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(ABSTRACT)

With an increasing number of regulatory and economic factors making the
operation of power systems more challenging, utilities must take full advantage of
technological advances which allow more flexibility for operation. One of these advances
is the combination of power electronic controllers and compensation devices known as
Flexible AC Transmission Systems (FACTS) technology. This thesis will examine the
ability of FACTS technology to improve dynamic stability when controlled with data
obtained from another recent advancement, phasor measurement units (PMUs). Based on
an overview of the relative capabilities of presently available FACTS devices, a specific
device will be chosen to be modeled in a dynamic stability study. Eigenvalue sensitivity
analysis will be used to determine the optimal placement for this FACTS device in regards
to stability for a test power system. Then a state space model will be developed for the
FACTS compensated test system, and eigenvalue sensitivity and time-domain methods will
be used to determine the optimal controller characteristics for the modeled FACTS device.

Stability results will be verified using eigenvalue analysis and time simulation techniques.
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CHAPTER 1

Introduction

1.1 Problem Statement

Many factors in recent years have made the operation of power systems an
increasingly complex and challenging task. The need to meet increased load growth has
come in conflict with obtaining new rights-of-way for transmission lines. Regulatory
constraints, including those governing the environmental impacts of power plants, have
presented utilities with the possible dilemma of sacrificing system security levels in order
to comply with federally mandated environmental regulations. Economic concems have
forced utilities to operate their plants and transmission systems for much longer lifetimes
and closer and closer to the edge of their limits. With these changes, several traditional
system concerns demand more attention. Among these is the problem of small-signal
oscillations which, if they are not damped out, may damage equipment or interrupt
electrical service. Technological advances in the area of power electronics now allow

more flexible, dynamic control of power system compensation devices for use in



correcting this and several other network problems. This thesis will examine the
implementation and control of this technology for improving the dynamic stability of a

power system.

1.2  Power System Stability

The concept of stability is important in many fields and may be defined in slightly
different ways depending on the application. In general, however, a system is regarded as
stable if it either reaches a steady-state value in a finite amount of time or continues to
oscillate at a fixed amplitude indefinitely. For power systems, a system is regarded as
stable if it reaches steady-state after a disturbance within a finite amount of time. An
infinitely oscillatory response to a disturbance, while regarded as stable from a theoretical
point-of-view, is undesirable in a power system due to the impracticality of using and
supplying electricity in such a manner.

The study of power system stability comprises three distinct areas of concern [1].
First, steady-state stability refers to the ability of a power system to yield a long-term
stable response to ordinary changes in load and generation. On the other hand, if a power
system has good fransient stability, it will remain stable after large or sustained
disturbances such as faults. The third area of concern within power system stability is
known as dynamic stability. Dynamic stability is a measure of how well a power system
responds to small disturbances such as unexpected changes in load or generation. If a
power system is not dynamically stable, oscillations caused by these small disturbances will

continue to increase in amplitude and not damp out.



1.3  Flexible AC Transmission Systems

Series and shunt compensation have long been used by electric utilities for
improving transmission voltage levels, increasing power transfer capabilities and reducing
overall transmission losses [2]. However, in the past these tools have been basically static
in nature since they were operated by some sort of mechanical means. Recently,
improvements in power electronics and control technologies have led to improved options
for controlling power system compensation devices such as series capacitors. Due to their
ability to provide utilities with greater flexibility in operating their power systems, these
devices have been dubbed ‘“Flexible AC Transmission Systems” or FACTS devices. This
term and the concept it represents have been credited to Narain G. Hingorani of the
Electric Power Research Institute (EPRI) [3]. Devices in this category include a variety of
high-power electronic controllers which may be used individually or in combinations
depending on the application. Examples of FACTS devices include static VAR
compensators (SVCs), unified power controllers (UPCs), and thyristor-controlled series
capacitors (TCSCs). The major advantage of these new controllers over conventional
control devices such as mechanical switches and phase shifters is their ability to quickly
respond to power system changes without the inertial time delays inherent in mechanical
devices. As a result of these advances, series compensation can now be controlled
dynamically in order to respond quickly to changes in a power system. This includes the

capability to damp power system oscillations.



1.4  Proposed Solution

This thesis will examine the ability of FACTS technology to improve dynamic
power system stability by damping oscillations. Specifically, the thesis will focus on how
placement and control of a typical FACTS device can be chosen and designed in order to
provide maximum improvement in the dynamic stability of a test power system. The focus
will be the application and implementation of FACTS technology rather than on detailed
modeling of the devices themselves.

Various FACTS devices will be examined to determine their power system control
capabilities, and one device will be selected for modeling. To determine the effectiveness
of the chosen FACTS device in improving dynamic stability, an example power system,
mcluding each generator’s excitation system, will be modeled in detail. An initially stable
system will be moved towards marginal stability by adjusting the time constants and gains
in each generator’s excitation system. The system will also be moved to an unstable state
by a gradual change in reactive load. Then, a disturbance in the form of an instantaneous
change in generator mechanical power will be applied to the system, and the response of
the system will be evaluated.

In order to damp the oscillations caused by the disturbance, the selected FACTS
device will be inserted into the test power system. Eigenvalue sensitivity analysis will be
used to determine what FACTS device location will provide optimal compensation for the
entire power system. An approach for including the FACTS device in a state space model

of the test power system will be proposed and implemented. Then using eigenvalue and



time-domain techniques, a FACTS control strategy using remotely measured power
system data will be developed and optimized for overall test system stability and device
time-response desirability. Results for the uncompensated, mechanically compensated and
FACTS compensated test systems will be evaluated using both eigenvalue analysis and

numerical simulation.



CHAPTER 2

Power System Stability

2.1  Definition of Stability

An effective study of power system stability, a topic which includes several distinct
areas of research, should be designed with a specific definition of this characteristic in
mind. Failure to provide a narrow defmition for stability can otherwise result in confusion.
For example, the term stability when applied to an electric utility may have different
meanings for power system planners who think in terms of months or years and system
operations engineers who are more concerned with shorter periods of time such as
seconds, minutes, or hours. For this thesis, it is therefore important to start with a general
definition for stability and then refine the definition to reflect the specific attributes that are
being examined in this research study.

In general, stability deals with the time-domain response of a system to some type
of disturbance. A disturbance in a power system can be defined as a “sudden change or

sequence of changes in one or more of the operating quantities” [4]. This could be a



momentary change in conditions in a system (an impulse) or a sudden but sustained
change in system parameters (a step function). A response to a disturbance may exhibit
overdamped or underdamped oscillations and may include exponential growth or decay.
The responses of “operating quantities” such as generator rotor angle, electrical power
output, and frequency are often used in determining the stability of a power system. In
relating the general concept of stability to a power system, a well-known textbook author
defines stability as the following:

“Power system stability may be defined as that property of the system

which enables the synchronous machines of the system to respond to a

disturbance from a normal operating condition so as to return to a
condition where their operation is again normal.” [5]

This definition is sufficiently general to allow three sub-categories of power system
stability which are defined by the time period of a study as well as the magnitude of a
disturbance. Steady-state stability refers to the ability of a power system to yield a stable
response to ordinary changes in operating conditions. As the name implies, steady-state
stability studies examine the overall long-term behavior of power systems under normal
expected conditions. As such, these studies generally use very simplified power system
models and assume that all transients have died out. On the other hand, the study of
transient stability examines the response of a power system to sudden large changes in
system conditions such as faults or the loss of generating units. These disturbances may

cause sudden changes in system response within a few cycles of the network power



oscillation. Consequently, transient stability deals with time periods measured in
milliseconds through periods of a few seconds.

The third area of concern within power system stability is known as dynamic
stability, the major area of interest in this study. Dynamic stability is determined by
assessing a system’s response to disturbances that are small enough to allow linearization
of the equations describing the system’s dynamics. Studies in this area usually include
detailed generator and excitation system models. Dynamic stability bridges the time
period between transient and steady-state stability. Thus, the time period covered by
dynamic stability studies is generally measured in minutes. If a power system is not
dynamically stable, disturbances can cause small signal fluctuations that may gradually
increase in amplitude and become sustained oscillations.

In performing studies of stability on a power system, several assumptions are
usually made to simplify analysis. Three assumptions generally apply to all types of
stability studies [5]. First, only synchronous frequency currents and voltages are
considered. Thus, harmonic components and dc offsets are neglected. Also, symmetrical
components are used for representing unbalanced faults. Finally, generated voltages are
assumed to be unaffected by variations in machine speed. In addition to these basic
assumptions, further simplifying assumptions may be applied to power systems depending
on the specific type of stability being considered. For dynamic stability, one crucial

assumption is that all variables can be linearized around an initial operating point.



2.2  State Space Model

In order to model a power system for a dynamic stability study, generator and
excitation system differential equations must be formulated for each machine. The forms
of these equations depend on what models are used. Perhaps the most commonly used
model for a synchronous generator is an emf in series with a reactance. For this general
model, the dynamics of the rotor of each machine are described by what is known as the
swing equation. This may be written in several forms depending on whether it is
expressed in terms of power or torque and whether the units used to express each term are

absolute or per unit. One useful form in terms of per unit power is:

2H )d’5
(2148 _p, -7, -Da e
R

where H is related to stored energy in the rotor at rated speed wgr and D is a damping
coefficient. Detailed generator and excitation system differential equations are discussed
in Chapter 4, but equation (2.1) is useful in demonstrating the state space model.

For the state space representation of a power system, all of the generator and
excitation system equations are linearized and formulated into a format in which the time
derivatives of each state variable are grouped in a vector. Then the right hand side of each
equation may be grouped in matrices containing combinations of initial conditions and
other state variables. The state and input variables are then factored out, leaving matrices
of coefficients acting on state variables (the A matrix) and the system inputs (the B

matrix). Realizing that angular frequency (©) equals the time derivative of rotor angle ()



and that P,, is assumed constant while P, is linearized around its initial operating point,

equation (2.1) can be arranged in the form:

{ F. +Do) +(2H)P Y

Summarizing this format for an entire system of equations:

x = Ax +Bu (2.3)
where x and u are variable vectors and A and B are coefficient matrices. Equation (2.3)
represents the state space equation for the system. The content of this state matrix, in the

form of the matrix eigEnvalues, can be used to determine the stability of the system.

2.3  Eigenvalues and Stability
From matrix theory, the eigenvalues A; of a square matrix A are defined as all non-
trivial solutions to the following equation:
Ax = AX 2.4)
This equation can be solved using the relationship:
det(A-AD=0 (2.5)
where I is the identity matrix which contains ones on its diagonal and zeros for every off-

diagonal term. Expanding the equation for a 7xn matrix:

detf . P M=o (2.6)
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Thus, there will be 7 eigenvalues for a nxn matrix. These eigenvalues may be completely
real numbers or complex conjugate pairs.

Eigenvalues provide very meaningful information about the stability of a system,
and they are often plotted in a complex plane to provide a graphical representation of the
system’s stability characteristics. In this graphical sense, eigenvalues which are to the left
of the imaginary axis are regarded as stable while those that appear on or to the right of
the imaginary axis reflect unstable conditions. The time response of a linear system to a
disturbance is equal to a summation of components containing constants multiplied by
terms of the form e* [6]. The eigenvalues with the largest real components have the most
impact on this response and are thus referred to as the dominant or critical eigenvalues.
Accordingly, a system with only a single, positive real-valued critical eigenvalue will
exhibit exponential growth while a system with a single, negative real-valued critical
eigenvalue will exhibit a response with an exponential decay. In a similar manner,
dominant eigenvalues which are complex conjugates of each other and have negative real
parts will provide an oscillatory response inside the envelope of an exponential decay.
This oscillation will have an angular frequency (©) equal to the imaginary portion of the
critical eigenvalue(s). Thus, it is the real component of each eigenvalue which determines
if a system is stable while the imaginary part (if it exists) determines the form of the

response.

11



CHAPTER 3

FACTS Devices

3.1  Background

As stated previously, FACTS devices consist of power electronic controllers used
in conjunction with power system compensation devices such as series capacitors. The
fundamental component of most FACTS device controllers is the thyristor. Various
combinations of designs using these thyristors comprise the types of FACTS devices
discussed in this chapter. Since, the focus of this thesis is the application of FACTS
devices rather than the details of how the actual controller components work, the
following general discussion of FACTS devices is included merely to provide background
information.

FACTS devices may be used to influence the state of a power system in three ways
[7]. First, they can be used to control the series impedance of a transmission line through
series compensation. In a similar manner, FACTS devices can be used to control system

voltage characteristics by parallel compensation. Finally, the phase angle between two

12



points on the transmission system can be altered by the insertion of FACTS devices which
incorporate phase-shifting transformers.

From the nature of their electronic controllers, FACTS devices have a number of
inherent advantages over any existing electromechanical counterparts [7]. By definition,
FACTS devices allow for flexible control of power systems. Probably the most important
attribute of these devices which allows this flexibility is their speed of operation. Since the
power electronic controllers have no massive mechanical components to introduce
physical time delays in switching, they can operate very rapidly in order to react to the
changing conditions on a power system. Also due to the lack of mechanical parts which
inevitably wear over tinie, FACTS devices allow virtually limitless repeatability and
require very little maintenance. In addition, as further advances in power electronics
technology make FACTS technology less expensive, the ability of these devices to be used
for multiple purposes will make them even more economically attractive for use by electric

utilities.

3.2  Types of Devices

A variety of FACTS devices are now in use. Table 3.1 provides a summary of
these devices and their major control capabilities. A brief discussion of each of these
devices is provided below. As stated above, this section is intended as an overview rather

than a detailed description of each FACTS device.
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3.2.1 NGH-SSR Damper

This device is specifically designed to compensate for subsynchronous resonance

(SSR). SSR occurs at a frequency typically between 15-30 Hz when the natural

frequencies of a generator’s rotational shaft are the same as the electrical resonance

frequency of a transmission line [3]. This device is comprised of an AC thyristor switch

connected in series with a resistor and small inductor. This combination is then placed in

parallel with a series capacitor.

Table 3.1: FACTS Devices and Their Control Attributes (Adapted from [3])

Areas of Increased Control

FACTS Device Power | Voltage | VARs | Phase | Oscillation | Transient Series
Angle | Dampin Stability | Impedance

NGH-SSR Damper X X X
Static VAR Compensator X X X
Thyristor-Controlled Series Capacitor X X X X X
Static Condenser X X X X X
Thyristor-Controlled Phase Angle X X X X
Regulator
Unified Power Controller X X X X X
Thyristor-Controlled Dynamic Brake X X

14



3.2.2 Static VAR Compensator

Static VAR compensators (SVCs) have been used by some electric utilities since
the mid-1970s for voltage stability control [3]. This device, which also utilizes thyristors
in its design, allows for quick insertion or removal of shunt combinations of reactors
(inductors) and capacitors. SVCs have also been used in conjunction with power system

stabilizers to improve overall power system damping [8].

3.2.3 Thyristor-Controlled Series Capacitors

One of the most versatile of the FACTS devices listed in Table 3.1 is the thyristor-
controlled series capacitor (TCSC). This device allows variation in the series impedance
of a transmission line by the series insertion or removal of capacitor banks. With this
capability, TCSCs can be used to respond to sudden changes in a power system such as a
fault (transient stability). Also, this device allows damping of oscillations that may be
produced by small but frequently occurring disturbances such as load changes. These
disturbances may push a marginally stable system to the point of instability. In this case,

the TCSC can be a great tool for improving dynamic power system stability.

3.2.4 Static Condenser

The static condenser or Statcon is a device which has attributes similar to the static
VAR compensator discussed above with the addition of improved stability control

capabilities. The Statcon functions like a three phase AC-DC inverter which is driven by a

15



DC storage capacitor. The output voltages of this device are in phase with the AC system
voltages and may be higher or lower in magnitude than the system depending on how the
device is controlled. The difference between the Statcon and system voltage magnitudes
causes the flow of output current from the device to be either leading or lagging. Thus,
the polarity and magnitude of reactive power can be influenced by controlling the voltage
of the Statcon. The Statcon’s improved stability control as compared to the SVC is due in

part to its ability to have equal compensation impact at a lower power rating [3].

3.2.5 Thyristor-Controlled Phase Angle Regulator

As the name implies, this device allows control of power system phase angle. This
is accomplished by addition or subtraction of a variable voltage component to each phase
voltage that is 90 degrees out of phase. This voltage component can be obtained from a
transformer connected across the other two phases. Variation in the amount of phase

change is determined by switching in transformer windings with different turns ratios.

3.2.6 Unified Power Controller

Unified power controllers (UPCs) have the greatest variety of control attributes of
all present FACTS devices. UPCs accomplish these control attributes through the
addition of a series voltage vector to a typical AC system voltage. This voltage, which is

produced through a rectifier-inverter combination, may have variable magnitude and may

16



or may not be in phase with the system voltage. Thus, this injected variable voltage, if

controlled correctly, can have a positive effect on several power system characteristics.

3.2.7 Thyristor-Controlled Dynamic Brake

The thyristor-controlled dynamic brake consists of a resistive load which is
connected in a shunt configuration and controlled by thyristors. This resistive load can be
applied as needed to damp out or “brake” power system oscillations. This device has a

strong application in reducing the risk of loss of synchronism in generators [3].

3.3  Device Selection

As discussed above, there are several FACTS devices which have a variety of
power system control capabilities. These attributes, as summarized in Table 3.1, include
the capability to control voltage level, power flow, and power system oscillations. The
two devices in this table which exhibit the widest range of control capabilities are the
thyristor-controlled series capacitor (TCSC) and the unified power controller (UPC).
Since the TCSC is basically a conventional series capacitor with an advanced switching
system, it is more simple to describe and model than the UPC. Thus, the TCSC will be the
device modeled in this thesis.

A circuit diagram for one phase of a typical TCSC installation is shown in Figure
3.1. It consists of a large number of small thyristor-controlled capacitors in series with a

larger capacitor which is normally switched mechanically. The TCSC being modeled in
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this thesis will be assumed to have thirty 1% thyristor-controlled compensation segments
in series with one 20% mechanically switched capacitor bank. This will allow incremental
changes in the TCSC reactance between 0 and 30% of normal line reactance and a total

compensation capability of 50%.

Large
Section
(Mechanically;
Controlled)

AN RN NI

Figure 3.1: Schematic of a Typical Single Phase TCSC Installation

One important characteristic of traditional series capacitor installations without
advanced control systems is their ability to withstand overvoltages from the high currents
observed during faults. Early installations used air gaps placed in parallel with the
capacitor modules for protecting the device during faults. More recently, gap-type
protection schemes have been replaced with metal oxide varistors (MOVs) which have
highly non-linear resistance characteristics due to their zinc oxide content [9]. This
protection scheme allows the device to be reinserted instantaneously without transients.
Even more recently, electronic control of switches which bypass both the capacitors and

MOV during prolonged periods of overvoltage has been proposed [10].
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Overvoltage protection is obviously important for TCSC installations. The ability
for instantaneous reinsertion is a requirement for damping oscillations and quickly
adjusting compensation to meet the dynamic needs of a power system. Since the emphasis
of this thesis is towards the application of FACTS devices for improvements in dynamic
stability rather than the detailed characteristics of the device, the TCSC modeled here will
have an assumed overvoltage protection scheme consistent with the above discussion.
Specifically, the TCSC will be assumed to have both MOV and electronic bypass

switching protection, although these features will not be expressly modeled in this thesis.

