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Jason D. Hansen 

 

Abstract 

 

 

In the experimental work conducted, two cases have been considered for the six- 

finned internal star cylinder: the semi-elliptic natural crack and a machined V-cut crack 

extending the length of the cylinder, both originating from the axis of symmetry of the fin 

tip. The V-cut crack constitutes a plane strain approximation and is used in current design 

rationale. Results show that the normalized stress intensity factor (SIF) for the V-cut case 

are at least equal to, but in most cases are greater than, the natural crack cases. These 

results were compared to experimental results from Smith and his associates for motor 

grains having similar shaped off-axis cracks, and similar trends were achieved. 

Comparisons were also made between the natural crack models and the modified 

boundary element method of Guozhong, Kangda, and Dongdi (GKD) for a semi-elliptic 

crack in a circular cylinder and the V-cut crack models to the modified mapping 

collocation technique of Bowie and Freese (BF), which constitutes the plane strain 

solution to a circular cylinder with a crack extending the length of the bore. For both 

cases general trends were similar. Using the numerical results, a relation for estimating 

the plane strain SIF for the finned cylinder models was developed. The situation of a 

finned cylinder containing a crack the length of the bore constitutes the worst case 

scenario. Testing has shown, however, that under normal loading conditions this case is 

conservative. Penetration tests have shown that a crack penetrating the outer boundary 

retains its semi-elliptic shape, thus the use of a semi-elliptic crack in design more 

accurately represents reality.
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1 Introduction 

 Solid rocket propellant is used in a wide range of applications including 

Department of Defense/NASA launch vehicles (e.g., Titan V) and missiles of all sizes. 

Solid rocket motors are made of a composite consisting of a rubbery material suspended 

in a fuel/oxidizer matrix. This type of propellant is an attractive alternative when 

compared to its competition, liquid propelled rockets. This is due to their relative 

simplicity, low service requirements, and stability. However, once the propellant grain is 

cast, they are not easy to inspect prior to use, which can lead to performance issues and 

even failure.  

Operational capabilities of solid rocket propellant are defined in terms of thrust. 

Factors that affect the thrust are geometric configuration and propellant material [7]. For 

a given material, the geometry determines the burn rate of the propellant. Over many 

years, the maximization of burn rate has led to several common configurations fulfilling 

many application needs. Figure 1.1 shows a schematic of typical grain configurations 

[32]. Of these geometries, the internal star configuration is common and fulfills many 

solid rocket application needs. This is due to its relatively neutral burn rate and the fact 

that it, to some extent, satisfies the conflicting relationship between burn rate and burning 

surface area. 

As design work has been performed, the mechanical characteristics for different 

loading conditions, both 2- and 3-D, have been analyzed in order to avoid excessive 

stresses that cause failure [10, 24, 36]. The extension of mechanical analysis to fracture in 

propellant grains with surface cracks has had limited consideration. This is due to the fact 

that the problem becomes much more complicated when a crack is introduced into the 

grain, because the crack causes difficulty in predicting stress redistribution. Fracture, 

however, constitutes a very important problem in motor grain design, since propellant 

grains not only provide thrust, but also act as a structural member. 
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Grains with flaws have been found to work properly. As a result, conditions 

limiting performance and structural safety must be defined with the help of fracture 

mechanics in order to determine service life predictions. Conditions known to cause 

structural flaws are unsuitable grain design; low viscoelastic strength/elongation; 

imperfections in manufacturing; and accumulated stresses during storage, handling, and 

transportation.  

During ignition, burning begins at the grain inner surface and proceeds in a 

somewhat linear fashion outward. High pressures are produced internally during this 

process. As a result, the affect of an internal flaw is 1) to provide greater surface area for 

burning, thus altering the burn pattern and the ballistics and/or 2) to rapidly grow under 

pressure until grain failure occurs. A third case is also possible. In this case, the crack 

size is sub-critical, and neither of the above failure conditions occurs. Therefore, a critical 

flaw size must be determined, where a critical flaw is defined as one adversely affecting 

ballistics. Determining what is or is not an acceptable flaw can result in considerable cost 

savings. 

To date, analytic solutions to cracks in complex motor grain configurations are 

not available, and solutions that do exist to similar complex problems (cracks in a circular 

cylinder) need a means of validation. Therefore, experimental work plays an important 

role in the analysis of complex geometries such as motor grains. When studying a 

cracked body, the stress intensity factor (SIF) must be determined. Experimentally, a 

well-known 3-D method for accomplishing this is frozen stress photoelasticity. In later 

chapters, use of this method to determine the SIF of cracks in rocket motor grains will be 

described in detail.  

For the experimental work conducted, two cases have been considered for the 

internal star circular cylinder. First is the symmetric (semi-elliptic) natural crack 

emanating from a fin tip, and second is a machined crack extending the length of the 

cylinder, also emanating from a fin tip. The second case constitutes a plane strain 

approximation and is used in current design rationale, even though computational 

analysis and tensile testing has shown that a crack is most likely to originate at the 

coalescence of the fin tip end radius with a small radius connecting the fin tip end radius 
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with the side of the fin [28]. A crack located at this location is known as an off axis crack. 

A schematic of the fin tip with cracks on and off the fin axis is shown in Figure 1.2. 

The results obtained from the symmetric natural and machined cracks will be 

compared to experimental results from Smith and his associates for motor grains having 

similar shaped off axis cracks. Also, comparisons will be drawn from analytical solutions 

to both semi-elliptic cracks and through cracks in circular cylinders with similar crack 

aspect ratios, a/c, and radius ratios, Ro/Ri. From these results, current design rationale will 

be re-evaluated to determine if current criteria are acceptable.
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2 Literature Review 

Surface cracks are often found in cylindrical objects such as pressure vessels, 

pipes, and solid rocket motor grains. Therefore the determination of the SIF for use in 

failure analysis has practical importance. However, the 3-D geometric complexity of the 

problem makes finding an exact solution impossible. Many resulting analytical methods 

have been developed, providing adequate solutions to this problem.  Some of these 

methods will be discussed in this chapter. 

2.1 Analytical Methods for Determining Mode I SIF in Circular 

Cylinders 

2.1.1 Weight Functions [19, 3, 25, 26, 38, 39] 

A weight function is a property of a cracked geometry that is independent of 

loading [3, 25]. The weight function can be derived from relations between the stress 

intensity factor K and the strain energy release rate G. In general, the SIF in terms of the 

weight function m is 

*
I A

K t md f mdA
Γ

= ⋅ Γ + ⋅∫ ∫  2.1  

with 

( ), ,
2
H um m x y a
K a

∂
∂

= =  2.2 

where u is the displacement field, t is the stress vector acting on boundary Γ, f is the body 

force acting within the region A, a is the crack length, and H is a material constant. 
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Therefore, if the displacement field and a SIF are known for a reference loading situation, 

the weight function can be obtained, and the new SIF, KI*, can be determined for any 

other loading situation. This is only true if the new loading case shares the same 

geometric symmetries as the reference loading.  

Glinka and Shen [26] found that a general form of the weight function exists for 

many 1-D crack problems, which can be expressed as  

( )
( )

1
2

1 2

3
2

3

2, [1 1
2

1 ]

A A

A

1A
x xm x a M M
a aa x

xM
a

π
⎞ ⎞⎛ ⎛= + − +⎜ ⎟ ⎜ ⎟

⎝ ⎝⎠ ⎠−

⎞⎛+ −⎜ ⎟
⎝ ⎠

−

=

 2.3 

where M1A, M2A, and M3A are parameters that must be solved by using two known 

reference SIFs and a property of the weight function, namely 

0
( , ) ( ) 1,2

i

a

R A A iK m x a x dx for iσ= ∫  2.4 

and 

2

2
0

( , ) 0A

x

m x a
x

=

∂
=

∂
 2.5 

This solution has been extended to determine the SIF of internal semi-elliptical surface 

flaws in thick-walled cylindrical bodies [38, 39]. The parameters (MiA) were determined 

by simultaneously solving equations 2.4 and 2.5 with the reference SIF determined from 

finite element (FE) solutions of uniform and linearly varying stress fields (Figure 2.1a). 

The weight function was then used to determine the SIF of a cracked cylindrical body 

with internal pressure p subjected to the Lame tangential stress distribution σL shown in 

Figure 2.1b for crack geometries of Ri/t = 2 and 4, a/c ranging from 0.2 to 1.0, and a/t 

varying from 0 to 0.8. When compared to the finite element results of Atluri and 

Kathiresan [1] and the boundary element method results of Guozhong, Kangda, and 

Dongdi (GKD) [9], data are in good agreement for a/t less than 0.6. However, 
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discrepancies exist for a/t greater than 0.6, with the discrepancy growing larger as a/c 

approaches zero. 

2.1.2 Finite Element Method (FEM) [19, 1, 23, 13] 

The FEM is a technique in which a continuous geometry is replaced with discrete 

volume elements that are connected at nodal points [19]. Compatibility conditions are 

then imposed at these points, and equilibrium is satisfied using energy minimization 

techniques. FEM reduces the problem to one with a limited number of degrees of 

freedom as opposed to infinite degrees of freedom. In this method, material properties are 

used to determine individual element stiffness matrices, which in turn are combined into 

a global stiffness matrix. Boundary conditions are then imposed to find unknown forces 

and displacements, and the SIF is determined from derived stresses or displacements 

around the crack tip.  

Atluri and Kathiresan [1] used a 3-D displacement-hybrid FEM to determine the 

SIF along the crack border for semi-elliptical cracks in thick-walled cylinders. The 

method uses a modified variationial principal of the total potential energy with arbitrary 

element interior displacements, interelement boundary displacements, and element 

boundary tractions as variables. In this method, the SIF is calculated directly by using the 

exact asymptotic solution for singular stresses and strains in elements near the crack 

boundary, while using regular polynomial type functions in elements far from the crack 

with interelement continuity maintained. The test geometry was as follows: a/c = 0.2 and 

1, a/t = 0.5 and 0.8, Ro/Ri = 1.5 and 2.0, and L/2a (and L/Ro) ≥ 3 with a Poisson’s ratio of 

ν = 0.3. The maximum value of the SIF occurs where the crack front and inner wall meet. 

Comparisons to Kobayashi’s 2-D results differ greatly for θ < π/4, where θ is measured 

from the surface, but are in good agreement otherwise.  

Raju and Newman [23] used a 3-D FEM with 6,500 degrees of freedom 

consisting of singular elements along the crack front and linear strain elements elsewhere. 

