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ABSTRACT

Magmatic-hydrothermal ore deposits are formed in association with aqueous fluids that
exsolve from hydrous silicate melts during ascent and crystallization. These fluids are
invariably trapped as inclusions in vein-filling minerals associated with hydrothermal
fluid flow, and their composition may be modeled based on the H,O-NaCl system. Thus,
if we know the pressure-volume-temperature-composition (PVTX) properties of H,O-
NaCl solutions, it is possible to interpret the PTX trapping conditions, which is important
for understanding the processes leading to the generation of the hydrothermal system and
ore mineralization.

High salinity (> 26 wt. % NaCl) fluid inclusions contain liquid, vapor, and halite
at room temperature, and are common in magmatic-hydrothermal ore deposits. These
inclusions homogenize in one of three ways: A) halite disappearance (Tmpaite) followed
by liquid-vapor homogenization (Thy.y), B) simultaneous Thy .y and Tmp,jite, or C) Thy .y
followed by Tmpaiite. The PVTX properties of H;O-NaCl solutions three phase (L+V+H)
and liquid-vapor (L+V) phase boundaries are well constrained, allowing researchers to
interpret the minimum trapping pressure of inclusion types A and B. However, data that
describe the pressure at Tmy,jie for inclusion type C are limited to a composition of 40
wt. % NaCl. To resolve this problem, the synthetic fluid inclusion technique was used to
determine the relationship between homogenization temperature and minimum trapping
pressure for inclusions that homogenize by mode C. These results allow researchers to
interpret the minimum trapping pressure of these inclusions, and by extension the depth
at which the inclusions formed.

The temporal and spatial distribution of fluid inclusions formed in associated with
porphyry copper mineralization has been predicted using a computer model. A simple
geologic model of an epizonal intrusion was developed based on a Burnham-style model
for porphyry systems and thermal models of the evolution of epizonal intrusions. The
phase stability fields and fluid inclusion characteristics at any location and time were
predicted based on PVTX properties of HO-NaCl solutions. These results provide
vectors towards the center of a magmatic-hydrothermal system that allow explorationists
to use fluid inclusion petrography to predict position with the overall porphyry
environment when other indicators of position are absent.
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Chapter 3:
Figure 1: Geologic model of four consecutive times during the evolution of a
porphyry intrusion, modified after Burnham (1979). The red shaded areas represent
melt, the orange represent the water-saturated carapace in which crystals, melt, and
aqueous fluid coexist, the tan represent the crystallized margin of the intrusion, the
blue represent the country rocks, and the grey represent the volcanic pile associated
with the intrusive system. Isotherms are estimated from Knapp and Norton (1981)
(see Fig. 2). The original extent of the intrusion is designated by the Sy boundary.
The water-saturated solidus is identified on subsequent diagrams by the designations

Figure 2: Thermal evolution of three points within an epizonal intrusion, modified

after Knapp and Norton (1981). The light-red shaded region labeled magmatic stage
represents the length of time between the initial intrusion up through complete
crystallization. The light-blue shaded region represents the post-magmatic stage of

the system dominated by an influx of meteoric water. Porphyry copper

mineralization is closely associated with the magmatic stage of the system, and
therefore the model presented below only spans the length of time defined by the
1€d-Shaded TEZION....ccuiiiiiiiieiee e e st e e e e ebeeesaaeeenseeenseees 74

Figure 3: Schematic pressure-temperature phase diagram of the HO-NaCl system.

The single-phase region includes both the blue and green shaded fields, and is

separated into the liquid and vapor stable regions by the critical isochore. The two-
phase liquid+vapor (L+V) stable field includes the yellow shaded area, and the two-
phase vapor-+halite (V+H) stable field includes the purple shaded area. A single

phase fluid that enters the L+V field will either condense (if vapor) or boil (if liquid)

to produce a high salinity liquid phase and a low salinity vapor phase. Any fluid that
enters the V+H stable field will separate into a very low salinity vapor and halite
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Figure 4: Pressure-temperature phase diagram of the HO-NaCl system for
compositions of 5, 10, 20, and 40 wt. % NaCl. The three-phase (L+V+H) curve is
drawn for reference. For temperatures below 600°C, the liquid-vapor curves for

these compositions occupy similar paths through P-T space. This means that once a
system enters the two-phase field at higher temperature and pressure, the system will
remain in the two-phase field independent of changing liquid to vapor ratios. This
allows for the usage of a reasonable intermediate composition of 10 wt. % NaCl to
model the salinity of an average magmatic aqueous phase that is relevant to a wide
range of POTrPhYTY ENVITONIMENES. .......eeeruvieiriiieeiiieeeiieeeitieesieeesieeesteeesreeenereeensreesnaneennns 76

Figure 5: Porphyry model “A” represents the earliest point in time during the
crystallization of a hydrous porphyry intrusion when the melt reaches water
saturation and exsolves an aqueous phase (see Fig. 1a). The phase stability fields are
color-coded to match those of the schematic phase diagram (Fig. 4). Five red lines
(numbered 1 through 5) are superimposed on the diagram, and are the basis for
constructing P-T paths and fluid inclusion charts below. The system is capped by a
somewhat large area of V+H stability, which is important in generating a zone of



acid alteration (see discussion) (Fournier, 1987). Most of the area above the
crystallizing pluton is dominated by L+V stability, where high salinity brines coexist
with low salinity vapors. A single phase magmatic vapor is stable deep along the

flanks Of the SYSTEIM. ...ccuiiiiiiieiie e e e e e sab e e e saree e 77

Figure 6: Porphyry model “B” represents a point in time during the crystallization of

a hydrous porphyry intrusion when crystallization has proceeded to a minimum

depth of approximately 4 km. Colors and lines are superimposed according to the

same criteria as Figure 5. Here, the V+H stability field has shrunk considerably, and
the single-phase magmatic vapor on the flanks of the system is more prevalent........... 78

Figure 7: Porphyry model “C” represents a point in time during the crystallization of

a hydrous porphyry intrusion when crystallization has proceeded to a minimum

depth of approximately 7 km. Colors and lines are superimposed according to the

same criteria as Figure 5. Here, the V+H and L+V fields have entirely disappeared

as magmatic fluid ascends along a P-T path that does not intersect the two-phase

L+V field. Above the brittle-ductile transition (i.e. above the 400°C isotherm),
meteoric water has likely entered the system, but stays separate from the deeper
magmatic fluid in the ductile regime. ...........ccoeovieiiiiiiiiiici e 79

Figure 8: Porphyry model “D” represents a point in time during the crystallization of
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Towards the flanks of the system, magmatic fluids may enter and/or exit the vapor
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Chapter 1: Introduction

Magmatic-hydrothermal ore deposits are important sources of metals that help supply
the world with the resources required to sustain industrial and technological applications. As
current reserves are extracted, new resources must be discovered. At the same time, the
discovery of new prospects is limited by our understanding of the geological systems that
concentrate metals in the crust of the earth. If we are able to improve our knowledge of these
systems, exploration strategies may be modified to maximize our chances to discover new
prospects.

The geology of magmatic-hydrothermal systems, including porphyry copper deposits,
is well constrained in most cases. However, the characteristics of associated fluids are not
always understood, often limited by a lack of experimental data that describe the pressure-
volume-temperature-composition (PVTX) characteristics of the fluids. During ascent and
crystallization of a hydrous magma, aqueous fluid phase separation results in a hydrothermal
system responsible for ore mineralization (Burnham, 1997). The ability to determine the
PTX characteristics of the fluids responsible for mineralization is necessary to improve our
understanding of the processes that lead to economic mineralization, as well as understanding
the significance of certain geological characteristics of the system. For example, knowing
the pressure of a system is particularly useful in exploration, as this constrains the depth of
formation. However, the depth of formation is one aspect of hydrothermal systems that

involves much uncertainty (Skinner, 1997).

Fluid Inclusions, PVTX Properties of Fluids, and the Evolution of Magmatic-
Hydrothermal Systems

Aqueous fluids that exsolve from a silicate melt phase are invariably trapped as
inclusions in phenocrysts and fracture-filling cements (Bodnar, 1995; Roedder, 1984). These
fluid inclusions allow researchers to study and understand magmatic-hydrothermal systems,
providing direct evidence of the PTX characteristics of the system at the instant in time that
the inclusions were trapped. Studying inclusions using basic petrographic techniques makes
it possible to describe the PTX evolution of the system in time and space. However, the

interpretation of inclusions relies on our current knowledge of the phase equilibria of



geologically relevant fluids. Aqueous fluids of magmatic origin are moderately to highly
saline as a consequence of the partitioning behavior of chlorine between melt and magmatic
fluid (Cline and Bodnar, 1991; Kilinc and Burnham, 1972; Shinohara et al., 1989). Thus, the
composition of magmatic fluids can be adequately modeled by the behavior of simple water-
salt solutions, such as H,O-NaCl. Many previous experimental (Bischoff, 1991; Bischoff
and Pitzer, 1989; Bodnar, 1985, 1994; Bodnar and Vityk, 1994; Haar et al., 1984; Haas,
1976; Keevil, 1942; National Research Council, 1928; Palliser and McKibbin, 1998a, b;
Pitzer and Pabalan, 1986; Potter, 1977; Sourirajan and Kennedy, 1962; Sterner et al., 1988)
and theoretical (Anderko and Pitzer, 1993; Duan et al., 2003; Kosinski and Anderko, 2001)
descriptions of the H,O-NaCl system provide a basis to interpret the PTX properties of most
fluid inclusions, although there are some situations where further experimental data would
improve our ability to interpret certain types of inclusions, such as those that homogenize
along the halite liquidus (Bodnar, 1994; Klevtsov and Lemmlein, 1959; Lemmlein and
Klevtsov, 1961; Lyakhov, 1973; Roedder and Bodnar, 1980).

In addition to the phase equilibrium studies described above, a number of previous
hydrothermal fluid-flow modeling studies predict the temporal and spatial thermal evolution
of magmatic-hydrothermal systems (Cathles, 1977, 1981; Hayba and Ingebritsen, 1997;
Knapp and Norton, 1981; Norton and Knight, 1977; Norton, 1982; Norton, 1984). Also, data
from geochemical modeling (Cline and Bodnar, 1991; Kilinc and Burnham, 1972; Shinohara
et al., 1989) and natural fluid inclusions (e.g. Hedenquist et al., 1998) provide constraints on
the compositions of magmatic-derived aqueous fluids. Thus, experimental and theoretical
phase equilibrium data allow us to interpret natural fluid inclusions and make it possible to
develop predictive models of the characteristics of fluids associated with a magmatic-

hydrothermal system during its thermal evolution.

Research Summary

In the following chapters, characteristics of fluid inclusions in magmatic-
hydrothermal ore deposits are explored using experimental geochemistry and computer
modeling based on available PVTX data. These related studies improve our current
understanding of the fluids associated with magmatic-hydrothermal ore deposits, and may be

used to improve exploration strategies. In Chapter 2, the origin and interpretation of high



salinity fluid inclusions that homogenize by halite disappearance are discussed in detail.
Owing to a lack of appropriate experimental data, except for a composition of 40 wt. % NaCl
(Bodnar, 1994), it was previously not possible to accurately interpret the minimum trapping
pressures of such inclusions. Using the synthetic fluid inclusion technique to determine a
relationship between trapping pressure and homogenization temperature, it is now possible to
interpret data from this inclusion type and to infer a depth of formation. However, it has also
become apparent that many inclusions that homogenize by halite disappearance often do not
obey “Roedder’s Rules” (Bodnar, 2003a; Roedder, 1984), which in most cases precludes the
use of such inclusions to interpret the PTX history of a system.

In Chapter 3, a model for the temporal and spatial distribution of fluid inclusions in a
simple porphyry-copper system is presented. This model is based on a combination of
available PVTX data for the H,O-NaCl system and fluid-flow studies that describe the
thermal history of epizonal intrusions. These data were used to develop “maps” of the phase
stability regions on a cross-section of a basic porphyry model. This information was then
used to predict the types and characteristics of fluid inclusions that would be trapped during
the magmatic stage of the porphyry system that is primarily associated with ore-forming
fluids. This model may be used to conduct exploration activities in areas where other
indicators of position in the overall porphyry environment, such as alteration zones, are not
useful. This study also has implications for the association of certain types of fluids with
alteration zones at different stages of the evolution of the magmatic system, such as acid
alteration in shallow plutons, and late phyllic alteration in some deposits.

Together these two studies advance our understanding of the evolution of saline fluids
released from crystallizing magmas. Because these fluids are responsible for the formation
of economically important ore deposits, this knowledge will improve our ability to locate and

exploit these important sources of metals.
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Chapter 2: Synthetic Fluid Inclusions. XIX. PVTX
properties of high salinity H,O-NaCl solutions (>30 wt. %
NaCl), with application to inclusions that homogenize
along the halite liquidus

Stephen P. Becker and Robert J. Bodnar
Fluids Research Laboratory, Department of Geosciences
Virginia Tech, Blacksburg, Virginia 24061, USA

Abstract

The relationship between liquid-vapor homogenization (Thy.y), halite dissolution
temperature (Tmp,i.) and pressure has been determined using synthetic H;O-NaCl fluid
inclusions that homogenize by halite disappearance. The experimental data cover the range
Thr.y = 150°-500°C and Tmpajite = 275°-550°C. An empirical equation describing the
relationship between pressure, Thy y, and Tmy,ie has been developed to estimate formation
pressures from microthermometric data, and is valid from pressures along the liquid + vapor
+ halite curve to 300 MPa.

