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Computational Methods for Control of Queueing Models in Bounded
Domains

José Maŕıa Menéndez Gómez

(ABSTRACT)

The study of stochastic queueing networks is quite important due to the many applications
including transportation, telecommunication, and manufacturing industries. Since there is
often no explicit solution to these types of control problems, numerical methods are needed.
Following the method of Boué-Dupuis, we use a Dynamic Programming approach of opti-
mization on a controlled Markov Chain that simulates the behavior of a fluid limit of the
original process. The search for an optimal control in this case involves a Skorokhod problem
to describe the dynamics on the boundary of closed, convex domain. Using relaxed stochastic
controls we show that the approximating numerical solution converges to the actual solution
as the size of the mesh in the discretized state space goes to zero, and illustrate with an
example.

This work was supported in part by NSF grant DMS-0102266.
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Chapter 1

Introduction

The study of queueing networks has a wide variety of applications. We find this in different
manufacturing industries, telecommunications, and transportation. One substantial chal-
lenge is being able to control the system of queues in order to satisfy specific purposes, for
example, to provide the fastest service at the smallest cost possible.

Our work provides a numerical approximation for a deterministic fluid control problem. The
dynamics of this system is determined by exogenous arrival rates and service rates; it is
complicated by constraints in the minimum and maximum capacity of each queue. Given an
initial state, the amount of units waiting for service at each queue, the control mechanism will
attempt to empty the system while minimizing a prescribed cost functional which depends
on the configuration of the system at a given point in time.

In the following paragraphs we first provide a broad overview of the problem, and we explain
how our work fits in the context of the existing literature, and finally we provide an overview
of the structure of this document.

Consider a network where service is provided at several stations in the form of different tasks.
Customers line up in queues demanding services of one task at a time. Once a customer
receives service of one task, it moves to the next queue to wait for service of another task
from another server or the same server (reentrant queues) or leaves the system. Customers
enter the system at arrival rates following a Poisson process. In general a customer could
enter the system at any queue. At each queue, a customer waits in line and once at the
front of the queue the customer receives service at an exponentially distributed amount
of time; tasks may be performed at different service rates. The rate at which customers
arrive at each queue depends on the exogenous arrival rate for that queue and the effective
service rate of the preceding queue. One constraint on the queues is that each of them has
a maximum capacity. Another obvious constraint is that at each queue there cannot be a
negative number of customers. It is possible to have other linear constraints to determine the
set of all possible combinations of the number of customers at each queue, the state space
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Chapter 1. Introduction 2

G, which is a convex, closed and bounded subset of Rn including 0. Here n is the number
of queues. The configuration of the system determines how the system reacts to an attempt
from any queue to violate these constraints. For example, when the system attempts to
exceed the capacity of one the queues, one scenario would be to drop the customer out of the
system. Another possibility is to push the customer back into the previous line. One option
to enforce these constraints is via the design of controls. Instead, we choose to incorporate
a reflection mapping directly in the dynamics of the system. The distribution of service at
the service station is determined by a control (measurable) function that takes values from a
convex and compact control space U. This describes a stochastic queueing control problem.

Control problems of stochastic queueing networks are often approximated by fluid, determin-
istic models because of the close connection between the stability of the stochastic network
and the corresponding fluid model (see Bäuerle [8]). Also we note that often the latter are
easier to solve and produce the desired stability [13]. These fluid limit processes have been
studied and applied very amply (see [1, 2, 5, 13, 14, 17, 21, 31]). Under some conditions
such as smoothness of the value function, the relationship between the solution of the Dy-
namic Programming Principle and the solution of the Hamilton-Jacobi Bellman equation is
established; in many cases, however, the value function is not “smooth enough” and either
the solution is only local or existence/uniqueness cannot be guaranteed. Crandall and Lions
[16] introduced the notion of a viscosity solution for the Hamilton Jacobi equation, allowing
for global solutions where the classical method of characteristics failed.

An inherent characteristic of the fluid models arising from queuing networks is the presence
of reflecting boundaries. This is commonly addressed by incorporating reflection mappings
of the appropriate class of functions. The extent of the study of this problem comprises a
variety of domains and types of functions. Harrison and Reiman [26] utilize this approach, the
Skorokhod problem, to heavy traffic limits in queueing networks with constant reflections
on a face. However they consider only continuous functions on the nonnegative orthant,
whereas Dupuis and Ishii [22] admit functions that are right continuous with limits on the
left and with domains on more general convex sets.

Uniqueness theorems for many types of Hamilton-Jacobi equations are standard in the the-
ory of viscosity solutions (see [7]). However the particular form of the equation for our
problem falls outside the scope of those results. Recently however there has been some
progress on extending uniqueness results to problems of our type (see [20]). Since we will
not be using those results there is no need to describe them further here. We only mention
them as a possible alternative approach to our problem. For that reason, and as a general
tool, numerical solutions are attempted. One approximation scheme is a finite difference
approximation to the HJB equation. Crandall and Lions [15] developed this method for the
continuous function problem on an open set. Souganidis in [34] generalized this method to
other approximation schemes.

An alternative to solving the optimal control problem of the fluid deterministic model via
solving the HJB equation is to approximate its solution by solving a discrete controlled
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Markov Chain-based problem. The Markov Chain approximation technique was introduced
around 1977 by Kushner and later used by Kushner and Dupuis [28]. In [12], Boué and
Dupuis present a thorough treatment of such an approximation technique for deterministic
control problems, under certain assumptions, in particular, continuity of the value function.
They provided a proof of convergence of the solution of the approximating problem to the
actual solution of the deterministic control problem via relaxed controls. In their work they
deal with unbounded controls and although their state space is bounded, they do not consider
reflecting dynamics. In our study we restrict the control space to a convex and compact set,
which is more realistic for the queuing network applications, but we consider the complexity
of reflecting dynamics. As part of our work, we include the proof of continuity of the value
function. We continue to use the stochastic relaxed control representation.

In Chapter 2, we begin by describing the basic components of our deterministic/fluid problem
and of its limiting approximation version, as well as the technical hypotheses related to the
latter. We lay out the specifics of the dynamics governing the state as the solution of a
differential equation with initial condition, the characteristics of the state space described
as the intersection of a set of linear inequalities, and the basic properties of the control
space. We also include a description of the Skorokhod problem, the mechanism to enforce
the constraints on the state space (the reflection dynamics), hypotheses on the bounds and
Lipschitz conditions of the velocity function and the cost function, and the definitions of the
cost and value functions as well.

A basic assumption commonly made is that the value function is continuous. We prove this
assertion in Chapter 3 by relying on results such as convergence of the cost functional and
compactness of the set of relaxed controls from Chapter 5. We also show the link between
the value function and the solution to the Dynamic Programming Principle as an alternative
approach to showing uniqueness of the solution to the optimal control problem.

Chapter 4 describes the Markov Chain (MC) method we use to solve the control problem in
a discretized state space as an approximation to the fluid model of Chapter 2. We specify
the conditions that are necessary for consistency with the fluid model and describe how
the Markov Chain is constructed by specifying the transition probabilities and time lapses
in two similar methods. We define the value function on this discretized model, define a
discretization error function, and describe the computational method to solve the discrete
space optimal control problem as well as the conditions to guarantee its solution.

The core chapter of this work is Chapter 5. In this chapter we show that the value function in
the discrete model converges to the value function of the continuous model under the stated
conditions. For this purpose we represent the control functions as a compact set of relaxed
controls, show existence and uniqueness of the solution of the corresponding equation, and
prove the continuity of the mapping that defines the cost functional from the initial state
and the functions of relaxed controls and approximation errors.

Finally, Chapter 6 shows an example to illustrate how the numerical method is implemented,
as well as the verification of the required hypotheses.



Chapter 2

Hypotheses

We begin by describing the basic components of our problem and the technical hypotheses
regarding them. We draw from the work of Day [17, 18] for the representation of the state
space and the description of the dynamics. The state space G ⊂ Rn will be a compact, convex
polyhedron containing 0. ∂G will denote its boundary and Go its interior. G is defined by a
system of linear inequalities

x · ni ≥ ci, ci ≤ 0 (2.0.1)

where i = 1, 2, . . . , N ; ni is assumed to be a unit vector for each i, and I(x) = {i : x ·ni = ci}
is the set of active constraints for x ∈ G. The boundary ∂G is the union of “faces” ∂iG =
{x ∈ G : x · ni = ci}. Associated with each constraint i there is a vector di that has to be
provided in the problem statement and which is normalized by

di · ni = 1. (2.0.2)

The role of the restoration vector di is to provide a direction to drive the system back into the
state space when trying to escape through face i. For each x ∈ ∂G we define the normalized
convex combinations of the di for the active constraints, that is

d(x) =

∑
i∈I(x)

αidi : αi ≥ 0,

∥∥∥∥∥∥
∑

i∈I(x)

αidi

∥∥∥∥∥∥ = 1

 . (2.0.3)

We can expand the definition (2.0.3) to all G by defining d(x) = 0 if x ∈ G0. We need
to make some technical hypotheses on the ni and di to insure important properties of the
Skorokhod problem (see Section 2.2 below for details).

In the following two sections we describe the dynamics of the system and provide a more
detailed explanation of the Skorokhod problem.

4
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2.1 System dynamics

Consider a network consisting of n queues. Customers arrive from outside the system to
the queues at (possibly time dependent) rates given by the column vector (all our vectors
are column vectors) β = [β1, . . . , βn], not necessarily the same rate at each queue. The
servers allocate their effort according to a measurable function u(·) ∈ U = {u : R+ →
U, u measurable}. The function u(t) = [u1, . . . , un] takes values in a convex and compact
metric space of admissible control values U. Suppose there are m servers. Server i offers
service to queues {Si} . Notice that ∪m

i=1Si = {1, 2, . . . , n}. Each server has to allocate
its total capacity among its queues; for example, if one of the servers has queues Sj, then∑

i∈Sj
ui = 1. Queue i receives service at a maximum rate si which once affected by the

control will influence the rate at which customers arrive to the next queue or leave the
system. This combined effect is summarized in a matrix M, one column per queue. The
matrix M affects the vector u(t) to generate the appropriate contributions to the dynamics
ẋ.

For the sake of illustration, we use an example of one server and two queues, with exogenous
arrivals only in one queue as depicted in Figure 2.1. The same system will be used in Chapter
6 as an example of how to apply the numerical method, which is the primary purpose of this
work. Many other configurations are possible; we refer the reader to [18, 21, 31] for other
examples of networks.

input
x1

x2

exit

-
6 $

%&
6

e

Figure 2.1: One server, two queues

In this system, matrix M takes the form

M =

[
s1 0

−s1 s2

]
.

This class of examples is described more generally by a preliminary description of the state
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x(t), that is the length of the queues at time t, given by

ẋ(t) = β −M u(t). (2.1.1)

We now impose the non-negativity condition together with a bound on the capacity of each
queue, say 0 ≤ xi ≤ Ci. The Skorokhod problem provides a way to model these constraints by
adding some multiples of the corresponding restoration vector (also called reflecting vector to
the system dynamics). For the same example mentioned above, if x1 = C1, we need to push
out of the system any extra request for service coming into queue 1 thus a reflecting vector
d̃1 = [−1 0]T , whereas a reflecting vector d1 = [1 − 1]T would take action if x1 = 0 with an
effect that would be equivalent to pulling out service request from queue 2 and reallocating
it to queue 1. A more practical interpretation is that of slowing down the activity in the
server that affects queue 1. The remaining reflecting vectors are

d2 =

[
0

1

]
, x2 = 0 and d̃2 =

[
0

−1

]
, x2 = C2.

as shown in Figure 2.2.

x1

x2

C1

C2

@
@

@Rd1

6 d2

�

d̃1

?

d̃2

Figure 2.2: Reflecting vectors

More formally, this corresponds to the Skorokhod dynamics

ẋ(t) = π(x(t), v(t)) (2.1.2)

where v(t) (which we will refer to as “velocity”) is the same as the ẋ(t) in (2.1.1). Actually,
v is a function of x and u (v = v(x, u)). The function π(x, v) is the velocity projection map
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that for a control u and any x ∈ G, we define as follows.

π(x, v) =

{
v, if x ∈ Go

v +
∑

I αi di, if x ∈ ∂G,
(2.1.3)

where the αi satisfy the complementarity conditions

αi ≥ 0, ni · w ≥ 0, αi(ni · w) = 0, (2.1.4)

with w = π(x, v) = v +
∑

I αi di, for x ∈ ∂G.

Now we expand the definition of the dynamics of our model as{
ẋ(t) = π(x(t), v(x(t), u(t)))

x(0) = x0 ∈ G
(2.1.5)

together with (2.1.1), (2.1.3), and (2.1.4).

2.2 The Skorokhod problem

We present here the Skorokhod Problem (SP) whose definition (Definition 2.2.1) we tran-
scribe from [2] (also see [28]) with the notation adapted to match ours. We should see this
definition as an expansion of (2.1.5):{

ẋ(t) = π(x(t), ẏ(t))

x(0) = x0 ∈ G.
(2.2.1)

For a function of bounded variation η : [0, ∞) → Rn, we let |η|(t) denote the total variation
over the interval [0, t]. Let D+([0, ∞) : Rn) be the set of functions that are continuous from
the right with limits from the left, with domain [0,∞) and range Rn. Then the Skorokhod
problem is defined as follows.

Definition 2.2.1. Let y ∈ D+([0, ∞) : Rn) be given. Then (x, y, η) solves the Skorokhod
problem for y (with respect to G and di, i = 1, 2, . . . , N) if x(0) = y(0), and if for all
t ∈ [0, ∞)

1. x(t) = y(t) + η(t),

2. x(t) ∈ G,

3. |η|(t) <∞,

4. |η|(t) =
∫

[0, t]
1{x(s)∈ ∂ G}d|η|(s),
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5. There exists a Borel measurable function γ : [0, ∞) → Rn
+ with γ(t) ∈ d(x) as in

(2.0.3) (d|η|−almost everywhere) as and such that

η(t) =

∫
[0, t]

γ(s) d|η|(s).

Given a function y : [0, T ] → Rn with y(0) ∈ G, the Skorokhod problem consists of finding
a function x : [0, T ] → G such that

x(t) = y(t) +

∫
[0, t)

γ(s) d|η|(s).

We want to refer to the solution map using the notation

Γ : Rn → G (2.2.2)

Γ(y(·)) = x(·)

is called the Skorokhod map ([17]).

Our model uses

y(t) = y(0) +

∫ t

0

v(x(s), u(s)) ds

as the input for the Skorokhod problem.

