IRREDUCIBLE ELEMENTS IN ALGEBRAIC NUMBER FIELDS

by
Daisy C. McCoy
Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements of

DOCTOR OF PHILOSOPHY

in

Mathematics
APPROVED:

D. Farkas

Put Elute
P. Fletcher
\qquad
R. Wheeler

November, 1990
Blacksburg, Virginia

IRREDUCIBLE ELEMENTS IN ALGEBRAIC NUMBER FIELDS

 byDaisy C. McCoy
Committee Chairman: Charles J. Parry

Mathematics
(ABSTRACT)
This dissertation is a study of two basic questions involving irreducible elements in algebraic number fields. The first question is: Given an algebraic integer β in a field with class number greater than two, how many different lengths of factorizations into irreducibles exist? The distribution into ideal classes of the prime ideals whose product is the principal ideal (β) determines the possible length of the factorizations into irreducibles. Chapter 2 gives precise answers when the field has class number 3 or 4 , as well as when the class group is an elementary 2 -group of order 8 .

The second question is: In a normal extension, when are there rational primes which split completely and remain irreducible? Chapter 3 focusses on the bicyclic biquadratic fields. The imaginary bicyclic biquadratic fields which contain such primes are completely determined.

ACKNOWLEDGEMENTS

Graduate study can be a long, lonely, and often discouraging experience. It was because of the help and encouragement of many people in the Virginia Tech community that I persevered.

My advisor, Charles J. Parry, was very generous with his guidance and support. His interest in my education as a mathematician and in my project was crucial. He provided valued assistance in a number of areas including research techniques, bibliographic insights, and editorial guidance. I am especially indebted to him for his computer calculations of class numbers. Charles Parry understands a student's need to spend time outside of the library and class room. I am grateful for his advice about the Appalachian Trail and other wilderness opportunites in the area.

Others have helped me in many ways as well. I wish to thank Ruth and Eddie Sherman and Robin Endelman for their hospitality and friendship. A special note of thanks also goes to Professor Daniel Farkas for the opportunity to work with him and the many thought provoking conversations we have had.

TABLE OF CONTENTS

Abstract ii
Acknowledgements iii
Chapter I. 1Introduction
Chapter II. 3Lengths of Irreducible Factorizations in Fields with Small Class Numbers
Chapter III. 23Bicylic Biquadratic Fields Which Contain Irreducible Rational Primes
Works Cited 74
Vita 76

Chapter I. Introduction

In the field of rational numbers, every integer has a unique factorization into irreducible elements; i.e., unique prime factorization. However, in an arbitrary number field, an algebraic integer may have several distinct factorizations into irreducible elements. In fact, the number of irreducible factors occuring in different factorizations of an integer may not be the same, depending on the class structure for the field. If the field has class number 1 or 2 , then the number of irreducible factors in the factorizations of an integer is unique. In Chapter II we consider the problem of determining the number of different lengths of irreducible factorizations of an algebraic integer in fields with class number greater than 2 . Theorems 7 and 8 give precise answers when the Davenport constant of the class group is 3 and Theorems 10 and 17 answer the question when the Davenport constant is 4 . For each of these theorems, Section six gives explicit examples, showing how an integer may be found having a given number of irreducible factorizations with distinct lengths.

In the field of rational numbers, the prime numbers are the irreducible elements. However, every other algebraic number field will contain rational primes which are reducible. Chapter III explores the question of which number fields contain rational primes which remain irreducible. Narkiewicz [13] has shown that such number fields must have a Galois group with a cyclic subgroup of index not exceeding the Davenport constant of the class group. In particular, in a cyclic extension there are rational primes which remain prime and therefore are irreducible. Sliwa [19] gave a characterization of normal extensions K / Q containing irreducible rational primes using the Galois group $G(K / Q)$, the class group $H(K)$, and the action of G on $H(K)$.

The question becomes more interesting when restricted to the existence of rational primes which split completely in K and remain irreducible. A normal cyclic extension of degree $l=2,3$ or 5 over the rational numbers is easily seen to have this property
if and only if it has class number greater than 1 . In a bicylic biquadratic field K, a prime splits completely and remains irreducible if and only if its prime factors in each quadratic subfield of K are not principal in K. The detailed study of this condition in Chapter III yields a complete characterization of imaginary bicyclic fields containing irreducible rational primes which, as ideals, split completely.

Chapter II. Lengths of Irreducible Factorizations in Fields with Small Class Numbers

§1. Introduction.

Every nonzero integer of an algebraic number field has a unique factorization into irreducible elements if and only if the field has class number 1. L. Carlitz [5] has shown that the number of irreducible factors occurring in a factorization is unique if and only if the class number of the field is less than or equal 2 . For fields of class number greater than 2, Narkiewicz [14], Narkiewicz and Sliwa [15], and Allen and Pleasants [1] have obtained asymptotic estimates for the number of different lengths of irreducible factorizations. In this chapter we obtain explicit formulas for the number of different lengths of irreducible factorizations of an algebraic integer, when the ideal class group of the field has Davenport constant at most four.

§2. Notation and Terminology.

$K: \quad$ an algebraic number field.
$\beta: \quad$ nonzero, nonunit, integer of K.
$l(\beta): \quad$ Number of different lengths of factorizations of β into irreducible elements, where the length of an irreducible factorization is the number of irreducible factors.
$h: \quad$ Class number of K.
$H: \quad$ Ideal class group of K.
$X_{i}(0 \leq i<h): \quad$ Ideal classes of K, where X_{0} denotes the principal class.
$o\left(X_{i}\right): \quad$ Order of the class X_{i}.
$\Omega_{i}(\beta): \quad$ Number of prime ideals (counting multiplicities) in X_{i} which divide β.
$s=\Omega(\beta): \quad \quad$ Number of prime ideals (counting multiplicities) which divide β.
$(\beta)=\mathfrak{p}_{1} \mathfrak{p}_{2} \cdots \mathfrak{p}_{s}: \quad$ Factorization of (β) into prime ideals.
$\left[\mathfrak{p}_{i}\right]: \quad$ The ideal class of \mathfrak{p}_{i}.
$S=S(\beta): \quad$ The sequence $\left[\mathfrak{p}_{1}\right],\left[\mathfrak{p}_{2}\right], \ldots,\left[\mathfrak{p}_{s}\right]$ of ideal classes determined by β.
Block:
A finite sequence of elements of H whose product is X_{0}.
Block Product: If $B=X_{0}^{b_{0}} X_{1}^{b_{1}} \ldots X_{h-1}^{b_{h-1}}$ and $C=X_{0}^{c_{0}} X_{1}^{c_{1}} \ldots X_{h-1}^{c_{h-1}}$ are blocks and b_{i}, c_{i} are nonnegative integers then

$$
B C=X_{0}^{b_{0}+c_{0}} X_{1}^{b_{1}+c_{1}} \ldots X_{h_{-1}}^{b_{h-1}+c_{h-1}}
$$

Irreducible Block: A block which cannot be written as a product of two subblocks. $D(H): \quad$ The Davenport constant of H; i.e., the maximum length of an irreducible block of H.
R :
The free commutative semigroup generated by the set of all irreducible blocks of H. The elements of R can be represented as formal linear polynomials $\Sigma a_{i} B_{i}$ where each a_{i} is a nonnegative integer and the B_{i} range over all the irreducible blocks of H.
$w(F):$ If $F \in R$, the weight of $F, w(F)$, is the sum of the coefficients of F.

§3. Preliminary Results.

Some general observations are made in this section, which apply to any number field, K.

Lemma 1. If $\beta=\beta_{0} \beta_{1}$ where $\Omega_{i}\left(\beta_{0}\right)=0$ for $1 \leq i<h$ and $\Omega_{0}\left(\beta_{1}\right)=0$, then $l(\beta)=l\left(\beta_{1}\right)$.

Proof: Since every prime ideal factor of β_{0} is principal, the number of irreducible elements in any factorization of β_{0} is $\Omega_{0}\left(\beta_{0}\right)$. Hence $l\left(\beta_{0}\right)=1$ and $l(\beta)=l\left(\beta_{1}\right)$.

In view of Lemma 1, for the remainder of this chapter we will assume that $\Omega_{0}(\beta)=$ 0.

There is an obvious one-to-one correspondence between the set of all partitions of S into irreducible blocks and a subset R^{\prime} of R. The coefficient of an irreducible block B of an F in R^{\prime} is precisely the number of times the block B occurs in the given partition of S.

Lemma 2. If F belongs to R^{\prime} and some terms $G=\sum_{i=1}^{m} b_{i} B_{i}$ of F are replaced with the terms $G^{\prime}=\sum_{j=1}^{m} c_{j} C_{j}$ in R subject to the condition that

$$
\Pi_{i=1}^{m} B_{i}^{b_{i}}=\Pi_{j=1}^{n} C_{j}^{c_{j}}
$$

then the polynomial F^{\prime} obtained by this substitution also belongs to R^{\prime}.
Proof: Since F corresponds to a partition of S into irreducible blocks, the product condition insures that F^{\prime} also corresponds to a partition of S. Thus F^{\prime} belongs to R^{\prime}.

The substitution of Lemma 2 can be considered as a transformation on R^{\prime}. The notation

$$
T\left(\sum_{i=1}^{m} b_{i} B_{i}\right)=\sum_{j=1}^{m} c_{j} C_{j}
$$

will be used to denote such transformations.
Lemma 3. The number of different weights of elements of R^{\prime} is precisely $l(\beta)$.
Proof: For any F in $R^{\prime}, w(F)$ is precisely the number of irreducible elements in the factorization of β determined by the partition of S corresponding to F.

Each element F of R^{\prime} determines a solution to the Diophantine equation

$$
\begin{equation*}
2 y_{1}+3 y_{2}+\cdots+D y_{D-1}=s \tag{*}
\end{equation*}
$$

where y_{i} is the number of irreducible blocks of length $i+1$ which occur in F and $D=D(H)$. A non-negative integral solution to $\left(^{*}\right)$ will be called an admissible solution if it is determined by some F in R^{\prime}.

Lemma 4. $l(\beta)$ is precisely the number of distinct sums of the form $y_{1}+y_{2}+\cdots+y_{D-1}$ where $\left(y_{1}, \cdots, y_{D-1}\right)$ runs through the set of admissible solutions to (*).

Proof: Each F in R^{\prime} gives an admissible solution to $\left(^{*}\right)$ with $w(F)=y_{1}+\cdots+y_{D-1}$. Conversely, any admissible solution with $y_{1}+\cdots+y_{D-1}=t$, corresponds to an F in R^{\prime} with $w(F)=t$. The result follows from Lemma 3.
§4. Class groups of order 3 and 4.
When H has order 3 or 4 , it is shown that $l(\beta)$ is a linear function of $m=$ $\min \left\{\Omega_{i}(\beta)\right\}$ such that $X_{i} \in H$ has maximum order.

Lemma 5. If $H=Z_{3}$, then $l(\beta)$ is the number of solutions to $3 x+2 y=s$ with $0 \leq x$ and $0 \leq y \leq m$.

Proof: The irreducible blocks of H are $X_{i}^{3}(i=1,2)$ and $X_{1} X_{2}$. Hence the number of irreducible blocks of length 2 in any partition of $S(\beta)$ is at most m. Thus $l(\beta)$ is bounded above by the number of solutions to the equation satisfying the inequalities.

Conversely, let (x, y) be a solution to the equation which satisfies the inequalities. Since (β) is a principal ideal, $\Omega_{1}(\beta)+2 \Omega_{2}(\beta) \equiv 0(\bmod 3)$. Thus $\Omega_{1}(\beta) \equiv \Omega_{2}(\beta) \equiv$ $m(\bmod 3)$ and so $2 y \equiv s \equiv \Omega_{1}(\beta)+\Omega_{2}(\beta) \equiv 2 m(\bmod 3)$. Hence

$$
F=\frac{1}{3}\left(\Omega_{1}(\beta)-y\right) X_{1}^{3}+\frac{1}{3}\left(\Omega_{2}(\beta)-y\right) X_{2}^{3}+y X_{1} X_{2}
$$

is in R^{\prime} and corresponds to the solution (x, y). Since distinct solutions to (*) give distinct values of $x+y$, the result follows from Lemma 4.

Lemma 6. If $H=Z_{2} \times Z_{2}$, then $l(\beta)$ is the number of solutions to $3 x+2 y=s$ with $0 \leq x \leq m$ and $0 \leq y$.

Proof: Here the irreducible blocks are $X_{i}^{2}(i=1,2,3)$ and $X_{1} X_{2} X_{3}$. Since x denotes the number of irreducible blocks of length 3 in any partition of S, it is clear that $x \leq m$. The remainder of the proof is similar to that of Lemma 5 .

Theorem 7. If $H=Z_{3}$, then $l(\beta)=\frac{m+\epsilon}{3}$ where $\epsilon \equiv s(\bmod 3)$ and $1 \leq \epsilon \leq 3$.
Proof: If $3 x+2 y=s$, then

$$
y \equiv 2 s(\bmod 3)
$$

so $y=2 s-3 t$ for some integer t and so $x=2 t-s$. It follows from Lemma 5 that $\frac{2 s-m}{3} \leq t \leq \frac{2 s}{3}$ and $\frac{s}{2} \leq t$. But $\frac{s}{2} \leq \frac{2 s-m}{3}$. Note that $2 s-m \equiv 0(\bmod 3)$ and that $2 s \equiv 3-\epsilon(\bmod 3)$ with $0 \leq 3-\epsilon \leq 2$, so that $t \leq \frac{2 s-3+\epsilon}{3}=\frac{2 s+\epsilon}{3}-1$. By Lemma 5 ,

$$
l(\beta)=\frac{2 s+\epsilon}{3}-1-\frac{2 s-m}{3}+1=\frac{m+\epsilon}{3} .
$$

Theorem 8. If $H=Z_{2} \times Z_{2}$, then $l(\beta)=\frac{m+\epsilon}{2}$ where $\epsilon \equiv s(\bmod 2)$ and $\epsilon=1$ or 2 .
Proof: As in the preceding proof $y=2 s-3 t$ and $x=2 t-s$. From Lemma 6, $\frac{s}{2} \leq t \leq \frac{s+m}{2}$ and $t \leq \frac{2 s}{3}$, but $\frac{s+m}{2} \leq \frac{2 s}{3}$. Since (β) is a principal ideal, $\Omega_{1}(\beta)+$ $\Omega_{3}(\beta) \equiv \Omega_{2}(\beta)+\Omega_{3}(\beta) \equiv 0(\bmod 2)$, so $\Omega_{1}(\beta) \equiv \Omega_{2}(\beta) \equiv \Omega_{3}(\beta) \equiv \operatorname{m}(\bmod 2)$. In particular, $s \equiv \operatorname{m}(\bmod 2)$. Note that $s \equiv 2-\epsilon(\bmod 2)$ with $2-\epsilon=0$ or 1 , so that $t \geq \frac{s+2-\epsilon}{2}=\frac{s-\epsilon}{2}+1$. By Lemma 6

$$
l(\beta)=\frac{s+m}{2}-\left(\frac{s-\epsilon}{2}+1\right)+1=\frac{m+\epsilon}{2}
$$

We now consider the case $H=Z_{4}$. Number the ideal classes so that $o\left(X_{1}\right)=$ $o\left(X_{3}\right)=4$ and $o\left(X_{2}\right)=2$. Let $\Omega_{1}(\beta)=k, \Omega_{2}(\beta)=l$ and $\Omega_{3}(\beta)=m$. With no loss of generality, we may assume $k \geq m$.

Lemma 9. If $H=Z_{4}$, then $l(\beta) \leq\left[\frac{m}{2}\right]+1$.
Proof: By Lemma $4, l(\beta)$ is bounded by the number of solutions to

$$
4 x+3 y+2 z=s
$$

which give distinct values for $x+y+z$. Since $y \equiv s(\bmod 2), y=s-2 u$ for some integer u and

$$
2 x+z=-s+3 u \text { so }
$$

$$
\begin{aligned}
z & \equiv s+u(\bmod 2) . \text { Thus } \\
z & =s+u-2 v \text { and } \\
x & =-s+u+v, \text { so } \\
x+y+z & =s-v .
\end{aligned}
$$

Since the irreducible blocks of H are $X_{i}^{4}(i=1,3), X_{i}^{2} X_{2}(i=1,3), X_{1} X_{3}$ and X_{2}^{2}, in any partition of $S(\beta)$ the $l X_{2}$ terms occur either as singletons in blocks of length 3 or as pairs in blocks of length 2 . Thus $l \leq y+2 z$, so $v \leq \frac{3 s-l}{4}$. On the other hand,

$$
\begin{aligned}
z & \leq m+\frac{1}{2}\left(\text { number of } X_{2} \text { 's not used in blocks of length } 3\right) \\
& =m+\frac{1}{2}(l-y) . \text { Thus }
\end{aligned}
$$

$$
y+2 z \leq l+2 m \text { and hence }
$$

$$
\frac{3 s-l}{4}-\frac{m}{2} \leq v \leq \frac{3 s-l}{4}
$$

Thus there are at most $\left[\frac{m}{2}\right]+1$ distinct values of $x+y+z$ where (x, y, z) is a solution to $\left(^{*}\right)$. This gives the desired bound for $l(\beta)$.

Theorem 10. If $H=Z_{4}$, then $l(\beta)= \begin{cases}{[\mathrm{m} / 2]+1} & \text { if } l>0 \\ {[\mathrm{~m} / 4]+1} & \text { if } l=0 .\end{cases}$
Proof: First suppose $l>0$. Since (β) is a principal ideal, $k+2 l+3 m \equiv 0(\bmod 4)$ so $k \equiv m(\bmod 2)$. Also, $k \equiv m+2 l(\bmod 4)$ and

$$
s=k+l+m \equiv l(\bmod 2)
$$

Let $m \equiv \epsilon \equiv 2 \epsilon_{1}+\epsilon_{0}(\bmod 4)$ with $0 \leq \epsilon \leq 3$ and $0 \leq \epsilon_{0}, \epsilon_{1} \leq 1$. Set

$$
\begin{aligned}
v & =\frac{3 s-l-2 \epsilon_{0}}{4} \text { and note that } \\
4 v & =3 s-l-2 \epsilon_{0} \\
& =3 k+2 l+3 m-2 \epsilon_{0}
\end{aligned}
$$

$$
\begin{gathered}
9 \\
\equiv 2\left(m-\epsilon_{0}\right) \equiv 0(\bmod 4),
\end{gathered}
$$

so that v is an integer. First, we assume that l (and hence s) is even, so $u=\frac{s}{2}-\epsilon_{1}$ is an integer. Using the equations given in the proof of Lemma 9, we obtain

$$
\begin{aligned}
& x=\left(\frac{k-\epsilon}{4}\right)+\left(\frac{m-\epsilon}{4}\right) \\
& y=2 \epsilon_{1} \\
& z=\frac{l+2 \epsilon_{0}}{2}-\epsilon_{1} .
\end{aligned}
$$

An element of R^{\prime} corresponding to this solution is

$$
F=\left(\frac{k-\epsilon}{4}\right) X_{1}^{4}+\left(\frac{m-\epsilon}{4}\right) X_{3}^{4}+\epsilon_{1} X_{1}^{2} X_{2}+\epsilon_{1} X_{3}^{2} X_{2}+\left(\frac{l}{2}-\epsilon_{1}\right) X_{2}^{2}+\epsilon_{0} X_{1} X_{3}
$$

Since we will need a cubic term with positive coefficient, if $\epsilon_{1}=0$ apply the transformation

$$
T_{0}\left(X_{1}^{4}+X_{2}^{2}\right)=2 X_{1}^{2} X_{2} \text { to } F
$$

giving the polynomial F^{\prime}. Note that $w(F)=w\left(F^{\prime}\right)$.
Define the following transformations on R,

$$
\begin{aligned}
T_{1}\left(X_{1}^{4}+X_{3}^{2} X_{2}\right) & =X_{1}^{2} X_{2}+2 X_{1} X_{3} \\
T_{2}\left(X_{3}^{4}+X_{1}^{2} X_{2}\right) & =X_{3}^{2} X_{2}+2 X_{1} X_{3} \\
T_{3}\left(X_{1}^{2} X_{2}+X_{3}^{2} X_{2}\right) & =2 X_{1} X_{3}+X_{2}^{2} .
\end{aligned}
$$

Note that each T_{i} increases the weight of a polynomial by 1. Assume for the moment that either $\epsilon_{1}=1$ or $k>m$. Apply T_{2} followed by T_{1} to $F\left(F^{\prime}\right.$ if $\left.\epsilon_{1}=0\right) \frac{m-\epsilon}{4}$ times. Then apply $T_{3} \epsilon_{1}$ times. Since each T_{i} increases the weight by 1 ,

$$
l(\beta) \geq 2\left(\frac{m-\epsilon}{4}\right)+\epsilon_{1}+1=\frac{m-\epsilon_{0}}{2}+1=\left[\frac{m}{2}\right]+1
$$

If $k=m$ and $\epsilon_{1}=0$, apply T_{2} followed by T_{1} to $F^{\prime} \frac{m-\epsilon}{4}-1$ times, apply T_{2} one additional time and then apply $T_{3} \epsilon_{1}+1=1$ time. As above

$$
\begin{aligned}
l(\beta) & \geq 2\left(\frac{m-\epsilon}{4}-1\right)+1+\epsilon_{1}+1+1 \\
& =\left[\frac{m}{2}\right]+1
\end{aligned}
$$

Now, assume l, and hence s, is odd. Note that $k \equiv m+2 \equiv 2\left(1-\epsilon_{1}\right)+\epsilon_{0}(\bmod 4)$ with $0 \leq 2\left(1-\epsilon_{1}\right)+\epsilon_{0} \leq 3$. Set $u=\frac{s-1}{2}$ and $v=\frac{3 s-l-2 \epsilon_{0}}{4}$, so

$$
\begin{aligned}
x & =\frac{k+m-2-2 \epsilon_{0}}{4}=\frac{k+m-\left(2-2 \epsilon_{1}+\epsilon_{0}+2 \epsilon_{1}+\epsilon_{0}\right)}{4} \\
& =\frac{k-\left(2\left(1-\epsilon_{1}\right)+\epsilon_{0}\right)}{4}+\frac{m-\epsilon}{4}=\frac{k+4 \epsilon_{1}-(\epsilon+2)}{4}+\frac{m-\epsilon}{4} \\
y & =1 \\
z & =\frac{l-1+2 \epsilon_{0}}{2}
\end{aligned}
$$

An element of R corresponding to this solution is

$$
\begin{aligned}
F & =\left(\frac{k+4 \epsilon_{1}-(\epsilon+2)}{4}\right) X_{1}^{4}+\left(\frac{m-\epsilon}{4}\right) X_{3}^{4}+\left(1-\epsilon_{1}\right) X_{1}^{2} X_{2} \\
& +\epsilon_{1} X_{3}^{2} X_{2}+\left(\frac{l-1}{2}\right) X_{2}^{2}+\epsilon_{0} X_{1} X_{3}
\end{aligned}
$$

Apply T_{1} followed by T_{2} or T_{2} followed by T_{1}, according as $\epsilon_{1}=1$ or 0 , to $F \frac{m-\epsilon}{4}$ times. Apply $T_{1} \epsilon_{1}$ times, obtaining

$$
\begin{aligned}
l(\beta) & \geq 2\left(\frac{m-\epsilon}{4}\right)+\epsilon_{1}+1 \\
& =\left[\frac{m}{2}\right]+1
\end{aligned}
$$

The first result is now immediate from Lemma 9.
Now assume $l=0$. Here $s=k+m$ with $k \equiv m(\bmod 4)$. Moreover, any admissible solution of the Diophantine equation $4 x+3 y+2 z=s$ must have $y=0$. The Diophantine equation reduces to

$$
2 x+z=\frac{k+m}{2}
$$

which has solution $z=\frac{k+m}{2}-2 x$ with $0 \leq z \leq m$. :ence $\frac{k-m}{4} \leq x \leq \frac{k+m}{4}$. However, each admissible solution must correspond to an element of R^{\prime} of the form

$$
a X_{1}^{4}+b X_{3}^{4}+c X_{1} X_{3}
$$

with $x=a+b$ and $z=c$. Therefore,

$$
4 b+c=m \text { so } z=c \equiv m(\bmod 4)
$$

Thus $2 x=\frac{k+m}{2}-z \equiv \frac{k-m}{2}(\bmod 4)$ or

$$
x \equiv \frac{k-m}{4}(\bmod 2)
$$

Thus at most $\left[\frac{m}{4}\right]+1$ of the solutions to the Diophantine equation are admissible, so

$$
l(\beta) \leq\left[\frac{m}{4}\right]+1
$$

On the other hand,

$$
F=\left(\frac{k-\epsilon}{4}\right) X_{1}^{4}+\left(\frac{m-\epsilon}{4}\right) X_{3}^{4}+\epsilon X_{1} X_{3}
$$

corresponds to the solution $x=\frac{k+m-2 \epsilon}{4}, z=\epsilon$. Let T_{4} denote the transformation $T_{4}\left(X_{1}^{4}+X_{3}^{4}\right)=4 X_{1} X_{3}$. Note that T_{4}, which increases the weight of a polynomial by 2 , can be applied to $F \frac{m-\epsilon}{4}$ times. Hence

$$
l(\beta) \geq \frac{m-\epsilon}{4}+1
$$

and so equality must hold.

§5. Elementary class group of order 8.

When H is an elementary abelian 2-group of rank $3, D(H)=4$ (see Olson [16]), so the Diophantine equation becomes

$$
\begin{equation*}
4 x+3 y+2 z=s \tag{*}
\end{equation*}
$$

Here, it will be shown that $l(\beta)$ is a linear function in x_{0} and y_{0} where $\left(x_{0}, y_{0}, z_{0}\right)$ is an admissible solution to $\left(^{*}\right)$ with $x=x_{0}$ maximal and $y=y_{0}$ maximal subject to $x=x_{0}$.

Each element of H has a unique expression in the form $X_{\alpha}=X_{1}^{i} \times X_{2}^{j} \times X_{3}^{k}$ with $0 \leq i, j, k \leq 1$, where X_{1}, X_{2} and X_{3} generate H. Denote α using the 3 digits $1 \cdot i 2 \cdot j 3 \cdot k$ and then omit any zero digits. Thus, for example $X_{13}=X_{1} \times X_{2}^{0} \times X_{3}$.