In their solution, the stress intensity variations along the crack front of an internal semi-

elliptical crack in a circular cylinder were determined. The geometry used is as follows: 

a/c = 0.2 to 0.1, a/t = 0.2 to 0.8, and t/Ri = 0.1 and 0.25. SIF influence coefficients (Gj) 
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were determined for crack surfaces subjected to uniform, linear, quadratic, and cubic 

stress distributions. The SIF for a flawed circular cylinder subjected to internal pressure 

was obtained through direct superposition of the SIF influence coefficients with 

, , ,i
I i

i

PR a a a tK F
t Q c t R

π φ
⎞⎛

= ⎟⎜
⎝ ⎠

 2.6 

 

where PRi/t is the average hoop stress, Fi is the boundary correction factor, c is the half 

crack length, and Q is the square of the complete elliptic integral of the second kind (this 

will be defined and discussed in section 3.4). The expression for Fi as a function of Gj 

was obtained from the first four terms of a power series expansion of Lame’s solution  

2 32

0 1 22 2 2 2 3 4o
i

i o i o o o

t R a a aF G G G
R R R R R R

⎞⎛⎞ ⎞ ⎞⎛ ⎛ ⎛ ⎛
⎟⎜= − + −⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎜ ⎟−⎝ ⎝ ⎝ ⎝⎠ ⎠ ⎠⎝ ⎠

3G
⎞
⎟
⎠

 2.7 

For the range of data presented, the normalized SIF varied very little as a function of 

position along the crack front for a given geometry. When data were compared to results 

from Helot’s boundary integral equation, good agreement (±2%) was achieved. Atluri’s 

[1] FEM results also have decent agreement (within 10%) with this difference, which can 

be attributed to the 2.5 times fewer degrees of freedom used.  

Kirkhope, Bell, and Kirkhope [13] used the FEM program ASAS to determine 

SIF in long radial cracks along the internal bore of the cylinder subjected to internal 

pressure. The SIFs in the vicinity of the crack tip were evaluated by substituting the nodal 

displacements into the Westergaard equations for open-ended cylinders (plane stress), 

with W = Ro/Ri = 1.5 to 2.25 and a/t = 0.05 to 0.5. Figure 2.2 shows the variation of 

normalized SIF versus a/t for different values of W. When the normalized SIF is plotted 

versus (a/t)/(W-1), the data reduce to a smooth curve, and a least squares fit results in  

( ) ( ) ( )0.5 1.55.714 4.258 5.615IK
P t

α α= − + α  2.8 
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where α = (a/t)/(W-1). This expression is accurate to within ±1% of the FEM results 

obtained. When compared to the results of Bowie and Freese [2], values differ by less 

than ±2% for a/t < 0.7 and W > 1.5 and are greater otherwise.  

2.1.3 Integral Methods [19, 9, 32, 37] 

 The boundary integral equation (BIE) and boundary element method (BEM) are 

integral methods as opposed to being differential methods like the FEM. As a result, 

BIE/BEMs are inherently more accurate than the FEM [19]. The advantages of these 

methods over the FEM are:  

• Smaller systems of equations are generated, since only the boundary is discretized 
instead of the entire volume, resulting in more accurate interior stresses.  

• Solutions are obtained at a limited number of points and can be concentrated to 
regions of interest such as a crack front. 

• Two- and three-dimensional formulations are identical. 

• Boundary conditions are satisfied automatically. 

A procedure outlined by Tan and Fenner [32] consists of satisfying appropriate 

boundary conditions for displacements ui and tractions ti on the boundary of the body. 

Somigliana’s integral equation is then used to relate surface displacements and tractions 

at a point Q to displacements at any interior point p with 

( ) ( ) ( )( ) ( ) , ,i j ij j ijS S
u p t Q U p Q dS u Q T p Q dS= −∫ ∫  2.9 

where Uij and Tij are displacements and tractions respectively at some surface point Q due 

to unit loading applied at point p with the subscript ij being the typical summation 

convention. If point p is taken to be a point on the boundary P not located at Q, the BIE 

becomes 

( ) ( ) ( )1 ( ) , ( ) ,
2 ij j j ij j ijS S

u u Q T Q dS t Q U Qδ Ρ + Ρ = Ρ∫ ∫ dS  2.10 

which is the BIE constraint relating boundary displacements to boundary tractions. 

Solving equation 2.10 yields the solution to tractions and displacements everywhere on 
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the boundary. When used with equation 2.9, displacements at any interior location can be 

determined. Thus, the stress state at any point can be determined by differentiating 

equation 2.9 with respect to the coordinates xj at point p by 

( , ) ( , )( ) ( ) ( )ki ki
ij k kS S

j jp p

U Q p T Q pp t Q dS u Q dS
x x

σ ∂ ∂
= −

∂ ∂∫ ∫  2.11 

These three equations are then solved numerically by discretizing the surface, resulting in 

a set of linear algebraic equations for the unknowns at nodal points. The SIF is then 

determined at the crack tip using the appropriate equations.  

 Tan and Fenner [32] used crack-opening displacement to determine the SIF at 

points along the semi-elliptical crack front. For their analysis, plane strain was assumed 

everywhere along the crack front except where it intersects the inner surface, at which 

point plane stress is assumed. Normalized SIFs were determined for Ro/Ri = 2.0 and 3.0, 

a/t = 0.2 to 0.8, a/c = 0.8, and a half cylinder length L = 2.5t and are shown in Table 2-1. 

The material model assumed a Poisson’s ratio ν of 0.3.  Figure 2.3 shows the variation of 

the normalized SIF versus a/t at the center of the crack geometry, α = 0, along with the 

geometry used. When compared to the Cruse-Meyers method, values differed by less 

than 1.5%. 

GKD [9] used a hybrid BEM incorporating a dual BIE method, wherein two BIEs 

were used to determine the SIF around a semi-elliptical crack front. The first BIE is the 

same as equation 2.9. The second relates surface displacements and tractions at a point Q 

to tractions at any interior point p. Conformal mapping of the crack front from the circle 

plane is then employed to determine the SIF around the semi-elliptic crack front. GKD 

determined normalized SIFs for ratios of t/Ri = 0.5, 1.0, and 2.0; a/t = 0.2 to 0.8, a/c = 

0.25 to 1.0; and c/L = 0.1. These values are shown in Table 2-2. The material model 

assumed a Poisson’s ratioν of 0.3.  Figure 2.4 shows the variation of the normalized SIF 

versus a/t for different values of a/c, with t/Ri = 0.5, 1.0, and 2.0 along with the geometry 

used. From these plots, local maximums of the normalized SIF at the extreme values of 

a/t with a trough in-between are observed. Also, the magnitudes of the maximums 

increase for increasing t/Ri, with the trough being more pronounced as well. When 
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compared to recent publications using the body force method (BFM) and FEM, 

accuracies within 3% were obtained. 

The BEM employing dual BIEs was again utilized by Yan and Dang [37]. In this 

case,for the plane strain state corresponding to a long crack in a circular cylinder running 

the length of the bore, the SIFs are considered by solving the identical problem of a 

cracked circular ring (plane stress). This is valid as long as the length of the cylinder is 

much greater than the other characteristic dimensions of the cylinder. The SIF was 

determined using the J-integral method for values of Ro/Ri = 1.25, 1.5, 1.75, 2.0, 2.25, and 

2.5 and a/Ri = 0.0 to 1.4. When compared to boundary collocation techniques [2], errors 

of less than 5% were achieved except for cylinders with small Ro/Ri ratios containing 

cracks near boundaries (a/t approaching 0 or 1). 

2.1.4 Boundary Collocation [19, 2] 

Boundary collocation is a numerical technique used to obtain solutions to 

boundary value problems [19]. This method consists of applying an exact series solution 

to the governing equation, and truncating the series. This is accomplished by setting 

certain coefficients to zero based on geometry and symmetry conditions. The remaining 

constants are then solved from a set of linear equations that satisfy known boundary 

conditions. In most instances, the resulting series solutions exactly satisfy prescribed 

interior conditions while approximating boundary conditions. 

Bowie and Freese [2] proposed a method for determining SIF for long cracks in 

cylinders (plane strain) by solving the identical problem of a cracked circular ring (plane 

stress). In this analysis, boundary collocation and Muskelishvili conformal mapping 

techniques were used for mapping stresses from the circle plane to the crack plane, where 

traction free conditions were imposed on the crack along with appropriate boundary 

conditions. The SIFs were computed for Ro/Ri = 1.25, 1.5, 1.75, 2.0, 2.25, and 2.5. 

Typical values of the normalized SIF versus a/(Ro-Ri) are shown in Figure 2.5.When 

compared to BIE results [37] and FEM results [13], the accuracy is better than 5% except 

for large Ri/Ro with cracks near boundaries. 
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2.1.5 Summary of SIF Determination in Circular Cylinders 

Various methods for determining SIF for internal surface cracks in circular 

cylinders with internal pressure have been presented for both part-through (semi-elliptic) 

and through cracks. Table 2-3 summarizes the geometry, method, and type of crack in 

order to compare the working range of each application.   

It is apparent that GKD and Bowie & Freese have the greatest working geometry 

ranges for part-through and through cracks respectively. Also, each includes the 

geometry used in the experimental tests in their geometry ranges, allowing for direct 

comparison with experimental data. 

2.2 SIF and the Internal Star Cylinder [7, 8, 34, 28, 29] 

Limited SIF data are available for internal star cylinder configurations due to the 

complex geometry of the problem. Francis et al. [7, 8] performed 2-D experimental 

testing and FEM analysis to evaluate crack behavior for pressure loadings where pressure 

was applied directly to the crack surface. The test specimen geometry was that of an 

internal star cylinder cast from brittle epoxy with Ro = 7” and Ri = 1.59”. Thin slices 

(0.250”) were sawed from the cylinder, and small cracks were inserted at 30° from the 

star tip. Pressure was then applied over the cut faces of the model and at the inner bore. It 

was observed that upon propagation, the crack trajectory went straight to the outer 

boundary and was parallel to the fin axis.  