3.4  Practical Applications

A number of studies have been published recently regarding the practical
application of FACTS devices on power systems. Several studies refer to the increased
line loading capabilities realized using FACTS devices [11,12]. The capability for fast
repeated switching of compensation devices using FACTS controllers also allows damping
of oscillations that are both dynamic and transient in nature. Since the focus of this study
is stability, the concentration in this section will be on the uses of FACTS technology to
improve power system stability.

For transient stability, Mihalic et al evaluated the effectiveness of various FACTS
devices including thyristor-controlled phase angle regulators, unified power controllers,
and static VAR compensators [7]. Their criteria in damping transients were to maintain

system synchronism during the first swing of the transient, to damp subsequent oscillations
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as much as possible, and to prevent the system from persevering near the maximum of the
first transient swing. Various control strategies were used for different FACTS devices.
For the SVC, the control strategy involved the use of frequency deviation during the initial
transient swing to operate the device in a ‘“bang-bang” manner. In following swings, the
output of the controller was proportional to the frequency deviation squared. Series
compensation was also examined, but no active damping control strategy was presented.
The results of their SVC simulations showed that synchronism could be maintained after a
three phase fault using their proposed control strategy.

In the area of dynamic stability concerns, coordinated control of static VAR
compensators through the use of dominant eigenvalue optimization has been proposed as
an effective method for enhancing small-signal stability [8]. Also, control of thyristor-
controlled phase shifters (TCPSs) in coordination with generators using optimal control
techniques has shown promise for improving small-disturbance stability [13]. In this
particular study, localized bus frequency and voltage deviations due to a small disturbance
were used as control system input signals.

Mountford et al showed that a thyristor-controlled series capacitor could be used
effectively for increased power flow, improved voltage performance, and, more relevant to
this thesis, damping small-signal system oscillations [12]. For their work on dynamic
stability, the selection of TCSC sites was based on desired improvements in power transfer
levels. This study used Z-domain post-processing of time simulations rather than state

eigenvalue analysis in the determination of a control scheme for the TCSC. The devised
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control scheme used local bus frequencies and voltages as inputs to the various transfer
functions devised from the Z-domain techniques.

For this thesis, the goal is improved dynamic stability along the lines of what has
been studied by Mountford and others, but with particular emphasis on the design of the
device controller. Network reduction will be utilized to simplify the topology of a test
system so that a state matrix of the power system can be readily formulated. Optimal
TCSC placement for improved stability will be determined using eigenvalue sensitivity
methods. An augmented state matrix which includes this FACTS device will be derived.
Then, a control strategy using remote phasor measurements as input signals will be
designed to optimize both the stability and time response characteristics of the TCSC to a
disturbance. Final results will be verified using both eigenvalue and numerical simulation

techniques.
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CHAPTER 4

Power System Model

4.1  Description of Test System

The power system used in this study of dynamic stability and FACTS control is a
nine bus, three machine system adapted from [14]. The layout for the system is shown in
Figure 4.1. As shown, each of the three generators is connected to a bus and step-up
transformer which transforms the voltage to the 230 kV level on the transmission system.
This transmission system serves three loads which are designated as 4, B, and C. Line
impedance data for this system is shown in Table 4.1. Generation, load, and voltage data
are provided in Table 4.2. All per unit values for this test system have been calculated on
a base of 100 MVA.

In modeling this power system, several assumptions were made. First, loads were
modeled as constant impedances. Each generator was represented using the two-axis
model discussed by Anderson and Fouad [14]. In order to be able to adjust the overall

system stability before insertion of FACTS devices, the excitation systems of each
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generator were modeled in detail. Finally, in order to formulate a linear state matrix for
this system, all equations and variables were linearized around the initial operating point to
account for incremental changes in their values. A discussion of each of these modeling

assumptions is presented in the following sections.

| LoadC
18kV B0kV 20kV 13.8kV
®
®
@
— ® — ®
Load A Load B
BOkV
X
16.5kV 0

Figure 4.1: Nine Bus, Three Machine Power System [14]
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Table 4.1: Per Unit Impedance Data for Nine Bus System

From To
Bus Bus R X B/2

1 4 0 0.1184 -

2 7 0 0.1823 --

3 9 0 0.2399 -

4 5 0.0100 0.0850 0.0880
4 6 0.0170 0.0920 0.0790
5 7 0.0320 0.1610 0.153
6 9 0.0390 0.1700 0.1790
7 8 0.0085 0.0720 0.0745
8 9 0.0119 0.1008 0.1045

Table 4.2: Initial Generation, Load, and Voltage Data for Nine Bus System

Voltage Voltage Real Reactive
Magnitude Phase Angle Power Power
Generator or Load (Per Unit) (Degrees) (Per Unit) | (Per Unit)

Generator 1 1.040 0.0° 0.716 0.270
Generator 2 1.025 9.3° 1.630 0.067
Generator 3 1.025 4.7° 0.850 -0.109
Load A 0.996 -4.0° 1.250 0.500

Load B 1.013 -3.7° 0.900 0.300

Load C 1.016 0.7° 1.000 0.700

4.2

Constant Impedance Load Model

In order to reduce the test power system network to a more manageable level of

detail for performing simulations, a constant impedance load model was employed. This
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model converts all loads to admittances based on initial load flow data using the following
relationships:

P, +jQ, = VI = V,[V(G, -iB, | = Vi(G, - jB,) @1

Y =P/ V] -jQu/ V) (4.2)

Table 4.3 shows the converted load admittances for the nine bus test system.

Table 4.3: Converted Load Admittances for Nine Bus System

Load Converted Admittance (Per Unit)

A 1.2601 - j0.5040

0.8770 - j0.2923

C 0.9688 - j0.6781

Once the equivalent admittances for each load have been calculated, they can be
added to the network as shunt admittances. Also, the reactance of each transformer can
be added to the transient reactance of its associated generator to form the effective unit
reactance. Using these values in conjunction with the line impedance data, the overall bus
admittance matrix Y can be formed. To simplify the system, Y is partitioned in order to
formulate the reduced admittance matrix for the network. All nodes except for the
internal generator nodes are eliminated by partitioning the current matrix in terms of those

nodes which inject current into the system (generators) and those which do not (all other
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nodes). Accordingly, the bus admittance and voltage matrices are partitioned to match the

current matrix:

= s ] e (4.3)

The subscript » is used to denote generator nodes while r refers to remote non-generator
nodes. Expanding the above equation yields:

III = YMVDI + anvr
(4.4)
0=Y\V +YV,
Finally, the reduced network admittance matrix can be obtained by eliminating V, from the
current equations:
I,=(Y,-Y, Y'Y )V =YV, 4.5)

Thus, a network with » generators can be reduced to an nxn admittance matrix Y,.s. For

the nine bus test system, Y,.s was found to be:

0.8341 - j3.0120 0.2719 + j1.4788 0.1982 + j1.2006
Y, =| 02719 + j14788  0.3994 - j2.7727 0.1979 + j1.0521
0.1982 + j1.2006  0.1979 + j1.0521 0.2655 - j2.3944

4.3  Two-Axis Generator Model
There are several different models which are used in modeling synchronous
machines for stability studies. These include models where the damper windings and/or

transient flux linkages are neglected as well as the so-called one and two-axis models. The
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two-axis model was chosen for use in simulating this system based on the prevalence of
this model in several technical references on stability studies [14, 15, 16].

In a synchronous machine, the modeling of actual winding variables may be greatly
simplified by transforming the variables to a new frame of reference which moves with the
rotor. This is accomplished through the use of Park’s transformation [14]. This
transformation projects phase a, b, and ¢ quantities onto three axes. These axes are along
the direct axis of the rotor field winding (direct or d-axis), the neutral axis of the field
winding (quadrature or g-axis), and along a stationary axis which produces quantities
proportional to their zero-sequence counterparts [14].

In the two-axis model of a synchronous machine, the transient behavior of the
generator is included while the subtransient behavior is neglected. Transient behavior
resides largely in the field circuit of the d-axis and an equivalent circuit in the g-axis
formed by the solid rotor. Also, in the stator voltage equations, the leakage flux linkage
terms for each axis are assumed to be negligible compared to the speed based voltage
terms in the equations. These assumptions lead to the following relationships between the
internal generator emf and terminal voltage for each axis:

V,=E;-x_ I

C (4.6)
V., =E +x,],

As discussed in [14, 15, 16], the following differential equations apply to each ith
generator modeled using the two-axis model:

T:.] oiE'di = —E:ii - (xqi - x'qi I

4.7)

qi
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TaiEy = Bra —Eq + (%4~ Xa)la (4.8)
2o, =P, —(I,E; +1,E,)-Do, (4.9)

5, = o, (4.10)

Although these equations represent four generator state variables per machine, the overall
system order will be 4i-/ since the rotor angle equation can be written in terms of two

angles:

5. =0, -0, (4.11)

Finally, electrical power, which is the middle term in parentheses in equation (4.9), may be
calculated in terms of the above variables using the expression:
P, = VI, + VI, ~ E;l +E, 1, (4.12)

qitqi
The approximation in the above equation comes from the assumption that x;, ~ x. This
is a moderately good approximation in terms of accuracy, but it greatly simplifies the
equation for angular frequency, especially once it is linearized in section 4.5. Table 4.4
summarizes the two-axis model data for the nine bus system. Table 4.5 provides a
summary of the meanings of each term used in these equations.

Table 4.4: Two-Axis Generator Data for Nine Bus Test System

Parameter Generator 1 Generator 2 Generator 3

X4 0.1460 0.8958 1.3125
X4 0.0608 0.1198 0.1813
Xq 0.0969 0.8645 1.2578
Xq 0.0969 0.1969 0.2500
Tao 8.96 6.00 5.89

Tq0 0.5000 0.5350 0.6000
H 23.64 6.40 3.01
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Table 4.5: Two-Axis Generator Model Nomenclature (Compiled from [14,16])

Term Units Definition
Vi, Vq pu d- and g-axes components of terminal voltage
Iy I pu d- and g-axes components of armature current
Eq4, Eq pu magnitudes of d- and g-axes components of voltages behind
d- and g-axes transient reactances respectively
X4, Xq pu d- and g-axes synchronous reactances
Xd, Xq pu d- and g-axes transient reactances
Tdao, Tqo sec d- and g-axes transient open circuit time constants
b rad generator rotor angle
@ rad/sec generator rotor angle velocity
D pu Damping Coefficient
OR rad/sec rated generator speed
P. pu mechanical input power to generator
Eg pu applied field voltage
H puesec stored energy at rated speed (inertia constant)

4.4  Excitation System Model

For the test system under study, IEEE Type 1 excitation systems were assumed for

each generator [17]. Figure 4.2 below shows a block diagram for this type of excitation

control system. Based on this block diagram, the following equations describe the

excitation system for each ith generator [15]:

ij = (K, Vei = Vi) / T, (4.13)

Efdi = (Vm - SEi - KEiEfdi )/ TEi (4.14)
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Vsr.i = (KSi /T )Efdi ‘Vsu (4' 15 )
V,=V,;-V, -V (4.16)
Vi = (Ksi 1T )Efd:' = Vaui (4- 17)

Vi if Ve < Vi SV
Viei =) Veami 1 Vi < Vigini (4.18)
Vemw I Vi > Vi

S = f(Eg)= AieBiEﬁi (4.19)
S =f(Efd) ‘T
 Viee
K, Vi Vo  + 1 Eq

T+, [ > ‘ K, +sT; >
vkﬁ
K,
1+sT,

Figure 4.2: IEEE Type I Excitation System [16]

Since Sg; is a non-linear function, it must be lnearized in order to solve the above
differential equations using conventional numerical methods. For this simulation,
conditions were assumed to be below saturation so that Sg; was equal to one.

The terminal voltage V; in the equations above is a function of the d and g axis

voltages:
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V2 =Vi+V; (4.20)
Linearizing V; and defining the two-axis voltages in terms of the generator state variables

E, and E4"

Vio - Vio [
\ =[7"‘1}Edi —xqilqi)+(—‘;—o}Eqi +x,la ) (4.21)
i0

i0
This equation is crucial in providing coupling between the generator and excitation system
equations in the state matrix. Table 4.6 contains excitation system data for the nine bus
test system.

Table 4.6: Summary of Excitation System Data for Nine Bus System

Parameter Generator 1 Generator 2 Generator 3
K, 25 15 20
Kg -1.155 -0.1071 -0.1071
K, 0.405 0.091 0.108
T, 5.6 2.0 1.2
T 0.5140 0.8700 1.5140
T 0.85 0.85 0.85

4.5 Linearized State Equations
In order to formulate a linear state matrix model of the nine bus power system, all
non-linearities must be removed from the equations in sections 4.3 and 4.4. This may be
accomplished by replacing each variable by its initial value plus an incremental change:
X, = X;, +X;, (4.22)
The generator and excitation system equations discussed above exhibit nonlinearity from

products of variables and from trigonometric functions. For products, reduction is made
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by assuming higher order terms (e.g. xisXja) are sufficiently small to be neglected. In
addition, initial condition products (e.g. XioX;o) cancel from the right and left hand sides of
the linearized product equation. For trigonometric functions of incremental angles

(expressed in radians), the following approximations can be made:

cosd, = 1 (4.23)
sin, = 8, '

Following these approximations, the linearized state equations for each generator may

now be written:

TooEan = ~Ean — (g ~ X)) (4.249)
TaiBaa = Epan —Eqn +(Xg — X M (4.25)
S0y =P T Ep —1,Eu —Eyla ~E L, —Do, (4.26)
By =0y —0yy (4.27)
En = (Ve —(1+ K )Eg )/ Ty (4.28)
Vo = Kg / T Erin — Ve (4.29)
Ve =K (Vg = Voo =K / T)E g +Vin )= Ve )/ T, (4.30)
where

Vi =(\\/;‘0°}E;m ~ X, )+(Y;_‘°}E;m + Xl ) (4.31)

i io

In addition, the linearized expression for electrical power is:

P, = IdiOE'diA + IinE’in + E'diOIdiA +E;:|i01in (4.32)
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The calculated initial conditions required in these equations and those which are developed
in the next section are provided in Table 4.7. For equations using initial rotor angle
differences, these values may be obtained by subtracting the individual initial rotor angles

shown below.

Table 4.7: Generator Initial Conditions

Generator 1 Generator 2 Generator 3
| S 0.6709 0.9319 0.6196
Lae -0.3021 -1.2903 -0.5614
Eae 0.0000 -0.6221 -0.6244
Eqo 1.0563 0.7883 0.7676
Vae -0.0650 -0.8056 -0.7793
Vae 1.0380 0.6338 0.6659
Oe 3.5838 61.1084 54.1876

4.6  Current Coefficient Matrix

As discussed previously, a great deal of simplification in a synchronous machine
model can be achieved by transforming variables to a common reference frame. Further
simplifications can be made by ensuring that all variables are measured based on a
common system-wide reference. For example, in order to apply the admittance form of

Ohm’s law, currents and voltages for the entire network must be based on the same
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reference. If currents and voltages are all based on a common system reference frame and
are denoted by I and V, respectively, then:

i=YV (4.33)
Now the two-axis current coefficient matrix can be derived as discussed in [14].

It now becomes necessary to determine if the expressions for two-axis currents
and voltages developed in the previous sections are all based on a common reference
frame. Figure 4.3 shows a phasor diagram which relates the d and g axis components of a
voltage phasor to a system reference denoted by Dgsr and Qrer. As shown, there is a
phase shift of §; between these two reference frames. Since rotor angles are different for
each generator, the two axis voltages and currents previously derived are all in the same
coordinate system, but with a phase shift between them. The new overall system reference
frame eliminates this offset between generators, and thus provides a consistent system

reference frame.
di

........ . qi

Vi Vi

Qrer

Yoo

Vai

Figure 4.3: Phasor Diagram of Machine and System Reference Frames [14]
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In order to utilize equation (4.33), it is therefore necessary to transform all 4 and ¢
axis quantities (V, = V,;+jV,) to the common rotating reference frame (V, = Voi +1Vp:)-
This transformation can be accomplished by the following relationship:

V, = Vie® (4.34)

For a matrix of voltages, the transformation may be defined in terms of a matrix T:

[e® 0 - 0 |
0 e ... 0

T=|., . . . (4.35)
0 0 - &)

Using this transformation matrix, the relationship between two-axis voltage and current

matrices and their system reference frame counterparts can be derived:

&> =
i
3=

(4.36)

Now, substituting the results of (4.36) in (4.33) and performing matrix pre-multiplication

to solve for the current matrix:

TI=YTV (4.37)
I=T'YT)V=MV (4.38)
If ®; is defined as the phase angle of each reduced network admittance matrix element,

then for the nine bus power system under study:
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j G ) 5 )
Yuejen Yue.l( 12"512 Yne 13013

M_ = Yuej(en‘sn) Yzze.iazz Y23ej(9n'523) (439)
. 0 .
Yne.l(en"sn) Y}ze.!( 32-032) Y33e1333

Thus, an expression for two-axis currents in terms of two-axis voltages is now available
for application to the test system. Since the reduced nine bus power system is assumed to
include generator transient reactances, the voltages at each of the three remaining buses

(generator nodes) are E/, E,, and E/. Therefore, in order to solve the differential
equations in section 4.3, E' can be substituted for V in equation (4.38). However, in

order to model the small signal perturbations associated with dynamic stability studies,
equation (4.38) now must be linearized in order to formulate a state matrix for linearized
state variables:

L+1, = (M, + M, )E +E}) (4.40)

I, =M,E, +M,E,
The M, matrix is the nominal transformation matrix evaluated with each generator rotor
angle equal to its initial value, 8. Similarly, the initial voltage behind transient reactance
matrix, E,, is evaluated at its initial conditions. Thc;. incremental voltage matrix, —ITA' R
contains the incremental state variables. The incremental transformation matrix M, ,
however, involves several of the linearization approximations discussed above. First, all

rotor angles are linearized:

§,=8,+5, (4.41)
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Since the diagonal terms of M contain no terms related to the rotor angle, these diagonal
elements are not affected by the linearization of 8 and appear only in the M, matrix. Thus,
M, contains only off-diagonal elements.
The general form of the off-diagonal elements in the transformation matrix M is:
i, = Yo O dwle Pu (4.42)
Using Euler’s equation and the trigonometric linearizations discussed above, the
incremental portion of this expression can be approximated as:
e = cos(5,, ) - jsin(3;, )= (1~ 18, ) (4.43)

and the general linearized form for the entries of this matrix becomes:

t—ﬁ_ijA = _jYijej(eij—SijO)SijA (444)

Using this fact and substituting into equation (4.38), the linearized current coefficient
matrix can now be written (see Figure 4.4) which relates the d and g axis coefficients for
each generator in terms of the linearized state variables discussed in section 4.5.
Eliminating the redundant rotor angle difference variable using 6232=8,32-8124 and using
the fact that 8§;,=-6,; and 83;,=-8:3, the final form for the reduced two-axis current
coefficient matrix can be determined. This matrix and the relationship between two-axis
currents and state variables are shown in Figure 4.5. The real and imaginary parts of all
the variables are then separated to avoid complications from dealing with complex
variables. Afier separation of real and complex variables is complete, the current

coefficient matrix can be used in conjunction with the linearized state variables discussed
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in section 4.5 to form the state matrix A. The numeric coefficients of both the reduced

linearized current coefficient and state matrices are provided for reference in Appendix A.
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CHAPTER S

Response of the Uncompensated System

5.1  Assumed Conditions

In evaluating the response of the nine bus test system, the following assumptions
were made about system conditions prior to, during, and after the disturbance was
simulated. Prior to the disturbance, the system was assumed to have gradually migrated to
an unstable state due to a slow increase of reactive power at one of the loads. For this
study, the initial excitation system parameters were chosen so as to make the most critical
eigenvalues have negative real parts that were close to zero. Thus, the gradual change in
reactive power is enough to move these marginal eigenvalues into the right-half plane.
This condition will be assumed to remain throughout the study period. Then a disturbance
is applied to the system in the form of a step function increase in mechanical power in one
of the generators. Eigenvalue analysis will show that the system will have an unstable
response to this disturbance. This will be verified with a numerical simulation of the

response of electrical power and the difference in rotor angles between generating units.
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5.2  Evaluation Techniques

For this thesis, eigenvalue analysis was used for several purposes, including the
determination of the optimal location for the FACTS device in the test system which will
be discussed in Chapter 6. This frequent usage of eigenvalue amalysis and matrix
operations required the use of a specialized software package. As a result, the computer
program MATLAB® (a registered trademark of The MathWorks, Inc.) was used for all
matrix calculations [18]. MATLAB® script files were written to input power system data,
perform network reduction, and calculate the coefficients of the system state matrix A.
Once this matrix was formulated, eigenvalues were calculated by MATLAB®.  Similar
scripts files were used for the determination of FACTS placement and numerical derivative
calculations (see Chapter 6).