With this notation, we can represent (2.1.5) as
x(t) = y(t) +

∫
(0, t]

γ(s) d|η|(s)
y(t) = x0 +

∫ t

0
v(x(s), u(s)) ds

y(0) = x0

(2.2.3)

or equivalently 
x(·) = Γ(y(·))
y(t) = x0 +

∫ t

0
v(x(s), u(s)) ds

y(0) = xo.

(2.2.4)

The integral in the first equation of (2.2.3) takes care of the reflecting boundary property,
with γ determining the direction of the reflection and η the intensity.

As Dupuis and Ishii point out in [22], when considering differential games associated with
queueing systems (as in [1] and [21]) only absolutely continuous functions are relevant, as
it is the case according to the definition of our control problem; in this case the velocity
projection map ẋ(t) = π(x(t), ẏ(t)) with initial conditions is the differential version of the
Skorkhod problem.

The following assumption is fundamental for uniqueness of the solution to the Skorokhod
Problem (SP).
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Assumption 2.1 There exists a compact, convex set B ⊆ Rn with 0 ∈ B0, such that for
each i = 1, . . . , N and z ∈ ∂B, and any inward normal v to B at z,

|z · ni| < 1 implies v · di = 0.

One of the consequences of this assumption is Theorem 2.2 below, as found in [22], which
states the nature of the Lipschitz continuity of Γ.

Existence of solution to the Skorokhod problem is related to the following assumption.

Assumption 2.2.2. Let F = I(x), x ∈ ∂ G. We define NF to be the n× |F | matrix whose
columns are ni (note that |F | ≤ N from above), and ΓF is the n×|F | matrix whose columns
are di, then we also assume that

NT
F ΓF (2.2.5)

is coercive. This means that for any ai ∈ R, i ∈ F, not all zeros,(∑
F

aini

)T (∑
F

aidi

)
> 0. (2.2.6)

Theorem 2.2. Assume the conditions of Assumption 2.1 and (2.2.5); let (φ1, ψ1, η1) and
(φ2, ψ2, η2) be any two solutions of the corresponding SP, where (ψ1, ψ2) ∈ D([0, T ]); Rn)2.
Then there exists CΓ <∞ (which is independent of T ) such that

sup
t∈[0, T ]

|η1(t)− η2(t)| ≤ CΓ sup
t∈[0, T ]

|ψ1(t)− ψ2(t)|,

sup
t∈[0, T ]

|φ1(t)− φ2(t)| ≤ CΓ sup
t∈[0, T ]

|ψ1(t)− ψ2(t)|.

In particular, CΓ is bounded above by the diameter of any set B satisfying Assumption 2.1,
plus 1.

In the same paper, Dupuis and Ishii assume the existence of a projection from Rn into G
to prove the existence of solution to the Skorokhod problem on a polyhedral cone. See
Theorems (3.2) and (3.3) of [22]. Day provides a unified treatment of existence in [17] via
the set of complementary conditions (2.1.4), also under Assumption 2.1, for closed convex
polyhedra. We refer the reader to [18] for an example on the verification of Assumption 2.1.
For the rest of our work, we make this assumption.

2.3 Hypotheses on a Controlled Fluid System

Let
τε = inf {t ≥ 0 : ‖xx0, u(t)‖ < ε} (2.3.1)
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where xx0, u is the process with that begins at x0 and uses a control u. Notice that as ε ↓ 0,
τε increases.

Our definition of τ0 is that

τ0(x(·)) = lim
ε↓0

τε (= +∞ allowed). (2.3.2)

This is the first time the system approaches the origin in the limit. It is important for us
to consider this definition given that our process x(·) is defined on the set D+([0, ∞) : Rn).
Due to the discontinuities, in general τ0(x(·)) ≤ inf{t ≥ 0 : x(t) = 0}; equality would hold,
however, for continuous functions x(·). We need to point out that for any control if y(0) = 0
then τ0 = 0.

Consider the cost functional

J(xo, u(·)) =

∫ τ0

0

L(y(t), u(t)) dt (2.3.3)

with value function
V (x) = inf

u(·)∈U
J(x, u(·)), ∀x ∈ G. (2.3.4)

From the definition of the cost functional and of τ0 it is clear that

J(0, u(·)) = 0.

The formulation of our control problem assumes the following hypotheses of the control set
U , the cost function L and the velocity v.

(i) U is compact

(ii) |v(x, u)| ≤ C1, ∀ (x, u) ∈ G× U ; v ∈ C(Rn × U : Rn) (2.3.5)

(iii) |v(x, u)− v(y, u)| ≤ Cv|x− y| ∀x, y ∈ G, u ∈ U
(iv) inf

x∈G, u∈U ; |x|>δ
L(x, u) > 0, each δ > 0; L ∈ C(Rn × U : R+)

(v) L(x, u) ≤ C2, ∀ (x, u) ∈ G × U

(vi) |L(x, u)− L(y, u)| ≤ CLm(|x− y|) ∀x, y ∈ G, ∀u ∈ U, m(t) → 0 as t ↓ 0

for some constants Cv, C1, C2 and CL. Usually m is assumed to be nondecreasing.



Chapter 3

Continuity of the Value Function and
Dynamic Programming

A common and basic assumption in the literature is that the value function V (x) of the
problem in consideration is continuous. In Section 3.2 we show that this is the case under
the assumptions of Chapter 2 and some additional assumptions.

This result is particularly important when using a Dynamic Programming approach to op-
timal control problems. The value function (2.3.4) satisfies a functional equation called the
Dynamic Programming Principle (DPP) and its infinitesimal version is the Hamilton-Jacobi-
Bellman (HJB) equation, which is a first order nonlinear partial differential equation. The
basic idea is that a function that solves the HJB equation (often in the viscosity sense) is a
solution to the DPP and therefore the optimal solution to the control problem. Moreover,
if the limit of a sequence of discrete versions of the HJB equation is a continuous function,
then this function is the optimal solution of the control problem. We refer the reader to [7]
for more in depth coverage of this approach. A brief discussion of the dynamic programming
method will be the focus of Section 3.1.

3.1 Dynamic Programming and the Hamilton-Jacobi

Bellman Equation

The purpose of this section is to briefly present the Dynamic Programming method and the
Dynamic Programming Principle (DPP) derived from the former and its connection with
the Hamilton-Jacobi Bellman (HJB) equation. The importance of the DPP in our work is
two-fold: On the one hand we use the DPP in the proof of upper semicontinuity of the value
function V (x) as part of the proof of Theorem (3.2.1); on the other hand, it will be used in
the numerical method to be developed in Section 4.3.

11
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Dynamic Programming is an optimization method developed by Richard Bellman. For an
introduction on this topic see Fleming and Rishel [25]. The focus on the value function as
the central quantity comes from the Dynamic Programming method.

Bardi and Capuzzo-Dolcetta [7] explain the derivation of the Dynamic programming Prin-
ciple in the following manner. Assume that for each state x there is an optimal control u∗

so that

V (x(0)) = J(x, u∗) =

∫ τo

0

L(y(s), u∗(s)) ds.

Then, for any t > 0,

V (x(0)) =

∫ t

0

L(y(s), u∗(s)) ds+

∫ τo

t

L(y(s), u∗(s)) ds.

Under some conditions and using an argument based on the semigroup property we have

V (x(0)) =

∫ t

0

L(y(s), u∗(s)) ds+ V (yu∗(t))

where V (yu∗(t)) is the value function at the state y reached at time t following an optimal
control u∗.

If a function V solves the DPP, under certain conditions it solves the Hamilton-Jacobi Bell-
man equation in the classical or viscosity sense. This connection as well as many applications
have received ample attention [1, 12, 19, 30, 6, 16, 15].

For the specific conditions of our problem, that is, under assumptions of Section 2.3 it can
be shown that for any 0 ≤ t

V (x0) = inf
u(·)∈U

{∫ t∧τo

0

L(y(s), u(s)) ds+ V (y(t ∧ τo))
}
. (3.1.1)

This equation is called the Dynamic Programming Principle (DPP).

Also notice that by 2.3.5(ii) and (iii) for every ε > 0 there is a δ > 0 such that

inf
x∈G,|x|≥ε

V (x) ≥ δ. (3.1.2)

Following the work of Kushner and Dupuis [28] and Boué and Dupuis [12], in Chapter 4 we
use the DPP in the numerical solution to the Markov Chain-based problem that approximates
the solution to the control problem from Chapter 2. The value function and the dynamic
programming principle for the Markov chain problem are (4.0.13) and (4.0.14) respectively.

3.2 Continuity of the value function

We continue to consider the problem introduced in Chapter 2 and all the hypotheses, in
particular (2.3.5). We also assume the results of the following lemmas from Chapter 5:
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Lemma 5.2.1 (compactness of the controls,) Lemma 5.2.3 (density of the control space,) and
Lemma 5.2.4 (existence and uniqueness of solution of the Skorokhod problem and continuity
of the mapping from an initial value and a control function into the process xx0, u(·)(·) from
(2.1.5)). The main result of this chapter is the following theorem.

Theorem 3.2.1. For a given x0 ∈ G assume

(a) V (x) <∞ for all x ∈ G and

(b) V (x) is continuous at 0.

Then V (·) is continuous.

The proof of the theorem will use the following lemmas.

Lemma 3.2.2. Under the hypotheses of Theorem 3.2.1 and ‖x0‖ > ε in G, suppose x(t) =
xxo, u(·) and J(x0, u(·)) <∞. Then either τ0 <∞ or 0 is a limit point of x(t) as t→∞.

Proof. Suppose the conclusion is not true, that is, τ0 = ∞ and there exists ε > 0 with
‖x(t)‖ ≥ ε all t < ∞. We will show that (a) would be violated. Recall (3.1.2). Since

δ ≤ V (x0) ≤ limT→∞
∫ T

0
L(x(s), u(s)) ds there exists T1 ≥ 1 with

∫ T1

0
L(x(s), u(s)) ds > δ/2

by (2.3.5 (iii)). We have ‖x(T1)‖ ≥ ε, δ < V (x(T1)) ≤ limT→∞
∫ T

T1
L(x(s), u(s)) ds thus there

exists T2 > T ∨ T1,
∫ T2

T1
L(x(s), u(s)) ds > δ/2. Continuing in this way there exists Tn ↑ ∞

with
∫ Tn

Tn−1
L(x(s), u(s)) ds > δ/2. Therefore∫ Tn

0

L(x(s), u(s)) ds > n δ/2 ⇒ J(x0, u(·)) = ∞

in contradiction with the hypothesis that J(x0, u(·)) <∞.

Lemma 3.2.3. Under the hypotheses of Theorem 3.2.1 and for any x0 ∈ G, u(·) : [0, ∞) →
U, t < τ0 the cost functional J satisfies

J(x0, u(·)) ≥
∫ t

0

L(x(s), u(s)) ds

Proof. From the definition of the cost functional and the value function we have

J(x0, u(·)) =

∫ t

0

L(x(s), u(s)) ds+ lim
T→∞

∫ T∧τ0

t

L(x(s), u(s)) ds

≥
∫ t

0

L(x(s), u(s)) ds+ 0 L > 0.
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We now present a proof for Theorem 3.2.1.

Proof. We establish upper and lower semicontinuity separately. First we prove upper semi-
continuity. Consider x0 ∈ G and ε > 0. There exists δ > 0 so that sup|x|<δ V (x) < ε. We
select a control u(·) so that

J(x0, u(·)) < V (x0) + ε. (3.2.1)

By Lemma 3.2.2 there exists T <∞ so that |x(T )| < δ. Consider any sequence yn → x0 in G.
Then xn(·) → x(·) uniformly on [0, T ], where x(t) = xx0, u(·)(t) and xn(t) = xyn, u(·)(t) by
Lemma 5.2.4 of Chapter 5. For n sufficiently large |yn(T )| < δ and V (yn(T )) < ε. We can
pass to the limit n→∞ in

V (yn) ≤
∫ T

0

L(yn(t), u(t)) dt+ V (yn(T )) by (3.1.1)

≤
∫ T

0

L(yn(t), u(t)) dt+ ε

to conclude

limV (yn) ≤
∫ T

0

L(x(t), u(t)) dt+ ε

≤ J(x0, u(·)) + ε

≤ V (x0) + 2 ε

where the second inequality follows from Lemma 3.2.3 and the third inequality is a result of
(3.2.1) . Since ε > 0 and yn → x0 were arbitrary, we conclude that

lim
y→x0

V (y) ≤ V (x0)

which is the desired upper semicontinuity.

Next we need to show that V is lower semicontinuous. Consider x0 ∈ G, ε > 0 and let
yn → x0 with

V (yn) → lim
y→x0

V (y).

Let un(·) be an ε-optimal control for yn : J(yn, un(·)) < ε + V (yn). Let xn(t) = xyn, un(·)(t).
By Lemma 3.2.3, for every T <∞ we have

∫ T

0

L(xn(t), un(t)) dt ≤ J(yn, un(·)) < ε+ V (yn).

By Lemmas 5.2.1 to 5.2.4 of Chapter 5 there is a u(·): [0, ∞) → U and a subsequence so
that for every T, xn′(·) → x(·) = xx0, u(·)(·) uniformly on [0, T ] and∫ T

0

L(xn′(t), un′(t)) dt→
∫ T

0

L(x(t), u(t)) dt.
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Therefore, for every T ∫ T

0

L(x(t), u(t)) dt ≤ ε+ lim
y→x

V (y),

which implies
V (x) ≤ J(x0, u(·)) ≤ ε+ lim

y→x
V (y).

So V (x) ≤ limy→x V (y) providing the desired lower semicontinuity.



Chapter 4

Markov Chain Method

The motivation to develop numerical methods to approximate the solution of the control
problems that we are studying is that usually it is not possible to find an explicit solution
for the value function V. Besides, with the increasing technological capability, it is also good
to develop these numerical methods as a general tool to solve these control problems. In
this chapter we will discuss one such method, the Markov Chain method, applied to our
problem. The main idea behind the Markov Chain (MC) method is to approximate the
original continuous controlled process x(t) by a controlled finite-state Markov chain {Xh

k }
where k is the step index and h is the grid spacing parameter. This MC is defined so that
certain local properties of the approximating chain are similar to or consistent with those of
the original control process, and so that the cost associated with the controlled MC will be
close to the cost for the original control problem.

