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ABSTRACT

 

To successfully protect and manage wetlands, efficient and accurate tools are needed to 

identify where wetlands are located, the wetland type, what condition they are in, what are the 

stressors present, and the trend in their condition. Wetland mapping and monitoring are useful to

accomplish these tasks. Wetland mapping and monitoring with optical remote sensing data has 

mainly focused on using a single image or using image acquired over two seasons within the 

same year. Now that Landsat data are available freely, a multi-temporal approach utilizing 

images that span multiple seasons and multiple years can potentially be used to characterize 

wetland dynamics in more detail. In addition, newer remote sensing techniques such as Light 

Detection and Ranging (lidar) can provide highly detailed and accurate topographic information, 

which can improve our ability to discriminate wetlands. Thus, the overall objective of this study 

was to investigate the utility of lidar and multi-temporal Landsat data for mapping and 

monitoring of wetlands. My research is presented as three independent studies related to wetland 

mapping and monitoring. In the first study, inter-annual time series of Landsat data from 1985 to 

2009 was used to map changes in wetland ecosystems in northern Virginia. Z-scores calculated

on tasseled cap images were used to develop temporal profile for wetlands delineated by the 

National Wetland Inventory. A change threshold was derived based on the Chi-square 

distribution of the Z-scores. The accuracy of a change/no change map produced was 89% with a 

 
 



kappa value of 0.79. Assessment of the change map showed that the method used was able to

detect complete wetland loss together with other subtle changes resulting from development, 

harvesting, thinning and farming practices. The objective of the second study was to characterize 

differences in spectro-temporal profile of forested upland and wetland using intra and inter 

annual time series of Landsat data (1999-2012). The results show that the spector-temporal 

metrics derived from Landsat can accurately discriminate between forested upland and wetland 

(accuracy of 88.5%). The objective of the third study was to investigate the ability of 

topographic variables derived from lidar to map wetlands. Different topographic variables were 

derived from a high resolution lidar digital elevation model.  Random forest model was used to 

assess the ability of these variables in mapping wetlands and uplands area. The result shows that 

lidar data can discriminate between wetlands and uplands with an accuracy of 72%. In summary, 

because of its spatial, spectral, temporal resolution, availability and cost Landsat data will be a 

primary data source for mapping and monitoring wetlands. The multi-temporal approach 

presented in this study has great potential for significantly improving our ability to detect and 

monitor wetlands. In addition, synergistic use of multi-temporal analysis of Landsat data 

combined with lidar data may be superior to using either data alone for future wetland mapping 

and monitoring approaches.

.
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CHAPTER 1

General Introduction and Objective

1. Introduction: Research background and justification

1.1 Wetland: Definition and importance

“Wetlands” is a generic term that groups a wide range of habitats that share a common 

feature of seasonal, continuous, or periodic standing water or saturated soils, and a dominance of 

hydrophytic vegetation. All wetland definitions are based on hydrologic condition (Zedler and 

Kercher, 2005). However, there is no single universally accepted definition of wetlands 

(Heimlich et al., 1998), primarily due to the large variability in the frequency, depth and duration 

of flooding from year to year (Mitsch and Gosselink, 2000). Wetlands vary widely because of 

regional and local differences in soils, topography, climate, hydrology, water chemistry, 

vegetation, and other factors, including human disturbance.

Two of the most widely used wetland definitions include Clean Water Act regulatory 

definitions and the definition by Cowardin et al. (1979). Section 404 of the Clean Water Act is 

the major federal regulation aimed at protecting wetlands: wetlands identified under this 

regulation are termed as “jurisdictional wetlands” (Messina and Connor, 2000). The Clean Water 

Act defines wetlands as “areas that are inundated or saturated by surface or ground water at a 

frequency and duration sufficient to support, and that under normal circumstances do support, a 

prevalence of vegetation typically adapted for life in saturated soil conditions” (U.S.E.P.A., 

1977). Cowardin et al. (1979), defines wetlands as “land transitional between terrestrial and 

aquatic systems, where the water table is usually at or near the surface, or the land is covered by 

shallow water”. For purposes of the Cowardin et al. (1979) classification, wetlands must have 

one or more of the following three attributes: (a) at least periodically, the land supports 
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hydrophytes, (b) the substrate is predominantly undrained hydric soil, and (c) the substrate is 

non-soil and is saturated with water or covered by shallow water at some time during the 

growing season of each year. 

Historically, wetlands were regarded as wasteland and were drained, filled or manipulated to

improve their worth and contribution to society (Mitsch and Gosselink, 2000). Some were 

drained to lessen the chance of mosquito-carried disease. Although there is no database on the 

historical distribution of wetlands, it is estimated that 50% of the global wetland area has been 

lost to human activities (Dudgeon, 2003). It is believed that overall 53% of the wetlands in the 

conterminous United States were lost from the 1780s to the 1980s (Mitsch and Gosselink, 2000). 

The biologic, aesthetic, and economic values of wetlands are now known to be 

disproportionately large compared to the often small percentage of the landscape they occupy 

(Lang et al., 2008), which has led to efforts at local, national and international level for 

conservation of these ecosystem. Some of the important functions wetlands provide are habitat 

for diverse flora and fauna, groundwater recharge, flood attenuation, sediment retention, 

pollutant removal and carbon sequestration. Despite the national and international recognition of 

the importance of these ecosystem and ongoing efforts and legislation for protection of these 

ecosystems, wetlands worldwide are threatened due to human activities that include conversion 

of wetlands to other land use, urbanization, agricultural and silvicultural activities and 

hydrological alteration. Accurate mapping and monitoring of wetlands is essential for successful

conservation and management efforts.

1.2 Remote sensing for mapping and monitoring wetlands

Manual interpretation of aerial photographs has been a widely used technique for wetland 

mapping. In the United States, the US Fish and Wildlife Service National Wetland Inventory 
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(NWI) program has produced a nationwide wetland distribution map, with ongoing updates 

(http://www.fws.gov/wetlands/Data/Mapper.html). NWI wetland maps are produced using 

mid-to-high altitude aerial photographs, usually taken during early spring. Aerial photographs 

at scales from 1:40,000 to 1:80,000 (or 1:133,000 for earlier maps) are used. Manual photo-

interpretation techniques coupled with field verification, topographic maps and soil 

information are used for identification and classification of wetlands (Dahl and Watmough,

2007). Studies have shown varying levels of accuracies of NWI maps. In general they have 

been reported to have low commission error and in many cases high omission error (Wright 

and Gallant, 2007). Low commission error indicates that an area classified as wetland by NWI 

exists or existed at the time when photograph was taken. However, the high omission error 

indicates that many wetland areas are possibly not mapped by NWI. Stolt and Baker (1995)

reported omission error rates greater than 85% in the Blue Ridge Physiographic region of

Central Virginia, while Werner (2003) reported that 42% of field surveyed Palustrine wetlands

were not mapped by NWI. Morrissey and Sweeney (2006) reported that NWI underestimated 

forested wetlands in Vermont by 39%. Galbraith et al. (2003) found that NWI underestimated 

wetlands by about 90% in a study in central Virginia. However, the effectiveness of NWI in

estimating wetland area nationwide is not precisely known due to variability in land use, 

disturbance, climate, soil and geology. For example, Kudray and Gale (2000) found an NWI 

accuracy of 90.7% for forested wetlands in the upper Great Lakes region. 

Wetland delineation on an NWI map is generally accurate when there is an abrupt change in 

hydrology, soil or vegetation at the wetland boundary (National Research Council, 1995). 

However, the dynamic nature of wetland hydrology, especially their alternating dry and wet 

nature, poses a problem for accurate wetland mapping, especially in subtle-relief landscapes.
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Wetlands occur along a continuum of soil moisture between permanently flooded and drier 

habitats. This makes many wetlands, especially the ones that are temporarily flooded or 

seasonally saturated, difficult to detect. Moreover, many wetlands are small or narrow, form in a 

variety of landforms and, their hydrology is a f fec ted by small changes in elevation. They are 

not only found in depressions but also in broad flats and gently sloping areas, which further 

complicates their identification. In many cases, vegetation communities of the drier wetlands are 

not dramatically different at wetland boundaries from adjacent uplands, making wetland

delineation even more difficult.

More than half of the wetlands in the United States are forested. Forested wetlands are one 

of the most difficult wetland types to map due to presence of the canopy and ephemeral 

hydrology (Wright and Gallant, 2007 and Lang et al., 2008). Presence of dense canopy in the 

forested communities prevents observation of soil, hydrology and topographic features, which 

are important parameters for determining wetlands. Evergreen-forested wetlands are especially 

difficult to map as they retain their foliage year round. The biggest problem occurs when dense 

evergreen stands occur in both wetland and adjacent upland areas. In addition, topographic maps 

have too coarse vertical resolution to show the relatively small variations in topography that can 

cause forested wetland formation on flat, humid coastal plains, which further makes detection of 

these wetlands difficult. 

Manual interpretation of aerial photographs heavily relies on the knowledge of the photo-

interpreter for wetland identification. Thus photo-interpretation is highly subjective and the 

repeatability of the method is questionable. High costs associated with the acquisition of aerial 

photos decreases their viability for use in timely updates of wetland maps. In addition, uses of 

single-date images to produce wetland maps are not informative about the wetland dynamics 
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(Wright and Gallant, 2007), which results in the misclassification of or complete inability to 

detect many wetlands. There also exists a large gap in completion status and digital availability 

of high resolution wetland, soils and topographic maps, indicating a need for alternative 

approaches for wetland identification.

Satellite remote sensing, because of its repeatable and consistent measurement, has proven 

to be the most cost-effective data source for large-scale land-cover mapping. When using 

multispectral images for wetland classification, there is often a tradeoff between spectral and 

spatial resolution. While spatial resolution is important for the identification of wetland patches, 

spectral resolution is important for discriminating between wetland and upland vegetation

communities with similar spectral responses. Sensors such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS) have higher spectral resolutions compared to multispectral sensors 

such as Landsat, but are often unsuitable for wetland studies due to their coarse spatial resolution 

(MODIS-250 m pixels; Landsat-30 m pixels). High spatial resolution sensors, such as Systeme 

Pour l’Observation de la Terre SPOT (20 m) and Quickbird (2.5 m), are needed to identify small 

patches of wetland. However, these sensors often have low spectral resolution that limits their 

ability to discriminate different vegetation types. Multispectral satellite imagery, especially that 

collected by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+), has been 

widely used for wetland inventorying and mapping. Sader et al. (1995) used unsupervised 

classification of Landsat data and classified forested wetlands with an overall accuracy of 72%.

However, the user’s accuracy for the forested wetland was very low (58%). Harvey and Hill 

(2001) compared wetland classification using aerial photos (1 m pixels), SPOT XS (20 m pixels),

and Landsat (30 m pixels) and found that Landsat provided a more accurate classification than 

SPOT XS and comparable accuracy to that of aerial photographs. They reported superior 
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performance of Landsat compared to SPOT which resulted due to better spectral resolution and 

inclusion of middle infrared bands not available in SPOT.

Topography plays a key role in wetland formation. Lidar data can provide detailed and 

accurate ground elevation information for the identification of topographic features that indicate 

the presence of wetlands that would otherwise be undetected. Fine-scale elevation data are

particularly helpful in flat, wetland-rich areas such as coastal plains where complex interspersion 

of uplands and lowlands may cause mapping confusion and inaccuracy (Maxa and Bolstad,

2007). Lidar is a relatively new technology and its full potential in wetland related studies is yet 

to be realized. Hogg and Holland (2008) compared the use of a digital elevation model (DEM) 

derived from lidar to DEMs derived from point elevation data in the Canadian National 

Topographic Series at 1:20,000 and 1:50,000 scales to detect wetlands in the Turkey Lakes 

region of Ontario, Canada. Wetland classification with the lidar-derived DEM was more accurate 

and identified 35% more wetland area than classification using the other two DEMs. Richardson 

et al. (2009) used a DEM derived from lidar and terrain analysis to delineate wetland boundaries

with 80% spatial agreement between the field validated and mapped wetlands. However, the 

study was only validated in a small area the authors did not specify the relief gradient in the area. 

However, the authors indicate the area being characterized by pronounced depression area 

indicating that substantial relief gradient was present in the study area. Various information 

derived from lidar data in combination with optical data has the potential for improving wetland 

mapping. Specifically, studies have utilized lidar-derived DEMs to calculate topographic wetness 

index (TWI) (Sorensen and Seiber, 2007, Murphy et al., 2009 and Richardson et al., 2009) that

can be used as an indicator of wetland distribution. Topographic wetness index, which indicates 

the potential of an area to accumulate water, can quantify the effect of topography on runoff 
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generation approximating the location of zones of saturation (Murphy et al., 2009). In addition to 

topographic information the intensity of lidar signal has also been used in detection of inundation 

beneath the forested canopies (Lang et al., 2008). Forested wetlands are one of the most difficult 

wetland types to detect with remote sensing as their canopies obscure underlying hydrology and 

topography. High resolution DEMs derived from lidar coupled with optical data can improve 

mapping of forested wetlands (Lang et al., 2013). However, lidar data are not available 

worldwide at free cost, and little repetition of data collection in the same place over time has 

occurred because of its expense.

1.3 Multi-temporal analysis for mapping and monitoring wetlands

The temporal resolution of images used has been found to be very important in wetland 

mapping and monitoring. Many wetland species have overlapping reflectance at peak biomass 

(Schmidt and Skidmore, 2003), and often, vegetation species occurring in wetlands are similar to 

vegetation occurring in the neighboring uplands. Accuracies of methods using single image in 

wetland mapping such as NWI are affected by the timing of image acquisition (eg, drier 

condition during drought, extremely wet season, foliation condition). Use of multi-season images 

help in discriminating between wetland types by detecting hydrological and phenological 

changes characteristic of those types (Wolter et al., 2005 and Baker et al., 2006). The basic 

approach is the use of leaf-off and leaf-on images from a single growing season. Leaf-on images 

are used for discrimination among vegetation communities while leaf-off images are used to 

detect wetland hydrology. The accuracy of wetland maps produced from multi-season images 

has shown to be superior compared to a single date image. Mackey (1990) noted that satellite 

imagery collected during different seasons enhances phenological, hydrological, and

compositional changes across seasons and between years, which improves the ability to 
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discriminate between wetland vegetation types. Using Landsat images from two dates, Lunetta 

and Balogh (2000) improved the accuracy of wetland maps to 88% compared to 69% from a 

single date image. Pantaleoni et al. (2009) used two dates of ASTER images during a single 

growing season to discriminate between uplands, woody wetlands, emergent wetlands and open 

water. They reported that their detection accuracy was comparable to that of NWI. The authors 

also suggested use of inter-annual images to better characterize the phenological differences 

between wetland and upland vegetation communities. Townsend and Walsh (2001) used Landsat 

TM data from March to August in a single year and produced a detailed classification of 

vegetation communities, although an overall accuracy of 92% was achieved, the individual 

accuracy for wetland communities was only 72%.

Most of the studies utilizing multi-temporal data use imagery from relatively few dates and a 

single growing season. In recent years, multi-year seasonal time-series data has been used for 

improved land-cover classification. These studies have utilized longer time series (greater than 

10 years) representing seasonal and inter-annual variability between land cover classes for 

improved discrimination (Bradley and Mustard, 2008 and Zoffoli et al., 2008). Time series data 

provide information that are directly linked to key aspects of vegetation functions, such as

seasonality, productivity and inter-annual variability and therefore have tremendous potential for 

characterizing, classifying and mapping vegetation (Wessels et al., 2010). Inter-annual variability 

derived from time series data can be a useful metric when land cover types show amplified 

response to differences in environment condition. When several years of data are combined, 

characteristic temporal patterns can be observed which can be used to classify land cover (Liang, 

2001 and Moody & Johnson, 2001). Data collected by sensors such as Advanced Very High 

Resolution Radiometer (AVHRR) and MODIS provide daily observation. Numerous studies 
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have utilized the rich temporal information provided by these sensors to study vegetation 

dynamics at global and regional level. However, the coarser spatial resolution (MODIS-250 m

pixels; AVHRR-1 km pixels) makes them less reliable in local scales and in heterogeneous 

landscape. Especially in wetland environment, these coarser scale sensors may not detect fine 

spatial structure that results due to the variability of vegetation, soil and water in wetlands.

Recently, Landsat data has become available free of cost. At the spatial resolution of 30 m

and images dating back to 1972, the opening of Landsat archive provides an opportunity to study 

land cover dynamics at higher spatial and temporal resolution. The Landsat archive can be used 

to assess the temporal pattern of different vegetation communities to improve discrimination 

which would otherwise not be possible using few images taken at different dates. Few studies 

have utilized Landsat time series data to assess vegetation dynamics. Most of these studies have 

focused on characterizing long-term averages and inter-annual variability in vegetation 

phenology (Fisher et al., 2006, Elmore et al., 2012 and Melaas et al., 2013). In these studies 

Landsat time series images are arranged by Julian dates, discarding the year of acquisition, to 

create temporal profiles indicative of average phenology curve. Some studies (Walker et al., 

2012) have utilized data fusion techniques which downscale MODIS data to spatial resolution of 

Landsat to characterize phenology at annual scale. However, information derived from such 

fused techniques is complicated by land cover heterogeneity below the coarse spatial resolution 

of MODIS and uncertainty introduced by the data fusion algorithm (Melaas et al., 2013).

Landsat time series data has also been widely used in spectral trajectory analysis to identify 

changes in land cover. Traditional land cover change detection methods, known as bi-temporal 

techniques, utilizes images taken at two time periods to detect change in land cover. Selection of 

optimal scenes is very important in bi-temporal change detection techniques to minimize 
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variability in spectral properties that is induced due to changes in phenology (Coppin et al., 

2004). In addition, if the gaps between the images are long, the discontinuities resulting from 

disturbance events may be indistinguishable (de Beurs and Henebry, 2005). 

Trajectory analysis utilizes multiple images taken over same area over a longer time period 

to monitor changes. This technique compares temporal trajectories of spectral values (or derived 

indices) of land cover change characteristics throughout the monitoring period (Coppin et al.,

2004). Use of longer time series offers sufficient temporal sampling in terms of duration and 

frequency to allow detection of changes amidst substantial variation (de Beurs and Henebry 

2005). Kennedy et al. (2007) used a trajectory-based method using 19 annual Landsat scenes to 

detect forest disturbances. They used four idealized temporal trajectories (disturbance, 

disturbance and revegetation, revegetation, and revegetation to stable state) of spectral values to 

characterize disturbances. Using a least squares fit method they analyzed how well the spectral 

trajectory of an area fit the four models to detect disturbance event. Huang et al. (2010) 

developed a vegetation change tracker (VCT) model using the spectral temporal information to 

detect areas of forest disturbance. The model used a cross-correlation approach using Z-statistics 

to identify disturbance. Accuracy of 80% in detecting forest disturbance was achieved in the 

study. Kennedy et al (2010) introduced a new algorithm, Landsat-based detection of trends in 

disturbance and recovery (LandTrendr). The method uses temporal segmentation of the 

trajectory to identify pattern in the time series that is indicative of different disturbance events

and recovery trajectory of forests after disturbance. These disturbance events include; abrupt 

events such as deforestation and fire as well as subtle changes in vegetation community due to 

insects and diseases. Most of these studies using trajectory analysis is aimed at detecting forest 

disturbance and do not make distinction of forested wetlands. In these studies, non-forest 
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wetlands were a major source of error as they were either mapped as forested or disturbed forest. 

All of these studies using dense Landsat time series till date have focused only on identifying 

disturbance in forested communities. Utility of these techniques to monitor disturbances in other 

ecosystem should be assessed.