A detailed literature review reveals that the results of this study cannot be applied
retroactively to estimate pressures of previously reported inclusions that homogenize by
halite dissolution for several reasons. Most workers have not collected and reported the data
following the Fluid Inclusion Assemblage methodology described by Goldstein and
Reynolds. Thus, it is not possible to determine if the inclusions show consistent
microthermometric behavior within a group of coeval inclusions. Additionally, many
published studies provide only summaries of results from numerous samples or present the
data graphically, precluding application of our results to individual inclusions. However,
based on our review of the published results, it appears that much of the published data for
inclusions that homogenize by halite dissolution represents inclusions that have either
trapped a halite crystal along with the liquid, or have reequilibrated by necking and/or
stretching.

Results from this study have been used to estimate minimum formation pressures for
inclusions from the Ditrau Alkaline Massif, Transylvania, Romania; Musoshi stratiform
copper deposit, Zaire (now DRC); Bismark skarn deposit, northern Mexico; Naica chimney-
manto deposit, Mexico; and the Questa porphyry molybdenum deposit, New Mexico. In
each case, pressures estimated using results from the present study are in good agreement
with previous pressure estimates. However, in some cases estimated pressures (both our
estimates as well as those of other authors) appear to be unreasonably high based on the
geological setting at the time of formation. These results highlight the need for improved
methods for estimating pressure in ore-forming systems.



Introduction

Halite-bearing fluid inclusions are common in many geologic environments, and are
essentially ubiquitous in shallow silicic plutons such as those associated with porphyry
copper deposits (Bodnar, 1995). Halite-bearing inclusions may display three different modes
of homogenization during heating from room temperature: A) halite dissolution (Tmpgjit)
followed by liquid-vapor homogenization (Thy.y), B) simultaneous Thy .y and Tmygjite, or C)
Thy.y followed by Tmpgjice (Fig. 1). Fluid inclusion researchers use microthermometric data
from halite-bearing inclusions to estimate fluid compositions and temperatures of formation
of the inclusions (Roedder, 1984). Compositions and trapping pressures can be estimated
with reasonable precision (and accuracy) for inclusions that homogenize via modes “A” and
“B” because experimental (Bischoff and Pitzer, 1989; Bodnar, 1992; Bodnar et al., 1985;
Haas, 1976; Sterner et al., 1988) and theoretical (Anderko and Pitzer, 1993; Bischoff and
Pitzer, 1989) PVTX data are available for the vapor-saturated halite solubility curve and the
liquid-vapor surfaces for the system H,O-NaCl. However, mode “C” inclusions homogenize
along the halite liquidus and traverse the liquid + halite field after the vapor bubble
disappears. PVTX data along the halite liquidus and in the liquid + halite field are only
available for a composition of 40 wt. % NaCl (Bodnar, 1994). For other compositions, the
pressure in the inclusion at homogenization and the inclusion composition cannot be
estimated with a high degree of certainty from microthermometric data.

As noted above, inclusions that homogenize by halite disappearance are nearly
ubiquitous in porphyry copper deposits. Owing to this, much effort has been devoted to
understanding the P-T formation conditions of these inclusions (Klevtsov and Lemmlein,
1959; Lemmlein and Klevtsov, 1961; Lyakhov, 1973; Roedder and Bodnar, 1980). Klevtsov
and Lemmlein (1959) and Lemmlein and Klevtsov (1961) assumed that the slope of the
isochore in the two-phase (liquid+halite) field was the same as the slope in the one-phase
(liquid) field. Based on this assumption, they estimated an internal pressure of 1100 bars for
an inclusion with Thy v = 310°C and Tmygie = 400°C (Fig. 2). Lyakhov (1973) assumed a
much steeper P-T path in the two-phase field, compared to the one-phase field, resulting in
an inferred trapping pressure of 5000 bars for an inclusion with this same homogenization

behavior. Roedder and Bodnar (1980) noted pressure determinations summarized above



(particularly the Lyakhov value) appeared to be inconsistent with geological evidence for a
shallow crustal origin for most porphyry copper mineralization. These workers introduced a
third method to estimate the internal pressure using limited PVTX data that were available at
the time. When applied to the same inclusion (Thy.y = 310°C and Tmpg. = 400°C), Roedder
and Bodnar estimated an internal pressure at homogenization of 650 bars (Fig. 2).

The significance and interpretation of inclusions that homogenize by halite
disappearance remains a topic of discussion within the fluid inclusion community, as
evidenced by a discussion on the fluid inclusion listserv (see
http://www.geology.wisc.edu/flincs/fi/disc/salinity.html). Type “C” inclusions are especially
important for understanding the genesis of porphyry copper deposits, as trapping pressure is
directly related to depth of formation. Thus, our ability to determine trapping conditions has
implications for emplacement depths and genetic models for porphyry copper deposits.
These uncertainties in turn affect exploration strategies in the search for new deposits. In this
paper we present new experimental PVTX data for the system H,O-NaCl. These data can be
used to estimate trapping pressures for inclusions that homogenize by halite disappearance,
and have been applied to estimate trapping pressure of type “C” inclusions from several ore-

forming systems.

Trapping Conditions and Microthermometric Behavior of Halite-bearing Inclusions

Figure 2 is a schematic P-T projection of the H,O-NaCl system for some salinity
greater than about 26.4 wt. % NaCl, which represents the solubility of NaCl in H,O at room
temperature (Bodnar et al. 1985). That is, any H,O-NacCl fluid inclusion with a salinity
greater than the solubility of NaCl at room temperature is likely to contain a halite daughter
mineral at room temperature. In practice, however, inclusions with salinities less than about
30 wt. % NaCl usually remain as metastable, supersaturated liquids and do not precipitate a
halite crystal.

Isochore “B” (Fig. 2) for this composition intersects the three-phase
(liquid+vapor+halite; L+V+H; Fig. 2) curve at the point at which the halite liquidus for this
same composition intersects the three-phase curve. Inclusions trapped along this isochore
will homogenize by the simultaneous disappearance of vapor and halite, as shown by

inclusion “B” on Figure 1. During heating from room temperature (B1; Fig. 2) a type “B”
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inclusion will follow the vapor-saturated halite solubility curve (L+V+H) to homogenization
at point “B2”, where the halite crystal and vapor bubble disappear simultaneously (Fig 1;
heating sequence “B”). If the inclusion is heated beyond the homogenization temperature,
the P-T conditions within the inclusion will follow isochore “B” into the one-phase liquid
field.

Inclusions trapped in field “A” (Fig. 2) will homogenize via mode “A”, whereby the
halite crystal disappears first, followed by liquid-vapor homogenization at some higher
temperature (Fig. 1; heating sequence “A”). Fluid inclusions trapped anywhere in field “A”,
which is bounded by isochore “B” and the liquid-vapor curve corresponding to the bulk
composition of the inclusion, will homogenize via mode “A”. During heating from room
temperature (A1), a type “A” inclusion will follow the vapor-saturated halite solubility
(three-phase curve; L+V+H) curve to point “A2”, at which point the halite crystal disappears.
Point A2 is defined by the intersection of the halite liquidus with the L+V+H curve. With
continued heating the inclusion will follow the liquid-vapor curve until the bubble disappears
at point “A3”. If the inclusion is heated beyond the homogenization temperature, the P-T
conditions within the inclusion will follow isochore “A” into the one-phase liquid field.

Inclusions trapped in field “C” will homogenize via mode “C”, whereby the vapor
bubble disappears before the halite crystal dissolves (heating sequence “C”; Fig. 1). Field
“C” is bounded by isochore “B” and the halite liquidus (Fig. 2). During heating from room
temperature (C1; Fig. 2), a type “C” inclusion will follow the vapor-saturated halite solubility
(L+V+H) curve to temperature “C2” (Fig. 2), at which point the vapor bubble disappears,
leaving an inclusion containing liquid and halite. With continued heating the inclusion will
follow an isochoric path through the two-phase (L+H) field to “C3”, where the halite crystal
disappears. If the inclusion is heated beyond the homogenization temperature, the P-T
conditions within the inclusion will follow isochore “C” into the one-phase liquid field.

PVTX data are available for high salinity H,O-NacCl fluids in the one-phase liquid
field up to 70 wt.% NaCl, 900°C and 500 MPa (Bodnar, 1985). Thus, the P-T paths followed
by inclusions that homogenize by modes “A” and “B” may be determined, and the trapping
conditions can be estimated from microthermometric data. However, PVTX data for the two
phase liquid + halite field are not available, except for a composition of 40 wt.% NaCl

(Bodnar, 1994). Thus, the path followed by type “C” inclusions from the point at which the
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vapor bubble disappears (C2; Fig. 2) to that at which the halite disappears (C3; Fig. 2),
cannot be estimated from microthermometric data. The isochore through the two-phase field
is shown as a dashed straight line on Fig. 2, because the exact P-T path through this field is
not known (only the two end points, on the three-phase L+V+H curve and on the liquidus
L+H, are known).

Methods
Synthetic fluid inclusions

Synthetic fluid inclusions were prepared as described by Sterner and Bodnar (1984).
Clean, inclusion free, fractured quartz prisms 1.25 to 2.0 cm long were sealed in 2.5 cm
platinum capsules with 100uL of saturated H,O-NaCl solution (~26 wt. %) and excess halite.
Adding saturated solution and halite to the capsule ensured that the solution was halite-
saturated at room temperature and decreased the amount of time required for the aqueous
solution to equilibrate with halite at experimental conditions. This ensured that the inclusions
were trapped along a halite liquidus and would thus homogenize along the liquidus. A
consequence of this approach is that the composition of the solution trapped is not known.
Fortunately, the salinity of the inclusions can be calculated, as discussed below.

Each capsule was placed into a cold-seal hydrothermal autoclave and run at pre-
selected P-T conditions of 50, 100, 200, and 300 MPa, and temperatures ranging from 300°
to 550°C. Experiments conducted at < 400°C were run for 18-21 days, whereas those >
400°C were run for 10-14 days. One additional experiment was performed at 300°C and 50
MPa for 47 days. Longer runs were necessary at lower temperatures to allow the fractured
quartz to heal and trap inclusions suitable for study. The accuracy of both pressure and
temperature in the autoclaves is estimated to be +1% relative (Sterner and Bodnar, 1991).
At the completion of the experiment, quartz prisms were removed from the capsules, placed
into glass tubes containing Crystalbond™, sliced into disks, and polished. Depending on
abundance and quality, up to 10 inclusions from each sample were selected for
microthermometry and heated in a USGS gas-flow stage mounted on a Leitz microscope
equipped with a 40x objective (N.A. = 0.55) with 15x oculars. The heating stage was

calibrated at 374.1°C using pure H,O synthetic fluid inclusions that homogenize by critical
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behavior (Sterner and Bodnar, 1984). Liquid-vapor homogenization (Thy.v) and halite
dissolution temperatures (Tmpaite) Were determined to £0.05°C by thermal cycling using
temperature steps of 0.1°C, followed by cooling a few degrees to determine if halite had
disappeared. The thermal cycling technique was necessary to accurately determine Tmpgjite
because, as the halite became smaller and smaller during heating, it was often not possible to
recognize the final disappearance if the inclusion was heated continuously. With the thermal
cycling technique, the inclusion is heated until the halite is no longer recognizable. Then, the
inclusion is cooled a few degrees. If the halite crystal had not completely dissolved, the
halite will become visible at the same location where it was last observed in the inclusion,
and will grow in size as the inclusion cools. If the halite had completely dissolved, the
inclusion will appear unchanged during cooling of several tens of degrees until eventually the
halite will “pop” back, usually at a different position in the inclusion than that at which it was

last observed during heating.

Natural inclusions

After the synthetic fluid inclusion study was completed and the relationship between
Thy.y, Tmhaite, and pressure was established, two natural samples containing inclusions that
homogenize by halite disappearance were studied for comparison with the experimental
results. Samples studied include breccia-matrix quartz from the Questa porphyry-Mo deposit
in New Mexico (Cline and Bodnar, 1994), and fluorite from the Naica, Mexico, chimney-
manto limestone replacement base-metal deposit (Erwood et al., 1979). Doubly-polished
fragments of quartz (Questa) and fluorite (Naica) were prepared by mounting samples on 1”
round glass disks and grinding the samples by hand until they were sufficiently thin that
distinct fluid inclusion assemblages (FIAs) could be unambiguously identified. An FIA
represents a group of petrographically-associated inclusions that were all trapped at the same
time and, presumably, at the same temperature and pressure and from a fluid of the same
composition (Goldstein and Reynolds, 1994). It is only possible to assess the validity of
microthermometric data and to evaluate “Roedder’s Rules” (Bodnar, 2003a, b) if the data are
collected following the FIA methodology. Most natural samples contain many generations
of FIAs that crosscut the crystals. Thus, when observing the sample under the microscope,

any field of view may contain fluid inclusions from several different FIAs that were trapped
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at different times, and at different temperatures and pressures and from different fluids in an
evolving hydrothermal system. However if the sample is thinned sufficiently such that the
number of fluid inclusions in the field of view is reduced, it often becomes easier to identify
individual FIAs (fractures or growth zones) and to confidently assign each inclusion to an
FIA. FIAs in samples from Questa and Naica identified in this manner were analyzed in the
heating/cooling stage as previously described. Thy .y and Tmy,ji were determined using the
same thermal cycling technique described previously for the synthetic fluid inclusions,
except that a 1°C step was used, rather than 0.1°C, resulting in a precision of £0.5°C. A
larger temperature step was used because variations in Tmpgjire for FIAs in natural samples
are typically on the order of several degrees or more. Thus, heating steps of 0.1 degree

Celsius were unwarranted and a precision of £0.5°C was sufficient.

Results
Relationship between pressure, Tmpaiie and Thy.y

Microthermometric data obtained from synthetic fluid inclusions are summarized in
Table 1 and Figure 3. Vapor bubble disappearance temperatures (Th; .y) and halite
dissolution temperatures (Tmp,jie) vary smoothly and systematically along the 50, 100, 200,
and 300 MPa isobars (Fig. 3). An empirical least-squares regression model relating pressure
P to Thy.v and Tmy,ji has been developed to estimate pressure in the inclusion at

homogenization, which also represents a minimum pressure of formation.