Smith and his associates [34, 28, 29] have conducted tests using frozen-stress 

photoelasticity (discussed in chapter 3.3) to analyze semi-elliptic cracks located at critical 

locations around fin tips in internal star circular cylinders. In their analysis, cracks were 

grown under internal pressure, and the SIFs around the crack front for both symmetric 

and off-axis cracks were determined. Two specimen geometries were used. The first has 

Ro/t = 2 and 4, Ro = 50.6mm, and L = 304.8mm. The second has Ro/t = 2, Ro = 75.8mm, 

and L = 376mm. Schematics of these two geometries are shown in Figure 2.6.  
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For the first geometry, symmetric cracks originating from the fin axis under mode 

I loading were studied using the above-mentioned optical method. For these tests, all 

cracks were grown to similar depths with a/c = 0.44 to 0.50 and a/t = 0.62 to 0.74.  The 

data show very little variation, ±3, in normalized SIF versus θ for any given crack. This 

tends to agree with the data obtained by Newman and Raju [23] for their 3-D finite 

element solution.  

For the second geometry, off-axis cracks were studied using the same above- 

mentioned optical method. The cracks were started in two ways: normal to the fin surface 

or parallel to the fin axis. These experiments showed that the off-axis cracks start out 

with mixed mode loading (mode I & II), but during growth turn to eliminate the shear 

mode, becoming a mode I crack whose growth is parallel to the axis of the fin. The off-

axis cracks were grown to varying depths with a/c = 0.59 to 0.78 and a/t = 0.21 to 0.34. 

Normalized SIFs were computed assuming the cracks were semi-elliptic and planar. This 

is more accurate for the off-axis cracks parallel to the fin surface, because minimal 

turning was required to eliminate the shear modes present. Values of normalized SIF 

versus a/t for off-axis cracks parallel to the fin surface are shown in Figure 2.7. As 

shown, the data scatter is within the 6% experimental accuracy.
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3 Mathematical Formulation  

3.1 The Stress Optic Law [4, 14] 

 To interpret fringe patterns, a relationship between applied stresses and the optical 

effect observed must be obtained. Photoelasticity is the study of just such a relationship.  

At any point in the stressed material, three mutually perpendicular principal 

stresses (σ1, σ2, and σ3) can be obtained. Also, if the material is photoelastic in nature, it 

is referred to as optically anisotropic, and three principal indices of refraction (n1, n2, and 

n3) can be defined.  

In a photoelastic material, the theory relating the indices of refraction to the state 

of stress in the material is the stress optic law. The stress optic law discovered by 

Maxwell [14], states that the changes in the indices of refraction are linearly proportional 

to the applied loads such that 
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where n0 is the index of refraction of the unstressed material, n1, n2, and n3 are the 

principal indices of refraction in the stressed state associated with the principal directions, 

and c1 and c2 are the stress optic coefficients. It can be seen from equation 3.1, that if the 

three indices of refraction and their directions can be determined, the complete state of 

stress at that point can be determined. 
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Since experimentally determining the principal indices of refraction and their 

direction is difficult in the 3-D case, plane stress is used to simplify practical applications. 

For the plane stress case, equation 3.1 reduces to 

1 0 1 1 2

2 0 1 2 2

n n c c

n n c c

2

1

σ σ

σ σ

− = +

− = +
 3.2 

It is now convenient to eliminate n0 from equation 3.2 and represent the stresses in terms 

of the relative index of refraction ( 12 ccc −= ) as opposed to the absolute change of index 

of refraction.  Therefore, 

2 1 2 1 1 2 1 2( )( ) (n n c c c )σ σ σ σ− = − − = −  3.3 

with c being a positive constant. 

 A photoelastic material sliced for data collection can be thought of as a wave plate 

(discussed in section 0); therefore, the relative indices of refraction can be related to the 

phase shift ∆ by 

2 1
2 (h n n )π
λ

∆ = −  3.4 

where h is the thickness of the photoelastic slice, and λ is the wavelength of light 

transmitted through it. This equation is only valid if the slice is oriented such that two of 

the principal stresses are parallel to the plane formed by the slice face, and the third 

principal stress is aligned perpendicular to the direction of propagation of a beam of plane 

polarized light. Substituting equation 3.3 into 3.4, the phase shift through the specimen 

slice becomes 

1 2
2 (s

hc )π σ σ
λ

∆ = −  3.5 

It is convenient to express this equation as 
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1 2
Nf
h

σσ σ− =   (N/m2) 3.6 

where N is the relative retardation in terms of a complete cycle of retardation, 

2
sN

π
∆

=  3.7 

and fσ is the material fringe value, which is a property of the material for a given 

wavelength of light, such as 

f
cσ
λ

=  3.8 

For a given material fringe value fσ and relative retardation N, the difference between the 

principal stresses ( )1 2σ σ− can be determined. In practice, N (the measured fringe order) 

is determined with a polariscope, and fσ is determined by some calibration means, both of 

which will be discussed later. 

3.2 The Polariscope [4, 21, 15, 16] 

Two main types of polariscope exist -- linear and circular. A linear polariscope 

shows both isoclinic fringe patterns (fringes along the principal stress directions) and 

isochromatic fringe patterns (fringes of constant principal stress difference σ1 – σ2). The 

circular polariscope used in the ESM Photoelasticity and Fracture (P&F) Lab preserves 

isochromatic fringes while extinguishing isoclinic fringes. In this section the components 

of the circular polariscope will be discussed briefly along with their mathematical 

consequences. 

The circular polariscope consists of two linear polarizers and two quarter-wave 

plates in series with a light source shown in Figure 3.1. The optical element closest to the 

light source is called the polarizer.  Next are the first and second quarter-wave plates and 
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then the analyzer. Specimen slices are loaded between the two quarter wave plates when 

being analyzed.  

Mathematically, the light source can be represented as a sinusoidal wave of 

amplitude A. The function of the polarizer (and analyzer) is to resolve the light vector 

into two mutually perpendicular components. The component of light vibrating parallel to 

the axis of polarization is transmitted (At) while the component perpendicular is blocked, 

Ab, (Figure 3.2a). For example, a light wave emerging from a polariscope oriented with 

its axis of polarization in the y-direction is expressed as 

i t
tA ke ω=  3.9 

where k is a constant, ω the circular frequency, and t the time. 

A quarter-wave plate is a transparent optical element that resolves the incident 

light vector into two perpendicular components, each transmitted through the wave plate 

with different velocities. One component is transmitted along the fast axis with velocity 

c1 and the other along the slow axis with velocity c2 where c1 > c2. The fast and slow axes 

have indices of refraction n1 and n2 respectively. The difference in index of refraction and 

therefore transmission velocity is due to the optical anisotropy associated with the wave 

plate. The result is a relative angular retardation (∆) developed between the emerging 

light vectors. The angle formed by the fast axis of the wave plate and the axis of the 

polarizer is β. Circularly polarized light is produced by selecting a wave plate with δ = 

λ/4 (∆ = π/2) and β = π/4, hence the name quarter-wave plate (Figure 3.2b). The light 

components emerging from the first quarter wave plate are 

1

2

2
2

2
2

i t
t

i t
t

A ke

A i ke

ω

ω

=

= −

 3.10 

The light components then strike the specimen slice. The slice acts as a wave plate and 

decomposes the light vectors into components along the principal stress directions 

(Figure 3.3). Upon emergence from the specimen, a relative retardation (∆s) is developed 

between the light vectors. Recall 
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( 1 2
2

s
hc )π σ σ

λ
∆ = −  3.11 

The light then continues to the second quarter-wave plate. It is oriented such that its fast 

and slow axes line up with the slow and fast axes of the first quarter-wave plate 

respectively. The light then enters the analyzer, whose axis of polarization is parallel to 

the x-axis. As a result all light perpendicular to the x-axis is extinguished, and the final 

amplitude is 

( ) (2 1
2

si t i
ax

kA e eω α+ − ∆= )−  3.12 

This particular arrangement of optical elements, used in the ESM P&F Lab, produces a 

dark field. In all, four possible arrangements exist -- two produce dark and two produce 

light fields (Table 3-1).  

The intensity of the emerging light is proportional to the square of the amplitude. 

In exponential form, this is equal to the amplitude and its conjugate and is given by 

2sin
2

sI K ∆ ⎞⎛= ⎜
⎝ ⎠

⎟  3.12 

This implies that the light emerging from a circular polariscope is a function only of the 

principal stress difference (σ1 – σ2). Also, since the intensity is not a function of α, the 

isoclines have been eliminated from the fringe pattern as stated earlier.  

For a dark field with intensity equal to zero,  

2
s nπ∆

=  3.13 

This leads to fringe orders 

( 0,1,2,3
2

sN n for n
π

∆
= = = K)  3.14 

Similarly, it can be shown that the fringe order for a light field is  

 17 



   

(1 0,1,2,3
2

N n for n= + = K)  3.15 

Twice as many data points can be obtained if both dark and light fields are used. Since, in 

practice, slice thicknesses are small, the number of fringes present in data collection is 

small. Therefore, other methods for obtaining extra data points need to be employed. 

3.2.1 Tardy Compensation [4, 33] 

Tardy compensation [33] is a technique that extends the fringe analysis to 

fractions of a fringe order. This is done by rotating the analyzer through an arbitrary 

angle γ, a schematic of which is shown in Figure 3.4. As a result, the equation of the 

emerging light vector and the corresponding intensity must be modified to 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4
4 4

4 4 4

2 {sin cos sin
2

cos sin cos }

1 cos 2 cos cos 2 sin 2 sin

s

s

i t
i

a

i

A ke e

i e

I K

πω α
π π

γ

π π π

4
πα γ γ

α γ

γ α γ

⎞⎛ + −⎜ ⎟ − ∆⎝ ⎠

− ∆ γ

⎡ ⎤= − + − +⎣ ⎦

⎡ ⎤+ − + − +⎣ ⎦

⎡ ⎤= − ∆ − ∆⎣ ⎦

 3.16 

To determine the fringe order, the maximum and minimum intensities must be obtained 

for any γ. This is done by taking the derivative of the intensity with respect to ∆ and α 

independently, setting them to zero, and solving both equations simultaneously. For the 

minimum intensity (I = 0) it can be shown that 

2
nπα =  3.17  

This leads to  

( )2 2 0,1,2,3n for nγ π∆ = ± = K  3.18 

This condition requires one of the principal stress axes to coincide with the axis of 

polarization of the polarizer ( 20, , ,πα π= K ). This results in fringe orders of 
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( 0,1,2,3
2 2

N n for n )γ
π
∆

= = ± = K  3.19 

To align the axis of the polarizer with one of the principal stress axes, the fast axis 

of the two quarter wave plates need to be parallel. This converts the circular polariscope 

into a plane polariscope, exposing the isoclines so the direction of the principal stresses 

can be determined. The polarizer, quarter wave plates, and analyzer are then rotated in 

unison until the axis of the polarizer is parallel to one of the principal stress directions. 