Trajectory analysis provides a unique and improved opportunity for monitoring disturbance 

and recovery changes in wetlands. Most of the wetland change detection studies are bi-temporal

in nature (Ramsey and Laine, 1997 and Rebelo et al., 2009). Because wetlands demonstrate high 

level of natural temporal variability, the use of coarse temporal resolution images pose 

significant constraints in wetland change studies (Nielsen et al., 2008). Changes due to 

vegetation phenology can be minimized to some extent by using images acquired at anniversary 

dates but variability due to abnormal hydrologic conditions, such as flooding or drought can 

make determination of wetland change more difficult. Nielsen et al. (2008) utilized images from 

spring, summer and fall dates for wetland change monitoring. Despite the use of multi-season 

imagery, many of the flooded wetlands (natural occurrence at that time in the area) were 

classified as having high probability of change. Misinterpretation of wetland loss or gain can also 

result from factors such as farming of wetlands during dry cycles, drought conditions, excess 

surface water or flooding (Dahl, 2006). Use of dense time series of images will increase our 

ability to characterize the temporal variability of wetland and detect wetland change with greater 

accuracy.

1.4 Objectives

As discussed in previous sections, remote sensing data is inherent tool for wetland mapping 

and monitoring. Out of the different remote sensing sensors available, Landsat data because of its 

spatial coverage, spatial resolution of 30 meter, spectral bands in visible and near infrared region 
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and free availability will be one of the major data source for large scale and routine mapping and 

monitoring of wetland. Limitations of optical data, which is mainly associated with inability to 

directly observe soil saturation or flooding can be compensated using multi-temporal images. In 

recent years, the paradigm of multi-temporal analysis has shifted from analyzing two images in a 

year to multiple images spanning different seasons in a year and through multiple years. Now 

that all the past and future Landsat data is freely available, multi-temporal analysis can be 

extended to study land surface dynamics, such as wetlands, which was not possible due to 

coarser spatial resolution of available sensors. In addition to Landsat, newer remote sensing 

technology such as lidar that can provide detailed and accurate information on topography 

should be explored for mapping wetlands. The overall goal of this study was to assess the utility 

of lidar and time series Landsat data for mapping and monitoring of wetlands. The specific 

objectives are summarized below and are discussed as independent research papers.

Evaluate the performance of use of inter-annual time series Landsat data in detecting 

disturbance in wetlands (Chapter 2).

Assess the performance of time-series Landsat data (intra and inter annual) in 

discriminating between wetland and upland forests (Chapter 3).

Assess the performance of topographic information derived from lidar in mapping 

wetlands (Chapter 4).
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Abstract Successful conservation and management of wet-
lands requires up-to-date and accurate information on wetland
location, size, condition, functionality, type, services provid-
ed, stressors and net change in extent. Most change detection
studies utilize two date images to provide information on
wetland dynamics. Comparison of infrequent imagery might
not sufficiently capture natural variability in wetlands. Use of
longer time series of images might increase our ability to
characterize the temporal variability of wetland and detect
changes with greater accuracy. We used inter-annual time
series of Landsat data from 1985 to 2009 to map changes in
wetland ecosystems in northern Virginia. Z-scores calculated
on tasseled cap images were used to develop temporal profile
for wetlands delineated by the National Wetland Inventory. A
change threshold was derived based on the Chi-square distri-
bution of the Z-scores. The accuracy of a change/no change
map produced was 89 % with a kappa value of 0.79. Assess-
ment of the change map showed that the method was able to

detect complete wetland loss together with other subtle
changes resulting from development, harvesting, thinning
and farming practices. With additional research on attributing
the change events, the method may provide more detailed
information on status and the trends of wetland loss and
functioning.

Keywords Wetland . Change detection . Landsat time
series . Z-score

Introduction

Background

Wetlands are one of the most valuable ecosystems in the
world because of the numerous ecosystem services they
provide, including flood attenuation, carbon sequestration,
groundwater recharge, water purification and habitats for
biodiversity. Successful conservation and management of
wetlands requires up-to-date and accurate information on
wetland location, size, condition, functionality, and type of
wetlands and the rate of any changes (Murphy et al. 2007).
Satellite remote sensing data provide consistent and repeat-
able measurements of landscape condition and have been
extensively used for detecting and classifying changes in
land surface condition over time (Kennedy et al. 2009).
Most of the wetland monitoring studies have focused exclu-
sively on wetland loss or gain and are focused on identifying
wetland areas completely converted to other land use types
(Syphard and Garcia 2001). However, other disturbance
activities in wetland areas such as development, silviculture,
farming activities or conversion of one wetland type to
another will have significant effect on the functioning of
the wetland and the monitoring efforts should be able to
capture and characterize these changes.
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Change detection methods can be categorized into two
basic approaches: bi-temporal change detection and tempo-
ral trajectory analysis methods (Coppin et al. 2004). Bi-
temporal techniques, which are the most common change
detection technique, utilize images taken at two different
time periods to assess changes in land cover. They utilize
images taken at anniversary dates or anniversary win-
dows to minimize the variability in spectral properties
due to vegetation phenology and sun angle differences.
However, even at anniversary dates or within anniversary
windows, phenological inconsistencies due to local pre-
cipitation and temperature variation result in problems
identifying real change from seasonal change (Coppin et
al. 2004). In addition, when the gaps between the images
are long, the discontinuities resulting from disturbance
events may be indistinguishable from the trend (de Beurs
and Henebry 2005).

Temporal trajectory analysis methods utilize time series
of images to monitor indicators of land surface attributes.
This technique compares temporal trajectories of spectral
values (or derived indices) of land cover change character-
istics throughout the monitoring period (Coppin et al.
2004). Use of longer time series offers sufficient temporal
sampling in terms of duration and frequency that allow
detection of changes amidst substantial variation (de Beurs
and Henebry 2005). Typically, temporal trajectory analysis
utilizes image from sensors with high temporal frequency
but typically with coarse spatial resolution such as Ad-
vanced Very High Resolution Radiometer (AVHRR:
1 km), Moderate-Resolution Imaging Spectroradiometer
(MODIS: 250 m to 1 km), and Systeme Probatoire de
l’Observation de laTerre Vegetation (SPOT VGT: 1 km).
There are different MODIS products with different tempo-
ral frequency and spatial resolution. The MODIS daily
surface reflectance product has spatial resolution of 500
to 1,000 m. The 8 day surface reflectance composite has
the spatial resolution of 500 m. Although the temporal
frequency of these datasets is better, the spatial resolution
is too coarse for wetlands studies.

Most of the wetland change detection studies are bi-
temporal in nature (Ramsey and Laine 1997; Rebelo et al.
2009). National Oceanic and Atmospheric Administration’s
(NOAA) Coastal Change Analysis Program (C-CAP) has
produced a national standard geospatial database to track
coastal land cover change. C-CAP employs Landsat as
primary data sources and uses images from two dates to
produce land cover change every 5 years (NOAA-CSC
2008). Seasonal and inter-annual environmental changes
such as precipitation and temperature create high level of
variability in wetlands (Pavri and Aber 2004). Use of coarse
temporal resolution images poses significant constraints in
wetland change studies (Nielsen et al. 2008). These change
detection techniques are mainly affected by the dynamic

nature of wetland hydroperiod, which has a significant
influence on the wetland formation as well as wetland
biogeochemistry, soils and vegetation. Wetland vegetation
phenology greatly complicates the process of detecting
changes in wetlands, especially in seasonal and diurnal
ephemeral features such as the presence and absence of
floating vegetation, the flooding and exposure of tidal and
inland mud flats, and the raising and lowering of water
levels under the wetland canopy (Ramsey and Laine
1997). Change monitoring of inland fresh water wetland
is a challenge because their types and spatial distribution
of wetlands can change dramatically from season to sea-
son, especially when non-persistent species are present
(Mackey 1990). Tuxen et al. (2008) utilized imagery ac-
quired roughly the same seasonal time each year to assess
vegetation colonization in a restoring marsh and experi-
enced false changes due to phenological changes in vege-
tation resulting from differences in growth cycle due to
changing climate condition. Changes due to vegetation
phenology can be minimized to some extent by using
images acquired at anniversary dates but variability due
to abnormal hydrologic conditions, such as flooding or
drought can make determination of wetland change more
difficult. Nielsen et al. (2008) utilized images from spring,
summer and fall dates for wetland change monitoring.
Despite the use of multi-season imagery, many of the
flooded wetlands (natural occurrence at that time in the
area) were classified as having high probability of change.
Misinterpretation of wetland loss or gain can also result
from factors such as farming of wetlands during dry
cycles, drought conditions, excess surface water or flood-
ing (Dahl 2006). Ramsey et al. (2001) found that the
human activities that involved lumber industry and agri-
cultural activities such as farming and grazing were major
source of error both in wetland mapping and change
analysis. The timing of image acquisition with human
activities can further increase the error in change analysis.
Although these land use changes do not result in loss of
wetland, they may significantly alter the reflectance char-
acteristics leading to ambiguity in the change detection
procedure. Use of dense time series of images will in-
crease our ability to characterize the temporal variability
of wetland and detect wetland change with greater accu-
racy. Ramsey et al. (2011) used vegetation index trend
derived from daily MODIS data to assess the damage
and subsequent recovery in forested wetlands due to hur-
ricane Katrina. Ramsey et al. (2009) also studied the
impact and recovery of forested wetlands using the pre
and post hurricane Landsat and Radarsat images. The
MODIS vegetation index trend provided a more detailed
description of pre hurricane phenologies and post hurri-
cane damages and recovery compared to snapshot infor-
mation provided through Landsat and Radarsat.
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Multispectral satellite imagery, especially that collected
by Landsat Thematic Mapper (TM) and Enhanced Thematic
Mapper (ETM+), has been widely used for wetland mapping
and monitoring. Landsat data have been found to be prefer-
able to other multispectral satellite data for wetland detec-
tion. The spatial resolution of Landsat (30 m) combined with
its spectral resolution (7 bands) have been found to be
preferable compared to other multispectral data such as
SPOT which has higher spatial resolution but only four
bands (Harvey and Hill 2001). Especially, the mid-infrared
Landsat band (band 5, 1.55–1.75 μm) has been found to be
useful to detection of water (Harvey and Hill 2001). In recent
years, free release of the Landsat archive has resulted in
growing number of temporal trajectory studies utilizing
Landsat time series for characterizing ecological disturbance
(Kennedy et al. 2007; Huang et al. 2010). These studies have
exclusively focused on detecting and characterizing forest
change and disturbance and do not differentiate between
upland forest and forested wetlands. Non-forested wetlands
were also a major source of error in these studies as they were
either mapped as forested or disturbed forest. The objective
of this study is to evaluate the use of inter-annual time series
Landsat data to monitor disturbance in wetlands. We hypoth-
esize that a time series of Landsat data will be able to capture
the temporal variations in a wetland, which will allow us to
differentiate natural temporal variability of wetland hydrol-
ogy and vegetation from other temporary and more perma-
nent wetland disturbances.

National Wetland Inventory Data

The U.S. Fish and Wildlife Service established the National
Wetland Inventory (NWI) in 1974 to begin a nationwide
effort to map wetlands. Manual photo-interpretation of
mid-to-high altitude color infrared aerial photographs, usu-
ally taken during early spring (Hefner and Storrs 1994)
coupled with field verification, topographic maps and soil
information is used to map NWI wetlands (Dahl and
Watmough 2007). The NWI uses hierarchical classification
scheme of Cowardin et al. (1979) to describe wetland
locations. Studies have shown varying levels of accuracies
of NWI maps. In general, NWI maps have been reported to
have low commission error and in many cases high omis-
sion error (Wright and Gallant 2007). Kudray and Gale
(2000) reported commission error of less than 5 % in
Massachusetts. Stolt and Baker (1995) found that all the
palustrine wetlands delineated on NWI maps were correct-
ly identified but the omission error were greater than 85 %.
Even though many existing wetlands are not mapped in
NWI, it can be used a baseline wetland distribution for
regional change detection because of its low commission
error, internal consistency, national scope and availability
(Nielsen et al. 2008).

Data and Methods

Study Area

The study area incorporates counties in northern Virginia
within a single Landsat scene path/row: 15/33 (Fig. 1). The
most common wetland type is palustrine wetlands, which
incorporates wetland types such as forested, scrub-shrub and
emergent wetlands (Tiner and Finn 1986). Palustrine sys-
tems include all non-tidal wetlands dominated by trees,
shrubs, persistent emergent, mosses or lichens (Cowardin
et al. 1979). This region includes one of the fastest growing
populations in Virginia and is under immense development
pressure. The largest number of wetland permits in the
commonwealth of Virginia was issued in Stafford County.

Landsat Time Series Development

A Landsat time series is a temporal sequence of Landsat
images acquired at a nominal temporal interval for an area
defined by a path/row tile of the World Reference System
(Huang et al. 2010). A time series was developed using
yearly Landsat Thematic Mapper (TM) and Enhanced The-
matic Mapper (ETM) images (path/row: 15/33) taken be-
tween 1985 and 2009 (Table 1). Image acquired before 1985
were not used as they come from Landsat Multispectral
Scanner and have different spatial resolution and radiomet-
ric resolution compared to TM and ETM. Leaf-on Landsat
images acquired between June and September were used to
avoid phenological inconsistencies. The temporal interval
between successive images when using time series data is
important for effective change detection. Ideally, it would be
best to have an image each successive year so that the
spectral trends are captured accurately. Due to extensive
cloud cover, some years are absent from the time series
stack. However, gaps in the image time series did not exceed
two consecutive years. Longer gaps between the image
dates will decrease the number of observations available to
capture the spectral trends and will affect the ability to detect
the disturbance event (de Beurs and Henebry 2005). Many
studies utilizing Landsat time series (Kennedy et al. 2007;
Huang et al. 2010) have shown that the biennial Landsat
data can sufficiently capture the disturbance trend.

Precise geometric registration and radiometric and
atmospheric correction are important in studies utilizing
multi-temporal images to avoid spurious changes result-
ing from pixel mis-registration and differing atmospheric
conditions. Atmospheric correction was conducted using
automated algorithms with the Landsat Ecosystem Dis-
turbance Adaptive Processing System (LEDAPS)
(Masek et al. 2006, Huang et al. 2009). LEDAPS is
based on 6SV radiative transfer model. The ancillary
data used in the atmospheric correction process includes

Wetlands (2012) 32:1149–1162 1151



TOMS (Total Ozone Mapping Spectrometer) data, column
water vapor from the NOAA National Centers for Environ-
mental Prediction (NCEP) reanalysis data, digital topogra-
phy and NCEP surface pressure data. The ancillary data are
supplied to the 6S radiative transfer algorithm, which then
inverts top of atmosphere reflectance to surface reflectance
for each 30-m pixel (Masek et al. 2006). Landsat images
used were processed at Level 1 terrain corrected (L1T) data,
which have undergone systematic geometric correction
(Roy et al. 2010). Digital ortho-photo quadrangle data
(DOQ) were overlaid on the Landsat scene to further test
their geometric accuracy.

Aggregation of NWI Class

NWI maps for the study area were downloaded from US Fish
and Wildlife Service website (U.S. Fish and Wildlife Service
2010). Table 2 shows the aerial photo dates of NWI maps in
the study area. Themajority of wetlands were delineated using
aerial photos acquired prior to the year 2000 and they have not
been updated with recent aerial photos. We limited the study
to palustrine wetland types and eliminated some highly vari-
able types to reduce spectral variability in the time series.
Wetlands classified as open water were removed from the
analysis as the reflectance from this land cover is highly
variable depending on the water level and sediment content.
We also eliminated the wetlands classified as Phragmites,
dominated by Phragmites australis (Cav.) Trin. ex Steud.,
(Common Reed), as they covered only small portion of the
study area and demonstrated high yearly variability in reflec-
tance. This resulted in 533 uniqueNWI identifier codes. It was
not possible to use each unique code as an independent class
as many of the codes were only represented by few pixels.
Therefore, it was necessary to merge the NWI codes into
broader classes to have representative number of pixels for
each wetland class. The spectral reflectance characteristics of

Fig. 1 Study area: State of
Virginia showing study area

Table 1 List of Landsat
Thematic Mapper (TM)
and Enhanced Thematic
Mapper Plus (ETM+)
image date, sensor types
and assigned number in
the time series

Assigned
number in the
time series

Image date Sensor
type

1 8/14/1985 TM

2 7/19/1987 TM

3 7/5/1988 TM

4 9/10/1989 TM

5 8/12/1990 TM

6 9/16/1991 TM

7 8/23/1994 TM

8 9/27/1995 TM

9 7/14/1997 TM

10 7/4/1999 TM

11 7/6/2000 TM

12 7/9/2001 TM

13 9/6/2002 ETM+

14 9/17/2003 TM

15 9/19/2004 TM

16 8/5/2005 TM

17 8/24/2006 ETM+

18 9/12/2007 TM

19 6/11/2008 TM

20 7/15/2009 TM

Table 2 Aerial photo
dates used and
corresponding percent-
age of NWI mapped in
the study area

Aerial photo year Percentage of NWI
mapped

1980 3.27

1981 9.86

1982 3.27

1984 10.99

1988 6.61

1989 3.30

1990 3.31

1991 2.19

1994 41.71

2000 15.50
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wetlands are mainly affected by vegetation structure, leaf
characteristics, and soil moisture (Lang et al. 2008). The
aggregation of NWI codes to broad classes was based on
vegetation structure, vegetation phenology, wetland systems
and their flooding regime. The final wetland classes were:
palustrine forested deciduous, palustrine forested evergreen,
palustrine scrub-shrub deciduous, palustrine scrub-shrub ev-
ergreen, palustrine emergent persistent, mixed and palustrine
forested dead. The NWI maps with the final classes were
rasterized to a 30 meter pixel.

Identification of Reference Wetland Samples

Reference wetland samples for each wetland category were
identified using normalized difference vegetation index
(NDVI) time series data. NDVI is a widely-used vegetation
index that has been correlated to different vegetation parame-
ters such as biomass, leaf area index, plant vigor, plant pro-
ductivity. NDVI measures the contrast between surface
reflectance in red and near infrared region. Reference wetland
samples were required to be undisturbed throughout the mon-
itoring period. Undisturbed wetland samples were identified
randomly using images from Google Earth™ (earth.google.
com). We used the NDVI temporal profile to assess the usabil-
ity of selected wetlands location as reference samples. The
underlying assumption is that an unchanged wetland will have
an NDVI trajectory with small variation. Further, the selected
pixels were manually examined in each image to ensure that
they were not contaminated by clouds or shadows. 100 sam-
ples for each class were distributed throughout the scene to
obtain a representative characterization of each class. Average
NDVI values and standard deviations were calculated for each
wetland class for each image used in the time series.

Z-Score Calculation

We adapted the Vegetation Change Tracker (VCT) algorithm
developed by Huang et al. (2010) in our study to detect wetland
disturbance. The model is a cross-correlation analysis, which
uses the class boundaries to derive an expected class average
spectral response. The Z-score is derived by subtracting the
population mean from the individual value and then divided by
the population standard deviation. The Z-score indicates how
close a pixel’s response is to the expected spectral response of
its corresponding class value. The expected spectral response is
derived from the reference or unchanged wetland samples. The
Z-score is calculated as follows:

Zci ¼ Xci� Xci

SDci
ð1Þ

where

Zci is the Z statistics value of the pixel in wetland class c
in year i

Xci is the value of the pixel in wetland class c in year i
Xci is the average value of the unchanged wetland class c

in year i, and
SDci is the standard deviation of the value of unchanged

wetland class c in year i

The Z-score provides the standardized distance of a sam-
ple from the population mean. It measures the distance of a
pixel belonging to a class from the center of that class in the
spectral domain (Stueve et al. 2011). The likelihood of a
pixel being changed depends on the Z-Score value. A lower
Z-score value of the pixel indicates that no major distur-
bance event has occurred, while a higher Z-score of a pixel
indicates that a major disturbance event has occurred. In our
context, it can be interpreted as the odds of a pixel being a
disturbed wetland. Pixels with low Z-score values are un-
disturbed wetlands and high Z-scores indicate a higher
likelihood of disturbance. Standardization using Z-scores
has the added advantage of further normalizing the image,
which can substantially reduce the spatial and temporal
variability of the spectral signatures caused by relatively
homogenous atmospheric conditions, and instrument related
issues (Huang et al. 2010). Different studies have demon-
strated the use of Z-score based technique in wetland change
detection. Houhoulis and Michener (2000) used a Z-score
based technique using SPOT image to detect wetland con-
version to agricultural uses. Koeln and Bissonnette (2000)
used summed Z-scores determined independently for the
red, near-infrared, and mid-infrared TM bands to identify
hotspots of wetland change. Nielsen et al. (2008) developed
a wetland change probability map for U.S mid-Atlantic
region. They used deviation from median values instead of
mean and used logistic regression to produce a pixel change
likelihood index.