2
P=>>a,Th'Tm’ +bln(Tm)+cin(Th+Tm) (1)
=0

2
1]
=0 j

where P is the pressure in MPa, Th is the liquid-vapor homogenization temperature in
degrees Celsius, Tm is the halite dissolution temperature in degrees Celsius, and ajj, b and ¢
are the regression coefficients. Regression coefficients for this equation are listed in Table 2.
The residual standard error for equation (1) = 5.519 with an R?=0.998. Equation (1) is valid
from Thy v =200 to 500°C, and Tmpaiie =300 to 550°C. Isobars in Thy .y versus Tmypaiie and
(Tmpgiee - Thy y) versus Thy v space have been estimated over the range of experimental data

using Equation (1) and are plotted in Figures 4 and 5. These plots are intended as a tool to
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help inclusionists evaluate data from type “C” inclusions graphically if they choose to not use
the empirical equation presented above.

Equation (1) was applied to the example fluid inclusion described above and shown
graphically in Figure 2. The equation predicts a minimum trapping pressure of 151 MPa for
an inclusion with Thy .y = 310°C and Tmp,ji,e = 400°C. This pressure is similar to the 110
MPa estimated by the Lemmlein and Klevtsov method (Klevtsov and Lemmlein, 1959;
Lemmlein and Klevtsov, 1961), somewhat higher then the 65 MPa estimated by Roedder and
Bodnar (1980), and significantly lower than the 500 MPa predicted by Lyakhov (1973) (Fig.
2).

Synthetic inclusions in this study were trapped on a halite liquidus. This means that
Tmhaiite €quals the trapping temperature, and consequently the pressure inside the inclusion at
Tmpalie €quals the trapping pressure. Thus, as the inclusions were heated from room
temperature to Tmygjiee, pressures in the inclusions increased to 50 — 300 MPa, depending
upon the trapping pressure. The elevated pressures developed in the inclusions during
heating to measure Thy vy and Tmy,jie did not significantly affect inclusions trapped at
pressures of 50 to 200 MPa. However, most inclusions trapped at 300 MPa decrepitated
before Tmygie Was reached, owing to the high internal pressures (Bodnar, 2003b).
Consequently, the experimental temperature was substituted for Tmygyie for inclusions
trapped at 300 MPa. As a result the error in temperature along the 300 MPa isobar is greater
than the error for the other isobars because the experimental temperature is considered to be
accurate to about =1 percent (Sterner and Bodnar, 1991), corresponding to an uncertainty of
+5.5°C at 550°C. However, this error is not likely to exceed more than a few tens of MPa
because the maximum error in temperature should be no more than +1% error in the
temperature increase between the 200 and 300 MPa isobars, which is small compared to the

total range of temperature between the 100 and 200 MPa isobars.

Fluid inclusion compositions

All of the synthetic inclusions in this study trapped a liquid that was saturated in
halite, i.e., the inclusions were trapped on the halite liquidus. Thus, the relationship between

trapping pressure, Thy .y, and Tmpgie could be determined directly from experimental and
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microthermometric data, but the composition of the liquid that was trapped in the inclusions
was not known.

Historically, fluid inclusionists have used NaCl solubility along the L+V+H curve
(Fig. 2) to estimate salinities of halite-bearing inclusions that homogenize by any of the three
modes “A”, “B” and “C”. This method provides correct salinities for inclusions that
homogenize by modes “A” and “B”. However, type “C” inclusions homogenize along a
liquidus, and data for NaCl solubility on the vapor-saturated solubility curve may not be
valid for type “C” inclusions. If the solubility of NaCl were pressure independent, then the
halite liquidi would be represented by vertical lines (dT/dP = 0) on a P-T diagram, and
solubilities along the vapor-saturated solubility curve would be valid along the liquidi. The
ice (I) liquidus in the pure H,O system has a slope of approximately -10.5°C/100 MPa,
whereas the slope of the liquidus for pure NaCl has a slope of =22.6°C/100 MPa (Bodnar,
1994). As NaCl is added to the system H,O, the slopes of the liquidi become increasingly
less negative up to about 50 wt.% NaCl where the slope is 0°C/100 MPa. The slopes of the
liquidi continue to become more positive with increasing salinity above 50 wt. % and finally
achieve a slope of 22.6°C/100 MPa for pure NaCl. Thus, the halite liquidi are not vertical
lines, but rather have slopes that change from negative to positive as the salinity increases
(Fig. 6). Unless Tmy,ie and the pressure along the liquidus are known, the salinity cannot be
determined. The results of this study may be used to determine this pressure, and the
composition of inclusions that homogenize by halite disappearance may be estimated as
described below.

The minimum trapping pressure of type “C” inclusions may be estimated from
measured Thy .y and Tmy,jie using Equation (1). This calculated pressure and measured
Tmpaite define a point in P-T space on a halite liquidus (e.g. point “C3”, Fig. 2). The slopes
of the halite liquidi as a function of salinity have previously been estimated over the range
26-100 wt.% NaCl (Bodnar, 1994). Additionally, NaCl solubility is known as a function of
temperature and pressure along the three-phase curve (Sterner et al., 1988). Only one
liquidus may pass through any P-Tmy,i point. Thus, by incrementally varying salinity
along the three phase curve, calculating the slope of the liquidus for that salinity, and
extrapolating that liquidus to the measured Tmygjie, the pressure at Tmy,iee for that salinity

may be estimated using the point-slope form of a linear equation. This pressure is compared
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with the pressure at Tmpgie predicted by Equation (1). If they differ, then the salinity chosen
is not the salinity of the inclusion, and the salinity is then decreased (or increased)
incrementally until the pressures at Tmy,iee €stimated by these two independent methods
agree. The input salinity (along the three phase curve) then represents the salinity of the
inclusion. Using this method, the compositions of the synthetic fluid inclusions trapped
along the liquidus in this study have been determined. A set of R and FORTRAN functions

that perform this iterative calculation is available in Appendices B and C.

Discussion

In porphyry copper deposits, halite-bearing fluid inclusions displaying types “A”,
“B,” and “C” homogenization behavior are common. All three inclusion types often occur in
a single deposit, reflecting evolving P-T conditions during crystallization and cooling of the
magmatic-hydrothermal system. For example, a high salinity fluid might follow an
essentially isobaric path that starts in field “A” and crosses isochore “B” into field “C”
during cooling (path 1—>2—3, Fig. 2). Inclusions trapped at points “1”, “2” and “3” would
homogenize via modes “A”, “B” and “C”, respectively. Similarly, a decreasing pressure path
at relatively constant temperature could also produce all three types of inclusions (path
4—2—5, Fig. 2). An important difference in the two processes that generate these three
different types of inclusions is that along the isobaric path the earliest inclusions would be
type “A”, followed by types “B” and “C”, whereas along the isothermal path the earliest
inclusions would be type “C”, followed by types “B” and “A”. Thus, careful petrographic
examination of samples to determine the relative ages of the different modes of
homogenization of halite-bearing fluid inclusions might provide valuable information

concerning the P-T history of the deposit.

Expected trends in Thy.y versus Tmpaiite for natural inclusions

Most studies report the occurrence of types “A”, “B”, and “C” inclusions in the same
deposit or in the same sample. As noted above, this is to be expected as the P-T path
followed during cooling and uplift in a plutonic environment is likely to traverse all three

fields shown on Figure 2. Most workers present microthermometric data from halite-bearing
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inclusions as plots of Thy .y versus Tmy,jite, or Thy .y versus salinity. A simple inspection of
these data does not permit one to apply “Roedder’s Rules” (Bodnar, 2003a) to validate the
data because results for individual FIAs are usually not presented. As such, it is not possible
to determine from visual inspection of the plots if individual FIAs exhibit consistent Tmpaiite,
and Thyy. However, it is possible to predict Thy .y - Tmpajie trends that should be expected
for different inclusion trapping scenarios.

In many hydrothermal systems, the fluid may become saturated in halite during its
evolution and precipitate halite crystals on a growing crystal surface (Fig. 7a). The halite
crystals thus “poison” the growing surface, causing the crystal to grow around the foreign
halite crystal and in the process some of the NaCl-saturated fluid may be trapped along with
the halite to produce type “C” fluid inclusions. Some inclusions will trap only the liquid
phase (inclusions 2, 4, 5, 7 and 9; Fig. 7a), while others will trap various proportions of liquid
and halite (Fig. 7a). As a result, there will be a wide range in Tmpajite for these inclusions,
ranging from the lowest values corresponding to inclusions that trapped only liquid and
extending to higher values for those inclusions that trapped a halite crystal along with the
liquid (inclusions 1, 3 6 and 8; Fig. 7a). However, the P-T paths followed by these inclusions
through the halite + liquid field will all be essentially the same because the salinity (and
density) of the liquid phase will be the same in all inclusions and the halite crystal can be
considered to be incompressible (constant density) over temperature and pressure ranges of a
few hundred degrees Celsius or a few hundred megapascals (Bodnar, 1994). The net result is
that Thy v will be identical (or nearly so) for all of these inclusions, even though they have
very different salinities and halite to liquid ratios at room temperature. Plots of Thy.y versus
Tmp,jiee for these inclusions will show a range in Tmy,i at constant Thy v (Fig. 7b). The
inclusion with the largest halite/liquid ratio at trapping (inclusion 8; Fig. 7a) will have the
highest Tmpaiite and those inclusions that trapped only the halite-saturated liquid along the
liquidus will have the lowest Tmyajire (inclusions 2, 4, 5, 7 and 9 represented by filled circle;
Fig. 7b). Pressures estimated from inclusions that trapped only the liquid phase represent the
correct trapping pressure, whereas pressures estimated from Thy .y and Tmpgjiee for inclusions
that trapped halite along with the liquid will be higher than the actual trapping pressure.

Inclusions that homogenize by halite dissolution may also be produced by necking. If

necking occurs at a constant temperature and pressure and the original inclusion contains
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only a single fluid phase (inclusion 1; Fig. 8a), the densities of the resulting inclusions
(inclusions 2 and 3; Fig. 8a) will be the same as the original inclusion. The inclusions
produced by necking (inclusions 2 and 3; Fig. 8a) will have the same homogenization
temperature and composition as the original inclusion and follow the same isochore that the
original inclusion would have followed had necking not occurred (Fig. 8a). However,
necking may also occur after a halite crystal has nucleated in the inclusion. In this case, one
of the pair of necked inclusions might contain only liquid (inclusion 5; Fig. 8a) while the
other inclusion might contain liquid plus a halite crystal (inclusion 4; Fig. 8a). Because the
density and composition of the liquid in each of the two inclusions would be the same, these
inclusions would follow the same P-T path during cooling to room temperature and would
have the same Th;.y. The necked inclusion that contained only liquid after necking
(inclusion 5; Fig. 8a) would have Tmpaiite €quivalent to the temperature at which necking
occurred (Fig. 8b), while the inclusion that included the halite crystal (inclusion 4; Fig. 8a)
would have a higher salinity and Tmp,jite (Fig. 8b).

The necking process could occur continuously during cooling, even after the P-T path
has passed into the halite + liquid field (i.e., at a temperature lower than that on the liquidus
corresponding to the original salinity). Thus, both of the necked inclusions formed on
liquidus A (inclusions 4 and 5; Fig. 8a) will contain halite and liquid at temperatures below
the liquidus temperature. If one of these inclusions necks at some temperature significantly
below the original liquidus temperature (bold liquidus; Fig. 8a), one inclusion will contain
liquid plus a relatively large halite crystal (inclusion 6; Fig. 8a) and one will contain only
liquid (inclusion 7; Fig. 8a). Both of these inclusions will have same (correct) Thy.y, but
different Tmy,jie. Note that the inclusion that includes only the liquid phase (inclusion 7; Fig.
8a) will have Tmy,jiee that is lower than that for the original inclusion (inclusion 1; Fig. 8a),
and those that necked in the one-phase field at temperatures greater than that of the original
liquidus (inclusions 2 and 3; Fig. 8a), and those that necked close to the original liquidus and
included only the liquid phase (inclusion 5; Fig. 8a).

The trend in Tmygie and Thy v for the inclusions that necked (Fig. 8b) is identical to
that produced by trapping of halite crystals along with the liquid (Fig. 7b). For those
inclusions that trapped halite, the Tmpaiiee and Thy .y that represents the trapping of only the

liquid phase on the halite liquidus, and thus represents the real trapping conditions, is that
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with the lowest Tmpaiie. Conversely, the Tmpaiie and Thy .y that represents the actual trapping
conditions in the case of necking depends on whether or not necking continued at
temperatures less than that along the liquidus corresponding to the original salinity. If
necking did not continue below the original liquidus, then the data that correspond to the
original trapping conditions is that with the lowest Tmhpalite, Similar to the case in which some
inclusions trap halite. However, if necking continues below the original liquidus, then the
lowest Tmpgjiee (1.€., inclusions 5 and 7; Fig. 8b) does not correspond to the original trapping
conditions. There is no mechanism that we are aware of that would allow us to know which
of the many inclusions along this trend is the one that trapped only liquid at the original
formation conditions. If halite solid inclusions are observed in the host mineral, one might
conclude that the fluid was saturated in halite and that trapping of halite along with the liquid
is responsible for the observed Tmpgite and Thy y trend. In the absence of such petrographic
information, it is not possible to arrive at any meaningful interpretation of the
microthermometric data.