There are 21 irreducible blocks of $H, 7$ of each length 2,3 , and 4 . Those of length 2 are simply the squares of the non-identity elements of H. The irreducible blocks of length 3 and 4 are:

$$
\begin{gathered}
X_{1} X_{2} X_{12}, X_{1} X_{3} X_{13}, X_{1} X_{23} X_{123}, X_{2} X_{3} X_{23}, X_{2} X_{13} X_{123}, X_{3} X_{12} X_{123} \\
X_{12} X_{13} X_{23}, X_{1} X_{2} X_{3} X_{123}, X_{1} X_{2} X_{13} X_{23}, X_{1} X_{3} X_{12} X_{23}, X_{1} X_{12} X_{13} X_{123}, X_{2} X_{3} X_{12} X_{13} \\
X_{2} X_{12} X_{23} X_{123}, \text { and } X_{3} X_{13} X_{23} X_{123}
\end{gathered}
$$

Let $k_{\alpha}=\Omega\left(X_{\alpha}\right)$. Since any three non-identity elements, not contained in a proper subgroup, generate H, we may choose X_{1} and X_{2} so that $k_{1} \leq k_{2} \leq k_{\alpha}$ for $\alpha \neq 1,2$. Then choose $X_{3} \neq X_{12}$ so that k_{3} is minimal among the remaining k_{α}.

Lemma 11. Assume $\left(x_{0}, y_{0}, z_{0}\right)$ is an admissible solution to $\left(^{*}\right)$ with $y=y_{0}$ maximal for $x=x_{0}$. If $x=x_{1}=x_{0}-1, y=y_{1}$ and $z=z_{1}$ is another admissible solution, then $y_{1} \leq y_{0}+2$.

Proof: Let F_{1} in R^{\prime} correspond to the solution (x_{1}, y_{1}, z_{1}). Suppose $y_{1}>y_{0}+2$. If F_{1} contains two different blocks of length 3 , say $X_{1} X_{2} X_{12}$ and $X_{1} X_{3} X_{13}$, then applying

$$
T_{0}\left(X_{1} X_{2} X_{12}+X_{1} X_{3} X_{13}\right)=X_{2} X_{3} X_{12} X_{13}+X_{1}^{2}
$$

gives an F corresponding to an admissible solution with $x=x_{0}$ and $y=y_{1}-2>y_{0}$, contradicting the choice of y_{0}. Hence, we may assume that F_{1} contains only one type of irreducible block of length 3 , say $X_{1} X_{2} X_{12}$.

Suppose now that F_{1} contains at least two types of square terms disjoint from $X_{1} X_{2} X_{12}$, say X_{13}^{2} and X_{23}^{2}. Applying

$$
T_{1}\left(X_{1} X_{2} X_{12}+X_{13}^{2}+X_{23}^{2}\right)=X_{1} X_{2} X_{13} X_{23}+X_{12} X_{13} X_{23}
$$

gives an admissible solution with $x=x_{0}$ and $y=y_{1}>y_{0}$, again contradicting the choice of y_{0}. Therefore we may assume that F_{1} contains at most one such square term, say X_{23}^{2}.

If F_{1} contains the block $X_{3} X_{13} X_{23} X_{123}$ then applying

$$
T_{2}\left(X_{3} X_{13} X_{23} X_{123}+X_{1} X_{2} X_{12}\right)=X_{1} X_{2} X_{3} X_{123}+X_{12} X_{13} X_{123}
$$

yields an element of R^{\prime} with two types of blocks of length 3 corresponding to the admissible solution (x_{1}, y_{1}, z_{1}) which was seen to give a contradiction.

Now suppose that F_{1} contains the block X_{23}^{2} and a block of length 4 which does not contain X_{23}, say $X_{1} X_{2} X_{3} X_{123}$. Applying

$$
T_{3}\left(X_{1} X_{2} X_{3} X_{123}+2 X_{1} X_{2} X_{12}+X_{23}^{2}\right)=X_{2} X_{12} X_{23} X_{123}+X_{1} X_{3} X_{12} X_{23}+X_{1}^{2}+X_{2}^{2}
$$

gives an admissible solution with $x=x_{0}$ and $y=y_{1}-2>y_{0}$, again contradicting the maximality of y_{0}. Thus F_{1} can contain only one type of block of length 3 , one type of block of length 2 which is disjoint from the block of length 3 , and no block of length 4 disjoint from either. Therefore, if F_{1} contains an X_{23}^{2} term, the only blocks of length 4 which can occur are:

$$
X_{1} X_{2} X_{13} X_{23}, X_{1} X_{3} X_{12} X_{23}, \text { and } X_{2} X_{12} X_{23} X_{123}
$$

Since X_{3}, X_{13} and X_{123} can occur only in blocks of length $4, x_{1}=k_{13}+k_{3}+$ k_{123}. But every irreducible block of length 4 must contain at least one element of $\left\{X_{13}, X_{3}, X_{123}\right\}$, in particular, $x_{0} \leq k_{13}+k_{3}+k_{123}=x_{1}=x_{0}-1$. Thus we may assume F_{1} contains no X_{23}^{2} block as well as no $X_{3} X_{13} X_{23} X_{123}$ block.

Now every block of length 4 in F_{1} contains exactly two of the elements X_{3}, X_{13}, X_{23} and X_{123}. Moreover, since these elements can occur only in blocks of length $4, x_{1}=$ $\frac{1}{2}\left(k_{3}+k_{13}+k_{23}+k_{123}\right)$. Label the irreducible blocks of length 4 as A_{1}, \ldots, A_{7} and let a_{i} denote the maximum number of A_{i} which can occur in a partition of S. Then

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}+a_{7} \leq k_{3} \\
& a_{3}+a_{4}+a_{5}+a_{7} \leq k_{13} \\
& a_{2}+a_{4}+a_{6}+a_{7} \leq k_{23} \\
& a_{1}+a_{5}+a_{6}+a_{7} \leq k_{123}
\end{aligned}
$$

where the blocks are labelled so that X_{α} for $\alpha \in\{3,13,23,123\}$ occurs in block A_{i} if and only if a_{i} occurs in the inequality for k_{α}. Thus $2\left(a_{1}+\cdots+a_{6}+2 a_{7}\right) \leq$ $k_{3}+k_{13}+k_{23}+k_{123}$. In particular, $x_{0} \leq a_{1}+\cdots+a_{7} \leq \frac{1}{2}\left(k_{3}+k_{13}+k_{23}+k_{123}\right)=x_{1}$, a contradiction. Thus no F_{1} can exist with $y_{1}>y_{0}+2$.

Let $x=-s+u+v, y=s-2 u$ and $z=s+u-v$ be a parameterization of the solutions to $\left(^{*}\right)$ as in the proof of Lemma 9.

Lemma 12. Suppose $x=x_{0}, y=y_{0}$ and $z=z_{0}$ is an admissible solution to (*) with x_{0} maximal and y_{0} maximal with $x=x_{0}$. If $u=u_{0}$ and $v=v_{0}$ are the values of the parameters corresponding to this solution, then $v \leq v_{0}$ for all admissible solutions to (*).

Proof: Let $\left(x_{1}, y_{1}, z_{1}\right)$ be an admissible solution with $x_{0}-x_{1}=t$. It follows from Lemma 11 that $y_{1} \leq y_{0}+2 t$ so that $u_{0}-u_{1}=\frac{1}{2}\left(y_{1}-y_{0}\right) \leq t$. Thus, $t=x_{0}-x_{1}=$ $\left(u_{0}-u_{1}\right)+\left(v_{0}-v_{1}\right) \leq t+v_{0}-v_{1}$ and so $v_{1} \leq v_{0}$.

Lemma 13. If $x=x_{1}, y=y_{1}$ and $z=z_{1}$ is an admissible solution with z_{1} maximal, then the corresponding $v=v_{1}$ is minimal for the set of all admissible solutions.

Proof: Clearly $z_{1} \leq \sum_{\alpha}\left[\frac{k_{\alpha}}{2}\right]=\sigma$. Since (β) is principal

$$
\begin{aligned}
& k_{1}+k_{12}+k_{13}+k_{123} \equiv 0(\bmod 2) \\
& k_{2}+k_{12}+k_{23}+k_{123} \equiv 0(\bmod 2) \\
& k_{3}+k_{13}+k_{23}+k_{123} \equiv 0(\bmod 2)
\end{aligned}
$$

and so, exactly $0,3,4$ or 7 of the k_{α} are even (odd). Moreover, if exactly 3 or 4 of the k_{α} are odd, the corresponding X_{α} 's form an irreducible block of length 3 or 4 respectively. If all $7 k_{\alpha}$ are odd, then clearly they can be partitioned into one block of length 3 and one of length 4. Hence there exists an admissible solution with $x_{1} \leq 1, y_{1} \leq 1$ and $z_{1}=\sigma$. Since $y_{1}=s-2 u_{1}$ and $x_{1}=-s+u_{1}+v_{1}$ with x_{1} and y_{1} minimal, u_{1} maximizes u and v_{1} minimizes v.

Lemma 14. Let $x=x_{0}, y=y_{0}$ and $z=z_{0}$ be the admissible solution to (*) with $x=x_{0}$ maximal and $y=y_{0}$ maximal with $x=x_{0}$. Let $x=x_{1}, y=y_{1}$ and $z=z_{1}$ be the admissible solution to $\left(^{*}\right)$ with z_{1} maximal. Then $l(\beta) \leq x_{0}-x_{1}+\frac{y_{0}-y_{1}}{2}+1$. Moreover, $x_{1} \leq 1, y_{1} \leq 1$ and $x_{1}=1$ exactly when 4 or $7 k_{\alpha}$ are odd and $y_{1}=1$ exactly when 3 or $7 k_{\alpha}$ odd.

Proof: Let $f=x+y+z$ where $4 x+3 y+2 z=s$. Then $f=\frac{s-y}{2}-x=s-v$. If (x, y, z) is an admissible solution to $\left(^{*}\right)$ then f is the weight of a corresponding F in R^{\prime}. Now $l(\beta)$ is the number of weights of F in R^{\prime}. Since $f=s-v$, the maximal and minimal weights are obtained when v is minimal and maximal, respectively. From Lemma 12 and Lemma 13, these values are given by $v=v_{1}$ and $v=v_{0}$ respectively. Hence

$$
\begin{aligned}
l(\beta) & \leq 1+f_{1}-f_{0} \\
& =1+\frac{s-y_{1}}{2}-x_{1}-\frac{s-y_{0}}{2}+x_{0}
\end{aligned}
$$

$$
=1+x_{0}-x_{1}+\frac{1}{2}\left(y_{0}-y_{1}\right)
$$

The exact values of x_{1} and y_{1} were determined in the proof of Lemma 13.
In order to determine x_{0} and y_{0}, we construct an element F in R^{\prime} of the form

$$
F=m_{1} A_{1}+m_{2} A_{2}+m_{3} A_{3}+m_{4} B+n_{1} C_{1}+n_{2} C_{2}+n_{3} C_{3}
$$

where the A's and B's and C's represent blocks of length 4,3 and 2 respectively. Choose the A_{i} and m_{i} as follows: $A_{1}=X_{1} X_{12} X_{13} X_{123}, m_{1}=k_{1}, A_{2}=X_{2} X_{12} X_{23} X_{123}$ and $m_{2}=\min \left\{k_{2}, k_{12}-m_{1}, k_{123}-m_{1}\right\}$. If $m_{2}=k_{123}-m_{1}$, then $A_{3}=X_{2} X_{3} X_{12} X_{13}$ and $m_{3}=\min \left\{k_{2}-m_{2}, \kappa_{3}, k_{12}-\left(m_{1}+m_{2}\right), k_{13}-m_{1}\right\}$, otherwise $A_{3}=X_{3} X_{13} X_{23} X_{123}$ and $m_{3}=\min \left\{k_{3}, k_{13}-m_{1}, k_{23}-m_{2}, k_{123}-\left(m_{1}+m_{2}\right)\right\}$.

The choice for B depends on m_{2} and m_{3} as follows: If $m_{2}=k_{2}$ and $m_{3}=k_{3}$ or $m_{3}=k_{123}-\left(m_{1}+m_{2}\right)$, then $B=X_{12} X_{13} X_{23}$ and

$$
m_{4}=\min \left\{k_{12}-\left(m_{1}+m_{2}\right), k_{13}-\left(m_{1}+m_{3}\right), k_{23}-\left(m_{2}+m_{3}\right)\right\}
$$

If $m_{2}=k_{2}$ and $m_{3}=k_{13}-m_{1}$ or $m_{3}=k_{23}-m_{3}$, then $B=X_{3} X_{12} X_{123}$ and

$$
m_{4}=\min \left\{k_{3}-m_{3}, k_{12}-\left(m_{1}+m_{2}\right), k_{123}-\left(m_{1}+m_{2}+m_{3}\right)\right\}
$$

If $m_{2}=k_{12}-m_{1}$ and $m_{3}=k_{13}-m_{1}$ or $m_{3}=k_{123}-\left(m_{1}+m_{2}\right)$, then $B=X_{2} X_{3} X_{23}$ and

$$
m_{4}=\min \left\{k_{2}-m_{2}, k_{3}-m_{3}, k_{23}-\left(m_{2}+m_{3}\right)\right\}
$$

If $m_{2}=k_{12}-m_{1}$ and $m_{3}=k_{23}-m_{2}$ or $m_{3}=k_{3}$, then $B=X_{2} X_{13} X_{123}$ and

$$
m_{4}=\min \left\{k_{2}-m_{2}, k_{13}-\left(m_{1}+m_{3}\right), k_{123}-\left(m_{1}+m_{2}+m_{3}\right\}\right.
$$

If $m_{2}=k_{123}-m_{1}$ and $m_{3}=k_{2}-m_{2}$ or $m_{3}=k_{3}$, then $B=X_{12} X_{13} X_{23}$ and

$$
m_{4}=\min \left\{k_{12}-\left(m_{1}+m_{2}+m_{3}\right), k_{13}-\left(m_{1}+m_{3}\right), k_{23}-m_{2}\right\}
$$

If $m_{2}=k_{123}-m_{1}$ and $m_{3}=k_{12}-\left(m_{1}+m_{2}\right)$ or $m_{3}=k_{13}-m_{1}$, then $B=X_{2} X_{3} X_{23}$ and

$$
m_{4}=\min \left\{k_{2}-\left(m_{2}+m_{3}\right), k_{3}-m_{3}, k_{23}-m_{2}\right\}
$$

The C_{i} represent the remaining X_{α} in $S(\beta)$ which must occur in pairs.
Lemma 15. The polynomial F defined above has minimal weight in R^{\prime}.
Proof: In each case F corresponds to an admissible solution of $4 x+3 y+2 z=s$ with x maximal and y maximal for the value of x. By Lemma 12 , the corresponding $v=v_{0}$ is maximal. Since $w(F)=x+y+z=s-v$ is minimal when v is maximal, the result follows.

Set $\epsilon_{i} \equiv m_{i}(\bmod 2) \epsilon_{i}=0$ or 1 for $1 \leq i \leq 4$. By Lemma $13, F^{\prime}=\epsilon A+\epsilon_{4} B+$ squares has maximal weight in R^{\prime}, where $\epsilon=1$ if exactly 4 or $7 k_{\alpha}$ are odd and $\epsilon=0$ if exactly 4 or $7 k_{\alpha}$ are even, $\epsilon_{4}=1$ if exactly 3 or $7 k_{\alpha}$ are odd and $\epsilon_{4}=0$ if exactly 3 or $7 k_{\alpha}$ are even.

Lemma 16. Let F and F^{\prime} be as above. If $k_{12} \neq 0$ then for any integer γ with $w(F) \leq$ $\gamma \leq w\left(F^{\prime}\right)$ there exists an element F_{1} in R^{\prime} with $w\left(F_{1}\right)=\gamma$.

Proof: Suppose there is a series of transformations, which when applied to F yields F^{\prime}. If each of these transformations increases the weight by at most one, then there is an F_{1} with $w\left(F_{1}\right)=\gamma$. Thus we must show that such a series exists.

First assume $m_{1}=m_{2}=m_{3}=0$. Here $F=m_{4} B+$ squares. If $m_{4} \leq 1$, then $F=$ F^{\prime} and the lemma is trivially true. If $m_{4}>1$, then apply $T_{4}(2 B)=C_{1}+C_{2}+C_{3}, \frac{m_{4}-\epsilon_{4}}{2}$ times. Observe that each application of T_{4} increases the weight by one.

Now suppose at least two of m_{1}, m_{2} and m_{3} are positive, say $m_{2}>0$ and $m_{1}>0$ or $m_{3}>0$. Define $T_{7}\left(A_{i}+A_{j}\right)=A_{i j}+C+C^{\prime}$; e.g., $T_{7}\left(A_{1}+A_{2}\right)=X_{1} X_{2} X_{13} X_{23}+$ $X_{12}^{2}+X_{123}^{2}$.

Note that $T_{7}\left(A_{i}+A_{i j}\right)=A_{j}+$ squares and that T_{7} increases the weight by one. One sequence of transformations taking F to F^{\prime} is as follows:

Apply T_{7} to $A_{1}+A_{2}$ and then to $A_{1}+A_{12} \frac{m_{1}-\epsilon_{1}}{2}$ times, followed by T_{7} to $A_{2}+A_{3}$ and then to $A_{2}+A_{23}, \frac{m_{2}+\epsilon_{2}}{2}-1$ times and finally apply T_{7} to $A_{2}+A_{3}$ and $A_{3}+A_{23} \frac{m_{3}-\epsilon_{3}}{2}$ times. This yields

$$
F_{2}=\epsilon_{1} A_{1}+\left(2-\epsilon_{2}\right) A_{2}+\epsilon_{3} A_{3}+m_{4} B+\text { squares. }
$$

If $\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=0$, then $F_{2}=2 A_{2}+m_{4} B+$ squares and this can be dealt with as in the case of exactly one m_{1}, m_{2} or m_{3} being positive. Otherwise at least one $\epsilon_{i} \neq 0$ for some $i \leq 3$. Apply $T_{7} \epsilon_{1}+\epsilon_{3}+1-\epsilon_{2}$ more times yielding $F_{3}=A+m_{4} B+$ squares where A, the remaining block of length 4 , depends on m_{1}, m_{2} and m_{3}. Next apply $T_{4}, \frac{m_{4}-\epsilon_{4}}{2}$ times, yielding $F_{4}=A+\epsilon_{4} B+$ squares. If $\epsilon_{4}=0$ or A and B are disjoint, then no further transformations are possible. Otherwise, $T_{6}(A+B)=B^{\prime}+$ squares can be applied one time. If $m_{2}=0$ and $m_{1}>0, m_{3}>0$, then interchanging A_{2} and A_{1} in the above sequence of transformations yields the desired result.

Now suppose exactly one of m_{1}, m_{2} or m_{3} is not zero, call it m. Then $F=$ $m A+m_{4} B+$ squares. If $m=m_{3}$ and $m_{4}=0$, then since $k_{12}>0, F$ contains a X_{12}^{2} term, so the transformation

$$
T_{5}\left(A_{3}+X_{12}^{2}\right)=X_{3} X_{12} X_{123}+X_{12} X_{13} X_{23}
$$

can be applied. If $m_{4}=0$ and $m \neq m_{3}$, then $k_{2}>0$, so $k_{\alpha}>0$ for $\alpha>2$. If $m_{1} \neq 0$, then apply

$$
T_{5}\left(A_{1}+X_{23}^{2}\right)=X_{1} X_{23} X_{123}+X_{12} X_{13} X_{23}=B^{\prime}+B
$$

If $m_{2} \neq 0$, then apply

$$
T_{5}\left(A_{2}+X_{13}^{2}\right)=X_{2} X_{13} X_{123}+X_{12} X_{13} X_{23}=B^{\prime}+B
$$

Thus there is always a polynomial F_{2} in R^{\prime} such that $w(F)=w\left(F_{2}\right)$ and F_{2} contains a block of length 3 . In fact,

$$
F_{2}=\left(m-\epsilon_{5}\right) A+\left(m_{4}+\epsilon_{5}\right) B+\epsilon_{5} B^{\prime}+\text { squares }
$$

where $\epsilon_{5}=1$ if $m_{4}=0$ and $\epsilon_{5}=0$ otherwise. Now suppose that A and B are not disjoint. We can apply $T_{6}(A+B)=B^{\prime}+$ squares followed by $T_{6}\left(A+B^{\prime}\right)=B+$ squares for a total of $m-\epsilon_{5}$ transformations. Next apply $T_{4}(2 B)=C_{1}+C_{2}+C_{3}$ and $T_{4}\left(2 B^{\prime}\right)=C_{1}^{\prime}+C_{2}^{\prime}+C_{3}^{\prime}$ as many times as necessary to get a polynomial F_{3} with the coefficients of the B and B^{\prime} terms to be 0 or 1 . If $F_{3}=B+B^{\prime}+$ squares, then by applying the inverse of T_{5} we get $F_{4}=A+$ squares. Since T_{5} does not change the weight of a polynomial, $w\left(F_{3}\right)=w\left(F_{4}\right)=w\left(F^{\prime}\right)$.

Now we must consider the case where the A and B are disjoint. This can occur only when $A=A_{1}=X_{1} X_{12} X_{13} X_{123}$ and $B=X_{2} X_{3} X_{23}$. If $m_{1}=1$, then 4 or $7 k_{\alpha}$ are odd and $x_{0}=x_{1}=1$. Thus no transformation involving A will increase $w(F)$ and applying $T_{4} \frac{m_{4}-\epsilon_{4}}{2}$ times will yield F^{\prime} as in the case $m_{1}=m_{2}=m_{3}=0$. If $m_{1}>1$, then by applying

$$
\begin{gathered}
T_{2}(A+B)=A_{2}+B_{1}=X_{2} X_{12} X_{23} X_{123}+X_{1} X_{3} X_{13} \text { to } F \text { gives } \\
F_{2}=\left(m_{1}-1\right) A_{1}+A_{2}+\left(m_{4}-1\right) B+B_{1}+\text { squares. }
\end{gathered}
$$

This is similar to the case where at least two of m_{1}, m_{2} or m_{3} are positive.
Theorem 17. If $k_{12} \neq 0$, then $l(\beta)=m_{1}+m_{2}+m_{3}+\frac{m_{4}-\epsilon_{1}}{2}+\delta$ where $\delta=1$ if 0 or 3 k_{α} are odd and $\delta=0$ if 4 or $7 k_{\alpha}$ are odd.

If $k_{12}=0$, then $l(\beta)=\frac{m_{3}-\epsilon_{3}}{2}+1$.
Proof: By Lemma $14 l(\beta) \leq x_{0}-x_{1}+\frac{y_{0}-y_{1}}{2}+1$. By Lemma XVI, factorizations of all lengths between $w(F)$ and $w\left(F^{\prime}\right)$ occur when $k_{12} \neq 0$ and equality holds. By our
choice of $F, x_{0}=m_{1}+m_{2}+m_{3}$ and $y_{0}=m_{4}$. By Lemma $14 x_{1}=1$ when 4 or $7 k_{\alpha}$ are odd and $x_{1}=0$ otherwise, so $\delta=1-x_{1}$. Since $y_{1}=\epsilon_{4}, l(\beta)=m_{1}+m_{2}+m_{3}+\frac{m_{4}-\epsilon_{4}}{2}+\delta$.

Since $k_{1} \leq k_{2} \leq k_{12}, k_{1}=k_{2}=0$ and $m_{1}=m_{2}=0$ when $k_{12}=0$. Also $B=X_{12} X_{13} X_{23}$ so $m_{4}=0$. Thus $F=m_{3} A_{3}+$ squares and the only transformation possible is $T_{8}\left(2 A_{3}\right)=$ squares. T_{8} increases the weight by two and can be applied $\frac{m_{3}-\epsilon_{3}}{2}$ times. Thus there are $\frac{m_{3}-\epsilon_{3}}{2}+1$ weights of polynomials in R^{\prime}.

Corollary 18. If $k_{12} \neq 0$ then $l(\beta)=1$ if and only if one of the following is true:
(a) Either 0 or $3 k_{\alpha}$ are odd, $k_{1}=k_{2}=k_{3}=0$ and $\min \left\{k_{12}, k_{13}, k_{23}\right\} \leq 1$.
(b) Exactly $4 k_{\alpha}$ are odd, $k_{1}=k_{2}=0, k_{3}=1$ and either $k_{13}=1$ or $k_{23}=1$.
(c) All $7 k_{\alpha}$ are odd, $k_{1}=k_{2}=k_{3}=1$ and at least two of k_{12}, k_{13} or k_{123} are 1 .

Proof: (a) From Theorem $17 l(\beta)=m_{1}+m_{2}+m_{3}+\frac{m_{4}-\epsilon_{4}}{2}+1$ when 0 or $3 k_{\alpha}$ are odd. Thus if $l(\beta)=1, m_{1}=m_{2}=m_{3}=0$ and so $k_{1}=k_{2}=k_{3}=0$. Also $m_{4}=\epsilon_{4}$ and $B=X_{12} X_{13} X_{23}$ so $\min \left\{k_{12}, k_{13}, k_{23}\right\} \leq 1$.

Conversely, if no k_{α} are odd with $k_{1}=k_{2}=k_{3}=0$, then m_{4} is even and $\min \left\{k_{12}, k_{13}, k_{23}\right\}=0$. Thus $m_{1}=m_{2}=m_{3}=m_{4}=0$ and $l(\beta)=1$. If exactly $3 k_{\alpha}$ are odd and $k_{1}=k_{2}=k_{3}=0$, then $\min \left\{k_{12}, k_{13}, k_{23}\right\}=1$. Thus $m_{1}=m_{2}=m_{3}=0$ and $m_{4}=\epsilon_{4}=1$ and so $l(\beta)=1$.
(b) Here Theorem 17 shows that $l(\beta)=m_{1}+m_{2}+m_{3}+\frac{m_{1}-\epsilon_{4}}{2}$. If $l(\beta)=1$, then $m_{1}=m_{2}=0, m_{3}=1$ and $m_{4}=\epsilon_{4}=0$. Since $A_{3}=X_{3} X_{13} X_{23} X_{123}$ and $B=X_{12} X_{13} X_{23}$, it follows that $k_{1}=k_{2}=0, k_{3}=1$ and $k_{13}=1$ or $k_{23}=1$. Conversely, the given conditions force $l(\beta)=1$.
(c) As above $l(\beta)=m_{1}+m_{2}+m_{3}+\frac{m_{4}-\epsilon_{4}}{2}$. If $l(\beta)=1$, then $F=A_{1}+B+$ squares. Thus $k_{1}=1$. Because $A_{1}=X_{1} X_{12} X_{13} X_{123}$ and $m_{2}=m_{3}=0$, at least two of k_{12}, k_{13} and k_{123} are one. Since $k_{2} \leq k_{3} \leq k_{\alpha}$ for $\alpha=13$ or $123, k_{2}=k_{3}=1$. Conversely, the given conditions force $l(\beta)=1$.