We begin by discretizing the state space into Gh = G ∩ hZn, h > 0. We are going to
define controlled probabilities that describe how the chain moves from grid point to grid
point. These transitions are jumps Xk → Xk+1. Xk+1 will always be limited to one of the
immediate neighbors of Xk. (The meaning of “neighbor” depends on the specific way in
which the probabilities are defined.) In addition to Gh we need to include points of hZn not

in G but which are neighbors to the points in Gh. These points will form the set G̃h. We
will represent these points by Ỹ h to distinguish them from those in G and also for a cleaner
bookkeeping of the stages. For instance, if from Xh

k ∈ Gh the state moves to a point in G̃h,

we call this point Ỹ h
k+1. Finally, for the points in G̃h we want to add their projection onto

the boundary (see (4.0.9) below); these points form the set ∂Ḡh. The projection of Ỹ h
k+1 into

∂Ḡh is denote by Xh
k+1. The complete grid consists of

Gh = Gh ∪ G̃h ∪ ∂Ḡh. (4.0.1)

In Figure 4.1 we illustrate these definitions with an example. The state space G for this
example is the region bounded by the axes x1 and x2, and the lines x1 = C1, x2 = C2, and
33C2x1 + 28C1x2 − 49C1C2 = 0. In this picture we have set the values of h = 0.1, C1 = 1.1,

16



Chapter 4. Markov Chain 17

and C2 = 0.7. The asterisks represent Gh, the empty dots constitute G̃h and the solid dots
represent the set ∂Ḡh.
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Figure 4.1: Different Types of Grid Points

Let (Ω, F , P) with filtration {Fk} (an increasing family {Fk: k ∈ Z+} of sub-σ−algebras of
F) be the underlying probability space on which the Markov Chain Xh

k (k = 0, 1, 2, . . . ) is
defined (see Section 4.2). For a given grid (depending on the notion of immediate neighbors),
the Markov Chain is accompanied by a time increment process thk, so that Xh

k is viewed as
an approximation Xh

k = x(thk) i.e. both the spatial and temporal increments are controlled.

Thus for each x ∈ Gh we need to specify both p(x, y|u) and the time increment ∆t(x, u)
and proceed to construct a controlled chain as follows. We start at (th0 , X

h
0 ) = (0, x0).

Suppose we have a control policy for the Markov Chain. By this we mean a sequence
{uh

k} of control values uh
k ∈ U. These controls are any measurable function of the history

of {Xh
i : i = k, k − 1, ..., 0}. That is, uh

k is an Fk−measurable random variable. The
chain stays in the state Xh

k in Gh ∪ ∂Ḡh for a time ∆ th(Xh
k , u

h
k) before it “jumps” to the

next state Xh
k+1 with probability p(Xh

k , X
h
k+1|uh

k). In general, the values of ∆th(Xh
k , u

h
k) may

depend on the values of Xh
k and/or uh

k. So, if we set th0 = 0, then thk+1 will be defined by
thk+1 = thk + ∆ th(Xh

k , u
h
k) for k = 0, 1, 2, . . . These jumps initiated and completed at grid

points in Gh∪∂Ḡh without intermediate steps will be called “standard” jumps. There will be
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another kind of jump, “reflection jump,” that is subject to different conditions than (4.0.2)
and (4.0.3). The specific definitions of ph and ∆ th for the standard jumps are case dependent
and we will explain some posible choices in Section 4.1, but in general it is required that
they comply with the following “local consistency” conditions. Let x = Xh

k and u = uh
k, then

(i) E
[
Xh

k+1 −Xh
k | Fk

]
=
∑

y ∈hZn(y − x) ph(x, y|u)
= v(x, u)∆th(x, u) + o (∆th (x, u))

(ii) cov
[
Xh

k+1 −Xh
k | Fk

]
= o (∆th (x, u))

(4.0.2)

and
lim
h→0

sup
{x, u}

∆th(x, u) → 0. (4.0.3)

For these standard jumps we will also require that each ∆th(Xh
k , u

h
k) is bounded below, that

is, for each i and every h there is an ε > 0 such that

ε ≤ ∆th(Xh
k , u

h
k). (4.0.4)

Conditions (4.0.2) - (4.0.4) will have to be satisfied for each specific implementation.

For one of these standard jumps, let

∆ek = Xh
k+1 − (Xh

k + v(Xh
k , u

h
k) ∆th(Xh

k , u
h
k)). (4.0.5)

The interpretation of ∆ ek is that it represents the local (random) error to account for the
discrepancy between Xh

k+1 and the point in G where the control uh
k will take the system by

following the direction of v(Xh
k , u

h
k) for a time ∆th (Xh

k , u
h
k). When compared the expectation

of (4.0.5) with (4.0.2 (i)) we can conclude that

E[∆ek] = o (∆th (Xh
k , u

h
k)).

In fact, for the chains that we will construct, the probabilities and time lapses satisfy these
stronger properties:

(i) E
[
Xh

k+1 −Xh
k |Fk

]
= v(x, u)∆th(x, u) (4.0.6)

(ii) cov
[
Xh

k+1 −Xh
k | Fk

]
= O(h2)

and
lim
h→0

sup
{x, u}

∆th(x, u) → 0. (4.0.7)

Part (i) of (4.0.6) can be expressed as

E
[
∆ek

∣∣Fk

]
= 0. (4.0.8)

Now we describe the second kind of jump: reflection jumps.
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For a jump that passes through a point in G̃h, the action of the Skorokhod problem on
the grid is represented by an “instantaneous” jump (i.e. ∆th (Xh

k , u
h
k) = 0) to a point in

the boundary of G following the direction prescribed by the corresponding reflection vector
(2.0.3). These jumps will be referred to as “reflection” jumps. Thus, to mimic the effect of

the Skorokhod map, to each Ỹ h ∈ G̃h we assign a point Xh in ∂Ḡh and a “time” ∆η such
that ph(Ỹ h, Xh) = 1 (uncontrolled) and the projection of Ỹ h is

Xh = Ỹ h + γ(Xh) ∆η. (4.0.9)

(This is the discrete projection Π of [17].)

We generalize (4.0.9) to any jump originating anywhere in the grid with the distinction that
γ(Xh) = 0 and ∆ η = 0 if Xh ∈ Gh, that is, for a standard jump. Notice that our definitions
of the chain probabilities will be such that a point Xh in ∂Ḡh \Gh can be accessed only from

a point Ỹ h in G̃h. Also notice that every reflection jump consists of two parts, one of which
has ∆ th(Xh

k , u
h
k) > 0 keeping the time to go from Xh

k to Xh
k+1 bounded below by (4.0.4).

We will also adopt the following convention. We denote the process {Y h
k } as the one that

follows {Xh
k } except for the effect of all the previous reflection mapping. Thus, recursively

we set
Y h

0 = Xh
0 ,

Y h
k = Y h

k−1 + v(Xh
k−1, u

h
k−1) ∆ th(Xh

k−1, u
h
k−1) + ∆ ek−1

Xh
k = Xh

k−1 + v(Xh
k−1, u

h
k−1) ∆ th(Xh

k−1, u
h
k−1) + ∆ ek−1 + γ(Xh

k ) ∆ηk.

(4.0.10)

Clearly, we have
∆ek = Y h

k+1 − (Y h
k + v(Xh

k , u
h
k) ∆th(Xh

k , u
h
k)). (4.0.11)

We now pose an optimal control problem for this chain, intended to approximate the original
control problem (2.2.3) of Chapter 2. Given the function L as used in (2.3.3) satisfying
conditions (2.3.5 (iii), (iv), and (v)), a grid spacing h, and a control policy {uh

i } we define
the cost functional and the value function as

W h(x0, {uh
k}) = Ex0

Nh−1∑
j=0

L(Xh
j , u

h
j ) ∆ th(Xh

j , u
h
j )

 (4.0.12)

V h(x0) = inf
uh
W h(x0, {uh

k}) (4.0.13)

for the discrete process {Xh
k } where Nh is the first j for which Xh

j = 0 and Ex0 represents
the expected value given a specific initial state x0 = Xh

0 .

For each x ∈ Gh, the Dynamic Programming Equation (DPE) characterizing V h, as used in
[12] and derived in [28], is

V h(x) = inf
u∈U

∑
y∈Gh

V h(y) p(x, y|u) + L(x, u) ∆th(x, u)

 , V h(0) = 0. (4.0.14)
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This equation for V h can be solved by an iterative method such as Jacobi or Gauss-Seidel
iterations (discussion of those calculations as well as conditions for existence and uniqueness
will be in Section 4.3). The idea is that V h should approximate V if h is small. We establish
this approximation in Chapter 5, with examples provided in Chapter 6. In the remainder of
this chapter we

1. describe in more detail some possible definitions of p(x, y|u),

2. explain how to interpret the result of such a chain constructed in terms of a filtered
probability space (Ω, F , P ) with filtration {Fk},

3. discuss existence and uniqueness for (4.0.14) and

4. explain how the calculations for V h are carried out, and why the iteration procedures
used for that converge.

4.1 Description of the Markov Chain

In this section we will describe in more detail how to obtain different definitions of the
probabilities p(x, y|u) and the time increments ∆th(x, u) for the construction of Markov
chains. The fundamental requirement for the controlled chain {Xh

k , k < ∞} is that it be
locally consistent with the process ẋ(t) = v(x(t), u(t)), for x ∈ Gh and v satisfying conditions
(2.3.5 (i) and (ii)). Recall that the locally consistency condition requires compliance with
(4.0.6), (4.0.7), and (4.0.4).

A number of different approaches can be taken to explicitly define the transition probabilities
and time increments (see [28] for some examples). It is important that these definitions be
made in such a way that the minimum over the controls in the MC calculation of (4.0.14) or
equivalent formulation of the problem, can be evaluated efficiently. Such formulations may
depend on the structure of v(x, u) and L(x, u).

In the following we present two different approaches to define the transition probabilities and
time increments. Both follow the same strategy, that is, to proceed along y = x + t v(x, u)
until the “cell” boundary is reached (except in the special cases when v(x, u) is too small
or null); the time “t” to reach the boundary is ∆t(x, u), then write this value y as a convex
combination of the grid points on that “face” of the cell. We use the shape of the cell
to distinguish between the two methods which basically differ in the metric used. The first
method we describe uses the 1-norm (for a vector x ∈ Rn, ‖x‖1 =

∑n
i=1 |x(i)|.) This generates

a diamond-like cell. Hence we call this the diamond method. In the second method we use
the infinity-norm (if x ∈ Rn then ‖x‖∞ = max{|x(i)|, i = 1, 2, . . . , n},) producing regular
boxes as cells. We call this the box method. Both of these are effective for the example of
Chapter 6, although the diamond method is somewhat simpler to implement.
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In the discussion below, let h > 0 be the grid spacing in every direction. Let ej be the
coordinate vectors in Rn, i.e., the vector with 1 in the jth entry and zeros everywhere else.

4.1.1 The diamond method

For this method we only allow jumps in the direction of the coordinate axes, that is from
x = Xh

k ∈ Gh we can only jump to y = x±h ej for only one j = 1, 2, . . . n. Given the control
u, the velocity v(x, u) is determined and we define the transition probabilites

p0(x, y|u) =

{
|vj(x, u)|
‖v(x, u)‖1 , if y = x+ sgn(vj(x, u))h ej

0, otherwise
(4.1.1)

where the subscript j on v refers to the jth coordinate of v(x, u). This is if x is a “stan-

dard gridpoint”. If x ∈ ∂ G
h \ Gh the formula needs to be modified to accommodate for

irregular distance from x, say y = x +
∑n

j=1 sgn(vj(x, u))hj ej. We temporarily make the
additional hypothesis that inf{x, u} ‖v(x, u)‖1 ≥ K, for some positive constant K, and set the
time increment

∆0 t
h(x, u) =

h

‖v(x, u)‖1

. (4.1.2)

After discussing this case we will remove the assumption of inf{x, u} ‖v(x, u)‖1 ≥ K.

Notice that indeed (4.0.6 (i)) holds for (4.1.1) since

∑
y∈h Zn

(y − x)p0(x, y|u) =
n∑

j=1

h sign(vj(x, u)) ej
|vj(x, u)|
‖v(x, u)‖1

=
n∑

j=1

|vj(x, u)| sign(vj(x, u)) ej
h

‖v(x, u)‖1

= v(x, u)∆ th(x, u).

To show (4.0.6 (ii)) holds we introduce the following notation:
For j = 1, 2, . . . , n let

yh
m =

{
x+ h ej, m = j

x− h ej, m = n+ j,

∆X = Xh
k+1 −Xh

k , ∆Xm = yh
m − x (m = 1, 2, . . . , 2n),

and let p(∆Xm) = p0(x, y
h
m|u), hence

p(∆Xm) =

{
|vj(x, u)|
‖v(x, u)‖1 , if ∆Xm = sign(vj(x, u))h ej

0, otherwise.
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Then (4.0.6 (ii)) is equivalent to

E
[
(∆X − E[∆X]) (∆X − E[∆X])T |Xh

k = x, uh
k = u

]
=

2 n∑
m=1

(∆Xm − E[∆X]) (∆Xm − E[∆X])T p(∆Xm)

=
n∑

j=1

(
h ej + h

v(x, u)

‖v(x, u)‖1

) (
h ej + h

v(x, u)

‖v(x, u)‖1

)T

p(∆Xj)

+
n∑

j=1

(
h ej − h

v(x, u)

‖v(x, u)‖1

) (
h ej − h

v(x, u)

‖v(x, u)‖1

)T

p(∆Xj)

=
n∑

j=1

h2

(
ej +

v(x, u)

‖v(x, u)‖1

) (
ej +

v(x, u)

‖v(x, u)‖1

)T

p(∆Xj)

+
n∑

j=1

h2

(
ej −

v(x, u)

‖v(x, u)‖1

) (
ej −

v(x, u)

‖v(x, u)‖1

)T

p(∆Xj)

=h2

n∑
j=1

(
ej +

v(x, u)

‖v(x, u)‖1

) (
ej +

v(x, u)

‖v(x, u)‖1

)T

p(∆Xj)

+ h2

n∑
j=1

(
ej −

v(x, u)

‖v(x, u)‖1

) (
ej −

v(x, u)

‖v(x, u)‖1

)T

p(∆Xj)

=O(h2).