The quarter wave plates are then crossed again, producing a dark field. Rotating the 

polarizer will now produce fractional fringe orders, increasing the number of data points. 

At times, even more data points are necessary and can be achieved by using Post fringe 

multiplication in parallel to the Tardy method. 

3.2.2 Post Fringe Multiplication [4, 20, 22] 

Post fringe multiplication [20, 22] is a full field method used to multiply the 

number of fringes observed in a specimen. This is achieved using two partial mirrors in 

series, one on either side of the specimen slice (Figure 3.5). The function of a partial 

mirror is to transmit part of the light beam while reflecting the rest.  

Inclining one of the mirrors slightly with respect to the other results in back and 

forth reflection of light between the mirrors and through the slice. The ray number 

indicates the number of times the slice has been traversed and is also the amount of fringe 

multiplication achieved for that ray. Since each ray exits at a different angle with respect 

to the polariscope, the ray of interest can easily be isolated by blocking the others. For 

example, consider a multiplication factor of 5 in a dark field. This produces a fringe order 

sequence of 31 2
5 5 50, , , K For this example, the available data increase by a factor of 5. 

 19 



   

3.3 3-D Photoelasticity [4] 

In general, the stress freezing process is a three-dimensional photoelastic method. 

However, planes of symmetry or principal planes can be utilized to reduce the problem to 

a plane problem. For a cylindrical pressure vessel, slices extracted in the hoop direction 

(Figure 3.6) results in one of the principal stresses being out of the plane and can be 

analyzed using two dimensional photoelastic techniques. When loaded in a polariscope, 

this out of plane stress is aligned with the light beam. As a result, the mathematics 

governing a circular polariscope, section 0, are valid.  

Recall that isochromatics are fringes of constant principal stress difference. To 

accurately determine this stress difference, the fringe order must be established at every 

point in the model. This is accomplished by locating the zero order fringe. A zero order 

fringe exists at a free corner, because the shear stress there is zero. Once the zero order 

fringe is located, fringe orders at any other point in the specimen can be determined by 

counting outward from that fringe (Figure 3.7). The stress difference can now be 

determined at any point as 

rr
Nf
h

σ
θθσ σ− =  3.20 

To determine the material fringe constant fσ, a body with a known stress 

distribution, such as a four-point bend specimen, must be analyzed (Figure 3.8). The 

four-point bend specimen has a constant bending moment in the center of the beam that 

can easily be determined from equilibrium as 

2 4
W LM Pb a ⎞⎛= + −⎜

⎝ ⎠
⎟  3.21 

The stress is therefore 

3

12yy
Mx nf thwith I
I t

σσ = = =  3.22 
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As a result, the material fringe constant is  

3
12

2 4
x W Lf Pb a

h Nσ
⎡⎞⎛ ⎛= +⎜ ⎟ ⎜⎢⎝ ⎝⎠ ⎠⎣ ⎦

⎤⎞− ⎟⎥  3.23 

Substituting this into equation 3.20 will produce the stress difference in the specimen 

slice.  

3.4 Fracture Mechanics in Photoelasticity [4, 11, 35, 27, 12, 17] 

When evaluating the stress at the tip of a crack, it is necessary to use fracture 

mechanics due to the stress singularities present. Singularities exist, because a crack is 

sharp with a tip radius of curvature approaching zero. Stress singularities at a crack tip 

can be evaluated by introducing the stress intensity factor (SIF) K. Three types of stress 

intensity are defined by the types of loading encountered: modes I, II, and III.  

Mode I crack growth, referred to as the opening mode, is due to loading that is 

perpendicular to the crack surface displacement (Figure 3.9a). The SIF associated with 

mode I loading is KI. Mode II crack growth is caused by in-plane shear loading (Figure 

3.9b). This type of loading causes the crack surfaces to slide across one another. The SIF 

associated with mode II loading is KII.  Mode III is a tearing mode, which is due to out of 

plane shear loading (Figure 3.9c). It has a corresponding SIF of KIII. 

In general, a crack may exhibit all three modes of cracking. Mixed modes (modes 

I and II) or mode I alone, however, are the most common. In fact, any crack, if given 

sufficient time, will orient itself so only mode I is present; this is the dominant mode of 

facture.  

For mode I loading of an isotropic linear elastic material, the stress field can be 

defined as [11] 

( )lim
2

I
ij ijr o

K f
r

σ θ
π→

=  3.24 
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where fij is a dimensionless function of theta. The function fij(θ) is determined from field 

equations that satisfy the boundary conditions exactly. The form of this function varies 

depending on position relative to the crack tip (Figure 3.10). 

The area surrounding the crack tip can be divided into three regions: the very near 

field, the near field, and the far field. To evaluate the SIF in these regions, field equations 

that are independently valid within each region are used. Westergaard [35] introduced a 

complex stress function Z(z) that satisfies the Airy stress function in the very near field 

with 

 
1 1
2 2
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− −

= =
−
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As a result, the stresses become 
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 3.26 

where σ0 is a non-singular stress introduced by Irwin [11] to make theoretical fringe 

patterns match experimental fringe patterns.  

For data restricted to θ = 90°, Smith [27] ) introduced an algorithm for 

experimentally determining the stress intensity factor. For θ = 90° the stresses become 
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This simplification can be made, because for mode I crack growth, the isochromatic 

fringe loops are oriented approximately normal to the crack tip (Figure 3.11).  This makes 

the data easier to obtain, since readings are more accurate in this direction. 

The maximum shear stress can now be solved from the previous equations by  

( )
2

2 20
max 02

2
I IK K
r r

στ σ
π π

= + +  3.28 

thus yielding KI

2 2
max 0 08IK rπ τ σ σ⎡= −⎣

⎤− ⎦
 3.29 

Noting that near the crack tip, the non-singular term σ0
2 is small compared to 8τmax

2, the 

SIF becomes  

max 08IK r rπ τ π= − σ  3.30 

This equation can be simplified by introducing the apparent SIF 

( ) max8I AP
K rπ τ=  3.31 

Recall from section 3.3 that the maximum shear stress can also be described in terms of 

photoelastic parameters as 

1 2
max 2 2

Nf Nf
t t
θ τσ στ −

= = =  3.32 

where 

2
ff σ

τ =  3.33  

By combining the equations 3.31 and 3.32, the apparent SIF can be obtained at different 

locations by measuring r and N.   
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When (KI)AP verses (r/a)1/2 is plotted, three distinct regions appear. The first 

region, located right at and adjacent to the crack tip, has a variation of (KI)AP verses 

(r/a)1/2 that is nonlinear. This nonlinearity is due to plasticity occurring locally at the 

crack tip. The plasticity is a result of the stress singularities exceeding the materials yield 

strength. In the second region, (KI)AP verses (r/a)1/2 is linear, and the above equations 

apply in the context of linear elastic fracture mechanics. When (KI)AP verses (r/a)1/2 is 

extrapolated back to the y-axis, the intercept corresponds to the KI value at the crack tip 

[27]. (KI)AP verses (r/a)1/2 is again nonlinear in the third zone, because the nonsingular 

term σ0 is no longer negligible. Therefore, (KI)AP varies in a nonlinear fashion.  

If multiple tests are conducted, the crack geometry and load must be normalized 

out of the SIF, so meaningful comparisons can be made. The normalized stress intensity 

factor is 

I
nor

KF
p aπ

= Q  3.34 

Where p is the stress freezing pressure and Q is a crack shape factor defined as 

1.65

1 1.464 aQ
c

⎞⎛= + ⎜ ⎟
⎝ ⎠

 3.35 

with a and c being the minor and major axes of the semi-elliptical crack respectively 

(Figure 3.12). The shape factor Q, first observed by Irwin [12], is the square of an elliptic 

integral of the second kind, which is due to the fact that surface flaws are generally 

assumed to be elliptic in shape. Values for Q are often taken directly from tables, but Q 

from equation 3.35 is an approximation developed by Newman [17] that is commonly 

used for cracks in pressure vessels whose ratios of a/c are greater than 0.4. 
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4 Experimental Procedures 

4.1 Introduction 

The tested specimens fall into two categories -- those with natural cracks and 

those with V-cut cracks. The natural crack specimens are made by making a small crack 

in the cylinder. The crack is then grown under pressure to depths that are approximately 

9, 18, and 24mm. Specimens containing V-cut cracks are produced by cutting a crack the 

length of the specimen with depths matching those of the three natural cracks. The V-cut 

crack specimens represent, as close as is possible in the lab, the plane strain 

approximation of the natural crack specimens. 

In this chapter the experimental procedures for both sets of tests will be discussed 

in detail. This will include material mechanical information, specimen geometry and test 

preparation, the stress freezing process, slice extraction, and data extraction using a laser 

polariscope employing Tardy and Post methods in tandem. 

4.2 Material Specifications 

4.2.1 PLM-4BR 

Three materials are used for casting and bonding the specimens. The first (PLM-

4BR), provided by Photoelastic Inc., is used when casting the internal star cylinder and 

the calibration beam. PLM-4BR is a two-part epoxy resin and, when in liquid form, is 

composed of a resin and hardener. The resin and hardener are mixed with a mass ratio of 

100:7 respectively. This mixture is cured at around 120o F (49o C) for 48 hours. After 

curing, PLM-4BR is a solid, transparent, photoelastic material. A photoelastic material is 
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one that when unstressed is optically isotropic. However, when the material is stressed, it 

becomes optically anisotropic and remains this way until the stresses are removed. This 

phenomenon is known as temporary double refraction. 

PLM-4BR, in addition to being a photoelastic material, is also a diphase material, 

which means that at elevated temperatures it exhibits different mechanical and optical 

properties than at room temperature. The temperature at which this transition occurs is 

known as the critical temperature.  For PLM-4BR, this temperature is around 200o F At 

room temperature the material is a hard solid that behaves in a viscoelastic manner that 

can be explained by a simple Kelvin model of a spring and dashpot in parallel (Figure 

4.1). Above the critical temperature, it is a soft, rubbery solid that is orders of magnitude 

less resistant to deformation. However, its mechanical response is purely elastic in nature. 