ZScoreTC ¼ ZScoreB þ ZScoreG þ ZScoreW
3

ð2Þ

where

ZScoreTC is the total Z-Score value of a pixel calculated
using tasseled cap images

ZScoreB is the Z-Score value of calculated using bright-
ness image

ZScoreG is the Z-Score value of calculated using green-
ness image

ZScoreW is the Z-Score value of calculated using wetness
image

The Z-scores were calculated on a tasseled cap transfor-
mation (TCT) of the Landsat data. The TCT is an orthogonal
transformation of Landsat bands that transforms the Landsat
bands into brightness, greenness and wetness axis (Kauth
and Thomas 1976). TCT is preferred over other data trans-
formation methods such as principal component analyses as

Wetlands (2012) 32:1149–1162 1153



the TCT components corresponds to the physical character-
istics of vegetation and are ecologically interpretable
(Parmenter et al. 2003). TCT has also been widely used
for wetland classification and change detection. Hodgson
et al. (1987) associated the wetness and greenness compo-
nents of TCT to different wetland types. Ordoyne and Friedl
(2008) showed that the wetness component is strongly cor-
related to water stage data across a range of surface vegeta-
tion types. Nielsen et al. (2008) and Baker et al. (2007)
successfully utilized Landsat-based TCT to detect wetland
changes. These components have been widely used for
change analysis because changes in land cover are generally
related to changes in brightness, greenness and wetness,
while other sources of variability (sensor calibration, illumi-
nation angle, atmospheric effects) that might be unrelated to
land cover change are reduced (Baker et al. 2007). Wetlands
exhibit a variety of vegetative or hydrologic changes, which
might not be detected using few spectral bands. TCT sum-
marizes the spectral information of Landsat bands intro
three components, so all the information can be utilized.
Tasseled cap brightness, greenness and wetness components
were calculated for each Landsat scene using coefficients
(Table 3) developed by Crist (1985) for surface reflectance.
An integrated Z-Score value was calculated using the tas-
seled cap brightness, greenness and wetness images as
shown in equation 2.

Determining Change/No-change

Identification of change/no-change wetlands will depend on
time series analysis of the Z score value. The Z-score
trajectory for the monitoring period will vary depending
on the wetland types and the type of disturbance occurring
in the pixel. For an unchanged wetland, the Z-score value
will remain low and stable throughout the period. In case of
a disturbance, the Z-score value will increase in the year the
disturbance occurred. The successive Z-score trajectory af-
ter the disturbance will depend on the type of disturbance.
Discriminating a real change in the Z-score time series
analysis will require a threshold selection. Selection of
threshold is important for accurate change detection. A
low threshold value will identify spurious changes, poten-
tially identifying natural variability in Z-score value as real
change which will lead to more area being identified as
change location. On the contrary, a high threshold value will

suppress significant change such that even the real change
events will not be detected. A common method is to set
change threshold in terms of the standard deviation about
the mean (Morisette and Khorram 2000; Lunetta et al.
2006). If the Z-score values are normally distributed, the
sum of squares of Z-score values will follow a Chi-square
distribution with N degrees of freedom, where N is the
number of classes. A null hypothesis testing procedure to
decide about the changed or unchanged status can be imple-
mented by choosing a confidence level 1−α and the
corresponding threshold associated with the probability that
the squared Z-score value is lower than the threshold
(Bontemps et al. 2008). Pixels where the Z-score value
is greater than the threshold will then be considered as
changed pixels. The accuracy and the sensitivity of threshold
to different magnitude and types of changes will depend on
the level of confidence 1−α or the value of α. Higher values
of α will result in a lower threshold value, which will lead to
identification of more change area, but this will also include
areas that have changed slightly. Lower values of α will
result in higher threshold value and will only identify areas
of significant change. We looked at the areas of known
change locations and used different α value to test the ability
to detect change points. The highestα (0.01)that could detect
all the change points was selected. As the α was decreased
the threshold value increased and known location of change
were not being identified. The importance of selection of the
threshold value is shown in Fig. 2. The figure shows an
example where the wetland area has been changed to a
suburban development. The disturbance occurs in the year
2000. When α value is set at 0.01, the change point is
identified in the year 2000 (circled by solid line). However,
lowering the α value at 0.001 (chi-square value of 10.83)
will not identify this as change area. If the threshold value is
set at 0.001, then the disturbance will only be identified in
the year 2002 (circled by dotted line).

Flagging False Change

A unique advantage in change monitoring utilizing time
series data is the ability to utilize temporal context to im-
prove results (Pouliot et al. 2009). False change detection
may result due to clouds, shadow or other sources of con-
tamination. Huang et al. (2010) indicates that the likelihood
of the pixel having unflagged data quality in consecutive

Table 3 Coefficients used for
tasseled cap transformation of
Landsat data based on Crist
(1985)

Feature Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Brightness 0.2043 0.4158 0.5524 0.5741 0.3124 0.2303

Greenness −0.1603 −0.2819 −0.4934 0.7940 −0.0002 −0.1446

Wetness 0.0315 0.2021 0.3102 0.1594 −0.6806 −0.6109
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years should be low. For a time series of annual observa-
tions, temporal test can be utilized to flag false changes. In
the case of disturbance or when there is significant change in
a wetland, the Z-score value will be significantly higher for
at least a few consecutive years. But, if the increase in Z-
score value is due to noise, the high value will not persist for
consecutive years. Preliminary analysis indicated that two
consecutive years is likely sufficient to indicate a real
change. Other studies (Huang et al. 2010; Powell et al.
2010) have also shown that 2 year threshold is sufficient
for capturing most of the change in the time series data.
Therefore, the final decision rule required Z-scores greater
than the threshold value for at least two consecutive years to
classify a pixel as ‘changed’. Use of a temporal test will also
allow us to flag the natural variability in wetlands from real
disturbances.

Validation

Validation of the change detection maps from the time series
Landsat data is challenging as it is difficult to collect refer-
ence dataset to validate each annual time step. Most time
series disturbance studies have reliably utilized visual inter-
pretation of change events from the time series data for
validation (Kennedy et al. 2007; Huang et al. 2010;
Schroeder et al. 2011). In the study, we utilized available
high resolution aerial images from National Agriculture
Imagery Program (NAIP) and Virginia Base Mapping Pro-
gram (VBMP) for interpretation of the validation points.
NAIP images are acquired during the agricultural growing
(leaf-on) seasons with a spatial resolution of 1 m. VBMP
images are leaf-off images acquired with the resolution of
30 cm. The image dates available were 1994, 2002, 2008
and 2009.

We expected that the number of no-change pixels
across the image should greatly exceed the detected
change pixels. Therefore, to obtain a better understanding

of map accuracy, we stratified the image into “change and
no-change” pixels and assessed accuracy for both. Based
on the stratification, 90 random samples were selected
within the change class, and 90 from within the “no-
change” class (Fig. 3). Most readers should interpret the
“change” accuracy statistics to evaluate mapping accuracy.
We included no-change statistics for completeness. The
reference dataset was used to produce error matrix and
the accuracy measures, which include overall accuracy,
user’s and producer’s accuracy and kappa coefficient
(Congalton and Green 1999). Both the overall accuracy
and kappa coefficients are measures of agreement between
the change map and the reference data. The overall accu-
racy is the proportion of correctly identified change
events. Kappa coefficient takes into account chance agree-
ment and quantifies to what extent the observed agree-
ment between the proposed algorithm and reference data
departs from the agreement that would be expected from a
random classifier (Bontemps et al. 2008). The producer’s
accuracy measures the proportion of pixel belonging to a
class that was correctly classified by the method and
measures the error of omission. User’s accuracy measures
the proportion of the pixels classified as belonging to a
class matches the reference data and measures the error of
commission. The year of disturbance cannot be easily
validated with independent samples. For each reference
point, the year of disturbance assigned by the algorithm
was recorded. The reference for year of disturbance for
each sample was then manually obtained using Landsat
time series. Since we have used annual time series data,
the year of disturbance determined manually recorded
should be reliable (Kennedy et al. 2007, Huang et al.
2010). In this context, the validation for year of distur-
bance is more of a ‘quality control’ to ensure that the
automated procedure matches manual interpretation. In
particular, this will help evaluate the suitability of Z-
score thresholds and identify possible sources of error.

Fig. 2 Example of Z-Score
profile of a changed location.
The profile highlights the im-
portance of threshold selection
for change detection. The actual
change for this example oc-
curred in the year 2000 (circled
in solid line). Increasing the
threshold value (α 00.001) will
not identify this point as
changed. Change is only iden-
tified in the year 2002

Wetlands (2012) 32:1149–1162 1155



Results

Z-score Profile of Reference Wetlands

The Z-score profiles for different reference wetland types
are summarized in Fig. 4. The Z-score value ranges from 2
to 5. Compared to the forested wetlands the Z-score values
of emergent, mixed and wetlands classified as dead in the
NWI classification are more variable from year to year. The
Z-score profiles of the reference wetland sample indirectly
provide a justification to the threshold used to identify
change. The profile indicates that the Z-Score value remains
below 5 for the reference wetlands in all the years. Based on

the Chi-square distribution, Chi-square value of 6.6 was
used as threshold to detect change.

Accuracy Assessment

Table 4 provides the summary of the accuracy measures of
the change detection analysis. The overall accuracy for the
change detection analysis was 89 % with the kappa value of
0.79. The high user’s accuracy (87.3 %) and producer’s
accuracy (92.2 %) for the unchanged wetlands indicate that
the method can accurately detect wetlands that remain un-
changed throughout the time series. The overall accuracy
seems to be largely affected by the omission error (13.3 %)

Fig. 4 Z-score profiles of
different wetland types in the
region produced using leaf on
Landsat images. The X-axis
represents different years
(1985–2009) in the image time
series

Fig. 3 Validation points used
for accuracy assessment
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of the changed wetlands. The overall agreement between the
disturbance year produced by the algorithm and visual in-
terpretation of the Landsat time series and the trajectory
itself was 74.4 %.

The result of the analysis (Table 5) showed that the
wetland area has generally decreased in the study area.
Approximately 15.4 % (6,065 ha) of the wetlands in the
study area experienced some form of disturbance. The larg-
est disturbance events were observed in the emergent per-
sistent class (26.7 %). However, we have to keep in mind
that majority of the false changes were also associated with
this class. After the emergent class, largest disturbance event
occurred in forested wetlands.

Disturbance events were dispersed throughout the study
area (Fig. 5). However, majority of the disturbance events
are occurring in more urban areas such as Fauqier and
Prince William County. The year of disturbance as produced
from the Landsat time series is shown in Fig. 6. The distur-
bance year showed that the majority of wetland disturbance
occurred before 1999 and the rate of disturbance subse-
quently decreased in the time series. Fig. 7 represents Z-
score trajectories of different disturbance events in the study
area. The trajectories of different disturbance have distinc-
tive temporal progression which will lead to characteristics
temporal signature. The pattern of spectral value change is
distinctive both before and after the disturbance event and

therefore can be used as an indicator of the event. For
example the Z-score trajectory associated with wetland loss
(a) has a steady Z-score value till the year of disturbance and
there is gradual increase in the Z-score value. On the other
hand, in an area converted to a suburban development (b) Z-
score value increases and then starts decreasing as various
vegetation starts to grow. In comparison, when a forested
wetland undergoes thinning (c) Z-score value increases and
subsequently decreases. However, the trajectories after the
disturbance are different. While the Z-score value in the
suburban development decreases after the initial disturbance
it is still high compared to the trajectory in thinning activity.
Descriptive statistics for the Z-score trajectories for the
examples shown in Fig. 7 are summarized in Table 6. The
statistics includes mean and standard deviation of the Z-
score values before and after the change. The mean and
standard deviation of the Z-score values after the change
events are indicative of types of disturbance. The mean and
standard deviation for example (a), where wetland has been
completely removed is higher compared to other examples.
In example (b) although there is complete wetland loss,
because there is vegetation growth after the development,
the mean and standard deviation are low compared to (a).
Similarly, the mean and standard deviation for the distur-
bance related to silviculture activities (c) are low. Example
(d) where wetland has been converted to open water, the
mean and standard deviation are low compared to complete
wetland loss but high compared to suburban development
and silviculture activities. The magnitude which is differ-
ence between the Z-score value before and after the change
can provide another indication of the change events. The
magnitude value is higher for complete wetland loss and
conversion of wetland to open water compared to suburban
development and silviculture activity.

Discussion

The National Wetland Inventory makes two distinctions in
wetland change: wetland loss and conversion. Wetland loss

Table 4 Error matrix for the change detection analysis

Reference data

Change No change User’s
accuracy

Change 78 7 91.7 %

No change 12 83 87.3 %

Producer’s accuracy 86.6 % 92.2 %

Omission error 13.3 % Overall accuracy 89.4 %

Commission error 8.2 % Cohen’s Kappa 0.79

Percentage of change area 15.4 %

Percentage of no-change area 84.6

Table 5 Summary of wetland
disturbance in the study area Wetland classes Total NWI area (hectare) Change area (hectare) % of the NWI class

Forested broadleaf 22585.86 2896.31 12.82

Forested evergreen 1211.01 275.37 22.74

Scrub-shrub broadleaf 1644.44 189.64 11.53

Scrub-shrub evergreen 139.61 10.35 7.41

Emergent persistent 5140.8 1351.95 26.3

Mixed 8375.42 1324.78 15.82

Dead 145.27 16.75 11.53

Total area 39242.41 6065.15

Total change area015.4 %
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is complete conversion of a wetland to other land use types,
where the wetland functionality is entirely lost. Whereas,
wetland conversion is a change in state where the area still

remains a wetland. Wetland conversion mainly results from
activities such as farming, and silvicultural activities. Most
of the wetland monitoring studies exclusively focus on

Fig. 5 Disturbance events
occurring in the study area
between 1985 and 2009 as
captured by the Landsat time
series

Fig. 6 Disturbance year map
produced from Landsat time
series
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wetland loss. However, wetland conversions significantly af-
fect the functioning of the wetlands. In order to obtain a better
understanding of the status and trends in wetland, wetland
monitoring activities should consider detailing the subtle
changes in wetland together with obvious wetland loss.

In this study, we investigated the use of inter annual time
series data to detect disturbances in National Wetland Inven-
tory delineated wetlands in Northern Virginia. The goal of the
study was to not only identify areas of complete wetland loss
but also capture subtle and ephemeral disturbance events
taking place in the wetlands. The use of continuous Landsat
data of 20 years has enabled us to capture these changes,
which will otherwise be missed if we had only used snapshot
images from two time periods. The overall accuracy of the
change detection procedure was 89 % and the agreement
between the disturbance year produced by the algorithm and

visual interpretation was 74 %. We also demonstrated that the
use of time series Landsat data can successfully capture the
trends. In absence of adequate field data, we did not classify
our change map to identify different subtle and ephemeral
disturbances in the study area. However, Fig. 7 (a) to (d) show
that with further study and additional data, it is possible to use
these time series data to classify subtle and ephemeral distur-
bances. Various studies have used different methods using
Landsat time series data to classify these changes. Vogelmann
et al. (2012) used linear regression model on a time series of
spectral index to assess the long term gradual ecosystem
changes. Schroeder et al. (2011) used a supervised classifica-
tion approach on a 22 year Landsat time series data to map
wildfire and clearcut disturbances in boreal forest.

Other studies have demonstrated the use of Z-score in
identifying wetland change (Houhoulis and Michener 2000,

Fig. 7 Examples of Z-score trajectory of different disturbance events: (a) complete vegetation removal, (b) conversion to a suburban development,
(c) thinning of a forested wetland, (d) conversion to open water

Table 6 Descriptive statistics for
the change example. The statistics
includes mean and standard devi-
ation of the Z-score values before
and after the change and change
magnitude (difference between
the Z-score value before and after
the change)

Before change After change Change magnitude

Mean Standard deviation Mean Standard deviation

Example a 0.97 0.95 26.82 7.99 15.19

Example b 6.45 0.62 9.81 3.91 11.33

Example c 0.67 0.90 7.42 3.76 11.04

Example d 3.77 1.71 10.07 5.04 15.62
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Koeln and Bissonnette 2000, Nielsen et al. 2008). Z-score is
the expected spectral response of a class calculated based on
the unchanged samples. One of the major factors affecting
the accuracy of Z-score based techniques is the identifica-
tion of unchanged reference wetland samples. The proposed
method requires unchanged wetland sample for each year.
We used the NDVI trajectory and available high resolution
aerial photos to identify the unchanged wetland samples to
calculate the Z-score. The variability in the Z-scores of
unchanged reference (Fig. 4) wetland samples indicates the
inherent variable nature of wetlands. The Z-score value for
the wetland types considered in the study ranged from 2 to
5. Compared to the study of Huang et al. (2010) that only
considered forested environment the Z-score value appears
high in the wetland compared to uplands (Z-score value for
the forest was less than 3). Again the yearly variability in the
Z-scores is possibly associated with hydrology of wetlands,
which in turn is affected by environmental factors.
Schroeder et al. (2011) recommends using intra-annual
images in the time series to minimize false change detection
in wetland areas. The use of winter time series together with
the growing season images might help address the variabil-
ity in wetlands. However, the approach could not be tested
in this study, due to lack of high quality winter images.
Selection of appropriate threshold is important for the accu-
racy of change detection. The threshold used for determina-
tion of change was based on the chi-square distribution of Z-
score values (chi-square value of 6.6). The sensitivity of the
threshold used is difficult to assess when specific change
types is not the focus of the study. Fig. 4 indicates that the Z-
score value for the unchanged wetland sample remains
below 5 for all the year. This indicates that the threshold
used in this study for the determination of change is sensi-
tive in differentiating actual change from natural variability.
In addition, determination of threshold values based on
statistical distribution is more accurate and reproducible
than manually setting the threshold value (Warner 2005).

The major source of error in the change detection was the
emergent wetland types. The temporary and seasonally
flooded emergent wetland types are dry in some years and
saturated in others. In some instances the emergent wetland
type are farmed during the dry period. The year threshold
we used did not mask these false changes resulting from
natural variability. We can potentially increase the year
threshold but then our ability to detect other subtle changes
will be diminished. Despite these errors, the method appears
successful in detecting various kinds of disturbance events.
Visual identification of some of the disturbance events cap-
tured by the method included logging and thinning activi-
ties, farming, conversion of wetland to open water bodies
and clearing for commercial and residential development.
The disagreement between the disturbance year assigned by
the method and visual interpretation was mostly because of

the inability of the method to detect some disturbance events
such as thinning activities that were not detected by the
method and the threshold value and threshold year used to
detect change. In some cases, disturbance will occur in
multiple parts of the time series. Since we used the number
of consecutive year threshold to identify change, even in
case of real disturbances that do not meet the minimum year
criteria they will not be detected as change. Disturbance year
can be a useful product for wetland permitting agencies like
Department of Environment Quality to monitor the compli-
ance of wetland permit issued.

