RATM:
REQUIREMENTS ANALYZER AND TRACEABILITY MANAGER

by

David A. Long

Project report submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Systems Engineering

© 1992 David A. Long

APPROVED: l
W. J. Fabrycky, Chalrmazx
S / A\ -
B. S. Blanchard S. F. Midkiff
April, 1992

Blacksburg, Virginia

P

LD
Db
VA&

a9
L b3

AR
(OREA

© 1992
David A. Long
All rights reserved.

RATM:
REQUIREMENTS ANALYZER AND TRACEABILITY MANAGER

by
David A. Long

Committee Chairman: Wolter J. Fabrycky
Industrial and Systems Engineering

(ABSTRACT)

To fill the need for automated assistance during the system engineering process, a
prototype computer-aided tool emphasizing requirements analysis and traceability
management is designed and developed. An object-oriented approach is used which
leads to the selection of Smalltalk as the implementation language. Peter Chen's Entity-
Relationship-Attribute database structure is selected to maintain a complete and
consistent system definition. "User-friendly" interfaces are implemented to allow
efficient manipulation and representation of the system definition data. These interfaces
include a system engineering editor, two engineering views (text and hierarchy), a
requirement extractor, and a schema extender. The prototype is expandable and
extendable to permit future upgrades to support additional views, reports, and dynamic
verification of models. With system definition becoming increasingly important in
designing error-free, cost-effective systems, this computer-aided system engineering tool
provides an accessible source of automated assistance to support the engineer.

ACKNOWLEDGMENTS

I wish to thank Omnitech Systems, Inc. for supporting the development of the
Requirements Analyzer and Traceability Manager. I am also very grateful to James Long
for his constructive suggestions and comments after reading the first draft of this paper.

iv

TABLE OF CONTENTS

L INTRODUCTION......ceiciieertinreenerneniiesteestenesessseesssonseessesstssssssessssssssssasssssssosses 1

1.1 The System Definition ProCESssccccvevierriierierseesuenneissecnsenessessecsseenns 1

1.2 Current Status of System Engineering TOOISccccocvvivvivnrinensenenreincnnes 4

1.3 Objective of this PTOJECt......cccccererererrntrrerrienesesniestnee st ssssacsessesseenne 6

IL LITERATURE REVIEW.......oconiiiiiirneinerienirseenesnaesseestessessasessessssesssssessssesasoss 7

2.1 SREM: Software Requirements Engineering Methodology 7

2.2 DCDS: Distributed Computing Design System.........cccocevevvcccccncnnenen, 8

III. MATERIALS AND METHODSoooitiieineerennteseneentenssessessessessssssensessenne 10

3.1 Smalltalk as a Language for Developmentc.ccccevveincincnnncneeseniannas 10

3.2 The Entity-Relationship-Attribute Structure.........ccccevverveercernreeneceneerseenns 11

IV, RESULTS ..ttt et s et st e e eseesree st e e sssssnes st te st e e snnessssssassssens 14

4.1 System Definition Database...........ccceeeeeererrreceeneeereeeeeseeseseessesseessceenees 14

4.2 Element EditOr.......ccocovuiiniiiiencnninenineneesenieneesessessssescesesesncesesscsnesasscneas 15

4.3 TEXE VIEW ..uiouiriieerrrneintetreeeeseeieeseensssesatesessassaessessesasssesnsesesssenassssnsesses 19

4.4 Hierarchy Didgram.......cccooeoieiieninienieiereninceseeseeseesseseeseesessasseesassesnsssees 22

4.5 Requirement EXITACIOTccccuieveeveriierieereeiaeeaesseesaeeeessesssessasssaessasssseneas 22

4.6 Schema EXteNder.cc.oouevenieniieeiecceienteeeseeeesteiestes e e see st snssasnesas 24

V. DISCUSSION ...ooitiiiireeenrenenteeesaesiessessessessessesseseesaesssssessassessassessessesssessassasses 28

VI, CONCLUSIONS ...ttt ntsaestesestestssesteneesestssasssssssasssassnasssssssssssn 30

VIL SUMMARY ...iiitirestetrstereeesntsseestesesssesessessesssssssssssessessessassessasssesssessessases 32

VIII. LITERATURE CITEDcoceeiiiriitiiieencinienenecsenseesesseesesnessessessessuessesnssnasssoses 33

APPENDIX A: RATM FEATURE SUMMARYcciriiineninttnenrenesresseeeessesessaens 34
APPENDIX B: ENTITY-RELATIONSHIP DIAGRAMS FOR RATM

BASELINE SCHEMA ...ttt reereeeesresesses e ssts e saeesssosesssssesnassens 77

VITA ettt ettt st et st ee et e e et st sat e st e e seea e et eutsesnesnastsannnsstn 95

A.10
A.ll
A.12
A.13
B.1
B.2
B.3
B4
B.S
B.6
B.7

LIST OF FIGURES

Title Page
SysStem Life CYCIE ..vvvvuirciiecieectieneeneecieeiecneceessseseseesssnesnecsssssssessssessnes 2
The System Definition ProCessccueeerircrneeesnvessseneinnisinnicesssneennsnneennns 3
System Engineer's Desk TOP......cccerrceercnueresenrseneessnsesisiecsssnesssesesssssessns 5
Simplified ERA Diagram for an Academic Environmentccceuueuee. 13
Baseline Schema Entity-Attribute Chart......c.ccecevvvniiiiinnienneeninennnnenn. 16
Baseline Schema Entity-Relationship Chartccccocvnivvininninniennn. 17
Element EitOr......cooiiivirincieriniericcentesren st cceesneeseee e cneennesanssssssesessesssenses 18
SAMPIE TEXE VIEW ...eeereiiriecriiceiecieeee e eteeceeeese st eesreessesssaeessaesssessnasnacs 20
Sample Traceability Hierarchy.......cocccoccceveeceeninniiieccnicnsecenvenaccnecnnns 23
Requirement EXtTaCIOTccciuirieeceneciecreeesnessressseesesesneesseccseassassenneene 25
Schema EXtENder.........cceveeeriinrirrcneeinneeeeenenecie s seeeestsncnesessesessssssnes 26
Components Of @ WINAOWcoceeverrieenierreneesenreesesecssesessessnssessaessessenes 36
Menu Bar and EQitor MenU........coccuiiuiriernerniccnricenieenaeseesssscsssssssseesseees 39
CUTSOT SUIMMATYcuceiveriieieieerienteseeeeseeseeeessesessssessesseessesssasasassessssons 40
User Preferences Windowcccocoieenieneeneneesennenneeseesseesecssesosessaessees 47
Element EQIOT.......ooviiiiiiiiiiieniiiieeeeetrteecetesteseesnesanesesesessesnsessasssens 49
Add Target Selection WindOWcccoceeerceerenenseeseceeseeeseessenseseseesseessens 54
Relationship Selection Windowccccciieieriniienecnecereneeneesseeeseessenns 57
SAMPIE TEXE VIEW ...uueereiieeceeecrieceeesieesteesssesseseseessnsssnessessssassssssssessnsensns 59
Sample Traceability Hierarchy.........c.cocoieeeneciniincniecnenensseesseeseeneens 62
Diagram Preferences Windowcocoievieeeveccenninienenneeeesesneeseenseenens 65
Requirement EXITaCtOrccuuiiiiiiiiieeceee ittt eecteesesr e eeserae e snae e s sannaes 67
Schema EXIENdeTcoiiviiiiieiienieeneeeretenitrctceseee s e e et se s ssneese e seasene 70
Add Target Class WiNAOWc.cccceveeeeiienienserienenseeresssesseesssessesseessaesnes 76
Baseline Schema Entity-Relationship Chartccocvievcvvinnnnencnenane 78
Entity-Relationship Diagram for the CompletionCriteria Class 79
Entity-Relationship Diagram for the Component Class...........ceeueunn.e. 80
Entity-Relationship Diagram for the Constraint Class.........cc.ccceeerruene. 81
Entity-Relationship Diagram for the Criticallssue Class..........ccccceuueuce. 82
Entity-Relationship Diagram for the Decision Class.......ccccovervververunnes 83
Entity-Relationship Diagram for the DomainSet Classccccccereueennee. 84

vi

B.8

B.9

B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17

Entity-Relationship Diagram for the Engineer Class.......cc.ccoceevuireinncene 85

Entity-Relationship Diagram for the ExternalSystem Class........cccocceuue 86
Entity-Relationship Diagram for the Function Class.......cc.cccecvvueruenveens 87
Entity-Relationship Diagram for the Interface Class........ccccceeeeveinuennene 88
Entity-Relationship Diagram for the Item Class....c.c.ccceeeevereverncirenaens 89
Entity-Relationship Diagram for the ItemLink Classccccovueueennnne. 90
Entity-Relationship Diagram for the OriginatingRequirement Class 91
Entity-Relationship Diagram for the Performancelndex Class............... 92
Entity-Relationship Diagram for the Source Classc..ccoccvvuevniinvinnnnaes 93
Entity-Relationship Diagram for the System Class........ccceeeerveerncirenunnns 94

vii

I. INTRODUCTION

As high technology systems continue to increase in complexity and required
performance, preliminary system design has become critical. The engineer must begin by
defining the problem, analyzing the needs, performing feasibility analyses, defining
operational requirements, and creating a maintenance concept. The next phase is to
perform functional analyses, create the physical architecture, and allocate functions onto
this architecture. The goal of the system engineering process is to develop specifications
and models that are consistent, explicit, testable, and traceable to the initial problem
definition. Current system engineering tools either do not support this goal, are not
available because they are proprietary, or are extremely expensive tools requiring specific
workstations. Therefore, there is a need for an affordable tool to support engineers during
the initial phases of system definition, analysis, and design. The objective of this project
is to design and develop a prototype that can serve as the basis of an automated tool to
satisfy this need.

1.1 Th stem Definition Proc

System definition is a special subset of the complete system engineering process.
Though a life-cycle perspective should be maintained throughout development, the
definition process ends with the completion of design as shown in Figure 1.1. This
process begins with a statement of the problem and then continues with the derivation of
the system concept which includes feasibility, operational, and maintenance
considerations. At the conclusion of this stage, the requirements specification consisting
of explicit engineering requirements and constraints is produced. These requirements are
then traced to the functional model which describes interactions and sequences of
required processes. Once the system behavior has been determined through the process
of functional analysis and the physical architecture has been specified, the component
structure establishing which part will perform which process is defined. The
requirements specification, behavioral model, and physical model derive from and, in
turn, enhance the definition that is maintained in a central database to ensure consistency
as presented in Figure 1.2.

The system definition, once determined, acts as the hub for all other design and
development activities. The definition captures technical design requirements and

9[0AD 91T wANsAS 1°1 231

JowWaImAY \/

S0OUBUNUTBA]
washs pue AN

pauoissiodx(q | uonerad) /
» UoIONOSUo)
waskg :
reuonexadQ fuenonpoid
waskg uoneigoiuy

:ounom_u&wﬁ

ugiso(] wouodwo))

suoneojioadg
juswannbay walsAsqng

swiasAsqng
dojaaeq

N

29 uonestjioadg udisa(] waskg
:w_moﬂﬁ

swaIsAsqng
01 JBX0[Y
sisAfeuy
feuOnOUN]
walskg ULIOJIdd
sjuowannbay ”
Sumeudugp
uonesijoadg

sjuswennbay SuneuduQ

sjuswannbay
JRnXy

ﬁ

Yoeqpaa,

JuSWaIeIS

ws|qoid

uonmuyaq
u[qold

SmatA Suudsuiduy . $530014 uontuyaq waskg ayy, 7’| 3Ly
uonedjroadg
u31S9(] 20BHAN] »
uonesyrdadg
syuawaInbay]
Q0B
uonedsyrdadg
syuowaxnbay
waIsAsqng o
uonesyroadg
udisa(] WASAS
uonesyroadg
sjuswoinbay] wvsAg

aseqereq
uonuIA(J WASAS

sotydean 2 ‘saynquripny
‘sdiysuonjeay ‘syusawd|g

A

1oenxy
1dasuo)) sourUIUIRIA «

0], 31e00[1Y

S30BJIN] » 0], dJel1], 1daouo) reuoneradQ .
S[PpPOA Jusuodwio)) » Apmig Aqiqises «
suonouny « SUOISIOA(] o SPION Jo JusUialEs .

sindinQ 29 sinduy SONSST [eoNL)) »

S[OPOJN IoTABYag WNSAS » syuowaxmbay SuneuisuQ .

ee—— paainbay se ajea)] Y

constraints (in the form of a requirements specification) required by engineers dealing
with particular facets of the design instead of the often imprecise, qualitative
requirements put forth in the initial system concept. Furthermore, the development and
integration of components is guided by the system specification. For example, the
specifications for the software components are established with consideration of hardware
and reliability constraints as well as those imposed by the software. Moreover, the
information flows both into and out of the central definition. Thus, the constraints of
each discipline are taken into account during the initial design stage. Therefore, complete
system definition is an essential step in the design process. (For a complete discussion of

system engineering and the design process, see System Engineering and Analysis by
Blanchard and Fabrycky [1].)

m Engineering Tool

During system definition, an engineer must develop and track the following:
requirements, function descriptions, data item descriptions, physical component
descriptions, interface descriptions, graphs depicting behavior, graphs describing system
architecture, analyses and trade studies, critical issues, design decisions, and printed
reports. The interactions and inter-dependencies between these items are numerous and
complex as shown in Figure 1.3. However, each item is often maintained separately
which requires the engineer to manually update each affected part every time a change is
made to any of the items. Often, the engineer fails to update one of the items due to the
intricate set of interdependencies. This error leads to an inconsistent design. These
inconsistencies, if not detected, will lead to flaws in the final design. Early detection (or
avoidance) of errors is essential, because delayed error detection is extremely expensive.
A rule of thumb used in industry is that the cost to fix an error increases by an order of
magnitude for each phase of development completed. Errors not detected until the
operation phase cost approximately ten thousand times as much to fix as the same error
would have cost if detected during the design process. Even problems located during
testing cost one hundred times as much to resolve as those found during design.

Three primary tools are used by engineers to facilitate the design process. First is
pencil and paper. Though by far the most common and most flexible tool, this
combination, when relied on exclusively, often leads to inconsistent design. Furthermore,

the process is lengthy, and this approach is relatively slow. Second, many developers

dog, yse(s Joourdug waiskg ¢'1 s

suondrrosop
suondriosap yuouodwod
QorJIdUI [eorsAyd soorpewl

Anqedoen

\ﬁaﬁoo@

“ udisop

suonduosap
uonouny 1/ syuswaImbal

2 ; 9)0BNXD
sy10dar [g [eonun S91Ipnjs ape.n \ \ﬁ//d/ P
pod}eg \[® SAieue K /
. suondy oW/ | Ssiuounoop
W [swoy uado Eom//wwﬂ A/. 90INOS

o\

j0ooqaj0u

SursouiSus ¢ ydeid

¢ ydeid

Sajou
ydeis |« || ydes3

who employ automated methods misapply computer-aided software engineering (CASE)
tools in an attempt to complete the design process. This is akin to substituting a
screwdriver for a crowbar. Though the screwdriver can be used to pry up some items, it
is neither as flexible nor as powerful as a crowbar. Third, a handful of computer-aided
tools for improving the development of requirements and the system definition are
available. Most of these, however, either have a hostile user interface, fail to integrate
text and graphics to fully describe the system, are not available on a small platform such
as the personal computer, or are excessively expensive. Therefore, most engineers do not
have access to an automated tool that supports the system definition process.