This reduction of resistance to deformation is due to the fact that the modulus of elasticity 

is about 0.2% of what it is at room temperature. Thus, the material is about 20 times more 

fringe sensitive than it is at room temperature. If the material is cooled slowly from above 

the critical temperature back to room temperature with the load maintained, the large 

deformations are locked into place even after the load is removed with negligible elastic 

recovery. This procedure is known as stress freezing and is described in detail by Oppel 

[18]. Mechanical data for PLM-4BR at room temperature and at critical temperature are 

shown in Table 4-1. Above the critical temperature, the Poisson’s ratio increases to 0.5, 

and as a result it behaves as an incompressible material. 

4.2.2 PMC-1 

The second material used for casting and bonding is PMC-1, again provided by 

Photoelastic Inc. PMC-1 is a two part epoxy used for joining model sections. Before 

mixing, PMC-1 resin is preheated to 90° F (32°C). It is then mixed with a resin to 

hardener mass ratio of 100:14 and cured at room temperature for 24 hours. When cured, 

it is transparent and has a coefficient of thermal expansion similar to PLM-4BR, 

minimizing stresses caused by thermal expansion. 
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4.2.3 RTV 

RTV 630 is used for making the cast end caps and when bonding RTV to PLM-

4BR (provided by Photoelastic Inc.). RTV 630 is a two part epoxy consisting of parts 

RTV 630-A (the resin) and RTV 630-B (the hardener). Parts A and B are mixed with a 

mass ratio of 10 to 1 respectively and cured at room temperature for 24 hours. When 

cured, it is a blue, opaque, flexible solid. 

4.3 Specimen Geometry and Preparation 

4.3.1 The Internal Star Cylinder 

As stated previously, two categories of test specimen exist -- the natural crack and 

the machined V-cut crack. The specimen geometries for both test categories are identical. 

However, preparation for the natural crack differs greatly from that of the V-cut. Both 

categories will be discussed.  

The specimen geometry is that of a six-point internal star cylinder configuration 

shown in Figure 4.2. The internal star cylinders are 376.0mm long*, 151.56mm in 

diameter, and 37.08mm from fin tip to cylinder edge. The length of 376mm is sufficient 

to ensure that end effects do not influence the data in the region of interest (the center of 

the specimen). 

4.3.1.1 Natural Crack 

The first step in the preparation process for the natural crack specimens is to 

initiate the crack. This is accomplished by drilling a hole directly across from one of the 

fin tips at the halfway point of the tube. To ensure the crack is perpendicular to the 

surface of the fin tip, the hole must be drilled as close to straight as possible. The crack is 

                                                 
* Specimen 3 was 335.75mm long. 
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then started by striking a sharp heavy duty blade with a hammer (Figure 4.3). By 

centering the blade on the fin tip so the blade is parallel to the fin surface, a longitudinal 

crack normal to the fin surface is produced. The crack growth can be described by two 

phases.  The first is dynamic growth, which is where rapid crack growth occurs. The 

second phase occurs when the crack reaches a critical depth. At this point, crack 

propagation slows rapidly, and the crack comes to rest. The shape of a natural crack is 

that of a semi-ellipse with major and minor axes of length 2c and a respectively (Figure 

4.4).  

The hole is then filled with a 6.56mm diameter PLM-4BR plug (made by the 

ESM machine shop), which is bonded in place with PMC-1. The purpose of the plug is to 

minimize the stress concentration at the hole. This stress concentration, however, does 

not have any effect on the stress at the crack tip, since it is located on the opposite side of 

the specimen. In fact the effect of the hole is not observed past the adjacent fins.  

4.3.1.2 V-Cut Crack 

To make the V-cut crack, a fixture to hold the test specimen during machining 

was required. The fixture provided a stationary platform that ensured the crack would be 

machined centered on and perpendicular to the fin’s surface (Figure 4.5a). Before the 

crack is machined, the model was first sawed in half lengthwise down the tube. This 

provided room enough for the 203.20mm diameter, 2.5mm thick, 30° beveled circular 

saw blade to machine a crack to a maximum depth of 24mm (Figure 4.5b). The cracks are 

machined the length of the tube minus a small length on either end. These are left uncut 

to provide strength when the specimen is under pressure to ensure the crack does not 

grow and penetrate at the specimen ends.  

The two halves of the specimen are then glued back together using PMC-1 resin. 

Much care must be taken during this process to ensure that a proper seal is achieved. For 

the end caps to fit properly, 1.25mm thick shims are spaced between the halves. These 

ensure that the thickness lost during sawing is recovered in the bonded specimen. This is 

difficult in practice because the PMC-1 epoxy is fluid when first mixed.  PMC-1 must 

partially cure (1.5 hours for a 10 gram container) before application, so it will not flow 
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out from between the two halves. This is further complicated by the fact that the end caps 

must be bonded at the same time while the PMC-1 is still liquid. Curing the PMC-1 

before inserting the caps would create issues with fit.   

4.3.2 End Caps  

Each specimen requires two RTV 630 end caps, which are cast negatives of the 

internal star cylinder. The caps have a 63.5mm tall finned section attached to a 22.2mm 

tall by 151.56mm diameter base. Preparation for specimen end cap sets is similar for the 

natural and V-cut cracks. The only difference is that the finned sections for V-cut 

specimens are cut down to 19.05mm, making their insertion easier and effectively 

increasing the region not affected by the end.  For each set of caps, a 6.35mm hole is 

drilled down the center of one cap for air supply access.  

To bond the caps to the specimen, the specimen surfaces are lightly abraded with 

280 grit sand paper to provide a better bonding surface and cleaned with acetone and 

alcohol. The specimen surfaces are then primed with SS4120 silicone primer and left to 

dry completely. The fin surfaces of the end caps are coated with silicone release agent for 

smooth entry, and the horizontal surface of the base is coated with 20 grams of RTV 630 

epoxy. The end caps are then inserted into the specimen by applying a light uniform 

pressure across the surface of the cap. A 20 pound weight is placed on top of the 

specimen during the curing process to ensure the caps remain in contact with the 

specimen and bond completely. Last, a 6.35mm copper tube is inserted into the drilled 

end cap and bonded in place with RTV 630 epoxy. A schematic showing the fit between 

the cylinder, end caps, and copper tube is shown in Figure 4.6.   

4.3.3 Calibration Beam 

The calibration beam is used in a four-point bend test to determine the material 

fringe constant fσ and the critical temperature. Three calibration beams cast by 

Photoelastic Inc. to dimensions of 152.4mm long, 25.4mm tall, and varying thickness are 

provided with each internal star specimen and made from the same epoxy batch. Thus, 
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any discrepancies between batches (cure temperature, age, moisture…) are essentially 

normalized out. The thickness variation of the beam depends on the amount of material 

used in the casting process and the amount of material that must be shaved off to achieve 

a uniform thickness. Thicknesses are on average 10.42mm.  

One of the beams is drilled through the thickness with four 6.35mm diameter 

holes located at 12.7 and 25.4 inches from either end of the beam. A schematic is shown 

in Figure 4.7. These holes provide points at which to apply the loads for the bend test. 

The beam’s length is sufficient to achieve a pure bending moment in the midsection. As a 

result, the fringes at the center of the beam will be close to parallel and nearly equally 

spaced. 

4.4 Stress Freezing 

The stress freezing method developed by Oppel [18] is the method of locking in 

model deformations and the associated optical response in a photoelastic material. The 

calibration beams under four-point bending and pressurized specimens were all subject to 

a stress freezing cycle in a Blue M POWER-O-MATIC 70 Photoelasticity, Drying, and 

Annealing temperature controlled oven. 

The calibration beam is hung in the temperature controlled oven under four-point 

bending with an appropriate load applied.  The load is chosen such that when the beam is 

above the critical temperature, enough fringes are present to accurately determine the 

material fringe constant fσ. Testing has shown that five pounds is sufficient to produce 

around 10 fringes above and below the neutral axis of the beam. The specimen is then 

placed in the oven with the copper tubing attached to a compressed air supply outside of 

the oven (Figure 4.8). The specimen is now ready to start the stress freezing process.  

The stress freezing process consists of three stages. The stages are controlled with 

an aluminum cam that spirals inward as the oven heats and outward when cooled. The 

rate of temperature increase or decrease (the temperature ramp) was controlled manually 

for each stage by adjusting the cam rotation rate. 
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In the first stage, an initial pressure of about 10 kPa was applied to keep the crack 

open during the entire process. The oven temperature was increased from room 

temperature to just above the critical temperature of approximately 220° F at a rate of 7 to 

8° F (13.3 to 13.9° C) per hour. The critical temperature was monitored by watching the 

fringes in the calibration beam. As the calibration beam passed the critical temperature, 

the number of fringes increased dramatically. Heating was then stopped, and the 

specimen was soaked at this temperature for three hours. This second stage ensured that 

the specimen achieved a uniform temperature throughout. During the soak, internal 

pressure was slowly applied to the specimen. The amount of applied pressure was 

monitored on the pressure gauge and controlled by opening the pressure regulator valve. 

For the V-cut crack, no crack growth was required, so a constant pressure (the stress 

freezing pressure, Psf) large enough to ensure the presence of fringe patterns was applied. 

The stress freezing pressure was between 20 and 50 kPa. 

For the three natural crack specimens, elevated pressures were used to grow the 

cracks to approximately 9, 18, and 24mm respectively. This was done by slowly 

increasing the pressure until crack propagation occurred (between 122 and 170 kPa). The 

pressure was then maintained, and the crack was grown to the desired maximum depth. 

When the maximum depth was reached, the pressure was reduced by approximately one-

third to the stress freezing pressure, which ranged from 20 to 50 kPa. If the stress freezing 

pressure was too high, further crack growth could occur, and no data could be collected 

for cracks that grew and penetrated the outer wall (Figure 4.9). The stress freezing 

pressure was maintained throughout the remainder of the process, leaving stresses in the 

model elevated for subsequent data collection. 

The third stage in the stress freezing process is cooling. In this stage, the oven was 

cooled at around 0.7 to 0.8° F per hour until it reached 140° F. The specimen was well 

below its stress freezing temperature at this point. As a result, the deformations and 

corresponding optical effects occurring at elevated temperatures were locked in. The 

cooling rate was then increased to 2° F per hour until the oven reached room temperature. 

The specimens were then removed from the oven and sliced for analysis. A plot of the 

temperature vs. time and pressure vs. time for the stress freezing process is shown in 

Figure 4.10. 
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4.5 Slice Extraction and Data Collection 

To extract individual slices, a cube containing the entire crack was first machined 

from the model. Individual slices were then removed using a diamond wafer saw 

tangential to the crack front. This ensured that one of the principal stresses was out of the 

plane of the slice. As a result, 2-D photoelasticity can be utilized, since the effect of the 

out of plane stress is embedded in the in-plane stresses. Mathematically this is equivalent 

to the plane problem formulated in section 3.4.  