Since we have assumed that inf{x, u} ‖v(x, u)‖1 ≥ K > 0, then 1
‖v(x, u)‖1 ≤ K−1. Therefore, for

any x and u we have that h 1
‖v(x, u)‖1 ≤ hK−1 which is the same as saying that ∆0 t

h(x, u) ≤
hK−1. So, it is easy to see that indeed

lim
h→0

sup
{x, u}

∆0 t
h(x, u) → 0. (4.1.3)

The problem with v(x, u) being too small (‖(v(x, u)‖1 << h) is that ∆0 t
h(x, u) would be

extremely large, contrary to sup{x, u} ∆0 t
h(x, u) → 0. This would be a problem for the

convergence analysis of Chapter 5. In order to prevent this, we set the time increment to be
the minimum between the original value as in (4.1.2) and a prescribed constant, call it ∆T.
Thus

∆̃ t = min
{
∆0 t

h(x, u), ∆T
}
. (4.1.4)

An obvious choice for this alternative ∆T is a positive constant multiple of h, say K ′ h. If the
minimum is ∆0 t

h(x, u), the probabilities are taken to be p0(x y|u) as defined in (4.1.1), other-
wise, we can define the new probabilities based on the original ones as follows. Given the orig-
inal probabilities p0(x, y|u) associated with ∆0 t

h(x, u) and if ∆̃ t = min{∆0 t
h(x, u), ∆T}
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then

p̃(x, y|u) =

{ f∆ t
∆0 th(x, u)

p0(x, y|u) for y 6= x

1− f∆ t
∆0 th(x, u)

for y = x
(4.1.5)

(assuming p0(x, x|u) = 0) satisfy (4.0.6 (i)) by construction.

If v(x, u) = 0 we arbitrarily set ∆ th(x, u) = h and assign equal probabilities to each grid
point that determines the cell, that is

p̃(x, y|u) =

{
1
2n
, if y = x± h ej, j = 1, 2, . . . , n,

0, otherwise.
(4.1.6)

It can easily be verified that contidions (4.0.6) hold.

In the original process we had that

x+ v(x, u) ∆0 t
h(x, u) =

∑
yh∈h Zn

yh p0(x, y
h|u).

The new time increment ∆̃ t would take us from x to a point ỹ = x + ∆̃ t v(x, u) in the
interior of the cell, requiring n+ 1 points yh

j (j = 0, 1, 2, . . . , n) to express ỹ as a convex
combination of them. Notice that

x+ ∆̃ t v(x, u) = x+
∆̃ t

∆0 th (x, u)
∆0 t

h (x, u) v(x, u)

=

(
1− ∆̃ t

∆0 th (x, u)

)
x+

∆̃ t

∆0 th (x, u)
(x+ ∆0 t

h(x, u) v(x, u))

=

(
1− ∆̃ t

∆0 th (x, u)

)
x+

∆̃ t

∆0 th (x, u)
y

=

(
1− ∆̃ t

∆0 th(x, u)

)
x+

∑
y∈h Zh

∆̃ t

∆0 th (x, u)
p0(x, y|u) y

= p̃0 x+
n∑

i=1

p̃i y
h
i .

The proof that (4.0.6 (ii)) holds is the same as above when ∆̃ t = ∆ th(x, u) = h/‖v(x, u)‖1.

Suppose that ∆̃ t = ∆T = K ′ h. As before, we adopt the following notation. For j =
0, 1, 2, . . . , n let

yh
m =


x, m = 0,

x+ h ej, m = j, and

x− h ej, m = n+ j;
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∆X = Xh
k+1 −Xh

k , ∆Xm = yh
m − x = ±h ej (m = 1, 2, . . . , 2n), and ∆X0 = 0,

and let

p̃(∆Xm) = p̃(x, y|u) =

{ f∆ t
∆0 th(x, u)

p0(x, y|u), for m 6= 0,

1− f∆ t
∆0 th(x, u)

, otherwise.
(4.1.7)

For the case where ∆̃t = K ′h < ∆0t
h we have

E
[
(∆X − E[∆X]) (∆X − E[∆X])T |Xh

k = x, uh
k = u

]
=

2 n∑
m=0

(∆Xm − E[∆X]) (∆Xm − E[∆X])T p̃(∆Xm) + (−∆̃ t v(x, u)) (−∆̃ t v(x, u)T ) p̃(x, x|u)

= h2

n∑
j=1

(ej +K ′ v(x, u)) (ej +K ′ v(x, u))
T ∆̃ t

∆0 th(x, u)
p0(∆Xj)

+ h2

n∑
j=1

(ej −K ′ v(x, u)) (ej −K ′ v(x, u))
T ∆̃ t

∆0 th(x, u)
p0(∆Xj)

+ (−∆̃ t v(x, u)) (−∆̃ t v(x, u))T

(
1− ∆̃ t

∆0 th(x, u)

)

= O(h2) + (K ′ h)2 v(x, u) v(x, u)T

(
1− ∆̃ t

∆0 th(x, u)

)
= O(h2).

We conclude that limh→0 ∆̃ t = 0.

An alternative definition of the time lapse and probabilities for this case is to use an instan-
taneous jump (∆ th(x, u) = 0) and p(x, y|u) = 1 for y = x and 0 otherwise, but then we
wouldn’t have that L(x, u) ∆ th(x, u) 6= 0 which we need for Assumption 1.2 in Section 4.3.

As we will see in Example 6.1, we can use this method along with the specific definitions of
v(x, u) and L(x, u) to generate an expression on the right side of (4.0.14) that is “piecewise
linear fractional” in terms of the components of the control u, allowing us to evaluate the
infimum by comparing only at a finite number of values of the control. This is what we mean
by “efficient evaluation” in Section 4.1.

4.1.2 The box method

A variant of the above approach is what we call the box method, described in this subsection.

We allow jumps to any grid point at a distance h from the current point using the metric
induced by the infinity norm. Hence if the current state is x, we can make a random jump
to any y = x+ h

∑n
j=1±bj ej with bj = 0 or 1.
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For a given control uh
i = u, we obtain the velocity v(x, u) (assume v(x, u) 6= 0) and define

the time increment ∆th(x, u) such that y = x+ ∆ th(x, u) v(x, u) is on a face of the “cell”
(box) and then write y as the probabilistic average of the closest n grid points from that
face. This gives a piecewise linear fractional expression of the components of the control u.
If |v| does not have a positive lower bound, we make the same modifications as (4.1.4) and
(4.1.5) above. The consistency conditions can be verified in a very similar way as we did for
the Diamond Method.

4.2 Filtered Probability Space

In Section 4.1 we created a controlled finite state Markov Chain {Xh
k } by defining transition

probabilities and time increments that satisfy local consistency conditions. In this section
we explain how to interpret this MC in terms of a filtered probability space (Ω, F , P) with
filtration {Fk}.

The initial state of the network and the dynamics on the network (arrivals to each queue and
service provided) is the experiment generating a probability space Ω on which the random
variables Xn (state of the system) is defined. Associated with this probability space are the
σ−algebra F and the probability measure P conforming the probability triplet (Ω, F , P).

More formally, let Ω be the set of all sequences of neighboring grid points. Then for ω ∈ Ω

ω = (x0, x1, x2, . . . ),

Xh
k (ω) = xk the kth entry of ω,

Fk = σ(Xi : i ≤ k).

Given a sequence {uk} of random variables (uk being Fk−measurable) with uk ∈ U, we make
the following claim.

Claim 4.2.1. There exists a probability measure P (P(uω)) so that

P(Xh
k = i|Fk−1) = p(Xh

k−1, i|uh
k−1).

The justification to this claim is that this is an application of the Kolmogorov consistency
theorem.

There will be a different probability space for each h and for each choice of stochastic controls
{uh

k}; however, what is important is the very existence of (Ω, F , P) and of Xh
k+1 for a given

{uh
k} sequence. Given this, we will be able to construct the appropriate probability measures

on the sequence of {Xh
k }, as we will see in Chapter 6.
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4.3 Calculation for the approximating value function

The purpose of creating the MC in Section 4.1 is to be able to approximate the solution of
(2.3.4) by the solution of the control problem (4.0.12) and (4.0.13) for the MC, as restated
here. Given the function L as used in (2.3.3) satisfying conditions (2.3.5 (iii) - (v)) we define
the cost functional and the value function as

W h(x0, {uh
i }) = Ex0

Nh−1∑
j=0

L(Xh
j , u

h
j ) ∆ th(Xh

j , u
h
j )

 (4.0.12)

V h(x0) = inf
uh
W h(x0, {uh

i }) (4.0.13)

for the discrete process {Xh
k } where Nh is the first j for which Xh

j = 0 and Ex0 represents

the expected value given a specific initial state x0 ∈ Gh ∪ ∂ G̃h.

We use Dynamic Programming (DP) as the optimization technique, based on the priciple of
optimality. Roughly speaking, the principle of optimality states that if we assume that at
step k we follow an optimal decision policy from step k+1 on with optimal value V (Xh

k+1), the
optimal decision to be made at step k is the one that produces the minimum cost, including
the cost of going from Xh

k to Xh
k+1. This is what the Dynamic Programming Equation (DPE)

states: For Xh
k = x,

V h(x) = inf
u∈U

∑
y∈Gh

V h(y) p(x, y|u) + L(x, u) ∆ th(x, u)

 , V h(0) = 0. (4.0.14)

We can write the expression for the cost functional and the value function using vector

notation, with vectors of dimension N =
∣∣∣Gh

∣∣∣ , the amount of grid points numbered from 1

to N.

Let P (u) be the N × N transition probability matrix of entries p(x, y|u) for each (x, y) in
the grid, with x = 0 being an absorbing state, that is, p(0, 0|u) = 1 for any control. The
component located on the ith row and jth column of P (u) is the probability of going from
the ith node to the jth node given that control u is being used. C(u) denotes the cost vector
for each x in the grid, that is C(x, u) = L(x, u) ∆ th(x, u), with C(0) = 0.

We can write (4.0.14) as
V = inf

u(x)∈U
[P (u)V + C(u)] (4.3.1)

with the infimum taken component by component, and its corresponding non-optimal version

Jk+1(uk) = P (uk) Jk + C(uk). (4.3.2)

Several computational techniques to carry out this minimization are explained in Chapter 6
of [28]. We will limit our discussion to approximations in value space, that is (4.3.3) below.
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In particular we employ the Jacobi method [28], so-called because of its similarities with the
Jacobi method to solve a matrix equation.

The Jacobi method consists of standard fixed point iterations. To solve (4.3.1), the iterative
nature of the Jacobi method (and other classical methods) requires an initial “guess” cost
vector V0. Then we define the sequence

Vk+1 = inf
u(x)∈U

[P (u)Vk + C(u)] (4.3.3)

and iterate this formula until an acceptable error level is reached (or up to a maximum
number of iterations) updating all the components of Vk+1 once at each iteration. We expect
the iterates Vk to converge to the true value function V = V h of (4.0.13). Another common
method is the approximation in policy space. See [28] for more details on this method.

The following questions are addressed below: (1) Does (4.0.14) have a unique fixed point
(i.e. solution)? (2) Under which conditions does the iteration (4.3.3) converge to a solution
of (4.0.14)? The issue of how well the solution V h of (4.0.13), thus achieved, approximates
the solution of the original problem (2.3.4) is addressed in Chapter 5.

D. P. Bertsekas in [10] helps us answer questions (1) and (2). The only hypothesis imposed
in his formulation that can be problematic for our setting is that the set of controls available
at each state is required to be finite (p 79 of [10]). To satisfy this we will take advantage
of the linear fractional structure of the value function thanks to the specific configuration
of our cost function and definition of the transition probabilities and time lapses. We will
discuss this in Section 6.1. The important feature of the value function as a linear fractional
function of u, as we can see in the example, is that the minimum of the cost functional takes
place when all the effort of the control is placed on one queue per server, thus we will have
a finite number of controls to check.

Before we look at the conditions required to guarrantee uniqueness and existence of a solution
to the optimization problem on the MC, we refer the reader to the definition of proper policy
(Definition A.1.3 of Appendix A).

The assumptions Bertsekas makes to derive the desire result are:

Assumption 4.3.1. There exists at least one proper policy.

Assumption 4.3.2. For every improper policy µ, the corresponding cost Jµ(i) is ∞ for at
least one state i.

Note that under our hypotheses about the cost function L (2.3.5 (iii)) and properties of the
time lapse ∆ th for every improper policy u the corresponding cost J(u) in (4.3.2) is infinity
for at least one state. That is because every component of the cost C(u) is strictly positive
except the one corresponding to the terminal state. So we only need to verify Assumption
4.3.1, and this needs to be done “by hand.”



Chapter 4. Markov Chain 28

For the vector formulation of our problem and as a consequence of Bertsekas’ Proposition
1.2 ([10], p. 83) we conclude the following.

Proposition 4.3.3. Under Assumptions 4.3.1 and 4.3.2 and hypothesis (2.3.5 (iv))

1. Equation (4.3.1) has a unique solution, and

2. limk→∞ Vk = V for every initial cost vector V0 in the recursive equation (4.3.3).

Therefore, the implementation of our method will require a check that we satisfy Assumption
4.3.1 in order to achieve convergence of the numerical method. We will do this for an example
in Section 6.2.



Chapter 5

Convergence

The main goal of this chapter is to show that the approximating value function V h(x) defined
by (4.0.13) converges to the actual value function V (x) given in (2.3.4).

We begin in Section 5.1 by defining a continuous time interpolation of the controlled MC.
The continuous time interpolation of the control will be considered as an element of a set
of stochastic relaxed controls. With the appropriate weak topology the set of such controls
is compact (Section 5.2). The continuous time interpolation process Xh(·) depends contin-
uously on the control and an “error process” (defined in (5.1.4)) that will vanish as the grid
spacing goes to zero. This allows us to take the limit as the grid spacing (h) goes to zero
of the value V h of the controlled chain to show its convergence to the value function of the
original control problem.

5.1 Continuous Time Interpolation of a Controlled Markov

Chain

Based on the discrete MC ({Xh
j , u

h
j }) we define the piecewise continuous time interpolations

Xh(·), Y h(·), and uh(·) as follows. For a fixed grid spacing h > 0 let

thk =
k∑

j=1

∆th(Xh
j−1, u

h
j−1), th0 = 0,

Xh(t) = Xh
k if t ∈

[
thk, t

h
k+1

)
, (5.1.1)

Y h(t) = Y h
k if t ∈

[
thk, t

h
k+1

)
, (5.1.2)

with Xh
k and Y h

k as in (4.0.10). Also let

uh(t) = uh
k if t ∈

[
thk, t

h
k+1

)
(5.1.3)

29



Chapter 5. Convergence 30

and define the accumulated error at any time t by

eh(t) = Y h(t)−
[
Xh

0 +

∫ t

0

v(Xh(s), uh(s)) ds

]
. (5.1.4)

Thus, we can rewrite (4.0.11) as

∆ en = Y h
n+1 −

(
Y h

n +

∫ thn+1

thn

v(Xh(t), uh(t)) dt

)

from which it is easy to see that

eh(thn) =
n−1∑
i=0

∆ ei. (5.1.5)

Note however that eh(t) is not constant on the intervals [thk, t
h
k+1). A modification with that

property will appear as eH in (5.1.7) below.