1.3 Obijective of this Project

The objective of this project is to design and develop an automated tool to support
the system definition phase of the engineering life cycle with an emphasis on
requirements analysis and traceability. Though the focus of the tool is on requirements
and traceability, the entire system design as well as the design rationale is supported and
captured. The process of updating related information when changes are made is
automated in order to maintain a consistent database which eliminates a major source of
error in design. The tool can be made available to the average engineer — neither its
platform nor its cost will be prohibitive. Finally, the tool design facilitates future
extension to support the other phases of system definition dealing with function flows and
model verification.

The remainder of this report deals with specific issues and decisions relating to
the design and implementation of the Requirements Analyzer and Traceability Manager
(RATM). First, the class of existing system engineering tools are examined. Second,
two key issues in the design of the tool are discussed: the language for implementation
and the structure for the system database. Third, the RATM system which includes the
system database and user interfaces is discussed. Fourth, areas for future work are
outlined, because this tool is only the preliminary implementation of a complete system
engineering tool. Conclusions drawn from the design and implementation of a system
engineering tool are then stated. The RATM system environment, interfaces, and

commands are then discussed in-depth in the appendices.

II. LITERATURE REVIEW

Out of the handful of computer-based systems to support the system definition
process, there are two-hat stand above all others. The first system, initially implemented
in 1976, is SREM. Though oriented towards software engineering, the tools included in
SREM represent a breakthrough in requirements engineering. DCDS, a direct descendent
of SREM, incorporates the developments made during an additional twelve years of
research. While DCDS retains a bias towards computer systems, it includes key facilities
that explicitly support the system engineer during the system definition process.

2.1 SREM: Software Requirements Engineering Methodolo

As described by Bell, Bixler, and Dyer [2], the purpose of SREM is to use
computers to reduce the number and severity of problems encountered during the
requirements specification phase of software engineering. Developed in response to the
enormous set of requirements for the Ballistic Missile Defense (BMD) system, SREM
consists of three primary pieces:

» aset of techniques and procedures for software requirement decomposition,

» the Requirements Statement Language (RSL), an artificial language used to

state requirements, and

» the Requirements Engineering Validation System (REVS), an integrated set of

tools designed to support the specification of requirements in RSL.

Both RSL and REVS have a number of noteworthy features. First, RSL is a
machine-processable language developed exclusively for the specification of software
requirements. Furthermore, in anticipation of projects with special needs, the language is
extendable at the concept level. In order to use the Requirements Statement Language, a
translator must be used to move data between the user interface and the REVS centralized
database. A set of tools is built around the database to handle the necessary functions for
software requirements engineering. These tools are:

» aconsistency checker to verify the static completeness of the database,

* interactive graphics through which the user could specify the flow paths for

the software, and

* an automatic simulation generator to dynamically verify the software specified

by the requirements.

The preliminary implementation of the REVS software was available in 1976 on a
Texas Instruments Advanced Scientific Computer used at the Ballistic Missile Defense
Advanced Research Center in Huntsville, Alabama. However, possibly more important
than the REVS software itself, SREM represents the first step in a long line of key
software and system engineering tools developed by TRW in response to the special
demands of the BMD program.

2.2 DCDS: Distri mputing Design System

Based upon twelve years of research and development, the Distributed Computing
Design System is a direct descendent of SREM [3]. Developed by TRW as a "limited
distribution" product requiring formal U.S. Army approval for access, DCDS supports the
entire software life-cycle. Though DCDS consists of a number of integrated modules
(which include SREM itself), the module of most interest to system engineers is the
System Requirements Engineering Methodology (SYSREM).

SYSREM goes beyond the original software orientation of SREM to address the
specific needs of system specification. It addresses and supports all of the major steps of
system design. In particular, it includes a set of automated tools to support:

» functional decomposition including function flows, data flows, completion

criteria, performance indices, and constraints,

» function allocation onto the physical model of the system,

» simulation of the behavior specified during functional decomposition, and

* automatic document generation.

This combination of tools built around a central database provides significant benefits in
the areas of design traceability and impact analysis.

Though DCDS is a very useful system, it suffers from several significant
problems. First, access to the system is limited because the software was developed for
the U.S. Army. Second, an engineer must have access to a VAX computer with a
Tektronix 4105 graphics terminal (or a Sun workstation for the latest rehosted version) in
order to use the software. Finally, if a user is actually able to gain access to the software,
he will find out that DCDS is "expert-friendly" which many users say is a euphemism for
"user-hostile".

Like SREM, DCDS is the parent of another engineering tool — Requirements

Driven Design (RDD™) developed by Ascent Logic. RDD is a re-engineered,
commercial derivative of the system-level portion of DCDS which has been implemented
on the Sun and Apple Macintosh® II workstations. Because of its pricing structure and
high platform demands (at least sixteen megabytes of RAM), RDD is only marginally
more accessible to the average engineer than DCDS is.

RDD is a trademark of Ascent Logic Corporation.
Macintosh is a registered trademark of Apple Computer, Inc.

III. MATERIALS AND METHODS

Before development of the RATM system could begin, two major issues had to be
resolved. First, a programming language had to be chosen in which to develop the tool.
Second, the structure of the system database (the core of the tool) had to be defined.
Because the language and structure chosen — Smalltalk and Entity-Relationship-
Attribute, respectively — are not familiar to many people, a brief discussion of both is
required.

malltalk

Smalltalk is an object-oriented programming system developed at the Xerox Palo
Alto Research Center during a time when many of the concepts for modern computer
interfaces were being developed [4]. Recently, versions of the language have been
released for personal computers which will provide many people with access to an object-
oriented system.

Object-oriented languages differ from traditional languages in the approach taken
to model situations. To develop a model in a traditional language such as Pascal or
FORTRAN, the user models the steps required to proceed from beginning to end.
Therefore, these languages are known as procedural languages. On the other hand,
object-oriented languages such as Smalltalk focus on defining objects and the way they
interact. In developing a model in an object-oriented language, the user must identify the
objects being modeled, classify the objects according to similarities and differences, and
define the methods by which objects interact with one another [5].

Because of the focus on objects instead of processes, the object-oriented approach
has many advantages to that of procedural languages. First, object-oriented programming
automatically enforces the concepts of encapsulation and information hiding. Because all
information and related code are stored with an object, access to information within the
object is restricted (avoiding unintended or unauthorized changes to data). Therefore, the
objects can be considered to be black boxes that respond to external requests to store or
return information. Second, because objects are black boxes, they support modularity
which reduces interdependencies within a system, thereby minimizing the complexity [5].
Third, the user has the ability to access existing classes within the object-oriented
programming system. With this ability, the user can extend and tailor the system to his
specific needs. Last, the world is made up of objects which interact according to certain

10

rules. Because an object-oriented language closely resembles the structure of the real
world, it is easier to develop meaningful models using an object-oriented approach than
using a process-oriented approach.

Beyond offering the advantages of this state-of-the-art approach on personal
computers, Smalltalk also promotes "fearless programming" as described by Diederich
and Milton [6]. "Fearless programming" encourages experimentation with algorithms,
application code modules, and even the core system code. Smalltalk allows users to try
out ideas and responds with immediate feedback. Furthermore, errors are simply
messages that indicate that an object does not understand a message that it was sent.
Because of this design, the user can proceed with little fear of causing irreversible
damage [7]. Furthermore, Smalltalk supports a "divide and conquer" approach to
software development which allows the user to code and test individual modules.
Though Smalltalk does not excel at numerically intensive computations, its combination
of an object-oriented approach with its support of "fearless programming" makes it ideal
for the development of a system engineering database with graphic user interfaces.

3.2 The Entity-Relationship-Attribute Structure

In much the same way that Smalltalk is the natural aid for the development of the
system definition tool, the Entity-Relationship-Attribute (ERA) structure proposed by
Chen [8] is ideal for the representation of the data contained in a system database. The
ERA structure is based on three primitive language concepts: entities, relationships, and
attributes.

» Entities (also known as elements) correspond to nouns in English. Entities are

the objects which the user wishes to define and serve as the basic units in the
system database. All entities are classified into one of several classes (e.g.,
Component, Function) in the system database.

» Relationships are similar to verbs. To be precise, a relationship which defines
a link between two entities corresponds to the mathematical definition of a
binary relation. Relationships are not commutative, each relationship having a
definite subject and object. However, for each relationship, there is a
complementary relationship which defines the link from the object to the
subject.

» Attributes further describe entities much like adjectives modify nouns. The

attributes of an element serve to define critical properties of entities. For

11

instance, attributes of a component would include the component number and
type.
Because the ERA structure consists of entities which are modified by attributes and
related to other entities, it clearly corresponds to the object-oriented approach. Entities
are represented as objects with the attributes stored as data within the objects. The
relationships then define the interaction between objects.

To clarify the concept of the ERA structure, a simple model of the academic
environment has been developed as an example. The entities are categorized into four
classes — department, professor, student, and course — as shown in Figure 3.1. Each
entity has basic attributes which define the entity. For example, as illustrated in Figure
3.1, each course has a description, a number, a set of prerequisites, and a list of semesters
during which the course is offered. Furthermore, the entities are linked by relationships.
As shown in Figure 3.1, a course is "taught by" a professor. The complementary
relationship, though not shown in Figure 3.1, states that a professor "teaches” the course.

Not only does the ERA structure correspond closely to the problem it is trying to
model, but it also serves as an artificial language in which the problem can be defined.
Because the ERA structure is an artificial language, the precise meaning of each concept
can be defined and documented [2]. Therefore, ambiguities present in other languages
can be avoided. For example, requirements documents written in English are often very
unclear. However, if the requirements were specified in an ERA structure, there could be
no ambiguities, because the meaning of each entity class, relationship, and attribute
would be clearly defined with a single meaning. Therefore, the language serves to clarify
and enhance communications between system developers and users. Furthermore, the
attributes and relationships for each entity class serve as a checklist of information which
needs to be specified for an entity to be complete. Because the Entity-Relationship-
Attribute structure not only naturally represents the required information but also serves
as an artificial language which eliminates ambiguities and miscommunication, the best
model for the system definition database is the ERA model.

12

Department
A . Maximum Size

offered by * Specializations memper of

enrolled in

Course)4\ /P(Professor)
Description

. . . performs * Background
« Number istaking | rocearch with * Specialty
* Prerequisites » Title
* Semesters
Offered graded by
St;?tfs Student

+ Academic Level
» Academic Record
e Number

taught by
Legend
) Entity
. Attribute
P Relationship

Figure 3.1 Simplified ERA Diagram for an Academic Environment

13

IV. RESULTS

Based on the ERA language and developed in Smalltalk, the Requirements
Analyzer and Traceability Manager consists of five interfacing modules built around the
system definition database. The heart of the tool is obviously this database which stores
all the information generated during system development. The element editor, used to
browse and manipulate the database, is the primary user interface of the tool. Two
additional views, the text and hierarchy views, display a different subset of data in
different formats to fulfill some of the needs of system engineers. Furthermore, because
originating requirements are often specified and written by someone other than the
engineer, the requirement extractor allows the user to transfer requirements directly from
external documents to the system database. Finally, in case a user needs to add a new
concept to the database structure, the schema extender allows the user to extend the
baseline database structure. The remainder of this section consists of a brief summary of
the database and the interfaces. (Appendix A contains a complete description of the
RATM environment and interfaces as well as a complete command summary.)

4.1 System Definition Database

Built on the ERA structure, the structure of the system definition database (known
as the schema) is designed to both maintain strong traceability throughout the system
definition process and document the decisions made during design. The first priority in
defining entities and relationships is to maintain complete traceability of all elements of
the design. In this way, the origins and justification of all pieces of the design can be
determined. Furthermore, the effects of changes in requirements can immediately be seen
because all elements which descend from the changed requirement are linked to the
requirement in the database. Moreover, the design rationale — the answer to the question
“why", often kept only in the engineer's head — is captured in the database. Because
engineers often move from project to project, this information is often lost and cannot be
recovered if a design is reviewed at some point in the future. However, by allowing the
user to document all engineering decisions, the database maintains a complete audit trail
for future use. Finally, in order to avoid arbitrary design constraints, the schema is
designed to allow the user to express the "what”, "when", and "how well" but not the

"how" of system design.

14

Though the RATM tool has modules that explicitly support only requirement
analysis and design traceability, the database supports the entire system definition
process. The entities, relationships, and attributes reflect the data present in the phases of
design as first defined by Long, Dinsmore, Spadaro, and Alford [9] from 1968-1972. The
Source class is an output of the problem definition and system concept derivation phases.
OriginatingRequirement, Constraint, and Performancelndex all serve as design
requirements. To complete functional analysis, the Function, Item, CompletionCriteria,
and DomainSet classes are all needed. The allocation phase requires the System,
ExternalSystem, Component, Interface, and ItemLink classes. The Criticallssue and
Decision classes are a repository for the design rationale. The remaining element type,
Engineer, is simply a way to keep track of who is responsible for developing a particular
part of the system. The complete set of entities, relationships, and attributes in the
baseline schema are shown in Figure 4.1 and Figure 4.2. Appendix B also includes a
complete set of Entity-Relationship diagrams for the baseline schema.

The baseline schema is defined to allow the user to work with requirements
instead of forcing the user to define the database structure. However, some users will
need to be able to extend the schema in order to fill the needs of their specific project.
Therefore, the schema is extensible at the concept level. The user can add entity classes,
relationships, and attributes to respond to specific needs or new requirements for defining
systems. Between the baseline schema which supports the entire system definition
process and the extendable nature of the schema, the system definition database can
support the needs of any system development project.

4.2 Element Editor

The element editor, the primary interface for browsing and updating the system
database, consists of nine different panes divided into two basic groups as shown in
Figure 4.3. The five upper panes are list panes displaying the classes, elements, and
relationships in the database. The lower four panes are labeled text panes displaying the
name and three attributes of the selected element.