Corollary 19. If $k_{12}=0$, then $l(\beta)=1$ if and only if $k_{3} \leq 1$.

Proof: $l(\beta)=1$ if and only if $m_{3}=\epsilon_{3}$. Since $k_{1}=k_{2}=0, m_{3}=k_{3}$ and $k_{3}=0$ or $k_{3}=1$. Conversely, suppose $k_{3} \leq 1$. Then $m_{3} \leq 1$ and $m_{3}=\epsilon_{3}$.

§6. Examples.

Let K be a number field with $h>2$. Given any positive integer a, Sliwa [20] showed that it is possible to find an integer β such that $l(\beta)=a$ in K. In addition, Sliwa [18] has given asymptotic estimates for the number of non-associated integers β in K with $|N(\beta)| \leq x$ and $l(\beta)=a$. In this section, examples are given to illustrate how the results of this chapter may be used to determine such a β.
Example 1. $K=Q(\sqrt{-21}), F=Q(\sqrt{-1}, \sqrt{3}, \sqrt{7})$, and $H \approx Z_{2} \times Z_{2}$. Let p be a rational prime such that $\left(\frac{-21}{p}\right)=1$. Then $p=\mathfrak{p}_{1} \mathfrak{p}_{2}$ in K. Since every class has order 2 , both \mathfrak{p}_{1} and \mathfrak{p}_{2} are in the same class. Thus we may talk about the class of the prime ideals above p without ambiguity. By class field theory, we see that the prime ideals above 5, 11 and 19 represent the three distinct nonprincipal classes. Let $n=5 \cdot 11 \cdot 19$. Theorem 7 shows that $l(\beta)=a$ where $\beta=n^{a-1}$.
Example 2. $K=Q(\sqrt{-105}), \quad F=Q(\sqrt{-1}, \sqrt{3}, \sqrt{5}, \sqrt{7})$, and $H \approx Z_{2} \times Z_{2} \times Z_{2}$. Again, every class has order 2 , so we may refer to the class of the primes above a prime that splits in K. The primes: 11, 13, 19, 41, 43, 47 and 53 represent the seven non-principal classes of K. We will number the classes so that ideals with norms 11, 13 and 19 are in X_{1}, X_{2} and X_{3} respectively. Let $n=41 \cdot 43 \cdot 47$. Then $k_{1}=k_{2}=k_{3}=k_{123}=0 k_{12}=k_{13}=k_{23}=2, m_{1}=m_{2}=m_{3}=0, m_{4}=2$ and $\delta=1$. Thus, Theorem 17 shows that $l\left(n^{a-1}\right)=a$.

Example 3. $K=Q(\sqrt{79})$ and $H \approx Z_{3}$. Let p be a rational prime such that $p=\mathfrak{p}_{1} \mathfrak{p}_{2}$ in K with neither \mathfrak{p}_{1} nor \mathfrak{p}_{2} principal. In this case, \mathfrak{p}_{1} and \mathfrak{p}_{2} are in distinct classes. Since the divisors of 3 are nonprincipal in K, if we set $n=p=3$ then Theorem 7
shows that $l\left(n^{3 a-3}\right)=a$.
Example 4. $K=Q(\sqrt{82})$ and $H \approx Z_{4}$. In this field we may choose the primes above the ramified prime 2 to represent the class of order 2 and the primes above 3 to represent the two classes of order 4. Thus, if $n=2 \cdot 3^{r}, m=r$. It follows from Theorem 10 that $l(n)=a$ where $r=2 a-2$.

Chapter III: Bicyclic Biquadratic Fields Which Contain
 Irreducible Rational Primes

§1. Introduction.

In an algebraic number field a rational prime may be irreducible, but still not generate a prime ideal. Proposition 9.6 of [13, p. 507] gives a necessary condition for a normal extension of the rational numbers to contain rational primes which do not ramify, but remain irreducible. Sliwa [19] gives a necessary and sufficient condition for the existence of irreducible rational primes in a normal extension K with Hilbert class field F, based on a characterization of the Galois group $G(F / Q)$. In this chapter we are primarily interested in the existence of rational primes which split completely in a given algebraic number field, but are irreducible. Such primes will be called sci primes.

It follows from Theorem 1 of $\S 3$ that a normal extension of the rationals of prime degree $l=2,3$ or 5 contains sci primes if and only if its class number is greater than 1. Moreover, any number field of degree greater than the Davenport constant of its class group does not contain sci primes.

In general, it seems to be difficult to characterize the normal extensions of the rational numbers that contain sci primes. The simplest case where this question is nontrivial is the bicyclic, biquadratic fields. In Theorem 2 of this chapter we give sufficient conditions for such fields to contain sci primes. The last two sections of this chapter are devoted to obtaining precise conditions for imaginary bicyclic biquadratic fields to contain sci primes.

If every ideal of a subfield $k \neq Q$ of a number field K becomes principal in K, then K contains no sci primes. However, the converse is not true even when K is an imaginary bicyclic biquadratic field. Assuming all imaginary quadratic fields with class numbers 2,4 and 8 are known, see $[3,4,7]$, we show there are exactly 88
imaginary bicyclic biquadratic fields such that the converse of the above statement is false. Such fields will be called exceptional fields.

§2. Notation.

$Q: \quad$ Rational number field.
$M, N, E, K: \quad$ Number fields.
$k, k_{i}: \quad$ Subfields of K.
$F: \quad$ Hilbert class field of K.
$H\left(k_{i}\right): \quad$ Class group of k_{i}.
$h_{i}: \quad$ Class number of k_{i}.
$\Delta_{i}: \quad$ Discriminant of k_{i}.
$t_{i}: \quad$ Number of distinct prime divisors of Δ_{i}.
$p, q: \quad$ Rational primes.
$\mathfrak{p}, \mathfrak{q}, \mathfrak{p}_{i}, \mathfrak{q}_{i}: \quad \quad$ Primes of k, k_{i}.
$P, Q: \quad$ Primes of K.
$\left[\frac{E / K}{\mathfrak{P}}\right]: \quad$ Frobenius automorphism for the prime \mathfrak{P} of E.
$\left(\frac{E / K}{P}\right): \quad$ Frobenius automorphism for all the primes in E lying above P in K. Here E / K must be abelian.
$N(\alpha)=N_{M / L}(\alpha): \quad$ The norm of α. We will drop the M / L when the extension is obvious.

The remaining notation is only defined when K is an imaginary bicyclic biquadratic field, k_{0} its real quadratic subfield and k_{1} and k_{2} its imaginary quadratic subfields.

$\rho:$	Unit index of K / k_{0}.
$\epsilon:$	Fundamental unit of k_{0}.
$m_{1}, m_{2}:$	Principal factors of the discriminant of k_{0}. We will take both values to be positive.
$s:$	Number of distinct prime divisors of $\left(\Delta_{1}, \Delta_{2}\right)$.

$2^{r_{i}}: \quad$ Order of the subgroup of $H\left(k_{i}\right)$ which consists of the classes containing ideals that are principal in K.
$2^{R_{i}}:$
Order of the subgroup of the genus group of k_{i} consisting of genera containing ideals that are principal in K. We will assume that the imaginary subfields of K are numbered so that $R_{1} \geq R_{2}$.
$G_{k_{i}}=G_{i}: \quad$ Group of characters for the field k_{i}. Also the genus group for imaginary quadratic k_{i}.
$G_{k_{0}}^{\prime}=G_{0}^{\prime}: \quad$ Group of normalized characters for the real quadratic field k_{0}. Also the genus group of k_{0}.
$\delta= \begin{cases}1 & \text { if } 2 \text { is totally ramified in } K, \\ 0 & \text { otherwise } .\end{cases}$
$\lambda=\lambda\left(k_{0}\right)= \begin{cases}0 & \text { if } p \mid \Delta_{0} \text { for some } p \equiv 3(\bmod 4), \\ 1 & \text { if } p \nmid \Delta_{0} \text { for all } p \equiv 3(\bmod 4) .\end{cases}$

§3. General results.

Lemma 1. Let K / k be a normal extension and N / k be an abelian extension. If E / K is an abelian extension with $N \subset E$ and E / k normal and if $\mathfrak{p}=P_{1} \ldots P_{g}$ is a prime of k which splits completely in K then $\left.\left(\frac{E / K}{P_{i}}\right)\right|_{N}=\left(\frac{N / k}{\mathfrak{p}}\right)$ for $i=1, \ldots, g$.

Proof: Let \mathfrak{P} be a prime of E lying over P_{1}. Since \mathfrak{p} splits completely in K, $\left.\left(\frac{E / K}{P_{1}}\right)\right|_{N}=\left.\left[\frac{E / K}{\mathfrak{P}}\right]\right|_{N}=\left.\left[\frac{E / k}{\mathfrak{P}}\right]\right|_{N}=\left(\frac{N / k}{\mathfrak{p}}\right)$.

Lemma 2. Let k, K, N, E be as in Lemma 1 with $[K: k]=n$. If \mathfrak{p} is a prime of k which is unramified in E, then $\left.\left(\frac{E / K}{\mathfrak{p}}\right)\right|_{N}=\left(\frac{N / k}{\mathfrak{p}}\right)^{n}$.

Proof: Let $\mathfrak{p}=P_{1} \ldots P_{g}$ in K where each P_{i} has degree f over \mathfrak{p}, so $f g=n$. Let \mathfrak{P}_{i}
be a prime of E lying over P_{i} for each $i=1, \ldots, g$. Then

$$
\begin{aligned}
\left.\left(\frac{E / K}{\mathfrak{p}}\right)\right|_{N} & =\left.\left(\frac{E / K}{P_{1} \ldots P_{g}}\right)\right|_{N} \\
& =\left.\prod_{i=1}^{g}\left(\frac{E / K}{P_{i}}\right)\right|_{N} \\
& =\left.\prod_{i=1}^{g}\left[\frac{E / K}{\mathfrak{P}_{i}}\right]\right|_{N} \\
& =\left.\prod_{i=1}^{g}\left[\frac{E / k}{\mathfrak{P}_{i}}\right]^{f}\right|_{N} \\
& =\prod_{i=1}^{g}\left[\frac{N / k}{\mathfrak{P}_{i} \cap N}\right]^{f}=\prod_{i=1}^{g}\left(\frac{N / k}{\mathfrak{p}}\right)^{f} \\
& =\left(\frac{N / k}{\mathfrak{p}}\right)^{f g}=\left(\frac{N / k}{\mathfrak{p}}\right)^{n}
\end{aligned}
$$

Lemma 3. If K / k is an extension of degree n and I is an ideal of k which is principal in K, then every ideal in the class of I is principal in K. Moreover, I^{n} is principal in k.

Proof: If $I=(\alpha)$ for some $\alpha \in K$ and $I \sim J$, then $J=(\beta) I$ for some $\beta \in k$, so $J=(\beta \alpha)$. Moreover, $I^{n}=N_{K / k}(I)=\left(N_{K / k}(\alpha)\right)$.

Theorem 1. Let k / Q be a normal extension of prime degree $l=2,3$ or 5 and N be the Hilbert class field of k. Suppose K / k is a cyclic extension with $K \cap N=k$ and K / Q normal. If there exists a prime of k which does not become principal in K, then there are infinitely many rational primes which split intol primes in K and are irreducible.

Proof: Let \mathfrak{q} be a prime of k which does not become principal in K. Let $\tau=\left(\frac{N / k}{\mathfrak{q}}\right)$ and let σ generate $G(K / k)$. By assumption, $N \cap K=k$; thus $G(K N / k) \simeq G(K / k) \times$ $G(N / k)$. By the Cebotarev Density Theorem, the set of primes \mathfrak{P} of $K N$ with $\left[\frac{K N / Q}{\mathfrak{P}}\right]=(\sigma, \tau)$ has positive density. We may assume that \mathfrak{P} is unramified over Q.

Let $p=\mathfrak{P} \cap Q$ and $\mathfrak{p}=\mathfrak{P} \cap k$. Since $(\sigma, \tau) \in G(K N / k)$ and k / Q is normal, p splits completely in k, say $p=\mathfrak{p}_{1} \ldots \mathfrak{p}_{l}$ where $\mathfrak{p}_{1}=\mathfrak{p}$. Since $\left(\frac{K / k}{\mathfrak{p}}\right)=\left.(\sigma, \tau)\right|_{K}=\sigma, \mathfrak{p}$ stays prime in K. Also, $\left(\frac{N / k}{\mathfrak{p}}\right)=\left.(\sigma, \tau)\right|_{N}=\tau$ yielding $\mathfrak{p} \sim \mathfrak{q}$ in k. By Lemma 3, \mathfrak{p} does not become principal in K. Since K / Q is normal, each \mathfrak{p}_{i} stays prime in K and no $\mathfrak{p}_{\boldsymbol{i}}$ becomes principal in K. If $l=2$ or 3 , it is clear that p is irreducible in K. Assume now $l=5$ and $\mathfrak{p}_{1} \mathfrak{p}_{2}$ is principal in K. Since $G(k / Q)$ is transitive on the prime factors of p, there exists an automorphism σ of k / Q of the form $\sigma=(12 a b c)$ where $\{a, b, c\}=\{3,4,5\}$. Note σ^{2} maps $\mathfrak{p}_{1} \mathfrak{p}_{2}$ to $\mathfrak{p}_{a} \mathfrak{p}_{b}$ so that \mathfrak{p}_{c} is principal in K, contrary to assumption.

Corollary 1. If K is a normal quartic number field with quadratic subfield k, such that $K \nsubseteq N$ and there is a prime of k which does not become principal in K, then there are infinitely many rational primes which split into two primes in K and are irreducible.

Proof: Immediate from Theorem 1 with $l=2$, since $K \nsubseteq N$ implies $K \cap N=k$.
For the remainder of this chapter, we specialize to the case where K is a bicyclic biquadratic field and k_{0}, k_{1}, and k_{2} are its quadratic subfields.

Lemma 4. Let p be a prime which splits completely in K. Then p is irreducible in K, if and only if, for each $i=0,1,2$, the prime factors of p in k_{i} are not principal in K. Proof: Suppose $p=P_{0} P_{1} P_{2} P_{3}$ in K and $\mathfrak{p}_{i}=P_{3} \cap k_{i}$ for $i=0,1,2$. We may number P_{0}, P_{1} and P_{2} so that $\mathfrak{p}_{i}=P_{i} P_{3}$ for $i=0,1$ and 2. If p is irreducible in K, then no subproduct of P_{0}, P_{1}, P_{2} and P_{3} is principal in K, so in particular, \mathfrak{p}_{i} is not principal in K for $i=0,1$, and 2 .

Conversely, assume no $\mathfrak{p}_{i}, i=0,1$ and 2 , is principal in K. Then no subproduct consisting of one or two P_{i} 's can be principal, so no subproduct of the P_{i} 's is principal. Thus p is irreducible in K.

Lemma 5. If in each $k_{i}, i=1,2$ there exists a prime \mathfrak{p}_{i} which splits completely and is nonprincipal in K, then there is a rational prime q which splits completely in K and has prime factors in both k_{1} and k_{2} which are not principal in K.

Proof: Let $\mathfrak{p}_{i}=P_{i} P_{i}^{\prime}$ in K for $i=1,2, \mathfrak{p}_{1}^{*}=P_{2} \cap k_{1}$ and $\mathfrak{p}_{2}^{*}=P_{1} \cap k_{2}$. If for either $i=1$ or $2,\left(\frac{F / K}{\mathfrak{p}_{i}^{*}}\right) \neq 1$, then set $q=\mathfrak{p}_{i} \cap Q=\mathfrak{p}_{i}^{*} \cap Q$. Thus we may assume that $\left(\frac{F / K}{\mathfrak{p}_{1}^{*}}\right)=\left(\frac{F / K}{\mathfrak{p}_{2}^{*}}\right)=1$.

By hypothesis $\left(\frac{F / K}{\mathfrak{p}_{1}}\right) \neq 1$ and $\left(\frac{F / K}{\mathfrak{p}_{2}}\right) \neq 1$. Thus $\left(\frac{F / K}{\mathfrak{p}_{1} \mathfrak{p}_{1}^{*}}\right) \neq 1$ and so the ideal $\mathfrak{p}_{1} \mathfrak{p}_{1}^{*}$ is in a class of k_{1} which does not become principal in K. Similarly, $\mathfrak{p}_{2} \mathfrak{p}_{2}^{*}$ belongs to a class of k_{2} which does not become principal in K. Let $\tau=\left(\frac{F / K}{P_{1} P_{2}}\right)=$ $\left(\frac{F / K}{P_{1}}\right)\left(\frac{F / K}{P_{2}}\right)$ and use the Cebotarev Density Theorem to obtain a prime ideal \mathbb{Q} in F such that $\left[\frac{F / Q}{\mathbb{Q}}\right]=\tau$. Set $q=\mathbb{Q} \cap Q$ and $\mathfrak{q}_{i}=\mathbb{Q} \cap k_{i}$ for $i=1,2$. Since $\left.\tau\right|_{K}=1, q$ splits completely in K. By Lemma $1,\left.\tau\right|_{F_{i}}=\left(\frac{F_{i} / k_{i}}{\mathfrak{q}_{i}}\right)$ for $i=1,2$. Since $\tau=\left(\frac{F / K}{P_{1} P_{2}}\right)$ it follows from Lemma 1 that $\left.\tau\right|_{F_{1}}=\left(\frac{F_{1} / k_{1}}{\mathfrak{p}_{1} \mathfrak{p}_{1}^{*}}\right)$. Hence $\mathfrak{q}_{1} \sim \mathfrak{p}_{1} \mathfrak{p}_{1}^{*}$. Similarly, $\mathfrak{q}_{2} \sim \mathfrak{p}_{2} \mathfrak{p}_{2}^{*}$. Thus q splits completely in K and has prime factors in both k_{1} and k_{2} which do not become principal in K.

Theorem 2. Assume that k_{1} and k_{2} satisfy the conditions of the previous lemma. If, in addition, k_{0} contains a prime ideal \mathfrak{p}_{0} which splits completely in K and belongs to an ideal class whose square is not principal in K, then K contains an sci prime.

Proof: Let P be a prime divisor of \mathfrak{p}_{0} in $K, \mathfrak{p}_{1}=P \cap k_{1}$ and $\mathfrak{p}_{2}=P \cap k_{2}$. If $\left(\frac{F / K}{\mathfrak{p}_{1}}\right) \neq 1 \neq\left(\frac{F / K}{\mathfrak{p}_{2}}\right)$ we are done. Thus we may assume $\left(\frac{F / K}{\mathfrak{p}_{1}}\right)=1$. By Lemma 5, there exists a prime \mathbb{Q} in K of degree 1 and index 1 over Q such that $\left(\frac{F / K}{\mathfrak{q}_{1}}\right) \neq 1 \neq\left(\frac{F / K}{\mathfrak{q}_{2}}\right)$ where $\mathfrak{q}_{i}=\mathbb{Q} \cap k_{i}$ for $i=0,1,2$. If $\left(\frac{F / K}{\mathfrak{q}_{0}}\right) \neq 1$, then $\mathbb{Q} \cap Q$ is an sci prime. Assume $\left(\frac{F / K}{\mathfrak{q}_{0}}\right)=1$ and let $\sigma=\left(\frac{F / K}{\mathbb{Q}}\right), \tau=\left(\frac{F / K}{P}\right)$. If
$\left(\frac{F / K}{\mathfrak{p}_{2} \mathfrak{q}_{2}}\right)=1$, then set $\theta=\sigma \tau^{2}$. If $\left(\frac{F / K}{\mathfrak{p}_{2} \mathfrak{q}_{2}}\right) \neq 1$, then set $\theta=\sigma \tau$. By the Cebotarev Density Theorem, there exists a prime \mathcal{L} of F with $\left[\frac{F / Q}{\mathcal{L}}\right]=\theta$. Let $l=\mathcal{L} \cap Q$ and $\mathfrak{l}_{i}=\mathcal{L} \cap k_{i}$ for $i=0,1,2$. Since $\left.\theta\right|_{K}=1, l$ splits completely in K.

We now show that l is irreducible in K. Let $j=1$ or 2 so that $\theta=\sigma \tau^{j}$. By Lemma $1,\left(\frac{F_{i} / k_{i}}{\mathfrak{l}_{i}}\right)=\left.\theta\right|_{F_{i}}=\left.\sigma \tau^{j}\right|_{F_{i}}=\left(\frac{F_{i} / k_{i}}{\mathfrak{q}_{i} \mathfrak{p}_{i}^{j}}\right)$ so $\mathfrak{l}_{i} \sim \mathfrak{q}_{i} \mathfrak{p}_{i}^{j}$ in k_{i}. Thus for $i=1$,

$$
\left(\frac{F / K}{\mathfrak{l}_{1}}\right)=\left(\frac{F / K}{\mathfrak{q}_{1} \mathfrak{p}_{1}{ }^{j}}\right)=\left(\frac{F / K}{\mathfrak{q}_{1}}\right)\left(\frac{F / K}{\mathfrak{p}_{1}}\right)^{j}=\left(\frac{F / K}{\mathfrak{q}_{1}}\right) \neq 1 .
$$

For $i=2$,

$$
\left(\frac{F / K}{\mathfrak{l}_{2}}\right)=\left(\frac{F / K}{\mathfrak{q}_{2} \mathfrak{p}_{2}^{j}}\right)=\left(\frac{F / K}{\mathfrak{p}_{2} \mathfrak{q}_{2}}\right)\left(\frac{F / K}{\mathfrak{p}_{2}}\right)^{j-1} \neq 1
$$

For $i=0$,

$$
\left(\frac{F / K}{\mathfrak{l}_{0}}\right)=\left(\frac{F / K}{\mathfrak{q}_{0}}\right)\left(\frac{F / K}{\mathfrak{p}_{0}}\right)^{j}=\left(\frac{F / K}{\mathfrak{p}_{0}}\right)^{j} \neq 1
$$

By Lemma $4, l$ is irreducible in K.
Example: $K=Q(\sqrt{-13}, \sqrt{-14}), k_{0}=Q(\sqrt{182}), k_{1}=Q(\sqrt{-13})$ and $k_{2}=Q(\sqrt{-14})$. Here $h_{1}=h_{2}=2$ and $H\left(k_{0}\right)$ is cyclic of order 4 . We will show in the next section that no nonprincipal class of any subfield becomes principal in K. It follows from Theorem 2 that K contains sci primes.

§4. Classes which become principal.

In this section we determine precisely which ideal classes of a quadratic subfield k of an imaginary bicyclic biquadratic field K become principal in K. Since only classes of order 1 or 2 in k can be principal in K, all classes which become principal are ambiguous for k / Q. When k is imaginary, all ambiguous classes contain an ambiguous ideal, i.e., an ideal whose prime factors are ramified over Q. When k is real, either all or half of the ambiguous classes contain ambiguous ideals. However, when k is real, it follows from Washington [13] that at most one nonprincipal class of k can become principal in K.

Since the problem is trivial unless $h(k)>1$, we may assume that $K \neq Q(\sqrt{3}, \sqrt{-3})$ and $K \neq Q(\sqrt{2}, \sqrt{-2})$.

We shall adopt the following notation for the remainder of this chapter: $k_{0}=$ $Q(\sqrt{m}), k_{1}=Q(\sqrt{n})$ and $k_{2}=Q\left(\sqrt{n^{\prime}}\right)$ with $n<0, m>0$ and $n^{\prime}=m n / d^{2}$. Here m, n, and n^{\prime} are square free elements of Q and $d=(m, n)$. Also $<\tau>=$ $G\left(K / k_{0}\right)$ and $\left.<\sigma\right\rangle=G\left(K / k_{1}\right)$.

Lemma 6. If $A=(\alpha)$ is a nonzero principal ideal of K which is ambiguous for K / k_{0}, then α can be chosen to have one of the following forms for some $\beta \in k_{0}$:
(i) $\alpha=\beta$.
(ii) $\alpha=\sqrt{n} \beta$.
(iii) $\alpha=(1+i) \beta$.

If, in addition, A is ambiguous for K / k_{1}, then there is a unit $\mu \in k_{0}$ such that $\alpha^{\sigma}=\mu \alpha$ when (i) or (ii) hold and $\alpha^{\sigma}=-i \mu \alpha$ when (iii) holds. Moreover, β can be chosen so that $\mu= \pm \epsilon^{j}$ with $j=0$ or 1 .

Proof: Since A is ambiguous for $K / k_{0},(\alpha)=A=A^{\tau}=\left(\alpha^{\tau}\right)$. Thus $\alpha^{\tau}=\mu \alpha$ for some unit μ in K. Since τ is complex conjugation on $K,\left|\frac{\alpha^{\tau}}{\alpha}\right|=|\mu|=1$. Also K / Q is abelian, so all conjugates of $\frac{\alpha^{\tau}}{\alpha}$ have absolute value +1 . Thus μ is a root of unity. By our assumptions on K, μ is a $2 \mathrm{nd}, 3 \mathrm{rd}, 4$ th or 6 th root of unity.

If $\mu=1$, then $\alpha=\alpha^{\tau}$ and $\alpha \in k_{0}$. If $\mu=-1$, then $\alpha=a \sqrt{n}+b \sqrt{n^{\prime}}=$ $\sqrt{n}\left(a+\frac{b}{d} \sqrt{m}\right)$, for some $a, b, \in Q$. When $\mu^{3}= \pm 1,\left(\alpha^{3}\right)^{\tau}=\mu^{3} \alpha^{3}= \pm \alpha^{3}$. Thus $\alpha^{3} \in k_{0}$ or $\alpha^{3}=\sqrt{n} \gamma$ where $\gamma \in k_{0}$. Since $\left[K: k_{0}\right]=2$, either $\alpha=\beta$ or $\alpha=\sqrt{n} \beta$ for some $\beta \in k_{0}$.

If $\mu= \pm i$ and $\alpha=a+b \sqrt{-m}+c \sqrt{m}+e i$, then $a-b \sqrt{-m}+c \sqrt{m}-e i=\alpha^{\tau}= \pm i \alpha=$ $\mp e \pm c \sqrt{-m} \mp b \sqrt{m} \pm a i$. Thus $e=\mp a$ and $b=\mp c$, yielding $\alpha=(1 \mp i)(a+c \sqrt{m})$. Since $(1-i) i=i+1$, we may write $\alpha=(1+i) \beta$ with $\beta \in k_{0}$.