Since the crack front is a straight line in the section of interest, the removed 

sections for each V-cut specimen are parallel with respect to each other (Figure 4.11a). 

The crack front for the natural crack is semi-elliptical in shape; therefore, each slice is 

rotated relative to the center line of the crack front (Figure 4.11b). The thickness of the 

natural crack slices must remain small relative to the model dimensions (less than 1mm) 

to ensure that stresses are essentially constant in magnitude and direction throughout the 

slice thickness.  

Once removed, they are kept in a sealed container filled with index matching 

fluid. This keeps the slices from absorbing moisture, which would alter their stress state. 

Stress intensity data were collected by mounting the specimen slices in the multiplication 

unit of the refined laser polariscope (Figure 4.12) designed by Epstein [5, 6]. Post and 

Tardy compensation techniques were then used in parallel to extract data points along an 

isoclinic, rotated so its alignment was perpendicular to the crack axis. On average 

multiplication factors of 3 with Tardy rotations of 18° were sufficient to produce enough 

data points. This combination produces reading increments of one-thirteenth of a fringe 

order. It should be noted that the material fringe constant fσ, used in the determining the 

SIF must be increased by 10% to account for difference in wavelength between the 

diffuse light polariscope (used to determine the fringe constant) and the laser polariscope 

(used to collect fringe data in the specimen slices).
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5 Results and Conclusions 

5.1 Introduction 

Data have been collected for six specimens, three natural crack models grown to 

depths of a = 8.13, 14.6, and 19.6 mm and V-cut crack models cut to the same depth. 

Data were then analyzed using methods described in chapter 4 by applying the 

mathematical algorithms of chapter 3. Results of the SIF will be presented for each case 

and compared with: 

 

1) Guozhong, Kangda, and Dongdi (GKD) [9] modified boundary element 

method solution to a circular cylinder containing a semi-elliptic crack. 

2) Bowie and Freese’s [2] boundary collocation solution to a circular 

cylinder containing a crack extending the length of the bore (plane strain 

solution). 

3) Experimental results from Smith, Constantinescu, and Liu [29] for off-axis 

cracks started parallel to the fin surface. 

 

These comparisons will yield a potential relation for estimating the plane strain SIF for 

the finned cylinder models for use in motor grain design. This will be accomplished by 

comparing the SIF of the semi-elliptic and V-cut cracks of the finned cylinder 

experiments measured at the deepest point of penetration to corresponding cracks in the 

numerical work mentioned above.  
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5.2 Test Conditions and General Comments 

Six tests have been conducted, three natural crack models and three V-cut crack 

models, to study the behavior of propagated cracks of varying depths and geometries at 

the geometric center of the crack border. For ease of comparison, the test conditions, 

crack geometries, and material characteristic constants are shown in Table 5-1.  

Natural cracks originating from the axis of symmetry of the fin were planar, grew 

in that plane, and experienced mode I stress fields everywhere around their flaw border. 

They grew readily under internal pressure with no unusual effects, maintaining their 

semi-elliptic shape. Hence, the elliptic integral of the second kind (defined in section 3.4) 

was adopted to normalize the crack geometry effect on the SIF distribution. A typical 

crack profile and cross section is shown in Figure 5.1. It is interesting to note that the 

ratio of crack depth to half crack length a/c varies by only a small amount, from 0.60 to 

0.65. This fact is useful for judging crack depth during growth due to the fact that it is 

much easier to see and measure the crack length than the depth. The relatively constant 

a/c ratio also indicates that cracks grow in a uniform fashion, thus yielding the same 

shape at any point in their growth.  

The V-cut specimens in general exhibited no crack growth, with the exception of 

model 6b, which grew and penetrated the outer edge. Stress intensity data were collected 

for this specimen, however, photoelastic data were difficult to read and unreliable due to 

low stresses resulting from the pressure drop caused by penetration. As such, no data for 

this model were considered. However, general conclusions can be made about the shape 

of the crack during failure. This will be discussed in later sections.  

It should be noted that the same elliptic integral used to normalize geometric 

effects for the natural crack was used on the V-cut specimens. This was done strictly for 

comparison purposes. Using this approximation on a long crack is not entirely accurate, 

since the crack front is not semi-elliptic in shape and the a/c ratios for the long cracks are 

outside the range of intended use. The influence of using Q as a normalization factor has 

little effect in the SIF magnitude, because as a/c → 0,   Q → 1. However, this may in fact 

underestimate the effect of shape in the normalized SIF, and care must be taken when 

interpreting results. 

 34 



   

  For each crack, slices of constant thickness were removed normal to the crack 

border, the locations of which are shown in Figure 4.11. The variation in SIF along the 

crack border was obtained by averaging the data at corresponding locations on either side 

of the crack centerline. It should be pointed out that through thickness variations of 

stresses can occur in a slice, especially for slices extracted along a curved border. 

Photoelastic readings work to average these effects. The fact that the slices are cut thin 

for natural crack specimens and normal to the crack border also reduces the variation.  

5.3 SIF Results 

SIF values were determined by using the methods of chapter 4 and then applying 

the algorithms of chapter 3. In short this was done by photoelastically analyzing each 

slice to determine fringe orders at locations near the crack tip. It was then possible to 

obtain the maximum shear stress distribution used in the stress optic law to determine 

stress intensity data. Figure 5.2 shows a typical fringe pattern.  Note the fringe loops are 

perpendicular to the crack tip, so only a mode I stress field is present.  

(KI)AP was then calculated and plotted versus (r/a)1/2 in order to determine the 

linear zone. The SIF (KI) is the intercept obtained by extrapolating this linear region to 

the y-axis, r = 0. To compare data between different tests, the crack geometry and loading 

were normalized by dividing by p(πa/Q)1/2. A typical plot of normalized SIF (FAP) versus 

(r/a)1/2 is shown in Figure 5.3, where FAP is the normalization of (KI)AP. Thus F is the 

intercept obtained by extrapolating the linear region of this plot to the y-axis. Numerical 

data for the normalized SIF (F), the SIF (KI), and the zone of linearity (r/a)1/2 are shown 

in Table 5-2 for both V-cut and natural crack specimens at different locations along the 

crack border. A typical linear data zone for a specimen slice is shown in Figure 5.4. It 

should be noted that for model 2, the SIF increases for the reading taken away from the 

center. Normally, off center SIF values are expected to be lower than those at the center. 

However, these data still fall within the ±6% experimental error. 

The variation in normalized SIF versus a/t for the natural and V-cut models is 

shown in Figure 5.5 and Figure 5.6 respectively with data taken at the centerline of the 
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crack front. The normalized SIF for the natural crack models is largest in magnitude for 

the shallow crack, model 1, and decreases by 12.5% to a constant value for the deeper 

cracks, models 2 and 3. The V-cut crack models have the opposite trend (Figure 5.6), 

with the shallow crack, model 4, having the lowest normalized SIF and increasing by 

11.7% to a constant value for the deeper cracks, models 5 and 6. When Figures 5.5 and 

5.6 are shown on the same graph (Figure 5.7), the experimental results for the V-cut case 

are equal to or greater than that of the natural crack with the values for the two shallow 

crack models being essentially the same. This implies the existence of a substantial 

dominant boundary effect in this region. 

The variation in normalized SIF along the crack border for the V-cut specimens is 

shown in Figure 5.8. SIF data were collected from the V-cut crack specimen at 0”, 1”, 

and 4” intervals on either side of the crack centerline to determine possible variation in 

SIF along the crack length. In general the SIF is not constant; it decreases by 12.5% for 

the extreme values of model 6. This implies that the ends do have an affect on the SIF 

away from the crack centerline. A linear regression generally shows only a slight 

decrease in normalized SIF, with values just outside the ±6% expected from experimental 

error.  

5.4 Comparisons with Analytical and Experimental Work 

Analytical solutions to SIFs in circular cylinders containing part-through and 

through cracks have been presented in chapter 2. The work of GKD [9] on semi-elliptic 

cracks in circular cylinders and the work of Bowie and Freese [2] on long cracks 

extending the length of the bore in circular cylinders provide the largest range of SIF data 

versus model and crack geometry for direct comparison. The geometry chosen for the 

numerical comparison was the same as the experimental work, with t/Ri = 1.0 (Ri/Ro = 

0.5) where Ri is measured from the center of the cylinder to the fin tip for the finned 

cylinder and a/t and a/c corresponding to values from the experimental specimens. Table 

5-3 lists the normalized SIF F and the SIF KI for numerical and experimental data with 

the above geometry.  
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For semi-elliptic cracks, the normalized SIF versus a/t for the numerical data of 

GKD and these experimental data are shown in Figure 5.9. It can be seen that the data 

qualitatively have the same trends. The SIF starts out high and dips into a relatively 

constant region for a/t between 0.2 and 0.55. Smith and his associates [29] obtained 

results similar to these experiments from semi-elliptic off-axis cracks inserted parallel to 

the fin axis in finned cylinders of the same geometry. Figure 5.10 shows the normalized 

SIF for tests performed by Smith for a/c and a/t similar to these experiments. These off-

axis cracks originate from the point of highest stress on the fin tip.  Such cracks contain 

mixed mode loading (modes I and II), and as a result, require larger stresses to cause 

growth. Therefore, a crack initiated on the axis of symmetry of the fin represents a more 

critical crack case than an off-axis crack. 

The normalized SIF versus a/t for the numerical data of Bowie and Freese and 

these experimental data (both for models containing long cracks) are shown in Figure 

5.11. The data of Bowie and Freese have similar trends to those of semi-elliptic data, 

starting out high then decreasing.  However, instead of flattening out, they begin to rise 

again for a/t greater than about 0.2. The experimental data are expected to have similar 

trends to those of their semi-elliptic counterparts. However, as noted earlier, the exact 

opposite trend is noted, where they start out low and then increase to a relatively constant 

value. The use of the shape factor Q in the normalization scheme is believed to be one of 

the reason for this discrepancy. It was assumed that the shape factor would be sufficient 

for normalizing. However, factors used for normalizing that don’t actually represent the 

case in hand can lead to erroneous results. For instance, compare the cross section of the 

actual cracked region to that of the assumed semi-ellipse. When using the shape factor in 

normalization, the actual area is underestimated by 15.5% for the shallowest crack and 

12% for the deepest crack. This is illustrated in Figure 5.12, which shows a scaled 

drawing of the actual cross section and the corresponding semi-elliptic cross section for 

both the shallow and deep cracks. The result of using the shape factor for normalization is 

that it underestimates the shape of the crack, which in turn does not correctly emphasize 

the importance of the geometry in the problem. Since there is some question as to what is 

appropriate for normalizing this geometry, it proves to be more advantageous to compare 

a normalized SIF containing the geometric effects. This is shown in Figure 5.13 where 
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the SIF with divided pressures is plotted versus a/t for the experimental and numerical 

cases of a long crack in a cylinder. These results show the experimental data more closely 

match the trends of the numerical data, with the magnitude increasing as a/t increases. 