In the first list pane, the classes (e.g., Component, Function) are displayed. When
the user selects the desired class, the elements within that class are shown in the element
pane. The relationship pane lists all possible relationships for the selected class. When
the user selects a relationship, all possible target classes are listed in the target class

15

simn

adAL

worqolq

o], ydesdereq

Joquinp ydeisderey

Iaquini
paLjIpowt 1se7]
anfeA xapuj
uonduosacy
uo paear))
adtoyy
108318
loyiny
saAneUIAY
uonelaalqqy

saNqLNY

Classes

CompletionCriteria
Component
Constraint
Criticallssue

Decision

1000R0O00OR00
0

DomainSet

Engineer

ExternalSystem
Function

Interface

Item

ItemLink

Object

OriginatingRequirement | @ [

Performancelndex

Source

System

Figure 4.1 Baseline Schema Entity-Attribute Chart

16

uswarmbaySunew8ug “ 000 T '_. _. _. @ _. o
UOISI(] " o0 _. ._. _. _. [] L J L
B (o1 seoen) woIj pasen o
SNSS[RINLY)
(s9oua19)a1) Aq pasualajal)
JogUTRWIO(] !
waumdug O 11 0000000000000
:csn.vE—n_ (sidino) woxg indino e
’ (surejuod) £q paurejuod st ()
Sl (uo paseq st) Jo siseq st
XOPUPOURULIONS Paseq St) JO stseq st ®
(sindur) o1 Indut l®
uondun,j y oda ’ ods :
131
uswannboySunewdug (Aapar oo) saelodioout [)
ansseanu) (4q poresouad s1) soresauad (@)@ |@ (@ (@@ ._. 00000060
euU)UonRdwo) (10 11x3) 4q suxe _.
X3PU[POUBULIONS] (Aq pa11qryx?) suqryxa @ l® ™
220§ (swsumaop) 4q poweumocp @@ l@| (ole/eole/elelele e @
w3y " .
uonoun,g (Aq pasodwooap) sasodwoosp l®
Jurensuo) (surensuo) £q pautensuco |@|@ (@ ooololole @ o
LRI (01 S199UU00) 0} P3}IBUUCO ® ° °
Uy (satwres) Aq paLired l®
waskg " @
wIsAgewnxy " J.
wouodwo) (wo J[ing) ut 3[inq ®
waskg “ @ @
wAsAgreuLIXy " ® ®
jusuodwo)) (suuopad) 01 paresojre _. ®
sasse[)) 32318, sdjysuopepy FE
2 i,
= E
m Q 9 2 nm. 5
SlsEz2 &35 -
E . @ w .
2 .z) S 8
a°g 2 g . 5 g
§8854355828882383

Figure 4.2 Baseline Schema Entity-Relationship Chart

17

saueq SINqLIY

sued sweN

suonng
oS 1931e],

Juey sse[)) 108xe],

sued diysuone[oy

aueq 108me],

3y} ID UBHD} SUBPUO OU — JBJUNOD D }D SUSPUO 20p|d

I0NpH W[¢'{ N3]

2083433y

wa}shgleuaa}x3
jagutewoq
juteysuo)
puauodwio))
eldapaguotjadwor)

sasse|) (abue]

POy 40j yrep
aull UL e

m paumo }NONIIED 40 UL J&

re

sajedodaoout fiyloedes wnwxew ¢
A
l

auwayos jured
nuaw

fiq pajuswnoop juawainbau ||edsA0

| 1DYS SJU3Wo}sn)

suonng
110G 1uwalg
4DUL}EULDLIO
Auwai aurd UWAH
washigleudaxy
J99ubuz
}9sutewoq
aued sse[)

eLA3}14Ju0L} 9| dwo))

sdiysuoijejay sjuawaj3l

4011p3 Juawajj

sasse|)

18

pane as illustrated in Figure 4.3. Finally, when the user selects a target class, any targets
of that relationship are displayed. In this way, the user can browse the contents of the
database and modify elements and relationships.

The selection of a specific element in the element pane causes the attributes
corresponding to that element to be displayed in the lower text panes. The first pane
displays the name of the selected element. The remaining three panes display attributes
of the selected element. The attributes displayed in Figure 4.3 are "Number"”, "Last
modified", and "Description”. To change the attribute displayed in a specific pane, the
user can click on the label for the pane. A menu containing the five standard attributes
for every element ("Abbreviation", "Author", "Created on", "Last modified", and
"Number") will pop-up, and the user can select the desired attribute. Only standard
attributes can be displayed and edited on the element editor.

In order to maintain a consistent database, special care is taken in manipulating
elements and relationships. When the user either adds a target to a relationship or
removes a target from a relationship, the tool automatically updates the complementary
relationship as appropriate. For example, if "Item1" is added to the "inputs" relationship
of "Functionl"”, "Functionl" is automatically added to the "input to" relationship of
"Item1". Furthermore, if an element is deleted from the database, it is removed from all
relationships in the database. Because the attributes of an element are stored only with
the element, no special care is required in handling the attributes.

Because a standard, "user-friendly" Apple Macintosh interface has been
developed and implemented, very little time and effort is required for an engineer to learn
to effectively use the element editor. Furthermore, the combination of automatically
updated list and text panes facilitates browsing and manipulating the underlying database.
All actions, ranging from the modification of an element attribute to the creation of a new
element, are menu and mouse driven. Finally, the tool automatically takes the
appropriate steps to maintain a consistent database. Therefore, the engineer can
concentrate on system engineering instead of learning and using a tool.

4.3 Text View
Unlike the element editor, the text view is not designed for browsing the database.

Instead, all of the information on a particular element in the system database is displayed
in the text view, a structured format illustrated in Figure 4.4. The attributes are displayed

19

e Cow) e
suong HO§ 193w, —

aued sser) 198re],

oued 198w,

._\

MIIA 1X3], odwreg 'y 2131y

\

0} sa0e.}e
fiq paumo
sayeaodaosul

S3)e.dauab
fiq pajuawnoop

‘ yudwaanba ffeadro |

01:81:21 3P Z661 ‘SI Wby

paljipouw }se’

311 ydeabeuaeyd

$ANQqLIY Wwoisn)) e —> s i

Jaqunp ydeabesey

"S3|qO} By} 10 UIND} SJIpu]
OU - JIIUNOD B }b SUBPJO 300(|d | |DYS SUaWO}ISN]|

uonduasaq

*

| uenemnaigay
SSED laquinn A
Y) J
/ 2661 ‘Sh oy uo pajeau) m
/ L
N\ copeo somd_ SUON

[

(yuawa.inbaybueuiblig) s1apio dle|d ===

/ sdiysuoneay

SNV prepuelg

20

in the upper portion of the window in labeled text panes. The relationships, target
classes, and targets that complete the element definition are displayed in the lower portion
of the window as shown in Figure 4.4.

The first labeled field on the text view is the element name. The remaining
labeled text panes (up to fourteen panes) display the attributes for the element. As shown
in Figure 4.4 the attribute panes are displayed in the following order:

« Author (non-editable)

e Created on (non-editable)

* Number

» Abbreviation

+ Custom attributes of the element in alphabetical order (up to 9)

+ Last modified (non-editable)

The first four and the last attribute are all standard attributes for all elements in the
system. All other element attributes are classified as custom attributes and are defined
either exclusively for specific classes or are added to all classes by the user. Because of
the nature of the custom attributes, they are not accessible from the element editor.
Therefore, the only manner these attributes can be specified is through the text view. The
sole exception to this is the case of OriginatingRequirements whose paragraph name and
number can be specified when the element is created through the requirement extractor.

Three attributes ("Author", "Created on", and "Last modified") are non-editable
attributes. Both the "Author" and "Created on" attributes are automatically determined at
the time the element is created. In order to maintain complete design documentation this
information must be maintained. The "Last modified" attribute is automatically set
whenever a relationship or attribute is changed and assists in tracing modifications to the
database.

Though the attribute panes in the text view are more extensive than those in the
element editor, the list panes at the bottom of the text view are identical to those of the
element editor. As in the case of the element editor, the user can select a relationship by
clicking on the relationship name in the list pane. After a relationship is selected, the
target classes for the selected relationship are shown in the target class pane. If there is
only one target class for the selected relationship, it is automatically selected. Once a
target class is selected, all targets in that class are displayed in the target pane.

21

4.4 Hierarchy Diagram
Though the element editor and text view both allow the user to modify the

database, the hierarchy diagram can only be used to graphically display (but not
manipulate) relationships between elements in the database. Each diagram is defined by
two primary parameters: a top-level element and a set of relationships. All descendants
of the top-level element, as determined by the set of relationships, are determined and
displayed in a hierarchical format as shown in Figure 4.5.

The hierarchy diagram consists of two elements: icons and arcs. Each element on
the chart is represented by an icon (also called a node). As illustrated in Figure 4.5, the
icon contains the name, number, and class of the element (though the user can toggle the
display of the element class off if desired). Furthermore, if the icon appears in multiple
places on the diagram, a small black square is drawn in the upper-right hand corner of the
icon as shown in Figure 4.5. The arcs represents relationships between objects and
targets. If the set of relationships for a hierarchy contains more than one relationship,
each arc on the diagram is labeled to indicate which relationship links the two elements as
shown in Figure 4.5. However, when only a single relationship is used to define a
diagram (as in the case of a Function Hierarchy), relationship labels are not displayed in
order to keep the clutter on the diagram to a minimum.

Hierarchy diagrams play a critical role in traceability management. By defining
the appropriate set of relationships, all elements which trace to a specific element can be
determined and displayed in an clear, graphic format. For example, if after six months of
system development, a change order revising an original requirement is received, the
engineer can quickly determine all affected elements. Therefore, the hierarchy diagram is
a critical piece of the RATM system.

4.5 Requirement Extractor
Unlike the element editor, text view, and hierarchy diagram which can be used to

display the contents of the system database, the requirement extractor can only be used to
add information to the system database. If the user has a document (in electronic format)
containing the originating requirements for the system under consideration, the
requirement extractor can be used to accelerate the process of entering the requirements
into the system.

The requirement extractor window consists of ten panes and numerous buttons as

22

Ayorerdiy Anqiqesser], ojdweg ¢ a1ngig

litalioie) (s
SSe JuauIl uoLpoun § yusuodwo) uoijouny uoLpouny puauodwo) Jusuodwon e
w " = —— | °lqepuedxg
123 0} r
49paQ 0By JYLTR LIVWELS | ye3 2434 3pLo3Q OLAISG eauy buye3

' 5 Ve Sl - ¥l V'e 1
0 woom;«& 0} moomb_ 0} mooa.:_ 0} s30e4y| 0} moof«_ 0} moo?:_‘

_ _
u:DEOMm \ **- aybuiyeutbrip

- *** aybutyeuLblI LOUWIBN U219
paeadoy 2 N 14
ynofiiied

i —ODN\H S49pao doeld 40 UL jed IaqunN

yysuone|s st

" HERd g/'mo«?.o&oocwj sajeaod.iooul juswiory

_
ww.ﬁo N - ayburyeuiblig
juausaanbaa
e49A0

[Ef=——— (juawexnbaybuneouibLig) Juawainbai |jesene —————

23

shown in Figure 4.6. First, the text pane in the upper-left hand portion of the window is
the document pane. The five text panes directly below the document pane are the
attribute panes. Below the attribute panes are the two list panes that display the targets
for the relationships that can be specified in this window. Along the right side of the
window are the window are two list panes which display all elements in the
OriginatingRequirement and Source classes.

When the user opens the requirement extractor on a specified file, the contents of
the file are displayed in the document pane. Because this is a text pane, the user can
highlight text or perform any other standard editing function. Most often, the user will
simply want to extract segments of text from the document and enter it into the database.
Therefore, transfer buttons have been implemented to facilitate this process. To move
text from the document into the definition of a requirement being created, the user can
simply highlight the desired text in the document window and press the button
corresponding the desired attribute. For example, the highlighted text in the document
pane in Figure 4.6 can be transferred to the paragraph name pane by pressing the button
labeled "Paragraph Name".

In addition to being able to specify the values of attributes when the requirement
is being created, the user can add targets to two relationships. The source which
documents the requirement can be specified in the documenting sources pane. The
requirements which incorporate the requirement being created can be specified in the
parent requirements pane. The list panes along the right side of the window are selection
panes which allow the user to add targets to these two relationships.

4.6 Schema Extender

While the element editor, text view, hierarchy diagram, and requirement extractor
are interfaces between the user and the contents of the system database, the schema
extender allows the user to modify and extend the ERA language that defines the
structure of the system database. The schema extender consists of four list panes as
shown in Figure 4.7. In the first list pane, the classes (e.g., Component, Function) are
displayed. When the user selects the desired class, the relationships and attributes for the
class are displayed. The relationship pane lists all possible relationships for the selected
class, and the attribute pane lists all attributes (both those that are inherited and those
defined for the selected class). When the user selects a relationship, all possible target

24

aueJ $20IN0g

Jued
syuswdImbay

SureN
JUSWNo0(]

Joyoenxy juswannbay 94 amSig

........ ued SAIN0S

....................... wauzoEBOOQ
........... juawaanbad [esaao
$324n0§ buijuawnsog sjuawannbay juaied
ued
sjuowannbay

$aJinos

"S3|qD} BY} ID UBNDY SUBPJO)
my ‘@ ou |L'm.ucsoo b 10 suaapJo 29p|d | |oys susuwoysng[]| U01}dLIISaQ juared

V suonng
A7 1jsuel],

AaquinN

Suspuo 30| ouweN

panuas aJb A3y} | 13un JBpPJo Ub S3DD|d UBWOISND D BW|} 3Y} Woud ¢
DYS JBpJo up 3dp|d A3y} |13UN SUIUD JBWOISND D 3W|} BY} WOoJ4 "g
I0 UBND} SJUBPJO OU — JRJUNOD D }D SUBPJO 3db|d | |BYS SJaWO}SN) G|
*3nofiyuod uo uy o2 fiow suswoysnd ay] |

‘a|doad 0ol 29 | IbYys jubunby}sad 3y} Jo Ay 1o0dod wnwixbw 3y) ‘g

) puo mo| |af Aq paibulwop awsyds juind b asn |joys Buipjing ayy 'z
UMDIYD pUD ‘savoys ‘saitd) ‘sJuabung Bpn|du| | [bys nusw 3yl "}

w}sad pooy Isby adfijojoud b aypbuado 0} S| juBWBUINDIU | |BUBNO BY]
sa4 pooy 3}sby b ub|sSap 0} S) }U0}@ SIYY 40 @n13d3fqo fAubwiud ay)

sjuswaJdinbay (g g
UL W jteM 9 Iy} S1 3dadU0D JUDJNDISBJ S|Y} pulyaq 2040y BuinlJp fubwiad ay)

P00} 40j oM

s4ap.4o soejd
nofiazes 4o Ui jea
fiyroedes wnunxew
dWeyos jured

uossnasig pun punoubyopg Bujjonijoy °Z

juswaJinbad fubujwl |3ud asodoud 0} si juswWNIop sy} 30 asodund a3y}

uoi13oNpoulu) ‘|

JUBUND}SIY pood }so4 b oy BUYEIEMIREFILNEEITTIERE :3122gng
ued H:DE:OOQ

25

Jued QLI

sueq diysuone[ay

Jued sse[) 198y,

I9pURIXH BWOYDS /'p InJ1g

43qwnN
patjipows }se
uotydiaosag
4o04ny
uoLjetAaqqy

sajnquny

JUSWSAND&4DUL}EULDLID

X3PU|30URWI0S I3
Juawdatnbaybutyeulblag,

Jued sse[D

el 4Juol}3 dwo]
109(q

sassej] 1abae)

sasse|)

26

classes are listed in the target classes pane. In Figure 4.7, the relationship "traced from"
is selected, and the possible target classes (Decision and OriginatingRequirement) are
displayed.