Now suppose that A is also ambiguous for K / k_{1}. Then $(\alpha)=\left(\alpha^{\sigma}\right)$ and $\alpha^{\sigma}=\omega \alpha$ for some unit $\omega \in K$. If $\alpha=\beta$ or $\alpha=\sqrt{n} \beta$, then $\beta^{\sigma}=\omega \beta$, so $\omega=\frac{\beta^{\sigma}}{\beta} \in k_{0}$. Here we set $\mu=\omega$. If $\alpha=(1+i) \beta$, then $(1-i) \beta^{\sigma}=\alpha^{\sigma}=\omega \alpha=\omega(1+i) \beta=i \omega(1-i) \beta$. Thus $\beta^{\sigma}=i \omega \beta$. Setting $\mu=i \omega=\frac{\beta^{\sigma}}{\beta}$, we have $\mu \in k_{0}$ and $\alpha^{\sigma}=-i \mu \alpha$.

Since $\mu \in k_{0}$, we may write $\mu= \pm \epsilon^{2 i+j}$, where $j=0$ or 1 and ϵ is the fundamental unit of k_{0}. Now $\beta^{\sigma}=\mu \beta$, so $\left(\epsilon^{i} \beta\right)^{\sigma}=\left(\epsilon^{i}\right)^{\sigma} \beta^{\sigma}= \pm\left(\epsilon^{i}\right)^{\sigma} \epsilon^{2 i+j} \beta= \pm N_{k_{0} / Q}\left(\epsilon^{i}\right) \epsilon^{j}\left(\epsilon^{i} \beta\right)$. Hence, if β is replaced by $\epsilon^{i} \beta$, then $\mu= \pm \epsilon^{j}$.

Lemma 7. Let $A=(\alpha)$ be a principal ideal of K which is ambiguous for both K / k_{1} and K / k_{0}. Let β and μ be determined as in Lemma 6. Then for some $c \in Q$:

$$
\begin{aligned}
& A=(c),(c \sqrt{n}) \text { or }(c(1+i)) \text { if } \mu=1 \\
& A=(c \sqrt{m}),\left(c \sqrt{n^{\prime}}\right) \text { or }(c(1+i) \sqrt{m}) \text { if } \mu=-1 \text { and } \\
& A=\left(c\left(\epsilon^{\sigma} \pm 1\right)\right),\left(c \sqrt{n}\left(\epsilon^{\sigma} \pm 1\right)\right) \text { or }\left(c(1+i)\left(\epsilon^{\sigma} \pm 1\right)\right) \text { if } \mu= \pm \epsilon
\end{aligned}
$$

Proof: When $\mu=1, \beta^{\sigma}=\beta$ and $\beta \in k_{1} \cap k_{0}=Q$. Thus $\beta=c$ for some $c \in$ Q. If $\mu=-1$, then $\beta=c \sqrt{m}$. When $\mu= \pm \epsilon$, let $\beta=a+b \sqrt{m}$ and $\epsilon=u+$ $v \sqrt{m}$ with $a, b, u, v \in Q$. Then $a-b \sqrt{m}=\beta^{\sigma}=\mu \beta= \pm(u+v \sqrt{m})(a+b \sqrt{m})=$ $\pm[(u a+b v m)+(u b+a v) \sqrt{m}]$ and $-b= \pm(u b+a v)$ so $-a v=b(u \pm 1)$. Hence $-v \beta=b(u \pm 1)-v b \sqrt{m}=b\left[(u-v \sqrt{m} \pm 1]=b\left(\epsilon^{\sigma} \pm 1\right)\right.$. Setting $c=-b / v$ yields $\beta=c\left(\epsilon^{\sigma} \pm 1\right)$. The results follow from Lemma 6.

Lemma 8. If $\mu= \pm \epsilon$, then $N(\epsilon)=+1$.
Proof: Since $\beta^{\sigma}= \pm \epsilon \beta, \beta= \pm \epsilon^{\sigma} \beta^{\sigma}=\left(\pm \epsilon^{\sigma}\right)(\pm \epsilon) \beta$ and $\epsilon^{1+\sigma}=N(\epsilon)=+1$.
When $N(\epsilon)=+1$, there are two integers α_{1} and α_{2}, unique up to associates, such that $\alpha_{1} \alpha_{2}=\sqrt{m} \epsilon$ or $\sqrt{4 m} \epsilon$ and $\epsilon=\alpha_{1}^{2} / N\left(\alpha_{1}\right)=-\alpha_{2}^{2} / N\left(\alpha_{2}\right)$, see Barrucand and Cohn [2]. Since $\epsilon\left(\epsilon^{\sigma}+1\right)=\epsilon+1, \epsilon=(\epsilon+1) /\left(\epsilon^{\sigma}+1\right)=(\epsilon+1)^{2} / N(\epsilon+1)$. Similarly, $\epsilon=-(\epsilon-1)^{2} / N(\epsilon-1)$. Thus $(\epsilon+1)=\left(r_{1}\right)\left(\alpha_{1}\right)$ and $(\epsilon-1)=\left(r_{2}\right)\left(\alpha_{2}\right)$ for some
rational integers r_{1} and r_{2}. Set $m_{1}=\left|N\left(\alpha_{1}\right)\right|$ and $m_{2}=\left|N\left(\alpha_{2}\right)\right|$. Then m_{1} and m_{2} are called principal factors of the discriminant of k_{0}.

Let C be an ideal class of the imaginary quadratic subfield k_{1} which becomes principal in K. By Lemma $3, C$ is an ambiguous class for k_{1} / Q. Since k_{1} is imaginary, every ambiguous class is strongly ambiguous, so we may choose an ideal A in C such that A is an ambiguous ideal for k_{1} / Q. By removing rational factors, we may assume that A is square free and only divisible by prime ideals which are ramified over Q.

Lemma 9. Let A be a square free ideal of k_{1}, without rational factors, which becomes principal in K and is ambiguous for k_{1} / Q. If $\mu= \pm \epsilon$, then $N_{k_{1} / Q}(A)=$ $m_{1},-n / m_{1},-4 n / m_{1}, m_{2},-n / m_{2}$ or $-4 n / m_{2}$, except when $i \in K$, then $m_{1} / 2,2 m_{1}$, $m_{2} / 2$, and $2 m_{2}$ are also possible.

Proof: Set $a=N_{k_{1} / Q}(A)$ and note that a divides the discriminant of k_{1} and that a is square free. It follows from Lemma 7 and the remarks preceding this Lemma that a is $c^{2} r^{2} m_{0},-c^{2} r^{2} n m_{0}$ or $c^{2} r^{2} 2 m_{0}$ where r is a rational integer and $m_{0}=m_{1}$ or m_{2}. In the first case, $c^{2} r^{2}=1$ and $a=m_{1}$ or m_{2}. In the other cases, $c^{2} r^{2} d^{2}=1$ where $d=\left(n, m_{0}\right)$ or $d=\left(2, m_{0}\right)$. Hence $a=-n m_{0} / d^{2}$ or $a=2 m_{0} / d^{2}$. By assumption $a \mid n$ or $a \mid 4 n$. If $a \mid n, a=-n m_{0} / d^{2}$, and $i \notin K$, then m_{0} also divides n and $m_{0}=d$ yielding $a=-n / m_{0}$. Similarly, if $a \mid 4 n$ but $a \nmid n$, then $m_{0} \equiv a \equiv 0(\bmod 2)$ and $a=-4 n / m_{0}$. If $i \in K$ and $a=2 m_{0} / d^{2}$, then $d=1$ or 2 , so $a=2 m_{0}$ or $m_{0} / 2$.

Lemma 10. If $i \notin K$, then the unit index $\rho=2$ if and only if $n=-m_{1}$ or $n=-m_{2}$. When $i \in K, \rho=2$ if and only if 2 is a principal factor in k_{0}.

Proof: In Kuroda [12] it is shown that $\sqrt{\epsilon}=1 / 2(\sqrt{N(\epsilon+1)}+\sqrt{-N(\epsilon-1)})=$ $1 / 2\left(r_{1} \sqrt{m_{1}}+r_{2} \sqrt{m_{2}}\right)$. In Satz 12 of [12], it is shown that $\rho=2$ if and only if there exists a root of unity $\omega \in K$ with $\sqrt{\omega} \notin K$ such that $\sqrt{\omega \epsilon} \in K$. If $i \notin K$, take $\omega=-1$ and $\sqrt{-\epsilon} \in K$ if and only if $\sqrt{-m_{1}}$ and $\sqrt{-m_{2}} \in K$, i.e., if and only if $n=-m_{1}$ or
$-m_{2}$ and $n^{\prime}=-m_{2}$ or $-m_{1}$. If $i \in K$, the result is immediate from Satz 13 of [12].
Theorem 3. Let D be the set of divisors of Δ_{0} and let N be defined as follows:

$$
N= \begin{cases}\{1,-n\} & \text { if } i \notin K \text { and } \rho=1 \\ \{1,2\} & \text { if } i \in K \text { and } \rho=1 \\ \{1\} & \text { if } \rho=2\end{cases}
$$

Then $|D \cap N|$ is the number of classes of the real subfield k_{0} which are principal in K.

Proof: Let A be an ideal of k_{0} which is principal in K. Then A is ambiguous for K / k_{0}. By Lemma $6, A=(\alpha)$ where $\alpha=(a+b \sqrt{m}), \sqrt{n}(a+b \sqrt{m})$ or $(1+i)(a+b \sqrt{m})$. In the first case A is principal in k_{0}. In the second and third cases $A=(a+b \sqrt{m}) B$ where $N(B)=-n$ or $N(B)=2$. If $N(B)=-n$, then in $K, B=(\sqrt{n})$. Since (\sqrt{n}) is an ambiguous ideal for $K / Q, B$ is ambiguous for k_{0} / Q. Thus $-n \in D$. If $\rho=1$ and $i \notin K$, then $-n \neq m, m_{1}$, nor m_{2}; hence, B is not principal in k_{0}. If $i \in K$ or $\rho=2$, then B is principal in k_{0}.

Similarly if $i \in K$ and $N(B)=2$, then $B=(1+i)$ in K and B is ambiguous for K / Q. Thus $2 \in D$. If $\rho=1$, then B is not principal in k_{0}, but the class containing B becomes principal in K. However, if $\rho=2, B$ is principal in k_{0} and no nonprincipal class is principal in K.

Theorem 4. Let D be the set of divisors of the discriminant of the imaginary quadratic field $k=Q(\sqrt{n})$ and let M be defined as follows:

$$
M= \begin{cases}\{1, m\} & \text { if } i \notin K \text { and } \rho=2 \text { or } N(\epsilon)=-1 \\ \{1,2\} & \text { if } i \in K \text { and } \rho=2 \text { or } N(\epsilon)=-1 \\ \left\{1, m_{1}, m_{2}, m\right\} & \text { if } i \notin K, \rho=1 \text { and } N(\epsilon)=+1 \\ \left\{1, m_{1}, 2,2 m_{1}\right\} & \text { if } i \in K, \rho=1 \text { and } N(\epsilon)=+1\end{cases}
$$

Then $|D \cap M|$ is the number of classes of k which are principal in K.
Proof: Let C be a nonprincipal class of k which becomes principal in K. Since k is imaginary, we may choose an ambiguous ideal A in C such that A is square free, that is $N_{k / Q}(A) \in D$.

If $i \notin K$ and $N(\epsilon)=-1$, then it follows from Lemmas 7 and 8 that $\mu=-1$ and $A=(\sqrt{m})$ or $A=\left(\sqrt{n}^{\prime}\right)$ in K. Thus $N_{k / Q}(A)=m$ or $-n^{\prime}$. Since $d^{2} n^{\prime}=m n$, these norms represent ideals from the same class. It follows that one nonprincipal class of k becomes principal in K if and only if $m \in D$. If $i \in K$ and $N(\epsilon)=-1$, then $\mu= \pm 1$ and $A=(\sqrt{m}), A=(1+i)$, or $A=((1+i) \sqrt{m})$ in K. But $n=-m$, so $(\sqrt{m})=(\sqrt{-m})$ is principal in k. Since C is nonprincipal in $k, A=(1+i)$. Thus an ideal of k becomes principal if and only if k contains an ambiguous ideal with norm 2. If $N(\epsilon)=+1$ and $\rho=2$, then as in Lemma $9, N_{k / Q}(A)$ can also be m_{1} or m_{2}, but this ideal is in the principal class of k by Lemma 10 . Thus the only possibilities for a nonprincipal ideal A are the same as above.

If $N(\epsilon)=+1$ and $\rho=1$, then by Lemma 10 , neither principal factor of k_{0} is the norm of a ramified principal ideal of k. If $i \notin K$, then Lemmas 7 and 9 give the possible values of $N_{k / Q}(A)$ as: $m,-n^{\prime}, m_{1}, m_{2},-n / m_{1},-n / m_{2},-4 n / m_{1},-4 n / m_{2}$. As above the ideals with norms m and $-n^{\prime}$ are in the same class. Likewise, the ideals with norms m_{1} and $-n / m_{1}, m_{2}$ and $-n / m_{2}, m_{1}$ and $-4 n / m_{1}$, and m_{2} and $-4 n / m_{2}$ are in the same class. Thus the numbers m, m_{1}, and m_{2} represent all of the possible distinct classes which become principal in K. Since the prime divisors of A are ramified over Q, each number occurs as the norm of A if and only if it is in D. It follows that $|D \cap M|$ is the number of classes of k which are principal in K.

If $i \in K$, then the ideal with norm m is principal in k. Since $\rho=1$, Lemma 10 shows 2 is not a principal factor of k_{0} so $2, m_{1}$, and m_{2} are distinct. The possibilities for $N(A)$ are: $2, m / 2,2 m, m_{1}, m_{1} / 2,2 m_{1}, m_{2}, m_{2} / 2$, and $2 m_{2}$. The ideals of k having norms $2, m / 2$, and $2 m$ are necessarily in the same class. Also ideals of k having norms m_{1} and m_{2}, or $m_{1} / 2, m_{2} / 2,2 m_{1}$, and $2 m_{2}$ are in the same class. However, if they exist, ambiguous ideals with norms, $m_{1}, 2$, and $2 m_{1}$ must be in distinct nonprincipal classes which become principal in K. Thus $|D \cap M|$ is the number of classes of k which are
principal in K.
The order of the subgroup of $H\left(k_{i}\right)$ consisting of those classes which are principal in K will be denoted by $2^{r_{i}}$ for $i=0,1$ and 2 . Theorems 3 and 4 tell us that $0 \leq r_{0} \leq 1$ and $0 \leq r_{i} \leq 2$ for $i=1,2$. Relations between the r_{i} 's with be obtained in the following corollaries. To simplify notation, we will number the imaginary quadratic subfields so that $r_{2} \leq r_{1}$.

Corollary 1. Suppose $r_{1}=2$. Then $r_{0}=1$ if and only if $n^{\prime}=-1$ or $-2, h_{0}>1$, $\rho=1$ and $2 \mid \Delta_{0}$. If $h_{2}>1$, then $r_{2}=1$ if and only if 2 is totally ramified and 2 is a principal factor of k_{0}. Also $r_{0}+r_{2} \leq 1$.

Proof: By Theorem 4, $r_{1}=2$ when there are nontrivial principal factors m_{1} and m_{2} such that $m_{1} \cdot m_{2} \mid \Delta_{1}$. By Theorem $3, r_{0}=1$ if and only if $\rho=1$ and $n \mid \Delta_{0}$ when $i \notin K$ or $2 \mid \Delta_{0}$ when $i \in K$. Since $m \mid \Delta_{1}$, if $n \mid \Delta_{0}$, then $n^{\prime}=-1$ or $n^{\prime}=-2$. Conversely, the conditions are sufficient to have $r_{0}=1$. However, when $k_{2}=Q(i)$ or $k_{2}=Q(\sqrt{-2})$, $h_{2}=1$ and $r_{2}=0$.

Suppose $r_{2}=1$, then $m_{1} \mid \Delta_{2}$. However $m_{1} \mid \Delta_{1}$ and $m_{1} \mid \Delta_{0}$, so $m_{1}=2$ is the only possibility. If $r_{2}=1$, then $h_{2}>1$ and $n^{\prime} \neq-1$ or -2 . Thus $r_{0}+r_{2} \leq 1$.

Corollary 2. If $r_{1}=1$, then $r_{2}=1$ if and only if $h_{2}>1$ and one of the following conditions is satisfied:
a) $m=2$ or $m_{1}=2$ and 2 is totally ramified in K,
b) $m_{1} \mid \Delta_{1}$ and $m_{2} \mid \Delta_{2}$,
c) $m \mid \Delta_{1}, m_{1}=2,2 \nmid \Delta_{1}$ but $2 \mid \Delta_{2}$.

Proof: Suppose $h_{2}>1$ so $m \neq-n$. Since $r_{1}=1$, exactly one of m, m_{1} or m_{2} divides Δ_{1}. In order to have a class become principal from k_{2} as well, $\rho=1$ and one of these numbers must divide Δ_{2}. Up to renumbering the imaginary quadratic subfields, conditions a, b and c are the only way this can occur.

Corollary 3. If $r_{0}=1$ and $n^{\prime}<-2$, then $r_{1} \neq 2$. Moreover, $r_{1}=1$ if and only if $m_{1} \mid \Delta_{1}$. Also $r_{1}=r_{2}=1$ if and only if 2 is totally ramified in K and one of the following conditions is satisfied:
a) $m_{1}=2$,
b) $m_{1}=-2 n$ and $m_{2}=-n^{\prime} / 2$,
c) $m_{1}=-n / 2$ and $m_{2}=-2 n^{\prime}$,
d) $m_{1}=-n / 2$ and $m_{2}=-n^{\prime} / 2$.

Proof: Suppose $r_{0}=1$ and $h_{2}>1$. It follows from Theorem 3 that $\rho=1$ and $n \mid \Delta_{0}$ with $n \neq-m_{1}$ or $-m_{2}$. Since $n^{\prime}<-2$ and $m n=d^{2} n^{\prime}, m \nmid \Delta_{1}$. Hence $r_{1} \neq 2$. From Theorem 4 we see that $r_{1}=1$ if and only if $m_{1} \mid \Delta_{1}$. Moreover, if $r_{1}=r_{2}=1$, then either $m_{1}=2,2 \mid \Delta_{1}$ and $2 \mid \Delta_{2}$ or $m_{1} \mid \Delta_{1}, m_{1} \nmid \Delta_{2}$, but $m_{2} \mid \Delta_{2}$. In the first case, 2 is obviously totally ramified in K. Assume $m_{1} \mid \Delta_{1}$ and $m_{2} \mid \Delta_{2}$. Let p be an odd prime with $p \mid n$, then $p \mid m$ but $p \nmid n^{\prime}$ so $p \nmid m_{2}$. It follows that $p \mid m_{1}$ if and only if $p \mid n$. Similarly, for an odd prime $q, q \mid m_{2}$ if and only if $q \mid n^{\prime}$. Since $m_{1} \neq-n$ and $m_{2} \neq-n^{\prime}, m_{1}=-2 n$ or $-n / 2$ and $m_{2}=-2 n^{\prime}$ or $-n^{\prime} / 2$. In each case $2 \mid \Delta_{i}$ for $i=0,1$ and 2. If $m_{1}=-2 n$ and $m_{2}=-2 n^{\prime}$ then $m=m_{1} m_{2} / 4=n n^{\prime} \equiv 3(\bmod 4)$. But 2 is totally ramified in K, so $n \equiv n^{\prime} \equiv 3(\bmod 4)$ contradicting $m \equiv 3(\bmod 4)$. Thus m_{1} and m_{2} cannot both be even, leaving conditions b, c and d.

Since $\rho=1$, the converse follows immediately from Theorem 4.

§5 Applications of Genus Theory.

In many cases Theorems 2,3 and 4 enable us to determine whether or not an imaginary bicyclic biquadratic field K contains sci primes. However, when the square of every ideal in each subfield is principal in K, these theorems do not apply. For example, we shall see that 53 is an sci prime in $K=Q(\sqrt{-15}, \sqrt{10})$ even though $h_{0}=h_{1}=h_{2}=2$. On the other hand, we shall see that $K=Q(\sqrt{-22}, \sqrt{-35})$
does not contain sci primes even though each subfield contains a prime which splits completely and remains nonprincipal in K. The genus structure of the quadratic subfields will be used to obtain these results and determine which imaginary K contain sci primes.

The genus of an ideal A of norm a in a quadratic field $k=Q(\sqrt{d})$ is determined by the values of Hilbert's norm residue symbols. If l_{1}, \ldots, l_{t} are the prime divisors of the discriminant of k, then k has generic characters $\left(\frac{a, d}{l_{i}}\right)$ for $i=1, \ldots, t$ (see Hancock [7] for details). When l_{i} is odd and $\left(a, l_{i}\right)=1,\left(\frac{a, d}{l_{i}}\right)=\left(\frac{a}{l_{i}}\right)$ is the usual Legendre symbol. Similarly, if a is odd and $l_{i}=2$

$$
\left(\frac{a, d}{2}\right)= \begin{cases}\left(\frac{-1}{a}\right) & \text { if } d \equiv 3(\bmod 4) \\ \left(\frac{2}{a}\right) & \text { if } d / 2 \equiv 1(\bmod 4) \\ \left(\frac{-2}{a}\right) & \text { if } d / 2 \equiv 3(\bmod 4)\end{cases}
$$

To simplify notation, define $\left(\frac{a}{2}\right)=\left(\frac{2}{|a|}\right)$.
If $l_{i} \mid(a, d)$, then $\left(\frac{a, d}{l_{i}}\right)=\left(\frac{-a d / l_{i}^{2}}{l_{i}}\right)$. Also $\left(\frac{|d|, d}{l_{i}}\right)=\left(\frac{a^{2}, d}{l_{i}}\right)=+1$.
The sequence $\left(\frac{a, d}{l_{1}}\right), \ldots,\left(\frac{a, d}{l_{t}}\right)$ is called the character system of the integer a in k. When a is the norm of an ideal in k, then $\prod_{i=1}^{t}\left(\frac{a, d}{l_{i}}\right)=+1$. The collection of all 2^{t-1} possible character systems with positive product form a group with the obvious multiplication. This group is called the group of characters for the field k and denoted by G_{k}.

When k is imaginary or when k is real and $\lambda=1$, then the character-system for the ideal A is the character-system of $a=N_{k / Q}(A)$ in k. However, if k is real and $\lambda=0$, then the character-system of A must be normalized. One way to accomplish this is as follows: Suppose $l_{1} \equiv 3(\bmod 4)$. Then for each $l_{i} \equiv 3(\bmod 4)$ we replace
$\left(\frac{a, d}{l_{i}}\right)$ with the product $\left(\frac{a, d}{l_{1}}\right)\left(\frac{a, d}{l_{i}}\right)$ in the character-system. If $d \equiv 3$ or $d / 2 \equiv 3$ $(\bmod 4)$, then the character at 2 is also normalized in the same manner. Since the normalized character at l_{1} will be always positive, we need only consider the remaining $t-1$ characters. Again these $t-1$ values must have positive product when a is the norm of an ideal in k. The collection of all 2^{t-2} such possible normalized systems will be called the group of normalized characters of k and denoted by G_{k}^{\prime}.

All ideals in a given class have the same normalized character-system and all classes with the same character-system belong to one genus. Thus there is a one-toone correspondence between the genera of k and the group of (normalized) characters of k, with the genus of an ideal determined by its character-system. The principal class belongs to the principal genus which has a character-system consisting of only positive units. It is worthy of note that the square of every class is in the principal genus and every class in the principal genus is the square of some class.

In order for a rational prime p to split completely in k, the character-system of p in each subfield must have positive product. If, in addition, the character-system of p in each k_{i} places a prime factor $\mathfrak{p}_{\boldsymbol{i}}$ of p in a genus which contains no class which becomes principal in k, then \boldsymbol{p} is an sci prime. If for some i, \mathfrak{p}_{i} is in a genus which only contains primes which become principal in K, then p is reducible in K.

In the first example, $K=Q(\sqrt{-15}, \sqrt{10})$, the primes above 53 belong to the nonprincipal genus in all three quadratic subfields while Theorems 3 and 4 show that all nonprincipal classes of each subfield remain nonprincipal in K. Thus 53 is an sci prime.

For $K=Q(\sqrt{-22}, \sqrt{-35})$ we number the subfields so that $k_{0}=Q(\sqrt{770}), k_{1}=$ $Q(\sqrt{-22})$ and $k_{2}=Q(\sqrt{-35})$. The possible character systems for ideals in each of the subfield are listed in the chart below.

	k_{0}		k_{1}		k_{2}	
$\left(\frac{2}{x}\right)$	$\left(\frac{x}{5}\right)$	$\left(\frac{x}{7}\right)\left(\frac{x}{11}\right)$	$\left(\frac{2}{x}\right)$	$\left(\frac{x}{11}\right)$	$\left(\frac{x}{5}\right)$	$\left(\frac{x}{7}\right)$
+	+	+	+	+	+	+
+	-	-	+	+	-	-
-	+	-	-	-	+	+
-	-	+	-	-	-	-

Since $h_{0}=4$ and $h_{1}=h_{2}=2$, each field has one class per genus. Thus K contains sci primes if and only if in each subfield the class belonging to the genus listed on the last line of the chart does not become principal in K. By Theorem 3 the ideals of k_{0} with norm 22 and 35 become principal in K. However, an easy computation shows that these ideals are in the genus of k_{0} which is listed on the bottom line. Thus every prime which splits completely in K belongs to an ideal class in some subfield that is principal in K. Hence K contains no sci primes.

Theorem 5. If each quadratic subfield of K contains primes that split completely in K, but do not become principal in K and if, for some j, there is a class in the principal genus of k_{j} that does not become principal in K, then K contains sci primes.

Proof: Since K / k is unramified for at most one subfield, we may assume that K / k_{0} and K / k_{2} are ramified extensions.

If $j=0$ or 2 , then the class group of this field has a cyclic factor of odd order or it contains an element of order 4 whose square is the element of the principal genus which does not become principal in K. Since K / k_{j} is ramified, every class contains primes which split in K. Thus Theorem 2 may be applied to show that K has sci primes.