For time simulation of results, a combination of MATLAB® script files and a C
program were used. The same script files as listed above were used to determine the state
matrix. These coefficients were written to a text file which was then read by a C program
which was used to solve the set of differential equations represented by the system state
variables and state matrix. This was done chiefly for speed of solution and for providing
flexibility in choosing time steps and data compression parameters. Although MATLAB®
does have the capability to solve differential equations using Runge-Kutta methods, the
size of even the nine bus test system made the calculation of the system response very time
consuming. The C program, utilizing Euler’s method for ease of programming, yielded

virtually identical time response results in approximately one tenth of the time of
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MATLAB®. Since the response curves have a relatively low frequency, good results can
be obtained using Euler’s method with a moderate to small step size. The solutions to the
differential equations were then written to a text file in MATLAB® format so the results
could be read by MATLAB® for final calculation of incremental power and data plotting.
Figure 5.1 shows a flowchart of both the eigenvalue and numerical simulation processes.

Source code listings for the referenced C program and MATLAB® script files are

provided in Appendix B.
MATLAB® C Program
RUN20.M DIFFEQ20.C
Input Data Read A Matrix
SERDATAM Coefficients
Network Reduction
REDUCE.M
Form A Matrix . .
ACALC20.M Solve Differential
Equations
l (Euler’s Method)
Write A Coefficients to
Text File for C Program
Input Solved | XMAT M| ¢——— Write Results to File
State Variables in MATLAB format

L

Calculate Power
POWER20.M

Figure 5.1: Flowchart for Uncompensated Test System Simulations
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5.3  Results

The uncompensated nine bus power system exhibited an unstable system response
to the simulated disturbance. Figure 5.2 shows the overall system eigenvalues while
Figure 5.3 provides a close-up of the two eigenvalues which became unstable from the
reactive load change. Table 5.1 provides a summary of the system eigenvalues for the
uncompensated system with the unstable eigenvalues highlighted in bold. For numerical
simulations, the system was initially at steady-state before the disturbance occurred at 10
sec;)nds. Electrical power, which is plotted for each generator in Figures 5.4 through 5.6,
shows slowly growing oscillations. This is also observed in Figures 5.7 and 5.8 which

show rotor angle difference between generators.
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Figure 5.2: System Eigenvalues (Uncompensated System)
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Figure 5.3: Close-up of Dominant Eigenvalues (Uncompensated System)

Table 5.1: System Eigenvalues for Uncompensated Test System

System Eigenvalues

-60.2202
-26.5061
-16.5755
-9.2083
-5.2454 + 3.8478i
-5.2454 - 3.8478i
-7.3475
-3.5514
-2.7664 + 0.9461i
-2.7664 - 0.9461i

-2.5341
0.0021 + 0.3043i
0.0021 - 0.3043i

-1.5769
-0.6959
-0.3805 + 0.0494i
-0.3805 - 0.0494i
-1.3394
-0.1747
-2.0000
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Figure 5.4: Electrical Power of Generator 1 (Uncompensated System)
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Results from the numerical simulations verified the instability of the system to a
disturbance as predicted by eigenvalue analysis. In addition, the period of the oscillations
on the time simulation plots appears to be roughly 20-25 seconds. This compares well
with the 20.65 second period calculated from the imaginary part of the critical

eigenvalues.
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CHAPTER 6

Addition of a FACTS Device to Power System Model

6.1  Optimal Placement of FACTS Device

In order to improve the dynamic stability of the nine bus test system described in
Chapter 4, a TCSC is to be inserted into the power network. Since FACTS devices and
controllers are very expensive, it is important to limit the number of devices and to choose
their placement for optimal stability improvement. For the purposes of this thesis, only
one FACTS device will be used due to the cost factor listed above and the relatively small
size of the nine bus test system. In order to evaluate the best placement of the TCSC, the
response of the A matrix eigenvalues to changes in the reactance of each line will be
examined.

In the nine bus test system, there are six transmission lines in which the FACTS
device may be inserted. To evaluate the effectiveness of FACTS insertion on each line, an
array was formed containing the real portion of the dominant eigenvalue of the A matrix

versus incremental changes in reactance for each transmission line. Since the real portion
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of all eigenvalues must be negative in order for a system to have a stable response to a
disturbance, tracking the most marginal eigenvalue provides an indication of whether a
system is becoming more stable or more unstable. From this data array of critical real
eigenvalues versus incremental changes in line reactance, a numerical derivative of the
critical real eigenvalue (A.) with respect to reactance (X, the reactance in the line between
buses / and ;) was calculated for each of the six lines. These derivative values were then
averaged over the range between the normal line reactance and half of the initial line
reactance for each line. This 50% compensation is assumed as a TCSC compensation

limit throughout this thesis. The resulting derivatives for each line are shown in Table 6.1.

Table 6.1: Average Critical Eigenvalue Sensitivity to Changes in Line Reactance

Average Numerical Derivative Value
Ok 0.0268
X as -
O 0.0169
X s, e
O 0.0002
X -
O 0.0010
Xy e
Ok, 0.0160
X g e
On. 0.0170
R -
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The numbers in Table 6.1 may be interpreted as a measure of the sensitivity of the
network to changes in line reactance, such as those caused by insertion of a TCSC. More
specifically, these numerical derivatives provide an evaluation of how much stability
increase can be obtained by insertion of capacitive series compensation in each
transmission line. Since all of the line positions provide increased stability (negative
eigenvalue derivatives) for insertion of a TCSC, it is logical to use the magnitude of these
numerical derivatives in order to judge which line will provide the most dramatic increase
in stability. Thus, based on the above numeric data, a TCSC inserted in the line between
buses 4 and 5 will provide the most increased stability. Figure 6.1 shows the nine bus test

system with the addition of the FACTS device.

> Load C
18kV 230kV 230kV 13.8kV
of 3¢ 3¢ fo
® < 3 ®
®
@ ®

T_ ® ®
_1A FACTS 1
f Device

Load A Load B

\ 230 kV

‘ ®

16.5kV % o

Figure 6.1: Nine Bus Test System with Addition of FACTS Device

50



6.2 FACTS Control Strategy

In order to minimize the amount of compensation needed and automate FACTS
response to small signal disturbances, a control scheme was developed. One good
measure of power system dynamic stability is the generator rotor angle, 5. Any small
signal disturbance on a power system will cause some variation in rotor angle. In order to
consider rotor angle as a possible control mput signal for the TCSC, accurate
synchronized measurements of the voltage phasors of generators at remote sites must be
available for transmission to the controller at the FACTS mstallation. Recent
advancements in monitoring technologies now allow reliable phase angle measurements
through the use of phasor measurement units (PMUs) [19, 20]. Thus, with reliable phase
angle information available, it becomes possible to use rotor angle in the control of the
FACTS device.

For this thesis, only conventional PID type controllers were considered. For
simplicity a first order transfer function between compensated reactance (AX) and rotor
angle difference (5;) between the two closest generators was initially evaluated:

AX, Ky
8, 1+sT,

(6.1)

However, by the final value theorem, as s approaches zero, the compensated reactance
will assume a steady state value of Kxd;,. Since the purpose of the FACTS device is to

damp out oscillations and return to the normal line reactance value (AX=0), this final value
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is obviously undesirable. To correct this problem, a differentiation operator s was added

to the numerator of the transfer function:

AX,  Kys
8, 1+sTy

(6.2)

This transfer function provides the desired zero steady-state value for AX. Note that
frequency difference between generators is now the effective control input signal. Figure

6.2 provides a conceptual overview of the proposed control scheme for the TCSC.

K,s
ToTy ’_*AX45

_’ To Transmission

Network

Figure 6.2: Conceptual Diagram of FACTS Control Scheme

The reliability of frequency as a measure of system oscillation, except for those
measurements which are collected near a coherent generator, has been questioned [12].

However, since PMUs allow synchronized phasor measurements from remote generators,
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remote rotor angle data can be collected and transmitted to the TCSC installation for

differentiation. Thus, the aforementioned reliability issue can be avoided.

6.3  Effects On The Reduced Admittance Matrix

Since a FACTS device changes the effective reactance of a transmission line, it has
a corresponding effect on the admittance matrix for the network. This obviously affects
the A matrix and thus the eigenvalues of the state matrix. In order to account for this
impact, each element of the reduced admittance matrix Y, was linearized in the following
manner:

Y, =Y + Y | (6.3)

Y y

=4

To formulate an exact relationship between changes in X and changes in the reduced
admittance matrix would require network reduction of the nine bus power system for each
incremental change in FACTS reactance. Since network reduction involves matrix
mversion, this method could be too computation intensive for calculations on a large
power system. Therefore, in order to express the incremental admittance change in terms
of changes in line reactance, a numerical derivative of each admittance matrix element with
respect to changes in X was used. Using this derivative, each admittance matrix element

can now be linearized as:

L AX,, (6.4)
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Note that since each element of the reduced admittance matrix is complex, the numerical
derivative of each term with respect to FACTS compensation is also complex. This
derivative exhibits nearly linear behavior over the range of 0 to 50% compensation. As a
result, each admittance matrix element is averaged over this range to obtain the following
numerical derivative matrix:

1.8648 + j2.9674  -0.3972 - j2.4039 0.1767 - j0.3851
ed_ 1.0.3972 - j2.4039  -0.3920 + j1.6479  -0.2169 + j0.1994
0.1767 - j0.3851  -0.2169 + j0.1994  -0.0507 + j0.0076

Using this derivative matrix in conjunction with the linearization equation for Y; above,

the augmented current coefficient matrix may now be formed.

6.4  Augmented Current Coefficient Matrix

Now that Y;; can be expressed in terms of the incremental change in X5, the
linearization of the current coefficient matrix as presented in Chapter 4 must be adapted.
Recall the relationship between two-axis voltages and currents and the reference frame

transformation matrix M defined in Chapter 4:

I=MFE (6.5)
Ynel ] leej(elz'ﬁn) YBE'K@”_SB)
M= Yﬂeﬂen"sn ) Yne.iezz Yﬁej(@n"az;) (66)

16y, -3y,) H©O13-845) 0
Y3 le 317N Y32e 327932 Y}}e 33
This system was linearized using the following relationship:

iA = MO_; +MA —; (6.7)
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Now, linearization of the system proceeds taking into account the new expression for each
admittance matrix element in terms of incremental TCSC reactance as shown in equation
(6.4). Substitution reveals that the admittance matrix entries which are expressed in terms
of incrémental FACTS reactance have no effect on the initial transformation matrix, M,.

Therefore, all of the impact of FACTS compensation on the current will come from M, .

From Chapter 4, M was found to contain only off-diagonal non-zero entries of the form:
m, = Y, e (6.8)
If equation (6.4) is now substituted into this general form with the “0” subscript of Yjj

dropped for convenience, and «;; is defined as the phase angle of the complex numerical

derivative in this equation, the following expanded general form is found:

aTje’““AX“)e Poy0 5000 (6.9)

Using Euler’s equation and the trigonometric linearizations discussed previously, the

— i®.
m; = (Yﬁej i 4

incremental portion of this expression due to ;4 can be approximated as:

e = cos(8;, ) - jsin(8,, )= (1- 38, ) (6.10)
Ignoring higher order products (specifically the product of §;, and AX,,) and grouping
terms other than rotor angles and FACTS reactance in M,, the general linearized form for

the entries of M, now becomes:

i

X ej(“ij-siio)AX45 _ jY’iJej(eii"GiiO)sijA (6 1 1)
45
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Since AX, is a new state variable in the A matrix, the current coefficient matrix is
expanded by one column, and it now acts on a variable vector in which AX,, has been
added. Using the previous current coefficient matrix from Chapter 4 (the final form in
which the redundant angle difference variable was eliminated) in conjunction with the new
terms due to AX,, yields the new current coefficient matrix which relates the d and q axis
variables to the new expanded set of state variables (see Figure 6.3).

Now, the complete set of state variables for the nine bus system including the
controlled FACTS device on the line between buses 4 and 5 can be summarized. From the

discussion in Chapter 4, the linearized generator and excitation system state equations are:

TooiEan = ~Eun —(Xg = X ) (6.12)
TyiBus = Egan — Eqn +(Xg = X5 Mia (6.13)
oy =Py T Eu ~ L E ~Eg Ly ~E L, ~Do, (6.14)
5, =0, (6.15)
Eparn = (Ve ~(1+ K )E ., )/ Ty, (6.16)
Vo =K / T)Ein — Vigia (6.17)
Vi =KV = Vi =Ky, / Ty )E i + Viia )= Ve )/ T, (6.18)
where

A =[%°—}E:M —x;ilqm)+(‘\/;io]li;m + Xl ) (6.19)

io io

The additional state variable AX ,, is defined by the following equation:

. 1
AX, = F(mem -K,0,, —AX,,) (6.20)

X
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For the three machine system, the number of generator and excitation system
equations is (7x3)-1 or 20. With the addition of the incremental FACTS reactance
variable, the final system order is increased by one. Thus, the overall state matrix is 2/x2/
in size. The actual numeric coefficients for the current coefficient and state matrices of the

FACTS compensated test system may be found in Appendix A.

6.5 Optimization of FACTS Controller

With a control scheme now implemented and included in the state matrix for the
system, selection of the optimal time constant and gain for the FACTS control system
must be made. In order to determine which combination of gain and time constant
optimizes the stability and response of the FACTS device, both eigenvalue and time
simulation techniques were used. First, a discussion of the general form of the FACTS

control transfer function is appropriate:

AX _ Kys (6.21)
8, 1+sTy '
or equivalently, written as a state equation:
. 1
AX s = ".IT_(mem ~-Ky0,, —AX,;) (6.22)
X

The relationship between the incremental reactance and rotor angle difference (effectively
frequency difference due to the differentiation operator s) appears to be first order, so a

very simple step response would be expected. However, there are hidden dependencies in

58



this transfer function which give it a much higher order. Rotor angle is a function of
frequency which in turn is a function of the d and ¢q axis voltages and currents. Changes in
the reactance in the system change the reduced admittance matrix and consequently the
generator currents. This combination of interactions results in higher order dependency
between the input and output variables in equation (6.21). Given this level of complexity
in the relationship between rotor angle difference and FACTS reactance, it is difficult if
not impossible to develop a complete transfer function in terms of all system variables.
Therefore, in order to determine the stability and response characteristics of the system,
other techniques such as eigenvalue analysis and numerical simulation must be used.

In order to use eigenvalue analysis to determine the best controller parameters in
terms of stability, arbitrary values for Kx and Tx were chosen as starting guesses. Then
one parameter was varied while the other remained fixed, and the critical eigenvalues (A.)
for the system were stored in an array versus the changing parameter. For the first trial
run in this study, the time constant was held fixed at 10 seconds and the gain was varied to
observe what effects it had on stability. Results showed that a negative gain was required
for the system to be stable. Plots of A. versus K, were used to determine the value of Ky
that made the critical eigenvalue most negative (stable) for the given time constant. This
plot is shown in Figure 6.4. As shown in the figure, a gain of -21 was found to provide

the maximum stability for the given time constant of 10 seconds.
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Figure 6.5: Critical Eigenvalue Variation with FACTS Controller Time Constant

Using this new value of gain and varying Tx in a manner similar to that discussed

above, a new plot was developed (see Figure 6.5). From this new plot, the optimal time

constant for the given gain of -21 was determined to be 10 seconds, the initially assumed
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value. This consistency ensures that an iterative process is not necessary to determine the
most stable pair of controller parameters. Given the stable characteristics of this set of
parameters, the next step is to observe the time response of the system to a disturbance.

In evaluating the response of the FACTS device several characteristics must be
observed. First and foremost, the response of the electrical power output and rotor angle
from each generator must be stable. Since compensated reactance is a function of rotor
angle, once the reactance response has become stable, the rotor angle and thus electrical
power output of the generators must also be stable. Therefore, the time response of the
FACTS device can be used to evaluate the overall system time response. Since a series
capacitor is being modeled, only negative reactance changes should be observed ideally.
Some inductive change can be achieved by msertion of a permanent inductor in series with
the FACTS device and switching all capacitor modules out of the line. However, in order
to maintain the initial line reactance specified in the model, capacitance with impedance
magnitude equal to that of the series mductance would have to be inserted at all times.
This portion of the FACTS capacitance would therefore not be available for damping
oscillations. In addition, to minimize the cost of such an installation, the magnitude of the
maximum capacitive swing must be within the limits of the assumed compensation range
(50% for this thesis). Finally, the amount of time it takes for the system to stabilize to the
normal line reactance (zero change in TCSC reactance) should be minimized in order to

produce maximum damping of the disturbance.
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Summarizing the three main criteria for an acceptable FACTS response in arbitrary
rank and order:
1. Minimize positive (inductive) swings in reactance
2. Minimize disturbance settling time

3. Minimize capacitive compensation requirement

Since the system is highly nonlinear, it is difficult at best to determine the step response of
this transfer function analytically. Control theory provides analytical expressions for the
response attributes of a second order system. However, since the test system has several
eigenvalues that are similar in magnitude and close to the imaginary axis, a second order
approximation for the transfer function cannot be made accurately. Therefore, these
attributes must be determined using time simulation techniques.

The same simulation methods as those discussed in Chapter 5 were used for
analysis of the compensated system with the addition of a module in the C program for
calculating FACTS maxima, minima, and settling time. This process is shown in Figure
6.6. The resulting FACTS reactance response for the gain and time constants selected
using eigenvalue analysis above is shown in Figure 6.7. This response does show a rather
dramatic damping of the oscillations within a short settling time. However, the amount of
capacitive compensation required is somewhat high (above 30%) and the response has a
large inductive swing of nearly 20%. So, two of the desired response characteristics have
not been met. At this point, eigenvalue analysis was repeated for a different time constant

value.
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As the response in Figure 6.7 shows, the compensation requirements in both the
inductive and capacitive modes make a TCSC installation with these characteristics
economically unattractive to construct. The lesson observed here is that good stability
results based on eigenvalue analysis alone are not enough to make a practical evaluation of
the controller time constant and gain. In other words, favorable response characteristics
of the FACTS device are required in order to constitute an acceptable gain-time constant
pair for the proposed control scheme. For this thesis, the required response information
was obtained using time simulation techniques since analytical determination of these
attributes cannot be made easily. The process used to evaluate the FACTS response for a
variety of time constants and gains again starts with eigenvalue analysis. The time
constant was held fixed while the gain was varied in order to determine what values of the
gain yielded stable results for the given time constant. Then time simulations were
performed for each of the stable gain-time constant pairs. A routine within the differential
equation-solving C program was then used to calculate and tabulate the FACTS response
characteristics for each combination of K, and T,. Maxima and minima for the FACTS
response characteristic were calculated. In addition, the time required for the response
amplitude, including all local extrema, to settle to 1% of the uncompensated line reactance
was determined. This settling time criteria was an arbitrary conservative choice which was
strictly used as a point of comparison among the various control parameter combinations.
The entire simulation process was then repeated starting with the selection of a new time

constant and the evaluation of stable values of gain.