As shown in Figure 4.7, the first class in the class list pane is the superclass
Object. This class is an abstract class. Unlike the other classes in the system, no
elements of type Object can be defined. The sole purpose for this class is to define the
structure of the other classes which inherit the characteristics of the superclass.
Therefore, the attributes of class Object are automatically inherited by all other classes.
However, though classes inherit attributes, they do not inherit relationships. Therefore,
relationships cannot be defined for the superclass.

In order to maintain a meaningful database structure, the schema extender
performs a basic set of checks to determine if the schema is consistent. A relationship is
consistent if it has at least one target class. A class is consist if it has at least one
relationship and if all relationships defined for the class are consistent. Obviously, if a
relationship has no target classes, the relationship is not fully defined, and therefore the
relationship is inconsistent. If a class has no relationships, the elements in that class
cannot be related to any elements in the system. Because the existence of free-floating
elements in a system defeats the purpose of complete system traceability, classes without
relationships are defined to be inconsistent.

27

V. DISCUSSION

The Requirements Analyzer and Traceability Manager system provides extensive
support for the system definition process. In particular, the system database provides
complete documentation and traceability for engineering design. However, there are
numerous extensions required to make this a complete system engineering tool. Because
the tool has been designed in a modular format and complies with the object-oriented
paradigm, additional capabilities can easily be added.

First, though this tool is tailored to requirements analysis, it does not include an
automatic requirements parser. Though such parsers, used to automatically extract
requirements from a document, are not perfect, they do allow the system engineer to
simply guide the process instead of manually extracting all requirements. Therefore, this
is an important an often requested capability for a requirements tool.

Second, there is no facility to define and explicitly support functional
decomposition and analysis. In particular, there are no diagrams to help define the
required flows. A minimum solution to this problem would be to add the standard
Function Flow Block Diagram (FFBD) for functional decomposition and the N2 diagram
for data flow as put forth in the Systems Engineering Management Guide [10]. However,
an integrated diagram which combines both data flow and functional flow should also be
added in order to improve the system definition process.

Third, there are a number of other system engineering views that can play an
integral role in the system engineering process. In particular, many engineers require the
IDEFO and Data Flow Diagrams (DFD) either for their own use or for purposes of
reporting their results. Although the information on these diagrams is displayed in other
views, the IDEF(Q and DFD views should be implemented to support the engineers that
use these views.

Fourth, a set of templates to generate standard reports and a custom report
generator should be added. One of the major items on the engineer's desk top is the set of
reports that document the system design. In particular, engineers need a number of
standard reports such as the Data Item Dictionary, the DoD Standard 2167A, and Mil
Standard 490 system and prime item level specification. Furthermore, custom reports are
often required to document a specific piece of design information. Though the reports
could be generated by developing a bridge to major publishing tools, an integrated report

28

generator would be preferred so that it would not be necessary to freeze system
development in order to produce the reports.

Finally, though provisions are made for statically checking the database for
completeness, the ability to perform dynamic verification is totally absent. Any complete
system engineering tool requires executable models so that the design can be both
statically and dynamically verified. This capability, combined with the facility to define
system flows, is the most important addition required for a complete system engineering
tool.

Though all of the aforementioned capabilities are important for a complete system
engineering tool, many are beyond the scope of the RATM system. In fact, it is not clear
if it would be a good idea to combine all of these ideas into a single tool. Not all
engineers will need all tools, and an engineering tool combining the complete set of
capabilities would be too large, complex, and expensive. However, the ideal solution
would be to develop all of these capabilities in a series of tools that could be integrated in
order to provide each engineer with the tools that he or she needs.

29

VI. CONCLUSIONS

The importance of the system engineering process has grown as systems have
become more complex and more systems require imbedded computer subsystems
(primarily for the purpose of control). In order to design and develop effective and
efficient systems within the constraints of today's problems, much more attention must
paid to the system definition process. It is during system definition that most of the
decisions determining the configuration of the system are made. Hence, good system
definition is the cornerstone upon which solid and cost-effective systems are built.

The Requirements Analyzer and Traceability Management (RATM) system
defined and developed during this project assists the engineer during system definition by
capturing design information and maintaining complete design traceability. An object-
oriented approach has been selected, because it is efficient, compact, and yields increased
reliability. The tool is coded in Smalltalk, an excellent prototyping language which
supports the object-oriented approach and is available on small computer platforms.
Peter Chen's Entity-Relationship-Attribute database structure is implemented to fully
describe the system being defined. However, database structure alone is meaningless.
Therefore, a set of "user-friendly" interfaces consisting of a combination of text and
graphics views that are optimized to fulfill the system engineer's needs are included. In
particular, industry standards such as the hierarchy diagram and the text view as well as
the system engineering editor are included. Furthermore, a requirement extractor is
implemented in order to facilitate the specification of originating requirements. Because
projects often have specific needs and there may be unanticipated needs for stating
requirements, the basic database structure itself is extensible via a schema extender.
Finally, the tool is expandable and extendable in order to serve as the basis of a tool to
more completely satisfy the needs of system engineers. Though this tool has been
implemented, the code is not released, because it is proprietary information. The
completed tool is expected to be released as a commercial product to support the system
definition process.

Though this tool is not yet a complete engineering tool, it does provide
considerable assistance to the engineer during the definition process. By automating
many of the routine tasks, this tool eliminates many of the errors which result from
inconsistencies that naturally occur when trying to manually maintain multiple models of
a single system. Furthermore, the tool's implementation is designed so that the tool will

30

fit on "everyday" computers that engineers use (the IBM PC and Apple Macintosh).
Therefore, the tool will be widely accessible. Though the tool developed will serve as the
basis of a complete system definition tool, the Requirements Analyzer and Traceability
Management tool provides much needed assistance to system engineers by supporting the
system definition process, thereby filling the need for a "user-friendly" support tool that is
accessible to most system engineers.

31

VII. SUMMARY

The Requirements Analyzer and Traceability Manager (RATM) designed,
developed, and implemented is a prototype computer-aided system engineering tool to
support the system definition process with an emphasis on requirements analysis and
traceability management. RATM is implemented using an object-oriented approach and
is prototyped in Smalltalk. From system model requirements, Peter Chen's Entity-
Relationship-Attribute database structure representing elements (entities), pertinent
information about the elements (attributes), and their interactions (relationships) is
selected to maintain a complete, consistent system definition. The tool, designed for
engineers, has "user-friendly" interfaces to allow efficient manipulation and
representation of the data in the system definition. These interfaces include a system
engineering editor (the primary interface for browsing and modifying the database), two
primary engineering views (the text view and hierarchy view) to provide diagrams
currently used by system engineers, a requirement extractor to aid the engineer in
requirement specification, and a schema extender to allow the user to tailor the database
structure to respond to specific project needs. RATM is an expandable, extendable
prototype to permit future upgrades to support additional engineering views, standard
reports required by engineers, and dynamic verification of models. At a time when
system definition has become increasingly important in designing efficient, error-free,
cost-effective systems, this computer-aided system engineering tool provides an
accessible source of automated assistance to support the engineer.

32

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

VIII. LITERATURE CITED

Benjamin S. Blanchard and Wolter J. Fabrycky, System Engineering and Analysis,
2nd ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1990.

Thomas E. Bell, David C. Bixler, and Margaret E. Dyer, "An Extendable Approach
to Computer-Aided Software Requirements Engineering", IEEE Software,
January 1977.

L. Baker, Distributed Computing Design System: A Technical QOverview, CDRL

B003, TRW System Development Division, Huntsville, Alabama, July 1987.

malltalk/V Mac: Tutorial and Programming Handbook, Digitalk, Inc., Los
Angeles, 1989.

Adele Goldberg, Smalltalk-80: The Interactive Programming Environment,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.

Jim Diederich and Jack Milton. "Experimental Prototyping in Smalltalk”, IEEE
Software, May 1987.

Jakob Nielson and John T. Richards, "The Experience of Learning and Using
Smalltalk"”, IEEE Software, May 1989.

Peter Chen, The Entity-Relationship Approach to Logical Data Base Design. Q.E.D

Information Sciences, Inc., Wellesley, Massachusetts, 1977.

Long, Dinsmore, Spadaro, Alford, et al., "The Engagement Logic and Control
Methodology as Derived, Defined, and Applied at TRW", unpublished notes,
1968-1972.

[10] Systems Engineering Management Guide, Defense Systems Management College,

Washington, D.C., 1989.

33

APPENDIX A: RATM FEATURE SUMMARY

The Requirements Analyzer and Traceability Manager (RATM) system consists
of five integrated modules (element editor, text view, hierarchy diagram, requirement
extractor, and schema extender) that have been built upon a common interface. This
interface is based upon the standard Macintosh window environment and follows all
Macintosh standards in order to minimize the learning curve for the interface.

Because the standard interface has been tailored to maximize the efficiency of the
RATM environment and because many users may be unfamiliar with the Macintosh
interface, the RATM environment will be discussed. Then, each of the five primary
modules of the system will be discussed. All features, commands, and shortcuts for each

module will be briefly outlined.

1. The RATM Environment
Though the RATM system consists of several different modules, the integrated

tool shares a common environment. This environment is comprised of a standard, "user-
friendly" Apple Macintosh interface. Because the interface is built around windows and
menus and is mouse driven, very little time and effort is required for the engineer to learn
to use the system effectively. Furthermore, any mistakes made by the user are met by
clear, non-destructive error messages, so that the user understands the problem but is not
harmed by the mistake. Thus, the RATM system is built on an extremely convenient,
informative, safe user interface.

Because many users may not be familiar with the basic operations of windows
and menus, the standard Macintosh interface of windows and menus will be discussed
along with any modifications made for the RATM system. Then, because the modules of
RATM share several menus, these common menus and their commands will be
discussed. Finally, the user preferences window which allows the user to establish

defaults for the entire system is discussed.

1.1 RATM Environment Basics
The basic RATM environment is built around the standard Macintosh

environment interface of windows and menus. Though the windows and menus conform
to all Macintosh standards, a brief description of both has been included for the benefit of
those users who are unfamiliar with the Macintosh user interface. Furthermore, because

34

the standard Macintosh cursor appearance has been enhanced to communicate
information about the system status, a summary of the RATM cursor behavior has also
been included.

1.1.1 Windows

In the RATM environment, windows are used to display system information in a
variety of formats. Though each window may contain slight variations such as multiple
panes versus a single pane, all windows are built upon the same basic model. Figure A.1
shows a standard RATM window and all of its components. Though many windows
have all of the components shown in Figure A.1, several custom windows have been
designed in such a way that some of the standard window components would be
meaningless. For instance, the user preferences window has a fixed size, because the
contents of the window are fixed (and not having to resize the window saves the user
time). Therefore, the scroll bars and grow box have been removed from the user
preferences window, because they would not add any functionality. The standard
components and their functions conform to Macintosh standards.

* Close Box

When the user clicks in the close box of the active window, the window
closes and disappears. If the window contains a text pane which has been
modified but not saved, the user will be prompted whether or not to save
the changes before the window is closed.

» Zoom Box

When the user clicks in the zoom box, the active window expands to fill
the entire screen. The user can return the window to its original size and
position by clicking in the zoom box again.

« Scroll Box

The user can scroll either horizontally or vertically by clicking on the
appropriate scroll arrow. The position of the scroll box indicates
approximate location in the window's contents (i.e., in Figure A.1, the text
displayed in the window is approximately one-third of the way down in
the window's contents). Many windows or panes that are scrollable do not
have scroll bars (e.g., the relationship pane in the element editor). To
scroll in these windows, the user should hold down the option key and

35

mopuip € Jo syjusuodwo) 1y 2anSiy

mopuim Buidojanap Ja}y

18bub} PasiInad ‘sdiysuoiib|ad }DI|IS UDD \BSN UDiym wouy
*SBI1YIJI0UB 1Y WwosSND pajuawa|du|

MOLIE [[010§

/|xon 10108

SO S| aunpadodd “fduowsw jo gyg | uoby)} 3uow 3sn o} abbu|
3y} mo||b 0} MmOy J3NOISIpP 0} Y} 161g Pa| DY

‘abowt 3Inys puo Auowadiiajug ¢ Ieq [[010S
‘azigabow]y}as oy | |DWS BN|DBAT “Z
*J49puUl) JIpun fivowaw 335 |

O L1 Q) xop BO.HO

: Teq ~1yuow
OfRpq 34y oy
mopuim b Bujpuas puo Jboq @|313 uo Bu|xoj| 2> paIdl|as Bq 03
X0q w007/
"¥90|q uo1DdI |ddo BYy 0} SUOI}IUILBP 2|qpIUDA PAPPY|
Z661 ‘£Z Huonuor) Ieq 91L],

aazedsyioMm

C——X0q 350]D

36

click and hold in the window until the scroll cursor appears.

* Grow Box
By clicking and dragging in the grow box (holding down the mouse
button), the user can resize the window. Once the window is the desired
size, the user should release the mouse button. The user can return the
window to its minimum size by pressing the option key and clicking in the
grow box.

The only limiting factor on the number of windows that the user can have open at
a time is the amount of memory in the user's computer. Because multiple windows can
be open at the same time, certain conventions are required to indicate which window is
currently active. Therefore, the active window is displayed in front of all other windows
on the screen (i.e., it is on top of the stack). Furthermore, the title bar of the active
window has parallel black stripes as shown in Figure A.1. All other windows have white
title bars. To activate a window, the user should place the cursor inside the window and
click the mouse button. The window will be brought to the top of the stack and become
active.

The RATM environment contains two different window types, standard and
modal. If a standard window is active, the user can switch between this window and any
other window. These windows have title bars with parallel black stripes as shown in
Figure A.1. However, some windows have solid black title bars. These windows, along
with dialog boxes that prompt the user to enter specific information, are modal windows.
Because of the circumstances under which a modal window or dialog is opened, the
action prompted for by that window must be completed and the window closed before the
user can activate another window. Therefore, while a modal window is active, clicking
anywhere beyond the limits of the window results in the workstation bell being sounded
to indicate that the current window must be closed before another window can be
selected.

1.1.2 Menus

While the RATM system uses windows to display information, menus are used to
allow the user to issue a command. Some menus contain choices that are always valid
(e.g., the File Menu), and other menus are applicable to a single window only (e.g., the
Editor Menu). The titles of all menus associated with the active window are displayed in

37

the menu bar at the top of the screen as shown in Figure A.2. All menus are standard
Macintosh pull-down menus and are normally dormant (unseen). As illustrated in Figure
A.2, amenu becomes visible when its title is clicked on.