Another type of reequilibration that commonly occurs is stretching, whereby the
volume of an inclusion increases (decreasing density) without changing the bulk composition
(Bodnar, 2003b). Stretching of inclusions can occur in any mineral, but is particularly
common in soft (low Mohs hardness, high ductility) minerals (Bodnar, 2003b; Bodnar and
Bethke, 1984; Ulrich and Bodnar, 1988). The decrease in density associated with stretching
results in the inclusions following a different isochore than that of the original unstretched
inclusion, resulting in a higher liquid-vapor homogenization temperature. Thus, a fluid
inclusion trapped in the one-phase field (inclusion 1; Fig. 9a) that remains unstretched
(isochoric) will follow the original isochore (Fig. 9a) to the liquid+vapor+halite (L+V+H)
curve. During heating from room temperature the inclusion will homogenize at this same
point of intersection. As a result of stretching, the inclusions move to progressively lower
density isochores and these isochores intersect the L+V+H curve at increasingly higher
temperatures with greater amounts of stretching (inclusions 2-5; Fig. 9a). Thus, stretching
results in a range of Thy.y. The effect of stretching on Tmygyie depends on the slope of the
halite liquidus for the inclusion salinity. Because halite liquidi slopes are generally very
steep (Fig. 6), Tmpaie Will not change significantly except as a result of unrealistically large

increases in inclusion volume. Stretching thus produces a Thy .y - Tmygjite trend with
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relatively uniform Tmpgie but a range in Thy.v (Fig. 9b). If inclusions in an FIA show a trend
similar to that illustrated in Figure 9b (or any trend of varying liquid-vapor homogenization
temperature but constant composition), one can reasonably assume that stretching has
occurred. Stretched inclusions have higher Thy vy compared to unstretched inclusions. Thus,
the inclusion with the lowest Thy.y (inclusion 1; Fig. 9b) most closely represents the original
trapping conditions and provides the closest approximation of minimum trapping pressure.
Under unusual circumstances, inclusions that homogenize by halite disappearance
may be generated by reequilibration associated with mobilization and loss of HO (Audétat
and Giinther, 1999). In some boiling assemblages, there is unambiguous petrographic
evidence for vapor-rich inclusions coexisting with inclusions that homogenize by halite
disappearance. Phase equilibria do not permit these two types of inclusions to be in
equilibrium, as vapor-rich inclusions must be trapped on a vapor-saturation boundary and
inclusions that homogenize by halite disappearance cannot be in equilibrium with a vapor
phase (Bodnar and Sterner, 1985; Roedder and Bodnar, 1980) (Fig. 2). An inclusion
assemblage consisting of halite-bearing inclusions that homogenize by halite disappearance
and vapor-rich inclusions could be produced by 1) post entrapment volume reduction
(density increase), 2) selective H,O loss (salinity increase), or 3) accidental trapping of halite
crystals (Audétat and Giinther, 1999). Scenarios “1”” and “2” are possible during migration
of inclusions within the quartz host after initial entrapment. Scenario “3” has already been
discussed, however it should be noted that trapping halite in a boiling system is only possible
on the three-phase (L+V+H) curve, and inclusions that homogenize via mode “B” (Thy.y =

Tmpaiice; Fig. 2) should be present in such an assemblage.

Application of Results to Synthetic and Natural Fluid Inclusions

Reequilibration processes described above likely explain much of the scatter observed
in published Thy v - Tmnaiee data. However, it appears that in many cases the scatter in
published Thy .y - Tmpaite data results because workers have not collected or reported their
results within the context of FIAs. This consequences in mixing data from fluid inclusions
trapped at different times and, presumably, at different P-T conditions and from fluids of

different salinities. Below we present several examples from synthetic and natural fluid
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inclusions that document that it is possible to obtain consistent Thy y - Tmp,i. data that show

relatively little scatter if one collects and compares only data from well-defined FIAs.

Synthetic fluid inclusions containing 40 wt. % NacCl

Bodnar (1994) determined the location of the 40 wt. % halite liquidus experimentally
using synthetic fluid inclusions, and reported Thy .y, Tmpajite and pressure along the liquidus.
These data provide a basis for comparison with results of this study. Thy y versus Tmygj. for
a range of densities along the 40 wt. % liquidus show good agreement with results of this
study over most of the pressure range (Figs. 10a, 11). However, at the highest pressures the
difference between the experimental data of Bodnar (1994) and pressures calculated from
Equation (1) in this study increases (Fig. 11). This increasing difference with increasing
pressure above about 250 MPa has two possible explanations. Firstly, Equation (1) is only
valid to 300 MPa and the high-pressure data for the 40 wt% liquidus are outside of this range.
This explanation is considered to be less likely because Thy .y versus Tmpajiee for 40 wt. %
inclusions from the study of Bodnar (1994) that have a liquidus pressure near 300 MPa
appear to be consistent with extrapolation of the 300 MPa isobar from this study to lower
values of Tmpaite.

A second possibility is that during laboratory heating stretching becomes significant
above 250 MPa. Bodnar and coworkers (Bodnar et al., 1989) have shown that all inclusions
larger than about 5 pum in quartz will stretch or decrepitate at pressures >250 MPa. In this
case the density in the inclusions continuously decreases as the inclusion stretches during
heating, placing the heating path on progressively lower density isochores. As a result the
inclusion P-T path intersects the liquidus at a lower pressure than it would have if the
inclusion followed an isochoric path (i.e., did not stretch during heating). Bodnar (1994)
assumed an isochoric path during heating to homogenization. Because the slope of the 40
wt. % liquidus is very steep (-5.5°C/100 MPa; Bodnar, 1994), stretching will not
significantly affect Tmpaire — that is the temperature of intersection of the heating path with
the liquidus does not change much as pressure changes. Assuming that stretching did occur,
pressures reported by Bodnar (1994) represent a maximum pressure at halite dissolution

because he assumed an isochoric path. We believe that this second explanation for the
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increasing difference between the highest-pressure results of Bodnar (1994) and those from

this study is the most likely.

Ditrau Alkaline Massif, Transylvania, Romania

The Ditrau Alkaline Massif, Transylvania, Romania contains several different types
of fluid inclusions, including three-phase (liquid + vapor + halite) inclusions that homogenize
by halite disappearance (Fall et al., 2007). The halite-bearing inclusions are oriented parallel
to the cleavage direction of nepheline and define FIAs that are interpreted to have been
trapped after formation of the host nepheline. The observed decreasing salinity trend with
time in the Ditrau Alkaline Massif indicates crystallization pressures > 200MPa (Cline and
Bodnar, 1991). This is consistent with extrapolation of isochores for moderate salinity
inclusions in the Ditrau Alkaline Massif to the H,O-saturated solvus in the nepheline-H,O
system, which indicates pressures in excess of 250 MPa, with a maximum pressure of about
500 MPa (Fall et al., 2007).

The homogenization behavior of halite-bearing inclusions in the Ditrau Alkaline
Massif is consistent within an individual FIA and vapor-rich inclusions are absent,
suggesting entrapment in field “C” (Fig. 2). Microthermometric data (Thr.y versus Tmpajite)
for the FIAs cluster tightly near the low-temperature end of the S0MPa isobar (Fig. 10b).
Combining these microthermometric data with pressures reported above based on the
nepheline-H,O system suggests that the inclusions were trapped in the one-phase field (e.g.
along isochore “C” in field “C”, Fig. 2) at about 400-600°C. This temperature range is
consistent with temperature estimates based on the position of the H,O-saturated solvus, and
with extrapolation of isochores for later, lower salinity inclusions in nepheline and cancrinite
that were interpreted to have been formed at the same pressure as the halite-bearing

inclusions, but at slightly lower temperature.

Musoshi stratiform copper deposit, Zaire

Fluid inclusions in footwall quartz-hematite veins at the Musoshi stratiform copper
deposit in Zaire (now DRC) contain halite daughter minerals and most homogenize by halite

disappearance (Richards et al., 1988). Richards and coworkers also reported the occurrence
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of isolated halite cubes in the quartz and interpreted this to indicate that the halite-bearing
inclusions were trapped on the halite liquidus — thus Tmyajiee €quals the trapping temperature.
Interpretation of microthermometric data for these inclusions using the H,O-NaCl system
must be viewed with caution because sylvite daughter minerals occur in about 5% of the
inclusions, and energy dispersive microprobe analysis of inclusion decrepitate residues
showed the presence of Fe, K, Ca, and Mn chlorides. Moreover, some inclusions contain
small amounts of CO,, as evidenced by melting at -56.6°C and the rare occurrence of a
separate CO; phase at room temperature.

Within individual samples, homogenization temperatures are very consistent, varying
by no more than about £1° to +13°C, and define three distinct regions in Thy .y versus Tmyajite
space (Fig. 10c). Five samples (which Richards and coworkers classified as “high
temperature” samples) form a tight cluster between 50 and 100 MPa, and were collected
from 7 to 30m below the ore shale. Two samples (which Richard and coworkers classified as
“low temperature” samples) plot outside of the Thy .y - Tmyg; range of our experimental
data. However, extrapolation of the 100 and 200 MPa isobars to lower Thy .y and Tmpgjite
indicates minimum trapping pressures of approximately 150 MPa. As noted above, halite
crystals in quartz are associated with both the low and high temperature groups, suggesting
that the fluid was halite saturated when the halite-bearing inclusions were trapped. In this
case Tmy,jie represents the trapping temperature (assuming the fluid inclusions did not trap a
halite crystal along with the liquid), and pressures shown on Figure 10c represent the
trapping pressures (i.e., no pressure corrections are needed). This interpretation is consistent
with maximum pressures of 120 MPa estimated by Richards and coworkers based on the
observation that fluid inclusions did not decrepitate during heating to Tmy,jie. Richards and
coworkers based this pressure on decrepitation data for fluid inclusions in quartz that were
available at the time (Leroy, 1979). More recent data indicate that the decrepitation pressure
depends on the inclusion size, and ranges from about 50 MPa for a 100 um inclusion, to
about 350 MPa for a I pum inclusion (Bodnar, 2003b; Bodnar et al., 1989).

Inclusions in sample [13]-300W-0, that comes from the “deep footwall vein” 300 m
below the ore shale, plot considerably outside the range of our experimental data.
Extrapolation of the 300 MPa isobar to lower temperatures suggests a minimum trapping

pressure in excess of 300 MPa for these inclusions. This pressure appears to be unreasonably
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high for sediment-hosted ore deposits. However, Richards and coworkers suggest that fluids
associated with the deep footwall vein may have been sourced from deeply buried sediments
during compressional deformation and metamorphism. Microthermometric data for this
sample are remarkably consistent with 40 inclusions having Thy.v between 110 and 125°C,
and Tmp,jie between 285 and 300°C. While the inferred pressures appear to be too high for
the geologic environment, the consistency of microthermometric data rules out
reequilibration or mixed trapping, as both of these processes tend to smear out the data

(Bodnar, 2003b; Vityk and Bodnar, 1995, 1998).

Bismark skarn deposit, Mexico

The Bismark skarn deposit in northern Mexico hosts massive sulfide ore in direct
contact with a quartz monzonite stock (Baker and Lang, 2003). Quartz, calcite and fluorite
contain halite-bearing inclusions, and Baker and Lang distinguished between type 3A
inclusions containing liquid, vapor and halite, and Type 3B inclusions containing liquid,
vapor, halite and sylvite. Both inclusion types often also contain various opaque and other
unidentified phases, and both types show all three modes of homogenization (Thy.y >
Tmhatite, Thr.v = Tmpgiite, and Thy v < Tmpajiee). Microthermometric data (Thy .y versus
Tmpaiiee) for individual inclusions define three distinct groups, and show the best consistency
when sorted according to host mineral (Fig. 10d). Baker and Lang (2003) estimated
minimum trapping pressures of ~60 MPa for type 3A inclusions in early fluorite that
homogenize by halite disappearance, and pressures of 80 and 95 MPa for secondary
inclusions. We note that Baker and Lang estimated the minimum trapping pressure for
inclusions that homogenize by halite disappearance using isochores for the one-phase field
and assuming that the slope of the isochore in the halite + liquid field is the same. The
average slopes of isochores in the halite + liquid field is actually steeper than in the one-
phase liquid field (Bodnar, 1994), thus pressures estimated by Baker and Lang are less than
the actual pressures.

Minimum trapping pressures estimated from our experimental data generally do not
exceed 100 MPa, which agrees with Baker and Lang's interpretation using isochores for Type
3a inclusions to constrain pressures. Fluid inclusions hosted in calcite plot outside of the

range of our experimental data, but extrapolation of our isobars to lower temperatures
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indicates entrapment pressures of ~100 MPa for a cluster of points including calcite type 3b
immediately to the lower left of the 100 MPa isobar (Fig. 10d). Other calcites are consistent
with trapping between 100 and 200 MPa.

Naica chimney-manto deposit, Mexico

The Naica deposit near Chihuahua, Mexico is a chimney-manto, limestone
replacement base metal deposit. Polyphase fluid inclusions <100um in fluorite contain
liquid, vapor and halite (Type B), or liquid, vapor, halite and sylvite (Type C), and
homogenize by halite disappearance (Erwood et al., 1979). Both types may also contain a
small, unidentified non-opaque phase (possibly a carbonate). Microthermometric analysis is
facilitated by the large size of the inclusions (up to 100 pm) and excellent optical qualities of
the fluorite. All observed inclusions were secondary, occurring as well defined trails along
healed fractures.

Microthermometric data were obtained from three FIAs represented by trails of
secondary inclusions and are reported in Table 3. Microthermometric data (Thy .y versus
Tmpaiite) for individual FIAs define a trend of constant Tmy,i. but variable Thy .y (Fig. 10e).
This trend suggests that the inclusions have reequilibrated by post-entrapment stretching
(compare to Fig. 9b). Stretching is the likely cause of the variable Thy .y because it is well
known that inclusions in relatively soft minerals such as fluorite stretch at relatively low
internal pressures (Bodnar, 2003b; Bodnar and Bethke, 1984). This may be attributed to the
high ductility of such minerals. Based on measured Tmpajite and Thy .y we estimate that the
internal pressure in the inclusions could have been as high as 200 MPa. Thus, it is not
surprising that significant stretching of the host fluorite occurred. It is not possible to
determine if the stretching occurred in nature or during heating in the lab.