Assume now that every class in the principal genus of k_{0} and of k_{2} is principal in K. Thus $j=1$. If K / k_{1} is ramified, the result follows as above. Hence we may assume that K / k_{1} is unramified. This occurs only when G_{0} and G_{2} have no common
characters so $G_{0} \times G_{2} \subseteq G_{1}$. Moreover, the elements of $G_{0} \times G_{2}$ correspond to the genera of k_{1} which contain primes that split completely in K. Here k_{0} and k_{2} must each have a genus which contains no ideals that become principal in K. There exists an element α in $G_{0} \times G_{2}$ which corresponds to this genus in both k_{0} and k_{2}. Since the principal genus of k_{1} contains a class that does not become principal in K, every other genus of k_{1} contains such a class. Let p be a rational prime whose divisors in k_{1} belong to a class in α which does not become principal in k_{1}, then p must be an sci prime.

Corollary 1. Assume $h_{i}>2^{r_{i}}$ for $i=0,1,2$ and that for some j there is a class in the principal genus of k_{j} which does not become principal in K. Then K contains sci primes if and only if one of the following holds:
a) K / k_{1} is ramified,
b) $h_{1} /\left|G_{1}\right|>2^{r_{1}-R_{1}}$,
c) $r_{1}=2$ and $\left(\frac{n^{\prime}}{m_{1}}\right)+\left(\frac{n^{\prime}}{m_{2}}\right)<2$,
d) $r_{1}=2,\left(\frac{n^{\prime}}{m_{1}}\right)=\left(\frac{n^{\prime}}{m_{2}}\right)=1$ and $h_{1}>8$,
e) $r_{1}=1$ and $\left(\frac{n^{\prime}}{m}\right)=-1$,
f) $r_{1}=1,\left(\frac{n^{\prime}}{m}\right)=+1$ and $h_{1}>4$.

Proof: Suppose a) holds. Since K / k_{i} is ramified for $i=0,1$ and 2 , every class in each subfield contains primes which split completely in K. There is a class in the principal genus of k_{j} which is not principal in K. Thus Theorem 5 applies to show that K contains sci primes.

Next suppose that b) holds. Since $h_{1} /\left|G_{1}\right|$ is the number of classes in each genus of k_{1} and $2^{r_{1}-R_{1}}$ is the number of classes in the principal genus which are principal in K, not all classes in the principal genus of k_{1} can be principal in K. Thus k_{1} contains primes which split completely in K and are not principal. Theorem 5 applies to show
that K contains sci primes.
Assume for the remainder of the proof that $h_{1} /\left|G_{1}\right|=2^{r_{1}-R_{1}}$ and that K / k_{1} is unramified. This implies that $h_{0} /\left|G_{0}^{\prime}\right|>2^{r_{0}-R_{0}}$ or $h_{2} /\left|G_{2}\right|>2^{r_{2}-R_{2}}$ and it follows from Theorem 4 that $r_{1}>0$. In order to use Theorem 5, we must show that each of conditions c), d), e), and f) implies the existence of classes in k_{1} which do not become principal in K, but contain primes that split completely in K. If $r_{1}=2$ and $\left(\frac{n^{\prime}}{m_{1}}\right)+\left(\frac{n^{\prime}}{m_{2}}\right)<2$, then only half of the classes of k_{1} which become principal in K contain primes which split completely in K. Since $h_{1} / 2>2^{r_{1}-1}, k_{1}$ contains classes which do not become principal yet split completely in K. If $\left(\frac{n^{\prime}}{m_{1}}\right)=\left(\frac{n^{\prime}}{m_{2}}\right)=+1$, then all the classes which become principal in K, split completely in K. Thus when $h_{1}=8$, all the classes which split in K become principal in K. It follows that K contains sci primes if and only if $h_{1}>8$.

If $r_{1}=1$ and $\left(\frac{n^{\prime}}{m}\right)=-1$, the nonprincipal class of k_{1} which becomes principal in K does not split in K. Thus $h_{1}>2^{r_{1}}$ implies that K contains sci primes. On the other hand, if $\left(\frac{n^{\prime}}{m}\right)=+1$, then the nonprincipal class which becomes principal in K splits completely in K. Here k_{1} contains primes which do not become principal in K and do split completely in K, if and only if $h_{1}>4$.

Since K contains sci primes only if, in each subfield there are primes which split completely in K and are not principal in K, it is necessary that one of the condition a), b), c), d), e), or f) holds.

Let G be a subgroup of $G_{1} \times G_{2}$ such that $\alpha \in G$ if:

1) For each odd prime l dividing Δ_{1} and Δ_{2}, the values of the common character at l are equal.
2) For $l=2$ dividing Δ_{1} and Δ_{2} but not Δ_{0}, the values of the common character at 2 are equal.

If 2 is totally ramified in $K(\delta=1)$, then an element of G will contain two distinct
characters at 2 and they are not considered to be a common character. Thus $|G|=$ $2^{t_{1}+t_{2}-2-s+\delta}$, where $s-\delta$ is the number of common characters.

If l is a prime divisor of Δ_{0} such that $l \nmid\left(\Delta_{1}, \Delta_{2}\right)$, then there is exactly one coordinate of $\alpha \in G$ corresponding to the prime l.

Define a function $f_{1}: G \rightarrow G_{0}$ by $f_{1}(\alpha)=\beta$ where the coordinate at l in β is the coordinate at l in α. If 2 is totally ramified, then the character value at 2 in β in the product of the values for the characters at 2 in G_{1} and G_{2}. Now, β is an element of G_{0} if the product of the character values is +1 . Since each element in G_{1} and G_{2} must satisfy the product condition, α has an even number of negative coordinates. The common coordinates are required to have the same sign, so the number of negative values in the non-common coordinates of α is also even. These are precisely the coordinates which determine the sign of the product in β.

Since we are interested in G_{0}^{\prime} not G_{0}, we will define $f_{0}: G_{0} \rightarrow G_{0}^{\prime}$ to be the normalization map and $f=f_{1} \circ f_{0}: G \rightarrow G_{0}^{\prime}$. Notice that f_{1} and f_{0} are both homomorphisms in each coordinate. Thus f_{1}, f_{0} and f are homomorphisms. While f_{1} may not be onto, f_{0} is clearly onto and we will show that f is onto as well.

Lemma 11. If $\left(\Delta_{1}, \Delta_{2}\right) \neq 1$, then f_{1} is onto.

Proof: Let $\beta \in G_{0}$, then β has an even number of coordinates with negative values. If 2 is not totally ramified or if β has a positive 2 -coordinate, then the negative coordinates of β may be partitioned into two subsets, those coordinates which occur in G_{1} and those which occur in G_{2}. These sets have the same parity. If each has an even number of elements, then choose $\alpha_{1} \in G_{1}$ and $\alpha_{2} \in G_{2}$ such that all common characters, and the character at 2 , if 2 is totally ramified, are positive. For all other coordinates set them equal to the values in β. If the parity is odd, then choose α_{1} and α_{2} such that the values at one common character or the characters at 2 are negative
and all other common characters have positive values. Again set all other coordinates equal to the values in β. In this way we obtain $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ such that $f_{1}(\alpha)=\beta$.

If 2 is totally ramified and the 2 -coordinate of β is negative, then the 2 -coordinate of α_{1} must be the negative of the 2 -coordinate of α_{2} and the partitioning as above of all the negative coordinates except that at 2 gives sets with opposite parity. Choose an $\alpha_{1} \in G_{1}$ so that all common coordinates have positive value, the value of the 2 -coordinate is the product of the values of the other coordinates of β from G_{1}, and the remaining coordinates have values identical to their values in β. Choose $\alpha_{2} \in G_{2}$ in a similar manner. This gives an $\alpha \in G$ which maps to β.

Lemma 12. The function f is always onto.

Proof: If $\left(\Delta_{1}, \Delta_{2}\right)>1$, then the result follows from Lemma 11 and the remarks proceeding it.

Suppose $\left(\Delta_{1}, \Delta_{2}\right)=1$. Then either Δ_{1} or Δ_{2} is odd. Assume Δ_{1} is odd. Then $|n| \equiv 3(\bmod 4)$ and there is a prime $l_{1} \equiv 3(\bmod 4)$ such that $l_{1} \mid \Delta_{1}$. Also $l_{1} \mid \Delta_{0}$ and the character-system for k_{0} must be normalized. Let u be the number of characters of k_{0} which are normalized and note that u is even. Let l_{1}, \ldots, l_{u} be the prime divisors of Δ_{0} corresponding to these characters and use l_{1} to normalize. Since $|n| \equiv 3(\bmod 4)$, an odd number of these l_{i} must divide Δ_{1}, and hence, an odd number must divide Δ_{2}. For $\beta^{\prime} \in G_{0}^{\prime}$, choose $\beta \in G_{0}$ such that $f_{0}(\beta)=\beta^{\prime}$. Partition the coordinates of β into two sets, one corresponding to the prime divisors of Δ_{1}, the other corresponding to the prime divisors of Δ_{2}. If each set has an even number of negative coordinates, then there is an $\alpha \in G_{0}$ with $f_{1}(\alpha)=\beta$ so $f(\alpha)=\beta^{\prime}$. If both sets have an odd number of negative coordinates, then form a new β by changing the signs of the coordinates at l_{1}, \ldots, l_{u}. We now have a β with an even number of negatives in each set and $f_{0}(\beta)=\beta^{\prime}$. As above choose $\alpha \in G$ with $f_{1}(\alpha)=\beta$.

Lemma 13. The kernel, K_{f}, of f has order $2^{s-\lambda}$.
Proof: $\left|G_{1}\right|=2^{t_{1}-1},\left|G_{2}\right|=2^{t_{2}-1}$ and $\left|G_{0}^{\prime}\right|=2^{t_{0}-2+\lambda}$. Using the definition of s and δ we can write $t_{0}=t_{1}+t_{2}-2 s+\delta$. From above, $|G|=2^{t_{1}-1+t_{2}-1-(s-\delta)}=2^{t_{1}+t_{2}-2-s+\delta}=$ $2^{t_{0}+s-2}$ so $\left|K_{f}\right|=\frac{|G|}{\left|G_{0}^{\prime}\right|}=2^{s-\lambda}$.

We will use f to determine if there is a rational prime p and a genus in each subfield containing a prime ideal \mathfrak{p}_{i} above p which does not become principal in K. To this end we will call a genus of k_{i} bad or good depending on whether or not it contains a class of k_{i} which is principal in K. Let B_{i} be the set of bad genera of k_{i}. An element of G will be called bad if the restriction to G_{1} or G_{2} induces a bad genus; otherwise, it will be called good. The function f will be called good if there exists at least one good element of G which is mapped to a good element of G_{0}^{\prime}. Obviously, if f is good, infinitely many sci primes exist.

Let $2^{R_{i}}$ denote the number of bad genera in k_{i} for $i=0,1,2$. Since each class is contained in a genus and the bad classes form a subgroup of the class group, B_{i} is a subgroup of the genus group and $R_{i} \leq r_{i}$ for $i=0,1,2$. Thus the Corollaries to Theorem 4 can be used to determine the maximum values for R_{0}, R_{1} and R_{2} and under what conditions these values can occur. Since f is good only if each k_{i} contains a good genus, we may assume $R_{i}<t_{i}-1$ for $i=1$ and $2, R_{0}<t_{0}-2+\lambda$, and that each discriminant has an odd prime divisor. We will also assume that $R_{1} \geq R_{2}$, renumbering the imaginary fields if necessary.

Lemma 14. The number of bad elements of G is at most b where

$$
b= \begin{cases}2^{\delta-s}\left(2^{R_{1}+t_{2}-1}+2^{R_{2}+t_{1}-1}\right)-1 & \text { if } t_{1} \neq s-\delta \neq t_{2} \\ 2^{\delta-s}\left(2^{R_{1}+t_{2}}+2^{t_{1}-1}\right)-1 & \text { if } t_{2}=s-\delta\end{cases}
$$

Proof: Suppose $t_{1} \neq s-\delta$. Then $2^{t_{1}-1-(s-\delta)}$ elements of G induce a single element of G_{2}, and $2^{R_{2}}\left(2^{t_{1}-1-(s-\delta)}\right)$ elements of G induce elements of B_{2}. Similarly, if $t_{2} \neq s-\delta$,
then $2^{R_{1}}\left(2^{t_{2}-1-(s-\delta)}\right)$ elements of G induce elements of B_{1}. Since the principal element of G induces the principal element of G_{1} and $G_{2}, 1$ is subtracted from the count and line 1 follows. However, if $t_{2}=s-\delta$, then an element of G_{1} is induced by at most one element of G and only half the elements of G_{1} are induced by elements of G. Since the bad genera of k_{1} form a subgroup of G_{1}, either all or half of the elements of B_{1} are induced by elements of G. Thus, at most, $2^{R_{1}}$ elements of G induce elements of B_{1}. Since $t_{2}=s-\delta,\left(\Delta_{0}, \Delta_{2}\right)=1$. It follows from Theorem 4 that no nonprincipal ideal of k_{2} becomes principal in K, i.e. $R_{2}=0$. Thus $2^{t_{1}-1-(s-\delta)}$ elements of G induce the bad element in G_{2}. Since this includes the principal element of $G, 1$ must be subtracted and line 2 follows.

Define a function

$$
g= \begin{cases}2^{t_{1}+t_{2}-2}-2^{t_{2}-1+R_{1}}-2^{t_{1}-1+R_{2}}+2^{s-\delta}-2^{2 s+R_{0}-(\delta+\lambda)} & \text { if } t_{1} \neq s \neq t_{2} \text { or } \delta=1 \\ 2^{t_{1}+t_{2}-2}-2^{t_{2}+R_{1}}-2^{t_{1}-1}+2^{t_{2}}-2^{2 t_{2}+R_{0}-(\delta+\lambda)} & \text { if } t_{2}=s \text { and } \delta=0 .\end{cases}
$$

Theorem 6. For a given field K, if $g \geq 0$, then f is good.
Proof: The number of good elements of G is at least $|G|-b$. Also f maps $2^{R_{0}}\left|K_{f}\right|$ elements of G to bad elements of G_{0}^{\prime}. By Lemma $13,\left|K_{f}\right|=2^{s-\lambda}$. Since the principal element of G is counted in both b and $\left|K_{f}\right|, g=2^{s-\delta}\left(|G|-b-2^{R_{0}}\left|K_{f}\right|\right) \geq 0$ implies that there are more good elements in G than can be mapped to elements of B_{0}; thus f is good.

Corollary 1. If $s-\delta=0$, then f is good when $g \geq 1-2^{R_{1}+R_{2}}$.
Proof: Since $s-\delta=0, B_{1} \times B_{2} \subset G$ and $2^{R_{1}+R_{2}}$ elements of G induce bad elements in both G_{1} and G_{2}. Thus the estimate for b in Lemma 14 can be improved by $2^{R_{1}+R_{2}}-1$ elements.

Corollary 2. If $s-\delta=1$, then f is good when $g \geq 2\left(1-2^{R_{1}+R_{2}-1}\right)$.
Proof: Since $s-\delta=1, k_{1}$ and k_{2} have one common character χ. Because $\chi: B_{i} \rightarrow$
$\{ \pm 1\}$ for $i=1,2$ is a group homomorphism, either all or exactly half the elements of B_{i} will have value +1 at χ. Thus $\left|B_{1} \times B_{2} \cap G\right| \geq 1 / 2\left|B_{1} \times B_{2}\right|=2^{R_{1}+R_{2}-1}$. Again the estimate for b can be improved and f is always good when $g \geq 2^{s-\delta}\left(1-2^{R_{1}+R_{2}-1}\right)=$ $2\left(1-2^{R_{1}+R_{2}-1}\right)$.

Corollary 3. If $\left|K_{f}\right| \geq\left|G_{2}\right|$ and $R_{2}=1$ or if $\left|K_{f}\right| \geq\left|G_{1}\right|$ and $R_{1} \geq 1$, then f is good when $g \geq-2^{s-\delta}$.

Proof: Suppose $\left|K_{f}\right| \geq\left|G_{2}\right|$. By looking at the inducement map to G_{2} restricted to K_{f}, we see that either every element of G_{2} is induced by an element in K_{f} or the principal element of G_{2} is induced by two or more elements in K_{f}. Since $R_{2}=1$, at least one nonprincipal element of K_{f} induces an element in B_{2}. Thus f is good when $g \geq-2^{s-\delta}$.

The proof is identical for $\left|K_{f}\right| \geq\left|G_{1}\right|$.
Corollary 4. If $t_{2}=2$ and $R_{2}=0$, then f is good when $g>-2^{R_{1}}$. If $s-\delta=t_{2}=2$, then $g>-2^{R_{1}+1}$ is sufficient. If $t_{2}=2$ and $R_{0}=1$, then $g>-2^{2 s-\delta-\lambda}$ is sufficient. Proof: Let B_{i}^{\prime} be the subgroup of G containing those elements which induce bad elements of G_{i} for $i=1$ or 2 . Since $t_{2}=2, B_{2}^{\prime}$ consists of those elements with positive values at both coordinates in G_{2}. Hence the product of any 2 elements of $G-B_{2}^{\prime}$ is in B_{2}^{\prime}. In particular, $\left[B_{1}^{\prime}: B_{1}^{\prime} \cap B_{2}^{\prime}\right.$] ≤ 2. Thus f is good when $g>-2^{s-\delta-1}\left|B_{1}^{\prime}\right|$. It follows from Lemma 14 that

$$
\left|B_{1}^{\prime}\right|= \begin{cases}2^{R_{1}+t_{2}-1-(s-\delta)} & \text { if } t_{2} \neq s-\delta \\ 2^{R_{1}+t_{2}-(s-\delta)} & \text { if } t_{2}=s-\delta\end{cases}
$$

Similarly, $\left[K_{f}: K_{f} \cap B_{2}^{\prime}\right] \leq 2$. Thus f is good when $g>-2^{s-\delta-1+R_{0}}\left|K_{f}\right|=$ $-2^{2 s-\delta-1+R_{0}-\lambda}=-2^{2 s-\delta-\lambda}$ when $R_{0}=1$.

Corollary 5. If $t_{0}+\lambda=3$ and $R_{1}=2$, then f is good when $g>-2^{t_{2}}$.
Proof: When $R_{1}=2$, Theorem 4 requires that $m \mid \Delta_{1}$. Since $t_{0}+\lambda=3$, there exists
either a prime $p_{1} \equiv 1(\bmod 4)$ or two primes $p_{2} \equiv p_{3} \equiv 3(\bmod 4)$ which divide m. In the first case, an element is in K_{f} if and only if its character value at p_{1} is +1 . Thus any two elements of B_{1}^{\prime} which are not in K_{f}, have a product which is in K_{f}. In the second case, p_{2} normalizes the character at p_{3}, so an element of G is in K_{f} if and only if the character value at p_{2} equals the character value at p_{3}. Again, the product of two elements not in K_{f} is in K_{f}. Thus [$\left.B_{1}^{\prime}: B_{1}^{\prime} \cap K_{f}\right] \leq 2$. It follows that $\left|B_{1}^{\prime} \cap K_{F}\right| \geq 1 / 2\left|B_{1}^{\prime}\right|$. Thus f is good when $g>-2^{s-\delta}\left(2^{t_{2}-(s-\delta)}\right)$.

Corollary 6. If $t_{2}=2, t_{0}+\lambda=3$ and $R_{1}=2$, then f is good when $g \geq-8+2^{s-\delta+1}$.
Proof: Corollary 4 estimates $\left|B_{1}^{\prime} \cap B_{2}^{\prime}\right|$ and Corollary 5 estimates $\left|B_{1}^{\prime} \cap K_{f}\right|$. Since Lemma 14 assumed that only the principal element was in $B_{1}^{\prime} \cap B_{2}^{\prime} \cap K_{f}$, we may improve our estimate by $\left|B_{1}^{\prime} \cap B_{2}^{\prime}\right|+\left|B_{1}^{\prime} \cap K_{f}\right|-2$.

Corollary 7. If $s=t_{2}$, then f is good when $g \geq-2^{s-\delta}\left(2^{1+R_{2}-\lambda}-1\right)$.
Proof: If $\delta=0$, then $G \approx G_{0} \times G_{2}$. If $\delta=1$, then $G \approx G_{0}^{*} \times G_{2}$ where the 2coordinate of G_{0}^{*} is the 2 -coordinate of G_{1} and the other coordinates of G_{0}^{*} are the remaining coordinates of G_{0}. Note that the 2-coordinate of G_{0} is the product of the 2-coordinates of G_{2} and G_{0}^{*}. Let $\alpha \in G_{2}$. If $\delta=0$, then there exists $\beta \in G$ such that β has positive values for all coordinates of G_{0} and the coordinates of G_{2} have the same values as α. If $\delta=1$, then there exists a $\beta \in G$ such that β induces α, the 2-coordinate of G_{0}^{*} equals the 2-coordinate of G_{2} and all other coordinates have positive values. Since β belongs to K_{f}, the inducement map to G_{2} is still surjective when restricted to K_{f}.

Since $s=t_{2},\left|K_{f}\right|=2^{s-\lambda}=2^{s-1} \cdot 2^{1-\lambda}=\left|G_{2}\right| \cdot 2^{1-\lambda}$. Thus the inducement map restricted to K_{f} has kernel of order $2^{1-\lambda}$. It follows that $\left|B_{2}^{\prime} \cap K_{f}\right|=2^{1+R_{2}-\lambda}$. Since the principal element of G is included in $B_{2}^{\prime} \cap K_{f}$, we may improve the estimate by $2^{1+R_{2}-\lambda}-1$.

Corollary 8. If $t_{2}=s, t_{0}+\lambda=3$ and $R_{1}=2$, then f is good when $g \geq-2^{s-\delta}\left(2^{1-\lambda+R_{2}}\right)$. Proof: Since $s=t_{2}$, an element of G_{1} is induced by at most one element of G and either half or all the elements of G_{1} are induced by elements of G. Thus either 2 or 4 elements of G induce elements of B_{1}. If 2 elements of B_{1} are not induced, then we may improve the estimate of b by 2 . If 4 elements of B_{1} are induced, then as in Corollary 5, at least 2 of these are in K_{f}.

From the proof of Corollary 7, we see that every element of G_{2} is induced by $2^{1-\lambda}$ elements of K_{f}. Thus $2^{1-\lambda+R_{2}}$ elements of K_{f} induce elements of B_{2}. Since the principal element was included in both improved estimates, b may be reduced by only ($\left.2^{1-\lambda+R_{2}}\right)$.

Corollary 9. If $t_{1}=t_{2}=3, t_{0}=4, s-\lambda=1, R_{0}=R_{1}=1$ and $R_{2}=0$, then f is good.

Proof: Here $t_{1}+t_{2}=t_{0}+2 s-\delta$ implies $\delta=0, s=1, \lambda=0,|G|=8,\left|K_{f}\right|=2$ and $\left|G_{1}\right|=\left|G_{2}\right|=\left|G_{0}^{\prime}\right|=4$. Hence each element of G_{1} (respectively G_{2}) is induced by exactly 2 elements of G. If $B=B_{1}^{\prime} \cup B_{2}^{\prime}$, then $|B| \leq 4+2-1=5$ where the -1 is necessary because the principal element of G induces a bad element in both G_{1} and G_{2}. If either $|B|<5$ or $\left|B \cap K_{f}\right|>1$, then there are at least $|G|-|B|-2\left|K_{f}\right|+\left|B \cap K_{f}\right| \geq 1$ good elements of G mapped to good elements of G_{0} and f is good. Thus we may assume $|B|=5$ and $\left|B \cap K_{f}\right|=1$. Now $|G|-|B|-\left|K_{f}\right|+\left|B \cap K_{f}\right|=2$, so there are exactly two good elements α_{1} and α_{2} of $G-K_{f}$. If $f\left(\alpha_{1}\right) \neq f\left(\alpha_{2}\right)$, then either $f\left(\alpha_{1}\right)$ or $f\left(\alpha_{2}\right)$ is good. Thus we may assume $f\left(\alpha_{1}\right)=f\left(\alpha_{2}\right)$ or equivalently $\alpha_{1} \alpha_{2} \in K_{f}$. Since $\alpha_{1} \neq \alpha_{2}$ and $\left|B \cap K_{f}\right|=1, \alpha_{1} \cdot \alpha_{2} \notin B$. Let C be the subgroup of G generated by α_{1} and α_{2}. Then $|C|=4$. Also B_{1}^{\prime} is a subgroup of G of order 4. Since G is an elementary 2-group of order $8,\left|B_{1}^{\prime} \cap C\right|=2$ or 4 , contradicting the assumption that α_{1}, α_{2} and $\alpha_{1} \alpha_{2}$ are good. Thus $f\left(\alpha_{1}\right) \neq f\left(\alpha_{2}\right)$.

Corollary 10. If $R_{0}=R_{1}=1, s=\lambda=1, \delta=0, t_{0} \geq 3, t_{1} \geq 3$ and $t_{2}=2$, then f is good.

Proof: Since $R_{0}=1$ and $s-\delta=1,2$ is ramified in k_{1} and k_{2} and $m=n n^{\prime}$. Thus $\left(\frac{-1}{x}\right)$ is the common character of k_{1} and k_{2}. Since $R_{1}=1, G_{1}$ contains a nonprincipal bad element which is determined by m_{1} or m_{2}. Since $\lambda=1, m_{1} \equiv m_{2} \equiv 1$ $(\bmod 4)$, so $\left(\frac{-1}{m_{1}}\right)=\left(\frac{-1}{m_{2}}\right)=+1$ and all elements of B_{1}^{\prime} have positive value for this character. Since $t_{2}=2$, all elements of B_{2}^{\prime} also have positive value for this common character. Thus $|G|-\left|B_{1}^{\prime} \cup B_{2}^{\prime}\right| \geq 2$. However, G_{0} has only one nonprincipal bad element and $\left|K_{f}\right|=1$, so f is good.