All menus in the RATM environment conform to the standard Macintosh

conventions which are as follows:

» Show a menu's contents by clicking on its title in the menu bar.

* Select a command in a menu by clicking on the menu title and holding down
the mouse button and moving the cursor to the desired command. When the
desired command is highlighted, release the mouse button.

» Invalid menu selections are shown in a light gray as shown in Figure A.2.
These are commands that currently cannot be carried out because certain
conditions are not met (i.e., adding a target when no relationship to add a
target to has been selected).

» Keyboard select a command by pressing the command key and the keyboard
equivalent for the given command (if the command has a keyboard
equivalent). In the case of the Create Element command shown in Figure
A.2, the command can be selected by pressing the "E" key while holding
down the command key (as notation, this is shown as Command + E).

* Close a menu by moving the mouse outside of the boundaries of the menu and
releasing the mouse while no command is highlighted.

1.1.3 Cursor

RATM uses nine different cursor shapes to communicate the system status to the
user. For example, the eye cursor indicates that the a file is being read from disk, and the
pencil indicates that a file is being written to disk. The complete list of cursors displayed
by the RATM system and the meanings of the cursors are shown in Figure A.3.

1.2 System Menus

The many integrated modules of the RATM software share several menus. These
menus contain system commands that are either always valid (e.g., Save Image in the
File Menu) or commands that apply to most windows (e.g., Send to Back in the Window
Menu). The following menus are shared by most system modules: File, Edit, Window,
and Utilities.

38

Views Utilities Window
Create Element 3$8E

Rename Element Keyboard Equivalent
Delete Element

~J
Hedd Targel ST \))
/ Aename Targed Valid Menu Selection
Invalid Menu Selection

Hemouoe Targed

& File Edit Database

Menu Bar
Menu Title

Figure A.2 Menu Bar and Editor Menu

39

Icon Name Description
M | Corner Displayed when framing rectangular areas
@ Execute | Displayed when execution is taking place
/D Finger Displayed when selecting an area on a diagram
W Hand Displayed when dragging a diagram to change the display area
[3 Normal Standard cursor
I Origin Displayed when framing rectangular areas
<} Read Displayed when reading from a file
& Scroll Displayed when scrolling a pane in one of the four directions
® Write Displayed when writing to a file

Figure A.3 Cursor Summary

40

1.2.1 File Menu

The File Menu contains commands that allow the user to interact with the
Macintosh operating system to manipulate files. This menu includes all standard file
commands for Macintosh applications as well as special commands for the RATM
application. The commands in the File Menu are: New, Open, Save, Save as, Page
Setup, Print, Save Image, Save Image as, and Quit.

1.2.1.1 New (Command + N)

The command New allows the user to open a new, blank text file that can be
saved to disk. The window (titled "Workspace") is intended as a scratchpad which can
be saved and used with other applications.

1.2.1.2 Open (Command + Q)

The command Open allows the user to open a text file. The user is prompted to
select a file from the standard Macintosh dialog for opening a file. Once open, the file

can be edited and copied to or from.

1.2.1.3 Save (Command + S)

The command Save performs one of two different functions depending upon the
type of the active window. If the active window is a file editor (opened via the Open or
New command), the Save command saves the contents of the active window to the disk.
If the active window consists of multiple panes (e.g., the element editor, text views,
requirement extractors), this command forces the active text pane to accept any modified
text that has been entered into the pane.

1.2.1.4 Save as

The command Save as allows the user to save the contents of the currently active
window to a file name specified by the user via a standard Macintosh file dialog.

1.2.1.5 Page Setup

The command Page Setup allows the user to set the various printer options via
the standard Macintosh dialog box. These print options include paper size, enlargement
or reduction, and page orientation (landscape or portrait).

41

1.2.1.6 Print (Command + P)

The command Print allows the user to print the contents of the active window to
the printer, if the active window is a text editor (e.g., notebook, file editor). The user can
specify the number of copies and print options via the standard Macintosh print dialog.

1.2.1.7 Save Image

The command Save Image allows the user to save the image file which contains

both the tool and the data in a binary format under its current name.

1.2.1.8 Save Image as

The command Save Image as allows the user to save the image file under a new
name specified by the user via a standard Macintosh file dialog.

1.2.1.9 Quit (Command + Q)

The command Quit allows the user to exit the tool. Before exiting the tool, the
user is given a chance to save the image file or return to the tool without exiting.

1.2.2 Edit Menu

The Edit Menu contains the standard Macintosh commands used to manipulate
text. Therefore, this menu is displayed for all windows in which text can be modified
(i.e., all panes in the RATM system with the exception of the hierarchy diagram
window). The commands in the Edit Menu are: Undo, Cut, Copy, Paste, Clear, Select
All, Find, Replace, and Search Again.

1.2.2.1 Undo (Command + Z)

The command Undo allows the user to undo the last edit operation performed in
the active window. Actions which can be undone include insertions, deletions, cuts, and

pastes.

1.2.2.2 Cut (Command + X)

The command Cut deletes the selected text from the active text pane. The
deleted text is placed on the clipboard. The text can then be pasted into a text pane via
the Paste command.

42

1.2.2.3 Copy (Command + C)

The command Copy copies the selected text from the active text pane to the
clipboard. The text can then be pasted into a text pane via the Paste command.

1.2.2.4 Paste (Command + V)

The command Paste inserts the text from the clipboard into the active text pane at
the insertion point. If text is selected when this command is invoked, the selected text is
replaced by the text from the clipboard.

1.2.2.5 Clear

The command Clear deletes the selected text in the active text pane. Unlike the
Cut command, the text is not placed on the clipboard and is therefore lost.

1.2.2.6 Select All (Command + A)

The command Select All selects all text in the active text pane. The selected text
can then be cut, copied, or deleted.

1.2.2.7 Find (Command + F)

The command Find allows the user to search the active text pane for a text string.
The user is presented with a dialog which allows the user to specify the text string and the
direction of the search (forward or backward).

1.2.2.8 Replace (Command + R)

The command Replace allows the user to replace all occurrences of a specified
text string with a new text string. The user specifies the old string, the new string, and the
conditions under which the old string should be replaced by the new string.

1.2.2.9 Search Again (Command + G)

The command Search Again allows the user to perform the last search operation
in the direction previously specified in the active text pane.

1.2.3 Utilities Menu
The Utilities Menu contains commands that allow the user to access the many
system utilities built into the RATM software. These commands include: Open

43

Requirement Extractor, Open Schema Extender, Open Notepad, and User

Preferences.

1.2.3.1 Open Requirement Extractor

The command Open Requirement Extractor allows the user to open a
requirement extraction window. The user is prompted to select the desired document
from a standard Macintosh file dialog of all text files. A requirement extractor is then
opened on the specified document. Because the requirement extractor is a tool to used to
enter data into the system database, this command is not on the Utilities Menu when the
database structure is being modified via the schema extender.

1.2.3.2 Open Schema Extender

The command Open Schema Extender allows the user to change to the schema
extension facility to modify the current schema. In order to manipulate the schema, the
database must be empty. Therefore, if there are any elements in the database, the user is
warned that opening the extender will erase all data. If the user wishes to proceed, all
windows are closed, and the schema extender is opened. Obviously, this command is not
on the Utilities Menu when the schema extender is open.

1.2.3.3 Open Notepad

The command Open Notepad allows the user to open the system notepad to use
as a scratch pad for temporary notes. If the notepad is already open, its window is
brought to the front of the display instead of another window being opened.

~

1.2.3.4 User Preferences

The command User Preferences opens a modal user preferences window to allow
the user to set the basic options for the system database and views.

1.2.4 Window Menu

The Window Menu contains commands that allow the user to change the active
window's size, fonts, and location. These commands include: Send to Back, Collapse,
Zoom, Change Text Font, Change List Font., Redraw Window, and Stack Windows.

44

1.2.4.1 Send to Back

If more than one window is currently open, the command Send to Back allows
the user to send the active window to the back of the stack of RATM windows.

1.2.4.2 Collapse

The command Collapse allows the user to show only the title bar of the active
window (thereby reducing the amount of screen clutter without closing a window). The
title bar can then be moved and positioned as desired. To reopen the window to its
previous size, the user can click in the zoom box. Option-clicking in the zoom box is a
shortcut for the collapse method.

1.2.4.3 Zoom

The command Zoom allows the user to toggle size of the active window between
its present size and the size of the entire screen. This can also be accomplished by
clicking in the zoom box of the window.

1.2.4.4 Change Text Font

The command Change Text Font allows the user to set the font and font size for
text panes in the active window and all future windows through a dialog box with two
pop-up menus. Pre-existing windows that are not active are not affected.

1245

The command Change List Font allows the user to set the font and font size for
list panes in the active window and all future windows through a dialog box with two
pop-up menus. Pre-existing windows that are not active are not affected.

1.2.4.6 Redraw Screen

The command Redraw Screen causes the system to redraw all open windows. A
shortcut for this command is pressing Command +\.

1.2.4.7 Stack Windows

The command Stack Windows results in the system rearranging all open

windows into a neat, staggered stack for easy access to all windows.

45

1.3 User Preferences

The user preferences window is a modal interface that allows the user to change
the basic settings for the entire system. The window consists of multiple fields and
buttons as shown in Figure A.4. Those system parameters which can be manipulated
through the user preferences window can be broken into two basic categories: general
options and diagram display options.

1.3.1 General Options

The general options set through the user preferences window are the system
author shown at the top of the window and the parameters controlled by the buttons at the
bottom of the window. The author for all future elements is show in the author field. In
the case illustrated by Figure A.4, any future element created will have the value "System
User" as its author. Changing the author field does not affect elements that have already
been created.

Though the author parameter can assume any value, most system parameters can
assume only one of two values. Therefore, these parameters are set by toggling one of
two buttons on. The buttons are as follows:

» Auto Accept

If the auto accept feature is turned on, text entered in text panes on the
element editor and text views will be saved automatically. If the feature is
off, changes made to those panes must be saved via the Save command.

» Sort Preference

The sort preference parameter determines the default method to be used to
sort all element lists. If the button labeled "123" is pressed, element lists
will be sorted by the element number. If the button labeled "abc" is
pressed, element lists will be sorted alphabetically.

* Monitor Size

The monitor size parameter helps determine the default size and placement
of many windows (e.g., Add Target Selection window). If a standard
twelve inch monitor is being used, the parameter should be set to small.
However, if a nineteen inch monitor is being used, the parameter should
be set to large to obtain the best window placement.

* Mode

The mode parameter allows the user to switch between standard and demo

46

O User Preferences

General Options

Ruthor:[Sgstem User |

Biagram Display Options

Hierarchy Diagrams Icon Size: |80 | X |60
Spacing: (20 | X |40
Levels: (10

Auto Accept off
Sort Preference
Monitor Size

Mode Standard

Large

|
il

Figure A.4 User Preferences Window

47

modes. The only time that this button should be changed is if changes
must be made to the basic system code. To access and update the system
code, the user must set the mode to demo and close the user preferences
window. The user is then prompted to enter the system password. If the
password is correct, the tool is closed, and changes may be made to the
system code. Otherwise, the tool will remain in standard mode.

1.3.2 Diagram Display Options

The diagram display options set through the user preferences window affect any
diagrams opened after the parameters are changed and the window is closed. Any
diagrams already open will not be affected by changes to the diagram display options. To
change the options for a diagram currently open, the user must use the Display Options
command for the given diagram.

The parameters that can be changed through the user preferences window include
icon size, icon spacing, and the initial number of levels for each diagram. The user can
specify the height and width of the icon and the vertical and horizontal spacing between
the icons (all in pixels) by simply entering a number in the appropriate field and pressing
return. The initial number of levels to be displayed on the diagram can also be specified
so that the user can produce a diagram containing as little or as much detail as the user

desires.

2. Element Editor

The element editor, the primary interface for browsing and updating the system
database, consists of nine different panes divided into two basic groups as shown in
Figure A.5. The five upper panes are list panes showing elements, classes, and
relationships from which the user can select simply by clicking on the name in the list
that is desired. The lower four panes are labeled text panes displaying the name and three
attributes of the selected element.

In the first list pane, the classes (e.g., Component, Function) are displayed. When
the user selects the desired class, the elements within that class are shown in the elements
pane. In Figure A.S, the class OriginatingRequirement has been selected resulting in the
requirements in the database being displayed in the element pane. The relationship pane
lists all possible relationships for the selected class. When the user selects a relationship,

48

IoNpy wowd[g ¢y amngig

2Y} D UDHD} SUSPUO OU - UIIUNOD B D SJUBPJo Idb|d | |bys mgwwwu_mmw_ uo01)diiasag
saued 0~5£E~<
suonng
ﬁom UUIR[
aued JWeN
mCOSDm }esulewoq
f JuIRA}SUOY
PHOW HDMH—«..,—._ Jusuodwo)

el4ajliquolL}a|dwio)
sasse|))abue]

Aued sse[) uow.udh.. Po0j 40} JreM

aull ut yem 9 asauibyy

0} 58984} sapa0 aoe|d o 1a5UleWoq

Jnohaied Jo uL jes b uoLs103Qe

ued QF—mGOEﬁOM : fiyroedes wnuwixew ¢ anss||eolitide

dWwayos jured L
43paQ %8| 4 sayeaauab nusw - ued mmm—U
Jaapag ydeooy fiq pajuawnoop JUIWAANDIU || eA3A0 eLID}LADUOL} 3 dWIo)e

Jueq 198re], syabae) sdiysuonjejay sjuawall sasse|]

4011p3 Juswail

49

all possible target classes are listed in the target classes pane. In Figure A.5, the
relationship "traces to" is selected, and the possible target classes (e.g.,
CompletionCriteria, Component, and Constraint) are displayed. Finally, when the user
selects a target class, the targets of that relationship in the selected target class are
displayed. In the case shown in Figure A.S, the relationship has two targets in class
Function , "Accept Order" and "Place Order".

In the class pane shown in Figure A.5, the class OriginatingRequirement is
preceded by a black circle (¢). This black circle indicates that the database includes
elements of type OriginatingRequirement. If a relationship is preceded by a black circle,
the selected element is linked to at least one target by the relationship. Furthermore, if a
target class is preceded by a dot, there is at least one target in the target class.

The selection of a specific element in the element pane causes the attributes
corresponding to that element to be displayed in the lower text panes. The first pane
displays the name of the selected element. The remaining three panes display attributes
of the selected element. The attributes displayed in Figure A.5 are "Number", "Last
modified", and "Description”. To change the attribute displayed in a specific pane, the
user can click on the label for the pane. A menu containing the five standard attributes
for every element ("Abbreviation", "Author", "Created on", "Last modified", and
"Number") will pop-up, and the user can select the desired attribute. Only standard
attributes can be displayed and edited on the element editor.