As noted previously, stretching decreases the density of the fluid inclusions and
results in the P-T path followed during heating to intersect the halite liquidus at a lower
pressure than it would had stretching not occurred (Fig. 9b). However, the estimated
minimum trapping pressures of reequilibrated inclusions are difficult to reconcile based on
the geology of the Naica deposits. Stretching of inclusions increases Thy .y without
significantly affecting Tmpajie; thus, the lowest Thy .y measured should most closely

approximate Thy.y that would have been observed had stretching not occurred (e.g., inclusion



26

1; Fig. 9b). Erwood and coworkers approximated isochores in the liquid + halite field to
determine pressures of inclusions that homogenize by halite disappearance, and obtained
pressures ranging from 30-160 MPa (Type B inclusions) to 50-270 MPa (Type C inclusions).
In addition to inclusions that homogenize by halite disappearance, coexisting liquid-rich and
vapor-rich inclusions that are indicative of boiling in the Naica deposit suggest trapping
pressures of 4 to 14 MPa. Depths of formation estimated from the boiling assemblages range
from 400 to 1700 m, and these depths are consistent with depths based on the local geology.
But, one should not expect pressures up to 270 MPa at such shallow depths. To explain these
high pressures, Erwood and coworkers suggested that the system could have periodically
become overpressured. While overpressured hydrothermal systems do occur, they usually
form at greater depth and overpressures of more than a few 10 MPa are unlikely (Burnham,
1997).

Populations of inclusions with consistent homogenization behavior that predict
geologically unreasonable high pressures are a conundrum, yet they are relatively common
(e.g., the “deep footwall vein” samples from the Musoshi stratiform copper deposit described
above). Erwood and coworkers attributed inclusions that homogenize by halite
disappearance to phase separation involving liquid and halite along the liquidus prior to
entrapment, resulting in the “halite trend” (Cloke and Kesler, 1979). This interpretation
should result in accidental entrapment of halite crystals to produce a trend similar to that
shown in Figure 7a. However, this condition might be expected to result in halite crystals
being trapped in the host phase, as was observed at Musoshi (Richards et al., 1988). Erwood
and coworkers report small halite xenocrysts in some fluorites. In the present study, we did

not observe halite crystals in the fluorites, but only a single sample was examined.

Questa porphyry molybdenum deposit, New Mexico

Inclusions that homogenize by halite disappearance have been reported from the
Questa, New Mexico, porphyry molybdenum deposit (Cline and Bodnar, 1994). These
inclusions appear to have trapped a high salinity fluid that exsolved directly from the magma,
unlike most high salinity fluids in porphyry type deposits that originate by fluid phase
immiscibility (Bodnar, 1995; Bodnar et al., 1985). Although the data show some scatter,
Cline and Bodnar reported a grouping of Thy .y = 320°C and Tmpaliee = 380°C that is
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characteristic of a majority of the inclusions. The lack of coexisting vapor-rich inclusions
indicates that the high salinities were not the result of immiscibility, but rather represent the
direct exsolution of brine from a crystallizing magma. Isochores bounding the region near
Thr.yv = 320°C and Tmpajite = 380°C define a range of possible trapping pressures from
approximately 75 to 150 MPa. Equation (1) predicts a minimum trapping pressure of
approximately 97 MPa for an inclusion with Thy y = 320°C and Tmpgite = 380°C.

In this study we examined a single FIA (QFIA-1) hosted in a 2 cm euhedral quartz
crystal growing into a vug. The fluid inclusions were primary, with equant shapes and
oriented parallel to the c-axis. These polyphase inclusions were approximately 10 to 20 pm
in maximum dimension, and contained liquid, vapor, halite, chalcopyrite, and a small non-
opaque phase. All homogenized by halite disappearance. Microthermometric data reported
in Table 4 show relatively consistent Thy .y of approximately 330°C, with the exception of
one inclusion with Thy .y = 351°C. It is possible that this one inclusion reequilibrated (by
stretching) to some extent, although a 20°C variation is not unreasonable in an FIA from a
natural sample and could reflect slight pressure and/or temperature fluctuations during
growth of the quartz. Three inclusions had Tmp,jite = 390°C and two others had halite
dissolution temperatures of 406° and 450°C, respectively. Because Th; .y for these two
inclusions are consistent with others from this same FIA, the inclusions likely trapped small
halite crystals that were precipitating on the surface of the quartz crystal as the inclusions
were being trapped. The Thy .y versus Tmpajiee trend (Fig. 10f) is consistent with accidental
trapping (Fig. 7b). The trend could also be explained by necking (Fig. 8b). However,
necking during cooling is likely to result in significantly different Tmhaiie for every inclusion
in the FIA—here, three of the inclusions have very similar Tmygjie, and so this explanation is
less likely. If this interpretation is correct, the presence of halite crystals in equilibrium with
fluid at the time of entrapment indicates that the FIA was trapped at halite saturation. The
trapping temperature of this FIA is equivalent to Tmpgjie for inclusions that trapped only
liquid. These inclusions were trapped at ~390°C, and Equation (1) indicates a trapping
pressure of approximately 96MPa. Pressures reported by Cline and Bodnar (1994) and those
estimated from measurements in the present study are in good agreement and indicate that

the pressure during Mo mineralization at Questa was approximately 100 MPa.
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Summary

Halite-bearing fluid inclusions that homogenize by halite disappearance are common
in many geological environments, and are especially common in porphyry copper deposits.
Owing to a lack of PVTX data, previous workers have estimated trapping pressures for this
type of inclusion using a variety of methods, often resulting in widely varying pressure
estimates for inclusions showing similar microthermometric behavior (see Appendix A). In
this experimental study, the synthetic fluid inclusion technique was used to obtain PVTX
data that may be used to interpret microthermometric data from inclusions that homogenize
by halite disappearance over the range Thy vy = 150°-500°C and Tmpaliee = 275°-550°C. An
empirical equation describing the relationship between pressure, Thy .y, and Tmyaie has been
developed to estimate formation pressures from microthermometric data.

Most published data for fluid inclusions that homogenize by halite disappearance
cannot be evaluated and compared with results of the present study for various reasons. Only
a very few studies have been performed following the protocol described by Goldstein and
Reynolds (1994) that requires the study of fluid inclusion assemblages (FIAs) and tests the
data for conformity with “Roedder’s Rules” (Bodnar, 2003a). Thus, most studies group data
from many different generations of inclusions, and sometimes from different samples,
making it impossible to identify data from individual inclusions. Similarly, a common means
of presenting the data is on plots of Thy v versus Tmy,ie (or salinity) rather than in tables,
again making it difficult to associate a particular data point with a specific trapping event.
Because both Thy v and Tmpaie are easily modified by trapping of halite along with the
liquid, and by stretching or necking, we propose that the experimental data reported in this
study should not be used to interpret fluid inclusions that homogenize by halite
disappearance unless inclusions can be unambiguously shown to belong to an FIA and
produce consistent microthermometric data. The only exceptions to this would be if all
inclusions within a sample have consistent microthermometric values (even though they
cannot be proven to represent an FIA) or if halite crystals are observed in the host phase
(indicating trapping of halite along with liquid) or if inclusions in an FIA show consistent
Tmpaite but widely varying Thy v (suggesting that stretching has occurred).

Some workers have studied fluid inclusions that homogenize by halite disappearance

following the methodology of Goldstein and Reynolds (1994) and have presented results for
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individual FIAs in tables, making it possible to evaluate the results using data obtained in this
study. Formation pressures have been estimated for several occurrences using these
published microthermometric data and there is general agreement between our results and
pressures estimated previously based on some assumptions concerning P-T paths of
isochores in the liquid + halite field, as well as on geological information. In some cases, the
estimated pressures appear to be unreasonably high based on the inferred geology and depth
of burial at the time the inclusions were trapped. These studies emphasize the fact that
pressure, or depth of formation, remains one of the major unknowns in ore genesis research

(Skinner, 1997).
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Table 1: Experimental conditions and microthermometric data for synthetic H;O-NaCl fluid

inclusions.

Run
102006-1
032305-11
032305-I11
032305-V
071106-11
012405-11
012405-VI
012405-VII
061606-11
061606-1
012405-VIII
012405-1X
031705-1
031705-111
031705-1V
031705-V
031705-VI
051505-11
051505-111
051505-1vV
051505-V
051505-VI

P (MPa) Th (°C)

50

50

50

50

100
100
100
100
100
100
100
100
200
200
200
200
200
300
300
300
300

300

278.9
312.5
356.0
470.9
252.1
281.7
327.8
378.9
405.2
406.7
4233
493.2
202.5
268.9
315.7
352.8
415.9
203.1
241.1
287.5
336.3
390.7

574.5

Tm (°C) n
299.7
336.9
387.7
480.1
292.2
337.3
390.8
442.9
462.4
468.2
486.3
531.2
291.1
379.0
432.6
473.9
528.5
367.6
419.3
471.0
522.8

MO WA NN AN 00— WL WA WA~ —



Table 2: Regression coefficients for Equation (1).

Coefficient Value
0,0 -1.81686045E+5
0,1 -1.70660033E+2
02 9.21003065E-2
aio -2.99745046E+2
ar 6.59084234E-1
ain -4.76501015E-4
a0 2.69412137E-1
a -7.93265819E-4
a2 6.48940949E-7
b -1.46975329E+4

c 5.37493440E+4
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Table 3: Microthermometric data for FIAs hosted in fluorite from the Naica chimney-manto

deposit.

FIA Th (°C) Tm (°C)
NFIA-1 237 339
NFIA-1 238 339
NFIA-1 244 338
NFIA-1 259 336
NFIA-1 265 338
NFIA-1 270 338
NFIA-1 257 340
NFIA-1 276 339
NFIA-2 240 309
NFIA-2 236 309
NFIA-2 249 309
NFIA-3 264 285
NFIA-3 271 285
NFIA-3 238 304
NFIA-3 249 304
NFIA-3 226 309
NFIA-3 218 285
NFIA-3 245 285
NFIA-3 248 304
NFIA-3 263 302
NFIA-3 210 296
NFIA-3 246 295
NFIA-3 250 297
NFIA-3 203 296
NFIA-3 275 292
NFIA-3 241 294
NFIA-3 253 294
NFIA-3 229 294
NFIA-3 248 294
NFIA-3 218 293




Table 4: Microthermometric data for inclusions from the QFIA-1 assemblage hosted in
quartz from the Questa porphyry molybdenum deposit.