The total change area as summarized in Table 5 should be
carefully interpreted. The change area identified by the
method does not only represent wetland loss but also
includes area which has experienced different disturbance
events such as silviculture and agricultural activities. There-
fore these areas should be used to identify potential hotspots
of wetland change. The next stage in our study is to use the
magnitude of Z-score during the disturbance event and the
temporal spectral curve to label disturbance events. As
shown in Fig. 7 and Table 6 spectral trajectories for different
disturbance events vary. The relationship between various
change events and parameters derived from the trajectory
such as the mean and standard deviation of the Z-score after
the disturbance, the magnitude of Z-score before and after
the disturbance event, slope and direction of the trajectory
after the disturbance can be evaluated to attribute the change
process. This will help identify the major stressors affecting
wetlands and can complement national wetland condition
assessment underway through Environmental Protection
Agency.

Conclusion

Capturing the nature of highly dynamic environment such as
wetlands that exhibit high degree of natural temporal variabil-
ity is a challenging task. The variability is due to seasonal
fluctuations in water level due to changes in precipitation,
temperature and other environmental conditions as well as
human influences. In recent years, many studies have utilized
inter-annual time series data to characterize various disturban-
ces in different landscape. The goal of this study was to assess
the utility of inter-annual Landsat time series data for wetland
monitoring. A Z-score based technique was used to detect
wetland change location in Landsat time series data. The Z-
score trajectory of unchanged wetlands in the study area
provided a description of the inter-annual variability in the
spectral trends of different wetlands. This information allowed
us to discriminate actual changes from the natural variability
thus increasing the performance of the change detection meth-
od. The variability in the Z-score value can potentially be
reduced by utilizing a winter time series data along with
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growing season data. However, availability of Landsat data in
winter will be a limiting factor. The resulting change map
provides information on not only the current hotspots of
wetland disturbance dynamics but also reconstructs the dis-
turbance history. The information on the disturbance year
along with the wetland permit database maintained by the
state agencies can be used to track unpermitted wetland dis-
turbances and produce wetland change rates in an annual
basis. The change map showed the ability of the method to
capture both abrupt as well as gradual changes occurring in
the wetland. Different change events such as logging activi-
ties, farming suburban development were observed in the
change map. With adequate field data on these change events,
the Z-score trajectory can be utilized to provide information
on various disturbance events occurring in the study area.
With the recent free availability of past and future Landsat
data, this method could be an important process for updating
the existing NWI maps and identifying major stressor to
wetlands.
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CHAPTER 3

Discriminating Forested Wetlands and Uplands Using Temporal Metrics Derived from 

Landsat Time Series

Prepared for submission to Remote Sensing of Environment

Abstract:

Successful conservation and management of wetlands requires up to date and accurate 

information on their properties and location. Forested wetlands are difficult to map because of 

their canopy cover which prevents viewing of the soil saturation and topography beneath the 

canopy. Forested wetlands are extremely underrepresented in current wetland maps such as the 

National Wetland Inventory (NWI) in the United States, so improved detection is needed. A

common approach in mapping wetlands is to compare a series of aerial photo or satellite images 

between seasons or across years. Time series data provide information on key aspects of 

hydrology and vegetation functions, such as seasonality, productivity and temporal variability 

that enhance discrimination between different land cover types. In this paper, we present a 

technique to characterize differences in spectro-temporal profile of forested uplands and 

wetlands using time series of Landsat data (1999-2012). The results show that the temporal 

metrics derived from Landsat can accurately discriminate between forested upland and wetland 

(accuracy of 88.5%). The accuracy of temporal metrics derived from Normalized Difference 

Moisture Index (NDMI) was higher than the accuracy achieved by Normalized Difference 

Vegetation Index (NDVI) and Tasseled Cap Wetness index (TCW). Now that corrected Landsat 

data are available free of cost, the technique presented here can be easily implemented and tested 

in other areas.
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1. Introduction

Wetlands are one of the most unique and productive ecosystems on earth, providing 

numerous ecological and economical values such as habitat for wildlife, resources for human 

consumption, flood control, and ground water recharge (Mitsch and Gosselink, 2000).  Despite 

the undisputed economic and ecological importance of wetlands they are under enormous threat 

due to human exploitation and climate change (van der Valk, 2006). In addition, there is lot of 

uncertainty associated with the extent and distribution of wetlands which further increases the 

threats to the well-being of these vulnerable ecosystems. Accurate and up-to-date information on 

the distribution and extent of wetland ecosystems both regionally and globally is required for the 

successful protection and management of wetlands.

Wetlands occur in diverse landscapes and in a wide range of climates. Hydrology plays a

key role in wetlands which distinguishes them from other terrestrial and aquatic systems.

Wetlands are characterized by periodic to continuous inundation or saturation with water during 

the growing season and soils that are periodically deficient in oxygen (hydric soils), and 

vegetation that is adapted to periods of anaerobic or anoxic soil conditions (hydrophytic 

vegetation). Along with soil type and land-use, the duration, depth, and frequency of inundation, 

water sources and properties determine the distribution and characteristics of wetland vegetation.

The effect and variability of hydrology between wetlands exerts a major controlling force in the 

establishment and development of vegetation and produces vegetation communities with more 

distinct spatial and temporal pattern than vegetation in upland areas (Todd et al., 2010).
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Earth observation data has been widely used for mapping and monitoring wetland 

distribution. Multispectral satellite imagery, especially that collected by Landsat Thematic 

Mapper (TM) and Enhanced Thematic Mapper (ETM+), has been widely used for wetland 

inventory and mapping. Harvey and Hill (2001) compared wetland classification using aerial 

photos (1 m), SPOT XS (20 m) and Landsat (30 m) and found that Landsat provided a more 

accurate classification than SPOT XS and comparable accuracy to that of aerial photographs.

Superior performance of Landsat compared to SPOT was attributed to better spectral resolution 

and inclusion of middle infrared bands not available in SPOT. Sader et al. (1995) used 

unsupervised classification of Landsat data and classified forested wetlands with an overall

accuracy of 72%. However, the user’s accuracy for the forested wetland was very low (58%)

indicating poor ability of this method to map forested wetlands. Despite extensive use of remote 

sensing data, wetlands are inherently difficult to map because the spectral reflectance properties 

of wetland vegetation are often similar to vegetation in the upland areas (Adam et al., 2010 and 

Ozesmi and Bauer, 2002). Forested wetlands, which represent 50% of the wetlands in United 

States, are one the most difficult wetland types to map. Forested wetlands mainly occur along a 

drier water regime and the canopies in the forested wetlands prevent viewing of the soil 

saturation in the ground (Ozesmi and Bauer, 2002) making them difficult to detect with remote 

sensing data.

The temporal resolution of images used has been found to be important for discriminating 

wetland from upland vegetation. Many wetland species have overlapping reflectance at peak 

biomass (Schmidt and Skidmore, 2003) and aggregation to broad wetland classes are necessary 

to achieve better accuracies (Wright and Gallant, 2007). Use of multi-season images helped in 

discriminating between wetland types by detecting hydrological and phenological changes 
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characteristic of those types (Baker et al., 2006 and Wolter et al., 2005). The basic approach is 

the use of leaf-off and leaf-on images from a single growing season. Leaf-on images are used for 

discrimination among vegetation communities while leaf-off images are used to detect wetland 

hydrology. The accuracy of wetland maps produced from multi-season images has shown to be 

superior compared to a single date image. Mackey (1990) noted that satellite imagery collected 

during different seasons enhanced the ability to discriminate between wetland vegetation types, 

and that multi-temporal data can help evaluate phenological, hydrological, and compositional 

changes across seasons and between years. Using images from two dates, Lunetta and Balogh 

(2000) improved the accuracy of wetland maps from 69% to 88% compared to a single date 

image. However, the accuracy of wetland and upland forest was low and majority of upland 

forests were confused with wetland forests. Pantaleoni et al. (2009) used March and October 

ASTER images during a single growing season to discriminate between uplands, woody 

wetlands, emergent wetlands and open water, however the accuracy of forested wetland was low.

This study also recommended that the use of inter-annual images would better characterize the 

phenological differences between wetland and upland vegetation communities for improved 

wetland classification because of climatic variation between years. Townsend and Walsh (2001) 

used Landsat TM data from March to August in a single year and produced a detailed 

classification of vegetation communities with an overall accuracy of 92%. However the accuracy 

of wetland forested communities in their study was only 75%.

Most of the studies utilizing multi-temporal data use relatively few dates and study within 

a single growing season. In recent years, multi-year seasonal time-series data have been used for 

improved land-cover classification. These studies have utilized longer time series (greater than 

10 years) representing seasonal and inter-annual variability between land cover classes for 
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improved discrimination (Bradley and Mustard, 2008 and Zoffoli et al., 2008). Time series 

remote sensing data provide information that are directly linked to key aspects of vegetation 

functions, such as seasonality, productivity and inter-annual variability and therefore have 

tremendous potential for characterizing, classifying and mapping vegetation (Wessels et al.,

2010). Inter-annual variability derived from time series data can be a useful metric when land 

cover types show amplified response to differences in environment condition. When several 

years of data are combined, characteristic temporal patterns can be observed which can be used 

to classify land cover (Liang, 2001 and Moody & Johnson, 2001). Data collected by sensors such 

as Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) provide daily observation. Numerous studies have utilized the rich 

temporal information provided by these sensors to study vegetation dynamics at global and 

regional level. However, the coarser spatial resolution (MODIS-250 meter; AVHRR-1 km) 

especially limit their application in studying wetlands as they often occur as small, fragmented 

polygons as small as a few meters across, or as narrow linear features (Fig. 1).

Recently, Landsat data have become available free of cost. At the spatial resolution of 30 

meters and images dating back to 1972, the opening of Landsat archive provides an opportunity 

to study vegetation dynamics at higher spatial and temporal resolution. The Landsat archive can 

be used to assess the temporal pattern of different vegetation communities to improve 

discrimination which would otherwise not be possible using few images taken at different dates. 

Few studies have utilized time series Landsat data to assess vegetation dynamics. Most of these 

studies have focused on characterizing long-term average and inter-annual variability in 

vegetation phenology (Fisher et al., 2006, Elmore et al., 2012 and Melass et al., 2013). In these 

studies, time series Landsat images are arranged by Julian dates discarding the year of 
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acquisition to create a temporal profile indicative of average phenology curve. Walker et al.

(2012) are among few researchers who utilized data fusion techniques which downscale MODIS

data to spatial resolution of Landsat to characterize phenology at annual scale. However, 

information derived from such fused techniques is complicated by land cover heterogeneity 

below the spatial resolution of MODIS and uncertainty introduced by data fusion algorithm 

(Melaas et al., 2013).

Despite numerous attempts, there is a need for developing a better and more accurate 

approach for discriminating forested uplands from wetlands. The objective of the study is to 

investigate if the temporal pattern derived from time series of Landsat data can accurately 

discriminate between wetland and upland forest. Our hypothesis is that during the period of the 

growing season when trees do not have full canopy cover, a wetland forest and upland forest will 

exhibit different temporal trend owing to the hydrology which can be characterized using time 

series data from Landsat.  
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2. Methods

2.1 Study area

The study focuses on the non-tidal forested wetland and forested uplands in the state of 

Delaware (Fig. 2.). The area is characterized by temperate humid continental climate with annual 

average rainfall of 114 cm (http://climate.udel.edu/delawares-climate). Almost all of Delaware’s 

landscape falls on the Coastal Plain. Around 38% of the state is represented by hydric soils 

owing to the relatively flat topography of the area. The water table is at or near the surface in 

most wetlands from winter to mid-spring or early summer, resulting in ponding or flooding of 

the wetland surface. The water table begins to drop in May or June and reaches its low point in 

(b)

(a)

Fig. 1. Comparison of MODIS (a) and Landsat (b) spatial scale overlaid with the wetland layer. National Wetland Inventory 
wetlands in the study area occur in small, narrow patches and are fragmented. The resolution of MODIS pixels in (a) is too coarse 
to capture the spatial detail required. 
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September or October (Lang et al., 2013). About 25% of Delaware is covered by wetlands of 

various types, dominated by palustrine forests (characterized by woody vegetation taller than 6 

m). Palustrine forests cover 64% of the state’s wetlands, with deciduous wetlands that are 

temporarily-flooded being predominant (Tiner et al., 2011). In terms of the hydrogeomorphic 

classification, the majority of the wetlands are classified as flats which are located in the

headwaters and the interfluves between streams, have poor vertical drainage and are fed by 

precipitation and groundwater (Jacobs et al., 2009). The most recent wetland status and trend

report indicated that between 1992 and 2007, 1,578 hectares of vegetated wetlands were lost 

primarily to agriculture and development. In addition to the loss of wetland extent, the report 

also emphasizes that the ecosystem functioning of the remaining wetlands is impaired due to 

adjacent development and fragmentation.
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Fig. 2. The state of Delaware showing distribution of non-tidal forested wetlands derived from National Wetland 
Inventory data (http://www.fws.gov/wetlands/Data/Mapper.html).

2.2 Field data

The wetland data used in this study was collected by Delaware Department of Natural 

Resources and Environmental Control using the Delaware Comprehensive Assessment 

Procedure (DECAP) (Jacobs et al., 2009). The comprehensive assessment method is used for 

determining the condition of a wetland site relative to reference condition. The data were

collected between 1999 and 2012. The DECAP uses a hydrogeomorphic approach for 

classification of wetlands, where wetlands are classified as flats, riverine, slope or depressions.

The majority of the wetlands in the Delaware data were classified either as flats or riverine
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wetlands. Flats occur on interfluves, in the headwaters of watersheds, or large floodplain 

terraces, where the dominant water source is precipitation. Riverine wetlands occur in 

floodplains and riparian corridors in association with stream channels and the dominant source of 

water is overbank flow from channel or subsurface hydraulic connections. DECAP uses existing 

wetlands maps and a probabilistic sampling design technique to select sampling locations. 

Detailed description of field data collection can be found in Jacobs et al. (2009) and Jacobs et al. 

(2010) and is briefly described here. In each sampling location, an assessment area (AA) is 

established by centering a 40m radius circle. In each AA, information on hydrologic condition, 

vegetation communities, vegetation disturbance, soil, topography and surrounding land use is 

collected. All the collected variables are scored to produce a qualitative rating of wetland 

condition.

The field data was combined with the Delaware wetlands layer that was revised using 

2007 aerial imagery. Field data that was classified as palustrine forest in the Delaware wetlands 

layer was extracted. We further separated the data as palustrine broadleaf forest and mixed forest

and scrub-shrub. The field data did not contain enough samples for evergreen forested wetland. 

We therefore focused the study on deciduous palustrine wetland forest and mixed vegetation 

wetland types (mixed types contained forest and scrub-shrub vegetation types). For further 

analysis, we also differentiated flats and riverine wetlands from the broadleaf forest and mixed 

wetland types. The upland forest sample was generated from the 2007 Delaware land cover and 

land use map (http://dataexchange.gis.delaware.gov). The 2007 land-cover map was developed 

based on aerial photos acquired in the summer of 2007

(http://dataexchange.gis.delaware.gov/dataexchange/metadata.aspx). From the 2007 land-cover 

map, we separated the deciduous forest pixels. We randomly distributed 100 sampling points 
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within this area and only used points falling within the non-hydric soil layer derived from

USDA-NRCS Soil Survey Geographic Database

(http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm) for the three counties in Delaware.

2.3 Landsat data and indices calculation

We used all Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus 

(ETM+) data available from 1995 to 2011 (274 scenes) covering state of Delaware (Path:Row 

14:33). The cloud cover was visually assessed in each image. Images with minimum cloud cover 

in the study areas were included. The images were converted to surface reflectance using the 

Landsat Ecosystem Distribution Adaptive Processing System (LEDPAS). LEDAPS uses the 

MODIS/ 6S radiative transfer algorithm to invert the top of atmosphere reflectance to surface 

reflectance for each 30-m pixel (Masek et al., 2006). The LEDAPS generated cloud mask was 

used to mask out the clouds in the images.

Previous studies have used and assessed performance of different Landsat bands and 

band combinations (indices) for wetland mapping. The Federal Geographic Data Committee 

(1992) identified Landsat TM bands 4 and 5 as most effective for wetland delineation. Ozesmi 

and Bauer (2002) indicate that Landsat band 5 is the most important band for wetland 

identification because of its ability to discriminate vegetation from soil moisture. Bwangoy et al.

(2010), in using combination of optical and radar data for mapping wetland in the Congo River 

basin found that Landsat band 5 was the most important variable for wetland identification after 

elevation. Normalized Difference Vegetation index (NDVI: band4-band3/band4+band3) is a 

commonly used index for wetland delineation and wetland vegetation mapping (Aslam et al., 

2008, Gilmore et al., 2008 and Townsend and Walsh 2001). NDVI provides as indicator of 

relative abundance and activities of green vegetation and is sensitive to biophysical 
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characteristics such as leaf area index, net primary productivity and vegetation phenology

(Griffiths, 2002). Another index Normalized Difference Moisture Index (NDMI) is also widely 

used in mapping wetlands (Li and Chen, 2005, Davranche et al., 2010 and Luyan et al., 2011). 

NDMI combines the near infrared and mid-infrared bands (band4-band5/band4+band5) and has 

been shown to be sensitive to soil moisture (Fensholt and Sandholt, 2003). de Alwis et al.(2007) 

used time series of Landsat images and demonstrated that the NDWI can be effectively used to 

classify saturated areas in the landscape. The Tasseled cap transformation (TC) is an orthogonal 

transformation of Landsat bands that transforms the Landsat bands into brightness, greenness 

and wetness axes (Kauth and Thomas 1976). TC is preferred over other data transformation 

methods such as principal component analyses as the TC components corresponds to the 

physical characteristics of vegetation and are ecologically interpretable (Parmenter et al., 2003). 

Dymond et al. (2002) showed that the tasseled cap transformation enhances the phenological 

differences between different forest types leading to improved discrimination of different types 

of deciduous forest. Hodgson et al. (1987) associated the wetness and greenness components of 

TC to different wetland types. Ordoyne and Friedl (2008) compared the effectiveness of Tasseled 

Cap wetness, TC brightness, TC greenness, and NDWI. TC wetness was found to be highly 

correlated with seasonal inundation patterns across a range of surface vegetation types. For this 

study we compared performance of NDVI, NDWI and Tasseled Cap Wetness (TCW).

2.4 Smoothing and curve fitting

We used a locally weighted regression smoothing (Lowess) technique to filter and fit a

smoothed curve in the time series of vegetation index. The Lowess technique has been widely 

used in studies employing remote sensing data such as: smoothing long term vegetation index 

data to analyze the trend (Pouliot et al., 2009); curve fitting in time series data to derive 
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phenological parameters (Lancaster et al., 1996, Briber et al., 2013, Jenerette et al., 2013 and

Morris et al., 2013) and to estimate pasture quality using time series NDVI (Dymond et al., 

2006). Lowess is a non-parametric technique designed to identify the trend in the data without 

prior specification of the model (Cleveland, 1979). It uses a local regression technique within a 

moving window, where points within the moving window are inversely weighted such that the 

observation closest to the point of interest will have more weight (Jacoby, 2000 and Knudsen et 

al., 2007). The degree of smoothing depends on the span of the window which determines the 

proportion of observation used in each local regression. A smaller span parameter will likely 

overfit the data (the fitted curve will be exactly interpolated as original data), while a larger 

parameter will discount the trend in the data. Despite our effort to remove clouds and shadows 

from the images, some small clouds and shadows remained in the images. These outliers can 

distort the smoothed values. In order to make time series reliable, we used a robust lowess 

(rlowess) technique in which the fitted curves are not affected by the outliers in the time series. 

