The real quadratic subfield has one class per genus in all cases listed in Theorem 

9. For m < 24572, the class number is given in [17]. However, for larger values of m 

satisfying the hypotheses of Theorem 9, the class number of Q(,/m) was computed 

using Dirichlet’s class number formula, see [13, p. 440]. The value of loge was 

computed using an ordinary continued fraction algorithm. The class numbers of the 

real quadratic fields which were computed are listed below. 

Class number of Q(,/m 
  

  

  

          

m ho m ho 

26751 4 58174 4 
33370 20 62665 4 
34210 4 70737 28 
43505 4 75905 20 
43945 4 81838 4 
44473 2 117273 12 
45399 4 118105 4 
45991 4 136565 2 
46345 4 159505 4 
49569 4 178585 4 
51531 28 235705 4 
52207 20 274209 4 
52745 4 384865 4 
  

Assuming that the lists in [3, 4, 7] are complete, there are no exceptional fields 

with A/k, unramified and 88 with K/k, ramified.
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Exceptional fields K = Q(,/n, Vn’) with conductor f 
f —n —n' f —n —n' 
180 195 13 24072 177 34 

2184 91 6 24648 1027 78 
2220 590 37 24860 1243 5 
2860 715 o 27676 187 37 
3080 39 22 27740 1387 5 
3740 187 5 29784 102 73 
5304 102 78 29784 102 146 
5576 82 17 30140 1507 5 
5576 697 82 31240 399 22 
9655 435 95 37596 723 13 
5772 1443 13 39372 193 ol 
5772 1443 37 39516 267 37 
6045 403 15 39576 102 97 
6216 209 6 39576 102 194 
6460 323 5 40120 1003 10 
6460 323 85 43068 291 37 
7480 187 10 43505 1243 30 
7548 ol of 43945 2395 187 
7752 of 34 47724 123 97 
8140 2035 Oo 49569 403 123 
8140 2035 37 49720 1243 10 
9672 403 6 52745 1507 30 

10120 115 22 53960 3995 190 
10248 427 6 99480 1387 10 
11388 219 13 58056 177 82 
12920 323 10 63304 193 82 
13640 155 22 63804 1227 13 
13884 267 13 78744 386 102 
14168 253 14 84040 955 22 
14892 73 51 107004 723 3¢ 
15132 291 13 118105 1027 115 

15405 1027 195 136565 955 715 
15405 1027 15 136840 1555 22 
16744 91 46 159505 1387 115 
17112 93 46 178585 955 187 
18312 763 6 181596 1227 of 
19788 97 ol 183964 1243 37 
19880 142 70 222365 1555 715 
20060 1003 3 232696 1003 58 
20060 1003 85 235705 1003 239 
20680 235 22 274209 1027 267 
20805 1387 15 327352 1411 58 
22792 299 22 384865 955 403 
23560 190 155 626665 1555 403           
  

 



Works Cited 

[1] S. Allen and P. A. B. Pleasants, The number of different lengths of irreducible 
factorization of a natural number in an algebraic number field, Acta Arithmetica 
36 (1980), 59-86. 

[2] P. Barrucand and H. Cohn, A rational genus, class number divisibility and unit 
theory for pure cubic fields, J. No. Theory 2 (1970), 7-21. 

[3] D. H. Buell, Small class numbers and extreme values of L-functions of quadratic 
fields, Math. Comp. 31 (1977), 786-796. 

[4] D. H. Buell, H. C. Williams and K. S. Williams, On the imaginary bicyclic bi- 
quadratic fields with class-number 2, Math. Comp. 31 (1977), 1034-1042. 

[5] L. Carlitz, A characterization of algebraic number fields with class number two, 
Proceedings of the American Mathematical Society 11 (1960), 391-392. 

[6] S. Chowla and W. E. Briggs, On discriminants of binary quadratic forms with a 
single class in each genus, Canadian J. of Math. 6 (1954). 

[7] L. E. Dickson, Introduction to the Theory of Numbers, Univ. of Chicago Press, 
Chicago, 1929. 

[8] E. Grosswald, Negative discriminants of binary quadratic forms with one class in 
each genus, Acta Arith. VIII (1963), 295-306. 

[9] H. Hancock, Foundations of the Theory of Algebraic Numbers, Macmillan Co., 
New York, 1931. 

[10] H. Heilbronn, On the class number in imaginary quadratic fields, The Quarterly 
Journal of Mathematics 5 (1934), 150-160. 

{11] E. L. Ince, Cycles of Reduced Ideals in Quadratic Fields, Mathematical Tables, 
IV, British Association for the Advancement of Science, London, 1934. 

[12] S. Kuroda, Uber den Dirichletschen Kérper, J. Fac. Sci. Imp. Univ. Tokyo, Sec. 
I, Vol. IV, Part 5 (1943), 383-406. 

[13] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed., 
Springer-Verlag, Berlin, 1990. 

[14] W. Narkiewicz, On algebraic number fields with non-unique factorization, Collo- 
quium Mathematicum 12 (1964), 59-68. 

[15] W. Narkiewicz and J. Sliwa, Normal orders for certain functions associated with 
factorizations in number fields, Colloquium Mathematicum 38 (1978), 323-328. 

[16] J. E. Olson, A combinatorial problem on finite abelian groups, Journal of Number 
Theory 1 (1969), 8-10. 

74



75 

[17] B. Oriat, Theorie Des Nombres (fasciculez) Années 1986/87-1987/88, Publica- 
tions Mathematiques de la Faculté des Sciences de Besancon, Besacon. 

[18] J. Sliwa, Factorizations of distinct lengths in algebraic number fields, Acta Arith. 
XXI (1976), 399-417. 

[19] J. Sliwa, Primes which remain irreducible in a normal field, Colloquium Mathe- 
maticum 37 (1977), 159-165. 

[20] J. Sliwa, Remarks on factorizations in algebraic number fields, Colloquium Math- 
ematicum 46 (1982), 123-130. 

[21] L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York, 
1982.



VITA 

Daisy Cox McCoy was born on May 15, 1951 in Atlanta, Georgia, the daughter of 

Anne and Albert Cox. She graduated from Druid Hills High School in 1969. She at- 

tended Emory and Henry College and received her Bachelor’s degree in Mathematics 

from Douglass College in 1975. After becoming interested in a teaching career, she 

returned to school in 1984 and received the M.S. degree in Mathematics from Vir- 

ginia Tech in 1986. She is currently an instructor of Mathematics at Union College, 

Barbourville, Kentucky. She is a member of the American Mathematical Society and 

the Association for Women in Mathematics. 

76