Theorem 7. If $R_{0}=0, t_{0} \geq 3-\lambda$ and $t_{i} \geq R_{i}+2$ for $i=1$ and 2 , then f is good except possibly for the values listed below:

	R_{1}	R_{2}	t_{0}	t_{1}	t_{2}	s	δ	λ
a)	2	1	2	4	3	3	1	1
b)	2	0	3	5	2	2	0	0
c)	2	0	3	4	2	2	1	0
d)	2	0	2	4	2	2	0	1
e)	1	1	2	3	3	2	0	1
f)	1	1	3	3	3	2	1	0
g)	1	0	2	4	2	2	0	1
h)	1	0	2	3	2	2	1	1
i)	1	0	3	3	2	1	0	0

Proof: Let $x=2^{t_{1}-1}$ and $y=2^{t_{2}-1}$ then

$$
g=g(x, y)= \begin{cases}x y-2^{R_{2}} x-2^{R_{1}} y+2^{s-\delta}-2^{2 s-(\delta+\lambda)} & \text { if } t_{1} \neq s \neq t_{2} \text { or } \delta=1 \\ x y-x-2^{R_{1}+1} y+2 y-2^{2-\lambda} y^{2} & \text { if } t_{2}=s, \delta=0\end{cases}
$$

Here the values of x, y, and $2^{s-\delta}$ are related by $t_{1}+t_{2}=t_{0}+2 s-\delta$.
If $R_{1}=2$, then it follows from Theorem 4 that either $s=t_{2}$ or $\delta=0$ and $s=t_{2}-1$. The latter can occur only if $\left(\Delta_{0}, \Delta_{2}\right)=4$. If, in addition, $R_{2}=1$, then it follows from Corollary 1 to Theorem 4 that $s=t_{2}, \delta=1$ and $m_{1}=2$. In this case $g=x y-2 x-3 y-2^{1-\lambda} y^{2}$ and $t_{1}=t_{2}+t_{0}-1$. Thus $t_{1} \geq t_{2}+2-\lambda$ and $x \geq 2^{2-\lambda} y$. Since
g is an increasing function of x on our domain, $g \geq 2^{2-\lambda} y^{2}-2^{3-\lambda} y-3 y-2^{1-\lambda} y^{2}=$ $y\left(2^{1-\lambda} y-2^{3-\lambda}-3\right)$. If $\lambda=0, x \geq 4 y \geq 16$. Thus $g \geq 0$ except when $x=16$ and $y=4$. However, f is good at this point by Corollary 7 to Theorem 6. When $\lambda=1, x \geq 2 y \geq 8$. Thus $\lambda=1, x=8$ and $y=4$ is the only case where f may be bad, yielding line (a) of the chart.

Next, suppose $R_{1}=2$ and $R_{2}=0$. If $s-\delta=t_{2}$, then $\delta=0$ and $x \geq 2^{3-\lambda} y$. Thus

$$
g=x y-x-8 y+2 y-2^{2-\lambda} y^{2} \geq 2^{3-\lambda} y^{2}-\left(2^{3-\lambda}+6\right) y-2^{2-\lambda} y^{2} \geq 0
$$

when $y \geq 4+\lambda$. However, when $\lambda=1, x=16$ and $y=2$ or 4 , then $g=-4$ or -8 and f is good by Corollaries 4 and 8 to Theorem 6 , respectively. Also, $g \geq 0$ when $x>16$. Thus $y=2$ and $x=2^{4-\lambda}$ are the only cases where f may be bad, yielding lines b) and d) of the chart.

If $s-\delta=t_{2}-1$, then $g=x y-x-3 y-2^{\delta-\lambda} y^{2}$. Hence $x \geq 2^{1+\delta-\lambda} y$ and $g \geq 0$ except when $\delta-\lambda=1, x=8, y=2$ or $\delta-\lambda=0, x=8, y=2$ or 4 . However, when $\delta=\lambda$ Corollaries 2 and 5 to Theorem 6 show f is good. When $\delta=1, \lambda=0, x=8$, and $y=2$, line (c) is obtained.

Since $R_{1}=2, n^{\prime} \mid \Delta_{1}$. Thus $s-\delta \geq t_{2}-1$.
Next, consider the case $R_{1}=R_{2}=1$. By Theorem 4 and its first two Corollaries, $s-\delta \neq t_{2}$. Thus if $s=t_{2}$, then $\delta=1$, and $t_{1}=t_{0}-\delta+t_{2} \geq 2-\lambda+t_{2}$. If $\lambda=0$, then $x \geq 4 y$, and $g \geq y(2 y-9) \geq 0$ except when $x=16, y=4$. Here $g=-4$ and f is good by Corollary 3 to Theorem 6. When $\lambda=1, x \geq 2 y$, so $g \geq 0$ except when $x=8, y=4$. By Corollary 7 to Theorem $6, f$ is good in these circumstances.

If $s=t_{2}-1$, then $t_{1} \geq 1-(\delta+\lambda)+t_{2}$. Thus when $\lambda=\delta=0, g=x y-2 x-y-y^{2}$, $x \geq 2 y$ and $g \geq 0$ except when $x=8, y=4$. Here $g=-4$ and f is good by Corollary 3 to Theorem 6. If $\delta+\lambda=1$, then $x \geq y$ so $g \geq y\left(1 / 2 y-4+2^{-\delta}\right) \geq 0$ when $y \geq 8$. If $y=4$, then $g=2 x-16+2^{2-\delta} \geq 0$ for $x \geq 8$. Hence $t_{1}=t_{2}=3, t_{0}=3-\lambda$ and
$\delta+\lambda=1$, yields lines e) and f) of the chart. Let $\delta+\lambda=2$ and by renumbering k_{1} and k_{2} if necessary, assume $x \geq y$. Thus $g \geq 0$ except when $x=y=4$. Here $g=-2$ and f is good by Corollary 2 to Theorem 6 .

Let $s=t_{2}-2$ and $t_{1} \geq t_{2}$. If $\delta+\lambda=0$ then $g \geq 0$ except when $x=y=4$. Here again $g=-2$ and Corollary 2 to Theorem 6 tells us that f is good. If $\delta+\lambda \geq 1$, then

$$
g \geq x y-2 x-2 y+1 / 4 y-1 / 8 y^{2} \geq 7 / 8 y^{2}-15 / 4 y \geq 0
$$

when $y>4$. If $x=y=4, \delta=1$ and $\lambda=0$, then $g=-1$, but $s-\delta=0$ and Corollary 1 to Theorem 6 shows that f is good. If $\lambda=1$, then $g \geq 0$ on our domain. Since g is a decreasing function of $s, g \geq 0$ for $x, y \geq 4$ and $s<t_{2}-2$.

Finally, let $R_{1}=1, R_{2}=0$. Here the numbering of k_{1} and k_{2} is fixed, so we must consider the cases $t_{1} \geq t_{2}$ and $t_{1}<t_{2}$ separately. First let $t_{1} \geq t_{2}$ and $s=t_{2}$. As above, $t_{1} \geq t_{2}+3-(\delta+\lambda)$. If $\delta+\lambda=0$, then $x \geq 8 y$ so $g=x y-x-4 y+2 y-4 y^{2} \geq$ $2 y(2 y-5) \geq 0$ except when $y=2$ and $x=16$. In this case $g=-4$ and f is good by Corollary 7 to Theorem 6. If $\delta=1$ and $\lambda=0$, then $g \geq 0$ except when $x=8, y=2$. Here f is good by Corollary 7 to Theorem 6. If $\lambda=1$, then $g \geq 0$ except when $\delta=0, x=8$ and $y=2$ or $\delta=1, x=4$ and $y=2$. This yields lines g) and h) of the chart.

When $s=t_{2}-1, x \geq 2^{1-(\delta+\lambda)} y$ and $g=x y-x-2 y+2^{-\delta} y-2^{-(\delta+\lambda)} y^{2}$. If $x \geq 2 y$, then $g \geq 0$ unless $x=4$ and $y=2$. If $\delta+\lambda=0$ this yields line (i) of the chart. When $\delta=1$ and $\lambda=0$, then $s-\delta=0$ and $g=-1$ so Corollary 1 to Theorem 6 shows f is good. If $\lambda=1$, then $g \geq 0$ on our domain. Suppose now $x=y$, so $\delta+\lambda>0$. Thus $g \geq 0$ except when $\lambda=0, \delta=1$ and $x=y=4$. Here $g=-2$. Since $\left|G_{1}\right|=\left|K_{f}\right|$, Corollary 3 to Theorem 6 shows that f is good.

If $s \leq t_{2}-2$ and $x \geq y$, then $g \geq x y-x-2 y+2^{-1-\delta} y-2^{-2-\delta-\lambda} y^{2} \geq 0$ for $x \geq 4$ and $y \geq 2$.

Assume now $t_{2}>t_{1} \geq 3$. Then $y \geq 2 x$ and $g \geq 2 x^{2}-5 x+2^{s-\delta}-2^{2 s-(\delta+\lambda)}$. Hence $g \geq 0$ for $s \leq t_{1}-1$. Thus we may assume $s=t_{1}$. Since $R_{1}=1,2$ is totally ramified in K, so $\delta=1$. Hence $t_{2}=t_{0}+2 s-\delta-t_{1} \geq t_{1}+2-\lambda$, so $y \geq 2^{2-\lambda} x$. Therefore,

$$
g \geq 2^{2-\lambda} x^{2}-x-2^{3-\lambda} x+x-2^{(1-\lambda)} x^{2}=x\left(2^{1-\lambda} x-2^{3-\lambda}\right) \geq 0
$$

for $x \geq 4$.
If $R_{1}=R_{2}=0$, then $g \geq 0$ on our domain.
Corollary 1. Lines a), b), c), d), f) and g) of Theorem 7 are always good. (The proof for lines a), c) and d) assumes the list of imaginary quadratic fields with one class per genus is complete.)

Proof: In line (a) $R_{1}=2$ and $R_{2}=1$, thus by Theorem 4 and Corollary 1 to it, m and n^{\prime} must divide Δ_{1} and 2 is a principal factor in k_{0}. Since $\lambda=\delta=1, t_{0}=2$ and $t_{1}=4, m=2 p_{1}$ with $p_{1} \equiv 1(\bmod 4)$, and $n=-2^{c} p_{1} p_{2} p_{3}$ with $p_{1} p_{2} p_{3} \equiv 1(\bmod 4)$ and $c=0$ or 1. Here $R_{1}=r_{1}$ and $R_{2}=r_{2}$ so each of k_{1} and k_{2} must have at most one bad class in a given genus. Thus if either k_{1} or k_{2} has more than one class per genus, then there exists a good class in the principal genus of that field. Since K / k_{1} is ramified, Corollary 1 to Theorem 5 shows that K contains sci primes. Thus we may assume that both k_{1} and k_{2} have only one class per genus. From the list of such fields the only possible example is $m=2 \cdot 17, n=-3 \cdot 7 \cdot 17$ and $n^{\prime}=-2 \cdot 3 \cdot 7$. Since $\left(\frac{2}{17}\right)=\left(\frac{-1}{17}\right)=+1$ and $\left(\frac{17}{3}\right)=\left(\frac{17}{7}\right)=-1$, it follows that the elements of G corresponding to 2,17 and 34 are distinct elements of the kernel of f. Since $|G|=8$ and $\left|K_{f}\right|=4$, there are three elements of $G-K_{f}$ which induce nonprincipal elements in G_{2}. Since only one of these is bad, K must contain sci primes.

In line (b), $t_{0}=3, t_{1}=5, t_{2}=s=2$ and $\lambda=\delta=0$. Thus there are five distinct primes with $p_{1} p_{2} p_{3}\left|\Delta_{0}, p_{1} p_{2} p_{3} p_{4} p_{5}\right| \Delta_{1}$ and $p_{4} p_{5} \mid \Delta_{2}$. In order to have $\lambda=\delta=0$ the following congruences must hold: $p_{1} \equiv p_{2} \equiv p_{5} \equiv 3(\bmod 4), p_{3} \equiv p_{4} \equiv 1(\bmod 4)$ or
any p_{i} may be 2 . Here $G \approx G_{0} \times G_{2} \subseteq G_{1}$ as shown in the chart below:

	G_{0}		G_{2}		G_{0}^{\prime}		
	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	$p_{1} p_{2}$	p_{3}
1	+	+	+	+	+	+	+
2	-	-	+	+	+	+	+
3	+	+	+	-	-	+	+
4	-	-	+	-	-	+	+
5	+	-	-	+	+	-	-
6	-	+	-	+	+	-	-
7	+	-	-	-	-	-	-
8	-	+	-	-	-	-	-

Thus only lines 7 and 8 of $G-K_{f}$ are possibly good. Hence, if K has no sci primes, then lines 7 and 8 of G must correspond to classes of k_{1} which become principal in K. Since the elements which become principal in K form a group, line 2 must contain the third nonprincipal class that becomes principal. Thus we assume that these three lines must be the character system in k_{1} for the principal factors m_{1}, m_{2} and $m_{1} m_{2}$.

Since no nonprincipal classes of k_{0} or k_{2} can become principal in K, Theorem 5 applies to show K has sci primes whenever any quadratic subfield has more than one class per genus. Thus we may assume that all three quadratic subfields have one class per genus. Since p_{1} and p_{2} are symmetric, we may number these primes so that p_{2} is not a principal factor of k_{0}. Thus, $\left(\frac{p_{4}}{p_{5}}\right)=\left(\frac{p_{2}}{p_{3}}\right)=-1$.

First, assume that $m_{1}=p_{3}$ and $m_{2}=p_{1} p_{2}$. Then $\left(\frac{p_{1}}{p_{3}}\right)=\left(\frac{p_{2}}{p_{3}}\right)=-1$ and since $p_{3} \not \equiv 3(\bmod 4)\left(\frac{p_{3}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{2}}\right)=-1$. Hence neither m_{1} nor m_{2} can be on lines 7 or 8, so K must contain sci primes in this case.

Next, assume that $m_{1}=p_{1}$ and $m_{2}=p_{2} p_{3}$, so $\left(\frac{p_{1}}{p_{3}}\right)=+1$. Thus we may assume that p_{1} is on line 2. Let us assume for the moment that all p_{i} are odd. Thus $p_{1} \equiv p_{5} \equiv$ $3(\bmod 4)$ so $\left(\frac{p_{4} p_{5}}{p_{1}}\right)=-\left(\frac{p_{1}}{p_{4}}\right)\left(\frac{p_{1}}{p_{5}}\right)=-1$. Since $m_{1} m_{2}$ and $p_{4} p_{5}$ are on the same line, they must be on line 8 , so $m_{2}=p_{2} p_{3}$ is on line 7 . Thus $\left(\frac{p_{4} p_{5}}{p_{3}}\right)=\left(\frac{p_{2} p_{3}}{p_{4}}\right)=$
$\left(\frac{p_{2} p_{3}}{p_{5}}\right)=\left(\frac{p_{2}}{p_{4} p_{5}}\right)=-1$, which implies that $\left(\frac{p_{5}}{p_{3}}\right)=\left(\frac{p_{2}}{p_{4}}\right) \neq\left(\frac{p_{3}}{p_{4}}\right)=\left(\frac{p_{2}}{p_{5}}\right)$. If $\left(\frac{p_{2}}{p_{5}}\right)=+1$ then p_{3} and p_{4} are in the same genus of k_{1} so $p_{3} p_{4}$ is in the principal genus. If $\left(\frac{p_{2}}{p_{5}}\right)=-1$, then p_{2} and p_{4} are in the same genus so $p_{2} p_{4}$ is in the principal genus. This contradicts k_{1} having only one class per genus.

Now assume $p_{5}=2$. If n is even, then the character at p_{5} is $\left(\frac{-2}{x}\right)=(-1)^{\frac{x-1}{2}}\left(\frac{2}{x}\right)$, so the above computations are still valid, and either $p_{3} p_{4}$ or $p_{2} p_{4}$ will be in the principal genus of k_{1}. Similar results are obtained with $p_{i}=2$ for $i=1,2,3$ or 4 and n even. Assume now n is odd. If $p_{5}=2$, then the character at p_{5} is $(-1 / x)$. Since $m_{1}=p_{1},\left(\frac{p_{1}}{p_{3}}\right)=+1$ but $\left(\frac{-1}{p_{1}}\right)=-1$, so p_{1} is not on any of lines 2,7 or 8 . Similarly, if $p_{2}=2$, then $(-1 / x)$ is the character at p_{2}. Also $m=p_{1} p_{3}$, so $m_{2}=p_{3}$. But $\left(\frac{p_{3}}{p_{1}}\right)=+1$ while $\left(\frac{-1}{p_{3}}\right)=+1$, so p_{3} is not on line 2,7 or 8 . If $p_{1}=2$, then $(-1 / x)$ is the character at p_{1}. Since $\left(\frac{p_{1}}{p_{3}}\right)=+1$, we may assume that p_{1} belongs on lines 2. Since $p_{2} p_{3} \equiv p_{4} p_{5} \equiv 3(\bmod 4)$, we may assume both $p_{2} p_{3}$ and $p_{4} p_{5}$ belong on line 8. Thus $\left(\frac{p_{4}}{p_{2}}\right)=\left(\frac{p_{5}}{p_{2}}\right),\left(\frac{p_{4}}{p_{3}}\right)=-\left(\frac{p_{5}}{p_{3}}\right)$ and $\left(\frac{p_{2}}{p_{4}}\right)=-\left(\frac{p_{3}}{p_{4}}\right)$. It follows that $\left(\frac{p_{5}}{p_{2}}\right)=\left(\frac{p_{4}}{p_{2}}\right)=-\left(\frac{p_{3}}{p_{4}}\right)=\left(\frac{p_{3}}{p_{5}}\right)$. Also, $\left(\frac{p_{2}}{p_{3}}\right)=\left(\frac{p_{4}}{p_{5}}\right)=-1$. If $\left(\frac{p_{4}}{p_{2}}\right)=+1$ then we have the following character values:

	$\left(\frac{-1}{x}\right)$	$\left(\frac{x}{p_{2}}\right)$	$\left(\frac{x}{p_{3}}\right)$	$\left(\frac{x}{p_{4}}\right)$	$\left(\frac{x}{p_{5}}\right)$
p_{2}	-	-	-	+	-
p_{4}	+	+	-	+	-

Thus $p_{2} p_{4}$ is on line 2 , so $2 p_{2} p_{4}$ is on line 1 , contradicting that there is only one class per genus in k_{1}. Similarly, if $\left(\frac{p_{4}}{p_{2}}\right)=-1$ we have the following character values:

	$\left(\frac{-1}{x}\right)$	$\left(\frac{x}{p_{2}}\right)$	$\left(\frac{x}{p_{3}}\right)$	$\left(\frac{x}{p_{4}}\right)$	$\left(\frac{x}{p_{5}}\right)$
p_{3}	+	-	+	+	-
p_{4}	+	-	+	+	-

so $p_{3} p_{4}$ is on line 1 , contradicting that there is only one class per genus in k_{1}.
Suppose now $m_{1}=2 p_{2}$ and $m_{2}=2 p_{3}$. Here both m and n must be odd and $p_{1}=2$. Since $\left(\frac{2 p_{2}}{p_{3}}\right)=+1,2 p_{2}$ can not be on line 7 or 8 . Also, $\left(\frac{-1}{p_{2} p_{3}}\right)=\left(\frac{-1}{p_{4} p_{5}}\right)=-1$. Thus if K contains no sci primes, $2 p_{2}$ is on line 2 and $p_{2} p_{3}$ and $p_{4} p_{5}$ are on line 8. It follows that the character systems for p_{2}, p_{3}, p_{4} and p_{5} will be as above.

In line (c) there are three distinct odd primes p_{1}, p_{2} and p_{3} with $2 p_{1} p_{2}\left|\Delta_{0}, 2 p_{1} p_{2} p_{3}\right| \Delta_{1}$ and $2 p_{3} \mid \Delta_{2}$ where $p_{2} \equiv 3(\bmod 4)$. We have the following character tables:

G_{1}				G_{2}		$G_{0}, p_{1} \equiv 1(\bmod 4)$		$G_{0}, p_{1} \equiv 3(\bmod 4)$	
2	p_{1}	p_{2}	p_{3}	2	p_{3}	$2 p_{2}$	p_{1}	$p_{1} p_{2}$	2
+	+	+	+	+	+	+	+	+	+
-	+	-	+	+	+	+	+	-	-
+	+	-	-	-	-	+	+	-	-
-	+	+	-	-	-	+	+	+	+
+	-	-	+	+	+	-	-	+	+
-	-	+	+	+	+	-	-	-	-
+	-	+	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	+	+

If $p_{1} \equiv 1(\bmod 4)$, then K will contain no sci primes only if lines 2,7 and 8 of G_{1} are bad and k_{0} and k_{1} have only one class per genus. If 2 is not a principal factor of k_{0}, then $\left(\frac{2}{p_{1}}\right)=-1$. Here we assume k_{2} has one class per genus, hence $\left(\frac{2}{p_{3}}\right)=-1$. Thus, 2 is on line 7 or 8 and f is good. If 2 is a principal factor of k_{0}, then $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{3}}\right)=+1$ and 2 is on line 2 . However, $k_{1}=Q(\sqrt{-357})$ is the only known imaginary quadratic field where this occurs. Here $p_{1}=17, p_{2}=3$ and $p_{3}=7$ so $\left(\frac{-1}{p_{3}}\right)=-1,\left(\frac{p_{3}}{p_{2}}\right)=+1$. Thus p_{3} is not on line 7 or 8 and f is good.

If $p_{1} \equiv 3(\bmod 4)$, then f is good only if line 3 or 7 is good in G. If 2 is not a principal factor of k_{0}, then $\left(\frac{2}{p_{1} p_{2}}\right)=-1$ so $\left(\frac{2}{p_{1}}\right) \neq\left(\frac{2}{p_{2}}\right)$. Since k_{2} has one class per genus, $\left(\frac{2}{p_{3}}\right)=-1$. Thus 2 is on line 3 or 7 and f is good. If 2 is a principal factor of k_{0}, then since p_{1} and p_{2} are not principal factors of $k_{0},\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=-1$.

Also $\left(\frac{2}{p_{3}}\right)=+1$, so 2 is on line 5 . However, there is no known imaginary quadratic field with one class per genus meeting these conditions.

In line (d) there are four distinct primes such that $p_{1} p_{2}\left|\Delta_{0}, p_{1} p_{2} p_{3} p_{4}\right| \Delta_{1}$ and $p_{3} p_{4} \mid \Delta_{2}$. Since $\lambda=1, p_{1} \not \equiv 3 \not \equiv p_{2}(\bmod 4)$. Also $R_{1}=2$ implies $N(\epsilon)=+1$, $m_{1}=p_{1}$ and $m_{2}=p_{2}$. The following chart shows the genus structure:

G_{0}		G_{2}	
p_{1}	p_{2}	p_{3}	p_{4}
+	+	+	+
+	+	-	-
-	-	-	\pm

If the last line is good, then K will contain sci primes. Since $m_{1}=p_{1},\left(\frac{p_{1}}{p_{2}}\right)=+1$. This implies that neither p_{1} nor p_{2} is on line 4 . However, the product $p_{1} p_{2}$ will be on line 4 exactly when $\left(\frac{p_{1}}{p_{3}}\right)=\left(\frac{p_{2}}{p_{4}}\right) \neq\left(\frac{p_{1}}{p_{4}}\right)=\left(\frac{p_{2}}{p_{3}}\right)$. Note that either line 3 or 4 of G_{1} is good, so Theorem 5 applies to show sci primes exist whenever any quadratic subfield has more than one class per genus. Since $p_{3} \equiv p_{4} \equiv 3(\bmod 4)$ is not possible, assuming the list of imaginary quadratic fields with one class per genus is complete, no such fields exist.

In line (f) there exist three odd primes such that $2 p_{1} p_{2}\left|\Delta_{0}, 2 p_{1} p_{3}\right| \Delta_{1}$ and $2 p_{2} p_{3} \mid \Delta_{2}$ where $p_{2} \equiv 3(\bmod 4)$. Since $r_{1} \neq 2$, if any quadratic subfield has more than one class per genus, then Theorem 5 applies. We consider the cases $p_{1} \equiv 1(\bmod 4)$ and $p_{1} \equiv 3(\bmod 4)$ separately.

G_{1}			G_{2}			G_{0}^{\prime} case I		G_{0}^{\prime} case II	
2	p_{1}	p_{3}	2	p_{2}	p_{3}	$2 \cdot p_{2}$	p_{1}	$p_{1} \cdot p_{2}$	2
+	+	+	+	+	+	+	+	+	+
+	+	+	-	-	+	+	+	-	-
-	+	-	-	+	-	+	+	+	+
-	+	-	+	-	-	+	+	-	-
-	-	+	+	+	+	-	-	-	-
-	-	+	-	-	+	-	-	+	+
+	-	-	-	+	-	-	-	-	-
+	-	-	+	-	-	-	-	+	+

Case I: $p_{1} \equiv 1(\bmod 4)$. Here $m=p_{1} p_{2}$ or $2 p_{1} p_{2}$. In order for f to be bad, lines 7 and 8 must be bad in G_{1} and line 6 bad in G_{2}. If $m_{1}=2$, then $\left(\frac{2}{p_{1}}\right)=+1$, so 2 is not on lines 7 and 8 in G_{1}. If 2 is not a principal factor of k_{0}, then $\left(\frac{2}{p_{1}}\right)=-1$. If $\left(\frac{2}{p_{3}}\right)=-1$, then 2 is on lines 7 and 8 in G_{1}, making them good. Otherwise, $\left(\frac{2}{p_{3}}\right)=+1$ implies 2 is on line 6 in G_{2}, making it good.

Case II: $p_{1} \equiv 3(\bmod 4)$. Here $m=2 p_{1} p_{2}, p_{3} \equiv 3(\bmod 4)$ and the character of 2 in k_{0} is $\left(\frac{2}{x}\right)$. Without loss of generality, $n=-p_{1} p_{3}$ and $n^{\prime}=-2 p_{2} p_{3}$. Here f will be bad if and only if lines 4 and 7 of G are bad. Suppose $m_{1}=2$ and $m_{2}=p_{1} p_{2}$, then the primes above p_{1} and p_{2} are not in the principal genus of k_{0}, so $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=-1$. If K contains no sci primes, then 2 must be on lines 7 and 8 in G_{1}, yielding $\left(\frac{2}{p_{3}}\right)=-1$. Since $\left(\frac{-2}{p_{3}}\right)=-\left(\frac{2}{p_{3}}\right)=+1, p_{3}$ is either on line 1 or 4 of G_{2}. Thus k_{2} has more than one class per genus.

If $m_{1} \neq 2$, then $\left(\frac{2}{p_{1}}\right) \neq\left(\frac{2}{p_{2}}\right)$. Suppose $\left(\frac{2}{p_{1}}\right)=+1$, then since 2 is not the norm of a principal ideal of $k_{1},\left(\frac{2}{p_{3}}\right)=-1$. Thus 2 is on line 4 of G_{1}, making that line good. Similarly, if $\left(\frac{2}{p_{1}}\right)=-1$ and $\left(\frac{2}{p_{2}}\right)=+1$, then from $G_{2},\left(\frac{2}{p_{3}}\right)=-1$. Thus 2 is on line 7 of G, making it good.