Inclusion Th (°C) Tm (°C)
1 337 407
2 334 450
3 324 392
4 333 387
5 351 391




Figures

D0 UE:
Y\ Bl

Figure 1. Series of photomicrographs showing the behavior during heating of synthetic,
halite-bearing fluid inclusions that homogenize by three different modes. Column “A”
shows an inclusion in which the halite daughter mineral dissolves first, followed by liquid-
vapor homogenization. This mode of homogenization is referred to as mode “A”. Column
“B” shows an inclusion in which the halite daughter mineral and the vapor bubble disappear
at the same temperature. This mode of homogenization is referred to as mode “B”. Column
“C” shows an inclusion in which liquid-vapor homogenization occurs first, followed by
dissolution of the halite daughter mineral at some higher temperature. This mode of
homogenization is referred to as mode “C”. Image modified from Bodnar (1994).
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Figure 2. Schematic P-T phase diagram of the H,O-NaCl system for some composition
>~26.4 wt% NaCl (saturation at room temperature). Phase boundaries include the three-
phase liquid+vapor+halite (L+V+H) curve, the two-phase liquid+vapor (L—L+V) curve, and
the halite liquidus (L—L+H) where halite is in equilibrium with an NaCl-saturated liquid.
Inclusions that homogenize by mode “B” could have been trapped at any point along
isochore “B”, which begins (points A2, B2) where the liquidus (L—L+H) and two-phase
(L—>L+V) curves intersect along the three-phase (L+V+H) curve. At room temperature (B1)
an inclusion trapped along isochore “B” would contain liquid + vapor + halite. During
heating the inclusion follows the L+V-+H curve until the halite and vapor bubble both
disappear simultaneously at B2. With continued heating the inclusion follows isochore “B”
into the one-phase liquid field. Inclusions that homogenize by mode “A” could have been
trapped anywhere within field “A”, which is bounded at higher pressures by isochore “B”
and at lower pressures by the two-phase (L—L+V) curve. At room temperature (Al) an
inclusion trapped in field “A” would contain liquid + vapor + halite. During heating the
inclusion follows the L+V+H curve until the halite disappears at A2 (defined by the
intersection of the liquidus with the L+V+H curve). With continued heating the inclusion,
which now contains liquid + vapor, follows the L—>L+V curve until the vapor phase
disappears (A3). With additional heating the inclusion follows isochore “A” into the one-
phase liquid field. Inclusions that homogenize by mode “C” could have been trapped
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anywhere within field “C”, which is bounded at higher temperatures by isochore “B” and at
lower temperatures by the liquidus (L—L+H). At room temperature (C1) an inclusion
trapped in field “C” would contain liquid + vapor + halite. During heating the inclusion
follows the L+V+H curve until the vapor phase disappears at C2. With continued heating the
inclusion, which now contains liquid + halite, travels through the liquid + halite field until
the path intersects the halite liquidus (C3). With additional heating the inclusion follows
isochore “C” into the one-phase liquid field. All three modes of homogenization are often
observed in an individual deposit or sample. This may result from isobaric cooling of a fluid
originally in field “A” (path 1—>2—3) or isothermal decompression of a fluid originally in
field “C” (path 4—2—5). The inset in the upper left shows pressures estimated by three
different studies for a halite-bearing inclusion with Thy y= 310°C and Tmygite = 400°C.
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Figure 3. Thy y versus Tmygyi for synthetic fluid inclusions in this study. Thy vy and Tmyajite
vary smoothly and systematically between Tmy,jite from ~300 to ~500°C for inclusions
trapped at 50, 100, 200, and 300 MPa. The heavy diagonal line is the projection of the three-
phase (L+V+H) curve in Thy .y versus Tmpgjite Space (Thr.y = Tmpgjie). Smooth lines through
the data are spline functions showing trends in Thy .y and Tmy,;. along each isobar.
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Figure 6. P-T phase diagram for the H,O-NaCl system showing liquidi (labeled in wt%
NaCl) for compositions between 26 and 100 wt. %, and from the vapor-saturated halite
solubility (L+V+H) curve to 200 MPa. The inset on the left is a schematic representation of
two liquidi, one that represents the liquidus that intersects the L+V+H curve at the
temperature of halite disappearance for a type “C” inclusion, and the other corresponding to
the actual liquidus for the inclusion. See text for details.
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for nine inclusions that were trapped on the liquidus. (a) Some inclusions will trap only the
liquid phase (inclusions 2, 4, 5, 7 and 9) and others will trap various proportions of liquid
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plus a halite crystal (inclusions 1, 3, 6 and 8). (b) All of the inclusions trapped on the
liquidus have the same Thy .y but show a range in Tmy,jiee. Inclusions that trap only the liquid
phase (inclusions 2, 4, 5, 7 and 9) show the correct combination of Thy_y and Tmyajite and will
predict the correct pressure of trapping using Equation (1). Inclusions that trapped halite
along with liquid (inclusions 1, 3, 6 and 8) have Tmyajie that are too high and will predict a
pressure of trapping that is higher than the actual pressure.
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corresponding to the original trapping conditions. If necking occurs in the one-phase liquid
field, inclusions (2 and 3) with the same density and composition as the original inclusion
will be produced. If necking occurs after the P-T path has reached the halite liquidus (A),
some inclusions (inclusion 4) may include a halite crystal in addition to liquid. The inclusion
that necks with only liquid (inclusion 5) will have the same composition and density as the
original inclusion, whereas the inclusion that necks with halite (inclusion 4) will have a
higher salinity than the original inclusion. If necking continues at temperatures below the
original liquidus temperature (B), some necked inclusions will contain only liquid (inclusion
7) whereas others will include halite + liquid (inclusion 6). Necking in a closed system
produces inclusions with the same Thy .y but with widely varying Tmp,jite (bottom).
Moreover, it is not possible to know which of the Thy v - Tmp,jie combinations represents the
original trapping conditions as Tmpajite may be lower than, higher than, or equal to the Tmp,jite
corresponding to the original trapping conditions, depending on whether necking occurred in
the one-phase or two-phase field, and whether necking continued to temperatures below the
original liquidus temperature.
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All of these inclusions will show essentially the same Tmy,iee, but will display a wide range
in Thyy. The inclusion with the lowest Thy .y (inclusion 1) represents the original trapping
conditions.
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in this study. Each plot displays the 50, 100, 200, and 300 MPa isobars as determined using
synthetic fluid inclusions in this study. The heavy diagonal line is the projection of the
vapor-saturated halite solubility curve in Thy v versus Tmpgire Space (Thy.v = Tmpjice). (a)
Selected data points for synthetic 40 wt% NaCl inclusions (Bodnar, 1994). Labels for data
points indicate the liquidus pressure calculated by Bodnar (1994). (b) Average Thy .y versus
Tmp,jie for FIAs from the Ditrau alkaline massif (Fall et al., 2006). (c) Average Thy .y versus
Tmpaiite for inclusions hosted in quartz from the Musoshi, Zaire stratiform copper deposit
(Richards et al., 1988). (d) Average Thy .y versus Tmp,jie for inclusions hosted in quartz,
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calcite, and fluorite from the Bismarck skarn deposit, Mexico (Baker and Lang, 2003). (e)
Thy.v versus Tmpgie for individual inclusions in three fluorite-hosted FIAs from the Naica
chimney-manto deposit, Mexico. (f) Thy.y versus Tmy,jie for individual inclusions from a
single quartz-hosted FIA from the Questa porphyry molybdenum deposit, New Mexico,
USA.



52

°
°

o

Tm— —

o

9 —_
o
D
o
| g
S B

.
~ e o ° L
) [ ]
e ® o L4
°
° od o °
.
3 - o ¢
: | | | T |
0 100 200 300 400
Pao

Figure 11. Comparison of calculated pressure along the 40 wt% liquidus (P49) from Bodnar
(1994) to the pressure calculated for the same inclusions using equation 1 (Peqi). The
agreement between these values is within approximately 50 MPa for inclusions with liquidus
pressure up to ~250 MPa but become larger at higher pressures. See text for details.
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Chapter 3: Temporal and Spatial Variations in Fluid
Inclusion Characteristics in Porphyry Copper Deposits:
Implications for Alteration and Exploration

Stephen P. Becker, Robert J. Bodnar, and T. James Reynolds
Fluids Research Laboratory, Department of Geosciences
Virginia Tech, Blacksburg, Virginia 24061, USA

Abstract

Porphyry copper deposits are associated with the emplacement and crystallization of silicic
epizonal intrusions related to subduction zone magmatism. During crystallization, the
magma becomes water-saturated. The large, positive volume change associated with
exsolution of water from the magma results in an increase in pressure and concomitant
fracturing of the overlying rocks. A network of veins is formed as fluids enter the fracture
system and precipitate quartz and other minerals in response to cooling and decreasing
pressure. Some of these fluids are trapped as fluid inclusions during the formation of veins,
including high salinity liquid-rich inclusions, moderate-salinity liquid-rich inclusions, and
low-salinity vapor-rich inclusions. The composition of the inclusions can be modeled based
on the H,O-NaCl system. A computer model was developed to predict the PVTX properties
of fluids in the porphyry copper environment. Using this, the spatial and temporal
distribution of fluid inclusion types, their compositions, and their homogenization behavior
have been predicted. These results have implications for the association of magmatic fluids
with alteration zones, and in the exploration for new prospects by predicting ones location
within the overall porphyry environment based solely on fluid inclusion petrography.
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Introduction

Porphyry copper deposits are formed in association with the emplacement and
crystallization of silicic epizonal intrusions derived from hydrous arc magmas generated
during partial melting of subducted oceanic crust (Sillitoe, 1972). Following a Burnham-
style orthomagmatic model for the origin of porphyry systems (Burnham, 1997), these
plutons may reach water saturation due to decompression (first boiling) or crystallization
(second boiling). Second boiling is particularly important in generating the magmatic-
hydrothermal system responsible for porphyry mineralization. The magma begins
crystallizing from the margins inward, eventually becoming H,O saturated, at which point
any further crystallization will cause exsolution of an aqueous fluid phase (Burnham, 1997).
Incompatible elements dissolved in the magma, including chlorine and copper, tend to
partition into the aqueous phase, resulting in a metal-rich saline aqueous fluid (Candela,
1989; Candela and Holland, 1984; Cline and Bodnar, 1991; Holland, 1972; Kilinc and
Burnham, 1972; Shinohara et al., 1989). The partial molar volume of H,O dissolved in a
silicic melt is less than the molar volume of the exsolved aqueous fluid, resulting in a
concomitant pressure increase that hydrofractures the surrounding wall rocks (Burnham,
1997). The saline aqueous fluids flow along these fractures, altering the wall rocks and also
precipitating minerals in the veins. Fluid inclusions are invariably trapped during the growth
and subsequent refracturing of minerals in these veins throughout the life of the hydrothermal
system (Bodnar, 1995; Roedder, 1984). Generally, these fluid inclusions fall into one of
three categories: 1) high salinity inclusions containing liquid+vapor+salt-opaques at room
temperature, 2) moderate salinity liquid-rich inclusions containing liquid+vapor+opaques at
room temperature, or 3) low salinity vapor-rich inclusions containing liquid+vapor+opaques
at room temperature. The bulk composition of these inclusions may be reasonably
approximated by the binary H,O-NaCl system.

Extensive experimental (Bischoff, 1991; Bischoff and Pitzer, 1989; Bodnar, 1985,
1994; Bodnar and Vityk, 1994; Haar et al., 1984; Haas, 1976; Keevil, 1942; National
Research Council, 1928; Palliser and McKibbin, 1998a, b; Pitzer and Pabalan, 1986; Potter,
1977; Sourirajan and Kennedy, 1962; Sterner et al., 1988) and theoretical (Anderko and
Pitzer, 1993; Duan et al., 2003; Kosinski and Anderko, 2001) descriptions of pressure-

volume-temperature-composition (PVTX) relationships are reported for the H,O-NaCl
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system. Also, numerical models have been developed that describe the evolution of P-T
conditions in time and space around cooling plutons based on fluid-flow (Cathles, 1977,
1981; Hayba and Ingebritsen, 1997; Knapp and Norton, 1981; Norton and Knight, 1977,
Norton, 1982; Norton, 1984) and thermochronology (Mclnnes et al., 2005). Combined, it is
possible to use these phase equilibria and fluid flow modeling studies to predict the PVTX
characteristics of aqueous fluids at any point in time and space in a porphyry system, and
then by extension to predict the types (high salinity, liquid-rich, and vapor-rich) and
characteristics (homogenization temperature, phase ratios) of fluid inclusions that were
trapped in time and space. In this study, we present a model for the temporal and spatial
distribution of aqueous fluids present during the crystallization of a pluton associated with
porphyry copper mineralization, and the types and characteristics of fluid inclusions trapped
as magmatic aqueous fluids form veins throughout the surrounding rocks. This model
provides a vectoring mechanism for porphyry systems based solely on fluid inclusion
petrography, and has implications for exploration in environments where alteration and

mineralization zoning may not be obvious.

Modeling
Geologic Model

A cross-section of a “typical” porphyry intrusion is shown in Figure 1 (Burnham,
1979). The pluton intrudes its overlying volcanic pile at shallow depths, and reaches water
saturation due to crystallization (S;) at a minimum depth of approximately 2 km (Fig. 1a). At
this point, it is assumed that a saline fluid with a composition of 10 wt. % NaCl begins
exsolving from the saturated melt, which will represent the bulk composition of the system at
any point in time during the crystallization of the pluton. The salinity of an exsolved
magmatic fluid is a function of both the chlorine content of the melt, and the pressure of the
system (Cline and Bodnar, 1991). A composition of 10 wt. % NacCl is consistent with
geochemical modeling of Cline and Bodnar (1991), and is also consistent with salinities of
natural fluid inclusions (Bodnar, 1995). The position of the water saturated solidus (S;-Ss)

movies to greater depth as the pluton crystallizes inwards and downwards (Figs. l1a-1c).
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The temperature at any location and time in the system was estimated based on
models for the cooling of an epizonal pluton (Knapp and Norton, 1981). Knapp and Norton
modeled the thermal history of points located within and above epizonal intrusions during
hydrothermal fluid flow (Fig. 2). These data were used to estimate the positions of isotherms
on Figures la-1d throughout the magmatic phase of the porphyry system. However, we
recognize an inconsistency between the thermal models and the geologic model. The
hydrothermal fluid-flow model assumes an intrusion instantaneously emplaced within a
sequence of rocks with no pre-existing thermal anomaly (Knapp and Norton, 1981). The
Burnham-style porphyry model portrayed in Figure 1 begins with an intrusion that was
emplaced at a shallower depth and crystallized for some period of time prior to becoming
water saturated. Therefore, the isotherms should probably be positioned closer to the surface
in model A (Fig. 1a), which somewhat affects the size and position of phase stability fields
discussed below, but not their relative positions.

The pressure at any location and time in the system was estimated by assuming that a
hydrostatic (10 MPa/km) gradient applies from the surface to a depth corresponding to the
400°C isotherm, and that a lithostatic (30 MPa/km) gradient applies to depths below the
400°C isotherm, which may be calculated according to Equation 1:

P = (10MPa/km)(D1) +{30MPa/km)(D2 - D1) (1)

where P is pressure in MPa, D1 is either depth beneath the surface or to the 400°C isotherm
(whichever is less), and D2 is depth beneath the surface.

Modeling Phase Boundaries

Four important phase stability fields are present in the H,O-NaCl system over the
range of temperatures and pressures of interest in a porphyry environment: one-phase liquid
(L), one-phase vapor (V), two-phase liquid+vapor (L+V), and two-phase vapor-+halite (V+H)
(Fig. 3). In order to describe the PVTX properties of fluids in time and space, it is necessary
to have an adequate mathematical description of the boundaries between these fields. One
approach is to use a thermodynamically based theoretical equation of state (EOS) to describe
the PVTX properties of HO-NaCl solutions. However, published EOS that describe H,O-
NaCl properties (Anderko and Pitzer, 1993; Duan et al., 2003; Kosinski and Anderko, 2001)

require intensive calculations to solve, and are therefore non-trivial to apply. A second
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approach to this problem is to use numerical methods (i.e. regression models, interpolation)
to describe published PVTX data over the range of temperature relevant to porphyry
mineralization, or when available, to use published equations describing PVTX properties of
H,0O-NaCl fluids. This second approach was deemed more practical for the purposes of this
study. Subsequently, data from experimental and theoretical studies were compiled from
available literature, and regressed to produce algorithms suitable to describe properties of
interest. All regression models were developed using the R project for statistical computing
(R Development Core Team, 2007). Previously published equations describing HO-NaCl
equilibrium were used when deemed appropriate (Palliser and McKibbin, 1998a, b; Sterner et
al., 1988).