However, this still does not take into account the geometric differences and is not at all 

adequate for comparisons made between different crack types. Therefore, for comparison 

sake, the shape factor Q was retained between the long and short cracks.  

From the analytic solutions, a linear relation has been hypothesized for 

determining the plane strain estimation for the normalized SIF in a finned cylinder, FPSE. 

Namely, 

BF
PSE EXP

GKD

FF F
F

=
 5.1 

where FEXP is the experimental result from the V-cut crack in a finned model, and 

FBF/FGKD is the ratio of corresponding Bowie and Freese’s plane strain solution and 

GKD’s semi-elliptic solution. Table 5-4 shows data for the experimental, numerical, and 

plane strain estimation cases. Clearly, the data for the plane strain estimation are higher 

than the corresponding V-cut case, thus representing a worst case scenario for a crack in a 

finned cylinder. The plane strain case may be the most extreme case, but experiments 

have shown it is not the most likely situation. Tests performed with semi-elliptic cracks 

in finned cylinders have shown that when the crack grows and penetrates the outer 

boundary, it grows only slightly more while still retaining its semi-elliptic shape. This 

leads to the conclusion that the extreme case of plane strain is conservative and does not 

accurately represent the physical situation. Therefore, using a semi-elliptic crack in motor 

grain design is more appropriate.  

5.5 Summary 

In order to better understand the influence of an internal surface crack on a thick-

walled six-finned cylinder, some photoelastic analysis has been completed. From the 
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results of these tests and their comparison with analytical solutions, several conclusions 

can be drawn and are summarized as follows: 

− The cracks grew in a self-similar manner (i.e., a/c ≈ constant). 

− The normalized SIF values for the long V-cut cracks were equal to or 

greater than those of the semi-elliptic cracks of the same depth.  

− Shallow cracks are dominated by internal boundary effects; as a result, the 

normalized SIF for a shallow V-cut crack is essentially equal to that of a 

shallow semi-elliptic crack a finned cylinder. 

− Variations of normalized SIF along the crack border of a V-cut crack in a 

finned cylinder decrease only slightly as one moves away from the center. 

As a result, this case only loosely approximates plane strain. 

−  Normalized SIF for experimental results from semi-elliptic cracks in 

finned cylinders shows similar trends to the numerical work from their 

circular cylinder counterparts. The normalized SIF starts out high for 

small a/t and decreases by 12.5% to a relatively flat region for a/t between 

0.2 and 0.6. 

− Using the shape factor Q on a crack front that is not semi-elliptic in shape 

results in a normalization that does not correctly take into account 

geometric effects in cylinders with long cracks, such as the V-cut-finned 

cylinder. As a result, care must be taken in the interpretation of these 

results.  
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− From the comparisons between numerical and experimental data, a simple 

linear relationship was developed for estimating the plane strain in a 

cracked-finned cylinder. SIFs are highest for this case, and as such, this 

solution constitutes the worst case scenario for a cracked fin. 

− Tests where model penetration has occurred show that under normal 

loading conditions, a crack will propagate to the boundary and stop growth 

shortly after penetration, while remaining approximately semi-elliptic in 

shape. As a result, the use of a semi-elliptic crack in motor grain design 

should prove to be more realistic and accurate.
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Appendix A Figures
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Figure 1.1: Propellant grain geometries. (Adapted from a figure [Sutton 86]) 
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Figure 1.2: Schematic of cracks emanating from the centerline of a fin tip (symmetric crack) and 
from the coalescence of two radii (off-axis crack). 
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Figure 2.1: Schematic of (a) a reference stress fields for a semi-elliptic internal surface crack for (i) a 
uniform tensile stress field and (ii) a linear tensile stress field and (b) a stress distribution due to 
internal pressure for (i) a Lame stress distribution in a thick walled cylinder and (ii) crack face 

loading due to pressure. (Adapted from a figure [Zheng, Glinka, and Dubey 95]) 
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Figure 2.2: Normalized SIF vs. a/t for a long crack in a circular cylinder. (Data from [Kirkhope, Bell, 
and Kirkhope 90]) 

 48 



 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

a/t

(
)

I
I

no
rm

K
K

P
a

π
=

2c
L 

α Ro

Ri

a 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Normalized SIF vs. a/t for semi elliptical surface cracks for α = 0°, Ro/Ri = 2, a/c = 0.8, 
and ν = 0.3, with crack and specimen geometry. (Data from [Tan and Fenner 79]) 

 49 



 

(a) t/Ri = 1.0 and geometry used by GKD 

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

a/t

a/c = 0.25

a/c = 0.5

a/c = 0.75

(
)

(
)

I
I

i
F

K
pR

t
a

Q
π

=

2c

t 

Ri

aφ 

L

 

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

a/t

a/c = 0.25

a/c = 0.5

a/c = 0.75

a/c = 1.0

(
)

(
)

I
I

i
F

K
pR

t
a

Q
π

=

 
3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

a/t

a/c = 0.25

a/c = 0.5

a/c = 0.75

(
)

(
)

I
I

i
F

K
pR

t
a

Q
π

=

a/c = 1.0

 

 (b) t/Ri = 0.5 (c) t/Ri = 2.0 

 

 

 

 

Figure 2.4: Normalized SIF at φ = π/2. (Data from [Gouzhong, Kangda, and Dongdi 95]) 
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Figure 2.5: Plot of the normalized SIF verses a/(Ro-Ri), plane strain case, with model geometry. 
(Adapted from a figure [Bowie and Freese 72]) 
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Figure 2.6: Typical geometries used by Smith and his associates in photoelastic analysis. (Adapted 
from a figure [Smith, Constantinescu, and Liu 02] and [Wang 90]) 
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Figure 2.7: Effect of part-through crack depth on normalized SIF for off-axis cracks inserted parallel 
to the fin axis. (Data from [Smith, Constantinescu, and Liu 02]) 
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Figure 3.1: Schematic of a circular polariscope setup. (Adapted from a figure [Dally and Riley 78]) 
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Figure 3.2: Schematic of (a) Polarizer with axis of polarization in the y-direction (b) Quarter-wave 
plate (β = π/4 ). (Adapted from a figure [Dally and Riley 78]) 
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Figure 3.3: Schematic of the decomposition of the light vectors into components along the principal 
stress directions. (Adapted from a figure [Dally and Riley 78]) 
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Figure 3.4: Schematic of the analyzer decomposition of the light vectors employing Tardy 
compensation. (Adapted from a figure [Dally and Riley 78]) 
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Figure 3.5: Schematic, Post fringe multiplication. (Adapted from a figure [Dally and Riley 78]) 
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Figure 3.6: Schematic, hoop slice in a circular cylinder. 
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Figure 3.7: Photograph of isochromatic fringe patterns with fringe order locations (6 fringes total), 
dark field, no fringe multiplication. 
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Figure 3.8: (a) Schematic of a calibration beam loading and (b) global and local calibration beam 
photographs of typical isoclinic fringes patterns. 
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Figure 3.9: Schematic of three possible crack growth modes (a) Mode I – tensile loading, (b) Mode II 
– in plane shear loading, and (c) Mode III – transverse shear loading. 
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Figure 3.10: Schematic of crack regions and local coordinate system. 
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Figure 3.11: Photograph of isochromatic fringe patterns for mode I crack growth, with the 
isochromatic fringe loops oriented approximately normal to the crack tip. 
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Figure 3.12: Schematic of a typical semi-elliptic crack front. 
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E – Modulus of Elasticity 
µ – coefficient of viscosity 

Figure 4.1: Kelvin Model of PLM-4BR solid at room temperature.
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Figure 4.2: Schematic of the internal star circular cylinder.
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Figure 4.3: Schematic, longitudinal natural crack initiation. 
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Figure 4.4: Typical semi-elliptic natural crack grown under pressure. 
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Figure 4.5: (a) Test fixture for machining and, (b) saw blade for making V-cut crack. 
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Figure 4.6: Schematic of the joining process for a V-cut specimen. 
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Figure 4.7: Schematic of calibration beam geometry.
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 Figure 4.8: Schematic of the thermal oven setup. 

 73 



 

 

Breakthrough points 

Top of fin surface 
containing crack 

 

Figure 4.9: Specimen 3a crack growth and penetration showing breakthrough points. 
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Figure 4.11: Slice extraction schematic for (a) V-cut crack and (b) natural semi-elliptic crack fronts 
including typical slice section pictures. 
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Figure 4.12: Refined polariscope with blowup of multiplication unit. (Adapted from a figure 
[Epstein, Post, and Smith 84]) 
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Figure 5.1: Photograph of a typical semi-elliptic crack profile and cross section. 
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Figure 5.2: Typical fringe pattern of a V-cut specimen slice, Mode I loading only. The photograph 
was taken in a laser circular polariscope with no fringe multiplication. 
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Figure 5.3: Typical plot of FAP vs. (rave/a)1/2. 
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Figure 5.4: Typical linear data zone for a V-cut slice. 
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Figure 5.5: Variation of the normalized SIF for natural crack models 1-3 at the deepest point (θ = 0). 
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Figure 5.6: Variation of normalized SIF for V-cut models 4-6 at the centerline of the crack front. 
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Figure 5.7: Normalized SIF for the natural and V-cut specimens at their centerlines. 
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Figure 5.8: Variation of normalized SIF verses normalized length (distance from centerline divided 
by 4”) for V-cut crack models 4-6. 
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Figure 5.9: Normalized SIF for numerical data from semi elliptic cracks in circular cylinders (data 
from [Gouzhong, Kangda, and Dongdi 95])and experimental data from internal star cylinders with 

Ri/Ro = 0.5. 
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Figure 5.10: Comparison of experimental results from tests performed on internal star circular 
cylinders containing semi-elliptic cracks. Cracks were inserted off-axis parallel to the fin surface in 

the tests data from [Smith, Constantinescu, and Liu 02]. 
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 Figure 5.11: Normalized SIF for numerical data from long cracks in circular cylinders (data 
from [Bowie Freese 72]) and experimental data from long cracks in internal star cylinders with Ri/Ro 

= 0.5.
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Figure 5.12: Actual (top) and semi-elliptic (bottom) cross-sections for (a) the shallow crack with a = 8.13mm and c = 184.8mm and (b) deep crack with a 
= 19.6mm and c = 175mm. Drawn to scale.
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igure 5.13: SIF with pressure normalized out for the experimental and numerical data from the 
long crack models (numerical data from [Bowie and Freese 72]).
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Table 2-1: Normalized stress intensity factors ( IK P aπ )for semi-elliptical surface cracks in 
pressurized cylinders with 0.8, and ν = 0.3. 