In line (g) there exist four primes with $p_{1} p_{2}\left|\Delta_{0}, p_{1} p_{2} p_{3} p_{4}\right| \Delta_{1}$ and $p_{3} p_{4} \mid \Delta_{2}$. Since $\lambda=1, m=p_{1} p_{2}$ with $p_{1} \not \equiv 3, p_{2} \not \equiv 3(\bmod 4)$. Moreover, $p_{3} \not \equiv p_{4}(\bmod 4)$. The structure of $G \approx G_{0} \times G_{2}$ is given below:

G_{0}		G_{2}	
$p_{1} \quad p_{2}$	p_{3}	p_{4}	
+	+	\pm	+
+	+	-	-
-	-	-	-

Here f is good if line 4 of G is good. If $N(\epsilon)=+1$, then $m_{1}=p_{1}$ and $m_{2}=p_{2}$ with $\left(\frac{p_{1}}{p_{2}}\right)=+1$. Since $r_{1}=2$ and $R_{1}=1, k_{1}$ has a nonprincipal bad class in the principal genus. Hence m, m_{1} or m_{2} is on line 1 of G. Since neither m_{1} nor m_{2} can be on line 4 , it is good.

Assume now that $N(\epsilon)=-1$, so $R_{1}=r_{1}=1$. Whenever any quadratic subfield has more than one class per genus, Theorem 5 applies to show that K contains sci primes. Thus we may assume $\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{3}}{p_{4}}\right)=-1$. If $n^{\prime}=-p_{3} p_{4}$ is one line 4 , then $\left(\frac{p_{3}}{p_{2}}\right)=\left(\frac{p_{1}}{p_{4}}\right) \neq\left(\frac{p_{2}}{p_{4}}\right)=\left(\frac{p_{3}}{p_{1}}\right)$. If $\left(\frac{p_{3}}{p_{1}}\right)=+1$, then the primes above p_{1} and p_{3} are in distinct classes of k_{1} but are in the same genus. If $\left(\frac{p_{3}}{p_{1}}\right)=-1$, then p_{2} and p_{3} have the same character system in k_{1}, contrary to one class per genus. If $n^{\prime}=-p_{4}$ and $p_{3}=2$, then the character at p_{3} is $\left(\frac{-1}{x}\right)$. Since $\left(\frac{-1}{p_{4}}\right)=+1$, line 4 is good and K contains sci primes.

Theorem 8. If $t_{i} \geq R_{i}+2$ for $i=1,2$ and $t_{0} \geq 4-\lambda$ with $R_{0}=1$, then f is good except possibly for the values listed below:

	R_{1}	R_{2}	t_{0}	t_{1}	t_{2}	s	δ	λ
(a)	1	0	4	3	2	1	1	0
(b)	0	0	4	2	2	0	0	0
(c)	0	0	3	2	2	1	1	1
(d)	0	0	4	3	2	1	1	0

Proof: Since $R_{0}=1$, Theorem 3 shows that $n \mid \Delta_{0}$. Thus $\delta \leq s \leq 1$ and $s-\delta=1$ if and only if 2 is ramified in k_{1} and k_{2} but n and n^{\prime} are odd. If $\lambda=1$, then every prime dividing Δ_{0} is congruent to 1 or $2(\bmod 4)$ so $n \not \equiv 1(\bmod 4), n^{\prime} \not \equiv 1(\bmod 4)$, and 2 is ramified in k_{1} and k_{2}. Thus $\lambda=1$ implies $s=1$.

Suppose $s=1$ and $\delta=0$. Here $R_{1}=R_{2}=1$ is impossible by Corollary 3 to Theorem 4; hence, we may assume $R_{2}=0$. Each element of G_{1} is induced by $2^{t_{2}-2}$ elements of G. Hence, G has at least

$$
|G|-\left|B_{1}^{\prime}\right|-\left|B_{2}^{\prime}\right|+\left|B_{1}^{\prime} \cap B_{2}^{\prime}\right| \geq 2^{t_{1}+t_{2}-3}-2^{R_{1}+t_{2}-2}-2^{t_{1}-2}+1=g_{1}
$$

good elements. If g_{1} is at least $2\left|K_{f}\right|=2^{2-\lambda}$, then f is good. By hypothesis, $t_{1}+t_{2}=$ $t_{0}+2 s-\delta \geq 6-\lambda, t_{1} \geq R_{1}+2$ and $t_{2} \geq 2$. By direct computation it is seen that $g_{1} \geq 2^{2-\lambda}$ when $t_{1}+t_{2}=6+R_{1}-\lambda$. Since g_{1} is an increasing function of $t_{1}+t_{2}$, we need only consider the case $t_{1}+t_{2}=6-\lambda$ and $R_{1}=1$. If $\lambda=0$, then Corollary 9 to Theorem 6 applies when $t_{1}=t_{2}=3$ and Corollary 4 to Theorem 6 applies when $t_{1}=4, t_{2}=2$ to show f is good. If $\lambda=1$, then $t_{0}=t_{1}=3, t_{2}=2$ and Corollary 10 to Theorem 6 applies to show f is good.

Assume now that $s-\delta=0$, so $G=G_{1} \times G_{2}$. Here there are exactly $g_{2}=$ $\left(2^{t_{1}-1}-2^{R_{1}}\right)\left(2^{t_{2}-1}-2^{R_{2}}\right)$ good elements of G. Since at most $2^{1+s-\lambda}-1$ good elements of G can map to bad elements of G_{0}^{\prime}, f will be good whenever $g_{2} \geq 2^{1+s-\lambda}$. By hypothesis, $t_{1}+t_{2}=t_{0}+2 s-\delta \geq 4-\lambda+s$ and $t_{i} \geq R_{i}+2$ for $i=1,2$. By direct computation, $g_{2} \geq 2^{1+s-\lambda}$ whenever $t_{1}+t_{2}=5-\lambda+s$. Since g_{2} is an increasing function of $t_{1}+t_{2}$, we need only consider the cases where $t_{1}+t_{2}=4-\lambda+s$. Since $4-\lambda+s=3,4$ or 5 and $t_{1}+t_{2} \geq 4+R_{1}+R_{2}$, equality can only occur when $R_{1}=1$, $R_{2}=0$ and $t_{1}+t_{2}=5$, or $R_{1}=R_{2}=0$ and $t_{1}+t_{2}=4$ or 5 . These values where equality holds are exactly those listed in the statement of the Theorem.

Corollary 1. Line (d) of Theorem 8 is always good.

Proof: Here $s=\delta=1, \lambda=0$ and three odd primes divide the discriminant of K. Let $2 p_{1} p_{2} \mid \Delta_{1}$ and $2 p_{3} \mid \Delta_{2}$. The structure of G is given below:

G_{1}				G_{2}	
2	p_{1}	p_{2}	2	p_{3}	
+	+	+	+	+	
+	-	-	+	+	
-	+	-	+	+	
-	-	+	+	+	
+	+	+	-	-	
+	-	-	-	-	
-	-	+	-	-	

Since $R_{1}=R_{2}=0$, the last three lines of G are good. Hence f is good if it maps one of these lines to a good element of G_{0}^{\prime}. Thus it is sufficient to show that f maps two of these lines to distinct nonprincipal elements of G_{0}^{\prime}. Since $\lambda=0$, $p_{i} \equiv 3(\bmod 4)$ for some $i=1,2$ or 3 . Also $\left|K_{f}\right|=2^{s-\lambda}=2$. If $p_{3} \equiv 1(\bmod 4)$, or $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$, then no good element of G is in K_{f}, thus f is good. If $p_{3} \equiv 3$ $(\bmod 4)$, then $n^{\prime}=-2 p_{3}$ and either $n \equiv 3$ or $m \equiv 3(\bmod 4)$. Either way, $p_{1} \equiv p_{2}$ $(\bmod 4)$. Thus the only remaining case to consider is $p_{1} \equiv p_{2} \equiv p_{3} \equiv 3(\bmod 4)$. There line 6 corresponds to an element of K_{f}, but lines 7 and 8 give distinct elements of G_{0}^{\prime}. Thus f is good.

Theorem 9. Assume that K / k_{1} is ramified and that $h_{i}>2^{r_{i}}$ for $i=0,1,2$. Then K contains sci primes unless all classes in the principal genus of each $k_{i}(i=0,1,2)$ are principal in K and one of the following conditions holds:
$7, e, 1 . m=p_{1} p_{4}, n=-p_{1} p_{2} p_{3}, n^{\prime}=-p_{2} p_{3} p_{4}$ with $p_{1} \not \equiv 3, p_{4} \equiv 1, p_{2} \not \equiv p_{3}(\bmod 4)$, $\left(\frac{p_{1}}{p_{4}}\right)=+1,\left(\frac{p_{2}}{p_{3}}\right)=-1,\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{3}}{p_{4}}\right) \neq\left(\frac{p_{2}}{p_{4}}\right)=\left(\frac{p_{1}}{p_{3}}\right)$, and $r_{1}=r_{2}=1$.
7,h,1. $m=2 p_{2}, n=-2^{c} p_{1} p_{2}, n^{\prime}=-2^{1-c} p_{1}$, with $p_{1} \equiv p_{2} \equiv 1(\bmod 4),\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=$ $+1,\left(\frac{p_{1}}{p_{2}}\right)=-1, N(\epsilon)=+1, r_{1}=2$, and $r_{2}=1$.
$7, i, 1 . m=p_{1} p_{2} p_{4}, n=-p_{1} p_{2} p_{3}, n^{\prime}=-p_{3} p_{4}$ with $p_{1} \not \equiv 1 \not \equiv p_{4}, p_{2} \not \equiv 3, p_{3} \not \equiv p_{4}(\bmod 4)$,

$$
\left(\frac{p_{4}}{p_{2}}\right)=\left(\frac{p_{1}}{p_{3}}\right)=\left(\frac{p_{4}}{p_{3}}\right)=+1,\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{2}}{p_{3}}\right)=-1, \text { and } r_{1}=r_{2}=1 .
$$

7,i,2. $m=p_{2} p_{4}, n=-p_{2} p_{3}, n^{\prime}=-p_{3} p_{4}$ with $p_{2} \equiv p_{3} \equiv 1, p_{4} \equiv 3(\bmod 4),\left(\frac{p_{2}}{p_{4}}\right)=$
$\left(\frac{p_{4}}{p_{3}}\right)=+1,\left(\frac{p_{2}}{p_{3}}\right)=-1$, and $r_{1}=r_{2}=1$.
7,i,3. $m=p_{1} p_{2}, n=-p_{1} p_{2} p_{3}, n^{\prime}=-p_{3}$ with $p_{1} \equiv 3, p_{2} \equiv p_{3} \equiv 1(\bmod 4),\left(\frac{p_{1}}{p_{3}}\right)=+1$, $\left(\frac{p_{2}}{p_{3}}\right)=-1,\left(\frac{2}{p_{2}}\right)=\left(\frac{2}{p_{3}}\right)$, either $\left(\frac{p_{1}}{p_{2}}\right)=+1$ and $\left(\frac{2}{p_{2}}\right)=-1$ or $\left(\frac{p_{1}}{p_{2}}\right)=-1$, and $r_{1}+r_{2} \leq 2$.

8, a,1. $m=2^{c} p_{1} p_{2} p_{3}, n=-2 p_{1} p_{2}, n^{\prime}=-2^{1-c} p_{3}$, with $p_{1} \equiv 3, p_{2} \equiv p_{3} \equiv 1(\bmod 4)$, $\left(\frac{p_{3}}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{2}{p_{3}}\right)=+1,\left(\frac{2}{p_{1}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{3}}{p_{2}}\right)=-1$, and $r_{0}=r_{1}=r_{2}=1$.
8,a,2. $m=2 p_{1} p_{2} p_{3}, n=-p_{1} p_{2}, n^{\prime}-2 p_{3}$ with $p_{1} \equiv p_{2} \equiv 3, p_{3} \equiv 1(\bmod 4),\left(\frac{2}{p_{3}}\right)=+1$, $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=-1$, and $r_{0}=r_{1}=r_{2}=1$.
8,a,3. $m=2^{c} p_{1} p_{2} p_{3}, n=-2^{1-c} p_{1} p_{2}, n^{\prime}=-2 p_{3}$ with $p_{1} \equiv p_{2} \equiv p_{3} \equiv 3(\bmod 4)$, $\left(\frac{2}{p_{3}}\right)=+1,\left(\frac{p_{3}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{2}}\right)=-1,\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{2}{p_{1}}\right) \neq\left(\frac{2}{p_{2}}\right), r_{0}=r_{1}=r_{2}=1$.
$8, b, 1 . m=p_{1} p_{2} p_{3} p_{4}{ }^{c}, n=-p_{1} p_{2}, n^{\prime}=-p_{3} p_{4}{ }^{c}$ with $p_{1} \equiv 3, p_{2} \equiv 1, p_{3} \not \equiv 3, p_{4} \not \equiv 1$ $(\bmod 4),\left(\frac{p_{1}}{p_{3}}\right)=\left(\frac{p_{4}}{p_{2}}\right)=+1,\left(\frac{p_{3}}{p_{2}}\right)=-1,\left(\frac{p_{1}}{p_{2}}\right)+\left(\frac{p_{4}}{p_{3}}\right)<2, r_{0}=1$, and $r_{1}+r_{2}<2$. 8,c,1. $m=2 p_{1} p_{2}, n=-2 p_{1}, n^{\prime}=-p_{2}$, with $p_{1} \equiv p_{2} \equiv 1(\bmod 4),\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=+1$, $\left(\frac{p_{1}}{p_{2}}\right)=-1$, and $r_{0}=r_{1}=r_{2}=1$.
Here $c=0$ or 1 and $c=0$ can only occur as an exponent of the prime 2. Also the number of each condition signifies the line of Theorem 7 or 8 that yielded it. For example, the quadratic fields given on line $8, c, 1$ have the R_{i}, t_{i}, s, δ and λ values listed on line (c) of Theorem 8.

Proof: Since K / k_{1} is ramified, we may apply Theorem 5 to show that if for some j, k_{j} has a good class in the principal genus, then K contains sci primes. Thus we may assume that for each $k_{i}, 2^{r_{i}-R_{i}}$ is the number of classes per genus. Under this assumption, $h_{i}>2^{r_{i}}$ is equivalent to each k_{i} containing a good genus, i.e., $t_{i} \geq 2+R_{i}$ for $i=1$ and 2 and $t_{0} \geq 3-\lambda+R_{0}$. Thus Theorems 7 and 8 and their Corollaries list all possible cases where K does not contain sci primes.

First, assume that line (e) of Theorem 7 holds. Since $t_{0}=2$ and $\lambda=1, m=p_{1} p_{4}$
with $p_{1} \not \equiv 3$ and $p_{4} \equiv 1(\bmod 4)$. Since $t_{1}=t_{2}=3$ and $s=2, n=-p_{1} p_{2}$ with $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$ or $n=-p_{1} p_{2} p_{3}$ with $p_{2} \not \equiv p_{3}(\bmod 4)$. The fields have the genus structure shown below:

G_{1}			G_{2}			G_{0}	
p_{1}	p_{2}	p_{3}	p_{2}	p_{3}	p_{4}	p_{1}	p_{4}
+	+	+	+	+	+	+	+
+	-	-	-	-	+	+	+
-	+	-	+	-	-	-	-
-	-	+	-	+	-	-	-

On line (e) we have $R_{1}=R_{2}=1$, so we must have $N(\epsilon)=+1$. Hence $m_{1}=p_{1}$, $m_{2}=p_{4}$ and $\left(\frac{p_{1}}{p_{4}}\right)=+1$. Thus K contains no sci primes if and only if p_{1} belongs to line 3 or 4 in G_{1} and p_{4} belongs to line 4 or 3 in G_{2}.

If $n=-p_{1} p_{2}$, then $p_{3}=2$ and the character at p_{3} is $\left(\frac{-1}{x}\right)$. Since $p_{1} \equiv p_{4} \equiv 1$ $(\bmod 4)$, neither p_{1} nor p_{4} can be on line 3 . In this case, K must contain sci primes. Thus we may assume $n=-p_{1} p_{2} p_{3}$. If $\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{3}}{p_{4}}\right) \neq\left(\frac{p_{2}}{p_{4}}\right)=\left(\frac{p_{1}}{p_{3}}\right)$, then p_{1} is on line 3 or 4 in G_{1} and p_{4} is on the other in G_{2}. Since k_{1} has one class per genus, p_{1}, p_{2} and p_{3} are on distinct nonprincipal lines of G_{1}. Thus $\left(\frac{p_{2}}{p_{3}}\right)=-1$. This is consistent with k_{2} containing one class per genus.

Next assume that line (h) of Theorem 7 holds. Since $\delta=\lambda=1$ and $t_{0}=2$, $m=2 p_{2}$ with $p_{2} \equiv 1(\bmod 4)$. In addition, $t_{1}=3$ and $t_{2}=s=2$ so $n=-2^{c} p_{1} p_{2}$ and $n^{\prime}=-2^{1-c} p_{1}$ with $c=0$ or 1 and $p_{1} \equiv 1(\bmod 4)$. This leads to the genus structure shown below:

G_{1}			G_{2}		G_{0}	
2	p_{1}	p_{2}	2	p_{1}	2	p_{2}
+	+	+	+	+	+	+
-	-	+	-	-	+	+
-	+	-	+	+	-	-
+	-	-	-	-	-	-

If $N(\epsilon)=-1$, then $r_{1}=1$ and $r_{0}=r_{2}=0$. Thus k_{0}, k_{1}, and k_{2} have one class
per genus. It follows that $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=-1$. Hence, 2 is one line 4 of G_{1}. But the prime divisors of 2 in k_{1} do not become principal in K, so line 4 is good. Thus we may assume $N(\epsilon)=+1$. Since $m_{1}=2$, the prime divisor of 2 in k_{2} becomes principal in K and must be in the principal genus of k_{2}. Since $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=+1$, the prime divisors of 2 belong to the principal genus in k_{1}. Thus p_{2} determines the bad element of G_{1}. Thus K contains no sci primes when $\left(\frac{p_{1}}{p_{2}}\right)=-1$. Part $7, \mathrm{~h}, 1$ of the Theorem follows.

Assume line (i) of Theorem 7 holds. Since $t_{0}=t_{1}=3, t_{2}=2, s=1$ and $\delta=\lambda=0$, there are exactly four primes dividing the discriminant of K / Q. We may number these primes so that $p_{1} p_{2} p_{4}\left|\Delta_{0}, p_{1} p_{2} p_{3}\right| \Delta_{1}$ and $p_{3} p_{4} \mid \Delta_{2}$ with $p_{3} \not \equiv p_{4}$ $(\bmod 4)$.

The genus structure is given below:

G_{1}		G_{2}		G_{0}^{\prime}		G_{0}^{\prime}	
				$p_{1} \not \equiv 1 \not \equiv p_{2}(\bmod 4)$	$p_{1} \not \equiv 1 \not \equiv p_{4}(\bmod 4)$		
p_{1}	p_{2}	p_{3}	p_{3}	p_{4}	$p_{1} p_{2}$	p_{4}	$p_{1} p_{4}$
+	+	+	+	+	+	p_{2}	
-	+	+	+	+	+	+	+
-	+	-	-	-	-	-	-
+	-	-	-	-	-	-	+

If $p_{1} \not \equiv 1 \not \equiv p_{2}(\bmod 4)$ and $p_{4} \not \equiv 3(\bmod 4)$, then the character at p_{1} normalizes the character at p_{2}. Since k_{1} has only one bad nonprincipal genus and k_{0} and k_{2} have none, f will always be good.

Now assume that the character at p_{4} in G_{0}^{\prime} is normalized. This occurs when $p_{1} \not \equiv 1 \not \equiv p_{4}$ and $p_{2} \not \equiv 3(\bmod 4)$. Here f will be good only if line 4 of G_{1} is good. Since $r_{0}=0$, we may assume that k_{0} has one class per genus. Also $R_{2}=0$ implies $\left(\frac{p_{4}}{p_{3}}\right)=+1$ if and only if p_{4} is a principal factor in k_{0}.

First assume that $m=p_{1} p_{2} p_{4}$. Here $n=-p_{1} p_{2} p_{3}, m_{1}=p_{1}, p_{2}$ or $p_{1} p_{2}$ and
$m_{2} \nmid \Delta_{1}$. If $m_{1}=p_{1}$, then $\left(\frac{p_{1}}{p_{2}}\right)=+1$, so p_{1} is not on line 4. If p_{1} is not a principal factor of k_{0}, then $\left(\frac{p_{1}}{p_{2}}\right)=-1$. Thus p_{2} cannot be on line 4 . However, when $m_{1}=p_{1} p_{2}$ and $m_{2}=p_{4}, m_{1}$ can be on line 4 . This occurs when $\left(\frac{p_{4}}{p_{2}}\right)=\left(\frac{p_{1}}{p_{3}}\right)=+1$ and $\left(\frac{p_{2}}{p_{3}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=-1$.

Next let $m=p_{2} p_{4}, n=-p_{2} p_{3}, p_{1}=2$ and the character at p_{1} be $\left(\frac{-1}{x}\right)$. Since $m+\Delta_{1}, k_{1}$ has one class per genus and p_{2} cannot be on line 1 of G_{1}. Thus $\left(\frac{-1}{p_{2}}\right)=+1$ implies p_{2} belongs on line 4 of G_{1}. Thus K contains no sci primes if and only if p_{2} is a principal factor of k_{0}. This occurs when $\left(\frac{p_{2}}{p_{4}}\right)=+1$. As above $\left(\frac{p_{4}}{p_{3}}\right)=+1$ and $\left(\frac{p_{2}}{p_{3}}\right)=-1$.

Finally let $m=p_{1} p_{2}, n=-p_{1} p_{2} p_{3}, n^{\prime}=-p_{3} \equiv 3(\bmod 4)$ and the character at p_{4} be $\left(\frac{-1}{x}\right)$. If $m_{1}=p_{1}$ and $m_{2}=p_{2}$, then $r_{1}=2$, so k_{1} has two classes per genus. Since $\left(\frac{p_{1}}{p_{2}}\right)=+1$, line 4 is bad only if p_{2} is on it. Hence $\left(\frac{p_{2}}{p_{3}}\right)=-1$. Also $R_{1}=1$ implies $\left(\frac{p_{1}}{p_{3}}\right)=+1$. Since the prime divisors of 2 in k_{0} and k_{2} are not in the principal genus, $\left(\frac{2}{p_{2}}\right)=\left(\frac{2}{p_{3}}\right)=-1$. If $m_{1} \neq p_{1}$, then $\left(\frac{p_{1}}{p_{2}}\right)=-1$. Also $m_{1}+\Delta_{1}$ so line 4 of G_{1} is bad if and only if m and p_{3} belong on line 4. Hence $\left(\frac{p_{3}}{p_{1}}\right)=+1$ and $\left(\frac{p_{3}}{p_{2}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=-1$. Since $R_{2}=0, k_{2}$ has two classes per genus exactly when 2 is a principal factor of k_{0}. Thus $\left(\frac{2}{p_{2}}\right)=\left(\frac{2}{p_{3}}\right)$. Line $7, \mathrm{i}, 3$ follows.

Assume now that line (a) of Theorem 8 holds. Since $t_{0}=4, t_{1}=3, t_{2}=2$, $s=\delta=1$ and $\lambda=0$, there exist exactly three odd primes dividing the discriminant of K / Q. These primes can be numbered so that $2 p_{1} p_{2} p_{3}\left|\Delta_{0}, 2 p_{1} p_{2}\right| \Delta_{1}$ and $2 p_{3} \mid \Delta_{2}$. Note, at least one $p_{i} \equiv 3(\bmod 4)$ and we have four cases depending on which primes satisfy this congruence.

The following genus structures result:

| G_{1} | | G_{2} | | G_{0}^{\prime}, case I | | G_{0}^{\prime}, case II | | | G_{0}^{\prime}, case III | | | G_{0}^{\prime}, case IV | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | p_{1} | p_{2} | 2 | p_{3} | $2 p_{1}$ | p_{2} | p_{3} | $p_{1} p_{2}$ | p_{3} | 2 | $2 p_{1}$ | $p_{1} p_{2}$ | $p_{1} p_{3}$ | $2 p_{3}$ | p_{1} | p_{2} |
| + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
| + | - | - | + | + | - | - | + | + | + | + | - | + | - | + | - | - |
| - | + | - | + | + | - | - | + | - | + | - | - | - | + | - | + | - |
| - | - | + | + | + | + | + | + | - | + | - | + | - | - | - | - | + |
| + | + | + | - | - | - | + | - | + | - | - | - | + | - | + | + | + |
| + | - | - | - | - | + | - | - | + | - | - | + | + | + | + | - | - |
| - | + | - | - | - | + | - | - | - | - | + | + | - | - | - | + | - |
| - | - | + | - | - | - | + | - | - | - | + | - | - | + | - | - | + |

Here $p_{1} \equiv 3, p_{2} \equiv p_{3} \equiv 1(\bmod 4)$ in case I; $p_{1} \equiv p_{2} \equiv 3, p_{3} \equiv 1(\bmod 4)$ in case II; $p_{1} \equiv p_{2} \equiv p_{3} \equiv 3(\bmod 4)$ in case III; and $p_{1} \equiv p_{2} \equiv 1, p_{3} \equiv 3(\bmod 4)$ in case IV.

First consider Case I. Since $p_{1} p_{2} \equiv 3(\bmod 4), n=-2 p_{1} p_{2}$ and $m=2^{c} p_{1} p_{2} p_{3}$. In order for K to have no sci primes, the character system for m_{1} must be line 8 of G_{1} and lines 6 and 7 must be bad in G_{0}^{\prime}. If $m_{1}=2$, then $\left(\frac{2}{p_{2}}\right)=\left(\frac{2}{p_{3}}\right)=+1$. Thus K contains no sci primes if and only if $\left(\frac{2}{p_{1}}\right)=\left(\frac{p_{3}}{p_{2}}\right)=-1$ and $\left(\frac{p_{3}}{p_{1}}\right)=+1$. Since the primes above p_{1} in k_{1} do not become principal in $K,\left(\frac{p_{1}}{p_{2}}\right)=-1$ yielding line $8, \mathrm{a}, 1$. Suppose $m_{2}=p_{3} \neq-n^{\prime}$, then the prime above 2 in k_{2} becomes principal in K. Thus 2 determines a bad class in each k_{i}. Since $R_{2}=0,\left(\frac{2}{p_{3}}\right)=+1$. Thus 2 cannot be on line 6 and 7 of G_{0}^{\prime}, so K has sci primes. Hence we may assume that the prime divisors of 2 in each k_{i} are not principal in K. From G_{2} we see that $\left(\frac{2}{p_{3}}\right)=-1$. If $\left(\frac{2}{p_{2}}\right)=+1$, then 2 is on line 8 of G_{1} showing that it is good. On the other hand, if $\left(\frac{2}{p_{2}}\right)=-1$, then 2 is on lines 6 and 7 in G_{0}^{\prime}, so these lines are good.