It follows from (4.0.8) that eh(thk) is an Fk martingale on the discrete time scale k =
0, 1, 2, . . . (see Definition A.4.1 in Appendix A). For simplicity we set ek = eh(thk).

Recall from Chapter 4 ((4.0.5) and (4.0.9)) that{
Ỹ h

k+1 = Xh
k + v(Xh

k , u
h
k) ∆ th(Xh

k , u
h
k) + ∆ ek

Xh
k+1 = Ỹ h

k+1 + γ(Xh
k+1) ∆ ηk

and
Y h

k+1 = Ỹ h
k+1.

This construction implies that Xh(·) = Γ(Y h(·)) with no approximation error because of
the instantaneous nature of the reflection mapping when applied to the piecewise constant
process Y h(·).

With this notation we can express the continuous time interpolation process as
Xh(·) = Γ(Y h(·))
Y h(t) = Xh

0 +
∫ t

0
v(Xh(s), uh(s)) ds+ eh(t)

Xh
0 = xh

0 .

(5.1.6)

Let D = D([0, ∞)) be the set of functions y : [0,∞) → Rn which are right continuous with
left limits (CADLAG). We give D the metric of uniform convergence on each [0, T ]. With
this metric, D is a complete metric space. Thus, Xh(·) and eh(·) are typical elements of D.

Given a value 0 < t < ∞, let ηt be the random variable that maps an element ω in the
probability space Ω (Section 4.2) to the integer k such that t ∈ [thk, t

h
k+1), ηt(ω) = k. We see
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that ηt is a stopping time with respect to the filtration Fk. Note that for any t ∈ [0, T ], ηt

is a bounded stopping time by virtue of (4.0.4). (The argument for this is given in the proof
of the next lemma.) Hence eηt is integrable by Doob’s Optional-Stopping Theorem ([32], p.
157).

Lemma 5.1.1. The process eh(·) converges in distribution to the zero process with respect
to the uniform metric on t ∈ [0, T ].

Proof. To show eh(t) converges to the zero process, define

eH(t) = Y h(t)− xh
0 −

∫ thk

0

v(X(s), u(s)) ds, for t ∈ [thk, t
h
k+1). (5.1.7)

The connection between eh(·) and eH(·) is

eH(t) = eh(t) +

∫ t

thk

v(X(s), u(s)) ds.

This makes eH constant on [thk, t
h
k+i) with eh(thk) = eH(thk). We can also view eH(t) as the

martingale en stopped at ηt: e
H(t) = eηt . This would not hold in general with the extra term∫ t

thk
v(X(s), u(s)) ds.

Notice that for any t ∈ [0, T ], ηt is a bounded stopping time. In particular ηT is bounded.
Indeed, notice that

ηT = inf

{
n :

n∑
i=0

∆th(Xh
ti
, uh

ti
) ≥ T

}
that is T ∈ [thηT

, thηT +1). By (4.1.4) there is an N such that

N >
T

∆̃ t

so that
T < N ∆̃ t ≤ thN .

This implies that ηT < N. It follows that

sup
[0, T ]

‖eH(t)‖ = sup
0≤n<ηT

‖en‖ ≤ sup
0≤n≤N

‖en‖. (5.1.8)
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For the proof consider any ε > 0. We have the following.

Pxh
0

{
sup

t∈ [0, T ]

‖eH(t)‖ ≥ ε

}
≤ Pxh

0

{
sup

0≤n<N
‖en‖ ≥ ε

}
≤ 4

ε2
Exh

0

[
‖eN‖2

]
=

4

ε2
Exh

0

∥∥∥∥∥
N−1∑
i=0

∆ei

∥∥∥∥∥
2


=
4

ε2
Exh

0

∥∥∥∥∥
N−1∑
i=0

Y h
i+1 − Y h

i − v(Xh
i , u

h
i ) ∆ th(Xh

i , u
h
i )

∥∥∥∥∥
2


=
4

ε2
Exh

0

[
N−1∑
i=0

∥∥Y h
i+1 − Y h

i − v(Xh
i , u

h
i ) ∆ th(Xh

i , u
h
i )
∥∥2

]

=
4

ε2

N−1∑
i=0

E
[∥∥Y h

i+1 − Y h
i − v(Xh

i , u
h
i ) ∆ th(Xh

i , u
h
i )|Fi

∥∥2
]

=
4

ε2

N−1∑
i=0

C h2 for some C > 0

=
4

ε2
NC h2.

We use (5.1.8) to justify the first line of the proof. The next line is Doob’s inequality. The
next equations are due to equation (5.1.5), the definition of ∆ ei, L2 martingale property
that we can apply since ∆ei are uniformly integrable, and the consistency condition (4.0.6)
(ii), in that order. Then, by letting C ′ = 4NC

ε2
we have

Pxh
0

{
sup

t∈ [0,T ]

‖eH(t)‖ ≥ ε

}
≤ h2C ′.

Hence supt∈ [0, T ] ‖eH(t)‖ converges in probability to 0 as h ↓ 0 and by Theorem A.2.6, eH(·),
as a D−value process, converges in distribution to the zero process.

Also, we note that∥∥∥∥∥
∫ t

th
kh

v(X(s), u(s)) ds

∥∥∥∥∥ ≤ ∥∥v(th(Xh
kh , u

h
kh)
∥∥∆th(Xh

kh , u
h
kh)

≤ C1 ∆th(Xh
kh , u

h
kh).

And by (4.1.3) it follows that eh(t) converges to eH(t) as h goes to zero.
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For X(·) ∈ D define τε = inf{t ≥ 0 : ‖X(t)‖ < ε}. Then τε increases as ε ↓ 0. Our definition
for τ0 is that

τ0(X) = lim
ε↓0

τε (= +∞ allowed.) (5.1.9)

In general τ0(X) ≤ inf{t ≥ 0 : X(t) = 0}, but they are equal for X(·) ∈ C. This is the same
definition of τ0 as in (2.3.2) applied to the process Xh(·). We write the cost functional and
value function for the Markov Chain problem as

W h(xh
0 , u

h) = Exh
0

[∫ τ0(Xh(t))

0

L(Xh(t), uh(t)) dt

]
, (5.1.10)

V h(xh
0) = inf

{uh}
W h(xh

0 , u
h). (5.1.11)

Before we move on to show the convergence of relaxed controls, we want to direct the reader’s
attention to Appendix A where we state some definitions and results that we will be using
in the discussion below.

5.2 Relaxed controls. Compactness and Continuity

Properties

Consider the probability space (Ω, F , P ) on which the random variables in the introduction
to this chapter are defined. Also consider a sequence {hn}, each hn ∈ (0, 1) with n =
1, 2, 3, . . . such that hn ↓ 0 as n→∞. For an initial state x0 assume that xn

0 = Xh(0) → x0

as h→ 0.

Recall that a control sequence {uh
i } consists of Fk−measurable random variables uh

k. The
definition of uh(t) and Xh(·) (5.1.3, 5.1.6), imply that uh(t) is itself a stochastic process
defined on the probability space Ω.

Define the space R of relaxed controls to be the set of (Borel) measures ν on [0, ∞) × U
with the property that

ν([0, T ]× U) = T for every T ∈ [0, ∞).

We will often write ∫ T

0

∫
U

f(t, u) dν

in place of ∫
[0, T ]×U

f(t, u) dν(t, u).
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We give R the topology of weak convergence on [0, T ]×U for each T. That is νn ⇒ ν when∫ T

0

∫
U

f(t, u) dνn →
∫ T

0

∫
U

f(t, u) dν

for each T and each continuous bounded function f : [0, ∞)× U → R.

With this characterization we state Lemmas 5.2.1 and 5.2.3 below. See Appendix B for their
proofs.

Lemma 5.2.1. R is compact.

Since R is totally bounded, by Proposition A.2.3 of Appendix A we have

Corollary 5.2.2. R is separable.

If there is a measurable function u : [0, ∞) → U so that

ν(A) =

∫ ∞

0

χA (t, u(t)) dt (5.2.1)

for all A ⊆ [0, ∞) × U we call ν “the relaxed representation” of the standard control u(·),
or simply a “standard control.”

Lemma 5.2.3. The standard controls are dense in R.

The following lemmas provide us with the necessary structure for the convergence properties
to be discussed below.

Lemma 5.2.4. Given x ∈ G, ν ∈ R, and e ∈ D there exist unique X(·), Y (·) ∈ D solving{
X(·) = Γ(Y (·)),
Y (t) = x+

∫ t

0

∫
U
v(X(s), u) dν + e(t).

(5.2.2)

Denote X(·) = Xx, ν, e(·). The map (x, ν, e) → Xx, ν, e(·) is continuous with respect to the
topology on D identified above. Moreover, on each [0, T ] this is Lipschitz continuous in e,
uniformly w.r.t. x and ν.

Proof. We first show existence. Let c = min{T, 1
2CΓ Cv

} and X1, X2 ∈ D([0, c]). Define

Φ : X(t) → Γ(x +
∫ t

0

∫
U
v(X(s), u) dν + e(t)). Clearly Φ : D → D. Moreover, Φ is a

contraction on [0, c] because

sup
[0, c]

‖Φ(X2)− Φ(X1)‖ = sup
[0, c]

∥∥∥∥Γ(x+

∫ t

0

∫
U

v(X2, u) dν + e(t)

)
− Γ

(
x+

∫ t

0

∫
U

v(X1, u) dν + e(t)

)∥∥∥∥
≤ CΓ sup

[0, c]

∥∥∥∥∫ t

0

∫
U

v(X2, u) dν −
∫ t

0

∫
U

v(X1, u) dν

∥∥∥∥
= CΓ sup

[0, c]

∥∥∥∥∫ t

0

∫
U

[v(X2, u)− v(X1, u)] dν

∥∥∥∥
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≤ CΓCv c sup
[0, c]

‖X2(t)−X1(t)‖

≤ 1

2
sup
[0, c]

‖X2(t)−X1(t)‖.

Then, by the contraction mapping theorem, there is a unique fixed point X ∈ D([0, c])
solution to (5.2.2). Notice that the first inequality is due to the Lipschitz continuity of
Γ(with Lipschitz constant CΓ) whereas the second to the last inequality uses (2.3.5 (i)).

If c = T we are done. Otherwise, we repeat this argument on [c, 2c] using X(c) as the initial
conditions at t = c. Repeating this on each [nc, (n+ 1)c] we get existence on any [0, T ].

Next we show uniqueness and Lispchitz continuity in e. Suppose (Xi, Yi) are solutions
both with the same x, ν, and ei, i = 1, 2 respectively. Let δX(t) = sup[0, t] |X2(s) − X1(s)|,
δY (t) = sup[0, t] |Y2(s) − Y1(s)|, δe(t) = sup[0, t] |e2(s) − e1(s)|. Since Xi = Γ(Yi), Lipschitz
continuity of Γ implies

δX(t) ≤ CΓ δ
Y (t).

Since Yi = x+
∫ t

0

∫
U
v(Xi(s), u) dν + ei(t), we have

Y2(t)− Y1(t) = [e2(t)− e1(t)] +

∫ t

0

∫
U

[v(X2(s), u)− v(X1(s), u)] dν (5.2.3)

thus from (2.3.5 (ii))

δY (t) ≤ δe(t) +

∫ t

0

Cv δ
X(s) ds

≤ δe(t) +

∫ t

0

CvCΓ δ
Y (s) ds.

Gronwall’s inequality (Appendix A, Theorem A.3) yields

δY (t) ≤ δe(t) +

∫ t

0

Cv CΓ e
Cv CΓ(t−s) δe(s) ds

≤ δe(t)eCvCΓt.

In particular δY (T ) ≤ δe(T ) eCv CΓ T .

If e1 = e2, δ
e(T ) = 0, so δY (T ) = 0, and δX(T ) = 0. This proves uniqueness. In general, this

shows X,Y are both Lipschitz continuous on [0, T ] with respect to e on [0, T ]. Notice that
the Lipschitz constant is independent of ν. To extend this to Lipschitz continuity in (x, e)
for ν fixed we just need to consider x1 and x2 and add [x2 − x1] on the right hand side of
(5.2.3).

To prove joint continuity, suppose xn → x, νn → ν, and en → e (uniformly) in their respecive
senses and let (Xn, Yn), (X, Y ) be the corresponding solutions. We want to show Xn → X,
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Yn → Y uniformly on each [0, T ]. Let

δX
n (t) = sup

[0, t]

|X(s)−Xn(s)|, δY
n (t) = sup

[0, t]

|Y (s)− Yn(s)|, δe
n(t) = sup

[0, t]

|e(s)− en(s)|

and

δ∗n(t) = |x− xn|+
∣∣∣∣∫ t

0

∫
U

v(X(s), u) dν −
∫ t

0

∫
U

v(X(s), u) dνn

∣∣∣∣ .
Now f(t, u) = v(X(t), u) is continuous at s if X(t) is continuous at s. Since X ∈ D, X has at
most a countable set J of discontinuities, and so the discontinuities of f are contained in J×U.
Since ν({s} × U) = 0, it follows that ν(J × U) = 0. Since f is bounded ((X, u) ∈ G × U
which is compact), νn ⇒ ν on [0, t] × U implies δ∗n(t) → 0. The boundedness of v (and
ν([0, T ] × U) = T all ν ∈ R) implies that the δ∗n are equicontinuous. In fact they are
Lipschitz with constant 2C1. Therefore δ∗n → 0 uniformly on each [0, T ].

Now

Y (t)− Yn(t) = x− xn +

∫ t

0

∫
U

[v(X(s), u)− v(Xn(s), u)] dνn

+

[∫ t

0

∫
U

v(X(s), u) dν −
∫ t

0

∫
U

v(X(s), u) dνn

]
+ e(t)− en(t)

and again we have
δX
n (t) ≤ CΓ δ

Y
n (t).

Therefore

δY
n (t) ≤ δ∗n(t) +

∫ t

0

Cvδ
X
n (s) ds+ δe

n(t)

≤ δ∗n(t) +

∫ t

0

Cv CΓ δ
Y
n (s) ds+ δe

n(t),

which by Gronwall inequality implies

δY
n (T ) ≤ δ∗n(T ) +

∫ T

0

Cv CΓ e
Cv K(T−s)δ∗n(s) ds+ δe

n(T ).