Several trends emerge from the tabulated TCSC response data. In general, the
maximum of the time response characteristic tends to decrease with increasing time
constant while the minimum value, the amount of capacitive compensation, tends to
increase. Settling time, on the other hand, exhibits fluctuations which cannot be easily
expressed in terms of a general trend. Since the maximum and minimum peaks vary in
opposite directions, some sort of compromise must be found which also minimizes settling
time. Only generalizations can be made about the trends in each response characteristic
and their relative importance compared to each other, so a tabulation was used to choose
the best design combination manually. Selective gain and time constant combinations
which produced capacitive compensation swings of less than 30% and inductive peaks of

less than 3% are shown in Table 6.2.

Table 6.2: TCSC Response Characteristics for Various Controller Settings

Inductive Capacitive
Compensation Compensation
Kx Tx Requirement (%) | Requirement (%) Time(seconds)
-10 10 1.1941 9.5851 275.000000
-11 10 1.7131 ' 10.9212 255.000000
-12 10 2.3597 12.3563 257.500000
-24 20 1.8056 16.1142 215.000000
-26 20 2.2171 18.3400 215.000000
-28 20 2.6027 20.7990 192.500000
-50 50 0.5526 17.0519 212.500000
-55 50 0.6234 20.0084 212.500000
-60 50 0.7585 23.4077 212.500000
-65 50 0.9133 27.3155 212.500000
-100 100 0.1792 20.1835 275.000000
-110 100 0.1640 23.8803 275.000000
-120 100 0.1707 28.1473 255.000000
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Arbitrary guidelines were chosen for determining the best gain and time constant
combination. In order to keep oscillations in the capacitive region as much as possible, a
maximum allowable inductive peak of 1% was chosen. Based on this criteria, the
qualifying entries in Table 6.2 were evaluated in terms of the amount of capacitive
compensation needed and the time it took for the response to settle. The final choice was
Kx=-50 and Tx= 50 which exhibited a settling time of 212.5 seconds, a 0.55% inductive
overshoot, and required 17.1% capacitive compensation (see Figure 7.12 in the next
chapter). Thus, design objectives 1 and 3 from above have been greatly improved upon
over the initial design choice while maintaining a relatively low settling time.

This simulation method could be used for determining controller parameters for a
variety of design objectives. Although a table was generated to allow manual
determination of the best controller, a sufficiently sophisticated system of weighting
factors could be added to the C program to describe the importance of each factor and
thus determine the best combination automatically. One possible method for automating
this process is the Analytic Hierarchical Process (AHP) which utilizes pair-wise weighting
of attributes in a matrix format [21]. This process was briefly investigated for use in

completing the above task, but it was not implemented due to time limitations.
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CHAPTER 7

Response of the Compensated System

7.1  Assumed Conditions

For simulation of the nine bus test system with the addition of the TCSC, all
assumptions about the power system conditions made in the simulation of the
uncompensated system remained unchanged. Specifically, the system was assumed to
have undergone a gradual reactive load change, and a disturbance in the form of a small
step change in mechanical power input to one of the generators was applied to the system
ten seconds after the start of the simulation. In order to evaluate the effects of the
controlled FACTS device on this system as compared to traditional series compensation,

simulations of mechanically and electronically controlled compensation were made.

7.2  Mechanical Series Compensation

In order to illustrate the improved stability control of a TCSC over a conventional

series capacitor installation with mechanical switching, a simulation of this conventional
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installation was made. Since the oscillations observed on this system have a reasonably
long period (roughly 20-25 seconds) it is reasonable to assume that a mechanical switch
could insert a large block of capacitance within the period of the oscillations.
Furthermore, to provide maximum damping from the conventional device, a total of 50%
capacitive compensation (the assumed maximum compensation for the TCSC) was
assumed to be inserted into the network.

Results from this simulation showed that mechanical series compensation would
reduce the oscillation growth rate as compared to the uncompensated system. However,
the overall system is still obviously unstable. Eigenvalues for the mechanically
compensated system are listed in Table 7.1 and plotted in Figures 7.1 and 7.2. Time
simulation results are presented for electrical power of generator 1 (Figure 7.3) and rotor
angle difference between units 1 and 2 (Figure 7.4). The responses for the other units
exhibited similar characteristics and were thus omitted for brevity.

Table 7.1: System Eigenvalues for Mechanically Compensated System

System Eigenvalues

-60.2144 -2.5397

-26.3754 0.0010 + 0.3034i

-16.5755 0.0010 - 0.3034i
-9.2845 -1.5792

-5.3001 + 4.00781
-5.3001 - 4.0078i
-7.3472
-3.5954
-2.7674 + 0.94601
-2.7674 - 0.94601

-0.7008
-0.3764 + 0.0250i
-0.3764 - 0.0250i

-1.3395

-0.1755

-2.0000
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7.3  Modulated FACTS Compensation

Using the values for Ky and Tx derived in Chapter 6, eigenvalue analysis and
numerical simulations were completed for stability evaluation. Table 7.2 summarizes the
overall system eigenvalues which are also plotted in Figure 7.5. A close-up of the
dominant eigenvalues is shown in Figure 7.6. This second plot clearly shows that the

critical eigenvalues remain in the left-half plane after the gradual reactive load change.

Table 7.2: System Eigenvalues for FACTS Compensated System

System Eigenvalues

-60.2178 -1.7545 + 0.0716i
-26.6717 -1.7545 - 0.07161
-16.5755 -1.3408
-9.2247 -0.7897
-5.7742 + 3.0820i -0.0064 + 0.3031i
-5.7742 - 3.08201 -0.0064 - 0.3031i
-7.3474 -0.4685

-2.7573 + 0.9558i
-2.7573 - 0.95581
-2.5639 + 0.1415i
-2.5639 - 0.1415i

-0.1793 + 0.0362i
-0.1793 - 0.0362i
-0.0404

Results from numerical simulations also verified the overall stability of the compensated
system. The electrical power output of each generator is shown in Figures 7.7 through
7.9. Rotor angle differences are shown in Figures 7.10 and 7.11 and the TCSC reactance

response is shown in Figure 7.12.
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Figure 7.5: System Eigenvalues (FACTS Compensated System)
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Figure 7.6: Close-up of Dominant Eigenvalues (FACTS Compensated System)
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Figure 7.7: Electrical Power of Generator 1 (FACTS Compensated System)
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Figure 7.8: Electrical Power of Generator 2 (FACTS Compensated System)
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7.4  Compensated System Loadability

Although stability is the main focus of this study, the ability of FACTS devices to
increase the amount of power that can be delivered on a transmission system deserves
mention. In the case of the TCSC, increased loadability is achieved by increasing
capacitive compensation in order to lower the overall line reactance. This can be
illustrated by the following relationship:

P = E1E2
‘ xl2

sin § (7.1)

where E, and E, are the voltages of two buses which are connected by a reactance X, and
have phase angle difference 8. Thus, if the line reactance is lowered, the power transfer
capability between buses 1 and 2 increases. From the maximum response of the TCSC
characteristic shown in Figure 7.12, the peak of 17.1% compensation provides a 20.6%
increase in transmission capability between generator 1 and load A, assuming all other
variables are approximately constant. However, to realize a permanent increase in load
transfer capability, some modules must always be inserted in the system.

In a related area, the stability of the test system network topology was greatly
increased with the addition of the FACTS controller. Without the controller, the system
was unstable at the itial load conditions. A rough study of the effects of the TCSC on
the stability of the network was conducted by increasing the real power at each load and
observing the eigenvalue response. Results showed that the FACTS compensated system

could not be forced into instability by ordinary load changes. This shows that transmission
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line thermal ratings and generation reserves limit the stability of the loads rather than the

topology of this test system with the FACTS controller in place.
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CHAPTER 8

Conclusions

8.1 Summary of Results

This thesis has shown the viability of modulating TCSC reactance in order to
improve the dynamic stability of a power system. A method has been proposed and
evaluated for optimal placement of FACTS devices for the purpose of oscillation damping.
In addition, a PID controller using phasor measurement feedback has been shown to be
quite effective at damping small-signal oscillations.  Although model complexity
significantly increases with the size of a network, the methods used in this thesis may be
readily applied to any power system. The use of numerical eigenvalue derivatives in
determining optimal location of a FACTS device, as presented in this thesis, could be a
useful technique for this purpose in any network, regardless of size. Also, the state model
which was adapted to include the FACTS device has applications for much larger power
systems. Finally, the use of phasor measurements from PMUs has been shown to provide

another useful purpose in the control of power systems. Numerical results for this study
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are summarized in Table 8.1 which lists the critical eigenvalues for the test system in each
compensation scenario and Figure 8.1 which provides a composite plot of the time

response of electrical power for each compensation condition.

Table 8.1: Critical System Eigenvalues For All Compensation Conditions

Compensation Condition Critical System Eigenvalues
Uncompensated System 0.0021 £ 0.3043i1
Mechanically Compensated System 0.0010 +0.30341
FACTS Compensated System -0.0064 +0.3031i
0.7350 +
0.7300 +
—~ €1 .|\ B . - »~ IS ",. "' ‘, "“ '
_*é 07250 : ” ~ ’ '"\ ‘.' 'A' :.I 'n‘. N 'lc : " P 'y ,I : o ' :
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S 07100 +
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= 07050 1
0.7000 +
0.6950 % i : ; i f ; <
0 50 100 150 200 250 300 350 400
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Figure 8.1: Electrical Power of Generator 1 for All Compensation Conditions
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8.2  Future Work

The assessment of damping strategies for dynamic oscillations in power systems,
though much studied, remains an interesting and important area of research for the power
engineering community. The factors discussed in the introduction of this thesis will
continue to force utilities to push the operation of their power systems ever closer to their
absolute security and stability limits. With this in mind, several areas of research may be
extended from this thesis.

In the area of device modeling, more detailed models of the actual FACTS devices
that are inserted into a network could be implemented into the power system model. This
could include modeling overvoltage protection devices and incorporating any delays that
may be observed between measurement of the rotor angles and insertion of the TCSC into
the power network. In a broader examination of dynamic stability, phasor measurement
feedback control of the excitation systems for generators could also be modeled for its
impact on damping power system oscillations.

Also of interest would be application 6f the FACTS controller proposed in this
thesis to a larger power system. This could include how multiple FACTS devices interact
with each other to affect the damping of power system oscillations. As the costs of these
devices continue to decrease with advances in technology, the combined capabilities of

multiple FACTS installations could provide an incentive for broader uses of these devices
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in the power industry. In addition, a more dynamic load model could be implemented to
provide a more realistic simulation of actual power system behavior.

In the area of control theory, several items could be explored. First, investigation
of more analytical approaches to determining the time response characteristics of the
FACTS device in high order power system models could be valuable. Also, in order for a
control system to work properly and consistently under realistic and variable conditions,
the robustness of the controller must be evaluated. Development of a robust FACTS
control system would be a crucial step in leading to practical implementations of these

installations for dynamic stability control.
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APPENDIX A

Numeric Coefficient Matrices

A.1  Current Coefficient Matrices

1

2

3

-

Eql Edl Eq2 Ed2 Eq3 Ed3 deltal2 deltal3
1 Iqt 0.834136 3.012001 -1.101558 -1.023412 -0.801957 -0.915188 1492073 1.203257
2 Idl -3.012001 0.834136 1.023412 -1,101558 0.915188 -0.801957 0231708 0.044179
3 I 1.393549 -0.564643 0.399427 2.772691 0.323263 -1.0206 -1.178059 0.581605
4 I 0.564643 1.393549 -2.772691 0.399427 1.0206 0.323263 2.357449 -0.885393
s Ig3 1.053606 -0.608785 0.069708 -1.068299 0.265545 2.394397 0.7988 -1.441882
6 143 0.608785 1.053606 1.068299 0.069708 -2.394397 0.265545 -0.719555 1.832517

Figure A.1: Current Coefficient Matrix for Uncompensated System

1 2 3 4 s 6 7 8 9

Eql Edl Eq2 Ed2 Eq3 Ed3 ddtal2 __ ddtal3 X45
1 Iql | _0834136] 3.012001| -1.101558| -1.023412| -0.801957| -0.915188| 1.492073| 1.203257| 0.882872
2 Idl | -3.012001) 0.834136] 1.023412| -1.101558| 0.915188| -0.801957| 0.231708| 0.044179| -0.676396
3 Iq2 | 1.393549| -0.564643| 0.399427| 2.772601] 0.323263|  -1.0206| -1.178059| 0.581605|  0.34157
4 1d2 | 0.564643| 1.393549| -2772601] 0.399427|  1.0206| 0.323263] 2.357449| -0.885393| 0.670046
s Ig3 | 1.053606| -0.608785| 0.069708| -1.068299| 0.265545| 2.394397]  0.7988| -1.441882) 0.103354
¢ Id3 | 0.608785| 1.053606| 1.068299] 0.069708| -2.394397| 0.265545] -0.719555| 1.832517) 0.070593

Figure A.2: Current Coefficient Matrix for FACTS Compensated System

A2 State Coefficient Matrices

The coefficients of the A state matrices for both the uncompensated and FACTS

compensated test systems are shown on the following two pages.
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APPENDIX B

Source Code Listings

B.1 MATLAB Data Files

%’t******ﬁ*'*****Q!!t**t*ﬁti*l’*i'**'******t*ﬁ*f"***i’*****t’.***'i'**ﬁ****t

% LINEDATA.M

%

% MATLAB Script file that contains initial line impedance data for
Anderson & Fouad's Nine Bus, Three Machine Power System

"

Y

Mark A. Smith
November 10, 1994

%Qtw**t*i!****!Qi'!**i**it**tt**i*tkitttt*t**ﬁﬁi*t**i*i*ﬁ****i’*i*'**i’ﬁi*t

L

%
Z=zeros(9,9);

R=zeros(9,9);

X=zeros(9,9);

Y=zeros(9,9);

Ybus=zeros(9,9) ;

%

% Initial System Impedance Data
R(1,4)=0;

X(1,4)=0.1184;

R(2,7)=0;

X(2,7)=0.1823;

R(3,9)=0;

X(3,9)=0.2399;

R{4,5)=0.0100;

X(4,5)=0.0850;

R(4,6)=0.0170;

X(4,6)=0.0920;

R(5,7)=0.0320;

X(5,7)=0.1610;

R(6,9)=0.0390;

X(6,9)=0.1700;

R(7,8)=0.0085;

X(7,8)=0.0720;

R{8,9)=0.0119;

X(8,9)=0.1008;

%

%
% End of LINEDATA.M

%*********t*Q***ttt***ii*i*tﬁﬁ*Q**ﬁ*'**!*'k***tt.**t'i*t**tktt*.‘***ﬁ**tt**t*
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*Qi*t!**'ﬂ***ti!*tittt‘!**i!tt***'*ﬁ""**l*it*it't*'*'*'t*‘**i*"*ﬁ'**ﬁ*t*****

% GENDATA.M

%

¥ MATLAB Script file that contains two-axis generator model data,

% excitation system data, and calculates initial conditions for generators

% in Anderson & Fouad's Nine Bus, Three Machine Power System

%

% Mark A. Smith

% November 10, 1994
*Ql*t***i’**t*!tt*****!'ﬁ*t*i*ii**i*‘**ﬁ*'*tlitl‘*tt*t*'ﬁ****t"t*ttti’*f*'*!iﬁi
%

%
*****tt*it**ti*t***********it!****t*i**it‘i**l‘***i*‘Q**t*ii!tit*'ﬁ.!*.t*!***t
% Power System Data for Three-Machine, Nine Bus System

% Source: Power System Control and Stability

5 by Paul M. Anderson & A. A. Fouad

%

% Unit 1 Unit 2 Unit 3
%*!***iti!*ttt*ti*!it*tti*i*itl‘iit*'it***t*tIt**t*t!'**ﬁiti'*'**ii**i*it*i***
¥Unit Type: Hydro Fossil Fossil

%$Unit MVA: 247.5 (250) 192 128 (125)

*¥Unit kV: 16.5 (18) 18 13.8 (15.5)
%¥Excitation System Type A A A
%¥Excitation System Name ASEA GE NA101 GE NA101
**I!tiiﬁtt**itit****l"!t*t!'*t***.i****i‘***i**f*****iiii*'it*'h‘**tt!**ititi
VRmax = [ 1, 1, 1 1;
VRmin = { -1, -1, -1 1;
Vref = [ 1, 1, 1 1;
xd = [ 0.1460, 0.8958, 1.3125 1:
xdprime = [  o.o0608, 0.1198, 0.1813 1;
xq = [ 0.0969, 0.8645, 1.2578 1:
xXgprime = [ 0.0969, 0.1969, 0.25 1;
Td0 = [ 8.96, 6.000, 5.89 1;
Tqo0 = [ 0.500, 0.5350, 0.6000 1;
Pm = [ 71.6, 163.0, 85.0 1;
H { 23.64, 6.4, 3.01 1;
Pgen = [ 0.716, 1.63, 0.85 1;
Qgen = [ 0.270, 0.067, -0.109 1;
vto = [ 1.04, 1.025, 1.025 1;
Beta = [ 0.0, 9.3%*2*PI /360, 4.7%*2*PI/360 ];
D = [ 1, 1, 1 1:

%*i*l’itt*il‘**i***itii.i'it!*******ﬁ*i*iﬁﬁ"*i*i*lﬁ*i****i*'tﬁt*ﬁﬁi***ﬁ**ﬁiii’

% Excitation System Data (Adjusted to Make System Marginally Stable)

Ka = [ 25, 15, 20 1
Ke = [ -1.155, -0.1071, -0.1071 1;
Kf = [ 0.405, 0.091, 0.108 1;
Ta = [ 5.6, 2.0, 1.2 1;
Te [ 0.5140, 0.8700, 1.5140 1;
Tf = [ 0.85, 0.85, 0.85 1;
%*ﬁt'k**it*tti*****’!'*ititl‘ti*tttit'*i*'*tti!*!**t.ﬁt**iﬁ'*****i***it*t*i*t*t
%

% Calculate Generator Initial Conditions

for k=1:3,

Ir(k) Pgen (k) /Vto (k) ;
Ix (k) = -Qgen (k) /vto (k) ;

phi (k) = -atan(-Qgen(k) /Pgen(k)) ;

delta_0(k) = atan{(xq(k)*Ir(k))/(vto(k)-xq(k)*Ix(k)))+Beta(k);

vgo (k) = real (Vt0 (k) *exp (i* {Beta (k) -delta_0(k))));

vdo (k) = imag (Vt0 (k) *exp (i* (Beta (k) -delta_0(k)}));

Iq0 (k) = real (abs (Ir(k)+i*Ix(k))*exp(-i*(delta_0(k)-Beta(k)+phi(k))));