Not only do the lower four pane display the element name and attributes, but they
are also fully operational text-editing windows. Text can be added, deleted, cut, pasted,
and copied through a standard Apple Macintosh interface. However, the author, created
on, and last modified attributes are non-editable attributes. This means that the user
cannot explicitly enter values for these values. The value of the "Author” attribute is read
from the user preferences at the time that the element is created. When the element is
created, the "Created on" attribute is also specified. Neither of these two attributes can be
changed. On the other hand, the "Last modified" attribute is automatically updated
whenever a change is made to the element definition (either an attribute value is changed
or a target is added or removed).

Though the attributes of the selected element can be modified through the text
panes on the element editor, the only method to manipulate elements and relationships is
though the menus. The Database Menu and Editor Menu allow the user to manipulate the

50

database. The Views Menu allows the user to open alternate views on the selected

element.

2.1 Database Menu

The Database Menu contains all commands that deal with the entire database.
These commands include: Import Database, Export Database, Erase Database, Print
Database Report, and Run Consistency Check.

2.1.1 Import Database

The command Import Database allows the user to load a database file from disk
into memory. The user is presented with a standard Macintosh dialog to select a text file
to open. This command deletes any elements currently in the system. Therefore, the user
is warned of this consequence before continuing.

2.1.2 Export Database

The command Export Database allows the user to write all element definitions in
the database to a text file on disk. By exporting the database, the user can create a
relatively small, stable backup to the database stored in the image file. Because the
export includes only the element definitions, it requires only a fraction of the disk space
of an image file which includes both the data and system code. Furthermore, since the
export is a text file instead of a binary file, it is much less likely to become corrupted
(since displacing a single bit in a text file will result only in a single character being
changed whereas displacing a single bit in a binary file can corrupt all data in the file).

2.1.3 Erase Database

The command Erase Database causes the image to erase all elements in the
database. Because of the potential loss of data, the user is asked to confirm the choice to

erase all entities before any action is taken.

2.1.4 Print Database Report

The command Print Database Report allows the user to create a structured text
report file on disk containing the definitions of all attributes and relationships for the
elements in the database. The report can be opened via the Open command in the file
menu and printed in order to obtain a hard copy. Furthermore, because the report is

51

stored in a formatted text file, it can be read (and modified) by any word processor in

order to be included in other reports.

2.1.5 Run Consistency Check

The command Run Consistency Check has not yet been implemented. When
implemented, this command will allow the user to perform a predefined set of checks to
determine if the elements currently in the database are incomplete.

2.2 Editor Menu

The Editor Menu contains the commands that allow the user to update the system
database. These commands include: Create Element, Rename Element, Delete
Element, Add Target, Rename Target, and Remove Target.

2.2.1 Create Element (Command + E)

The command Create Element allows the user to define a new entity in the
selected class. The user is prompted to enter a name for the new element, and if the name
does not conflict with the name of an element currently in the selected class, the new

element is created with nil values for all attributes and relationships.

2.2.2 Rename Element
The command Rename Element allows the user to change the name of the

selected element. The user is prompted to enter the new name for the element. If the
name entered is not the same as a name of an element in the selected class, all instances
of the element in the database are renamed. An element can also be renamed by entering

a new name in the name field on the element editor.

2.2.3 Delete Element
The command Delete Element allows the user to remove all instances of the

selected element from the database. Because all instances of the element will be
removed, the user must confirm this choice before the element is deleted.

2.2.4 Add Target (Command + T)

The command Add Target allows the user to add multiple targets in the selected
target class to the selected relationship and automatically creates the complementary

52

relationships linking the targets and the selected element. A modal selection window
consisting of a list of all elements in the target class and a set of five buttons (Add,
Create, Remove, Done, and Cancel) as shown in Figure A.6 is opened.

When the selection window opens, all current targets of the selected relationship
are preceded by a white circle (°). As elements are added to the target class list, their
names are preceded by a black circle (¢). An element can be added to the target list either
by selecting the desired target and clicking on the Add button or by double-clicking on
the desired element. If the user wishes to add an element that does not yet exist, the user
can create a new element by clicking the Create button. If an element is inadvertently
added to the target list, it can be removed by selecting the target and clicking Remove.
However, pre-existing targets cannot be removed in this manner. They must be removed
via the command Remove Target.

Once all desired element have been added to the target list, they can be added to
the relationship by clicking the Done button. Note that no changes are made to the-
relationship until the Done button is pressed. Therefore, if the user wishes to close the
window without changing the targets of the selected relationship, the user should click on
the Cancel button.

2.2.5 Rename Target
The command Rename Target allows the user to change the name of the selected

target. This command is identical to the command Rename Element with the exception
that the name of the selected target is changed instead of that of the selected element.

2.2.6 Remove Target

The command Remove Target allows the user remove a target from the selected
relationship. The selected target is removed from the relationship, and the
complementary relationship linking the selected element and the selected target class is

removed.

2.3 Views Menu

The Views Menu and its sub-menu contain commands that allow the user to open
one of the predefined views (either graphic or text) of the selected element. These
commands include: Text View, Hierarchy, Function, Physical, Traceability, and

Custom.

53

1 overall requirement
1.1 menu

1.2 paint scheme

3 maximum capacity
.4 eat in or carryout
.5 place orders
6
7

Add

1
1
! e ¢ Create
° Wait in line

1
®1.7 Wait for food

Remove
Dane

Cancel

lCipiE

123

Figure A.6 Add Target Selection Window

54

This menu is also available from a text view. However, when the active window
is a text view instead of the element editor, the commands open the specified view of the

selected target instead of the selected element (which does not exist for a text view).

2.3.1 Text View
The command Text View opens a text view on the selected element that displays

all attributes and relationships of the element. If a text view is already open for the
selected element, that window is brought to the front of the screen instead of a new
window being opened in order to avoid cluttering the screen unnecessarily.

2.3.2 Hierarchy
The menu selection Hierarchy opens a sub-menu of hierarchy views that may be

opened on the selected element. Whichever hierarchy type is selected, a chart is opened
with the selected element and all of its descendants as defined by the relationships
defined by the hierarchy type. However, if a hierarchy diagram of the specified type is
already open for the selected element, the window containing the chart is brought to the
front of the screen instead of a new window being opened.

2.3.2.1 Function

The command Function opens a function hierarchy on the selected element which
must be in class Function for the menu selection to be valid. The relationship used to
define this hierarchy is "decomposed by". Because the function hierarchy is built on a
single relationship, the links between elements on the hierarchy diagram are not labeled
with the relationship name. Furthermore, because the relationship "decomposed by" only
has one target (class Function), the default setting is to not display the element classes on

the diagram.

2.3.2.2 Physical

The command Physical opens a physical hierarchy on the selected element which
must be in class Component, ExternalSystem, or System for the menu selection to be
valid. The relationship used to define this hierarchy is "built from". Because the physical
hierarchy is built on a single relationship, the links between elements on the hierarchy

diagram are not labeled with the relationship name. Furthermore, because the

55

relationship "built from" only has one target (class Component), the default setting is to

not display the element classes on the diagram.

2.3.2.3 Traceability

The command Traceability opens a traceability hierarchy on the selected element
which must be in class Component, Criticallssue, Decision, ExternalSystem, Function,
OriginatingRequirement, Source, or System for the menu selection to be valid. The
relationships used to define this hierarchy are "allocated to", "built from", "decomposed
by", "documents”, "generates", "incorporates”, and "traces to". Because the traceability
hierarchy is built on multiple relationships, the links between elements on the hierarchy
diagram are labeled with the relationship name. Furthermore, because elements of
different classes may be displayed, the default setting is to display the element classes on

the diagram.

2.3.2.4 Custom

The command Custom opens a user-defined hierarchy on the selected element.
The user is asked to select the relationships to define the hierarchy from a modal selection
list of all relationships in the schema as shown in Figure A.7. Because the custom
hierarchy may be built on multiple relationships, the links between elements on the
hierarchy diagram are labeled with the relationship name. Furthermore, because elements
of different classes may be displayed, the default setting is to display the element classes
on the diagram.

As relationships are added to the selection list, their names are preceded by a
black circle (¢). A relationship can be added to the target list either by selecting the
desired relationship and clicking on the Add button or by double-clicking on the desired
relationship. If a relationship is inadvertently added to the selection list, it can be
removed by selecting the relationship and clicking the Remove button.

Once all desired relationships have been added, the custom hierarchy can be
opened by clicking the Create button. If the user wishes to exit without opening a chart,
the Cancel button should be pressed.

3. Text View
All of the information on a particular element in the system database is displayed

56

Relationships

®allocated to
built from
built in
®carried by
carries
connected to
connects to
constrained by
constrains
contains
edecomposed by
decomposes
documented by
documents
exhibited by
exhibits

exit for

exits by
generates
incorporated by
incorporates
input to
®inputs

Cancel

| S —

Figure A.7 Relationship Selection Window

57

in the text view, a structured format illustrated in Figure A.8. The attributes are displayed
in the upper portion of the window in labeled text panes. The relationships, target
classes, and targets that complete the element definition are displayed in the lower portion
of the window as shown in Figure A.8.

The first labeled field on the text view is the element name. By editing the
contents of this pane, the user can rename the element. The remaining labeled text panes
(up to fourteen panes) display the attributes for the element. As shown in Figure A.8, the
attribute panes are displayed in the following order:

* Author (non-editable)

* Created on (non-editable)

¢ Number

» Abbreviation

» Custom attributes of the element in alphabetical order (up to 9)

« Last modified (non-editable)

The first four and the last attribute are all standard attributes for all elements in the
system. All other element attributes are classified as custom attributes and are defined
either exclusively for specific classes or are added to all classes by the system. Because
of the nature of the custom attributes, they are not accessible from the element editor.
Therefore, the only manner these attributes can be specified is through the text view. The
sole exception to this is the case of OriginatingRequirements whose paragraph name and
number can be specified when the element is created through the requirement extractor.

Three attributes ("Author"”, "Created on", and "Last modified") are non-editable
attributes. Both the "Author” and "Created on" attributes are automatically determined at
the time the element is created. In order to maintain complete design documentation this
information must be maintained. The "Last modified" attribute is automatically set
whenever a relationship or attribute is changed and assists in tracing modifications to the
database.

Though the attribute panes in the text view are more extensive than those in the
element editor, the list panes at the bottom of the text view are identical to those of the
element editor. As in the case of the element editor, the user can select a relationship by
clicking on the relationship name in the list pane. After a relationship is selected, the
target classes for the selected relationship are shown in the target class pane. If there is
only one target class for the selected relationship, it is automatically selected. Once a

58

MITA 1x9], oidweg 'y amgry

w——

SUEIN e
suonng uog 198re] —1

sued sse[) 198y, — |

‘ JUsWaNba (eadA0 |

0} 53%e4}e
fiq paumo
saye.0d.ioouy

EYCEENE
fiq pajuawnoop

0l:81:L1 D Z664 ‘SI vol

paljtpow)seq

sued 108re],

ant ydesbeaeyd

SANQLIY WOISN)) ===]

n]
lv & JaquinN ydeabeuey

"S3|QoY BY) 1D uBDY SuIpJUq
OU — J23UNOD D }b SJBPJ0 3oB|d | |DYS SJI3WO}SN))

uonduiasag

W

uoneinaiqqy

laquinN A&

sse[D /

SJap.o 3dv|d

Sl
»
/ Z661 ‘Sl <ol 1o parean \
/ Jasn wayshy doyny
M _ auwieN

E[0=——=— (yuawaJinbaybuneuibuig) si1apio 3re|d ==—F"— =

/ sdiysuoneoy

$AINQUIY pIepuelg

59

target class is selected, all targets in that class are displayed in the target pane. The user
can choose to sort the targets by name or element number by pressing the appropriate sort
button as shown in Figure A.8.

Commands for the text view are contained in two menus. The Text View Menu
contains commands to manipulate the relationships for the element. The Views Menu
(covered in the discussion of the element editor) allows the user to open views on the
selected target.

3.1 Text View Menu

The Text View Menu contains commands that allow the user to modify the ERA
database definition of the element on which the text view has been opened as well as a
command to output the text view to the printer. The set of commands for the Text View
Menu is: Add Target, Rename Target, Remove Target, and Hard Copy.

3.1.1 Add Target (Command + T)

The command Add Target allows the user to add targets to the selected
relationship. This command is identical the Add Target command in the element editor

(discussed on page 54).

3.1.2 Rename Target
The command Rename Target allows the user to change the name of the selected

target. This command is identical the Rename Target command in the element editor

(discussed on page 56).

3.1.3 Remove Target
The command Remove Target allows the user to remove the selected target from

the selected relationship. This command is identical the Remove Target command in the
element editor (discussed on page 56).

3.1.4 Hard Copy

The command Hard Copy allows the user to output the current text view to the
printer. A bitmapped version of the text view (identical to that of the text view as
displayed on the screen) is sent to the printer, and a hard copy of the view is produced.

60

4. Hierarchy Diagram

The hierarchy diagram is a chart used to graphically display (but not modify)
which elements are related to each other and what relationships constitute these links.
Each diagram is defined by two primary parameters: a top-level element and a set of
relationships. In computing the diagram, RATM starts with the top-level element and
checks to see if any of the specified relationships have targets. If so, these targets are
children of the top-level element and are displayed on the second level of the diagram.
The children of the elements on the second level are then determined. This process
continues until the elements on the lowest level of the diagram have no targets in the
specified set of relationships. In Figure A.9, the top level element is "overall
requirement”. The targets of "overall requirement" are "eat in or carry out" and "place
orders" (both by the relationship "incorporates"). In turn, "eat in or carry out" has four
targets, and "place orders" has two targets. Though "Service Staff" is not a target of
"overall requirement", it is said to be a descendent of "overall requirement” just as a
grandchild is said to be a descendent of a grandparent.

The hierarchy diagram itself consists of two elements: icons and arcs. Each
element on the chart is represented by an icon (also called a node). The icon contains
both the name, number and class of the element (though the user can control whether or
not the class is displayed). Furthermore, if the icon appears in multiple places on the
diagram, a small black square is drawn in the upper-right hand corner of the icon as
shown in Figure A.9. The arcs represents relationships between objects and targets. If
the set of relationships for a hierarchy contains more than one relationship, each arc on
the diagram is labeled to indicate which relationship links the two elements as shown in
Figure A.9. However, when only a single relationship is used to define a diagram (as in
the case of a Function Hierarchy), relationship labels are not displayed in order to keep
the clutter on the diagram to a minimum.

In order to manipulate the appearance of the hierarchy diagram, the user must be
able to select a given icon. This can be accomplished simply by clicking within the
bounds of the desired icon. Furthermore, if the user wishes to select multiple icons at the
same time, the user can perform the standard Macintosh shift clicks by holding down the
shift key while clicking on the desired icons. The finger cursor can also be used to select
multiple icons by positioning the cursor so that it is not on any icon and then holding
down the mouse button and dragging the mouse until the desired icons are within the
selection box.