 

α1 (deg) 0 15 30 45 60 75 90 

Ro/Ri = 2, a/c = 

a/t          
2α/π

  0.0 0.167 0.333 0.5 0.667 0.833 1.0 

0.2 1.617 1.604 1.588 1.565 1.565 1.604 1.782 

0.3 1.55 1.546 1.532 1.515 1.528 1.613 1.707 

0.4 1.492 1.473 1.469 1.455 1.481 1.573 1.684 

0.5 1.477 1.45 1.447 1.432 1.468 1.551 1.677 

0.6 1.49 1.48 1.46 1.463 1.473 1.582 1.703 

0.7 1.523 1.511 1.48 1.457 1.47 1.576 1.727 

0.8 1.623 1.607 1.582 1.526 1.52 1.536 1.669 

Source: data in [Tan and Fenner 7

 

                                                

9] 

 
1 α is defined in Figure 2.3 
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Table 2-2: Normalized SIF, ( )( )I I iF K pR t a Qπ=  for semi-elliptical surface cracks in 

pressurized thick-walled cylinders.  

 

   φ (degree) defined in Figure 2.4 
t/Ri a/c a/t 5 15 30 50 70 90 
1.00 0.25 0.2 1.589 1.734 2.002 2.276 2.434 2.474 

 0. 1.685 0 2  2.29 2.473 31 
 0. 1.807 1 2  2.44 2.737 53 

 0.8 1.889 1.945 2.178 2.649 3.201 3.472 
 070 7 2  2. .363

  0.4 2.113 2.041 2.073 2.184 2.265 2.293 
 278 6 2. .384
 490 9 2. .755
  434 7 2. .359
 397 6 2. .201
 0 2.496 1 2. .220
 0 2.697 2 2. .463

 
 

4 
6 

1.80
1.89

.033

.112
4 
0 

2.5
2.8

 
 0.50 0.2 2.  2.03 .112 263 2  2.397 

 0.6 2.  2.15 2.156 271 2  2.432 
 

0.75
0.8 2.
0.2 2.

 2.31
 2.34

2.311 
2.303 

503 2
327 2

 2.886 
 2.373 

 0.4 2.  2.27 2.197 187 2  2.208 
 
 

.6 

.8 
 2.33
 2.48

2.219 
2.354 

200 2
372 2

 2.231 
 2.518 

 Source:  [Gou ang on data in zhong, K da, and D gdi 95] 
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Table 2-3: Summary of  solutions to circular cylinders.  the application ranges of the

 

 

Ri - Inner Radius WF - Weight Function 

Ro - Outer Radius BEM - Boundary Element Method 

t - Ro-Ri FEM - Finite Element Method 

a - Crack Depth BC - Boundary Collocation 

c - Half Crack Length  

 

 

Name a/t a/c t/Ri Method Crack Type 

Glinka & Shen 0 – .2 –  rt-through0. 0.8 0 1.0 0.5 and 0.25 FW pa

Atluri 

Kathiresan 
0.5 and 0.8 n d  t-through

& 
0.2 a d 1.0 0.5 an  1.0 FEM par

Raju &Newman  –  – d  t-through0.2 0.8 0.2  1.0 0.1 an 0.25 FEM par

Tan & Fenner .2 – . d  t-through0 0.8 0 8 1.0 an  2.0 BEM par

GKD  –  
.0,

.0
 t-through0.2 0.8 0.25 – 1.0 

0.5, 1  and 

2  
BEM par

Kirkhope

& Kirkhope 
 1.25 FEM through 

, Bell 
0.05 – 0.5 --- 0.5 –

Yan & Dang 0 – 1.0 --- 0.25 – 1.5 BEM through 

Bowie & Freese 0.1 – 0.9 --- 0.25 – 1.5 BC through 
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Table 3 ossible arra ents of the c ar pola

ngement Quarter-wave plates Polarizer and analyzer Field 

 

-1: P ngem ircul riscope. 

 
 

Arra

1* Crossed Crossed Dark 
2 Cro  Light ssed Parallel

3 Paralle d Light l Crosse

4 Parallel  Dark Parallel

 

 

 

                                                 
* Arrangement shown in Figure 3.1and used in ESM P&F Lab 
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Table 4-1: Mechanical Properties for PLM-4BR. 

 

 

Temperat

Modulus 
of 

E ksi 
(GPa) 

Stress Optical 
 

ge/m) 

Tensile 

(M

Coef. of 
Expansion 

°
(PPM/°C

Poisson’s 
Ratio 

ν  
ure Elasticity, Constant, “C”

psi/fringe/in 
(kPa/frin

Strength 
psi PPM/

Pa) 
F 

) 

Room 
Temperature 
72°F  (22°C) 

405  
(2.8) 

 
) 

90
(

39 
(70) 0.36 60 

(10.5
00 

60) 

Stress 
Freezing 

perature 
180-210°F 
(82-99°C) 

2.0  
(0.014) 

1.7 
(0.31) 

>200 
(>1.5) 

90 
(162) 0.500 Tem

Source: data in [Measurements Group Inc. bulletin S-116-H, 92] 
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Table 5-1: Test Conditions and Crack Geometries. 

 

Model 

name 

Pmax 

(kPa) 

Psf 

(kPa) 
a (mm) a/c a/t Tsf (°F) 

fσ 

(kPa/Fringe/mm)

1+ 121  6 205 0.355  41 8.13 0.64 0.22 

2+ 12 5 0.357 9 46 14.6 0.63 0.39 205 

3+2 167 8 3 0.355 2 19.6 0.60 0.53 200 

4* 41 41 8.13 0.044 205 0.354 0.22 

5* 41 41 14.6 0.080 205 0.356 0.39 

6* 23 23 19.6 0.112 0.53 210 0.356 

 

T freez erature 

f al fringe constant 

max - Maximum pressure 

Psf - Stress freezing pressure 

a - crack depth 

c - half crack length 

t - distance between fin tip and cylinder wall 

                                                

sf - Stress ing temp

σ - Materi

P

 
+ Natural crack specimens 
2 Cylinder length 335.75mm 
* V-cut crack specimens 
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Table 5-2: Results of stress intensity data for the three natural and four V-cut crack specimens. 

i  1-3 are natural crack models, 4-6 are V-cut crack models 
xave fined in Figure 4.11

Slice ID M1-S-60ave M1-S-0 M2-S-60ave M2-S-0 M3-S-60ave M3-S-0 
Linear 
Zone 
(r/a)1/2

0.208- 
0.450 

0.194-
0.467 

0.171- 
0.386 

0.187-
0.434 -- 0.120-

0.245 

KI 0.3415 0.358 0.506 0.473 -- 0.329 
F 2.14 2.24 2.11 1.98 -- 1.94 

Slice ID M4-S1/5ave M4-S3 M5-S1/5ave M5-S2/4ave -S3 M4-S2/4ave M5
Linear 
Zone 

(r

- .19
0.471 

0.223- 
0.544 -- 8

/a)1/2

0.284
0.493 

0 4- 0.1 2- 0.176- 
0.523 0.601 

KI 0.447 0.42 0. .709 9 1 463 -- 0 0.68
F 2.15 2.02 2 .56  5 .22 -- 2 2.49

Slice ID M6-S1/5ave S2/ M6M6- 4ave -S3 
Linear 
Zone 

(r/a)1/2

-
0.543 

227
0.471 

0.1
0.466 

0.136 0. - 53-

KI 0.378 0.415 0.432 
F 2.16 2.37 2.47 

 
 
 
 
 
M - Model number,
S-  - Average data from location x which is de  

I - 
F - Normalized SIF 
 

K SIF 

IKF Q
p aπ

=  
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Table 5-3: Numerical and experimental normalized SIF corresponding to experimental geometry 

 

 

Subscript key: 

Exp - Expe tal 

BF - Bowie & Freese 

GKD - Guozhong, Kangda, & Dongdi 

a/c (KI) (FI)BF I)BF (FI)GKD (K

listed below with Ri/Ro = 0.5 evaluated at the centerline of the crack. 

Model a/t (FI)Exp Exp (K I)GKD

1 0.646 22 0.36 2.77 0.57 2.34  0. 2.24 0.37 

2 0.63 9 0.47 2.99 0.93 2.25  5 0.3 1.98 0.54 

3 0.603 .53 0.33 3.17 0.70 2.27 0 1.94 0.39 

4 0.044 0.22 2.22 0.46 2.77 0.57 2.70 0.56 

5 0  0. 2. 3 .08 0.39 2.49 69 99 0.8 2.65 0.73 

6 0.11 3 0.43 3.17 0.57 2.70 2 0.5 2.47 0.48 

rimen
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Table 5-4: Experimental data with plane strain estimations for finned cylinders. 

 

I)EXP - Experimental results for finned models 

 Freese’s plane strain solution to a long crack in a circular cylinder 

 semi-elliptic crack in a circular cylinder 

 ion for long cracks in finned models 

 a a/c (FModel a/t I)EXP (FI)BF (FI)GKD (FI)PSE

1 3 .64 0.22 2.24 2.77 2.34 2.65 8.1 0 6 

2 6 .63 0.39 1.98 2.99 2.25 2.63 14. 0 5 

3 6 .60 0.53 1.94 3.17 2.27 2.71 19. 0 3 

4 8.13 0.044 0.22 2.22 2.77 2.70 2.28 

5 14.6 0.08 0.39 2.49 2.99 2.65 2.81 

6 .6 .11 0.53 2.47 3.17 2.70 2.90 19 0 2 

(F

(FI)BF - Bowie

(FI)GKD - GKD’s solution to a

(FI)PSE - Plane strain estimat
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