88



140 (k) = imag(abs (Ir (k) +i*Ix(k)) *exp (-i*(delta_0 (k) -Beta(k)+phi (k)))):
Eqo0 (k) = VqgO0(k)-xdprime (k) *Id0(k);
Edo (k) = vdo (k) +xgprime (k) *Iqo0 (k) ;
E(k) = EqO0(k)+i*EdO0(k);
end;
%

% Calculate Inital Difference in Rotor Angles
deltal2_O=delta_0(1)-delta_0(2);
deltal3_oO=delta_0(1)-delta_0(3);
delta23_oO=delta_0(2)-delta_0(3);

%

%

% End of GENDATA.M

‘r**i’****!****t*f.***tﬁ*****ti’ti***""iﬁ'*tIii!*ttt‘**!*itf*t****iiRititli‘

***R'k‘kﬁt*ﬁ***'**i***"*ﬁ*t**t*l‘l’ti‘****t*'*'*t*ﬁ***!t"t&*i!.'***tti!"*i**i***'

% REDUCE.M

%

¥ MATLAR script file used to calculate the reduced admittance matrix Yred
% for Anderson & Fouad's Nine Bus, Three Machine Power System

%

Mark A. Smith
November 10, 1954
%*!'****ﬁ*!**t****!t**'*ﬁ*ﬂ**ﬂi*-**t*!*i*tﬁ'*!i**i**'***i**tii**iii******ﬁ*l'
%
%¥ Load Bus Power Data (in pu on 100 MVA base)
SLoadA=1.25+i*0.50; % Original Data
SLoadB=0.90+1*0.30; % Original Data
SLoadC=1.00+4i*0.35; % Original Data
SLoadC=SLoadC+i*0.35;
%
% Load Bus Voltages (pu)
VLocadA=0.996;
VLoadB=1.013;
VloadC=1.016;
%
% Shunt Susceptance Data
LineB(7,8)=0.0745;
LineB(7,5)=0.1530;
LineB(8,9)=0.1045;
LineB(9,6)=0.1790;
LineB(6,4)=0.0790;
LineB(4,5)=0.0880;
%
¥ Convert Loads to Admittances
YLoadA=real (SLoadA) / ( (VLoadA) “2) -i*imag (SLoadA) / ( (VLoadA) *2) ;
YLoadB=real (SLoadB) / ( (VLoadB) “2) -i*imag (SLoadB) / ( {VLoadB) “2) ;
YLoadC=real (SLoadC) / ( {VLoadC) “2) -i*imag (SLoadC) / ( (VLoadC) *2} ;
%
% Total Shunt Admittance Data (Calculated from Raw Data)
Y0 (5)=YLoadA+i* (LineB(7,5)+LineB(4,5));
Y0{6)=YLoadB+i* (LineB(9,6) +LineB(6,4));
Y0({8)=YLoadC+i* (LineB(7,8)+LineB(8,9));
Y0(4)=i*(LineB(6,4)+LineB(4,5));
YO (7)=i*(LineB(7,8)+LineB(7,5));
Y0(9)=i* (LineB(8,9)+LineB(9,6));
%
¥ Compute Z and Y matrices
for k=1:9,
for 1=1:9,
Z(k,1)=R(k,1)+i*X{k,1);

L
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if z(k,1) ~= 0+j*0
Y{k,1l)=inv(Z(k,1});

end;
end;
end;
4
% Compute Ybus matrix
for k=1:9,
for 1=1:9,
% Compute diagonal terms
Ybue (k, k) =Ybus (k, k) +Y (k,1};
if ¥v(k,1) ~= ¥(1,k)
Ybus (k, k) =Ybus (k, k) +¥(1,k);
end;
% Compute off-diagonal terms
if k-=1
Ybuse (k,1)=Ybuse (k,1) -Y(k,1})-Y(1,k);
end;
end;

¥ Add in shunt admittance data to diagonal terms
Ybus (k, k) =Ybus (k, k) +YO0 (k) ;

end;

%

% Partition Ybus matrix

Ynn=Ybus(1:3,1:3);

Ynr=Ybus (1:3,4:9);

Yrn=Ybus(4:9,1:3);

Yrr=Ybus(4:9,4:9);

5

% Compute Reduced Network Admittance Matrix

Yred=Ynn-¥Ynr*inv (Yrr) *Yrn;

%

%

¥ End of REDUCE.M

***tti*t***t**i*tt********i’**i-'-..'.'.'-tittttti'ti*titﬁit”t**!tiiﬂtt’tt!

B.2 Uncompensated System Simulations

*t**l‘*&*l‘l‘*tQ.'i*tt***'***t**t'*t'l'".‘"itt"t*tt't**l'i**ti'*tﬁti**iﬁil‘**

% RUN20.M

%

% Main MATLAB script file for the uncompensated version of the test system.
% Calle all other script files necessary to calculate the state matrix for
% Anderson & Fouad's Nine Bus, Three Machine Power System

%

%¥ Mark A. Smith

% November 10, 1994

‘.‘t'**t*i‘**!!ﬁ**ﬁtﬁi*iii!t*t*t**t"t'itl"ittiQi*-!t*t**iti*!!****'*lt****t*'i

a0

PI =3.141592654;

OMEGA_R= 2*PI*60;

%

% Initialize all impedance and admittance matrices
Z2=zeros(9,9);

R=zeros(9,9) ;

X=zeros(9,9);

Y=zeros(9,9);

Ybus=zeros (9, 9);

%

% Load Generator and Excitation System Data
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gendata;
%
% Load Initial System Impedance Data
linedata;
%
% Value for Simulation of Mechanical Compensation (50%)
% X(4,5)=0.0425;
%
% Calculate Reduced Network Parameters
reduce;
%
% Calculate A matrix {20 x 20 case)
acalec20;
%
% Format I matrix and print to a text file for later printing
fid=fopen('Imat20.txt', ‘'wt');
for k=1:6,

for 1=1:8,

fprintf(fid, '$£\t',I(k,1));

end;

fprintf (£fid, '\n");
end;
fclose (fid) ;
%
% Format A matrix and print to a text file for later printing
fid=fopen('Amat20.txt', 'wt');

for k=1:20,
for 1=1:20,
fprintf (£id, '$£\t',A(k,1));
end;
fprintf (£id, '\n');
end;
fclose(fid) ;
14

% Format A matrix and print to file for use in C programs
fid=fopen('Amat20.c’', 'wt');
fprintf(fid, '/*Amat20.c: Coefficients of Stable A matrix from runle.m*/\n');
for i=1:20,
for j=1:20,
dummy=sprintf ('$f\n' ,A(i,j));
fprintf (£id, dummy) ;
end;
end;
fclose (£id) ;

£
o

%
% Set Pre-Disturbance Forcing Function Constants
for k=1:20,
Bl(k)=0;
end;
%
%¥ Format Pre-Disturbance B matrix coefficients for use in DIFFEQ20.C
fid=fopen('Bmat20_1l.c', 'wt');

fprintf(fid, '/*Bl matrix coefficiente (20) from MATLAB script run20.m*/\n');
for k=1:20,
fprintf(fid, '$£f\n',B1(k));

end;
fclose (fid) ;
%
% Set Post-Disturbance Forcing Function Constants
for k=1:20,
B2(k)=0;
end;
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B2(2)=(OMEGA_R)/(2*H(1))*0.02;
%
% Format Disturbance B matrix coefficients for use in DIFFEQ20.C
fid=fopen('Bmat20_2.c', 'wt');
fprintf(fid, '/*B2 matrix coefficiente (20) from MATLAB script run20.m*/\n'};
for k=1:20,
fprintf(fid, '¥f\n',B2(k));
end;
fclose(£id) ;
%
% Set Initial Conditions to Zerco
for k=1:20,
x0(k)=0;
end;
%
% Format Initial Conditione and print to file for use in C programse
fid=fopen('Initcond.c', 'wt');
fprintf (fid, '/*Initial Conditions from MATLAB script runld.m*/\n'};
for k=1:20,
fprintf (fid, '$f\n’',x0(k));
end;
fclose(£id) ;
%
%
% End of RUN20.M

%**i!i***tti!t***tii!i*i****.***tt!****t*t*i*'****t*t!tt*tt**it’*It**!*t*t*t

*t*******i****ﬁ*“ﬁ*****'t**ttittiﬁ****iﬁﬁ*'k**it'****ii*t-*t*tiﬁ**#i**t***i*

%¥ ACALC20.M

L4

P

MATLAB Script file that calculates state and current coefficient matrices
for the uncompensated version of Anderson & Fouad's Nine Bus, Three
Machine Power System

LB

Mark A. Smith
November 10, 1994

We e de dk v v o vk de o A e sk ok d vk ol e o ok s ok e o S e o I o e U S i o o ok ol vk e i o o ol S e o o o ok ol o ok o o Sk o e ol T g g ok e ok e e S O W e i b e ok

L

% Form Transformation Matrices T and M
clear i;

T=[exp(i*delta_0(1)) 0 0;0 exp(i*delta_0(2)) 0; 0 0 (i*delta_0(3))];
M=inv (T) *Yred*T;

M(1,1)=Yred(1,1);
M(1,2)=Yred(1,2)*exp(-i*deltal2_0);
M(1,3)=Yred(1,3)*exp(-i*deltal3_0);
M(2,1)=Yred(2,1) *exp (i*deltal2_0);
M(2,2)=Yred(2,2);
M(2,3)=Yred(2,3)*exp(-i*delta23_0);
M(3,1)=Yred(3,1)*exp{i*deltal3_0};
M(3,2)=Yred{3,2) *exp(i*delta23_0);
M(3,3)=Yred(3,3);

%
%*********tﬁt****tt*!**ttit*!t*i!i*i*t*t*ﬁ*tﬁﬁﬁ*****ﬁ**i*i*ttﬂli**tkt*l*t***ﬁ

% Calculate the current coefficient matrix for the uncompensated system
%**it**i***ti*!***!!Q**t*t*ti***i**ti*t*i!!tﬁ*ttttti****!t’****ﬁ*"ti**tt*i**'k

%

I=M;

I(1,4)=-i*(M(1,2)*E(2));
I(1,5)=-1*(M(1,3)*E(3));
I(2,4)=-1i*(-(M(2,1))*E(1)-M(2,3)*E(3));
I(2,5)=-1i*(M(2,3)*E(3));
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I(3,4)=-i*((M(3,2)*E(2)));
I(3,5)=-i*((-M(3,1)*E(1)-M(3,2)*E(2)));

%
% Separate Real and Imaginary Parts of Currents
%
for k=1:3,
for 1=1:3,
Inew(2*k-1,2*1-1)=real(I{(k,1));
Inew(2*k-1,2*1)=-imag(I(k,1));
Inew(2*k,2*1-1)=imag(I(k,1)):;
Inew(2*k,2*1)=real (I(k,1));
end;
for 1=7:8,
Inew(2*k-1,1) =real (I(k,1-3));
Inew(2*k,1l)=imag(I(k,1-3));
end;
end;
I=Inew;
%

% Save I matrix for use in Power Calculations
save Il.mat I;
%

%tt****i***'**ﬁ!t***'*'*'t'**i’i***it****!#'k****"****i*ttiitt*i****t!***i**t

% Calculate the state matrix A for the uncompensated system
*!t‘*t**!tttt*tti*t'!!i‘tik**.t*******tt*'*i!'**tti*t*i!t.*."!.ﬁk**i*iil***it

¥

% Two-Axis Model Coefficients
%

% Unit 1

A(1,:)=(1/Td0(1))*(xd(1)-xdprime({1))*I(2,:);
A(1,1)=A(1,1)-(2/Tdo(1));
A(2,:)=(1/Tq0(1)) *(-1) *{xg (1) -xgprime (1)) *I(1,:);
A(2,2)=A(2,2)-(1/Tg0(1));
A(9,:)=(OMEGA_R/(2*H(1))} ) *(-Eq0(1))*I(1,:);
A(9,:)=A(9,:)+(OMEGA_R/ (2*H(1))) *(-EdO (1)) *I(2,:);
A(9,1)=A(9,1)-(OMEGA_R/(2*H(1)))*Iq0(1);
A{9,2)=A(9,2)-(OMEGA_R/(2*H(1)))*Ido(1);

%

% Unit 2
A(3,:)=(1/Td0(2))*(xd(2)-xdprime(2))*I1(4,:);
A(3,3)=A(3,3)-{(1/Td0(2));
A(4,:)=(1/Tqg0(2))*(-1)*(xq(2)-xdprime(2))*I(3,:};
A(4,4)=A(4,4)-(1/Tgq0(2)});

A(10, :)=(OMEGA_R/(2*H(2}))*(-Eq0(2))*1(3,:);
A(10,:)=A(10,:)+(OMEGA_R/(2*H(2)))*(-EA0(2))*I(4,:);
A(10,3)=A(10,3)-(OMEGA_R/{(2*H(2)))*Iq0(2);
A(10,4)=A(10,4) - (OMEGA_R/(2*H(2)))*I1d0(2);

%

% Unit 3

A(5,:)=(1/Td0(3)) *(xd(3)-xdprime (3))*I(6,:);
A{5,5)=A(5,5)-(1/Td0(3));
A(6,:)=(1/Tg0(3))*(-1)*(xq(3)-xdprime(3))*I(5,:);
A(6,6)=A(6,6)-(1/Tqo(3));

A(11,:)=(OMEGA_R/ (2*H(3)))*(-Eq0(3))*I(5,:);
A(11,:)=A(11,:)+(OMEGA_R/(2*H(3))}*(-Ed0(3))*I(6,:);
A(11,5)=A(11,5)- (OMEGA_R/ (2*H(3)))*Ig0(3);
A(11,6)=A(11,6)-(OMEGA_R/(Z*H(B))]*IdO(B);

%

%

% Rotor Angle Coefficients

%

A(7,9)=1;

A(7,10)=-1;
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A(8,9)=1;

A(8,11)=-1;

%

%

% Damping Coefficients

¥

A(9,9)=-D(1)*OMEGA_R/ (2*H(1));
A(10,10)=-D(2) *OMEGA_R/ (2*H(2}) ;
A(11,11)=-D(3) *OMEGA_R/ (2*H(3)) ;

%
%
% Excitation System Coefficients
%
% Unit 1
%
unit=1;
for k=1:8,
A(12,k) = - (Ka{unit) /Ta(unit))*(-1*(Vdo(unit) /Vt0o{unit)) *xgprime (unit)*...
I(1,k)+(Vgo(unit)/Vto(unit))*xdprime (unit)}*I(2,k)};
end;

% Add additional coefficient components due to Eq and Ed
A(12,1)=A(12,1)-(Ka(unit) /Ta(unit) ) * (Vg0 (unit) /Vto (unit));
A(12,2)=A(12,2)-(Ka(unit)/Ta(unit))* (Va0 (unit) /vto (unit));
% Calculate Remaining Coefficiente for this unit
A(1,13)=(1/Tdo(1));

A(12,12)=-Ka(unit)/Ta(unit};
A{12,13)=-Ka(unit)*Kf (unit) / (Ta(unit) *Tf (unit)) ;
A(12,14)=Ka(unit) /Ta(unit) ;

A(13,12)=1/Te(unit) ;

A(13,13)=-(1+Ke(unit)) /Te{unit) ;
A(14,13)=Kf (unit) /T£f (unit) /Tf (unit) ;

A(14,14)=-1/Tf (unit) ;

%

% Unit 2

%

unit=2;

% Calculate Coefficients due to Vt
for k=1:8,

A(15,k)=-(Ka(unit) /Ta(unit))*(-1*(VdO (unit) /Vt0 (unit) ) *xgprime (unit)*I(3,k)+...

(Vgo (unit) /Vt0 (unit) ) *xdprime (unit)*I(4,k));
end;
%¥ Add additional coefficient components due to Eq and Ed
A(15,3)=A(15,3)- (Ka(unit) /Ta(unit)) * (Vg0 (unit) /Vt0 {(unit) ) ;
A(15,4)=A(15,4) - (Ka(unit) /Ta(unit))* (Va0 (unit) /Vto (unit));
% Calculate Remaining Coefficients for this unit
A(3,16)=1/Td0(2);
A(15,15)=-Ka{unit) /Ta(unit) ;
A(15,16)=-Ka{unit) *Kf (unit) /{Ta (unit) *Tf (unit)) ;
A(15,17)=Kaf{unit) /Ta{unit) ;
A(16,15)=1/Te(unit) ;
A(16,16)=- (1+Ke(unit)) /Te (unit) ;
A(17,16)=Kf (unit) /Tf (unit) /Tf (unit) ;
A(17,17)=-1/T£ (unit) ;
%
¥ Unit 3

a°

unit=3;

% Calculate Coefficients due to Vt
for k=1:8,

A(18,k)=- (Ka{unit) /Ta{unit))*(-1* (VA0 (unit) /Vt0o{unit) ) *xgprime (unit)} *I(5,k)+...