The one-phase field is separated from the two-phase L+V field by the liquid-vapor
equilibrium surface. Liquid-vapor PVTX equilibrium is described over a range from 80-
900°C by experimental and theoretical studies (Anderko and Pitzer, 1993; Bischoff, 1991;
Bischoff and Pitzer, 1989; Haas, 1976). A stepwise regression model of pressure as a
function of temperature and composition was developed using data from these sources to
calculate liquid-vapor equilibrium in this study. Developing a precise regression model
relating density to pressure, temperature, and composition along the liquid-vapor surface
could not be accomplished owing to the complexity of PVTX 4-dimensional space. Instead,
a compilation of all the PVTX data in the range of 80-300°C was used with the “loess”
function of R (R Development Core Team, 2007) to interpolate density as a function of
temperature and composition along the liquid-vapor surface.

The two-phase liquid+vapor field is bounded at low pressures by the vapor-saturated
halite solubility (L+V+H) curve. The equation of Sterner et al. (1988) was used to describe
the T-X projection of the L+V-+H curve for H;O-NaCl solutions. Palliser and McKibbin
(1998b) provide an equation describing density as a function of temperature along the
L+V-+H curve. Data for the P-T projection of the L+V+H curve (Bischoff, 1991; Bischoff
and Pitzer, 1989; Keevil, 1942; National Research Council, 1928; Pitzer and Pabalan, 1986;
Sourirajan and Kennedy, 1962) were compiled and regressed to produce an equation
describing pressure as a function of temperature.

The density of halite-undersaturated liquid between 0 and 26.4 wt. % NaCl at room
temperature (25°C) is reported by Potter (1977). A regression model was developed using
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these data combined with endpoint densities of 0 and 26.4 wt. % fluids (Haar et al., 1984;
Palliser and McKibbin, 1998b) so that halite undersaturated fluid densities could be precisely
determined for compositions outside the range reported by Potter.

The one-phase liquid field is separated from the one-phase vapor field by the critical
isochore for the bulk salinity of the liquid. Fluids in the one-phase field with densities
greater than the critical density are in the one-phase liquid field; fluids in the one-phase field
with densities less than the critical density are in the one-phase vapor field. An equation that
describes the slopes of isochores extending into the one phase field as a function of
temperature and pressure along the liquid-vapor surface for compositions up to 40 wt. %
NaCl (Bodnar and Vityk, 1994) was used in combination with previously described functions

to determine the phase state of the H,O-NaCl fluid at any PTX condition.

Computer Modeling

The relationships described above were used to develop a computer model that
predicts the density and phase state of fluids in the H,O-NaCl system as a function of
temperature, pressure, and composition. This model was coded in a combination of
FORTRAN subroutines and R functions (see Appendices B and C). The model is valid from
80 to 900°C. For liquid-vapor equilibrium below 380°C, the composition of coexisting vapor
is assumed to be 0 wt. % NaCl. Above 500°C, the model is only valid at pressures of 40
MPa and above. However, pressures <40 MPa at temperatures >500°C are rarely predicted
by the cooling models. Input is total depth, depth to the 400°C isotherm, temperature, and
bulk composition. The pressure is calculated from the input depths according to Equation 1,
and the input PTX conditions are evaluated using equations described above to determine the
phase stability field and densities. Using an iterative approach, the composition of coexisting
phases and homogenization temperatures are calculated when appropriate. The phase ratios
that would be present in fluid inclusions at room temperature were then calculated using the
bulk density of the inclusion and the densities of phases present at room temperature
(Bodnar, 1983).

To map out the phase fields on the geologic model presented in Figures 1a-1d, the
depth to 100 to 900°C isotherms was determined. As stated above, phase fields were

calculated assuming a bulk composition of 10 wt. % NaCl for the fluid exsolving from the
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crystallizing magma. This composition represents a reasonable estimate for the composition
of primary magmatic aqueous phases exsolving from a pluton at a pressure of approximately
100 MPa (Cline and Bodnar, 1991). However, it is possible that high salinity brine may
exsolve directly from a melt (Bodnar, 1994; Cline and Bodnar, 1994). This is not considered
problematic because for salinities up to ~40 wt. % over the range of temperature and pressure
consistent with porphyry copper mineralization, the position of H,O-NaCl isopleths in P-T
space are relatively insensitive to small changes in salinity and would not significantly

change except at high temperature and pressure (Fig. 4).

Results
Geologic Model and Phase Stability Fields

The H,O-NaCl phase fields at different times during the crystallization of the pluton
display the evolution of phase stability fields, including one-phase liquid (blue), one-phase
vapor (green), two-phase liquid+vapor (L+V) (yellow), and two-phase vapor+halite (V+H)
(purple) (Figs. 3, 5-8). The red shaded region represents a water-undersaturated hydrous
melt at or above 1000°C (Figs. 5-8). The region between the solidus (S,/S»/S3) and the
1000°C isotherm represents the water-saturated carapace where crystals+melt+aqueous
phases coexist. Early in the evolution of a porphyry system, magmatic fluids tend to be
laterally restricted to a region corresponding to the width of the intrusion. Meteoric fluids
dominate from the margins of the system out into the surrounding wall rocks. Thus, it is not
likely that the one-phase field adjacent to the flanks of the system has salinity as high as that
of the magmatic fluid. However, the one-phase liquid field for a very low salinity meteoric
fluid should not significantly differ from that of the magmatic fluid except at high P-T
conditions that are not encountered in the one-phase stability field on these models (Fig. 4),
so modeling based on a 10 wt. % bulk composition is sufficient for the purposes of this
study. During later stages of the crystallization of the pluton, the boundary between one-
phase meteoric water and one-phase magmatic fluid will descend according to the downward
migration of the brittle-ductile transition. The implications of this will be discussed in more

detail below.
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Model A (Fig. 5) represents the earliest stage during the evolution of the porphyry
system where an aqueous phase begins exsolving from the pluton at a minimum depth of
approximately 2 km. At this time, the water-saturated carapace at the top of the pluton is
relatively close to the surface, where pressure is low and the temperature is high. Here, P-T
conditions in the water saturated carapace are such that the magmatic aqueous phase enters
the two-phase L+V field at the instant it separates from the magma, which dominates much
of the system. Any fluids that are able to ascend eventually cross into the two-phase V+H
field as they cross a P-T condition along the three-phase L+V+H curve between 1 and 2 km
depth. This stability field has important implications for shallow alteration of the system,
and will be discussed in more detail below. At deeper levels of the system along the flanks,
the L+V field pinches out between two “fingers” where a single-phase vapor is stable.
Where the vapor field is in direct contact with the magma, the composition represents the
bulk composition of the primary magmatic aqueous fluid. If this vapor were to ascend, it
would intersect the two-phase field and condense into high salinity brine coexisting with low
salinity vapor. Model A (Fig. 5) also has five vertical lines superimposed from the center to
the flanks of the system. P-T paths for the intersection of isotherms with these lines have
been plotted on a phase diagram of the H,O-NaCl system for a bulk composition of 10 wt. %
to provide a visual representation of the change of stability field with depth (Fig. 9).

Model B represents a time when the crystallization of the pluton has proceeded to a
minimum depth of approximately 4 km, and is very similar to model A in terms of the
relative positions of the phase stability fields (Fig. 6). However, the extent of the two-phase
V+H field has become smaller, and a single-phase magmatic vapor dominates the deeper
flanks of the system. As with model A, ascent of this single-phase vapor towards the center
of the system will intersect the two-phase field and condense into high salinity brine
coexisting with a low salinity vapor. It is likely that meteoric water has begun to circulate
through the upper parts of the system above the brittle-ductile transition at the point. As with
Model A, P-T paths are plotted for the five lines superimposed on Model B (Fig. 10).

Model C represents a time when the crystallization of the pluton has proceeded to a
minimum depth of approximately 7 km (Fig. 7). Alternatively, this model could be used to
represent the early crystallization of a deep pluton, analogous to a system such as Butte

(Bodnar, 1995; Rusk et al., 2004; Sillitoe, 1973). At this point, the primary magmatic
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aqueous phase is stable as single-phase vapor extending out from the water-saturated
carapace along the flanks and at the center of the system. As this fluid ascends, its density
will continuously increase as it contracts with decreasing temperatures, eventually becoming
greater than the critical density to exist as a single phase fluid with a liquid-like density. P-T
paths for the five lines superimposed on model C illustrate this (Fig. 11). The consequence
of this is that from the water-saturated carapace up to the brittle-ductile transition, a single-
phase liquid having a primary magmatic composition will be stable. This has implications
for late alteration products and copper mineralization, and will be discussed in detail below.
Model D represents a time at the end of the life of the magmatic system when the
pluton has completely crystallized, but the thermal anomaly associated with the system still
exists (Fig. 8). Here, meteoric water begins to dominate the entire system, although there
may still be components of magmatic aqueous fluid present at deep levels. The entire system
is in the one-phase field with respect to a bulk salinity of 10 wt. % NaCl and lower salinities

(Fig. 4). A P-T path diagram is not presented for this model.

Spatial and Temporal Distribution of Fluid Inclusions

Along each of lines 1-5, four evenly spaced points were chosen beginning at 1.5 km
depth and then every 2 km beyond that to a total depth of 7.5 km (Figs. 5-8). The fluid
inclusion characteristics at each of these points were calculated using the modeling software
developed for this study. These data were then used to produce a set of tables displaying the
evolution of fluid inclusion types and characteristics in time and space (Figs. 12-16). Fluid
inclusions in these tables are pictured as they would appear at room temperature, where the
grey-shaded circles or ellipses represent a vapor phase, the squares represent halite, and the
remaining area is liquid. Any one table displays the fluid inclusion characteristics for a
single line at depths from 1.5-7.5 km over four columns corresponding to the same line on
model A through model D, including salinity (or salinities), homogenization temperature, and
the phase stability field in which the inclusion or inclusions was/were trapped.

At the outermost margin of porphyry model (lines 1-2, Figs. 5-8), the system remains
in the single-phase field throughout the entire crystallization history, and thus all fluid
inclusions trapped along this line appear as simple two-phase L+V inclusions at room

temperature (Figs. 12-13). Owing to the increase in temperature with depth, the
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homogenization temperatures of these inclusions increase as the bulk density decreases
towards the bottom of the system (Figs. 12-13). Lines 1-2 remain in the single-phase liquid
stable field for the entire life of the system down to a depth of 7.5 km except for the bottom
of line 2, which lies within the single-phase vapor stable field for the first two time-slices
(Figs. 5-6), which results in the formation of vapor-rich inclusions at the base of line 2 (Fig.
13).

From the middle-flank to the center of the porphyry model (lines 3-5, Figs. 5-8), the
fluid inclusion characteristics become more variable (Figs. 14-16). Early during the
crystallization of the pluton, these lines pass through a significant “thickness” of the system
in the two-phase L+V field where high salinity brine coexists with low salinity vapor. This
results in the entrapment of coexisting high salinity brine inclusions having bulk salinities
greater than the solubility of NaCl at room temperature and low salinity vapor-rich
inclusions. The brine inclusions contain NaCl saturated liquid, halite, and a vapor bubble at
room temperature, whereas the vapor rich inclusions will contain a vapor bubble that
occupies most of the volume of the inclusion at room temperature. Because these coexisting
inclusions were trapped at the same P-T conditions along a phase boundary, they will have
homogenization temperatures equivalent to the temperature at which they were trapped.
However, in reality the surface of fractures and minerals is “wetted” by the high salinity
liquid phase, resulting in heterogeneous trapping of liquid and vapor in the vapor-rich
inclusions, lowering the measured homogenization temperature and increasing the bulk
salinity of the vapor-rich inclusions (Roedder, 1984).

Towards the center of the intrusion of models A and B at shallow levels (lines 4-5,
Fig. 5-6), the lines intersect the two-phase V+H field. Here, halite would begin precipitating
in open spaces, possibly becoming trapped as mineral inclusions. A very low salinity vapor
is trapped as vapor-rich inclusions with almost no visible liquid at room temperature. The
homogenization temperatures of these inclusions are not calculated, as the computer model
does not include the PVTX properties of fluids in the V+H field. With progressive
crystallization to model C (Fig. 7), the shallow levels of the center of the intrusion lie within
the single-phase liquid field, while the deeper levels lie with the single-phase vapor field. As
noted previously, this vapor would be a primary magmatic fluid. Furthermore, the density of

this vapor would be very close to the critical density, resulting in the entrapment of vapor-
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rich inclusions having liquid and vapor at room temperature that display “near-critical”
homogenization behavior (Figs. 13-16) (Roedder, 1984).

With progression to model D where the entire system is in the one-phase liquid stable
field (Fig. 8), all inclusions from the flank to the center of the system would appear as simple
two-phase L+V inclusions at room temperature, having increasing homogenization

temperatures with increasing depth of entrapment (Figs. 12-16).

Discussion
Exploration Applications

The utility of Figures 12-16 are that they predict a sequence of fluid inclusions that
one would expect to see at any point from the center to the periphery and from the top to the
bottom of the overall porphyry environment. Consider exploration activities in a humid,
tropical environment where exposed rocks containing silicates such as feldspars and micas
indicative of alteration zones have succumbed to chemical weathering. In such an
environment, all that may be left of the original rocks are clays, and pieces of quartz
phenocrysts and veins that contain fluid inclusions. Using only petrographic techniques, it is
then possible to use undisturbed fluid inclusions that were trapped in the chemically stable
quartz to indicate one’s position in the overall porphyry environment by providing vectors
towards the center of the magmatic-hydrothermal system.

For example, a sequence beginning with inclusion-free phenocrysts (possibly
containing melt inclusions) that were subsequently cross-cut by trails of inclusions
containing coexisting brine and vapor-rich inclusions, which in turn were cross-cut by trails
of vapor-rich inclusions of the critical or near-critical type having lower homogenization
temperatures, which were then cross-cut by trails of liquid-rich inclusions having even lower
homogenization temperatures would be indicative of a relatively deep position within a
pluton that intruded to shallow depths (row 4 — 5.5 km, Fig. 15).