This is achieved through iterative reweighting in which the weights for each iteration are 

adjusted based on the previous fit (Mathworks, 2013). In robust lowess, after the initial fit a 

different set of weights are determined based on the size of the residuals. Large residuals result 

in smaller weights and small residuals result in large weights in the subsequent fit, resulting in a 

fit that is less influenced by outliers (Cleveland, 1979). One of the critical issues in smoothing is 

the selection of the smoothing parameter or the window size. The optimal smoothing parameter 

was determined both by visual inspection and cross-validation. The span parameter with the 

lowest cross validation error was visually checked for the best fit.
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2.5 Extraction of temporal metrics

One of the most common uses of time series vegetation index data is extraction of 

phenological metrics (e.g., start of the growing season, end of the growing season, length of the

growing season),which is achieved using remote sensing data with greater temporal resolution 

such as MODIS. In recent years, few studies have utilized time series vegetation data from 

Landsat to extract phenological markers mainly start and the end of growing season (Fisher et 

al., 2006, Fisher et al., 2007, Elmore et al., 2012 and Melaas et al., 2013). Since our goal in this 

study is to investigate if the temporal pattern of vegetation indices can discriminate between 

wetland and upland deciduous forest, using only the standard phenological metrics such as start 

and end of the growing season may not reveal subtle differences between upland and wetland 

forests. Therefore, we calculated other different temporal metrics from the fitted curve. Table 1 

lists the temporal metrics extracted in this study. We assume that these metrics sufficiently 

capture the different temporal trend between wetland and upland forests. We extracted these 

temporal metrics using observations from March to November in order to minimize the effect of 

snow on vegetation index values.

Table 1.  List and description of temporal metrics derived from Landsat time series data.

Temporal metric Description
Spring Julian day at first inflection point
Fall Julian day at second inflection point
Growing Days Length of growing season (fall - spring)
AOCin Area under the curve between inflection points
AOCin1 Area under the curve before spring
AOCin2 Area under the curve after fall
STDIN1 Bootstrap median width of 95% confidence interval until first inflection point
STDIN2 Bootstrap median width of 95% confidence interval  after second  inflection point
AUCFWHM Area under the curve related to FWHM
AUCRFW Area under the curve of left side of  FWHM
AUCLFW Area under the curve of right  side of FWHM
TAUC Total area under the curve
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Max Median value of greater than 75th percentile
MaxD Julian day corresponding to maximum 
Min05R Minimum of median of 5% from the right side of the curve 
Min05L Minimum of median of 5% from the left side of the curve 
KU Kurtosis
SK Skewness

A common method to derive phenological markers from time series data is to calculate 

inflection points in the time series curve (White et al., 1997, Sakamoto et al., 2005 and Baltzer et al., 

2007). The first inflection point (Spring) is where there is maximum change in the rising limb of the 

curve and the second inflection point (Fall) is where there is maximum change in the falling limb of 

the curve. The first and the second inflection point calculated in this way generally refer to start and 

the end of the season (de Beurs et al., 2010). The difference between these two inflection points 

(Growing Days) is indicative of growing season length. The total area under the curve between the 

inflection points (AUCin) was calculated as the integral of vegetation indices values between the two 

inflection point and when calculated with NDVI is indicative of vegetation productivity (Hird and 

McDermid, 2009). We also calculated the area under the curve before the first inflection point 

(AOCin1) and second inflection point (AOCin2). The full width half maximum (FWHM) of the time 

series vegetation index value has also been used in deriving phenological parameters (Coops et al., 

2011 and El Vilaly et al., 2013). Similar to the area under the curve calculation using inflection point, 

the area under the curve at FWHM (AUCFWHM), area under the curve of the left side of FWHM 

(AUCLFW) and right side (AUCRFW) was calculated. The maximum value of the time series 

(Max) was calculated as median of the values greater than 75th percentile and the day 

corresponding to the maximum value (MaxD) was also extracted. Visual analysis of the time 

series data indicated that the minimum value in the beginning and end of the time series were 

different for wetland and upland forests. To quantify this we calculated the median of the 5 percentile 

values for the left and right side of the time series curve (Min05L and Min05R). We calculated the 

median value instead of mean so that they were not affected by outliers. The left and right side of the 
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time series curve was divided based on the maximum value of the fitted curve. The kurtosis (KU) 

and skewness (SK) were calculated to assess the symmetry in the time series curve.

2.6 Random forest classification

We used random forest algorithm to investigate the ability of the derived temporal 

metrics to discriminate between wetland and upland forests. Random forest is a non- parametric 

classification tree technique that randomly and iteratively samples the data and variables to 

generate large groups of classification trees (Breiman, 2001). The algorithm implements a 

bootstrapping procedure (generating random sample from training data with replacement) to 

generate random subset of training data (approximately 63%), which is used to fit a classification 

tree with small number of randomly selected variables (Cutler et al., 2007). The portion of

training data not selected for generation of the classification tree (often termed as “out-of-bag” 

sample) is classified using the fitted tree and is used to calculate bootstrap error estimates and 

accuracy for each tree. After all the trees are grown, overall error and accuracy is calculated by 

averaging error rates across all trees in the forest. Since out-of-bag observations are not used in 

fitting the trees, out-of-bag error estimates provide an unbiased estimate of classification 

accuracy (Cutler et al., 2007). Random forest classification is robust against overfitting and 

correlated variables and can produce higher accuracies than traditional classification tree 

(Falkowski et al., 2009). Classification accuracy was assessed with the bootstrap error estimates 

and error matrices calculated by random forest. Overall accuracy, producer’s and user’s accuracy 

were calculated and examined to assess the effectiveness of classification. The overall accuracy 

is the proportion of correctly identified change events. The producer’s accuracy measures the 

proportion of pixel belonging to a class that was correctly classified by the method and measures 

the error of omission. User’s accuracy measures the proportion of the pixels classified as 
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belonging to a class matches the reference data and measures the error of commission. Random 

forest also calculates the importance of each predictor variable upon model accuracy. The out-of-

bag values for each variable in a bootstrap sample are randomly permuted. The importance is 

then measured as the difference between the prediction accuracy before and after the permutation 

and averaged over all the trees (Tooke et al., 2013). The magnitude of the decrease in prediction 

accuracy indicates the importance of a predictor variable.

We trained and validated random forest classification models based on: (1) temporal 

metrics derived from the NDVI time series, (2) temporal metrics derived from NDMI time series, 

and, (3) temporal metrics derived from TCW time series. We also developed similar models for 

classification of wetland forest into riverine and flats.

We aimed to investigate which index provides better discrimination between forested 

wetlands and uplands. To achieve this, random forest models were built from temporal metrics 

derived from each index separately. The classification accuracy of each model was compared to 

assess their performance in discriminating wetlands from upland forests.
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3. Results

3.1 Time series profile of wetland and upland forests.
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Fig. 3. An example of temporal profile of wetland (a) and upland (b) from NDVI time series, with the fitted curve from rlowess (solid 
line)

Fig. 4. An example of temporal profile of wetland (a) and upland (b) from NDMI time series, with the fitted curve from rlowess (solid 
line)
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Fig. 3, 4 and 5 show examples of the temporal profile of wetland and upland areas

created by the three compared vegetation indices. Although visual inspection might not show 

clear differences between wetlands and uplands, some differences are evident in the time series. 

The minimum value during early spring (beginning of the curve) is different between wetlands

and uplands in all three indices. For example, during summer and early fall when the leaf are out 

(flattened portion of the curve, where most of the observations are located) there is no difference 

between the wetlands and uplands. The range of vegetation indices values in this section of the 

curve is similar in both wetlands and uplands. The width of the curve also appears to be different 

between wetlands and uplands. It can be seen from the figures that the fitted curve follows the 

trend in the time series data and are also not affected by outliers. An example of the 95% 

bootstrap confidence interval of the rlowess fit is shown in Fig 6. The 95% confidence bound of

the fitted curve is narrow and follows the contour of the fitted curve. Also, the confidence bound 

is much narrower for uplands compared to wetlands. In the early spring, the confidence bound is 

wider for wetlands than uplands.
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Fig. 5. An example of temporal profile of wetland (a) and upland (b) from TCW time series, with the fitted curve from rlowess 
(solid line)
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3.2 Random forest classification

The temporal metrics derived from time series data were used in random forest 

classification. We first ran random forest classification with three classes (upland forest, wetland 

forest and mixed wetlands). Secondly, we ran random forest classification for only two 

vegetation type classes (upland forest and wetland forest). Finally, a random forest model was 

built for hydrogeomorphic classification of wetlands into flats and riverine classes. Accuracies 

were compared for random forest model built from temporal metrics derived from NDVI, NDMI 

and TCW time series.
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Fig. 6. An example of rlowess fit (black line) with 95% confidence interval boundary (red dashed lines)
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Table 2. Accuracy statistics for three class classification (upland forest, wetland forest and mixed wetland)

Classes Producer’s accuracy 
(%)

User’s accuracy 
(%)

Overall accuracy (%)

NDMI temporal metrics
Upland forest 88 86.2 82.2
Wetland forest 61.1 68.7
Mixed wetlands 77.5 70.3
NDVI temporal metrics
Upland forest 78 84.7 76.2
Wetland forest 64.8 62.5
Mixed wetlands 75.5 72.5
TCW temporal metrics
Upland forest 80 81.6 73.2
Wetland forest 55.5 55.5
Mixed wetlands 67.3 66
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Fig. 7. Variable importance plot for a three-class random forest model developed with NDMI temporal metric. Units are percent 
reduction in classification accuracy which would results when a given variable is removed from the classification model. See 
Table 1 for variable definition.

When classifying three vegetation type classes, the model derived from NDMI temporal 

metrics produced highest classification accuracy (82.2%) followed by classification using NDVI

temporal metrics (76.2%). The error matrix (Table 2) shows that the upland forest area was more 

often classified accurately (producer’s accuracy of 88% in NDMI model) than wetland areas. 

Wetland areas were confused with uplands 14% of the time in NDMI model. The major 

classification confusion was between wetland forest and mixed wetland types. In the variable 

importance plot (Fig.7) the three most important variables were total area under the curve 

(TAUC), median of 5th percentile values of the left side of the curve (MIN05L) and bootstrap 

median width of 95% confidence interval until first inflection point (STDINL). When these three 

variables are removed from the model, the classification accuracy decreases by more than 15%.
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Table 3. Accuracy statistics for two class classification (wetland forest and upland forest)

Classes Producer’s accuracy (%) User’s accuracy (%) Overall accuracy (%)
NDMI temporal metrics
Upland forest 86 89.5 88.5
Wetland forest 90.7 87.5
NDVI temporal metrics
Upland forest 80 86.9 84.6
Wetland forest 88.9 82.8
TCW temporal metrics
Upland forest 80 83.3 82.7
Wetland forest 85.1 82.1

Fig. 8. Variable importance plot for two class random forest model developed with NDMI temporal metrics. Units are percent 
reduction in classification accuracy which would result when a given variable is removed from classification model. See Table 1 
for variable definition.

When we only considered two vegetation type classes (upland forest and wetland forest), 

the classification accuracy significantly improved (Table 3). The best classification accuracy was 

again obtained with NDMI model. The overall classification accuracy achieved was 88.5%

followed by classification using metrics derived from NDVI time series, with overall 
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classification accuracy of 84.6%. In the NDMI model, upland areas were confused with wetland 

areas only 10% of the time (commission error) and wetland areas were confused with upland 

areas only 13% of the time. The temporal metrics derived from TCW time series resulted in 

lowest accuracy (82.7%). The variable importance figure (Fig.8) shows that the most important 

variable in the NDMI model were minimum of the 5th percentile in the left hand side of the 

curve (Min05L), area under the curve of the full width half maximum (AUCFWHM), area under 

the curve of the right side of full width half maximum (AUCRFW) and total area under the curve

(TAUC). Removal of these four variables decreases the classification accuracy by more than 

10%. We created a scatter plot of two most important variables as identified by random forest. 

As seen in the scatter plot (Fig. 9), just using these two variables there is very good separation 

between wetlands and uplands.

Fig. 9. Scatter plot of two most important variable identified by random forest in discriminating between wetlands (plus sign) and 
uplands (triangle sign). TAUC is total area under the curve and Min05L is 5th percentile of the left hand side of the curve.
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Table 4. Classification accuracy statistics for classification of flat and riverine wetland types 

Classes Producer’s accuracy (%) User’s accuracy (%) Overall accuracy (%)
NDMI temporal metrics
Flat 92 77.9 77.3
Riverine 48 75
NDVI temporal metrics
Flat 92 77.9 77.3
Riverine 48 75
TCW temporal metrics
Flat 84 64.6 58.6
Riverine 8 2

Fig. 10. Variable importance plot for classification of flat vs. riverine wetland types developed with NDVI temporal metrics. 
Units are percent reduction in classification accuracy which would results when a given variable is removed from classification 
model. See Table 1 for variable definition.

For the discrimination between flat and riverine wetlands, the both the NDMI and NDVI 

model resulted in the overall accuracy of 77.3%. The accuracy of TCW model was only 58.6% 

Producer’s accuracy shows that the flats are classified more accurately than riverine wetlands. 

Flat wetland types are classified correctly 92% of the time, whereas riverine wetlands are only 

classified correctly 48% of the time. The variable importance plot (Fig.10.)The maximum NDVI 
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value (MAX), the day corresponding to maximum value (MAXD) and the area under the curve 

of FWHM (AUCFWHM) were important variables.

4. Discussion 

The vast majority of forested wetlands are often broadly classified as deciduous forest,

which is due to limitation of the traditional methodologies to discriminate between upland forest 

and wetland forest. In this study we have demonstrated that the temporal metrics derived from 

time series of remote sensing data provide information to detect subtle differences between these 

two classes, leading to accurate discrimination. This is in contrast to the study of Knight et al. 

(2006), where they did not find any difference between the temporal profile of deciduous forest 

and woody wetlands using time series MODIS data. We had the advantage of higher spatial 

resolution from Landsat, which captured the fine scale variability exhibited due to wetland 

hydrology.

The best accuracy achieved in this study for discrimination between forested uplands and 

wetlands was 92%. The accuracies of the classification achieved in this study are similar to or 

higher than those attained in other studies classifying forested uplands from wetlands using 

remotely sensed data. For example, Lang et al., (2008) using radar data, mapped woody wetland 

and upland areas and found that the areas that were flooded for 25% of the time were mapped

with accuracy ranging 63 96% and areas flooded for 5% were mapped with accuracy ranging 

from 44 89%. Similarly, Corcoran et al. (2013) used combination of Landsat, topographic, radar 

and soils data to map upland and wetland areas in Minnesota and achieved an accuracy of 85%. 

The use of optical imagery in wetland mapping is limited because of its inability to directly 

observe inundation beneath forest canopies, especially in leaf on condition (e.g., Toyra and 

Pietroniro, 2005 and Lang et al., 2008). However, in this study we have demonstrated that 
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temporal pattern that can be extracted from time series of Landsat data alone can accurately

discriminate between forested upland and wetland areas.  

The accuracy of the three class vegetation type model (forested uplands, forested wetland 

and mixed wetland) was slightly lower (82.2%) compared to the accuracy of two class model

(forested uplands and forested wetland), which was 88.5 %. The mixed wetland class contained 

areas of mixed vegetation that included scrub-shrub wetlands, deciduous forest and coniferous 

forest. The overlap in plant types might have resulted in confusion between the forested wetland 

and mixed wetland class, and caused the slight reduction in accuracy in three class model.

However, with the accuracy of 82%, the method used in this study was still successful in 

discriminating the three classes with reasonably high accuracy.

In terms of different vegetation indices used in this study, NDMI temporal metrics 

achieved higher accuracy than NDVI and TCW temporal metrics. This is in contrast to other 

studies that have shown better performance of TCW in classifying wetlands (Baker et al., 2006, 

Orodyne and Friedl, 2008. TCW index is the contrast of visible and near infrared bands with the 

middle infrared bands. The longer wavelength middle infrared bands (bands 5 and 7 in Landsat) 

are sensitive to soil moisture. The contrast provided by TCW aims to enhance the soil moisture 

status. To our surprise, classification based upon tasseled cap wetness provided the worst 

accuracy in this study compared to the classification based upon the temporal profile created by 

NDVI and NDMI. Temporal profile of TCW were widely irregular for all classes (widely 

varying shape ranging from flattened curve to symmetric curve) as opposed to comparatively 

regular and symmetric temporal profiles of NDMI. The best classification model was provided 

by NDMI temporal metrics. Time series NDMI has been successfully used by other studies (eg. 

de Alwis et al., 2007) to map saturated areas in the landscape. NDMI values vary proportionally 
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with surface water content during leaf off period and the leaf water content during leaf-on period 

(de Alwis et al., 2007). Comparing the temporal profile of three vegetation index visually (Fig.3 

to Fig. 5) we can see that the differences in NDMI temporal profile between forested uplands and 

wetlands is greater than in NDVI and TCW temporal profile. The difference in the temporal 

profile is highest in the early spring. The differences in the temporal profile in the summer and 

early fall between these two classes diminishes, because at this time tree are fully foliated and if 

any soil saturation or flooding is present it is obscured by the canopies.

The random forest model used in this study allowed us to assess the variable importance 

of each temporal metrics for classification. The most important variables identified in all the 

model was the median of the 5th percentile value of the left side of the curve (Min05L), which is 

during early growing season. This indicates that the time series data can sufficiently capture the 

difference in soil saturation/flooding between wetland and upland areas during growing season.

The wetlands in this area are inundated or saturated for a short period of time in early spring (in 

or around March) when evapotranspiration has been relatively low for the longest period of time 

(Lang et al., 2013). In both the combined model and NDMI model (which provided the best 

accuracy after the combined model) for two class classification, the other important variables

were total area under the curve (TAUC) and area under full width half maximum

(TAUCFWHM). These two variables might be indicative of seasonal pattern of forested uplands

and wetlands and the variable importance plot indicates that these variables are different in these 

two classes. The scatter plot of the two important variable (Fig. 9) shows that the forested upland 

and wetland class are linearly separable in the feature space. Combined with a machine learning 

algorithm such as random forest and other variables derived from the time series, the method 

provided a better separation between the wetland and upland class. The accuracy of model to 
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discriminate between flats and riverine wetland was lower (best accuracy of 80%) compared to 

forested upland and wetland classification. The riverine class had very high error of omission 

(52%). One of the reasons for poor classification of riverine wetlands might be because they 

occur as narrow, linear features along riparian corridors in association with stream channels, 

which might induce greater heterogeneity in their spectral signature. The wetland components 

used to make hydrogeomorphic classification (e.g., geomorphic setting, water sources and 

transport and hydrodynamics- direction and strength of flow) are not discernible from spectral 

information. However, newer remote sensing techniques such as Light Detection and Ranging 

(lidar) terrain analysis that provides accurate information on topography can potentially be 

utilized together with optical data to develop classification based on both hydrogeomorphic and 

biotic factors such as vegetation and soil saturation.

Finally, accuracy of the technique used in this study depends on the accuracy of the time 

series data. Errors are introduced in the time series data due to clouds, shadow, location error and 

atmospheric interferences. We used a cloud mask to remove clouds and cloud shadows. Further

the filtering approach using robust lowess was able to remove the effect of outliers from the 

fitted vegetation index curve.