(Vg0 (unit) /vto(unit) ) *xdprime (unit)*I1(6,k));
end;
%¥ Add additional coefficient components due to Eq and Ed



A(18,5)=A(18,5)-(Ra{unit) /Ta(unit))* (Vg0 (unit) /Vto(unit));
A(18,6)=A(18,6) - (Ka({unit) /Ta(unit)}) * (V4O (unit) /Vt0 (unit));
% Calculate Remaining Coefficients for this unit
A(5,19)=(1/Tdo(3));

A(18,18)=-Ka(unit) /Ta(unit) ;
A(18,19)=-Ka(unit)*Kf (unit) / (Ta(unit) *Tf (unit) ) ;
A(18,20)=Ka(unit) /Ta(unit) ;

A(19,18)=1/Te(unit);

A(19,19)=- (1+Ke (unit)) /Te (unit}) ;
A(20,19)=Kf (unit) /Tf (unit) /Tf (unit) ;

A(20,20)=-1/Tf (unit) ;

¥
%

¥ End of ACALC20.M

%!****tti!t*'*t***t**ti***i*it*i*i*ﬁ***‘***'**'*ii*.tR*****'ti!it***!i't***i

//t****t*t'*t*****t**'**'*‘***i’*i*t.i*tii’ii**ii**i*.*****‘i'i****'ﬂii*****

//
/7
//
//
/7
/7
/7
//
//
/7
//
/7

//ﬁR***i******it**ﬁ*i**!*i*'***t****'*i*‘!ﬁﬁ!?*'ti*i!t**'*t*ﬁ***ti*tt*ﬁt*iti*

DIFFEQ20.C

C Program used to solve differential equations represented in the state
matrix calculated by the MATLAB script file RUN20.M. Resulting solution
is for the uncompensated version of Anderson & Fouad's Nine Bus,

Three Machine Power System

Compiled using Borland C++ Compiler version 3.1 in conjunction with
Phar Lap's DOS Extender version 2.1

Mark A. Smith
November 10, 1994

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>

#define LDCHANGE 10

#define LOOPS 80000
#define DT 0.005
#define SKIP 500

#define ASIZE LOOPS/SKIP+1
/* Define Functions */

void c_to_mat (float huge var[ASIZE] [22], char *varname, char *filename);
void ReadAmat (char *filename, float var{22][22));

/*

Define Global Variable */

static float huge x[ASIZE] (22];
float xnew(22];

float xo0ld[22];

float A[22] [22];

float B1[22];

float B2[22];

FILE *fp;

void main(int argc, char *argvl(])

{

int count, index, i, j;
unsigned long int iter;
char dummy [80] ;
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if (arge<2) argv[l]="";

/* Read in Initial Conditions for state variables */

printf ("Reading initial conditions for state variables...\n\n");

if ((fp = fopen("initcond.c","rt"))==NULL)
{
printf ("Cannot open %s\n", "initcond.c");
exit(1};
)
/* Skip over file header */
fgets (dummy, 79, fp) ;
printf ("¥s\n\n", dummy) ;
for(i=1;i<=20;i++)
{
fgets (dummy, 79, fp) ;
xo0ld[i] =atof (dummy) ;
//printf ("xold[%¥d]l=%f\n",i,x0ld[i]);
}
fclose (fp) ;

/* Read in Bl matrix coefficients */
printf ("Reading coefficients for B matrix...\n\n");
if((fp = fopen("bmat20_1.c", "rt"))==NULL)
{
printf ("Cannot open %s\n", "bmat20_1.c");
exit (1);
}
/* Skip over file header */
fgets (dummy, 79, £fp) ;
for(i=1;i<=20;i++)
{
fgets (dummy, 79, fp) ;
Bl[i] =atof (dummy) ;
}
fclose (fp) ;

/* Read in B2 matrix coefficients */
printf ("Reading coefficients for B matrix...\n\n"):
if((fp = fopen("bmat20_2.c","rt"))==NULL)
{
printf ("Cannot open ¥s\n", "bmat20_2.c");
exit (1) ;
}
/* Skip over file header */
fgets (dummy, 79, fp) ;
for(i=1;i<=20;i++)
{
fgets (dummy, 79, £p) ;
B2 [i] =atof (dummy) ;

fclose (fp) ;

/* Read in A matrix coefficients */
ReadAmat ("amat20.c", A);

count=SKIP;

index=0;

printf("Solving Differential Equations...\n\n");
iter=1;

/* Set Initial Conditions */
for(j=1;3<=20;35++)
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{
}

/* Start Main Loop for Solving Differential Equations Using Euler's Method */
while (iter<LOOPS)

x[1] [j]=xo0ld[]];

{
for(j=1;3j<=20;j++)
{
if {(iter*DT) < LDCHANGE)
{
xnew([j] = (DT)*(A[jl[ 1)*xold[ 1]+A[j1[ 21*xo0ld[2]+
A[3][ 31*xold[ 3]1+A[j][ 4]*x0ld[4]+
A[jI [ S}*x0ld[ S)+A[j]l[ 6)*xold[6]+
A[j1[ 7} *xold[ 7}+A[j]1[ 8]*xold[8]+
A[3)[ S]l*xo0ld[ 9]1+A[j] [10]*xold[10]+
Alj][11] *x0ld[11]}+A[j] [12]) *x0ld[12])+
A[j]1[13]*x0ld[13]1+A[j] [14]) *x0ld[14]+
Al3j] [15] *x01d[15} +A[j] [16] *xold[16] +
Al3]1[17)*x0ld[17]+A[7] [18] *x0ld[18] +
A[j][19) *x0ld[19]+A[j] [20] *x01d[20] +
Bl[j])+x0ldl[3];
}
if ((iter*DT) >= LDCHANGE )
{
xnew([j) = (DT)*(A[j][ 1)*x0ld[ 1)+A[j) [ 2)*xold[2]+
A[F] [ 31*x01d[ 3]+A[j][ 4]*xold[4a]+
A[j][ 5]*xo0ld[ S]+A[5) [ 6] *xold[6]+
A[31[ 7)*x0ld[ 7)+A[3][ 8]*xold[8]+
A[3][ 9]*xold[ 9)+A[j][10]*x0ld[10]+
Al3]1[11]*x0ld[11)+A[5] [12] *x0ld[12]+
Al[3] [13)*x0ld[13)+A[5j] [14] *x01d[14] +
A[j]1[15)*x0ld[15] +A[5] [16] *x0ld[16]+
A[j]1[17)*x01d[17] +A[j] [18] *xold[18] +
A(35]{19)*x0ld[19]+A[3] [20]) *x01d[20] +
B2[j])exold[3];
}
}
/* Compress Data and Store in New Variable */
if (count==SKIP)
{
for(j=1;3<=20;73++)
x[index] [j]l=xnew[3]}:
}
count=0;
index++;
}
/* Set values for next iteration */
for{j=1;j<=20;7++)
x0ld[j] =xnew[j]:
}
count ++;
iter++;
}

/* Repeat last point to avoid reset to zero */
for (j=1;3<=20;j++)
{

x[index]} [j] =x[index-1] [j];

97



}

/* If “-mat" option specified, convert results to MATLAB format */
if (strcmp (argv[1],"-mat") == 0)

{
}

c_to_mat(x, "x", "xmat.m");

void ReadAmat (char *filename, float matrix{22] (22])
{

int 1i,3;

char dummy{80] ;

/* Read in A matrix coefficients */
printf ("Reading coefficients for A matrix...\n\n");
if ((fp = fopen(filename, "rt"))==NULL)
{
printf ("Cannot open %s\n", filename);
exit (1) ;
}
/* Skip over file header */
fgets (dummy, 79, fp) ;
for(i=1;i<=20;i++)
{
for{(j=1;j<=20;j++)
{
fgets (dummy, 79, fp) ;
matrix([i] [j]=atof (dummy) ;
}
}
fclose (fp);

void c_to_mat (float huge var[ASIZE] [22], char *varname, char *filename)

{

int 1i,3;
printf ("Converting results to MATLAB format...\n\n");

if ({(fp = fopen(filename, "w"))==NULL)

{

printf ("Cannot open %s\n", filename);
exit (1) ;

}
fprintf (fp, "time = [");

for{(i=0;i<ASIZE-1;i++)

{
)

fprintf (fp, "%¥f ];\n\n", (DT)=*SKIP*(ASIZE-1));

fprintf (fp, "$£;\n", (DT)*SKIP*i);

fprintf(fp,"¥s = [", varname);

for(i=0;i<ASIZE-1;i++)

{

for(j=1;3<20;3j++)

{

fprintf (fp,"%f, ", var[il [j]);



}
fprintf (fp, "$£;\n",var([i] [20]);

}

for(j=1;j<20;j++)

{
}

fprintf (fp, "$¥f ];\n\n", var[ASIZE-1] [20]);

fprintf (fp, "$£f, ",var(ASI2E-1] [j]);

fclose (fp) ;
}

// End of DIFFEQ20.C

//iltiitt**!ﬁ*i**!‘i***'ﬁ**“**ﬂt*'*ﬁ**"*'*i*********"ﬁ*tﬁ*i*ﬁ***i*ttlt!*i*i*t

*t*t****i!titttti**ti'i*ttttt****ﬁ't*ii**ti!l‘fi******i**i-ttttti*'k!!ﬁ**ﬂ*i*'

POWER20.M

MATLAB script file used for calculating incremental electrical power for
each generator in the uncompensated version of Anderson & Fouad's
Nine Bue, Three Machine Power System

aF A* A &

@ o W

Mark A. Smith

November 10, 1994
**t*ttt't**t'*I*ttttittt***ii*t*i**.!i*i!t**'*i-**‘!***‘*"*iti****t***.tt*i
%

clear;

%

% Load in Generator Data

gendata;

%

%¥ Load in Results from DIFFEQ20.C

xmat ;

%

% Define times at which events occur

DT=0.005;

SKIP=500;

LDCHANGE=10/ (SKIP*DT) +1;

ENDTIME =400/ (SKIP*DT) +1;

%

% Load Pre-event Current Coefficient Matrix
load Il.mat;

o0

%

% Initialize Current Variables

1d1=0;

Igl=0;

I1d42=0;

Ig2=0;

Id3=0;

I1q3=0;

%

% Compute Incremental Current Vectors

for k=1:8,
Id1=Id1+I(2,k) *x(1:LDCHANGE, k) ;
Igl=Igl+I(1,k)*x(1:LDCHANGE, k) ;
1d2=142+I (4, k)*x(1:LDCHANGE, k) ;
Ig2=Iq2+I(3,k)*x(1:LDCHANGE, k) ;
Id3=1d3+1(6,k)*x(1:LDCHANGE, k) ;
Ig3=Ig3+I(5,k)*x(1:LDCHANGE, k) ;

end;

o
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% Compute Pre-Disturbance Incremental Power for each Unit
Pel(1:LDCHANGE)=(Iq0(1)*x(1:LDCHANGE,1)+Eq0(1)*Iql(:))+...
(EA0(1)*Id1(:)+Id0o(1)*x(1:LDCHANGE,2)};
Pe2 (1:LDCHANGE) = (Ig0(2) *x (1 :LDCHANGE, 3) +Eq0(2)*Ig2(:))+...
(EA0(2)*I1d2(:)+Id0(2)*x(1:LDCHANGE, 4));
Pe3 (1:LDCHANGE) = (Ig0(3) *x(1:LDCHANGE, 5) +EqQ0 (3) *Iq3(:))+...
(EA0(3)*Id3(:)+Id0(3)*x(1:LDCHANGE,S6)) ;
%
% Load Event Current Coefficient Matrix
load I2.mat;
%
% Initialize Current Variables
Id1=0;
Igl=0;
Id2=0;
Ig2=0;
Id3=0;
Igq3=0;
%
% Compute Incremental Current Vectors
for k=1:8,
Id1=1d1+I(2,k)*x(LDCHANGE+1:ENDTIME, k) ;
Iql=Igl+I(1,k)*x(LDCHANGE+1:ENDTIME, k) ;
Id2=1d2+I(4,k)*x{LDCHANGE+1:ENDTIME, k) ;
I1g2=1g2+I(3,k)*x(LDCHANGE+1 :ENDTIME, k) ;
Id3=1d3+I(6,k)*x(LDCHANGE+1:ENDTIME, k) ;
Ig3=Ig3+I(5,k)*x(LDCHANGE+1:ENDTIME, k) ;
end;
%
%¥ Compute Post-Disturbance Incremental Power for each Unit
Pel (LDCHANGE+1 :ENDTIME) = {Ig0{1) *x (LDCHANGE+1 :ENDTIME, 1) +Eq0 (1) *Igl(:))+...
(EA0(1)*1d1(:)+Id0o(1)*x{LDCHANGE+1:ENDTIME,2));
Pe2 (LDCHANGE+1 :ENDTIME) = (Ig0(2) *x (LDCHANGE+1 : ENDTIME, 3) +EqQ0(2) *Ig2(:))+...
(E40(2)*Id2(:)+Id0(2)*x(LDCHANGE+1:ENDTIME,4));
Pe3 (LDCHANGE+1 : ENDTIME) = (Ig0 (3) *x (LDCHANGE+1 :ENDTIME, 5) +Eq0 (3) *Ig3(:))+...
(EA0(3)*Id3(:)+Id0(3)*x(LDCHANGE+1 :ENDTIME,6)}) ;
%
% Group Resulting Power, Rotor Angle, and Frequency Data
Peltot=Pel+Pgen(1l);
Pe2tot=Pe2+Pgen(2) ;
Pe3ltot=Pe3+Pgen(3);
Pe=[Peltot; Pe2tot; Pe3tot]';
omega=[x(:,9) x(:,10) x(:,11)];
delta=[x(:,7) x(:,8)];
%
%
¥ End of POWER20.M

%*i**l‘ﬁ*'k!i*t!****l‘i*itﬁ*i*i**tti*i*t'**ﬁ**iti*i*i*t***!*i***tti*ﬁ'*tt'ti't!

B.3 FACTS Compensated System Simulations

%**l'*i***it’**t*.tt**ti*.tt*.it'*it**-*i*iii’*ttﬁ*'tﬁ*iﬁ*****i**i***itt*****

RUN21.M

Main MATLAB script file for the FACTS compensated test system.
Calls all other script files necessary to calculate the state matrix for
% Anderson & Fouad's Nine Bus, Three Machine Power System

%
%
%
%
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a

% Mark A. Smith
% November 8, 1994

******i*.****t*’t**fi’**t*****t***'ﬁ*******!****ﬁ'ﬁ-'**!**‘****it**iﬁ**l*t****i*

L4

PI =3.141592654;

OMEGA_R= 2*PI*60;

%

%¥ Load Generator and Excitation System Data
gendata;

o

L

Set FACTS Controller Gain and Time Constant
= -50;
= 50;

“gg

% Load Initial Line Impedance Data

linedata;

% Calculated Reduce Network Admittance Matrix
reduce;

%

% Load dY/dX values

load c:\thesis\dydxmean.mat;

for k=1:3,
for 1=1:3,
day(k,1l)=d¥Ymean(3*(k-1)+1);
end;
end;

alpha=angle(dY) ;
dYdX=abs (dY) ;

%
% Calculate A matrix
acalc2l;
%
¥ Format I matrix and print to a text file for later printing
fid=fopen('Imat21.txt"', 'wt');
for k=1:6,
for 1=1:9,
fprintf (fid, '¥£\t',I(k,1));
end;
fprintf(£fid, '\n');
end;
fclose (£fid) ;
14
¥ Format A matrix and print to a text file
fid=fopen{'Amat21.txt', 'wt');
for i=1:21,
for j=1:21,
fprintf(£fid, '$f\t' ,A(i,j));
end;
fprintf (fid, '\n"') ;
end;
fclose(fid) ;
%

% Format A matrix and print to file for use in C programs
fid=fopen{'Amat2l.c', 'wt');
fprintf (fid, '/*Amat2l.c: Coefficients of A matrix from run2l.m*/\n');
for i=1:21,
for j=1:21,
dummy=sprintf ('$£f\n' A(i,j));
fprintf (fid, dummy) ;
end;
end;
fclose(£fid) ;
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%
% Set Pre-Disturbance forcing function constants

for k=1:21,
Bl (k)=0;
end;
¥
% Format Pre-Disturbance B matrix coefficients for use in C programs
fid=fopen('Bmatl.c', 'wt')};

fprintf (fid, '/*Bl matrix coefficients for state variables from run2i.m*/\n');
for k=1:21,
fprintf(fid, '¥f\n’,B1l(k));
end;
fclose(fid) ;
%
% Set Pre-Disturbance forcing function constants

for k=1:21,
B2 (k)=0;
end;
B2(10)=(OMEGA_R)/(2*H(1))*0.02;
%
% Format Post-Disturbance B matrix coefficients for use in C programs
fid=fopen('Bmat2.c', 'wt'};

fprintf (fid, '/*B2 matrix coefficients for state variables from run2l.m*/\n');
for k=1:21,
fprintf (fid, '¥£f\n',B2(k));
end;
fclose (fid) ;
%
% Set Initial Conditions to Zero
for k=1:21,
x0(k)=0;
end;
%
% Format Initial Conditions and print to file for use in C programs
fid=fopen('Initcond.c', 'wt'};
fprintf (fid, '/*Initial Conditione from MATLAB script runld.m*/\n');
for k=1:21,
fprintf (£fid, '$f\n',x0(k));
end;
fclose (£fid) ;
%
%
% End of RUN21.M

%!*‘*t*t!tl’itQt**!t'itt**t’*ii*ﬁi'**tﬁ**!’i'*'t'*t****I*t**‘.i**!****Ri*.*t**!

%ﬁ*****ﬁ*t***it*t*i*t***ﬁ"*i***t*ﬁ**t*iﬂ.*t!!*i’tli.*i!ii-*"tt****'**'****i

ACALC21.M

Lo

MATLAB Script file that calculates state and current coefficient matrices
for the FACTS compensated version of Anderson & Fouad's Nine Bus, Three
Machine Power System

a° e

L

Mark A. Smith
November 10, 1994
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a8

Form Transformation Matrices T and M

o

clear i;

T=[exp (i*delta_0{(1)) 0 0;0 exp(i*delta_0(2)) 0; 0 0 (i*delta_0(3))];
M=inv(T) *Yred*T;

M(1,1)=Yred(1,1);
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M(1,2)=Yred(1,2)*exp(-i*deltal2_0);
M(1,3)=Yred(1,3)*exp{-i*deltal3_0);
M(2,1)=Yred(2,1) *exp{i*deltal2_0);

M(2,2)=Yred(2,2};

M(2,3)=Yred(2,3) *exp(-i*delta23_0);
M(3,1)=Yred(3,1) *exp{i*deltal3_0);

M(3,2)=Yred{(3,2) *exp{i*delta23_0);

M(3,3)=Yred(3,3);

%

%i*****ﬁ*‘*t***!*.*ﬁt**t***t*i**i!*"*t**t.t*.*ﬂ**'*!iiit.i**'***i****'i**'*'l

% Calculate the current coefficient matrix for the FACTS compensated system
%!t*i!!*i!‘*ﬁ*ﬂ*I‘*’***"*'i*"***i*f.*ﬁ"*ti**‘*ﬁ*i*i'****i"***ﬁ***,i*'i**'.i
%
I=M;
I(1,4)=-i*(M(1,2)*E(2));
I(1,5)=-i*(M(1,3)*E(3)});
I(1,6)= E{(1)*dYdX(1,1)*exp(i*alpha(1,1)}+...
E(2)*dydX(1,2) *exp(i*(alpha(1l,2)-deltal2 0))+...
E(3)*dydX(1,3) *exp(i*(alpha(1,3)-deltal3_o0});
I(2,4)=-i*(-(M(2,1))*E(1)-M(2,3)*E(3));
I(2,5)=-i*(M(2,3)*E(3));
I(2,6)= E{1)*dYdX{2,1)*exp(i*(alpha(2,1}+deltal2_0))+...
E(2)*dydX(2,2) *exp(i*alpha(2,2))+...
E{2)*dYdX(2,3) *exp(i*(alpha{2,3}-delta23_0));
I1{(3,4)=-i*((M(3,2)*E(2))};
I{3,5)=-i*((-M(3,1)*E(1)-M(3,2)*E(2)));
I(3,6)= E(1)*dYdX(3,1)*exp(i*(alpha(3,1)+deltal3_0))+...
E(2)*dYydX(3,2) *exp(i* (alpha(3,2}+delta23_0))+...
E(3)*dYdX(3,3) *exp(i*alpha(3,3));

%
% Separate Real and Imaginary Parte of Currents
%
for k=1:3,
for 1=1:3,
Inew(2*k-1,2*1-1)=real (I(k,1));
Inew{2*k-1,2*1)=-imag(I({k,1));
Inew(2*k,2*1-1)=imag(I(k,1));
Inew(2*k,2*1)=real (I(k,1));
end;
for 1=7:9,
Inew(2*k-1,1)=real (I(k,1-3));
Inew(2*k,l)=imag(I(k,1-3)};
end;
end;
I=Inew;
%

®

% Save I matrix for use in Power Calculations
save Il.mat I;

%

%!ﬁ*ﬁ*'*ii*t*i**ii*t*'!ﬁ*'***iﬁ*ﬁ*t**!'***ti**t**"*i*'ﬁ**ﬁ*f*ﬁi**ﬁ‘ﬁﬁﬁ**’**ii

%¥ Calculate the state matrix A for the FACTS compensated system
***ﬁ*********it**i’t*i*t*i**i*i*it***tﬁ***ti*iti**t*l"*t't***i**tt*it*ti!t*tt
%

% Two-Axis Model Coefficients

%

% Unit 1

A{l,:)=(1/Td0(1))*(xd(1)-xdprime (1)) *I(2,:);
A{1,1)=A(1,1)-{1/Tdo(1));
A(2,:)=(1/Tg0(1))*(-1)*(xq{l)-xdprime (1)} *I(1,:);
A{2,2)=A(2,2)-{(1/Tg0(1));

A(10,:)=(OMEGA_R/ (2*H(1)))}*(-Eq0(1))*I(1,:);
A{10,:)=A(10,:)+(OMEGA R/ (2*H(1)})*(-EA0(1))*I(2,:);
A{10,1)=A{10,1)- (OMEGA_R/ (2*H(1)))*Iq0(1);
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A(10,2)=A(10,2)- (OMEGA_R/ (2*H(1)))*Id0(1);

%

% Unit 2
A(3,:)=(1/Td0o(2)) * (xd(2) -xdprime (2))*I(4,:);
A(3,3)=A(3,3)-(1/Tdo(2));
A(4,:)=(1/Tqo0(2))*(-1)*{xq(2)-xdprime (2))*I(3,:);
A(4,4)=A(4,4)-(1/Tq0(2));
A(11,:)=(OMEGA_R/(2*H(2)))*(-Eq0(2))*I(3,:);
A(11,:)=A(11,:)+(OMEGA_R/(2*H(2)))}*(-Ed0(2))*I(4,:);
A(11,3)=A(11,3)- (OMEGA_R/(2*H(2)))*Iqg0(2);
A(11,4)=A(11,4)- (OMEGA_R/(2*H(2)))*1d0(2);

%

% Unit 3
A(5,:)=(1/Td0(3))*(xd(3) -xdprime (3))*I(6,:);
A(5,5)=A(5,5)-(1/Tdo(3));
A(6,:)=(1/Tq0(3))*(-1)*{xg(3)-xdprime(3))*I(5,:);
A(s,6)=A(6,6)-(1/Tq0(3));

A(12, :)=(OMEGA_R/ (2*H(3)))*(-Eq0(3)})*I(5,:);
A(12,:)=A(12,:)+(OMEGA_R/(2*H(3)))*(-EdO(3))*I(6,:);
A(12,5)=A(12,5)- (OMEGA_R/ (2*H(3)))*Iq0(3);
A(12,6)=A(12,6)- (OMEGA_R/ (2*H(3)))*Ido(3);

%

%

% Rotor Angle Coefficients

A(7,10)=1;

A(7,11)=-1;

A(8,10)=1;

A(B,12)=-1;

%

%

% Damping Coefficients
A{10,10)=-D(1) *OMEGA_R/ (2*H(1)) ;
A(11,11)=-D(2) *OMEGA_R/ (2*H(2)) ;
A{12,12)=-D(3) *OMEGA_R/ (2*H(3)) ;
¥

%

¥ FACTS Coefficients

A(9,9) = -1/Tx;

A(9,10) = Kx/Tx;
A(9,11) = -Kx/Tx:
%

%
% Excitation System Coefficients
%
¥ Unit 1
%
unit=1;
for k=1:9,

A(13,k) = -{Ka(unit) /Ta{unit)}* (-1* (VA0 (unit) /Vto (unit) ) *xgprime (unit) *...