In another example, a sequence of four vein fragments collected along a traverse may
indicate increasing depth within the system (e.g. column B, Fig. 14). The first sample hosts
abundant two-phase liquid-rich inclusions, the second sample hosts boiling assemblages

where the brine inclusions had relatively small halite crystals, the third sample hosts boiling
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assemblages having a higher temperature with larger halite crystals, and the fourth sample
hosts abundant vapor-rich inclusions of the critical or near-critical type.

Of course, we recognize that this is a rather crude oversimplification of reality.
Phenocrysts and veins in typical porphyry environments may host hundreds if not thousands
of generations of fluid inclusions. It is often difficult to unambiguously identify fluid
inclusion assemblages (or FIAs—a population of fluid inclusions trapped at the same time
from the same fluids at the same P-T conditions) and/or determine the relative ages of FIAs.
Therefore, this technique requires strategic sampling/selection and careful petrography to be

useful.

Significance of the Vapor+Halite Stability Field

Shallow (<3-4 km) intrusions are likely to generate hydrothermal systems that extend
into the L+V and V+H stability fields (Fournier, 1987), which is consistent with the presence
of the L+V and V+H fields on models A and B (Figs. 5-6). Fournier (1987) acknowledges
the V+H field as an environment where the hydrolysis of salt generates acid gases (HCI and
H,S04) and hydroxides (NaOH and Ca(OH);). Alteration products are then formed from
reactions between the hydroxides and silicate wall rocks, including epidote, albite, and
chlorite. The zone of acid alteration is important at lower pressures, and is therefore only
likely to be observed associated with shallow intrusions (Fournier, 1987). This has important
implications for exploration, as the presence of acid alteration is indicative of the proximity
of the intrusion to the paleosurface, the amount of erosion that has occurred, and one’s

position in the overall porphyry environment.

A Magmatic Source for Phyllic Alteration

Phyllic (or sericitic) alteration, consisting of quartz, sericite, and pyrite, is a
characteristic feature of porphyry copper systems, occurring as a halo surrounding and
overprinting early potassic alteration (Guilbert and Lowell, 1974; Lowell and Guilbert,
1970). Many early isotopic studies of porphyry copper deposits of the southwestern United
States seemed to indicate a significant meteoric contribution to a low-salinity fluid

(compared to the earlier high salinity brines associated with boiling and potassic alteration)
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responsible for phyllic alteration and the precipitation of ore minerals (Sheppard et al., 1971,
Taylor, 1974, 1997). This appeared to be supported by fluid inclusion studies linking later,
low salinity fluid inclusions to copper mineralization (Bodnar, 1995). However, more recent
studies imply a magmatic source for these late, moderate to low salinity fluids associated
with phyllic overprinting and the precipitation of copper ore (Harris and Golding, 2002;
Hedenquist et al., 1998; Hedenquist and Richards, 1998; Rusk et al., 2004; Shinohara and
Hedenquist, 1997). Hedenquist et al. (1998) recognized this link while definitively ruling out
a meteoric component at the Far Southeast-Lepanto system, where the late phyllic overprint
associated with euhedral quartz veins having halos of sericite alteration was attributed to a
low salinity (~5 wt. %) fluid that had a dominantly magmatic isotopic composition.
Modeling of the Far Southeast-Lepanto system suggests that rapid exsolution and
ascent of magmatic fluid during the early stages of the system form a plume of magmatic
fluid that intersects the two-phase field (e.g. Figs. 9-10), resulting in high salinity brine
responsible for potassic alteration in the core of the system, and low salinity vapor
responsible for argillic alteration near the edges of the system (Shinohara and Hedenquist,
1997). After this initial stage, the magmatic aqueous flux decreases, and the fluids ascend
along a P-T path that does not intersect the two-phase field (e.g. Fig. 11), resulting in the
system being flooded with a moderate to low salinity magmatic fluid component that is
responsible for phyllic alteration and precipitation of Au-Cu ore. This interpretation is in
near perfect agreement with porphyry models A-C (Figs. 5-7, 9-11). In particular, model C
implies the presence of a magmatic vapor phase exsolving from the remaining melt at depths
exceeding 6 km. As this vapor ascends, it will contract to a fluid having a liquid-like density
at depth of 5-6 km. The entire region underneath the brittle-ductile transition (i.e. the 400°C
isotherm) will be dominated by this primary magmatic fluid. This fluid may then ascend to
shallower depths during periodic fracturing events that allow deeper fluids under lithostatic
pressure to escape to the brittle regime. This interpretation is consistent with a magmatic
source for late phyllic alteration and mineralization described by Hedenquist et al. (1998) and

others.
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Summary

A computer model based on PVTX properties of the H,O-NaCl system was used to
predict the characteristics of fluids in time and space in a porphyry copper environment.
Modeling the compositions of fluids derived from exsolved aqueous fluids in a porphyry
copper environment based temporal and spatial evolution of pressure and temperature has
made it possible to predict the PVTX characteristics of fluids in the overall porphyry
environment, and by extension to predict the fluid inclusion characteristics in time and space.
This modeling shows that early in the crystallization of shallow plutons, the system is
dominated by liquid+vapor stability, with a smaller but significant field of vapor+halite
stability at the top of the system. As the crystallization of the pluton progresses inwards and
downwards, the isotherms collapse downward, and the V+H and L+V field shrink as single-
phase vapor stability becomes more important. Late in the system, the isotherms have
collapsed far enough that primary magmatic aqueous fluid does not intersect the two-phase
L+V field, allowing this primary magmatic fluid to escape to shallower depths where it may
be involved in late alteration and mineralization.

As a consequence of the fracturing and vein formation associated with the evolution
of aqueous phases, many generations of fluid inclusions are trapped throughout the life of the
hydrothermal system. The characteristics of these inclusions have been predicted based upon
the computer model. In general, early times during the evolution of the system will be
characterized by sequences of coexisting high salinity liquid-rich and low salinity vapor-rich
inclusions at the center of the system to two-phase liquid-rich or vapor-rich inclusions at the
edge of the system (Figs. 5, 12-16). As crystallization of the porphyry pluton proceeds,
vapor-rich inclusions will begin to dominate the flanks of the system as the L+V and V+H
fields shrink (Figs. 6, 12-16). Late in the system (or early in the crystallization of a deep
system), primary magmatic aqueous fluid dominates the lithostatic regime from the center to
the flanks, resulting in the formation of critical or near-critical types of inclusions (Figs. 7,
12-16). Post-magmatic fluid flux of meteoric water in the one-phase liquid stable field
results in the entrapment of low salinity, two-phase liquid-rich inclusions.

Using the distribution of fluid inclusions modeled after the evolution of fluid
inclusions in time and space, it is then possible to predict one’s position in the overall

porphyry environment based solely on fluid inclusion petrography. This has implications for
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exploration by providing vectors towards the center of the magmatic-hydrothermal system in
regions where other indicators of position with the porphyry environment, such as alteration

zones, are not useful.
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Figures
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Figure 1: Geologic model of four consecutive times during the evolution of a porphyry
intrusion, modified after Burnham (1979). The red shaded areas represent melt, the orange
represent the water-saturated carapace in which crystals, melt, and aqueous fluid coexist, the
tan represent the crystallized margin of the intrusion, the blue represent the country rocks,
and the grey represent the volcanic pile associated with the intrusive system. Isotherms are
estimated from Knapp and Norton (1981) (see Fig. 2). The original extent of the intrusion is



designated by the Sy boundary. The water-saturated solidus is identified on subsequent
diagrams by the designations of S;-Ss.
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1000 modified after Knapp and Norton (1981)
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Figure 2: Thermal evolution of three points within an epizonal intrusion, modified after
Knapp and Norton (1981). The light-red shaded region labeled magmatic stage represents
the length of time between the initial intrusion up through complete crystallization. The
light-blue shaded region represents the post-magmatic stage of the system dominated by an
influx of meteoric water. Porphyry copper mineralization is closely associated with the
magmatic stage of the system, and therefore the model presented below only spans the length
of time defined by the red-shaded region.
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Pressure

Temperature

Figure 3: Schematic pressure-temperature phase diagram of the H,O-NaCl system. The
single-phase region includes both the blue and green shaded fields, and is separated into the
liquid and vapor stable regions by the critical isochore. The two-phase liquid+vapor (L+V)
stable field includes the yellow shaded area, and the two-phase vapor+halite (V+H) stable
field includes the purple shaded area. A single phase fluid that enters the L+V field will
either condense (if vapor) or boil (if liquid) to produce a high salinity liquid phase and a low
salinity vapor phase. Any fluid that enters the V+H stable field will separate into a very low
salinity vapor and halite crystals.
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Figure 4: Pressure-temperature phase diagram of the H,O-NaCl system for compositions of
5, 10, 20, and 40 wt. % NaCl. The three-phase (L+V+H) curve is drawn for reference. For
temperatures below 600°C, the liquid-vapor curves for these compositions occupy similar
paths through P-T space. This means that once a system enters the two-phase field at higher
temperature and pressure, the system will remain in the two-phase field independent of
changing liquid to vapor ratios. This allows for the usage of a reasonable intermediate
composition of 10 wt. % NaCl to model the salinity of an average magmatic aqueous phase
that is relevant to a wide range of porphyry environments.
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Figure 5: Porphyry model “A” represents the earliest point in time during the crystallization
of a hydrous porphyry intrusion when the melt reaches water saturation and exsolves an
aqueous phase (see Fig. 1a). The phase stability fields are color-coded to match those of the
schematic phase diagram (Fig. 4). Five red lines (numbered 1 through 5) are superimposed
on the diagram, and are the basis for constructing P-T paths and fluid inclusion charts below.
The system is capped by a somewhat large area of V+H stability, which is important in
generating a zone of acid alteration (see discussion) (Fournier, 1987). Most of the area above
the crystallizing pluton is dominated by L+V stability, where high salinity brines coexist with
low salinity vapors. A single phase magmatic vapor is stable deep along the flanks of the
system.
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Figure 6: Porphyry model “B” represents a point in time during the crystallization of a
hydrous porphyry intrusion when crystallization has proceeded to a minimum depth of
approximately 4 km. Colors and lines are superimposed according to the same criteria as
Figure 5. Here, the V+H stability field has shrunk considerably, and the single-phase
magmatic vapor on the flanks of the system is more prevalent.
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Figure 7: Porphyry model “C” represents a point in time during the crystallization of a
hydrous porphyry intrusion when crystallization has proceeded to a minimum depth of
approximately 7 km. Colors and lines are superimposed according to the same criteria as
Figure 5. Here, the V+H and L+V fields have entirely disappeared as magmatic fluid
ascends along a P-T path that does not intersect the two-phase L+V field. Above the brittle-
ductile transition (i.e. above the 400°C isotherm), meteoric water has likely entered the
system, but stays separate from the deeper magmatic fluid in the ductile regime.
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Figure 8: Porphyry model “D” represents a point in time during the crystallization of a
hydrous porphyry intrusion when the entire pluton has crystallized, but the remnant thermal
anomaly is still significant. At this point, the entire system is in the one-phase liquid stable
field, and the source of fluids from here on will be dominantly meteoric.
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Figure 9: P-T phase diagram of the H,O-NaCl system for a composition of 10 wt. % NaCl.

P-T paths for the intersection of isotherms with lines 1-5 of “model A” (Fig. 5) have been
plotted. These show that towards the center of the intrusion, magmatic fluids traverse

directly from the two-phase L+V field to the two-phase V+H field. Towards the flanks of the

system, magmatic fluids may enter and/or exit the vapor and L+V stable fields as they

ascend.
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Figure 10: P-T phase diagram of the H,O-NaCl system for a composition of 10 wt. % NaCl.

P-T paths for the intersection of isotherms with lines 1-5 of “model B” (Fig. 6) have been

plotted. As the crystallized margin of the pluton retreats downwards, the P-T paths begin to
take a more direct path out of the L+V field, mostly bypassing the V+H field. Towards the
flanks of the system, magmatic fluids lie exclusively in the single-phase vapor stable field.
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Figure 11: P-T phase diagram of the H,O-NaCl system for a composition of 10 wt. % NaCl.

P-T paths for the intersection of isotherms with lines 1-5 of “model C” (Fig. 7) have been

plotted. At this time the crystallized margin of the pluton has retreated to a depth such that
the P-T paths do not intersect the two-phase L+V field during ascent. Thus, the entire system
remains in the one-phase field, with fluids that may have a vapor-like, liquid-like, or critical
density. This has implications for later phyllic alteration by moderate to low salinity fluids
having a magmatic isotopic composition (see discussion).
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Figure 12: Chart displaying the temporal evolution of fluid inclusions at points from 1.5 to
7.5 km along “line 1” (see Figs. 5-8).
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Figure 13: Chart displaying the temporal evolution of fluid inclusions at points from 1.5 to
7.5 km along “line 2” (see Figs. 5-8).




3-1.5km

3 -3.5km

3 - 5.5km

3 -7.5km

Early » | ate
A B C D
S=10 S=10 S=10 S=10
T, =212 T, =192 T, =143 T, =143
Liquid Liquid Liquid Liquid
@ S=10 S=10
S=64,08 | S=33,18 T, =342 T, =286
T, =635 T, =495 Liquid Liquid
L+V

cb
06"

e
o

S=10 S=10
S=63,80 | S=60,6.1 T, =428 T, =371
T, =810 T,=730 Liquid Liquid
L+V L+V
>1000°C @ S =10 S =10
T =512 T =488 T =430
Vapor Vapor Liquid

Figure 14: Chart displaying the temporal evolution of fluid inclusions at points from 1.5 to
7.5 km along “line 3” (see Figs. 5-8).
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Figure 15: Chart displaying the temporal evolution of fluid inclusions at points from 1.5 to
7.5 km along “line 4” (see Figs. 5-8).
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Figure 16: Chart displaying the temporal evolution of fluid inclusions at points from 1.5 to

7.5 km along “line 5 (see Figs. 5-8).
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