61

Ayorerary Anpiqeaoer], ojdweg ¢y 218y

SSE[D) Uy .r uoLjouny yuauodwo? uoLoun 4 uoLjoun 4§ jusuodwio) yusuodwo) | \‘MMMMMMWQXN
43paQ doeld 33}S 301ALg uj ye3 343YM 3p1oaq DIA4IG eady bupel
Z1 e 1'e Sl | vl I'g g1
0} 59084} 0} moon.a_ 0} moonb_ 0} moow.:_ 0} mwo?z_ 0} mmom.:_
AW \ _ _|
- ** ayburyeurbrag *** aybutyeULbLIQ L—oWIBN JuaWo
pareadoy N 14
ynofitsed
i [°qe] i sa3p.io aoeid Jout jed ¢ ‘ Ipquny
Igysuone[a St LA
" HERY /'moyugoa..ooc.,_’ mo~2o9_ooc__ JuRWSTH
_
SSBID 4 * aybunyeurbLig
Juawanbaa
\{e4dA0
i

_mﬂm (Juawa.ainbaybuneuibipg) yuawaunbal jjedano ==———-——[=

62

The user can control the number of levels in the hierarchy diagram to reveal as
much or as little detail as is required. Therefore, an icon can be collapsed to hide its
descendants in which case the icons for the descendants are removed from the graph. An

-icon which has hidden descendants can be expanded to display its children. If the
element has children which are not currently being displayed, a black rectangle is placed
in the upper-left hand corer of the icon as shown in Figure A.9 to indicate that the icon
is expandable.

In generating the hierarchy chart, several conventions are followed to make the
diagrams as readable as possible. First, all children of an icon are sorted so that they
appear in a standard order. The sort criteria (in the order of importance) are as follows:

» alphabetical by relationship

« alphabetical by class

* numerical by element number (those elements with numbers come before

those elements without numbers)

» alphabetical by element name.

Second, in order to avoid recursive diagrams and diagrams that waste space by showing
the same information more than once, the children of an element are shown only the first
time the element is encountered. For instance, if in the process of searching for all
descendants of the top level element the program encounters the element "Example” in
class Function for the second time, the program will not check to see if "Example" has
any children. Therefore, the children will only be displayed once. Because the hierarchy
diagrams are computed from left to right, the leftmost occurrence of an icon will always
show any children, and all occurrences of the icon will be marked to indicate that the icon
appears elsewhere on the diagram as illustrated with the element "Service Staff" in Figure
AO9.

Because the hierarchy diagrams only allow the user to display information in the
system database instead of also modifying the database, only a single menu — the
Hierarchy Menu — is needed to contain the necessary commands.

4.1 Hierarchy Menu

The Hierarchy Menu contains commands that allow the user to manipulate the
appearance and content of the hierarchy view without modifying the database as well as a
command that allows the user to generate a printed copy of the diagram. The commands

63

on the Hierarchy Menu include: Display Options, Expand, Collapse, Refresh Diagram,
Recompute Diagram, and Hard Copy.

4.1.1 Display Options

The command Display Options allows the user to change the diagram
preferences for the current diagram only. This command opens a modal window
consisting of multiple fields and buttons as shown in Figure A.10.

The user can specify the height and width of the icon and the vertical and
horizontal spacing between the icons (all in pixels) by simply entering a number in the
appropriate field and pressing return. The initial number of levels to be displayed on the
diagram can also be specified so that the user can produce a diagram containing as little
or as much detail as the user desires. Through the use of the buttons, the user can toggle
whether or not the diagram should be framed with a border and if the element class
should be displayed on each icon. As shown in Figure A.10, the user can also specify:
whether the hierarchy diagram should be centered horizontally or vertically when output
to a printer. When the diagram preferences window is closed, the diagram is recomputed

in accordance with the new preferences.

4.1.2 Expand (Command + E)

The command Expand allows the user to expand (show the descendants of) the
selected elements. The user is prompted for the maximum number of levels to by which
to expand the elements. After performing the expansions, the diagram is redisplayed.
Double-clicking on an expandable element is a shortcut for expanding the element by a
single level.

4.1.3 Collapse (Command + C)

The command Collapse allows the user to collapse (hide the descendants of) the
selected elements. The elements are collapsed, and the diagram is redisplayed. Double-

clicking on a collapsible element is a shortcut for this command.

4.1.4 Refresh Diagram
The command Refresh Diagram allows the user to redraw the window without

recomputing the diagram. By refreshing the diagram, the user can clean up any garbage
that is cluttering the diagram.

64

O Diagram Preferences

lcon Size: |80 | B |60
Spacing: [20 | X |40

Levels: |10

Border
Display Class

Center Horizontally

\

Center Vertically
\,

Figure A.10 Diagram Preferences Window

65

4.1.5 Recompute Diagram

The command Recompute Diagram allows the user to recompute the diagram
and redraw the display. By recomputing the diagram, the user can update the diagram to
reflect any changes made to the database since the diagram was opened (such as an

element being renumbered or renamed).

4.1.6 Hard Copy

The command Hard Copy allows the user to produce a printed version of the
diagram currently displayed on the screen. If the diagram is too large for a single sheet of
paper, the diagram will be broken up into blocks printed on single sheets of paper which
can then be placed together to show the complete diagram. The diagram may be centered
horizontally or vertically and printed with or without a border depending upon the current

settings for the diagram display options.

5. Requirement Extractor

Unlike the element editor, text view, and hierarchy diagram which can be used to
browse the contents of the system database, the requirement extractor can only be used to
add information to the system database. If the user has a document (in electronic format)
containing the originating requirements for the system under consideration, the
requirement extractor can be used to accelerate the process of entering the requirements
into the system.

The requirement extractor window consists of ten panes and numerous buttons as
shown in Figure A.11. First, the text pane in the upper-left hand portion of the window is
the document pane. The five text panes directly below the document pane are the
attribute panes. Below the attribute panes are the two list panes that display the targets
for the relationships that can be specified in this window. Along the right side of the
window are two list panes which display all elements in the OriginatingRequirement and
Source classes.

When the user opens the requirement extractor on a specified file, the contents of
the file are displayed in the document pane. Because this is a text pane, the user can
highlight text or perform any other standard editing function. Most often, the user will
simply want to extract segments of text from the document and enter it into the database.
Therefore, transfer buttons have been implemented to facilitate this process. To move

66

jusawannbay ajean)

gsdiysuoijejay Jes|)

suoing Ies)) $aynguly 1ea|)

1030enXg JuswaInbay 11'y 2unSig

Jue{ $92IN0g

saued 2InqLuy

sued $90IN0OS

POO} 40} JiEM

auip ut jep

$a9pao doed

ued Inohised 4o up e

SjuW b:@om fiytoedes wnuxew
° awayos juted

nuaw

WeN

udwndoq sjuawalinbay

—————————

— mw

JUSWNDOQ $3NOS PO0 4 }S€ 4

SunuswnooQ
JUSWAINDA ||B 4240
saJanos bunjuawnooq sjuawaanbay juaied
aueq
sjuawannbay
‘S3|qD} BY} D UMD} SuBpJ :
ou - Lw.v:....ou D }D S43pJo 230|d | |DYS SUBWO}SN: :o:n_..omwn juared
all ~ed V suonng

o 4u\ IoJSuel],

SJUBPJIo 30D aWwieN

panJds aJdp fisyy | 13UN UBPUO UD S3DD|d JBWOISND b BW)} BY} WOUS
byYs J43pJ0 up 3dojd ABY} | I13UN SUIIUS JUBWOISND b dW} BY} Wou4
I0 UKD} SUBPUO OU ~ JSIUNOD D D SJUSpJo ddD|d | |DYS SJBWOISN)
*3nofiuupd Jo u| Ibd fibw suBWO}ISND BYy|
‘ajdoad gOoI 29 | |bYS jubINDISIJ Y} o A} 1Dpdbd wnw)xpw ayy
3 puo mo| |3fi iq pajoulwop awsyds juied o asn ||oys Buipling ayl
TUBNDIYD puUp ‘saxpys ‘satuy ‘suabung spn|du) | jbys nuaw 3yl |
10}sadJ4 pooy 3soj adfiyojoud o ajypbuado 0} S| juswadinbau | |ousno 3y
jsau poo) 3s0) o ubisap 0} S| 34039 SIY) J0O Bdn|Id2fqo Aupwild ay
sjuawauinbay o
oY} S| 3dSOUOD JUDUNDISBJ SIY} pPUlyaq 3340y Buiniup fuowiud ay)
uo1SSNISIQ pPub punoubyoog Buiibniljol
huswaJ1nbay Aubuiw) jaud asodoud 03} si juswNd0p Sy} jo 3sodund ay
uo|3IdhpoJiu| |
JubJunNb}SeyY poo4 3so4 b o BTEICMIERIGEMEIIERE (129 /gn
ued u2awndoq

H)")}S'P004'1SB4) J0)IRIJH] JUaWAlInbay

67

text from the document into the definition of a requirement being created, the user can
simply highlight the desired text in the document window and press the button
corresponding the desired attribute. For example, the highlighted text in the document
pane in Figure A.11 can be transferred to the paragraph title pane by pressing the
Paragraph Title button. Of course, the text can also be moved by using the standard
Macintosh Copy and Paste commands. However, this would require the user to enter
two commands every time text needed to be moved.

In addition to being able to specify the values of attributes when the requirement
is being created, the user can add targets to two relationships. The source which
documents the requirement can be specified in the documenting sources pane. The
requirements which incorporate the requirement being created can be specified in the
parent requirements pane. The list panes along the right side of the window are selection
panes which allow the user to add targets to these two relationships (see the Add Parent
and Add Source commands).

Once the user has set the values for the attributes and relationships desired, the
requirement can be created by simply pressing the button labeled Create Requirement.
Then, if desired, the two clear buttons can be used to clear all values before the next
requirement is defined. Though all necessary commands are accessible through the
requirement extractor window itself, the commands are also duplicated in the Extractor
Menu in case the user prefers to issue a command in this way.

5.1 Extractor Menu
The Extractor Menu contains commands to allow the user to define a requirement

and then enter that requirement into the system database. These commands include:
Create Requirement, Add Parent, Remove Parent, Add Source, Remove Source, and
Refresh Document.

5.1.1 Create Requirement

The command Create Requirement allows the user to define a new element of
type OriginatingRequirement with the attribute values specified in the attribute panes.
The requirements in the parent requirements list are added to the relationship
"incorporated by". The sources in the documenting sources list are added to the
relationship "documented by". A requirement can also be created by clicking on the
Create Requirement button in the requirement extractor window.

68

5.1.2 Add Parent

The command Add Parent allows the user to add the selected requirement in the
requirement pane to the set of parent requirements. Double-clicking on a requirement in

the requirement pane is a shortcut for this command.

5.1.3 Remove Parent

The command Remove Parent allows the user to remove the selected
requirement in the parent requirements pane from the set of parent requirements. Double-
clicking on a requirement in the parent requirements pane is a shortcut for this command.

5.1.4 Add Source

The command Add Source allows the user to add the selected source in the
source pane to the set of documenting sources. Double-clicking on a source in the source
pane is a shortcut for this command.

5.1.5 Remove Source

The command Remove Source allows the user to remove the selected source in
the documenting sources pane from the set of documenting sources. Double-clicking on
a source in the documenting sources pane is a shortcut for this command.

5.1.6 Refresh Document
The command Refresh Document allows the user to return the document

displayed in the document pane to its original state as read from a disk file. Because the
document can often be inadvertently altered by the user during the process of extracting
requirements, the refresh command can be very useful.

6. Schema Extender

While the element editor, text view, hierarchy diagram, and requirement extractor
are interfaces between the user and the contents of the system database, the schema
extender allows the user to modify and extend the basic structure of the ERA database.
Because the extender allows the user to change the database structure, the database must
be empty when the extender is opened.

The schema extender consists of four list panes as shown in Figure A.12. In the

69

IopuUdIXH BWAYDS 7'V N1

oued ANQLIY

A9quinN
payjtpows yseq
uolydiaosaq
Ao4ny
UoLjeLAS.4qqY

aueq diysuonepy

Jued sse[) a8k,

JUSLUSNNDSYDUL}EULDLIQ
uoLs199q

X3PUJIIURWII0S 43,
ydWINbayOuL eULbL A

3NSS|(eO}ID
LI 4y 5U0n ued mwd—o

usuoduwio)
eLidjtaguotjadwo),
yalq

sasse|) 1abae)

sasse|)

70

first list pane, the classes (e.g., Component, Function) are displayed. When the user
selects the desired class, the relationships and attributes for the class are displayed. The
relationship pane lists all possible relationships for the selected class, and the attribute
pane lists all attributes (both those that are inherited and those defined for the selected
class). When the user selects a relationship, all possible target classes are listed in the
target classes pane. In Figure A.12, the relationship "traced from" is selected, and the
possible target classes (Decision and OriginatingRequirement) are displayed.

If a name in the class or the relationship pane is preceded by a black circle (¢), that
class or relationship is consistent. A relationship is consistent if it has at least one target
class. A class is consist if it has at least one relationship and if all relationships defined
for the class are consistent. Obviously, if a relationship has no target classes, the
relationship is not fully defined, and therefore the relationship is inconsistent. If a class
has no relationships, the elements in that class cannot be related to any elements in the
system. Because the existence of free-floating elements in a system defeats the purpose
of complete system traceability, classes without relationships are defined to be
inconsistent.

As shown in Figure A.12, the first class in the class list pane is the superclass
Object. This class is an abstract class. Unlike the other classes in the system, no
elements of type Object can be defined. The sole purpose for this class is to define the
structure of the other classes which inherit the characteristics of the superclass.
Therefore, the attributes of class Object are automatically inherited by all other classes.
However, though classes inherit attributes, they do not inherit relationships. Therefore,
relationships cannot be defined for the superclass.

Commands for the text view are contained in two menus. The Schema Menu
contains commands to work with the entire schema. The Extender Menu contains
commands to manipulate individual classes, attributes, relationships, and target classes.

6.1 Schema Menu

The Schema Menu contains all commands that deal with the entire schema as well
as the command to close the schema extender. These commands include: Import
Schema, Export Schema, Return to Baseline Schema, Print Schema Report, Run
Consistency Check, and Close Extender.

71

6.1.1 Import Schema

The command Import Schema allows the user to load a schema file from disk
into memory. The user is presented with a standard Macintosh dialog to select a text file
to open. This command automatically deletes any schema extensions currently in the
system. Therefore, the user is warned of this consequence before continuing.

6.1.2 Export Schema

The command Export Schema allows the user to write the schema structure
currently in the system to a text file on disk. By exporting a schema, the user can create a
relatively small, stable backup to the schema stored in the image file. Because the export
includes only the schema extensions, it requires only a fraction of the disk space of an
image file. Furthermore, since the export is a text file instead of a binary file, it is much
less likely to become corrupted (since displacing a single bit in a text file will result only
in a single character being changed whereas displacing a single bit in a binary file can
corrupt all data in the file). Therefore, because the exported file is smaller and more
stable than the original image file, the exported file is superior for storing and sharing a

schema between multiple images.