I(1,k)+(Vqgo(unit)/Vto(unit))*xdprime (unit)*I(2,k));

end;
% Add additional coefficient components due to Eq and Ed
A(13,1)=A(13,1)- (Ka(unit) /Ta(unit))* (Vg0 (unit) /Vt0 (unit)) ;
A(13,2)=A(13,2)-(Ka(unit) /Ta(unit))* (Vdo (unit) /Vt0 (unit)) ;
% Calculate Remaining Coefficients for this unit
A(l,14)=(1/Td0(1));
A(13,13)=-Ka(unit) /Ta(unit) ;
A{13,14)=-Ka(unit) *Kf (unit) / (Ta (unit ) *Tf (unit) ) ;
A{13,15)=Ka(unit) /Ta(unit) ;
A(14,13)=1/Te(unit) ;
A(14,14)=-(1+Ke(unit)) /Te (unit) ;
A(15,14)=Kf (unit) /Tf (unit) /Tf (unit) ;
A(15,15)=-1/Tf (unit) ;
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%

% Unit 2

%

unit=2;

% Calculate Coefficients due to Vt

for k=1:9,

A(16,k)=-(Ka{unit) /Ta({unit))*(-1* (VA0 (unit) /Vto(unit) ) *xgprime (unit)*I(3,k)+...
(Vg0 (unit) /Vt0(unit) ) *xdprime (unit) *I(4,k));

end;

%

Add additional coefficient components due to Eq and Ed

A(16,3)=A(16,3) - (Ka(unit) /Ta(unit))* (Vg0 (unit) /Vto(unit));
A(16,4)=A(16,4) - (Ka(unit) /Ta{unit))*(vdo (unit) /Vt0o{unit)};

% Calculate Remaining Coefficients for this unit

A(3,17)=1/Tdo(2);

A(16,16)=-Ka{unit) /Ta(unit) ;
A(16,17)=-Ka{unit) *Kf (unit) / (Ta(unit) *T£f (unit)) ;
A(16,18)=Ka(unit) /Ta(unit);

A(17,16)=1/Te(unit) ;

A(17,17)=-{1+Ke(unit)) /Te (unit) ;
A(18,17)=Kf (unit) /Tf (unit) /Tf (unit) ;
A(18,18)=-1/Tf (unit) ;

%

% Unit 3

%

unit=3;

% Calculate Coefficients due to Vt

for k=1:9,

A(19,k)=-(Ka(unit) /Ta(unit))* (-1*(Vdo (unit) /Vt o {unit) ) *xgprime (unit) *I(5,k) +...
(Vgo (unit) /Vt0 (unit) ) *xdprime (unit) *I(6,k));

end;

% Add additional coefficient components due to Eq and Ed

A{19,5)=A(19,5) - (Ka(unit) /Ta(unit) ) * (Vg0 {unit) /Vt0 (unit)) ;
A(19,6)=A(19,6)- (Ka(unit) /Ta(unit) ) * (V40 {(unit) /Vto (unit));

% Calculate Remaining Coefficients for this unit

A(5,20)=(1/Tdo(3));

A(19,19)=-Ka(unit) /Ta (unit) ;
A(19,20)=-Ka(unit) *Kf (unit) / (Ta(unit) *Tf (unit) ) ;
A(19,21)=Ka(unit) /Ta(unit) ;

A(20,19)=1/Te{unit) ;

A(20,20)=-(1+Ke{unit)) /Te{unit) ;
A(21,20)=Kf (unit) /Tf (unit) /Tf (unit) ;
A(21,21)=-1/Tf(unit) ;

%

€

¥ End of ACALC21.M

%***ﬁ*kt't**'!**"'*****l‘**#*****!**’****ﬁtt-ttﬁtt*‘t**ii*il'*-t'iﬁ!*t*tt*it

//*******i*t**i*t***"*i'l’t**ﬁl’******'ﬁ*tii*t*itl‘*!l‘tit******tt*i**tti*i*'itt*

/7
/7
//
/7
/7
//
/7
1/
/7
/7
//
//

DIFFEQ21.C

C Program used to solve differential equations represented in the state

matrix calculated by the MATLAB script file RUN21.M.

Resulting solution

is for the FACTS compensated version of Anderson & Fouad's Nine Bus,

Three Machine Power System

Compiled using Borland C++ Compiler version 3.1 in conjunction with

Phar Lap's DOS Extender version 2.1

Mark A. Smith
November 10,

1994

105



//t*ti*i'**!t*'t'ti-ﬁ**'***'*i*t**'i*ii***'*i***i**iQt'*’ﬁ'*t*'*t**t***!!t*t

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>

#define LDCHANGE 10

#define LOOPS 40000
#define DT 0.01

#define SKIP 250

#define ASIZE LOOPS/SKIP+1
#define TOL 0.005

/* Declare Functions */

void c_to_mat (float huge var[ASIZE] [22], char *varname, char *filename);

void ReadAmat (char *filename, float var[22] [22]);
void findpeak(float huge trace[ASIZE]);

/* Declare Global Variables */
static float huge x[ASIZE] [22];
static float huge facts[ASIZE];
static float huge localmax[ASIZE];
static float huge localmin[ASIZE];
static float huge localavg[ASIZE};
float xmnew([22]};

float xold[22}:

float A{[22] {22];

float Atemp{22] [22];

float B1[22];

float B2[22];

float factsmax, factsmin;

FILE *fp;

/* Set Value of Initial Line Reactance for Line Containing FACTS Device */

float X45_init=0.0850;

void main(int argc, char *argv(])

{

int count, index, i, j;
int flag;

unsigned long int iter;
int pkcount;

float oldmax, oldmin;
char dummy [80] ;

float set_time;

flag=0;
pkcount=0;
set_time=500.0;

if (arge<2) argvil]="";

for(i=0;i<ASIZE;i++)
{
localmax[i]=1;
localmin([i]=-1;

}

/* Read in Initial Conditions for state variables */
printf ("Reading initial conditions for state variables

...\n\n");
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if ((fp = fopen("initcond.c","rt"))==NULL)

{
printf ("Cannot open %¥s\n", "initcond.c");
exit (1);

}

/* Skip over file header */

fgets (dummy, 79, fp) ;

printf ("$s\n\n", dummy) ;

for(i=1;i<=21;i++)

{
fgets (dummy, 79, fp) ;
xold[i} =atof (dummy) ;
//printf ("xold[%d]=%f\n",i,xo0ld{i]);
)
fclose (fp) ;

/* Read in Bl matrix coefficients */
printf ("Reading coefficiente for Bl matrix...\n\n"};
if ((fp = fopen("bmatl.c","rt"))==NULL)
{
printf ("Cannot open %s\n", "bmatl.c");
exit (1) ;
}
/* Skip over file header */
fgets (dummy, 79, fp) ;
for(i=1l;ic=21;i++)
{
fgets (dummy, 79, fp) ;
Bl [i] =atof (dummy) ;
)

felose (fp) ;

/* Read in B2 matrix coefficients */
printf ("Reading coefficients for B2 matrix...\n\n");
if((fp = fopen("bmat2.c", "rt"))==NULL)
{
printf ("Cannot open %s\n", "bmat2.c"};
exit (1) ;
}
/* Skip over file header */
fgets (dummy, 79, £p) ;
for(i=1;i<=21;i++)
{
fgets (dummy, 79, fp) ;
B2 [i] =atof (dummy) ;

fclose (fp) ;

/* Read in A matrix coefficients */
ReadAmat ("amat2l.c", A);

count=SKIP;

index=0;

printf ("Solving Differential Equations...\n\n");:
iter=1;

for{j=1;j<=21;j++)

x[1] [§]1=x0ld[]];

}

/* Start Main Loop for Solving Differential Equations Using Euler's Method */
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while (iter<LOOPS)

{

for(j=1;j<=21;j++)

)

if ((iter*DT) < LDCHANGE)
{
xnew[j] = (DT)*(A[j][ 11*xo0ld[ 1]+A[3]1[ 2]*xold[2]+

A[j]1 1 3)*xoldl 3]1+Alj][ 4]*xold[4]+
A[j][ 8)*xold[ S]1+A[j]l[ 6]*xold[6]+
A[§][ 7)*xcld[ 7]1+A[§] [ 8]l*xold[8]+
A[3§]1[ 9)*xold[ 9]+Alj] [10]*xold{10]+
Alj)[11)*xold[11]+A[]j] [12] *xold[12]+
A[§](13) *x0ld[13]+A[j] [14] *x0ld[14]+
Al§) [15)*x0ld[15] +A[j] [16] *xold[16]+
A[j) [17)*x0ld[17])+A[j] [18] *x0ld[18] +
A[3]1[19) *x0ld[19)+A[j] [20] *x01rd[20] +
Alj} [21])*x0ld[21)+B1[3j]) +x0ld[]];

}

if((iter*DT) >= LDCHANGE )

{

xnew[j] = (DT)*(A[j][ 1]1*xo0ld[ 11+A[j]1[ 2]*xold[2]+

A[§1[ 3]1*x0ld[ 3)+A[j]1[ 4]*x0ld[4]+
A[31[ 5)*xold[ SI+A[jl{ 6]*xold[6]+
A[§) [ 71*xold[ 7)}+A[3]{ 8]*xold[8]+
A[j1[ 9)*x0ld[ 91+A[j] [10]*xold[10]+
A[3]1[11] *x01d[111+A[F] [12]) *x0ld[12] +
A[3) [13] *x01d[13}+A[F] [14]) *xold[14] +
Alj) [15) *x0ld{15)+A[j]) [16]*xold[16])+
A[31[17] *x0ld [17) +A[j] [18) *xold[18] +
A[j] [19] *x0ld[19)+A[j] [20]) *x0ld[20] +
Alj)1[21]*x0ld[21)+B2{j}) +xold[3j];

/* Compress Data and Store in New Variable */
if (count==SKIP)

{

for{j=1;j<=21;3++)

{
}

facts [index] =xnew[9];

x [index] [j] =xnew[j]:;

/* Check for local maxima and minima */
if{(iter*DT) > LDCHANGE )

{

if ((facts[index-1] > facts[index-2]) && (facts[index] < facts[index-1]))

{

localmax [pkcount] =facts [index-1];
//printf ("Local Max[%d]=%f\n", pkcount, localmax[pkcount]) ;

)

if((facts[index-1] < facts[index-2]) && (facts[index] > facts[index-1]))

{
localmin[pkcount] =facts [index-1] ;
//printf ("Local Min[%d]=%f\n",pkcount, localmin [pkcount]) ;

localavg [pkcount] = ( (localmax [pkcount] +1localmin [pkcount]) /2.

//printf ("Average of Min and Max=%f\n",6 localavg(pkcount]) ;

// 1f all values within response envelope of FACTS Device
// are less than required tolerance %, settling time has
// been reached

0);
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if ((fabs (localavg [pkcount]) <= TOL*X45_init)
&& (fabs (localmin[pkcount]) <= TOL*X45_init)
&& (fabs{localmax[pkcount]) <= TOL*X45_init)
&& (flag == 0))

set_time=(DT)*SKIP* (index-1);

flag=1;
}
pkcount++;
}
}
count=0;
index++;

for(j=1;j<=21;j++)

x0ld[j]l=xnew([j];

}

count ++;
iter++;

}

// Repeat last point to avoid reset to zero
for(j=1;j<=21;j++)

x[index] [j] =x[index-1] [j};

}

/* If "-mat" option specified, convert results to MATLAB format */
if (strcmp(argvil],"-mat") ==0)

{
}

c_to_mat (x, "x", "xmat.m");

findpeak (facts) ;

printf ( "\n\n***t***tt*i*ﬁtiit*i!tti***t!t*itt*\nll) ;

printf ("Min = $£%%, Max = ¥f%%\n", factemin, factsmax);

printf ("Settling Time is %¥f seconds\n", set_time);
printf("\n\n*’*"l"'***'ﬁtﬁ'!*t‘*'i***ﬁ*k"!"’\n“) l-

/* Write Response Data to File */
if ((fp = fopen{"response.out", "at"))==NULL)

{

printf ("Cannot open ¥s\n", "response.out");
exit (1) ;

}

fprintf (fp, "¥£\E\t¥f\t\t¥f\n", factsmax, factsmin, set_time);
fclose(fp);

exit (1) ;

void ReadAmat (char *filename, float matrix[22] [22])

{
int i,3;
char dummy[80] ;
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/* Read in A matrix coefficients */
printf ("Reading coefficients for A matrix...\n\n");
if((fp = fopen(filename, “rt"))==NULL)
{
printf ("Cannot open %s\n", filename);
exit (1) ;
}
/* Skip over file header */
fgets (dummy, 79, fp) ;
for(i=1;i<=21;i++)
{

for{j=1;j<=21;j++)

{
fgets (dummy, 79, fp) ;
matrix[i] [j] =atof (dummy) ;
}
}
fclose (fp) ;

void c_to_mat (float huge var[ASIZE] [22], char *varname, char *filename)

{

int i,3;
printf {"Converting results to MATLAB format...\n\n");
if ((fp = fopen{filename, "w"))==NULL)

{

printf ("Cannot open %¥s\n", filename);
exit (1) ;

fprintf (fp, "time = [");

for (i=0;i<ASIZE-1;i++)

{

}
fprintf (fp, "$f ];:;\n\n", (DT)*SKIP*(ASIZE-1));

fprintf (fp, "¥£f;\n", (DT)*SKIP*i);

fprintf (fp, "%s = [", varname);

for{i=0;i<ASIZE-1;i++)
{

for(j=1;j<21;j++)

fprintf (fp, "%£f, ", varli] [3]);
Lprintf(fp,"%f;\n",var[i][21]);
;or(j=1;j<2l:j++)
; fprintf (fp, "$£f, ",var[ASIZE-1][j]);

fprintf (fp, "$f ];\n\n", var[ASIZE-1][21]);

fclose (fp) ;
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void findpeak(float huge trace[ASIZE])

int i;
float min, max;

min=0;
max=0;

for(i=0;i<=ASIZE;i++)

{

if (trace[i] >= max)

{
}
if (trace[i] <= min)

{
}

max=trace[i];

min=trace([il];

}
factsmax=max/X45_init;
factsmin=min/X45_init;

}

// End of DIFFEQ21.C

//t*****ﬁ*ttt*!Iii!t**!ti*ﬁ***ﬁtt*iitt'ﬁ'i*i*ﬁt*it'*i*****tt**itt*i**ﬁ*i***t*

*ﬁi‘*********R**i*t*‘*'*’ti**’***"i*I't..tt*t*'!"l‘ﬂ**i*ititii'!itii***ﬁ****

POWER21.M

Lo

MATLAB script file used for calculating incremental electrical power for
each generator in the FACTS compensated version of Anderson & Fouad's

*tiktti!*tt**ti!l*ti!ti*att***iu.'I-""..t'*ﬁft'***.Q.ii'i'**i*ﬁ*ﬁtii!'ﬁ**'*

%

% Nine Bus, Three Machine Power System
%

% Mark A. Smith

% November 10, 1994

%

clear;

%

%¥ Load in Generator Data
gendata;

%

% Load Results from DIFFEQ21.C
xmat ;

%

% Define Event Times and Time Step
DT=0.01;

SKIP=250;

LDCHANGE=10/ (SKIP*DT) +1;
ENDTIME =400/ (SKIP*DT)+1;

%

load Il.mat;

%

% Initialize Current Variables
1d1=0;

Iql=0;

1d2=0;

Ig2=0;

1d3=0;

1q3=0;

Information

% Load Pre-Disturbance Incremental Current Coefficient Matrix
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%
% Calculate Incremental Current Vector
for k=1:9,
I1d1=Id1+I(2,k)*x(1:LDCHANGE, k) ;
Igl=Iql+I(1,k)*x(1:LDCHANGE, k) ;
1d2=I1d2+I(4,k)*x{(1:LDCHANGE, k) ;
Ig2=I1q2+I(3,k)*x(1:LDCHANGE,k);
1d3=Id3+I(6,k)*x(1:LDCHANGE, k} ;
Igq3=Ig3+I(5,k)*x(1:LDCHANGE, k) ;
end;
%
% Calculate Pre-Disturbance Electrical Power for each Generator
Pel (1:LDCHANGE) =(Ig0(1)*x(1:LDCHANGE, 1) +Eq0 (1) *Iql(:))+...
(EA0(1)*Id1(:)+Id0(1)*x(1:LDCHANGE,2});
Pe2 (1:LDCHANGE) = (Iq0(2) *x (1 :LDCHANGE, 3) +Eq0 (2) *Ig2(:) ) +...
(EQ0(2)*Id2(:)+Id0(2)*x(1:LDCHANGE,4));
Pe3 (1:LDCHANGE) = (Ig0(3) *x(1:LDCHANGE, 5) +Eq0 (3) *Iq3(:))+...
{EQ0(3) *Id3(:)+Id0(3)*x(1:LDCHANGE,6));
%
¥ Load Pre-Disturbance Incremental Current Coefficient Matrix
load I2.mat;

%

¥ Re-initialize Current Variables

I1d1=0;

Igl=0;

I1d2=0;

Ig2=0;

I1d3=0;

Iq3=0;

%

% Calculate Incremental Current Vector

for k=1:9,
Id1=1d1+1(2, k) *x(LDCHANGE+1:ENDTIME, k) ;
Iql=Iql+I(1,k)*x(LDCHANGE+1:ENDTIME, k) ;
I1d2=1Id2+1(4,k) *x(LDCHANGE+1:ENDTIME, k) ;
Iq2=Ig2+I(3,k)*x(LDCHANGE+1:ENDTIME, k) ;
Id3=Id3+I(6,k)*x(LDCHANGE+1:ENDTIME, k) ;
Iq3=Ig3+I(5,k)*x(LDCHANGE+1 :ENDTIME, k) ;

end;

%

% Calculate Post-Disturbance Electrical Power for each Generator

Pel (LDCHANGE+1 :ENDTIME) = (Ig0{1) *x (LDCHANGE+1 :ENDTIME, 1) +Eq0 (1) *Iqgl(:))+...
(EA0(1)*Id1(:)+Id0(1)*x (LDCHANGE+1 :ENDTIME, 2));

Pe2 (LDCHANGE+1 :ENDTIME) = (Ig0 (2) *x (LDCHANGE+1 :ENDTIME, 3) +Eq0{2) *Iqg2(:))+...
(E40(2)*Id2(:)+Id0(2)*x (LDCHANGE+1 :ENDTIME, 4)) ;

Pe3 (LDCHANGE+1 :ENDTIME) = (I1g0 (3) *x (LDCHANGE+1 :ENDTIME, 5) +Eq0(3) *Ig3(:))+...
(EA0 (3) *Id3(:)+Id0(3)*x (LDCHANGE+1:ENDTIME,6)) ;

%

% Group Resulting Power, Rotor Angle, and Frequency Data

Peltot=Pel+Pgen(l);

Pe2tot=Pe2+Pgen(2) ;

Pe3tot=Pe3+Pgen(3);

Pe=[Peltot; Pe2tot; Pe3tot]';

omega={x(:,10) x(:,11) x(:,12)];

delta=[x(:,7) x(:,8)];

%

%

% End of POWER21.M

%**I’****i*.**i*ttiﬁl‘itk*t****!.*tﬁ**t*‘i!t!i*itt*ti*ﬂ*t"*i**ii**k***"*ii’t
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B.4  Sensitivity Studies

%f'*'ti!tl‘*!*tti*t**ti*iiﬁt**ﬂi*R**!t.*it***t**'t*******t***!’t***"'*ﬁi’**iﬁ

% XSENSE.M

%

¥ MATLAB script file used for determining the change in the real part

¥ of critical eigenvalues for incremental changes in the reactance of each
% line. Data arrays that are calculated are then used by DEDXCALC.M to

% calculate the average numerical critical eigenvalue derivatives with

% respect to changes in the reactance of each line.