Since δ∗n → 0 uniformly on [0, T ], it follows that both δY
n (T ) → 0 and δX

n (T ) → 0.

Lemma 5.2.5. For each T, the map

(x, ν, e) →
∫ T

0

∫
U

L(Xx, ν, e(t), u) dν

is continuous, and

(x, ν, e) →
∫ T∧τ0(Xx, ν, e)

0

∫
U

L(Xx, ν, e(t), u) dν

is lower semicontinuous.
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Proof. The proof of the first part is as before: Suppose (xn, νn, en) → (x, ν, e) and let Xn,
X be the respective solutions. Then we know Xn → X in D (uniformly on compact sets).∫ T

0

∫
U

L(Xn(s), u) dνn −
∫ T

0

∫
U

L(X(s), u) dν

=

[∫ T

0

∫
U

L(X(s), u) dνn −
∫ T

0

∫
U

L(X(s), u) dν

]
+

∫ T

0

∫
U

[L(Xn(s), u)− L(X(s), u)] dνn.

The second term on the right hand side is bounded by
∫ T

0
CLm(Xn(s) − X(s)) ds which

goes to 0 by the uniform convergence of Xn → X. The first term also goes to 0 for the
same reason as δ∗n → 0 in the proof of Lemma 5.2.4: f(t, u) = L(X(t), u) is bounded and
continuous except on a set J × U, where J is the (countable) set of discontinuities of X.
Since ν(J × U) = 0, it follows that∫ T

0

∫
U

f dνn →
∫ T

0

∫
U

f dν.

This means that the first term above goes to 0.

Now, suppose that xn → x, νn → ν, and en → e (in their respective norms).
Let

Xn = Xxn, νn, en , τn = τ0(Xn);

X = Xx, ν, e, τ0 = τ0(X).

Let τ∗ = lim τn. By passing to a subsequence we can assume τn → τ∗. We only need to
consider τ∗ ≤ T. We know Xn(·) → X(·) uniformly on [0, T ]. Given any ε, for n sufficiently
large sup[0, T ] |Xn −X| < ε

2
, τn < τ∗ + ε and there is t < τn with |Xn(t)| < ε

2
. So |X(t)| < ε

for some t < τ∗ + ε. Thus we have τε(X) < τ∗ + ε and it follows that τ0 ≤ τ∗. Consider any
S < τ0, then

lim

∫ T∧τn

0

L(Xn, u) dνn ≥ lim

∫ S∧τn

0

L(Xn, u) dνn Since L > 0

= lim

∫ S

0

L(Xn, u) dνn Since τn → τ∗ > S

=

∫ S

0

L(X, u) dν.

Letting S ↑ τ0 ∧ T we conclude that

lim

∫ T∧τn

0

L(Xn, u) dνn ≥
∫ T∧τ0

0

L(X, u) dν.
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5.3 Convergence of the Value Function

This section is the core of this chapter. We will show that the value function on the grid
(V h(·)) convergences to the value function of the continuous process (V (·)) as the grid be-
comes finer.

In the previous section we introduced the concept of standard controls (5.2.1). We want
to emphasize the fact that the controls uh(t) of (5.1.3) are random variables depending on
ω ∈ (Ω, F , P ) so that given a control function uh

ω(t), we define its stochastic relaxed control
representation νh

ω ∈ R on [0, ∞)× U by

νh
ω(A) =

∫ ∞

0

χA(t, uh
ω(t)) dt (5.3.1)

for all A ⊆ [0, ∞)×U measurable. In other words, for a given choice of (stochastic) control
sequence uh

n and initial xh ∈ Gh, the Markov Chain followed by continuous time interpolation
produces R and D valued random variables νh

ω and eh
ω defined on the probability space

(Ω, F , P ). We make explicit the dependence of the process Xh(t) on these parameters; we
denote it by Xxh, νh

ω , eh
ω
(t) and shorten its notation by setting

Xh
ω(t) = Xxh, νh

ω , eh
ω
(t).

Let us use Θ to denote probability measures on D, and Λ to denote probability measures on
R. Let Θh and Λh denote the distributions of eh

ω and νh
ω respectively. These are the marginals

of the pair (νh
ω, e

h
ω).

In terms of these relaxed controls we can express (5.1.6) as
Xh

ω(·) = Γ
(
Y h

ω (·)
)
,

Y h
ω (t) = xh

0 +
∫ t

0

∫
U
v(Xh

ω(s), u) dνh
ω(s, u)) + eh

ω(t),

Xh
0 = xh

0 ∈ Gh

(5.3.2)

with value function

V h(x0) = inf
{uh

ω(·)}∈U
Exh

0

[∫ τh
0 (Xh

ω(t))

0

∫
U

L(Xh
ω(t), uh

ω(t)) dνh
ω

]
. (5.3.3)

In order to prove convergence of the value function on the grid to the value function on the
whole domain G we need the following hypotheses.

Chain Hypotheses. Let Gh = Gh ∪ ∂ Gh ∪ G̃h as in (4.0.1).
a) There exists K, δ > 0 so that

sup
xh∈Gh

|V h(xh)| ≤ K all 0 < h < δ.
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b) Given ε > 0 there exists δ > 0 so that

|V h(x)| < ε for all x ∈ Gh with |x| < δ and h < δ.

Theses hypotheses guarantee continuity at the origin and an upper bound on the value
function on the grid (V h(·)) for any grid spacing. We have not developed a convenient
sufficient condition for this. Consequently these hypotheses will need to be verified on case-
by-case basis.

Theorem 5.3.1. Assume the Chain Hypotheses and the hypotheses of Theorem 3.2.1 hold.
Then for any x ∈ G, xh → x, and h > 0, V h(xh) converges to V (x) as h goes to 0.

Proof. The proof of V (x) = limh↓0 V
h(x) is in two parts. First we will show that V (x) ≤

limh↓0 V
h(xh). Let Xn

ω = Xxn, νn
ω , en

ω
for some R and D random variables νn

ω , e
n
ω (with distri-

butions Λn) and Θn, and en → 0 in probability (i.e. Θn ⇒ δ0).

Since R is compact {Λh} is tight so there is a subsequence hn and a probability measure Λ
on R so that Λhn ⇒ Λ. Hence, for every bounded and continuous function f on R∫

R
f(ν) dΛhn →

∫
R
f(ν) dΛ.

We also know that as h ↓ 0, eh
ω → 0 (in D) in distribution (Lemma 5.1.1), that is to say that

Θh =⇒ δ0, the probability measure concentrated in the identically 0 function in D.

Pick any sequence hn ↓ 0. For simplicity use only n instead of hn; for example we write
V n(xn) for V hn(xhn). Choose a controlled Markov Chain Xn with Xn(0) = xn and

W n(xn) ≤ V n(xn) +
1

n
.

Recall that by Theorem 5.2.5, for each T the map

Φ : (x, ν, e) →
∫ T∧τ0

0

∫
U

L(Xx, ω, e, u) dν

is lower semicontinuous.

Let Qn be the joint distribution of (xn, νn
ω , e

n
ω). By Theorem A.2.14 of Appendix A, Qn ⇒

δx × Λ× δ0. It follows that

E

[∫ T∧τ0

0

∫
U

L(Xxn, νn
ω en

ω
, u) dνn

ω

]
= EQn

[Φ(x, ν, e)]

and by Lemma A.2.18 of Appendix A,

EQ[Φ] ≤ lim EQn

[Φ(x, ν, e)] .
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The preceding implies that for each T = k there is νk so that∫ k∧τ0(Xx, νk
)

0

∫
U

L(Xx, νk
(t), u) dνk < limV h(xh). (5.3.4)

R being compact allows us to select a convergent subsequence νk′ → ν. For each T, using
the lower semicontinuity again we have∫ T∧τ0(X)

0

∫
U

L(Xx, ν(t), u) dν ≤ lim
k′

∫ T∧τ0(Xνk′ )

0

∫
U

L(Xνk′
, u) dνk′

≤ lim
k′

∫ k′∧τ0(Xνk′ )

0

∫
U

L(Xνk′
, u) dνk′ since L > 0

≤ limV n(xn).

The last inequality holds because of (5.3.4). Since T <∞ is arbitrary,∫ τ0(Xx, ν)

0

L(Xx, ν , u) dν ≤ limV n(xn)

hence

inf
ν∈R

∫ τ0(Xxn, ν)

0

L(Xx, ν(t), u) dν ≤ limV h(xh)

and then using the density of the standard controls (and continuity of V at 0) we conclude
that

V (x) ≤ limV h(xh).

We now show that limh↓0 V
h(xh) ≤ V (x). We can assume that V (x) < ∞ (otherwise the

result is trivial). Consider any ε > 0. Let K, δ be as in the Chain Hypotheses. By the
definition of V (·), there is some control uε such that J(x, uε(·)) < ε+V (x). Let Xε = Xx, uε .

Since Xε is continuous there exists 0 < T < τ0(X
ε) at which |Xε(T )| < δ

3
. If there were no

such T, then |Xε(t)| ≥ δ
3

for all t, so L(Xε(t), uε(t)) ≥ C for some C > 0 (2.3.5 (iii)) and
τ0 = +∞ imply J(x, uε(·)) = +∞, contrary to J(x, uε(·)) < V (x) + ε < ∞. Thus we have
that ∫ T

0

L(Xε(s), uε(s)) ds < J(x, uε(·)) < V (x) + ε. (5.3.5)

By Lemma 5.2.3, uε(·) can be approximated in the topology of R by a continuous standard
control, say u∗(·), such that with X∗ = Xx, u∗

sup
[0, T ]

|Xε(t)−X∗(t)| < ε

3

and ∫ T

0

L(X∗(t), u∗(t)) dt <

∫ T

0

L(Xε(t), uε(t)) dt+ ε. (5.3.6)
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The uniform approximations of X(·) on [0, T ] and of
∫ T

0
L(X(t), u(t)) dt are consequence of

Lemma 5.2.4 and Lemma 5.2.5.

Now, let us use u∗ to define a control sequence {uh
n} for the MC: uh

n = u∗(thn). Given xh → x,
let νh

ω, e
h
ω be the (random) elements of R and D associated with the resulting controlled

chain Xh(t). In the following we will show that as h goes to 0, νh
ω converges in distribution

to ν∗, the element of R associated with u∗. This will allow us to conclude that νh
ω converges

in probability to ν∗ since convergence in distribution (to a deterministic element) implies
convergence in probability (page 27 of [11]).

To establish νh
ω ⇒ ν∗, recall that we defined uh

n = u∗(thn). The continuous time interpolation
(which is what defines νh

ω) is uh(t) = uh
n(t) = u∗(thn) for that n such that thn ≤ t < thn+1.

Although n and thn depend on ω in the underlying probability space, uh(t) → u∗(t) uniformly
with respect to ω because of the consistency condition (4.0.3). Letm(h)

.
= sup{x, u} ∆ th(x, u)

then in the above, t − m(h) ≤ thn ≤ t regardless of n or ω. Now u∗(·) is uniformly left
continuous on [0, T ] that is, given ε′ > 0 there is a δ′ > 0 so that |u∗(s) − u∗(t)| < ε′ all
0 ≤ t − δ′ < s < t ≤ T. So if m(h) < δ′ we have |uh

ω(t) − u∗(t)| < ε′ for all ω. Consider
any continuous function f : [0, T ] × U → R. Since [0, T ] × U is compact, f is uniformly
continuous and therefore

E

[∫ T

0

∫
U

f(t, u) dνh
ω

]
−
∫ T

0

∫
U

f(t, u) dν∗ = E

[∫ T

0

|f(t, uh
ω(t))− f(t, u∗(t))| dt

]
→ 0.

This implies νh
ω ⇒ ν∗ as desired. Also, as h → 0, eh

ω → 0 (Lemma 5.1.1). Then the
convergence of eh

ω → 0 and νh
ω → ν imply the following two convergences in probability, by

Lemma 5.2.4:
sup
[0, T ]

|Xh(·)−X∗(·)| → 0 and∫ T

0

∫
U

L(Xh(s), u) dνh
ω →

∫ T

0

L(X∗(s), u∗(s)) ds. (5.3.7)

Consider a control sequence obtained by modifying uh
n as follows.

If at time t = T, Xh has not reached {|X| < δ}, then for thn > T use a control so that

E

[∫ τ0

T

L(Xh, uh) dt

]
≤ K.

The existence of such a control is guaranteed by Chain Hypothesis (a).
If |Xh

n | < δ for some thn ≤ T, then from thn forward use a control for which we get

E

[∫ τ0

thn

L(Xh, uh) dt

]
< ε.

Such a control exists due to the Chain Hypothesis (b). We now have

V h(xh) ≤ E

[∫ T

0

∫
U

L(Xh(s), u) dνh
ω

]
+ ε+K P (|Xh(·)| > δ on [0, T ]).
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Note that as h ↓ 0 as T → ∞, P (|Xh(·)| > δ) → 0, for sufficiently large T, thus we can
bound the last term by ε. It follows that (see (5.3.7), (5.3.6), and (5.3.5))

limV h(xh) ≤
∫ T

0

L(X∗(t), u∗(t)) dt+ ε

≤
∫ T

0

L(Xε(t), uε(t)) dt+ 2ε

< V (x) + 3ε.

Since ε > 0 was arbitrary this completes the proof.

Note that the Chain Hypotheses together with the upperbound V ≤ limV h implies:
(a) V (x) ≤ K all x ∈ G
(b) V (x) < ε all x ∈ G with |x| < δ.
But (b) was one of the hypotheses of Theorem 3.2.1 that we needed to assume for the proof,
so we do not really have an independent argument for continuity of V here.
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An Example

In the previous chapters we have developed a theory and explained the mechanism to find
the solution of the problem described in Chapter 2. We will present in this chapter one
example to illustrate how to define the Markov Chain probabilities and time lapses, verify
the conditions, and implement the numerical method.

6.1 Description of a problem and its solution

Consider the system consisting of one server with a reentrant queue, as shown in Figure 2.1.
We motivate this example by thinking about a printer that only uses two colors, say blue
and red, but can only print one color on a page at a time: first blue and then red. Each
stack (queue) has a maximum capacity, C1 = 1.2 and C2 = 0.8 respectively. Let

x =

[
x1

x2

]
be the state vector in the state space G = [0, 1.2]× [0, 0.8], where

x1 = number of pages waiting for blue ink
and
x2 = number of pages waiting for red ink.

For this example we use

v(x, u) = β −Mu with U = [0, 1]× [0, 1],

β =

[
0.3

0

]
and M =

[
1 0

−1 1

]
.