Next consider case II. Here $m=2 p_{1} p_{2} p_{3}$ and if K contains no sci primes, then line 6 must be bad in G_{1} and lines 7 and 8 be bad in G_{0}^{\prime}.

If $m_{1}=2$, then $\left(\frac{2}{p_{1} p_{2}}\right)=\left(\frac{2}{p_{3}}\right)=+1$. Since 2 is not the norm of a principal ideal of $k_{1},\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=-1$, placing 2 on line 6 of G_{1}. If $n=-2 p_{1} p_{2}$, then the character at 2 in G_{1} is $\left(\frac{-2}{x}\right)$ and $\left(\frac{-2}{p_{1}}\right)=\left(\frac{-2}{p_{2}}\right)=+1$. Since $\left(\frac{p_{1}}{p_{2}}\right)=-\left(\frac{p_{2}}{p_{1}}\right)$, either p_{1} or p_{2} is on line 1 of G_{1}. Therefore, one class per genus in k_{1} implies $n=-p_{1} p_{2}$. Thus $p_{1} p_{2}$
determines the nonprincipal bad element of G_{0}^{\prime}. Since $\left(\frac{2}{p_{1} p_{2}}\right)=+1, p_{1} p_{2}$ is on lines 7 and 8 of G_{0}^{\prime}, yielding line $8, a, 2$.

Assume now that 2 is not a principal factor of k_{0}. If 2 determines a bad element in the genus group of each k_{i}, then 2 must be on line 1 of G_{2}, i.e., $\left(\frac{2}{p_{3}}\right)=+1$. Since 2 can not be on lines 7 and 8 of G_{0}^{\prime}, they are good. If the primes above 2 in the quadratic subfields do not become principal in K, then any line corresponding to 2 is good. From G_{2}, we see that $\left(\frac{2}{p_{3}}\right)=-1$. Thus 2 is either on line 6 of G_{1} or it is on lines 7 and 8 of G_{0}^{\prime}.

Next consider case III. Here $n^{\prime}=-2 p_{3}, m=2^{c} p_{1} p_{2} p_{3}$ and the character at 2 in G_{0} is either $\left(\frac{-1}{x}\right)$ or $\left(\frac{-2}{x}\right)$. K contains sci primes if line 7 or 8 is good in both G_{1} and G_{0}^{\prime}. If $m_{1}=2$, then $\left(\frac{x}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=\left(\frac{2}{p_{3}}\right)$, so 2 is not on line 7 or 8 of G_{1}. However, if $m_{2}=p_{3}$, the prime above 2 is each k_{i} becomes principal in K. Since $\left(\frac{2}{p_{3}}\right)=+1$, f is bad when $\left(\frac{2}{p_{1}}\right) \neq\left(\frac{2}{p_{2}}\right)$. In order to have neither p_{1} nor p_{2} on the same line as 2 in $G_{1},\left(\frac{p_{1}}{p_{2}}\right) \neq\left(\frac{2}{p_{2}}\right)$. Since $m_{2}=p_{3}$ and $\left(\frac{2}{p_{3}}\right)=+1$, it follows that $\left(\frac{p_{3}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{2}}\right)=-1$, yielding line $8, a, 3$.

For the remaining possible principal factors of k_{0}, we need to consider the cases where n is odd and even separately. First let $n=-p_{1} p_{2}$. Here the character at 2 in G_{1} is $\left(\frac{-1}{x}\right)$ and in G_{0} it is $\left(\frac{-2}{x}\right)$. In order to have $m_{1}=p_{1},\left(\frac{-2}{p_{1}}\right)=\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{1}}{p_{3}}\right)$ is necessary. If p_{1} is on line 7 in G_{1}, then $\left(\frac{p_{1}}{p_{2}}\right)=-1$. Thus $\left(\frac{2}{p_{1}}\right)=-\left(\frac{-2}{p_{1}}\right)=+1$, so 2 is on line 1 or 7 of G_{1}. Either way, k_{1} has two classes per genus and K contains sci primes. If p_{1} is on line 8 in G_{1}, then f is bad if and only if p_{2} (and $2 p_{3}$) are on line 7 of G_{0}^{\prime}. Since $\left(\frac{-2}{p_{2}}\right)\left(\frac{p_{2}}{p_{1}}\right)=+1$ and $\left(\frac{p_{1}}{p_{2}}\right)=+1,\left(\frac{2}{p_{2}}\right)=+1$ and $\left(\frac{2}{p_{1}}\right)=-1$. Thus 2 is also on line 8 in G_{1}. Again k_{1} contains a good class in each genus.

If $m_{1}=2 p_{1}$ and f is bad, then $2 p_{1}$ must be on line 7 or 8 of G_{1}. Since $\left(\frac{-1}{p_{1}}\right)=-1$,
p_{1} is on the other. This puts 2 on line 6 , so $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=-1$. Also, k_{2} has one class per genus, so $\left(\frac{2}{p_{3}}\right)=-1$. Thus the prime above 2 in k_{0} is in the principal genus contradicting one class per genus.

Now let $n=-2 p_{1} p_{2}$ and $m=p_{1} p_{2} p_{3}$. Here the characters at 2 in G_{0} and G_{1} are $\left(\frac{-1}{x}\right)$ and $\left(\frac{-2}{x}\right)$, respectively. If $m_{1}=p_{1}$, then $\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{1}}{p_{3}}\right)=\left(\frac{-1}{p_{1}}\right)=-1$, so p_{1} is not on line 8 of G_{1}. Suppose p_{1} is on line 7 of G_{1}. Then $\left(\frac{p_{2}}{p_{1}}\right)=-\left(\frac{p_{1}}{p_{2}}\right)=+1$, so p_{2} is on line 1 or 7 of G_{1}. Either way, k_{1} has a good class in each genus.

If $m_{1}=2 p_{1}$ and $m_{2}=2 p_{2} p_{3}$, then 2 is not the norm of an ideal in any k_{i} which becomes principal in K. Thus we may assume that $\left(\frac{2}{p_{3}}\right)=-1$ and 2 is not on line 1 in G_{1} or G_{0}^{\prime}. If f is bad then $2 p_{1}$ and p_{2} are on line 7 or 8 in G_{1}. Thus $\left(\frac{2}{p_{2}}\right)=-\left(\frac{-2}{p_{2}}\right)=+1$ placing 2 on line 8 in G_{1}. This yields $\left(\frac{2}{p_{1}}\right)=-1$, so 2 is on line 8 of G_{0}^{\prime} also. Hence K contains sci primes.

Finally assume that $p_{1} \equiv p_{2} \equiv 1$ and $p_{3} \equiv 3(\bmod 4)$. Since $R_{0}=R_{1}=1$, there is always at least one good line of G that maps to a good line of G_{0}^{\prime}, so f is good.

Next we assume line (b) of Theorem 8 holds. Since $t_{0}=4, t_{1}=t_{2}=2$, and $s=$ $\delta=0$, there exist four primes dividing the discriminant of K / Q with $p_{1} p_{2} p_{3} p_{4} \mid \Delta_{0}$, $p_{1} p_{2} \mid \Delta_{1}$, and $p_{3} p_{4} \mid \Delta_{2}$. Note that neither $p_{1} \equiv p_{2}$ nor $p_{3} \equiv p_{4}(\bmod 4)$ is possible. Thus we may assume $p_{1} \equiv 3, p_{2} \equiv 1, p_{3} \not \equiv 3$ and $p_{4} \not \equiv 1(\bmod 4)$. The following chart shows the genus structure:

G_{1}		G_{2}		G_{0}^{\prime}		
p_{1}	p_{2}	p_{3}	p_{4}	$p_{1} p_{4}$	p_{2}	p_{3}
+	+	+	+	+	+	+
+	+	-	-	-	+	-
-	-	+	+	-	-	+
-	-	-	-	+	-	-

If K contains no sci primes, then $-n$ and $-n^{\prime}$ must be on line 4 of G_{0}^{\prime}. Since every bad class of k_{1} must be in the principal genus, p_{1} or p_{2} is a principal factor of
k_{0} if and only if $\left(\frac{p_{1}}{p_{2}}\right)=+1$. Similarly, p_{3} or p_{4} is a principal factor of k_{0} if and only if $\left(\frac{p_{4}}{p_{3}}\right)=+1$. Thus $\left(\frac{p_{1}}{p_{2}}\right)+\left(\frac{p_{3}}{p_{4}}\right)<2$.

Suppose first that $n^{\prime}=-p_{3}$ and $p_{4}=2$. Then K contains no sci primes exactly when p_{3} is on line 4 of G_{0}^{\prime}. Thus $\left(\frac{p_{3}}{p_{1}}\right)=+1$ and $\left(\frac{p_{3}}{p_{2}}\right)=-1$. If $m_{1}=2$, then $\left(\frac{2}{p_{2}}\right)=+1$. If 2 is not a principal factor of k_{0}, then $\left(\frac{2}{p_{3}}\right)=-1$. Since 2 is not on line 4 of $G_{0}^{\prime},\left(\frac{2}{p_{2}}\right)=+1$. Line $8, \mathrm{~b}, 1$ with $c=0$ follows.

Suppose now that $n^{\prime}=-p_{3} p_{4}$. Then n and n^{\prime} are on line 4 of G_{0}^{\prime} if and only if $\left(\frac{p_{1} p_{2}}{p_{3}}\right)=\left(\frac{p_{3} p_{4}}{p_{2}}\right)=-1$ or equivalently $\left(\frac{p_{1}}{p_{3}}\right)=\left(\frac{p_{4}}{p_{2}}\right)=-\left(\frac{p_{3}}{p_{2}}\right)$. If $\left(\frac{p_{1}}{p_{2}}\right)=+1$, then from above p_{1} or p_{2} is a principal factor of k_{0}. Thus either $\left(\frac{p_{1}}{p_{3}}\right)=+1$ or $\left(\frac{p_{2}}{p_{4}}\right)=\left(\frac{p_{4}}{p_{2}}\right)=+1$. Assume $\left(\frac{p_{1}}{p_{2}}\right)=-1$. If $\left(\frac{p_{1}}{p_{3}}\right)=-1$, then $\left(\frac{p_{2}}{p_{1} p_{4}}\right)=+1$ and $\left(\frac{p_{2}}{p_{3}}\right)=+1$ implying p_{2} is a principal factor of k_{0}, contradicting that $\left(\frac{p_{1}}{p_{2}}\right)=-1$. Thus $\left(\frac{p_{1}}{p_{3}}\right)=+1$, yielding line $8, b, 1$ with $c=1$.

Finally, assume line (c) of Theorem 8 occurs. Since $t_{1}=t_{2}=2, t_{0}=3$ and $s=\delta=\lambda=1, m=2 p_{1} p_{2}, 2 p_{1} \mid \Delta_{1}$ and $2 p_{2} \mid \Delta_{2}$ with $p_{1} \equiv p_{2} \equiv 1(\bmod 4)$. Without loss of generality, $n=-2 p_{1}$ and $n^{\prime}=-p_{2}$. This gives the following genus structure:

G_{1}		G_{2}		G_{0}^{\prime}		
2	p_{1}	2	p_{2}	2	p_{1}	p_{2}
+	+	+	+	+	+	+
+	+	-	-	-	+	-
-	-	+	+	-	-	+
-	-	-	-	+	-	-

Again K contains no sci primes if and only if p_{2} is on line 4 of G_{0}^{\prime}. If $N(\epsilon)=-1$, then $r_{1}=r_{2}=0$, so $\left(\frac{2}{p_{2}}\right)=-1$. Hence, p_{2} is not on line 4 of G_{0}^{\prime}. Similarly, if $N(\epsilon)=+1$ and 2 is not a principal factor of k_{0} then $\left(\frac{2}{p_{2}}\right)=-1$, so line 4 of G_{0}^{\prime} is good. However, if $m_{1}=2$ and $m_{2}=p_{1} p_{2}$, then $\left(\frac{2}{p_{1}}\right)=\left(\frac{2}{p_{2}}\right)=+1$. Hence, p_{2} is on line 4 of G_{0}^{\prime} if and only if $\left(\frac{p_{1}}{p_{2}}\right)=-1$.

Lemma 15. If $h_{i}>2^{r_{i}}$ for $i=0,1,2$ and K / k_{1} is unramified, then K contains sci
primes except possibly when $h_{1} /\left|G_{1}\right|=2^{r_{1}-R_{1}}$ and $R_{1}, r_{1}, t_{0}, t_{1}, t_{2}$ have the values listed below:

	R_{1}	r_{1}	t_{0}	t_{1}	t_{2}
(a)	2	2	3	4	1
(b)	2	2	2	4	2
(c)	1	2	2	3	1
(d)	1	1	1	3	2
(e)	1	1	2	3	1
(f)	0	1	1	2	1

In line (b) we also require $\lambda=0$.

Proof: If $h_{1} /\left|G_{1}\right|>2^{r_{1}-R_{1}}$ or $h_{1}>2^{r_{1}+1}$, then K has sci primes by Corollary 1 to Theorem 5. Since K / k_{1} is unramified, $\delta=0$ and $s=t_{2}$, so $t_{1}=t_{0}+t_{2}$. If $t_{0} \geq 3-\lambda$ and $t_{2} \geq 2$, then by Theorem 7 and its Corollary, K contains sci primes. Thus we may assume $h_{1} /\left|G_{1}\right|=2^{r_{1}-R_{1}}$ and $h_{1}=2^{r_{1}+1}$. Since $\left|G_{1}\right|=2^{t_{1}-1}, t_{1}=R_{1}+2$. If $r_{1}=2$, then by Theorem $4, t_{0} \geq 2$, so $t_{1} \geq 3$. If $r_{1}=1$, then $t_{1} \geq 2$. The values listed in the chart follow.

Lemma 16. Lines (a), (b), (d) and (e) of Lemma 15 are always good assuming that the known list of imaginary quadratic fields containing one class per genus is complete.

Proof: In each of lines (a), (b), (d) and (e), k_{1} must contain one class per genus. In lines (d) and (e), $t_{1}=3$. In all known cases where $t_{1}=3$ and k_{1} has one class per genus, either k_{0} or k_{2} has class number one.

In lines (a) and (b), $t_{1}=4$ and $r_{1}=2$, so $N(\epsilon)=+1$. In line (a), $t_{2}=1$ and for all known cases, $h_{2}=1$ except when $k_{0}=Q(\sqrt{15}), k_{1}=Q(\sqrt{-345})$ and $k_{2}=Q(\sqrt{-23})$. In this case $m_{1}=6$ and $m_{2}=10$. Since $\left(\frac{-23}{10}\right)=-1$, Corollary 1(c) to Theorem 5 shows that K contains sci primes. For line (b) all known cases with $t_{0}=t_{2}=2$, $\lambda=0$ and k_{1} containing one class per genus have $h_{0}=1$ for all choices of k_{0}.

Theorem 10. If $h_{i}>2^{r_{i}}$ for $i=0,1,2$ and K / k_{1} is unramifed, then K contains sci
primes except when $h_{1} /\left|G_{1}\right|=2^{r_{1}-R_{1}}$ and m, n and n^{\prime} meet one of the following conditions:
i) $m=p_{1}{ }^{c} p_{2}, n=-p_{1}{ }^{c} p_{2} p_{3}, n^{\prime}=-p_{3}$ with $N(\epsilon)=+1, c=0$ or $1,(c=0$ only if $p_{1}=2$ and $\left.p_{2} \equiv 3(\bmod 4)\right)$, either $p_{1}=2$ or $p_{1} \equiv p_{2}, p_{3} \equiv 3(\bmod 4)$ $\left(\frac{p_{1}}{p_{3}}\right)=\left(\frac{p_{2}}{p_{3}}\right)=+1$, and $\left(\frac{ \pm p_{1}}{p_{2}}\right)=-1$, or
ii) $m=p_{1}, n=-p_{1} p_{2}, n^{\prime}=-p_{2}$ with $p_{1} \equiv 1, p_{2} \equiv 3(\bmod 4)$ and $\left(\frac{p_{1}}{p_{2}}\right)=+1$.

Proof: We need only consider the fields where $h_{1} /\left|G_{1}\right|=2^{r_{1}-R_{1}}$ and the discrimants of k_{0}, k_{1} and k_{2} have the number of prime divisors listed in lines (c) and (f) of Lemma 15.

In line (c) k_{1} has the genus structure shown below:

G_{1}			
p_{1}	p_{2}	p_{3}	
+	+	+	
-	-	+	
+	-	-	
-	+	-	

Moreover, $m=p_{1}{ }^{c} p_{2}, n=-p_{1}{ }^{c} p_{2} p_{3}$ and $n^{\prime}=-p_{3}$ where $p_{3} \equiv 3(\bmod 4)$ and either $p_{1}=2$ or $p_{1} \equiv p_{2}(\bmod 4)$. Since $r_{1}=2, N(\epsilon)=+1$ with $m_{1}=p_{1}$ and $m_{2}=p_{1}{ }^{1-c} p_{2}$. We may assume k_{1} has two classes per genus. Here the first two lines of G_{1} correspond to the classes containing primes which split completely in K. Thus K contains no sci primes if and only if $\left(\frac{m_{1}}{p_{3}}\right)=\left(\frac{m_{2}}{p_{3}}\right)=+1$. If $c=0$, then $p_{1}=2, p_{2} \equiv 3(\bmod 4), m_{1}=2$ and $m_{2}=2 p_{2}$. The above statement is equivalent to $\left(\frac{2}{p_{3}}\right)=\left(\frac{p_{2}}{p_{3}}\right)=+1$. Since $p_{2} \equiv 3(\bmod 4), p_{2}$ is on line 2 . Thus each of the genera corresponding to the top two lines of G_{1} contains two bad classes. If $c=1$, then the above condition becomes $\left(\frac{p_{1}}{p_{3}}\right)=\left(\frac{p_{2}}{p_{3}}\right)=+1$. When $p_{1}=2$ and $p_{2} \equiv 3(\bmod 4)$, the character at p_{1} is $\left(\frac{-2}{x}\right)$. Since $\left(\frac{-2}{p_{2}}\right) \neq\left(\frac{2}{p_{2}}\right), 2$ and p_{2} are not both on line 1. Again, each of the top two lines of G_{1} contains two bad classes. Similarly if $p_{1} \equiv p_{2} \equiv 3$
$(\bmod 4)$, then $\left(\frac{p_{1}}{p_{2}}\right) \neq\left(\frac{p_{2}}{p_{1}}\right)$ and the result follows. If $p_{2} \equiv 1(\bmod 4)$, then we need $\left(\frac{p_{1}}{p_{2}}\right)=\left(\frac{p_{2}}{p_{1}}\right)=-1$ to ensure that exactly two bad classes belong to each of these genera.

If line (f) of Lemma 15 holds, then $m=p_{1}, n=-p_{1} p_{2}$ and $n^{\prime}=-p_{2}$ with $p_{1} \equiv 1$ and $p_{2} \equiv 3(\bmod 4)$. Here only the principal genus of k_{1} contains primes which split in K. Thus K contains no sci primes when k_{1} has two classes per genus and $\left(\frac{p_{1}}{p_{2}}\right)=+1$.

§6 Conclusions and Numerical Results.

In this section it is our objective to determine all imaginary bicyclic biquadratic fields K such that $h_{i}>2^{r_{i}}$ for $i=0,1,2$ and K contains no sci primes, i.e. to determine all exceptional fields. It follows from Theorems 9 and 10 that if $h_{1}>8$ or K / k_{1} is ramified and $h_{2}>4$, then K is not an exceptional field. A well known result of Heilbronn [10] shows that there are only finitely many imaginary quadratic fields with bounded class number. Therefore, there are only finitely many exceptional fields K.

If K is an exceptional field, then Theorem 9 and 10 show $r_{i}-R_{i} \leq 1$ for $i=1,2$, i.e. k_{1} and k_{2} have at most two classes per genus. Dickson [7, p. 85] listed 65 imaginary quadratic fields containing one class per genus. It is a long standing conjecture that this list is complete. Chowla and Briggs [6] and Grosswald [8], among others, give results in support of this conjecture. We need to know only those imaginary quadratic fields with two classes per genus having class number 4 or 8 . In [3], Buell showed that for imaginary quadratic fields with discriminant greater than $-4 \times 10^{6}, 54$ have class number 4 and 131 have class number 8 . Those fields with class number 4 are listed in [4]. Of the fields with class number 8,13 have one class per genus while 54 have two classes per genus.

The real quadratic subfield has one class per genus in all cases listed in Theorem 9. For $m<24572$, the class number is given in [17]. However, for larger values of m satisfying the hypotheses of Theorem 9 , the class number of $Q(\sqrt{m})$ was computed using Dirichlet's class number formula, see [13, p. 440]. The value of $\log \epsilon$ was computed using an ordinary continued fraction algorithm. The class numbers of the real quadratic fields which were computed are listed below.

Class number of $Q(\sqrt{m})$			
m	h_{0}	m	h_{0}
26751	4	58174	4
33370	20	62665	4
34210	4	70737	28
43505	4	75905	20
43945	4	81838	4
44473	2	117273	12
45399	4	118105	4
45991	4	136565	2
46345	4	159505	4
51531	4	178585	4
52207	28	235705	4
52745	20	274209	4

Assuming that the lists in $[3,4,7]$ are complete, there are no exceptional fields with K / k_{1} unramified and $\underline{88}$ with K / k_{1} ramified.

Exceptional fields $K=Q\left(\sqrt{n}, \sqrt{n^{\prime}}\right)$ with conductor f					
f	-n	$-n^{\prime}$	f	-n	$-n^{\prime}$
780	195	13	24072	177	34
2184	91	6	24648	1027	78
2220	555	37	24860	1243	5
2860	715	5	27676	187	37
3080	35	22	27740	1387	5
3740	187	5	29784	102	73
5304	102	78	29784	102	146
5576	82	17	30140	1507	5
5576	697	82	31240	355	22
5655	435	95	37596	723	13
5772	1443	13	39372	193	51
5772	1443	37	39516	267	37
6045	403	15	39576	102	97
6216	259	6	39576	102	194
6460	323	5	40120	1003	10
6460	323	85	43068	291	37
7480	187	10	43505	1243	35
7548	51	37	43945	235	187
7752	57	34	47724	123	97
8140	2035	5	49569	403	123
8140	2035	37	49720	1243	10
9672	403	6	52745	1507	35
10120	115	22	53960	355	190
10248	427	6	55480	1387	10
11388	219	13	58056	177	82
12920	323	10	63304	193	82
13640	155	22	63804	1227	13
13884	267	13	78744	386	102
14168	253	14	84040	955	22
14892	73	51	107004	723	37
15132	291	13	118105	1027	115
15405	1027	195	136565	955	715
15405	1027	15	136840	1555	22
16744	91	46	159505	1387	115
17112	93	46	178585	955	187
18312	763	6	181596	1227	37
19788	97	51	183964	1243	37
19880	142	70	222365	1555	715
20060	1003	5	232696	1003	58
20060	1003	85	235705	1003	235
20680	235	22	274209	1027	267
20805	1387	15	327352	1411	58
22792	259	22	384865	955	403
23560	190	155	626665	1555	403

Works Cited

[1] S. Allen and P. A. B. Pleasants, The number of different lengths of irreducible factorization of a natural number in an algebraic number field, Acta Arithmetica 36 (1980), 59-86.
[2] P. Barrucand and H. Cohn, A rational genus, class number divisibility and unit theory for pure cubic fields, J. No. Theory 2 (1970), 7-21.
[3] D. H. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp. 31 (1977), 786-796.
[4] D. H. Buell, H. C. Williams and K. S. Williams, On the imaginary bicyclic biquadratic fields with class-number 2, Math. Comp. 31 (1977), 1034-1042.
[5] L. Carlitz, A characterization of algebraic number fields with class number two, Proceedings of the American Mathematical Society 11 (1960), 391-392.
[6] S. Chowla and W. E. Briggs, On discriminants of binary quadratic forms with a single class in each genus, Canadian J. of Math. 6 (1954).
[7] L. E. Dickson, Introduction to the Theory of Numbers, Univ. of Chicago Press, Chicago, 1929.
[8] E. Grosswald, Negative discriminants of binary quadratic forms with one class in each genus, Acta Arith. VIII (1963), 295-306.
[9] H. Hancock, Foundations of the Theory of Algebraic Numbers, Macmillan Co., New York, 1931.
[10] H. Heilbronn, On the class number in imaginary quadratic fields, The Quarterly Journal of Mathematics 5 (1934), 150-160.
[11] E. L. Ince, Cycles of Reduced Ideals in Quadratic Fields, Mathematical Tables, IV, British Association for the Advancement of Science, London, 1934.
[12] S. Kuroda, Über den Dirichletschen Körper, J. Fac. Sci. Imp. Univ. Tokyo, Sec. I, Vol. IV, Part 5 (1943), 383-406.
[13] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 2nd ed., Springer-Verlag, Berlin, 1990.
[14] W. Narkiewicz, On algebraic number fields with non-unique factorization, Colloquium Mathematicum 12 (1964), 59-68.
[15] W. Narkiewicz and J. Sliwa, Normal orders for certain functions associated with factorizations in number fields, Colloquium Mathematicum 38 (1978), 323-328.
[16] J. E. Olson, A combinatorial problem on finite abelian groups, Journal of Number Theory 1 (1969), 8-10.
[17] B. Oriat, Theorie Des Nombres (fasciculez) Années 1986/87-1987/88, Publications Mathematiques de la Faculté des Sciences de Besancon, Besacon.
[18] J. Sliwa, Factorizations of distinct lengths in algebraic number fields, Acta Arith. XXI (1976), 399-417.
[19] J. Sliwa, Primes which remain irreducible in a normal field, Colloquium Mathematicum 37 (1977), 159-165.
[20] J. Sliwa, Remarks on factorizations in algebraic number fields, Colloquium Mathematicum 46 (1982), 123-130.
[21] L. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982.

VITA

Daisy Cox McCoy was born on May 15, 1951 in Atlanta, Georgia, the daughter of Anne and Albert Cox. She graduated from Druid Hills High School in 1969. She attended Emory and Henry College and received her Bachelor's degree in Mathematics from Douglass College in 1975. After becoming interested in a teaching career, she returned to school in 1984 and received the M.S. degree in Mathematics from Varginia Tech in 1986. She is currently an instructor of Mathematics at Union College, Barbourville, Kentucky. She is a member of the American Mathematical Society and the Association for Women in Mathematics.