%

% Mark A. Smith

% November 10, 1994
"i**itttt**iit*tttt**t!ti*t*t*l‘t*i****tt**'kiﬁ*Itt*tltt******tﬁ*i*tt***tt**t*
%
PI =3.141592654;
OMEGA_R= 2*PI*60;
%
% Load Generator and Excitation System Data
gendata;
%
%¥ Calculate Reduced Network Parameters
linedata;
%
% Begin Sensitivity Loop
for zz=1:200,
clear A I Inew M T Yred Ybus Ynn ¥Ynr Yrn Yrr;
Z=zeros (9,9);
Y=zeros(9,9);
Ybus=zeros(9,9);
%
% Reduce Network Based on Present Value of Each Line Reactance
reduce;
%
% Calculate A Matrix
acalc20;
%
¥ Calculate Real Part of Critical Eigenvalues and Store in Array
de_dX(zz)=-min(abs (real (eig(A))));
if zz >= 1,
if max(real(eig(A))) >= 0;
de_dX(zz)=-de_dX(zz);
end;
end;
%
% Store Reactance Value and Decrement for Next Iteration
dX(zz)=X(4,5)-0.001;
X(4,5)=X(4,5)-0.001;
end;
%
%
% End of XSENSE.M

%*tt*********tttiii*l*ﬁ“‘***t*t****t*I"kiﬁi**'Rﬁ**i****i*t*i!.*'*i*i**t***l**i

%*tl!t*tti‘i**tt****ﬁﬁ!ﬁ**!'i*********t*t***‘**i!ttt!*'k!*'ﬁ***-**********ti’i

DEDXCALC.M

%
%
% MATLAB script file used for calculating the average numerical critical
% eigenvalue derivatives with respect to changes in the reactance of each
% line based on calculations made by XSENSE.M

%
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% Mark A. Smith
%¥ November 10, 199%4
%*!ii***iﬁ********ﬁ*i**l*t***ﬁﬁi***l’**ti!Qiit******tt*tQittt**ﬁ*****“"i*t*i
%
INT=5;
dx=0.001;
%
% Set Logic Flags to Zero
flag89=0;
flag78=0;
flag57=0;
flag45=0;
flag46=0;
£flag69=0;
%
% Calculate Eigenvalue Derivative With Respect to Changes in X89
load dx89.mat
for z=1:195,
e89(z)=de_dX(z);
dedx89(z) ={de_AX(z+INT)-de_dX(z) )/ (Ax*INT);
dx89 (z)=dX(z);
half89=0.5*dX (1) ;
if dx89(z)<halfg9 & flag89 -~=1,
flag89=1;
deens89=mean (dedx89(1:2)) ;
esens89=e89(z);
end;
end;
clear z de_dX dX;
%
% Calculate Eigenvalue Derivative With Respect to Changes in X78
load dx78.mat
for z=1:195,
e78(z)=de_dX(z);
dedx78 (z)=(de_dX (z+INT)-de_dX(z))/ (dx*INT);
dx78 (z)=dX(z) ;
half78=0.5*dX (1) ;
if dax78(z)<half78 & flag78 ~=1,
flag78=1;
dsens78=mean (dedx78(1:2)) ;
esens78=e78(z) ;
end;
end;
clear z de_dX dX;
%
% Calculate Eigenvalue Derivative With Respect to Changes in X57
load dx57.mat
for z=1:195,
e57(z)=de_dX(z);
dedx57(z) = (de_dX(z+INT)-de_dX(z)) / (dx*INT) ;
dx57(z) =dX(z) ;
half57=0.5*dX (1) ;
if dx57(z)<halfs7 & flag57 ~=1,
flag57=1;
dsensS57=mean{dedx57(1:z));
esensS57=e57(z) ;
end;
end;
clear z de_dX dX:;
3
% Calculate Eigenvalue Derivative With Respect to Changes in X45
load dx45.mat
for z=1:195,
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€45 (z) =de_dXx(z);
dedx45(z)=(de_dX (z+INT)-de_dX(z)}/ (dx*INT);
dx45(z)=dX(z);
half45=0.5*dX(1);
if dx45(z)<half45 & flag4S ~=1,
flag45=1;
dsens4S=mean (dedx45(1:2)) ;
esens4S=e45(z) ;
end;
end;
clear z de_dX dX;
%
% Calculate Eigenvalue Derivative With Respect to Changes in X46
load dx46.mat
for z=1:195,
e46 (z)=de_dXx(z);
dedx46 (z)=(de_dX (z+INT)-de_dX(z) )/ (dx*INT);
dx46 (z)=dX(z);
half46=0.5*dx (1) ;
if dx46(z)<half46 & flag4es ~=1,
flagd6=1;
dsens46=mean (dedx46(1:2));
esensd6=e46(z);
end;
end;
clear z de_dX 4X;
%
% Calculate Eigenvalue Derivative With Respect to Changes in X689
load dx69.mat
for z=1:195,
e69 (z)=de_dX(z);
dedx69 (z) = (de_dX (z+INT)-de_dX(z)) / (dx*INT);
dx69 (z) =dXx(z);
half69=0.5*dX(1);
if dx69(z)<halfé69 & flag69 ~=1,
flagé69=1;
dsensé9=mean (dedx69(1:2) ) ;
esens69=e69(z);
end;
end;
clear z de_dX dX;
%
% Calculate Eigenvalue Derivative With Respect to Changes in X89
%
% Group Sensitivity Results
dsene= [deens45;dsens57;dsens78 ;dsens89;dsens69;deensd6] ;
esens= [esens45;esens57;;esens78;esens89;esens69; esensd6] ;
%
%
% End of DEDXCALC.M

**i*t*t!tt'k*!**ﬁ*t*t!it**ﬁ*'ﬁ**i*"t**i*tiiiﬁ*t*iti't’*l“!.**tt*i*ﬁﬁt'!*****

%*t****tttt*t*t**ii!**tt'*!Qtit**t*******!*i*t*t’itt**t*i!t*!tt**’t*iittt**t*
% YSENSE.M

%

MATLAB script file used for determining the change in the elements of

the reduce admittance matrix for Anderson & Fouad's Nine Bus System due

to incremental changes in the reactance of the line connecting buses

4 and 5 (FACTS reactance). Data arrays that are calculated are then used
by DYDXCALC.M to calculate the derivatives of each reduced admittance
matrix term with respect to changes in the FACTS reactance.

A A0 B0 W W AT
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% Mark A. Smith
% November 10, 1994

**'!*'*’!*tt.*'ﬁi*t*i‘!i!'*t"'*t****ﬁt*ﬁ'*i!i"***'ﬁﬁ*'***i**’*i*t***'*".‘.*

%

tic; % Start Timer
format short e; % Set Numeric Display Format
%
dX=0.001; % Impedance Change in per unit
STEPS=100; % Number of increment steps
%
for r=1:3,
for e=1:3,

varname=sprintf ('Yred¥d¥d', r,s);
filename=sprintf('%s.m',varname) ;
fid=fopen(filename, ‘'wt');

fprintf (fid, '$¥s =[', varname):;

%

% Create Arraye of Yred Elements and Store for Use By DYDXCALC.M

for g=1:STEPS,
clear A I M Ybus R Z X Yred Ynn Yrn ¥Ynr Yrr N;

linedata;
X(4,5)=X(4,5)-q*dX;
reduce; ¥ runlc;

dummy=sprintf ('¥s (¥d) =Yred(%d, ¥d} ;\n',varname,q,r,s);
eval (dummy) ;
dummyl=sprintf ('real (Yred¥d¥d(¥d))\n',r,s,q);
dummy2=sprintf ('imag(Yred¥d¥d(%¥d))\n',r,s,q);

if g < STEPS

fprintf (fid, '$£+ (¥f) *i;\n', eval (dummyl) , eval (dummy2)}) ;

end;
if g == STEPS

fprintf (£id, '%£+(%£) *i] ;\n', eval (dummyl) , eval (dummy2)) ;

end;
end;
fclose(fid) ;
end;

end;

%

toc % Stop timer;

%

%

¥ End of YSENSE.M

****iiﬁﬁti***'*****it!'*t.*ttt*!!*ﬁ.ttﬁ't*i*'**t***'**t***it*it*'t**.'ﬁ*"**t

*itt*i***'ﬁ*i!tfi!t**.'ﬁ'ﬁ.*ﬁﬁ*'*"'-i**'ii'l**il*titit**t'l‘*.*!tl‘i'tfl!t*t*i

DYDXCALC.M

%

%

¥ MATLAB script file used for calculating the derivativee of each reduced
% admittance matrix term with respect to changes in the FACTS reactance.
% Uses data created by YSENSE.M
%
%
%

Mark A. Smith
November 10, 1994

%i&i*i.fiit*ti!!ﬁii*t*i*l‘***"**'ii*.***I‘*.ﬁ'****t**it*i*ittiﬁ*".‘*.l’*“ﬁ!**'*

%

clear;

%

dX=0.001; % impedance in per unit
STEPS=100; % Number of increment steps
INT = 5;

%

% Load Yred element arrays created by YSENSE.M
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yredll;

yredl2;

yredl3;

yred2l;

yred22;

yred23;

yred3l;

yred32;

yredi3;

%

% Calculate derivatives of each Yred element with respect to X45

for z=1:(STEPS-INT),
dY_dX11(z)={Yredll (z+INT)-Yredll(z)})/(dX*INT);
dY_dX12(z)={(Yredl12(z+INT)-Yredl2(z))/(AX*INT) ;
dY_dX13(z)=(Yred13 (z+INT)-Yredl3(z))/(dX*INT);
dy_dx21(z) = (Yred2l (z+INT) -Yred21(z)) / (AX*INT) ;
dY_dx22 (z)=(Yred22 (z+INT)-Yred22(z))/(dX*INT) ;
dy_dx23 (z)=(Yred23 (z+INT)-Yred23(z))/(dX*INT) ;
dY_dx31(z)=(Yred3l(z+INT)-Yred3i(z))/(dX*INT);
dY_dx32(z)=(Yred32(z+INT)-Yred32(z))/(AX*INT);
dY_dx33(z)=(Yred33(z+INT)-Yred3i3(z))/(dX*INT);

end;

%

% Group elements together in array

dY_aX=([dY_dX11l; dY_dX12; dY_dX13; dY_dx21; dY_dx22; dY_dX23; dy_dx31;dY_dx32;dy_dx33]);

Yred=[Yredll, Yredl2, Yredl3, Yred2l, Yred22,Yred23,Yred3l,Yred32, Yred33]';

%

for zz=1:(STEPS-INT},
dX (zz)=-0.001*zz;

end;

%

% Calculate Mean Derivatives over 50% compensation range

for zz=1:9,
dYmean(zz)=mean(dY_dX(zz,1:40));

end;

%

%

% End of DYDXCALC.M

****iii*t**.*ﬁ*t!*ﬁ*-*ﬁ*ii*i!*ii*t*ttt***i*ltil.i*‘ttit'*t!t*‘i'*t****‘*t**

%i!I‘i*iﬁi*itt*'*ﬁ*t**tt***t'*****ﬁ*ﬁ*ﬁ*ﬁ***‘**i-'*’**iﬂt*t*i*******Q*I"it**i

% KSENSE.M

%

% MATLAB Script file that checks eigenvalue sensitivity to changes in FACTS
¥ gain (or Time Constant) by creating an array of gain (or time constant)

values versus critical eigenvalues.

L

Mark A. Smith

November 10, 19%4
%*R*t!!t**!ltt**t***t***t*i**&!'ti*i*ittit'tiiQﬁtt*.ti***t***t*t**ﬁ***tttitt
%

clear;

PI =3.141592654;

OMEGA_R= 2*PI*60;

%

% Load Generator Data

gendata;

% Set Inital FACTS Controller Gain and Time Constant
= =-100;

= 100;

Y

o

g8

%
¥ Calculate Reduced Network Parameters
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linedata;
reduce;
%
% Load 4dY/dX values
load c:\thesis\dydxmean.mat;
for k=1:3,
for 1=1:3,
dY (k,1l)=dYmean(3* (k-1)+1);
end;
end;
alpha=angle (dY) ;
dydX=abs (dY) ;
%
%¥ Begin Sensitivity Loop
for zz=1:40,
clear i;
% Calculate A matrix for FACTS Compensated System
acalc2l;
%
% Calculate Real Part of Critical Eigenvalues and Store in Array
de_dk(zz)=-min(abs (real (eig(n))));
if zz >= 1,
if max(real(eig(a))) >= 0;
de_dk(zz)=-de_dk(zz);
end;
end;
dk (zz) =Kx;
dt (zz) =Tx;
%
% Set New Value of Kx (or Tx) for next iteration and Reset Variables
Kx=Kx-5;
$Tx=Tx+0.5;
clear A 1 Inew M T;
end;
%
%
% End of KSENSE.M

%"ﬁ'ti*ﬁ!***ﬂI“*******ﬁ*ﬁt****t'."'."'Q'.’t"!*tﬂ**'ti*'*t*i.t.--*t**it**

%—**t*t!t*i***"*'*'!!ttl.ti!"i‘"""""..ttiiit!'fit"i!tii'.tiﬁﬁ***'ﬁ.**'

RESPONSE.M

MATLAB script file used in conjunction with DIFFEQ21.C for calculating
and tabulating the time response attributes of the FACTS device for
varying values of gain and time constant. Resulting table is stored in
RESPONSE.OUT.

Mark A. Smith

November 10, 1994
**“'i*I’iittﬁtt*titﬁi**ti*i!t*t**'-..'.'t'-i*i!‘iﬂ!*i***ﬁ'*i"tt.iﬁii*i**'***
%

clear;

PI =3.141592654;

OMEGA_R= 2*PI*6€0;

%

% Load Generator Data

gendata;

%

% Set Initial FACTS Controller Gain and Time Constant

Kx = -1;
Tx = 10;
%

L B L
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%¥ Calculate Reduced Network Parameters
linedata;
reduce;
%
¥ Load dY/dX values
load c:\thesis\dydxmean.mat;
for k=1:3,
for 1=1:3,
dY(k,l) =d¥Ymean(3*(k-1)+1) ;
end;
end;
alpha=angle (dY) ;
dydX=abe (dY) ;
%
% Format Output File
fid=fopen('response.out', 'wt');

fprintf(fid' ’ t*ttt*t!tit*tt**t*itt*!ttt!!*t*t*****ti*****t*tii*tt't**t*ttt**i*ttl!tt\n' ) ;

fprintf (£id, RESPONSE.OUT: Output File from RESPONSE.M\n\n');
fprintf (fid, ° Includes data for maximum value of FACTS reactance,\n');
fprintf (fid, ' minimum value of FACTS reactance, and time required\n');
fprintf (fid, ' for the device to settle to 0.5%% of the nominal line\n');
fprintf (£id, ' reactance for varying values of Kx and Tx, the FACTS\n');
fprintf (fid, ' controller gain and time constant.\n\n'):

fprintf(fid, ° Note: "500" second settling time indicates reactance\n');
fprintf (fid, °* did not settle in the studied time interval.\n');

fprintf(fid,

' iit*t***'Iti****t***i***ﬁ‘*!*ﬁﬁi!*t***'iﬂ!'**tt.!tﬁt!t*‘t*"ti*t****l!*\n\n' ) ;

fprintf (£id, ' Kx\t\t\t\tTx\t\t\t Max\t\t\t\tMin\t\t\tTime(sec)\n\n'):;

fclose(fid) ;

%

¥ Begin Sensitivity Loop
for zz=1:11,

% Print Values of Kx and Tx in a Text File

fid=fopen('response.out', 'At'):;

fprintf (£id, '$3d\t\t\t%¥3.0£\t\t\t', Kx, Tx);

fclose (£fid) ;

clear i;

%

¥ Calculate A matrix
acale2l;

%

¥ Format A matrix and print to file for use in C programs

fid=fopen('Amat2l.c', 'wt');

fprintf(fid, '/*Amat2l.c: Coefficients of A matrix from response.m*/\n');

for i=1:21,
for j=1:21,

dummy=sprintf ('$¥f\n' ,A(i,j));

fprintf (£fid, dummy) ;
end;
end;
fclose(£id) ;
%

% Call DIFFEQ21.EXE to find Max, Min, and Settling Time

tdiffeq21
%

% Set New Value of Kx for next iteration and Reset Variables

Kx=Kx-10;

%

clear A I Inew M T;
end;
% End of RESPONSE.M

*ﬁ*!tﬁ*ti***t*‘itti***i*****‘ﬁ*.***'*ﬁ*'!'iitiit*il!'it**ﬁ*ﬁ*'*ti**t*i**!**'ﬁ
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