43
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Notice the values of β, the disturbance or load. This says that external arrivals happen only
in queue 1 at a constant rate, and we have no external arrivals into queue 2. Since there is
no departure from the system after queue 1 is serviced, all its output is transfer to queue 2.
Using these values (2.1.1) takes the form[

ẋ1(t)

ẋ2(t)

]
=

[
0.3

0

]
−
[

1 0

−1 1

] [
u1(t)

u2(t)

]
(6.1.1)

with u1(t) + u2(t) = 1. However (6.1.1) describes the dynamics only when neither of the
queues is empty or has reached the maximum capacity, that is, for x ∈ Go, the interior of G
that we define to be

G = (0, 1.2)× (0, 0.8).

When one of the queues becomes empty or is at maximum capacity we need to correct for
what the control would attempt to do if left unchecked. For instance if x1 = 1.2, we need to
push out of the system any extra request for service coming into queue 1 thus a reflecting
vector d̃1 = [−1 0]T . The remaining reflecting vectors are

d1 =

[
1

−1

]
, x1 = 0; d2 =

[
0

1

]
, x2 = 0; d̃2 =

[
0

−1

]
, x2 = 0.8

as shown in Figure 2.2. In particular notice that the effect of d̃2 is to drop out of the system
any page that attempts to exceed the maximum capacity of queue 2. These are the reflecting
vectors necessary to explain the Skorokhod formulation for this specific problem.

Given the cost function

L(x, u) =
1

2
‖x(t)‖2 + 1.1

(independent of u) our goal is to design service allocation policies for x(t) to satisfy all the
demand while minimizing the cost functional

J(x0, u) =

∫ τ0

0

[
1

2
‖ x(t) ‖2 + 1.1

]
dt.

The dynamic programming approach consists of studying the value function

V (x) = min
u∈U

J(x, u).

With this example in mind we are now going to implement the calculations described in
Chapter 4.

To create the Markov Chain we take the following steps.

1. Construct the grid as described in Chapter 4, using h = 1.33× 10−3.
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2. Following the Diamond method (Section 4.1.1), the transition probabilities and time
increments are

p (x, y|u) =

{
(β−Mu)i

‖β−Mu‖1 , if y = x+ h sign((β −Mu)i) ei;

0, otherwise
(6.1.2)

where ei are the canonical basis vectors, and time lapse

∆th(x, u) =
h

‖ β −Mu ‖1

. (6.1.3)

Notice that since u1 + u2 = 1 and given our definition of β and M we can assure that
‖β −Mu‖1 6= 0. We take advantage of the geometry of G and the definition of the
reflection vectors, and choose h so that all the boundary grid points (∂Ḡh) are standard
grid points (Gh). By doing this, there is no need for defining the probabilities p(x, y|u)
with x ∈ ∂Ḡh \ Gh. The transition probabilities associated with a projection part of
the reflection jump will be
if x1 > C1 then p(x, (x1 − h, x2)) = 1,
if x2 > C2 then p(x, (x1, x2 − h)) = 1,
if x2 < 0 then p(x, (x1, x2 + h)) = 1,
if x1 < 0 and x2 > h then p(x, (x1 + h, x2 − h)) = 1, and
if x1 < 0 and 0 < x2 ≤ h then p(x, (x1 + h, x2)) = 1.

To compute the minimization over u in the discrete dynamic programming equation (4.0.14)
we first change its representation to make the implementation more efficient. Let

y = x+
∑
i=1, 2

sgn (β −Mu)i ei,

and use (6.1.2) and (6.1.3). It follows that

V h(x) = min
u

[∑
i=1,2 |(β −Mu)i|V h(y) + L(x)h

‖ β −Mu ‖1

]
.

Since
|(β −Mu)i| = sgn (β −Mu)i [(β −Mu)i]

and define the vectors

V(β, u) = sgn (β −Mu) and VV =
∑
i=1, 2

V h(x+ hVi ei)Vi ei.

These are respectively the sign of the velocity in the interior of G and the value function at
the possible points y where we could move to, multiplied by the sign of the velocity vector
in order to obtain the corresponding sign in the compacted notation below. Then

V h(x) = min
u∈U

{
(β −Mu)VV + hL(x)

(β −Mu) · V(β, u)

}
. (6.1.4)
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Notice that (6.1.4) is a piecewise linear fractional function of u ∈ U . As such, it is continuous
and monotone between changes of V(β, u) with assymptotic behavior when the denominator
(β−Mu) · V = 0. In our example this never happens. Thus, we will find the minimum value
at u = [1 0]T or u = [0 1]T .

At each x ∈ Gh we only need to compare a finite number of values and decide which of the
finite set of control values achieves the minimum value.

For the the parameter values h = 1
750
, C1 = 1.2, C2 = 0.8, error = 1 × 10−6, maximum

number of iterations or rounds (10,000), initial value V0 = 10, the computer code initializes
the different matrices of controls, values of the value function and values of the grid points.
At each iteration the computer calculates the cost matrix L. Using some intermediate steps
to calculate the different values in (6.1.4), the computer code compares the values from the
current value function matrix using different controls; it fixes the controls that provide the
minimum and computes the new values for the matrix V. This process is repeated until the
maximum number of iterations or stability of V is reached.

Figure 6.1 shows the values of V h resulting from this calculation. The base of the graph is
the state space, with x2 on the left axis. The vertical axis is the values of V h. As expected,
the maximum cost to empty the system is achieved when the system is at full capacity, as
we can see by the highest value at point (1.2, 0.8).

Figure 6.1: Optimal Values
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More importantly, Figure 6.2 shows the areas of the state space on which specific controls
would produce the optimal solution. Notice the areas red and black; these are a consequence
of the discretization. The controls prescribed by the numerical optimization method drives
the system to the origin in a zig-zag (down and left) motion corresponding to the controls
u = [.3 .7]T and u = [.5 .5]T respectively.

Figure 6.2: Directions and optimal controls

6.2 Verification of hypotheses

We now proceed to verify the conditions that provide a continuous value function (Hy-
potheses in Chapter 2) as well as the other conditions for convergence of V h to V (Chain
Hypotheses and other requirements from Chapter 4 as necessary).

1. V (x) is continuous at 0.
Assume x0 = (x1, x2) is close to zero, say 0 < ‖x‖ ≤ δ ≤ 1. We choose a policy that
takes x0 to x1 = (0, x2) using control [.5, .5] for a time T1 and cost C1 and then to 0
using control [.3, .7] for a time T2 and cost C2 for a total cost J = C1 + C2.
Using control [.5, .5], we have[

ẋ1

ẋ2

]
=

[
.3

0

]
−
[

1 0

−1 1

] [
.5

.5

]
=

[
−.2
0

]
Hence, to go from x0 to x1 it takes T1 = |x1|/.2 = 5 |x1| and costs∫ 5|x1|

0

1

2
‖x(t)‖2 + 1.1 dt =

∫ 5|x1|

0

1

2

[
(x1(t))

2 + (x2(t))
2]+ 1.1 dt

≤
∫ 5|x1|

0

1

2
x2

1 +
1

2
x2

2 + 1.1 dt

=
1

2
x2

1t+
1

2
x2

2t+ 1.1t
∣∣∣5|x1|

0
.
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Hence we have the estimate

C1 ≤
5

2
|x1|3 +

5

2
|x1|x2

2 +
11

2
|x1|.

Observe that the inequality of the second line is due to the fact that the control we
chose will keep the second component constant, while decreasing the first component
to zero.

Next, from (0, x2) we use control [.3, .7]. To reach the origin it takes

T2 =
5

2
|x2| with C2 ≤

5

4
|x2|+

11

4
|x2|.

Thus, the cost to go from x0 to (0, 0) using these controls (noting that ‖x‖ ≤ δ ≤ 1) is

J ≤ 5

2
|x1|3 +

5

2
|x1|x2

2 +
11

2
|x1|+

5

4
|x2|+

11

4
|x2|

≤ 5

2
δ3 +

5

2
δ3 +

11

2
δ +

5

4
δ3 +

11

4
δ

=
25

4
δ3 +

33

4
δ

≤ 58

4
δ.

By choosing δ ≤ 2
29
ε, for any ε > 0 we attain V (x) ≤ ε for any δ > 0 and ‖x‖ ≤ δ.

2. For all ε > 0, infx∈G,|x|≥ε V (x) > 0.
For any x ∈ G we have that the cost function is strictly positive, i.e. L(x) ≥ 1.1. Thus
we have

inf
x∈G,|x|≥ε

V (x) ≥
∫ τ0

0

1.1 dt = 1.1 t
∣∣∣τ0
0

= 1.1 τ0.

It suffices to show that τ0 6= 0 or (since |x| ≥ ε > 0) that ‖v‖ <∞.
Notice that for any x ∈ G0, v(x) = ẋ = β −M u. That implies∥∥∥∥[ .30

]
−
[

1 0

−1 1

] [
u1

1− u1

]∥∥∥∥ ≤ ∥∥∥∥[ .30
]∥∥∥∥+

∥∥∥∥[ u1

1− 2u1

]∥∥∥∥
≤ .3 + |u1|+ |1− 2u1|
≤ 2.3

since u1 ∈ [0, 1], |1 − 2u1| reaches its maxima at u1 = 0 and u1 = 1. We conclude
that ‖v‖ <∞. In the worse case scenario, x ∈ ∂G in which case π(x, u) = β −Mu+∑

i∈I αidi and thus∥∥∥∥∥
[
.3

0

]
−
[

1 0

−1 1

] [
u1

1− u1

]
+
∑
i∈I

αidi

∥∥∥∥∥ ≤
∥∥∥∥[ .30

]∥∥∥∥+

∥∥∥∥[ u1

1− 2u1

]∥∥∥∥+

∥∥∥∥∥∑
i∈I

αidi

∥∥∥∥∥
≤ .3 + |u1|+ |1− 2u1|+ 1 by (2.0.3)

≤ 3.3.
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3. There exists at least one proper policy for the Markov Chain-based control problem.
Choose 0 < h < 1. Then there are

N =

(
1.2

h
+ 2

) (
0.8

h
+ 2

)
grid points. For any x ∈ Gh (if x ∈ G̃h it only takes one extra jump to be back in Gh)
use control u1 = [.5 .5]T so that v1 = [−.2 0]T until we reach the axis x1 = 0. That
takes at most

x1

h
+ 1 <

1.2

h
+ 2

jumps. Then use control u2 = [.3 .7]T that produces v2 = [0 − .4]T to the origin for a
total of

x2

h
+ 1 <

0.8

h
+ 2

jumps. Then the total number of jumps would be at most

1.2

h
+

0.8

h
+ 4 < N.

4. There is a K, δ > 0 so that

sup
xh∈Gh

∣∣∣V h(xh)
∣∣∣ ≤ K, all 0 < h < δ.

Recall that
V h(xh) = inf

u
W h(x, u)

where

W h(x, u) =

∑
y∈Gh

p(x, y|u)V (y) + L(xh)∆ th(x, u)

 .
We choose the same policy as in the previous property. We need to make the following
observations that are derived from using the controls as above and our definitions of
L and J .

(a) Consider any two different grid points xi and xi+1 (the superscripts are not values
of h but time indices: xi occurs before xi+1.) Then ‖xi‖ ≥ ‖xi+1‖ except when
xi

2 = −h but this case is not significant for our conclusions since it adds nothing
to the cost.

(b) Since ‖xk‖ ≥ ‖xk+1‖ then L(xk) ≥ L(xk+1) for all xk and xk+1.

(c) On each segment (horizontal and vertical), the velocity remains constant, so does
the total time, regardless of the number of subintervals.
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(d) On each segment the more subintervals we have (the smaller h is), the smaller
the cost.

Based on these observations, we know that we get the largest possible cost when we
start at the point x0 farthest away from the origin, that is x0 = (1.2, .8). We also know
that the cost associated with any regular grid spacing is less than the cost associated
with a displacement equal to the largest coordinate of the initial point. For h1 = 1.2
we have

C1 =

[
1

2
‖((1.2, .8)‖2 + 1.1

]
1.2

.2
= 16.05

This takes us to x1 = (0, .8). Take h2 = 0.8 that produces

C2 =

[
1

2
‖((0, .8)‖2 + 1.1

]
.8

.4
= 3.

Hence J(x0, u) = 19.05 is the cost corresponding to an arbitrarily chosen policy and
the largest possible initial value. We take K = 19.05 and δ = 0.1 for example.

5. Given ε > 0 there exists a δ > 0 so that∣∣V h(x)
∣∣ < ε for all x ∈ Gh with |x| < δ and h < δ.

Since we want x close to zero, we may assume that δ ≤ 1 and that x = (x1, x2) 6= (0, 0).

Take the same policy uε as before: to go horizontally to x1 = (0, x2) with control
u1 = [.5 .5]T and then down to the origin with u2 = [.3 .7]T . For ‖x‖ < δ ≤ 1 we have

J(x, uε) = C1 + C2

with

C1 = L(x1) ∆ th(x1, u1)

≤
(

1

2

[
(x1

1)
2 + (x1

2)
2
]
+ 1.1

)
δ

.4

≤
(
δ2 + 1.1

) 5 δ

2

C2 = L(x2) ∆ th(x2, u2)

≤
(

1

2
(x1

2)
2 + 1.1

)
δ

.2

≤
(

1

2
δ2 + 1.1

)
5 δ

J(x, uε) ≤ 5

2
δ3 +

5.5

2
δ +

5

2
δ3 + 5.5 δ

= (5 δ2 + 8.25) δ

≤ 53

4
δ.
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Choose δ = 4
53
ε.

With this we show that we meet all the conditions required for the limiting fluid deterministic
problem to have a unique solution V and for our numerical method to also have a unique
solution V h and to converge to V.
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Conclusion

In order to solve optimal control problems for stochastic queueing networks, we developed a
numerical method based on the Markov Chain approximation technique to solve a discretized
version of the approximating (deterministic) fluid model. We based our work on the methods
by Kushner and Dupuis [28] following the approach of Boué and Dupuis [12] but expanding
our solution to problems that incorporate reflecting boundaries (Skorokhod dynamics).

The numerical solution we offer is valid for positive cost functions. The state space is a
closed, convex polyhedron that includes the origin. Some conditions are imposed on the
dynamics in the interior of the space (the velocity function), such as being bounded and
Lispchitz continuous. The cost function carries similar restrictions (see (2.3.5)).

Chapters 2 and 3 deal with the continuous (fluid) control problem. We establish that the
value function is continuous (Chapter 3). It was the proof of the convergence of the value
function (Chapter 5) that took the heavier mathematical machinery. In order to to this, we
rely on the representation of the limiting fluid problem in terms of a representation based
on relaxed controls R. We show that the set of relaxed control is compact and separable.