Due to insufficient number of field samples for coniferous and scrub shrub wetland

vegetation types, we limited our study only to deciduous upland and wetland forest. Future 

research should also investigate the ability of this method in discriminating coniferous wetlands 

forest and scrub shrub from their upland counterparts. The NWI classification does not provide 

much information on the hydroperiod of the wetlands. The method can be combined with data on 

long term hydrology monitoring to investigate if the temporal patterns differ in wetlands with 

different level of flooding and saturation. 
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5. Conclusion

We investigated a new method for discriminating between forested uplands and forested 

wetlands using temporal metrics derived from time-series Landsat data. The method consists of 

(i) arranging Landsat data based on the day of acquisition to develop a characteristic temporal 

signature; (ii) filtering and fitting a curve in the time-series data; (iii) extracting temporal metrics 

from the time series data; and (iv) using random forest model for classification and identification 

of important variables. We hypothesized that a classification approach using suite of temporal 

metrics that characterize the differences in vegetation and soil saturation pattern between 

forested uplands and forested wetlands will enable us to discriminate between these two classes 

with greater accuracy. The classification accuracy presented here achieved the accuracy of 92% 

for a two vegetation type class model and 85% for three vegetation type class model thus 

demonstrating that Landsat time series data alone can provide accurate discrimination of forested 

uplands and wetlands. Given that the highly processed Landsat data is now available free of cost, 

the techniques presented in this study can be readily implemented in other similar areas.

Acknowledgment

The authors would like to thank Ms. Alison Rogerson (Delaware Department of Natural 

Resources and Environmental Control) for providing the field data collected for comprehensive 

assessment of wetlands in Delaware. 

60



References

Adam, E., Mutanga, O., & Rugege, D. (2010). Multispectral and hyperspectral remote sensing 
for identification and mapping of wetland vegetation: a review. Wetlands Ecology and 
Management, 18, 281-296

Baker, C., Lawrence, R., Montagne, C., & Patten, D. (2006). Mapping wetlands and riparian 
areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands, 26, 465-474

Balzter, H., Gerard, F., George, C., Weedon, G., Grey, W., Combal, B., Bartholomé, E., 
Bartalev, S., & Los, S. (2007). Coupling of vegetation growing season anomalies and fire 
activity with hemispheric and regional-scale climate patterns in central and east Siberia. 
Journal of Climate, 20, 3713-3729

Beurs, K., & Henebry, G. (2010). Spatio-temporal statistical methods for modelling land surface 
phenology. In I.L. Hudson, & M.R. Keatley (Eds.), Phenological Research (pp. 177-208): 
Springer Netherlands

Bradley, B.A., & Mustard, J.F. (2005). Identifying land cover variability distinct from land cover 
change: Cheatgrass in the Great Basin. Remote Sensing of Environment, 94, 204-213

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32

Briber, B., Hutyra, L., Dunn, A., Raciti, S., & Munger, J. (2013). Variations in Atmospheric CO2 
Mixing Ratios across a Boston, MA Urban to Rural Gradient. Land, 2, 304-327

Bwangoy, J.-R.B., Hansen, M.C., Roy, D.P., Grandi, G.D., & Justice, C.O. (2010). Wetland 
mapping in the Congo Basin using optical and radar remotely sensed data and derived 
topographical indices. Remote Sensing of Environment, 114, 73-86

Cleveland, W.S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. 
Journal of the American Statistical Association, 74, 829-836

Coops, N.C., Hilker, T., Bater, C.W., Wulder, M.A., Nielsen, S.E., McDermid, G., & Stenhouse, 
G. (2011). Linking ground-based to satellite-derived phenological metrics in support of 
habitat assessment. Remote Sensing Letters, 3, 191-200

Corcoran, J., Knight, J., & Gallant, A. (2013). Influence of multi-source and multi-temporal 
remotely sensed and ancillary data on the accuracy of random forest classification of 
wetlands in northern Minnesota. Remote Sensing, 5, 3212-3238

Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., & Lawler, J.J. 
(2007). Random forests for classification in ecology. Ecology, 88, 2783-2792

Davranche, A., Lefebvre, G., & Poulin, B. (2010). Wetland monitoring using classification trees 
and SPOT-5 seasonal time series. Remote Sensing of Environment, 114, 552-562

DeAlwis, D.A., Easton, Z.M., Dahlke, H.E., Philpot, W.D., & Steenhuis, T.S. (2007). 
Unsupervised classification of saturated areas using a time series of remotely sensed images. 
Hydrolic Earth System Science, 4, 1663-1696

Dymond, C.C., Mladenoff, D.J., & Radeloff, V.C. (2002). Phenological differences in Tasseled 
Cap indices improve deciduous forest classification. Remote Sensing of Environment, 80, 
460-472

61



Dymond, J.R., Shepherd, J.D., Clark, H., & Litherland, A. (2006). Use of VEGETATION 
satellite imagery to map pasture quality for input to a methane budget of New Zealand. 
International Journal of Remote Sensing, 27, 1261-1268

Elmore, A.J., Guinn, S.M., Minsley, B.J., & Richardson, A.D. (2012). Landscape controls on the 
timing of spring, autumn, and growing season length in mid-Atlantic forests. Global Change 
Biology, 18, 656-674

El Vilaly, M.A. (2013). Drought monitoring with remote sensing based land surface phenology: 
applications and validation. PhD Thesis, University of Arizona
http://arizona.openrepository.com/arizona/bitstream/10150/301553/1/azu_etd_12880_sip1_
m.pdf

Falkowski, M.J., Evans, J.S., Martinuzzi, S., Gessler, P.E., & Hudak, A.T. (2009). 
Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, 
USA. Remote Sensing of Environment, 113, 946-956

Federal Geographic Data Committee (1992). Application of satellite data for mapping and 
monitoring wetlands —
Subcommittee, Federal Geographic Data Committee

Fensholt, R., & Sandholt, I. (2003). Derivation of a shortwave infrared water stress index from 
MODIS near- and shortwave infrared data in a semiarid environment. Remote Sensing of 
Environment, 87, 111-121

Fisher, J.I., & Mustard, J.F. (2007). Cross-scalar satellite phenology from ground, Landsat, and 
MODIS data. Remote Sensing of Environment, 109, 261-273

Fisher, J.I., Mustard, J.F., & Vadeboncoeur, M.A. (2006). Green leaf phenology at Landsat 
resolution: Scaling from the field to the satellite. Remote Sensing of Environment, 100, 265-
279

Gilmore, M.S., Wilson, E.H., Barrett, N., Civco, D.L., Prisloe, S., Hurd, J.D., & Chadwick, C. 
(2008). Integrating multi-temporal spectral and structural information to map wetland 
vegetation in a lower Connecticut River tidal marsh. Remote Sensing of Environment, 112, 
4048-4060

Griffith, J. (2002). Geographic techniques and recent applications of remote sensing to 
landscape-water quality studies. Water, Air, and Soil Pollution, 138, 181-197

Harvey, K.R., & Hill, G.J.E. (2001). Vegetation mapping of a tropical freshwater swamp in the 
Northern Territory, Australia: A comparison of aerial photography, Landsat TM and SPOT 
satellite imagery. International Journal of Remote Sensing, 22, 2911-2925

Hird, J.N., & McDermid, G.J. (2009). Noise reduction of NDVI time series: An empirical 
comparison of selected techniques. Remote Sensing of Environment, 113, 248-258

Hodgson, M. E., Jensen, J. R., Mackey, H. E., & Coulter, M. C. (1987). Remote sensing of 
wetland habitat: A wood stork example, Photogrammetric Engineering and Remote Sensing, 
53, 1075-1080

Jacobs, A.D., D.F. Whigham, D.Fillis, E.Rehm, & Howard, A. (2009). Delaware comprehensive 
assessment procedure Version 5.2. Delaware Department of Natural Resources and 
Environmental Control, Dover, DE 

62



Jacoby, W.G. (2000). Loess: a nonparametric, graphical tool for depicting relationships between 
variables. Electoral Studies, 19, 577-613

Jenerette, G.D., Miller, G., Buyantuev, A., Pataki, D.E., Gillespie, T.W., & Pincetl, S. (2013). 
Urban vegetation and income segregation in drylands: a synthesis of seven metropolitan 
regions in the southwestern United States. Environmental Research Letters, 8, 044001

Kauth, R. J., & Thomas, G. S. (1976). The Tasseled Cap — a graphic description of the spectral-
temporal development of agricultural crops as seen by Landsat. Proceedings of the 
Symposium on Machine Porcessing of Remotely Sensed Data (pp. 4B41–44B51). West 
Lafayette, Indiana: Purdue University

Knight, J.F., Lunetta, R.S., Ediriwickrema, J., & Khorram, S. (2006). Regional scale land cover 
characterization using MODIS-NDVI 250 m multi-temporal imagery: A phenology-based 
approach. GIScience & Remote Sensing, 43, 1-23

Knudsen, E., Lindén, A., Ergon, T., Jonzén, N., Vik, J.O., Knape, J., Røer, J.E., & Stenseth, N.C. 
(2007). Characterizing bird migration phenology using data from standardized monitoring at 
bird observatories. Climate Research, 35, 59-77

Lancaster, J., Mouat, D., Kuehl, R., Whitford, W., & Rapport, D. (1996). Time series satellite 
data to identify vegetation response to stress as an indicator of ecosystem health. 
Proceedings, Shrubland Ecosystem Dynamics in a Changing Environment, 23-25 May 1995, 
Las Crucas, New Mexcio, General Technical Report INT-GTR-338, U.S. Department of 
Agriculture, Forest Service, Intermountain Research Station, Ogden, Utah, pp. 255-261

Lang, M., McCarty, G., Oesterling, R., & Yeo, I.-Y. (2013). Topographic Metrics for Improved 
Mapping of Forested Wetlands. Wetlands, 33, 141-155

Lang, M.W., Kasischke, E.S., Prince, S.D., & Pittman, K.W. (2008). Assessment of C-band 
synthetic aperture radar data for mapping and monitoring Coastal Plain forested wetlands in
the Mid-Atlantic Region, U.S.A. Remote Sensing of Environment, 112, 4120-4130

Li, J., & Chen, W. (2005). A rule-based method for mapping Canada's wetlands using optical, 
radar and DEM data. International Journal of Remote Sensing, 26, 5051-5069

Liang, S. (2001). Land-cover classification methods for multi-year AVHRR data. International 
Journal of Remote Sensing, 22, 1479-1493

Lunetta, R., & Balogh, M. (1999). Application of multi-temporal Landsat 5 TM imagery for 
wetland identification. Photogrammetric Engineering and Remote Sensing, 65, 1303-1310

Luyan, J., Kang, J., Xiurui, G., Hairong, T., Kai, Y., & Yongchao, Z. (2011). Improving Wetland 
Mapping by Using Multi-Source Data Sets. In, Image and Data Fusion (ISIDF), 2011 
International Symposium on (pp. 1-4)

Mackey, H.E.J. (1989). Monitoring seasonal and annual wetland changes in a freshwater marsh 
with SPOT HRV data. 

Masek, J.G., Vermote, E.F., Saleous, N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Feng, G., 
Kutler, J., & Teng-Kui, L. (2006). A Landsat surface reflectance dataset for North America, 
1990-2000. Geoscience and Remote Sensing Letters, IEEE, 3, 68-72

63



Melaas, E.K., Friedl, M.A., & Zhu, Z. (2013). Detecting interannual variation in deciduous 
broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sensing of Environment, 
132, 176-185

Mitsch, W.J., & Gosselink, J.G. (2007). Wetlands. Hoboken, N.J.: Wiley

Moody, A., & Johnson, D.M. (2001). Land-Surface Phenologies from AVHRR Using the 
Discrete Fourier Transform. Remote Sensing of Environment, 75, 305-323

Morris, D., Boyd, D., Crowe, J., Johnson, C., & Smith, K. (2013). Exploring the Potential for 
Automatic Extraction of Vegetation Phenological Metrics from Traffic Webcams. Remote 
Sensing, 5, 2200-2218

Ordoyne, C., & Friedl, M.A. (2008). Using MODIS data to characterize seasonal inundation 
patterns in the Florida Everglades. Remote Sensing of Environment, 112, 4107-4119

Ozesmi, S.L., & Bauer, M.E. (2002). Satellite remote sensing of wetlands. Wetlands Ecology 
and Management, 10, 381-402

Pantaleoni, E., Wynne, R.H., Galbraith, J.M., & Campbell, J.B. (2009). Mapping wetlands using 
ASTER data: a comparison between classification trees and logistic regression. International 
Journal of Remote Sensing, 30, 3423-3440

Parmenter, A.W., Hansen, A., Kennedy, R.E., Cohen, W., Langner, U., Lawrence, R., Maxwell, 
B., Gallant, A., & Aspinall, R. (2003). Land use and land cover change in the greater 
yellowstone ecosystem: 1975–1995. Ecological Applications, 13, 687-703

Pouliot, D., Latifovic, R., & Olthof, I. (2008). Trends in vegetation NDVI from 1 km AVHRR 
data over Canada for the period 1985–2006. International Journal of Remote Sensing, 30, 
149-168

Sader, S.A., Ahl, D., & Liou, W.-S. (1995). Accuracy of landsat-TM and GIS rule-based 
methods for forest wetland classification in Maine. Remote Sensing of Environment, 53, 
133-144

Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., & Ohno, H. (2005). A 
crop phenology detection method using time-series MODIS data. Remote Sensing of 
Environment, 96, 366-374

Schmidt, K.S., & Skidmore, A.K. (2003). Spectral discrimination of vegetation types in a 
Coastal wetland. Remote Sensing of Environment, 85, 92-108

Tiner, R.W., Biddle, M.A., Jacobs, A.D., Rogerson, A.B., & McGuckin, K.G. (2011). Delaware 
Wetlands: Status and Changes from 1992 to 2007. Cooperative National Wetlands Inventory 
Publication. U.S. Fish and Wildlife Service, Northeast Region, Hadley, MA and the 
Delaware Department of Natural Resources and Environmental Control, Dover, DE. 35 pp

Todd, M.J., Muneepeerakul, R., Pumo, D., Azaele, S., Miralles-Wilhelm, F., Rinaldo, A., & 
Rodriguez-Iturbe, I. (2010). Hydrological drivers of wetland vegetation community 
distribution within Everglades National Park, Florida. Advances in Water Resources, 33, 
1279-1289

Tooke, T.R., Coops, N.C., & Webster, J. (2013). Predicting Building Ages from LiDAR data 
with Random Forests for Building Energy Modelling. Energy and Buildings

64



Townsend, P., & Walsh, S. (2001). Remote sensing of forested wetlands: application of
multitemporal and multispectral satellite imagery to determine plant community 
composition and structure in southeastern USA. Plant Ecology, 157, 129-149

Töyrä, J., & Pietroniro, A. (2005). Towards operational monitoring of a northern wetland using 
geomatics-based techniques. Remote Sensing of Environment, 97, 174-191

Valk, A.v.d. (2006). The biology of freshwater wetlands. Oxford; New York: Oxford University 
Press

Walker, J.J., de Beurs, K.M., Wynne, R.H., & Gao, F. (2012). Evaluation of Landsat and 
MODIS data fusion products for analysis of dryland forest phenology. Remote Sensing of 
Environment, 117, 381-393

Wessels, K., Steenkamp, K., von Maltitz, G., & Archibald, S. (2011). Remotely sensed 
vegetation phenology for describing and predicting the biomes of South Africa. Applied 
Vegetation Science, 14, 49-66

White, M.A., Thornton, P.E., & Running, S.W. (1997). A continental phenology model for 
monitoring vegetation responses to interannual climatic variability. Global Biogeochemical 
Cycles, 11, 217-234

Wolter, P.T., Johnston, C.A., & Niemi, G.J. (2005). Mapping submergent aquatic vegetation in 
the US Great Lakes using Quickbird satellite data. International Journal of Remote Sensing, 
26, 5255-5274

Wright, C., & Gallant, A. (2007). Improved wetland remote sensing in Yellowstone National 
Park using classification trees to combine TM imagery and ancillary environmental data. 
Remote Sensing of Environment, 107, 582-605

Zoffoli, M., Kandus, P., Madanes, N., & Calvo, D. (2008). Seasonal and interannual analysis of 
wetlands in South America using NOAA-AVHRR NDVI time series: the case of the Parana 
Delta Region. Landscape Ecology, 23, 833-848

65



CHAPTER 4

Utility of Lidar Derived Topographic Metrics for Improved Wetland Mapping

Prepared for submission to ISPRS Journal of Photogrammetry and Remote Sensing

Abstract:

Accurate and updated wetland maps are important for wetland conservation and 

management. Optical remote sensing data has been widely used for mapping and monitoring 

wetlands. Topography plays a key role in the formation and functioning of wetlands, but use of 

topographic information in wetland mapping has been constrained by limited availability of high 

resolution topographic data such as that provided by Light Detection and Ranging (lidar) data. In 

this study, we assessed the utility of topographic variables generated from a lidar-derived DEM 

to discriminate wetland from upland in in Virginia. We assessed multiple terrain variables,

including slope, curvature, plan curvature, profile curvature, the topographic position index

(TPI), and the topographic wetness index (TWI) derived using four different flow routing 

algorithms. We also assessed the most important variables that can accurately discriminate 

wetland from upland using the Random Forest classification technique. The best classification 

discriminated wetland from upland pixels with an accuracy of 72%. The TWI calculated from

the distributed flow routing algorithm, slope and TPI were found to be important predictors. The 

study shows that the topographic variables generated from high resolution DEM can improve the 

accuracy of wetland mapping. Lidar data has great potential to aid wetland mapping especially in 

areas where availability of optimal optical remote sensing data may be limited due to cloud 

cover. In addition, the combined use of optical data such as Landsat and lidar may be a superior 

approach for operation wetland mapping.
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1. Introduction 

Wetlands are among the most unique and productive ecosystems on earth, providing habitat 

for numerous rare and endangered plants and animals. Wetlands play an important role in 

biogeochemical cycling and flood control and provide numerous ecological and economical 

values and services (Mitch and Gosselink, 2000). Historically regarded as wastelands, large areas 

of wetlands have been filled for urban use or drained for agriculture. The biologic, aesthetic, and 

economic values of wetlands are now known to be disproportionately large compared to the 

often small percentage of the landscape they occupy (Lang et al., 2008). This growing 

recognition of importance of wetlands has led to national and international efforts for wetland

conservation and protection.

Successful conservation of wetlands requires up-to-date and accurate maps that show the 

type, location, size and extent of wetlands. The most common methods of wetland mapping uses 

optical imagery derived from multi-spectral sensors or aerial photography. The US Fish and 

Wildlife Service’s National Wetland Inventory (NWI) program initiated the first nationwide 

survey of wetlands in the conterminous US. NWI wetland maps are produced using mid-to-high 

altitude aerial photographs, usually taken during early spring. Aerial photographs at scales from 

1:40,000 to 1:80,000 (or 1:133,000 for earlier maps) are used. Manual photo-interpretation 

techniques coupled with field verification, topographic maps and soil information are used for

identification and classification of wetlands (Dahl and Watmough, 2007). Studies have shown 

varying levels of accuracies of NWI maps. In general they have been reported to have low 

commission error and in many cases high omission error (Wright and Gallant, 2007). Stolt and 
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Baker (1995) reported omission error rates greater than 85% in the Blue Ridge Physiographic 

region of Central Virginia, while Werner (2003) reported that 42% of field surveyed Palustrine 

wetlands were not mapped by NWI. Forested wetlands, small wetlands, and narrow wetlands are 

often the source of omission as they are more difficult to locate accurately. Optical remote 

sensing data from moderate resolution sensors such as Landsat and SPOT have been widely used 

for mapping wetlands (Wright and Gallant, 2007, Harvey and Hill, 2001 and Baker et al., 2006). 

However, the dynamic nature of wetlands, especially their alternating dry and wet nature pose 

problems for accurate wetland mapping using optical data acquired in one time period. In 

addition, use of optical data depends on availability optimal data, which is often hindered by 

clouds and atmospheric condition. In many cases, vegetation communities of the drier wetlands 

are not dramatically different from adjacent uplands, making wetland identification difficult.