6.1.3 Return to Baseline Schema

The command Return to Baseline Schema causes the image to erase all changes
to the schema currently in the system and restores the schema to its baseline
configuration. Because of the potential loss of schema data, the user is asked to confirm
the choice to erase changes to the schema before any action is taken.

6.1.4 Print Schema Report

The command Print Schema Report allows the user to create a structured
schema text report file on disk describing the current schema. The report can be opened
via the Open command in the file menu and printed in order to obtain a hard copy.
Furthermore, because the report is stored in a formatted text file, it can be read (and
modified) by any word processor in order to be included in other reports.

6.1.5 Run Consistenc

The command Run Consistency Check allows the user to perform a static check
to determine if any inconsistencies exist in the current schema. If any of the following

72

conditions is met, the schema is classified as inconsistent and appropriate messages are
displayed in a consistency check window:

» A class has no relationships

* A relationship has no target classes.
If no inconsistencies are detected in the schema, a message is displayed in the consistency
check window stating that the schema is consistent.

6.1.6 Close Extender

The command Close Extender invokes the schema consistency check to detect
any inconsistencies in the current schema. If any inconsistencies are found, a consistency
check window is opened, and messages documenting the inconsistencies are displayed.
If no inconsistencies are encountered, the extender window is closed, the database is

built, and the element editor window is opened.

6.2 Extender Menu

The Extender Menu contains the commands that allow the user to update the
schema definition. These commands include: Create Class, Rename Class, Remove
Class, Add Attribute, Rename Attribute, Remove Attribute, Add Relationship,
Remove Relationship, Add Target Class, and Remove Target Class.

6.2.1 Create Class (Command + C)

The command Create Class allows the user to add a new subclass to the
superclass Object. The user is prompted to enter a name for the new class. If the name
does not conflict with a class already in the schema, the new class is created.

6.2.2 Rename Class

The command Rename Class allows the user to rename the selected class. If the
selected class is part of the baseline schema, an error message is returned, because the
user is only permitted to make additions to the baseline schema, not to change it. If the
selected class is not part of the baseline schema, the user is prompted for a new name for
the class. If the name does not conflict with a class already in the schema, the name of
the selected class is changed throughout the schema (including all occasions in which the
selected class is defined as a target class).

73

6.2.3 Remove Class

The command Remove Class allows the user to remove the selected class from
the system as long as the selected class is not part of the baseline schema. Before the
class is removed from the system, the user is asked to confirm the decision to remove the
class. If the class is removed from the system, the class is automatically removed from
the target class set of all relationships.

6.2.4 Add Attribute (Command + A)

The command Add Attribute allows the user to define a new attribute for the
selected class. If the selected class is the superclass Object, the attribute is added to the
superclass and is inherited by all other classes in the system. If the selected class is any
other subclass, the attribute is added only to the selected class.

6.2.5 Rename Attribute

The command Rename Attribute allows the user to enter a new name for the
selected attribute. If the selected attribute is inherited from the superclass Object, an error
message is displayed. If the selected attribute is not inherited from the superclass Object
and the attribute is not part of the baseline schema, the user is prompted for a new name
for the attribute, and, if the new name does not conflict with the name of another attribute

of the selected class, the selected attribute is renamed.

6.2.6 Remove Attribute

The command Remove Attribute allows the user to remove the selected attribute
from the selected class. If the selected attribute is inherited from the superclass Object,
an error message is displayed, because inherited attributes may only be removed from the
superclass. Otherwise, if the attribute is not part of the baseline schema, the user is asked
to confirm his choice, and the attribute is removed.

6.2.7 Add Relationship (Command + R)

The command Add Relationship allows the user to add a relationship to the
selected class as long as the selected class is not the superclass Object. The user is
prompted to enter a name for the relationship and its complement. If the relationship is
not already defined for the class, the relationship is added to the class definition.

74

6.2.8 Remove Relationship

The command Remove Relationship allows the user to remove the selected
relationship from the schema, if the selected relationship is not part of the baseline
schema. All target classes are removed from the relationship. The complementary
relationship is automatically removed from each target class if the selected class is the
only target class for the selected relationship.

6.2.9 Add Target Class (Command + T)

The command Add Target Class allows the user to add multiple target classes to
the selected relationship and automatically creates the complementary relationships for
the target classes. A modal selection window consisting of a list of all classes in the
schema and a set of five buttons (Add, Create, Remove, Done, and Cancel) as shown in
Figure A.13 is opened. The behavior of the selection window is very similar to the
behavior of the selection window to add targets to a relationship in an element.

When the selection window opens, all current target classes of the selected
relationship are preceded by a white circle (°). As classes are added to the target class
list, their names are preceded by a black circle (¢). A class can be added to the target
class list either by selecting the desired class and clicking on the Add button or by
double-clicking on the desired class. If the user wishes to add a target class that does not
yet exist, the user can create a new class by clicking the Create button. If a target class is
inadvertently added to the target class list, it can be removed by selecting the target class
and clicking Remove. However, pre-existing target classes cannot be removed in this
manner. They must be removed via the command Remove Target Class.

Once all desired target classes have been added to the target class list, they can be
added to the schema by clicking the Done button. Note that no changes are made to the
schema until the Done button is pressed. Therefore, if the user wishes to close the
window without changing the target classes of the selected relationship, the user can click
on the Cancel button.

6.2.10 Remove Target Class

The command Remove Target Class allows the user to remove the selected
target class from the selected relationship, if the selected target class is not part of the
baseline schema. If the selected target class is part of the baseline schema, an error

message is displayed.

75

Target Class

CompletionCriteria
Component
Constraint
eCriticallssue
°Decision
DomainSet
Engineer
ExternalSystem
Function

interface

Item

ItemLink
°0riginatingRequirement
Performance Index
Source

System

Create

11l

Remove

Done

J

J

Cancel
S —
-

Figure A.13 Add Target Class Window

76

APPENDIX B: ENTITY-RELATIONSHIP DIAGRAMS FOR RATM BASELINE
SCHEMA

The entire entity-relationship structure of the database is shown in matrix form in
Figure B.1. However, though this matrix presents a complete view of the database
structure, it can be very difficult to read. Therefore, entity-relationship diagrams are
shown on a class-by-class basis in order to clearly show the structure of each class.

77

78

swaImbaySunem3ug * L) _' ._. _._. _. o
UOISIR(] * [J L] ._. _._. _. L
N (01 s20BD) WOJJ paden
anss[reant)
(s9sualajal) Aq peausiajal @
19gurBWO(]
woudug (sumo) £q paumo Y Y)
i (simdino) wouj ndino @
uonouny
(sureiuods) £q pautejuod st
aoBpIaU]
(uo paseq s1) Jo siseq st
X9PUJOURULIONJ
(sidur) o1 3nduy ®
uonoun,j
(Aq pare1odioour) sajeiodioour)
wawaimbaydunewSug) :
anssyEoNL) (Aq poteousd st) sorerouald ole))
U uonRdwo)) (10J 11x2) Aq siXa)
XOPU[POUBULIOJI] (Aq parquyxa) suqryxa)) ®
somog (siusumoop) Aq pajuaumoop o ooleole)
wal] " .
uonouny (Aq pasodwooop) sesodwiodap _.

JUIROSUO)) (surensuoo) Aq pautensuoo @ ooeole ®
aoppIaIU] (01 $195UU00) 01 PAJOIUUOD ® ® °®
Furqusg (satureo) Aq patires)

waskg " @
wsAgew Xy ")
jusuodwio) (woy yinq) ur 1ing _.
waskg " o @
wialsAgreumIxXy " _. @
jusuoduto) (swioyrad) 01 parecoye _‘ ®
sasse|) 1adue], sdjysuopjey =
]
&
£ £
@ .m I m.. 3
m) o g S5
E e 3 s 2 w O
Sl 8 E 3 f 22 oo g §
S EENE R ESEqge
g E 22438 E e E e EBDE 5 3
SSSE5R8EEEI25282

Figure B.1 Baseline Schema Entity-Relationship Chart

constrained by

(CompletionCriteria } P(Constraint
[documented by »(Sonrce
- exit for >C Function
_Eenerates »(Critcallssue
N owned by P(Engineer
. raced from Decision

gl

OriginatingRequirement

)

Figure B.2 Entity-Relationship Diagram for the CompletionCriteria Class

79

built from

C

Component)\ P(Component

built in Component

N ExternalSystem

System

connected to

N >(Interface
constrained by

h P(Constraint
documented by

N >(Source
exhibits

N P(PerformanceIndex

enerates

_E P(Criticallssue
owned b

N ! P(Engineer

N\ performs Function

Item
. traced from »(Decision

OriginatingRequirement

)

Figure B.3 Entity-Relationship Diagram for the Component Class

80

constrained by

; N
Constraint Pa

constrains

>(

Constraint)

documented by

>

- . N
CompletionCriteria

omponent
Constraint
DomainSet
ExternalSystem
Function
Interface
Item
ItemLink
Performancelndex
System y

generates

>(

Source)

owned by

>

Criticallssue)

traced from

>

Engineer

.. Decision
OriginatingRequirement

Figure B.4 Entity-Relationship Diagram for the Constraint Class

81

generates

>(_

Criticallssue)\

A<

is generated by

Criticallssue

)

N

owned by

.

CompletionCriteria
omponent
Constraint
Criticallssue
Decision
DomainSet
ExternalSystem
Function
Interface
Item
. ItemLink
OriginatingRequirement
erformancelndex
Source
System

J/

.

traces to

>(

Engineer

)

>(

Decision

)

Figure B.5 Entity-Relationship Diagram for the Criticallssue Class

82

N documented by

Decision o~

\ generates

P(Source

[owned by

P(Criticallssue

b(Engineer

L traced from

P(Criticallssue

L traces to

CompletionCriteria
omponent
Constraint
DomainSet
ExternalSystem

> Function
Interface
Item
ItemLink
Performancelndex
System

Figure B.6 Entity-Relationship Diagram for the Decision Class

83

DomainSet)\ constrained by P(Constraint)

¢ documented by >(Sonrce)

_generares P(Criticallssue)

N owned by P(Engineer)

¢ references »(o)

\. traced from Decision J
OriginatingRequirement

Figure B.7 Entity-Relationship Diagram for the DomainSet Class

84

C

owns

Engineer

\~/

\.

r Con&pletionCriteria W

omponent
Constraint
Criticallssue
Decision
DomainSet
ExternalSystem
Function
Interface
Item
.. ItemLink
OriginatingRequirement
erformancelndex

Source
System J

Figure B.8 Entity-Relationship Diagram for the Engineer Class

85

C

N built from

ExternalSystem Pa

connected to

Component)

constrained by

documented by

Interface)
Constraint)
Source)

LA S S S O S

enerates
2 Criticallssue)
owned b
NS Y Engineer)
__performs Function
Item
\ traced from ~ Decision
OriginatingRequirement

Figure B.9 Entity-Relationship Diagram for the ExternalSystem Class

86

- N allocated to Component
Function)~ ExternalSystem
System
constrained b
h 4 P(Constraint
gecomposed by,
| decomposes »(Fanerion
documented b
N 4 P(Source
exhibits
N P(Performancelndex
[exits by - —
P(CompletionCriteria
enerates
\E >(Criticallssue
inputs,
| outputs E —
owned b
N 4 P(Engineer
_ traced from o DeCiSion.
OriginatingRequirement

)

Figure B.10 Entity-Relationship Diagram for the Function Class

g7

N\ connects to Component
Interface ExternalSystem
<) System
constrained by »(
Constraint)
contains
P(ItemLink)
documented by »(
Source)
enerates
: P(Criticallssue)
owned b
A)(Engineer)
traced from Decision

Originatin gRequirementJ

Figure B.11 Entity-Relationship Diagram for the Interface Class

88

\ allocated to Component
Item Pa ExternalSystem
System
ied b
carmec oy »C ItemLink)
constrained by »(
Constraint)
(ciiecomposed by,
ecomposes »(
Item)
documented by »(
Source)
enerates
d P(Criticallssue)
input :c;,r
output from
P P(Function)
owned b
4 P(Engineer)
referenced by
- DomainSet)

traced from ~ Decision
OriginatingRequirement

Figure B.12 Entity-Relationship Diagram for the Item Class

89

carries

L traced from

)

Decision

ItemLink P »(Item
_Constrained by P(Constraint
S documented by S
P ource
enerates
\E P(Criticallssue
1S contained by »(T erface
owned b
N Y >C Engineer

Originatin gRequirementJ

Figure B.13 Entity-Relationship Diagram for the ItemLink Class

90

documented b
Y P(Source)

(OriginatingRequiremcnt)\

generates —
N >C Criticallssue)

incorporated by,
incorporates

b(OriginatingRequirement)

N owned by P(Engineer)

CompletionCriteria
omponent
Constraint
DomainSet
| fraces to ExternalSystem
- Function
Interface
Item
ItemLink
Performancelndex
System y

Figure B.14 Entity-Relationship Diagram for the OriginatingRequirement Class

91

(N constrained by

Performancelndex Pa Constraint)

Y documented by

Source)

exhibited by
N

AN S 1

Component
Function
System
enerates
& >(CriticalIssue)
is Easgd ofn,
is basis o
N P(PerformanceIndex)
owned b
N— Y >(Engineer)
L traced from Decision
OriginatingRequirement

Figure B.15 Entity-Relationship Diagram for the PerformanceIndex Class

92

Source

A\

documents

| generates

>

.

CompletionCriteria
omponent
Constraint
Decision
DomainSet

ExternalSystem
Function
Interface

Item
.. ItemLink
OriginatingRequirement

erformancelndex

System

J

(owned by

>(

Criticallssue)

>

Engineer

)

Figure B.16 Entity-Relationship Diagram for the Source Class

93

Syseem)\ built from >(Component)
| connected to >(Interface)
| constrained by >(Constraint)
| documented by >(Source)
_cxhibits b(Performancelndex)
_senerates »(Criticallssue)
(_Oowned by »(Engineer)
| performs »(Function)

Item
_ traced from Decision)
OriginatingRequirement

Figure B.17 Entity-Relationship Diagram for the System Class

94

VITA

David A. Long, born September 1, 1969, received the B.S. degree in engineering
science and mechanics from Virginia Polytechnic Institute and State University in 1991.
In 1991 he was named a Tau Beta Pi Fellow and attended graduate school in systems
engineering at VPI&SU.

In the summer of 1989, he was employed by Omnitech Systems, Inc., Vienna,
VA, where he worked with a state-of-the-art computer aided engineering system, RDD™
(Requirements Driven Development). During the summers of 1989, 1990, and 1991, he
assisted in the development of system specifications and accompanying specification
documentation. In 1992, he began to work full-time for Omnitech Systems where he
developed the Requirements Analyzer and Traceability Manager engineering system.

David A. Long

95