In Chapters 4 and 5 we present the Markov Chain-based approximation to the deterministic
problem and provide the support to claim that the numerical method approximates the
solution.

Finally, Chapter 6 shows the implementation of our method with a specific example. An
outline of the algorithm is presented in that chapter. We also include in that chapter the
verification of the conditions for continuity of the value function and convergence of the
numerical method.

Our main contribution to the study of optimal control problems that arise from (stochastic)
queueing networks is to develop a numerical method for a control of the (deterministic) fluid
limit of queueing models in a (polyhedral) bounded domain together with the analysis of
convergence, including the proof of continuity of the value function.

52
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As an extension of our work, we can pose the following immediate challenges:

1. An error analysis of our method,

2. a generalized solution to a broader type of cost functions,

3. include a more general type of state space, such as a mixture of smooth (not only
straight faces), and

4. expand the method to consider differential game problems.
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Appendix A

A.1 Definitions Regarding Controlled Markov Chains

Definition A.1.1. Consider the discrete-time dynamic system

xk+1 = f(xk, uk), k = 0, 1, . . . ,

where for all k, the state xk is an element of the space G and the control uk is an element
of the space U and it is constrained to take values in a given nonempty subset U (xk) of
U, which depends on the current state xk. And admissible policy is a sequence of control
functions π = {µ0, µ1, . . . } with µk : G→ U, µk(xk) ∈ U (xk), for all xk ∈ G, k = 0, 1, . . . .
([9], p. 3)

Definition A.1.2. A stationary policy is an admissible policy of the form π = {u, u, . . . },
that is, a sequence of control functions that take the same action for the same state at every
stage. ([10], p. 3)

Definition A.1.3. A stationary policy u is said to be proper if, when using this policy,
there is a positive probability that the destination (termination or end state) will be reached
after at most N-1 steps, with N being the total number of states, regardless of the initial
state. A stationary policy that is not proper is said to be improper. ([10], p. 80)

A.2 Weak Convergence of Probability Measures

Definition A.2.1. Denote a metric space by S and let S be the Borel σ-field generated by
the open sets of S. If probability measures Pn and P satisfy∫

S

f dPn →
∫

S

f dP

for every bounded, continuous real function f on S, we say that Pn converges weakly to P,
and express it by Pn ⇒ P. ([11], p. 7)

57
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As an extension of Definition A.2.1, we say that finite measures µn defined on the metric space
S converge weakly to a measure µ (also in S) (µn ⇒ µ) if for every bounded, continuous
real function f on S,

∫
S
f dµn →

∫
S
f dµ. In particular, considering f ≡ 1, this requires

µn(S) → µ(S).

Theorem A.2.2. Let {θn} be a sequence in P(S) as in (B.1.1). Then θn converges weakly
to θ (θn ⇒ θ) in P(S) if and only if L(θn, θ) → 0. Furthermore, with respect to the Lévy-
Prohorov metric P(S) is complete and separable. ([23], p. 374)

Proposition A.2.3. A metric space S is compact if and only if it is both complete and
totally bounded. ([33], p. 156)

Definition A.2.4. We say a sequence of random elements {Xn} with values in a metric
space S converge in distribution to the random element X if Pn ⇒ P, where Pn and P are
the distributions of Xn and X respectively. ([11], p. 25)
That is, {Xn} → X in distribution if and only if for any f continuous and bounded on S,

lim
n→∞

E[f(Xn)] = E[f(X)].

([23], p. 375)

Note: The notion of convergence in distribution does not require that the random variables
Xn and X be defined on a common probability space.

Definition A.2.5. Let {Xn, n ∈ N} be a sequence of random variables with values in a
metric space S that are defined on a sequence of probability spaces {(Ωn, Fn, Pn), n ∈ N}.
We say that the sequence {Xn} converges in probability to 0 if for every ε > 0,

lim
n→∞

Pn(d(Xn, 0) ≥ ε) = 0.

([23], p. 375)

Theorem A.2.6. The sequence of random variables {Xn} converges in distribution to 0 if
and only if it converges in probability to 0. ([23], p. 376)

Definition A.2.7. A probability measure P on (S, S) is regular if for every S−set A and
every ε there exist a closed set F and an open set G such that F ⊂ A ⊂ G and P (G−F ) < ε.
([11], p. 7)

Definition A.2.8. A probability measure P on (S, S) is tight if for each ε > 0 there exists
a compact set K such that P (K) ≥ 1− ε. ([11], p. 8)

Theorem A.2.9. A necessary and sufficient condition for Pn ⇒ P is that each subsequence
{Pni

} contain a further subsequence {Pni(m)
} converging weakly (m→∞) to P. ([11], p. 20)
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Definition A.2.10. Let M be a family of probability measures on (S,S). We call M ‘rela-
tively compact’ if every sequence of elements ofM contains a weakly convergent subsequence.([11],
p. 57)

Definition A.2.11. The family M is tight if for every ε there exists a compact set K such
that P (K) > 1− ε for every P in M.([11], p. 59)

Theorem A.2.12 (Prohorov’s Theorem – Direct). IfM is tight, then it is relatively compact.
([11], p. 59)

Theorem A.2.13 (Prohorov’s Theorem – Converse). Suppose that S is separable and com-
plete. If M is relatively compact, then it is tight.([11], p. 60)

Theorem A.2.14. Probability measures on S ′ × S ′′ are tight if and only if the two sets of
marginal distributions are tight on S ′ and S ′′. ([11], p. 65)

Theorem A.2.15. Let S be a metric space, and let Pn, n <∞, and P be probability measures
on P(S) satisfying Pn ⇒ Pn. Let f be a real valued measurable function on S and define Df

to be the measurable set of points at which f is not continuous. Let Xn and X be random
variables which induce the measures Pn and P on S, respectively. Then f(Xn) ⇒ f(X)
whenever P{X ∈ Df} = 0. ([28], p. 249)

Definition A.2.16. In a metric space (S, ρ), an extended real-valued function ψ : S → R
is called lower semicontinuous at a point y if ψ(y) 6= ∞ and ψ(y) ≤ limx→y ψ(x) for every
x. ([33], p. 51)

Lemma A.2.17. ψ : S → R is lower semicontinuous if and only if there exists fn ∈ C(S)
such that fn ↑ ψ pointwise. ([33], p. 50)

Lemma A.2.18. If µn ⇒ µ (Weak convergence of probability measures on S) and ψ : S → R
is bounded lower semicontinuous, then∫

ψ dµ ≤ lim

∫
ψ dµn.

([11], p. 24)

A.3 Gronwall’s inequality

Theorem A.3.1. Let µ be a Borel measure on [0, ∞), let ε ≥ 0, and let f be a Borel
measurable function that is bounded on bounded intervals and satisfies

0 ≤ f(t) ≤ ε+

∫
[0, t)

f(s)µ(ds), t ≥ 0.
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Then
f(t) ≤ ε eµ[0, t), t ≥ 0.

In particular, if M > 0 and

0 ≤ f(t) ≤ ε+M

∫ t

0

f(s) ds, t ≥ 0,

then
f(t) ≤ ε eM t, t ≥ 0.

([24], p. 498)

A.4 Some Martingale Facts

Definition A.4.1 (Martingale). A process X is called a martingale if

1. X is adapted (for every n ∈ Z+, Xn is Fn−measurable);

2. E (|Xn|) <∞, ∀n;

3. E [Xn|Fn−1] = Xn−1, a.s. (n ≥ 1).

([32], p. 144)



Appendix B

B.1 Proofs of some lemmas

Lemma 5.2.1 R is compact.

Proof. For each T < ∞ let ν̄T (A) = 1
T
ν(A) for all A ⊆ U × [0, T ]. Then RT = {ν̄T} is the

set of probability measures on [0, T ] × U on which we define the Lévy-Prohorov metric on
RT

Aε = {s′ : d(s, s′) < ε for some s ∈ A}

and for ν̄T
1 and ν̄T

2 in RT let

LT (ν̄T
1 , ν̄

T
2 ) = inf{ε > 0 : ν̄T

1 (A) ≤ ν̄T
2 (Aε) + ε for all closed A ⊆ [0, T ]× U}. (B.1.1)

For ν1 and ν2 in R define the metric

ρ(ν1, ν2) =
∞∑

j=1

2−j Lj(ν̄j
1, ν̄

j
2)

Lj(ν̄j
1, ν̄

j
2) + 1

. (B.1.2)

This makes R a metric space.

Next we explain why the ρ topology is the same as the weak topology described above.

Under this metric a sequence νn(·) in R converges weakly to ν(·) ∈ R if∫ j

0

∫
U

f(t, u(t)) dνn →
∫ j

0

∫
U

f(t, u(t)) dν

for any bounded continuous function f : [0, ∞)× U → R. From the definition of ρ we only
have this convergence for each j ∈ N. However,∫ T

0

∫
U

f(t, u) dνn →
∫ T

0

∫
U

f(t, u) dν (B.1.3)
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can be expressed as ∫ j

0

∫
U

1[0, T ] f(t, u) dνn →
∫ j

0

∫
U

1[0, T ] f(t, u) dν

for T < j. The function 1[0, T ] f(t, u) is continuous except for (t, u) ∈ {T} × U, but since
ν({T}×U) = 0 for any ν ∈ R, by Theorem A.2.15 of Appendix A we still get the convergence
of (B.1.3).

Thus, under the metric ρ (B.1.2), a sequence νn in R converges to ν ∈ R if and only if the
sequence of probability measures converges (ν̄T

n ⇒ ν̄T ) for all T <∞. Since for each T <∞
the set [0, T ]× U is compact, tightness of RT is inmediate. Then RT is compact and every
sequence {ν̄T

n } has a convergent subsequence {ν̄T
nk
}.

Lemma 5.2.3 The continuous standard controls are dense in R.

Proof. The proof is in several stages:
1. Since U is totally bounded, for each ε > 0 there exists a finite set F = {u1, u2, . . . , un}
so that {Bε(ui)} cover U. Form the measurable partition

B1 = Bε(u1), Bi = Bε(ui) \ ∪i−1
j=1Bε(uj).

We can “concentrate” U on {u1, u2, . . . , un} with the map ψF : U → U defined by
ψF (u) =

∑
ui 1Bi

(u) and define ΦF : [0, ∞) × U → [0, ∞) × U by ΦF (t, u) = (t, ψF (u)).
Let νF = ν Φ−1

F . Then for f bounded and continuous function∫ T

0

∫
U

f(t, u) dνF =

∫ T

0

∫
U

f(t, ψF (u)) dν.

Take a sequence of Fn associated with ε = 1/n and consider νFn . Since |u−ψFn(u)| < 1
n

and
f is continuous |f(t, ψF (u))− f(t, u)| → 0, uniformly on each [0, T ]× U . Therefore∫ T

0

∫
U

f(t, u) dνFn →
∫ T

0

∫
U

f(t, u) dν

Then the collection of ν with “finite support” are dense in R. By this we mean that there is
a finite set F so ν([0, T ]× F ) = ν([0, T ]× U).

2. Consider ν = νF as above using F = {u1, u2, . . . , un}. Given h > 0 we produce a
“piecewise constant” approximation νh as follows. For each Ik = [k h, (k + 1)h] let pi =
1
h
ν(Ik × {ui}). Then 0 ≤ pi and

∑n
i=1 pi = 1. Define νh on Ik × U by

νh(Ik × U ∩ A) =

∫ (k+1) h

k h

n∑
i=1

pi 1A(t, ui) dt.
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I.e. νh(du × dt) is (
∑n

i=1 piδui
(du)) dt on Ik. Notice that if f(t, u) = f(u) does not depend

on t then ∫ (k+1)h

kh

∫
U

f(u) dν =

∫ (k+1)h

kh

∫
U

f(u) dνh = h
n∑
i

pif(ui).

So for fh(t, u) = f(h [[t/h]], u) = f(kh, u) if kh ≤ t < (k + 1)h we have∫ Nh

0

∫
U

fh(t, u) dν =

∫ Nh

0

∫
U

fh(t, u) dνh

for any integer N. We also know that as h→ 0, fh → f uniformly on any [0, T ]× U. So for
N = [[T/h]] we have∫ T

0

∫
U

f(t, u) dν ≤
∫ Nh

0

∫
U

fh(t, u) dν + ‖f‖∞ · h+ ‖fh − f‖∞,[0, T ] · T

from which∣∣∣∣∫ T

0

∫
U

f(t, u) dν −
∫ Nh

0

∫
U

fh(t, u) dν

∣∣∣∣ ≤ ‖f‖∞ · h+ ‖fh − f‖∞,[0, T ] · T

and likewise with ν replaced by νh. It follows that∫ T

0

∫
U

f dνh →
∫ T

0

∫
U

f dν

as h ↓ 0. Thus the ν = νh which are “piecewise constant with finite U support” are dense inR.

3. Given a piecewise constant finitely U−supported ν as above, we want to approximate it
by a piecewise constant standard control. To do this on each interval a ≤ t ≤ b on which

ν(du× dt) =

[
n∑

i=1

piδui
(du)

]
dt

we divide [a, b] up into n pieces [α, β], β = α + b−a
n
. On each such piece into intervals of

lengths pi(β − α) and define un(t) = ui on each. Then if f(t, u) = f(u) in [α, β] we have∫ β

α

∫
U

f dν =

∫ T

0

f(t, un(t)) dt.

So by an argument like that above we get∫ T

0

∫
U

f dν = lim
n→∞

∫ T

0

f(t, un(t)) dt.
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This piecewise constant standard controls are dense in R.

4. Finally, given a piecewise constant standard control u(t) = ui on ti−1 ≤ t < ti (ti →∞)
we can approximate it by smoothing out the transitions by linear connections between the
points

Pi−1(ti−1, ui−1) and Pi

(
ti +

(ti − ti−1) ∧ 1

n
, ui

)
.

Since un(t) = u(t) on [0, T ] except for a set of measure 1
n
(T + 1) it follows that∫ T

0

f(t, un(t)) dt→
∫ T

0

f(t, u(t)) dt

for all bounded continuous u.

At each stage the convergence of∫ T

0

∫
U

f dνn →
∫ T

0

∫
U

f dν

for all T and all bounded continuous f means νn → ν w.r.t. the metric for R : ρ(νn, ν) → 0.
So by chosing ρ(νn, ν) <

ε
3

at each stage we obtain u ∈ C([0, ∞),×U) so that ρ(νn, ν) < ε.
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