Imaging radar data which operates in the microwave region of the electromagnetic spectrum 

have also been widely used in wetland mapping. The longer wavelength of microwave data can 

penetrate vegetation canopies and is sensitive to variation in soil moisture and inundation making 

them ideal for wetland detection (Li and Chen, 2005 and Corcoran et al., 2011). Although, 

studies have demonstrated great potential for using radar data for mapping wetlands many 

limitations prevent the use of radar data alone for mapping wetlands. The interpretation of radar 

data is not as intuitive as optical imagery. In addition, some landscapes where there is very little 

tree canopy may not benefit from using SAR data (Corcoran et al., 2011). Wetland detection 

using radar data depends on soil saturation or flooding (the double bounce effect in radar data is 

enhanced due to flooding, which helps discriminate wetlands from uplands). However, wetland 

hydrology is highly variable. They maybe wet one season and dry another season. Images 
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acquired during abnormal weather condition (such as drought or excessive rainfall) will affect 

the utility of radar data for wetland detection.

Topography provides an alternative for mapping wetlands and spatial patterns of wetness. 

Topography controls water flow by directing water from higher elevation to lower elevation and 

by forcing water to converge or diverge due to the shape of the surface (Creed and Sass, 2011).

Most wetlands occur in low or depressional areas; “landscape sinks” where ground and/or 

surface water collects (Zedler and Kercher, 2005). Information on vegetation communities and 

observable moisture that are often used for wetland mapping may change over time whereas 

terrain morphology remains relatively static. Therefore use of terrain morphology for wetland 

mapping provide an objective wetland mapping in comparison to approaches that map vegetation 

and moisture condition at the time of data acquisition (Hogg and Holland, 2007). This is 

especially true for areas where the terrain is not modified by human activities.

Digital terrain analysis has been widely used to describe hydrologic processes in the 

landscape (Wilson and Gallant, 2000). Digital terrain analysis uses a Digital Elevation Model 

(DEM), which provides a digital representation the Earth’s surface topology over an area. A

DEM is usually derived from stereoscopic interpretation of aerial photographs or satellite 

imagery (Wilson and Gallant, 2000 and Liu, 2008). Although topographic information is 

commonly available for the United States, the vertical and spatial resolution of these data is often 

not sufficient for wetland identification, especially in areas of subtle topographic change (Lang et 

al., 2013). In recent years, advances in lidar systems have significantly improved the generation 

of high quality DEM. Lidar sensors are active sensors, where high energy laser pulses 

transmitted in short intervals are directed toward the ground and the time of pulse return is 

measured.  Since the velocity of light is constant (i.e., 3 x 108 m s-1), the elapsed time between 
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transmitting and receiving the pulse can be used to determine the distance between the sensor 

and object or the ground, a process known as pulse ranging (Wehr and Lohr, 1999).  Using this 

concept, x, y, and z measures can be obtained, with horizontal accuracies of 50 cm and vertical 

accuracies of 10 cm (Baltsavias, 1999, Wehr and Lohr, 1999 and Thomas, 2006).

In recent years use of lidar data in wetland mapping has increased. Fine-scale elevation data 

provided by lidar is particularly helpful in flat, wetland-rich areas where complex interspersion 

of uplands and lowlands may cause mapping confusion and inaccuracy (Maxa and Bolstad,

2009). This combination occurs in nearly level or gently rolling Triassic Basins and coastal 

plains, where most of the wetlands in the eastern US are found. Creed et al. (2003) investigated 

optimal DEM spatial resolution for locating closed canopy wetlands. Lidar was found to be 

better than field based delineation at discriminating wetlands. Hogg and Holland (2008) 

compared the use of DEM derived from lidar, 1:20,000 point elevation data source and 1:50,000 

National Topographic Series-based DEMs to detect wetlands. Wetland classification results with 

lidar were significantly high compared to the other two methods; 35% of the wetland area 

mapped by lidar was not detected by other methods. Richardson et al. (2009) used a DEM 

derived from lidar to classify wetlands and delineate wetland boundaries using various 

topographic indices and edge detection procedures. Leonard et al. (2012) demonstrated that lidar-

derived DEMs can successfully capture slight geomorphic changes and can predict wetland 

boundaries in low relief ecosystems. Lang et al. (2013) used topographic information from lidar 

DEMs to map wetland location and inundation periodicity with high accuracy in forested 

wetlands.

In terrain analysis, a DEM is used to derive primary and secondary topographic attributes. 

Primary topographic attributes include slope, aspect, and curvature. Secondary topographic 
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attributes such as topographic wetness index (TWI) are calculated from two or more primary 

attributes and provide an opportunity to describe patterns as a function of processes (Wilson and 

Gallant, 2000). Topographic wetness index is calculated following Beven & Kirkby (1979) as:

TWI = (1)

Where: is the upslope catchment area in m2, and is the local slope in percentage.

The TWI defines the hydrologic characteristics of a point in the landscape as a relationship 

between two spatial parameters: upslope catchment area and the slope. TWI reflects the tendency 

of water to accumulate at a point in the landscape (accumulated drainage), countered by the 

tendency of the site to transmit this water (i.e., slope) (Murphy et al., 2007). The TWI has been 

widely used to derive information about the spatial distribution of soil moisture (Moore et al., 

1991, Hornberger and Boyer, 1995, Iverson et al., 1997, Boerner et al., 2000, Gessler et al., 

2000, and Case et al., 2005). Although TWI has been widely used to predict zones of soil 

saturation, only a few studies have explored the use of TWI to map wetlands (Rohde and Seibert,

1999, Curie et al., 2007, Hogg and Holland, 2007, Murphy et al., 2009 and Richardson et al., 

2009). Conceptually, the computation of TWI is straightforward as it only requires two input 

parameters: slope and upslope contributing area. Slope is measured using a standard procedure.

However, methods to calculate upslope area vary considerably with different flow routing 

algorithms (Lang et al., 2013). The flow routing algorithm to calculate upslope area varies based 

on how the flow is distributed from the center cell to downslope neighbors. They have been 

categorized into two types: single-direction and multiple-direction. A single-direction algorithm 

transfers all flow from the center cell to one downslope neighbor, while multiple-direction 

algorithm partitions flow to multiple downslope neighbors (Erskine et al., 2006). The choice of 
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flow routing algorithm significantly affects the prediction of spatial pattern of saturation. Various 

studies have compared the use of different flow routing methods for modeling patterns of soil 

saturation , 2010 and Besnard et al., 2013), but there 

is no consensus on the best one model that suits certain landscapes or applications. Few studies 

have compared the performance of algorithms in areas of low topographic relief where wetlands 

are most common (Lang et al., 2013).

Hydrologic conditioning is often applied to ensure continuous water flow while modeling 

hydrologic pathways. The main purpose of the hydrologic conditioning is to remove topographic 

depressions which are caused due to errors in the DEM while retaining the true depressions (Li et 

al., 2011). However, the standard procedure is to remove every topographic depression, which in 

fact assumes that all topographic depressions in the DEM are artifacts (Wilson and Gallant, 

2000, Lindsay and Creed, 2006 and Wechsler, 2007). The process of removing depressions,

often referred to as depression filling in the literature, modifies the DEM and affects the 

parameters derived from the DEM. However, all the depressions in the DEM are not artifacts and 

some of these may be real features. True depressions represent low-lying areas in the landscape 

or blocked drainageways where water accumulates. Rodhe and Seibert (1999) treated 

depressions in the DEM as real topographic features as a part of the process to identify mires.

Artifact depressions in the DEM result due to data error, error due to interpolation techniques 

while creating the DEM and limited vertical and horizontal resolution of the DEM (Lindsay and 

Creed, 2006). However, DEMs produced from lidar data with their fine scale and high precision 

are capable of capturing the landscape features accurately. Spurious depression identification due 

to errors can be removed through coarsening and smoothing (Li et al., 2011)
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The objective of this study is to evaluate the predictive power of different terrain indices 

derived from high resolution lidar DEM for mapping wetlands. We examined the relevance of 

different terrain variables for predicting presence of wetlands in our study area using field 

validation. We also compared the strength of TWI derived from four different flow routing 

algorithms in detecting wetlands. In addition, we assessed if the DEMs derived from lidar data 

provide information on depression features that would improve the identification of wetlands in 

agricultural fields, forested wetlands, or other areas that have large omission errors in the NWI 

data.

2. Methods

2.1 Study area

The study area is located in northern Virginia (Fig. 1). It incorporates Prince William 

County and Faquier County in the Piedmont Physiographic Province southwest of the District of 

Columbia in the Northern Virginia metropolitan area. The area has a temperate climate with an 

average annual precipitation of about 105.5 cm, with highest precipitation occurring in May and 

June (Troyer, 2013). The maximum elevation within the study site is approximately 200 m. The 

bedrock is maroon siltstone and shale in a Triassic basin, and the relief is gently rolling. The 

predominant land cover types are agriculture and pasture.
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Fig. 1. Map of the study area showing location within the Commonwealth of Virginia. The grey shaded area 
represents Prince William and Faquier County and the red box represents the approximate location of our study area.

2.2 Lidar data and preprocessing

Lidar data used in this study were acquired using the Leica Systems ALS50 II on December 

of 2008 by Science Applications International Corporation at a height of 1981 m using scan 

angle of 44 degrees and scan frequency of 41.3 Hz. First and last returns were collected for each 

pulse. A digital elevation model was calculated by identifying the ground returns and 

interpolating a surface between these points with a resolution of 1 m. Based on 45 control points, 

the average error between bare earth and control points was 0.004 m with a root mean square 

error of 0.107 m. The 1 m DEM was resampled to 3 m DEM and a smoothing filter using a 3x3 

kernel. The use of smoothing filter helps eliminate spurious data points and removes any 

systematic errors from the DEM (Nichol and Hang, 2008).

2.3 Computation of terrain variables

We used the lidar DEM to calculate the following terrain variables: (1) Curvature, (2) Plan 

Curvature, (3) Profile Curvature, (4) Slope, (5) Topographic Position Index, (6) TWID8, (7) 
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TWID , (8) TWIMFD, and (9) TWISAGA. Variables 1-4 were computed based on Zevenbergen and 

Thorne (1987). The topographic position index (TPI) measures the difference between elevation 

at the central point and the average elevation around it within the predetermined radius (Wilson 

and Gallant, 2000 and Weiss, 2001). Positive TPI values indicate the point is located higher than 

its average surrounding and negative value indicates that the point is lower than its surrounding. 

TPI has been used to classify landscape into morphological classes based on topography (Tagil 

and Jenness, 2008 and McGarigal et al., 2009); prediction of soil properties (Francés and 

Lubczynski, 2011) and wetland mapping (Liu et al., 2011). The value of TPI depends on the user 

defined radius. We calculated the TPI with a radius of 45, 60, 90 and 120 m. A two sample T-test 

was used to assess which neighborhood size provided a significant difference in mean index 

value between the wetland and upland classes. A larger significant difference in mean value was 

considered to be indicative of greater ability to differentiate between wetlands and uplands.

Variables 6-7 were calculated according to Equation 1 based on different flow routing algorithm.

TWID8 was calculated based on O’Callaghan and Mark (1984), which is a single flow direction 

algorithm and directs flow from each grid cell to one of the eight nearest neighbors based on 

slope gradient. TWI is a calculated based on deterministic infinity algorithm which allows 

flow into one or two neighbors depending on flow direction determined by the steepest descent. 

If the angle falls on a cardinal or diagonal direction, the flow from each cell drains to one 

neighboring cell. If the flow direction falls between the direct angle to adjacent neighbors, the

flow is proportioned between the two neighboring cells according to how close the flow direction 

angle is to the direct angle for those cells (Wilson et al., 2007). TWIMFD was calculated using 

multiple flow direction algorithm (Quinn et al., 1991) which allows flow to all neighboring 

downslope cell determined by the slope between the target cells and source cell. Cells with the 
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steeper slope receive larger amounts of the flow. The final variable TWISAGA is a modified TWI 

calculated based on Bohner and Selige (2006). The traditional TWI calculation is problematic in 

lowland environments because it does not adequately account for extensive lateral dispersion of 

water that occurs in such landscapes (Richardson et al., 2012). The TWISAGA is formulated to 

account for this dispersion through an iterative process that distributes calculated contributing 

area values between pixels as a function of local slope. It uses the same formula as the traditional

TWI (Equation 1) but is based on a modified specific catchment area calculation (Bohner and

Selige, 2006).

2.4 Field data collection

TWISAGA map was created for the study area, and was classified into five groups using 

unsupervised classification. Twenty-five points were randomly generated in each group for field 

verification. The sites were classified as either wetland or upland during a field visit. Wetlands

were identified using the US Army Corps of Engineers (USA COE) Wetland Delineation 

Manual (U.S. Army Corps of Engineers, 2012). Information on presence of hydric soil, wetland 

hydrology and wetland vegetation was collected at each site. The site was classified as a wetland 

only if it met all three criteria.

2.5 Random forest classification

We employed the random forest algorithm to classify wetland and upland based on the 

terrain variables. Random forest is a non-parametric classification tree technique that randomly 

and iteratively samples the data and variables to generate a large group of classification trees 

(Breiman 2001). The algorithm implements a bootstrapping (generating random sample from 

training data with replacement) procedure to generate random subset of training data 

(approximately 63%), which is used to fit a classification tree with small number of randomly 
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selected variables (Cutler et al., 2007). The portion of training data not selected for generation of 

the classification tree (often termed as the “out-of-bag” sample) is classified using the fitted tree 

and is to calculate bootstrap error estimates and the accuracy for each tree. After all the trees are 

grown, overall error and accuracy is calculated by averaging error rates across all trees. As out-

of-bag observations are not used in fitting the trees, out-of-bag error estimates are analogous to 

cross-validated estimate of error and accuracy (Cutler et al., 2007). Random forest classification 

is robust against overfitting and correlated variables and can produce higher accuracies than 

traditional classification tree (Falkowski et al., 2009). Classification accuracy was assessed with 

the bootstrap error estimates and error matrices calculated by random forest. Overall accuracy, 

producer’s and user’s accuracy were calculated and examined to assess the effectiveness of 

classification. The overall accuracy is the proportion of correctly identified change events. The 

producer’s accuracy measures the proportion of pixels belonging to a class that was correctly 

classified by the method and measures the error of omission. User’s accuracy measures the 

proportion of the pixels classified as belonging to a class matching the reference data and 

measures the error of commission. Random forest also calculates the importance of each 

predictor variable upon model accuracy.  The variable importance can be calculated using the 

Gini index, a measure of node impurity, or the degree to which a variable produces terminal

nodes in the forest of classification trees (Mitchell et al., 2013). Random ForestsTM (Salford 

Systems, CA, USA) was used to perform the classification. 

2.6 Depression identification

In order to identify depressions in the study area, the depression filling method of Planchon 

and Darboux (2002) was used to produce a depression-free DEM from the smoothed 3 m DEM.

This algorithm first covers the DEM entirely in water, and then iteratively drains the excess 
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water from each cell. The DEM is scanned from eight alternating to determine the downslope 

path. The algorithm then searches for an upstream tree by following dependence links, from 

where the excess water is removed from this network. Finally, the water in the depression is 

drained to the highest pour point on the flow path to an outlet resulting in flat depression. The 

depression-free DEM was subtracted from the original DEM. The difference grid provides 

information on the potential depressions in the DEM. 

3. Results

3.1 Wetness indices from different flow routing algorithm

Visual inspection of the wetness index map illustrated the difference between the four flow 

routing methods (Figure 2). The hydric soil layer for the study area was overlaid on each wetness 

map. The wetness index map produced by the TWID8 and TWI showed a channelized flow 

where the distribution of the saturated zone occurred in a linear pattern. In contrary, saturated 

areas in TWIMFD and TWISAGA appeared as smoother, broader zones. The hydric layer also 

indicated that the transition between the hydric area and the surrounding area was more 

pronounced in the wetness map from TWIMFD and TWISAGA than from TWID8 and TWI .

Statistical analysis using t-test showed that all four wetness maps contained significant difference 

between the mean values of the wetland and upland area (Table 1).
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Fig. 2 and SAGA (d)
 

Visual inspection of the wetness index map illustrated the difference between the four flow 

routing methods (Fig. 2). The hydric soil layer for the study area was overlaid on each wetness 

map. The wetness index map produced by the TWID8 and TWID showed a channelized flow 

where the distribution of the saturated zone occurred in a linear pattern. In contrary, saturated 

areas in TWIMFD and TWISAGA appeared as smoother, broader zones. The hydric layer also 

indicated that the transition between the hydric area and the surrounding area was more 

pronounced in the wetness map from TWIMFD and TWISAGA than from TWID8 and TWI .

Although both the TWIMFD and TWISAGA are calculated using distributed flow routing method,  
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TWISAGA appears smoother than TWIMFD. This is because TWISAGA is based on modified 

specific catchment area, which disperses the flow across all pixels within a localized flat area and 

the predicted wetness index is higher compared to the standard method. Statistical analysis using 

t-test showed that all four wetness maps contained significant difference between the mean 

values of the wetland and upland area (Table 1).

Table 1. Difference in mean index value of TWI generated using different flow routing method between wetlands
and uplands.
 
Wetness Index t-value

D8 2.12*

2.38**

MFD 2.85**

SAGA wetness 4.95***

*,**,*** indicates that the difference in the mean value was significant at the p level of 0.05, 0.01 and 
0.001 respectively

3.2 Wetland classification accuracy

The overall accuracy, producer’s and user’s accuracy were calculated and examined to 

assess the accuracy of classification. Tables 2 to 5 summarize the random forest classification 

accuracy. The classification accuracy ranged from 67% to 72%, which is comparable to wetland 

classification using other remote sensing data (Lin and Chen, 2005, Baker et al., 2006,

Pantaleoni et al., 2009 and Corcoran et al., 2011).. The error matrix in Table 2 for random forest 

classification with terrain variables, together with TWISAGA index provided the highest 

classification accuracy of 72%. The lowest classification accuracy was obtained with 

classification of terrain variables together with wetness index calculated by TWID8. While using 

wetness index map from SAGA, the largest improvement was in the producer’s accuracy 

(omission error) for both wetland and upland class.
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Table 2 Wetland Classification accuracy with TWISAGA

Class Wetland Upland Total Producer’s accuracy (%)

Wetland 46 15 61 75.4

Upland 45 109 154 70.8

Total 91 124 215  

User’s accuracy (%) 50.5 87.9

Overall accuracy (%) 72.09

Table 3 Wetland Classification accuracy with TWIMFD

Class Wetland Upland Total Producer’s accuracy

Wetland 45 16 61 73.77

Upland 48 106 154 68.33

Total 93 122 215

User’s accuracy 48.38 86.88

Overall accuracy 70.23

Table 4 Wetland Classification accuracy with TWI
Class Wetland Upland Total Producer’s accuracy

Wetland 42 19 61 68.8

Upland 47 107 154 69.5

Total 83 126 215

User’s accuracy 50.6 84.9

Overall accuracy 69.3

Table 5 Wetland Classification accuracy with TWID8

Class Wetland Upland Total Producer’s accuracy

Wetland 40 21 61 65.57

Upland 49 105 154 68.18

Total 89 126 215

User’s accuracy 44.94 83.33

Overall accuracy 67.44
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Fig. 3. Classification output of the most accurate random forest model overlaid with NWI wetlands. This model 
included wetness index calculated from distributed flow routing method and other terrain variables. The red circle 
indicates the general location of wetland mitigation site in the study area.

The classification output map of the most accurate and the least accurate shows the 

difference in performance of these two models in detecting wetlands in the study area. 

Classification that used the wetness index from single direction flow routing algorithm (Fig. 4)

clearly underestimates the wetland in the area.  In the classification map with the distributed flow 

(Fig. 3), the wetland area is greater. The NWI wetland areas are more accurately identified in this 

classification. It is also interesting to note that the wetland mitigation sites constructed in this 

area (marked in red circle) are clearly delineated, while these areas are not clear in the least 

accurate classification (Fig. 4).
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Fig. 4. Classification output of the least accurate random forest model, overlaid with NWI wetlands. This model 
included wetness index calculated from single direction flow routing method and other terrain variables. The red 
circle indicates the general location of wetland mitigation site in the study area.
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Table 6 Summary table of variable importance for random forest classification
Classification with TWISAGA Classification with TWIMFD

Variable Score Variable Score

TWISAGA 100 TWIMFD 100

Slope 89.41 Slope 77.12

TPI60 58.46 TPI60 19.49

Curvature 19.75 Curvature 19.28

Plan Curvature 18.52 Plan Curvature 17.94

Profile Curvature 15.51 Profile Curvature 15.51

Classification with D8

Variable Score Variable Score

Slope 100 Slope 100

TPI60 67.26 TPI60 77.12

TWI 33.43 Curvature 19.49

Curvature 21.06 TWID8 19.28

Plan Curvature 20.02 Plan Curvature 17.94

Profile Curvature 14.40 Profile Curvature 15.51

Table 6 summarizes the importance of each terrain variable in the classification. The random 

forest algorithm ranks the most important variables in the classification. The topographic 

wetness index calculated using multiple flow direction (TWISAGA and TWIMFD) was selected as 

the most important variable in the classification and it produced the highest overall accuracy. 

Slope and TPI60 were also ranked as important variables in this classification. However, in the 

classification using TWID8 and TWI , the most important variables were slope and TPI60. In 

the classification using TWI , the wetness index was not ranked as an important variable.
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3.3 Accuracy of depression identification

Table 7 Comparison of sinks with the NWI wetland and hydric/non-hydric soils

Depressions Yes No

NWI wetlands 31 84

Hydric soil 58 57

Non-Hydric soil 11 104

In order to avoid spurious sink (depressional) areas, we excluded sinks that were smaller 

than 10 pixel clusters. This resulted in total of 115 areas that were identified as sinks (Fig. 5).

Out of the 115 sinks, 39 that were accessible were field-validated and classified as upland or 

wetlands.  Out of 39 sinks, 20 classified as wetlands based on Cowardin et al. (1979). We also 

compared the identified sinks with the current NWI layer for the study area. Out of 115 sinks, 

only 31 were classified as wetlands on the NWI map (Table 7). Fifty-eight of the 115 sinks were 

mapped as hydric soils. The sinks are distributed throughout the landscape and include areas that 

are already classified as wetlands and also newer areas of constructed wetlands (mitigation 

banks) (Fig. 5).
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Fig. 5. Sinks identified in red polygons using depression filling technique (a) and examples of identified sinks (b). 
On the left is a new wetland site created for wetland mitigation, which is not mapped as wetlands in NWI and on the 
right are sinks identified in a forested area impounded by the road, which are mapped as wetlands in NWI.

4. Discussion

Data from optical sensors such as Landsat and microwave have been widely used for 

mapping wetlands. Topographic attributes were only used as ancillary data in these classification 

approaches. The use of topographic information for wetland identification was limited mainly 

(a)

(b)
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due to the low spatial resolution of available digital elevation products. However, with the 

availability of high resolution topographic information from lidar, the use of terrain attributes in 

mapping wetland is gaining wide attention. 

In this study, we assessed the utility of primary and secondary terrain variables generated 

from high resolution lidar data for discriminating wetlands from uplands. The best classification 

results had an accuracy of 72%. The classification accuracy is similar to other studies which have 

utilized optical or radar data or combination of optical, radar, topographic and soils data. Our 

results indicate that that topographic information from lidar data alone can be used to accurately 

discriminate wetlands from uplands.

upland areas being classified as wetlands as indicated by user’s accuracy in the error matrix 

table. Many wetlands in the study area have been drained and/or cleared and changed into 

agriculture or pasture. The large commission error for wetlands achieved by this study indicates 

that most of these drained, converted areas were classified as wetland. Including farmed

wetlands as wetlands even though they are currently without wetland vegetation is beneficial 

when the objective of making the map is to identify all possible wetland locations. This will also 

increase the overall accuracy of wetland mapping. 

A number of flow routing algorithm have been proposed for calculation of topographic 

wetness index. The result of this study supports the use of more distributed flow routing 

algorithms for wetland delineation. The use of multiple flow direction has been shown to better 

characterize gradual ecologic transitions than single flow direction, based on soil moisture 

gradients, especially in areas of low topographic relief where slopes are more gradual and flow is 

less channelized (Lang et al., 2013). In this study, wetness index calculated with distributed flow 

(TWISAGA and TWIMFD) yielded the highest accuracy. As expected, the accuracy of classification 
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with wetness index calculated from single direction flow routing algorithm (TWID8) provided the 

lowest accuracy. SAGA wetness index uses the same formula as the traditional topographic 

wetness index but it accounts for extensive lateral dispersion of water in flat terrain (Richardson 

et al., 2012). The classification with SAGA wetness and MFD wetness improved the producer’s 

accuracies of wetland in both the classification.

Studies have shown that the spatial pattern of potential soil saturation based on wetness 

index values, which emphasizes the lateral flow, are better predictors of water accumulation 

during wet condition than in dry condition (Lang et al., 2013, McNamara et al., 2005 and 

Grayson et al., 1997).  Considering the limitation of the wetness index in dry conditions, it is 

recommended using multiple topographic metrics that account for both the lateral and vertical 

flow (Grayson et al., 1997).

relative importance of each terrain variable to discriminate wetlands from uplands. The variable 

importance factor for each classification presents the most effective data set for wetland/upland 

discrimination. For the best classification, the SAGA wetness index, slope and TPI60 were the 

most important variables. The same pattern was observed in the classification using wetness 

, slope and TPI60 were 

more important variables during classification then the wetness index itself. Slope, TPI60 and 

curvature were more important than the wetness index in the classification using D8 flow routing 

method. This indicates that primary topographic attributes such as slope, curvature and 

topographic position index provide better representation of wetlands than wetness index 

calculated using single flow direction. The variable importance factor further shows that the 

wetness index calculated using a distributed flow routing algorithm is better at predicting 

wetland presence than those using a single flow direction. Slope has been widely used variable 
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for wetland detection. The TPI measures the difference between elevation at a point and the 

average elevation around it within a predetermined radius. These indices model local elevation 

changes highlighting curvature and have been found to be useful variable in wetland delineation

(Lang et al., 2013 and Leonard et al., 2012). TPI is scale dependent and varies based on 

neighborhood size used for calculation. The appropriate neighborhood size will vary with the 

landscape and target topographic feature. We calculated the TPI with different neighborhood 

sizes and used the t-test to determine the TPI that provided the best discrimination between 

wetlands and uplands.

The result of depression identification suggests that a relatively simple depression filling 

technique can be used for improved identification of wetlands in woody areas and agricultural 

fields. The validation sampling for assessing the accuracy was small mainly due to restricted 

accessibility of the depressional areas. But it shows that majority of the areas identified as sinks 

were wetlands and were missed in the NWI maps. This might be due to the minimum mapping 

unit of the NWI, as majority of identified depressions were small. In addition, majority of these 

areas might have developed after NWI mapping. Human activities mainly construction of roads 

has modified the landscapes and created areas where water can accumulate. Although only 20 of 

these areas were validated as wetlands, the majority of the areas failed to be classified as 

wetlands because they failed to meet all the three criteria (hydrology, soil and vegetation) to be 

classified as wetlands. However, they had either one or two indicators present, typically missing 

only vegetation, indicating that if the current farming or pasturing land use is stopped they will 

regain wetland vegetation. It makes sense that areas that have hydric soils and wetland hydrology 

will support wetland vegetation. Further studies with large number of validation sample and 

different landscapes are needed to assess the sensitivity of this method in detecting wetlands. It 
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was also observed the human modification of landscape such as roads and small diversion and 

ditches have modified the flow of water creating wetlands where they did not exist before.

Topographic indices depend on the quality and resolution of the DEM from which they were 

derived. Lidar can produce a DEM with very fine spatial resolution. However, the fine resolution 

DEM is not always appropriate for mapping wetlands. The resolution of input DEM should 

reflect topographic variations which affect the spatial pattern of soil saturation leading to wetland 

formation. The resampling and smoothing technique was used in this study to reduce the DEM

errors and topographic features that lead to unrealistic flow patterns. As shown by this study and 

others, lidar data can be used to map wetland distribution accurately. While the adoption of lidar 

data for forest inventory purposes is being closely examined by many interested parties, the use 

of lidar for wetland studies is really in its infancy. In addition to wetland inventorying and 

mapping, the ability of lidar data to accurately detect topographic features can provide 

information on wetland disturbance and restoration activities. For example, in Fig. 6 linear man-

made drainage features evident in the aerial photo are also visible in lidar DEM. The DEM can 

potentially be processed to automatically identify these man-made features which can then be 

used to assess the wetland condition.  

90
 



Fig. 6. Liner man-made drainage features aerial photo (top) and lidar DEM (bottom).

The use of lidar data in operational wetland mapping processes by federal agencies such as 

US Fish and Wildlife Service that makes NWI maps and state agencies that maps wetlands will 

eventually depend on the availability of lidar data. Use of topographic information derived will

require a highly accurate DEM for which the lidar data has to be acquired during leaf off- period, 

with the goal of removing as much of ‘confounding vegetation’ as possible prior to the 

development analysis of the DEM. Removal of vegetation is a somewhat divergent goal between 

wetland studies and most vegetation/forestry studies. In practical terms, this means that it is 

generally not optimal to use the same lidar acquisition for forestry and wetlands applications 

(unless wetland vegetation is the primary interest). In addition, the accuracy of the DEM is

affected by herbaceous vegetation, dense understory and presence of water. Future studies should 

focus on the parameters for optimal lidar data collection, timing and processes to reduce error in 

DEM in different landscapes and wetland types.
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5. Conclusion

The predictive power of topographic variables derived from a high resolution lidar DEM 

using random forest classification was explored in this study. In summary, the topographic 

variables from a high resolution lidar data can produce accurate wetland maps, which are 

comparable to present wetland classification techniques using optical and microwave data in 

agricultural area and forests. The use of topography alone for wetland mapping is justified as 

movement of water in landscape is governed by the local topography. The use of multiple 

topographic variables allows us to account for both the lateral and vertical flows in a landscape

and can be accurately derived using high resolution and accurate DEM derived from lidar. In 

combination with optical data, lidar data can significantly improve mapping of wetlands, 

especially forested wetlands in flat, low lying areas, which are difficult to map using optical data 

alone. The study also showed that the TWI calculated from more distributed flow routing 

methods and terrain variables that represent local topography are better suited for mapping 

wetlands. During our field validation we also observed that the wetness indices predicted a wet 

area in incised channels and meandering floodplains. Though these areas receive overbank 

flooding, they are not flooded long enough to develop hydric soil or hydrophytic vegetation and 

thus did not meet the criteria for wetland classification. Future research should focus on 

identifying best topographic indices in different landscape condition and wetland types. In 

addition to mapping the current wetland extent, the classification can also provide information on

areas that apparently were wetlands before conversion to the current land use, and could easily 

be restored to wetlands by restoring the hydrology or vegetation. With the increasing availability 

of high resolution and accurate lidar based DEM, lidar data should be used in the operational 

wetland mapping activities. Use of lidar data for wetland mapping will be highly valuable in 
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areas where the availability of optical data will be limited due to cloud over and flat, low lying 

areas such as coastal plains, where small changes in topography leads to wetland formation.
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CHAPTER 5

Conclusions

Wetlands are an important component of the ecological infrastructure and provide numerous 

ecosystem services to human communities. These ecosystems are also greatly threatened due to 

human activities mainly conversion to commercial and agricultural use. To successfully manage 

and conserve wetlands, efficient tools and techniques are required to detect where wetlands are,

the wetland type, and how they are changing. Landsat data for mapping and monitoring wetland 

is widely prevalent. However, multi-temporal analysis that extends beyond the use of two images 

in mapping and monitoring wetlands is very limited. Newer remote sensing technology such as 

lidar that can provide highly detailed and accurate topographic information is becoming more 

readily available. In this dissertation, we have developed techniques presented as three 

independent studies using multi-temporal Landsat data in forests and lidar in cropland and

pastureland for improved mapping and monitoring of wetlands. 

In the first study, we presented a trajectory based change detection technique using annual 

Landsat images to detect changes in wetlands. Wetlands exhibit high degree of natural temporal 

variability due to seasonal fluctuations in water level due to changes in precipitation, temperature

and other environmental conditions as well as human influences. Our multi-temporal approach 

characterized the inter-annual variability in the spectral trends of different wetlands, which 

allowed us to discriminate actual change from the natural variability thus increasing the 

performance of the change detection method. The overall change detection accuracy achieved in 

this study was 89%, with a kappa value of 0.79. The resulting change map provides information 

on not only the current hotspots of wetland disturbance dynamics but also reconstructs the 

disturbance history and vegetation recovery. The information on the disturbance year along with 
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the wetland permit database maintained by the state agencies can be used to track unpermitted 

wetland disturbances and produce wetland change rates in an annual basis.

The majority of studies using trajectory-based disturbance analysis have focused on 

identifying disturbances in forested uplands. This is the first study, to our knowledge, that has 

used trajectory-based technique for wetland disturbance analysis. This approach has potential to 

be integrated with wetland monitoring activities of state environmental agencies to monitor 

compliance of wetland permits issued (year of disturbance, acreage of disturbance) and identify 

major stressors affecting wetland health. The disturbances can also be classified into temporal 

and permanent and a tracking of the areal losses can be tabulated. One of the major limitations of 

this method is identification of reference wetlands. We used an image based reference wetland 

identification technique. However, a field validated reference wetlands would be ideal for using 

this method across different geographic region.

In the second study, we extended the use of multi-temporal Landsat images in 

discrimination of forested wetlands and uplands. Forested wetlands are one of the most difficult 

wetlands to detect using remote sensing data, as the canopy prevents detection of soil saturation. 

In addition, the species present in forested wetland and neighboring uplands are often the same, 

making spectral discrimination difficult. Despite the presence of same species in wetlands and 

uplands, vegetation communities in wetlands exhibit different pattern (in terms of productivity, 

stress) due to soil saturation/flooding during growing season. These trends will not be visible 

using single image or multiple images within a single year. In this study, both intra and inter 

annual Landsat data dating back to 1995 were analyzed to extract temporal patterns of forested 

wetlands and uplands. The temporal metrics derived from the time series data discriminated 

between forested upland and wetland with an accuracy of 88.5%. Our results also showed that 
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the temporal metrics representing early growing season were most effective in classifying 

forested wetlands from uplands. The spectro-temporal approach accurately discriminated 

forested wetlands from uplands. This approach allowed us to tease out subtle differences that 

would not have been detectible using single image or even multiple images in a year. 

In the third chapter, we assessed the predictive power of topographic variables derived from 

a high resolution lidar DEM in detecting wetlands. The study showed that the topographic 

variables from lidar data alone can detect wetland accurately 72% of the time, which are 

comparable to present wetland classification techniques using optical and microwave data. This 

automated wetland map accuracy compares favorably with the labor-intensive NWI map 

accuracy reported for the region. The use of topography alone for wetland mapping is justified as 

movement of water in the landscape is governed in large part by the local topography. The study 

also showed that the topographic wetness indices derived from a more distributed flow routing is 

better at predicting wetland location than channelized flow routing. We theorize that the

combination of the temporal Landsat metrics discussed in the second study with lidar DEM and 

distributed flow routing data can significantly improve mapping of wetlands, especially forested 

wetlands in flat, low lying areas, which are difficult to map using optical data alone. The lidar 

DEM and distributed flow routing data can be used to identify depressions that do not appear on 

traditional topographic maps, and thus were likely overlooked in the production of NWI maps. 

The lidar data also provided information on various micro-topographic features. These features 

are mainly man-made, such as drainage features in Fig. 6 (Chapter 4) and man- made elevation 

patterns such as berms to facilitate water accumulation, which are indicative of wetland 

disturbance or restoration activities. The lidar data is able to identify depressions created by 

truncation or restriction of draingeways by infrastructure such as roads and railroads. In addition 
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to mapping the current wetland extent, the use of lidar data can also provide information on areas 

that were likely wetlands before conversion to the current land use, but do not occur on NWI 

maps. These locations can be used for identifying logically-successful wetland restoration sites.

With the increasing availability of high resolution and accurate lidar based DEM, lidar data 

should be used in the operational wetland mapping activities.

Wetland vegetation and hydrology in an area may change, but the topography remains same.

Integration of topographic information derived from lidar data in the operational mapping of 

wetlands should significantly improve the accuracy of wetland map products. The accuracy of 

optical or radar data in wetland mapping will depend on availability of optimal data. Data 

acquired during abnormal weather condition such as drought or excessive rainfall will affect 

their usefulness. However, topographic information from lidar is not affected by such limitations. 

Utility of lidar for wetland mapping will be especially high in areas where the availability of 

optical data will be limited due to clouds. Although we did not investigate in our study, 

synergistic use of multi-temporal Landsat and lidar may provide a superior approach to wetland 

mapping.

Overall, the results of this study demonstrated that both lidar and Landsat time series data 

can significantly improve wetland mapping and monitoring. Landsat data because of its spatial

coverage (swath width of 185 km), spatial resolution of 30 m, spectral bands in visible and near

infrared region and free availability is best suited for operational mapping and monitoring of

wetland over larger geographic regions. Since highly processed Landsat data is now freely 

available, the multi-temporal approach presented in this study can be an integral aspect for 

wetland mapping and monitoring framework of various concerned stakeholders such as the state 

environmental agencies and the NWI program. Although compiling the initial set of images is 
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time-consuming, the archive can be archived for future uses and expanded over time. Although 

lidar data is expensive and is not systematically collected at the same location, it is becoming 

more available with time and should be utilized by wetland regulatory agencies.

Findings of this study opens avenue for numerous potential researches that will further 

contribute to mapping and monitoring of wetlands. Some future research direction could include:

Use the temporal trajectory to classify different disturbance events and identify

magnitude of disturbance. This will help provide information on major stressors to 

wetlands.

Use of temporal trajectory to monitor restored wetland site. A framework can be 

developed to compare the trajectory of reference wetland sites to that of restored or 

created site to compare biophysical properties such as biomass, leaf area index, woody 

canopy estimate. 

Testing of our methods on coniferous wetland vegetation. Due to limitation of field data, 

we only assessed the classification accuracy of broadleaf forested wetland and upland. 

Coniferous forested wetlands are most difficult to map as they have canopy throughout 

the year. Our method of using temporal information from time series Landsat data 

should also be assessed to see how well it can classify coniferous forested wetlands.

Use of time series information from Landsat can be combined with data on long term 

hydrology to investigate how changes in soil saturation/flooding affects the reflectance 

properties of Landsat. This information can be used to identify wetlands with different 

level of flooding and saturation.

Use of the multi-temporal approach to assess the long term trend in wetlands. A

characteristic curve for wetlands area can be generated by combining Landsat data from 

103



multiple years. Deviations from these curves can be analyzed to assess the response 

against events such as drought.

Use of lidar data can be extended beyond mapping of wetlands.  Different research 

questions that will provide insight into the functioning of wetland can be explored; such 

as can the topographic information explain the spatial pattern of vegetation in wetland 

and upland? Can the lidar data classify wetland area with different hydroperiods? 
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