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Abstract 

 
This thesis presents a technique for designing planar four-bar linkages by coupling 

optimization, dynamics and kinematics. This synthesis technique gives the designer the ability to 

design linkages having a desired resistance profiles under an assumed motion profile.  

  The design approach presented in this thesis calculates the resistance forces by using both 

the static and the anticipated dynamic effects of the resistance loading. Almost all research to 

date has assumed that the static forces in the linkage dominate the dynamic forces; hence, the 

dynamic effects have been neglected. This thesis shows that this assumption is often invalid.  

The traditional approach for designing resistance-generating mechanisms has been based 

on closed-form methods that attempt to exactly match the resistance at a small number of 

discrete positions. This work uses a numerical optimization method that allows for the matching 

of the entire resistance curve by approximately matching a set of positions that define the shape 

of the curve.  

This work furthers the discipline of mechanism design by combining dynamics into 

existing linkage synthesis methods, resulting in an improved synthesis method that includes both 

static and dynamic effects. While this approach can be used in many applications, this work 
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focuses on the design of exercise equipment. This focus is because exercise equipment designed 

to optimally stress a specific muscle group usually have a specific “strength curve” used to 

design the resistance load. The “strength curve” is the locus of all maximum loads moveable by 

the exerciser in all body part positions over the full range of motion. This application ideally 

suits the specification of the problem addressed in this thesis. 
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Chapter 1 Introduction 

Section 1.1 Background and Motivation 
 

Man’s quest to be faster and stronger lead to the development of what is now know as 

resistance training, often called weightlifting. The first and still the most popular form of these 

exercises use free-weights as the source of resistance. Free-weights are masses that the exerciser 

(the term “user” is used in rest of the thesis) moves around and the weight of these masses 

provides a resistance to the motion consistent with Newton’s Second Law. Over the years, free-

weights have developed into the standard barbell/dumbbell form, we see today. One of the 

disadvantages of free-weights is that the resistance is limited by the direction of the acceleration 

of gravity and by the user’s ability to accelerate the free-weights opposite to the direction of 

gravity over a range of motion.  

At some point in history, the idea of using a mechanism instead of free-weights to 

provide the resistance was developed. While the exact date may never be known, weightlifting 

machines have a long an interesting history, an example of this is found in a patent issued for an 

exercise chair to a Mr. M. V. B. White (1879). These machines will be referred in this thesis as 

weightlifting machines. Weightlifting machines provide the user with many advantages over the 

use of free-weights. Some of these advantages include increased safety due to the machines 

providing protection for the user from injury from accidentally dropping weights and improved 

ability to do the exercises correctly due to the equipment’s ability to enforce proper posture and 

positioning. Weightlifting machines also improve injury rehabilitation since the support the 

equipment provides the users body helps to prevent aggravation or generation of an injury. 

 The advantage that is of interest here is the ability of weightlifting machines to provide a 

resistance curve that can be customized to match the user’s strength curve for a particular 
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exercise, thus providing the user with a more effective and efficient workout (Herz, 1901). A 

human strength curve is a measure of the ability of a human to exert varying forces over the 

entire range of motion of a given exercise (Scardina, 1996). This advantage can be seen, for 

example, by plotting the resistance force curve generated by a free-weight during the standing 

bicep-curl exercise versus the desired curve for the exercise that matches the bicep strength curve 

that can be obtained by designing a weightlifting machine to match this curve. The free-weight 

curve was developed based on a person standing upright and where 0 degrees is horizontal. 

Figure 1-1 shows the increase in work required by the optimally designed machine over the free-

weight load curve. The increase in work done during the exercise makes using a weightlifting 

machine more efficient than using a free-weight. In addition, notice that the maximum force the 

user experiences is roughly 30% higher with a machine than with free-weights, which causes the 

exercise to be more effective. 
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Figure 1-1 Work advantage of a weightlifting machine over free-weights for the bicep-curl. 
 

Since the idea of human strength curves is important, one should know what the various 

published curves really represent. A number of decisions must be made when a strength curve is 

developed for a particular exercise. The most important is how to measure the strength curve. 

This question includes whether to measure the force generated statically at a series of discrete 

positions or to try to take force data dynamically throughout the exercise. Static data is easier to 

take and can eliminate muscle fatigue as a factor in the accuracy of the data, but the human 

strength curve for an exercise may differ when a person actually does the real (dynamic) 

exercise. When taking dynamic measurements, difficulty often arises in making sure that the 

instrumentation is always measuring the force correctly, since the instrumentation may move 

during the exercise and may not be measuring only the force normal to the users forearm. This 

problem is minor in static measurements since the instrumentation can be repositioned between 
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each measurement. There is also the question of exactly how a person does a particular exercise, 

since each person often does an exercise a little differently. The biggest difference in this respect 

can come with positive (concentric) and negative (eccentric) resistance. For example, with the 

bicep-curl, one traditionally works the muscle during the contraction of the bicep (positive), but 

one can also work the muscle by carefully controlling the rate at which one re-extends the arm 

(negative). There is a great deal of research and debate regarding the subject of strength curves. 

For the purposes of this thesis, we will assume that there exists a human strength curve for each 

exercise and that a critical concept is that matching it provides an optimal workout for the user. 

There are three main types of weightlifting equipment plus many minor types. One type 

uses a pin-selector plate stack that allows the user to select the number of plates that provide the 

resistance for the exercise. This controls the level of resistance. The stack is a permanent part of 

the machine and, thus, the maximum amount of resistance and the incremental size of the weight 

increase are fixed. An example of this type of weightlifting machine is pictured in Figure 1-2. 

The weight stack can be seen in the bottom center of the figure. This machine is typical of its 

class in that the weight stack is constrained to move only vertically.  
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Figure 1-2 Body Masters stack-loaded bicep-curl exercise machine. 
 

Another main type of machine has the weight added by the user to a post on the machine. 

This setup allows the weights to be used on multiple machines. Other advantages of this setup 

are that the basic machine is lighter, since no weights are built in, and the incremental increase in 

the loading is not predetermined, but can be selected by the user. A weightlifting machine of this 

type is shown in Figure 1-3. The weight loading post is located at the bottom right of the figure. 

Also visible is a feature common to almost all types of weightlifting machines, is a user handle 

grip system (center of picture) that accommodates a range of user sizes. This handle system 

attempts to keep the user input link from varying, resulting in each user having a similar 

mechanical advantage. The downside to this system is that force between the user’s hand and the 

handle is not always perpendicular to the user’s arm. 
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Figure 1-3 Hammer StrengthTM bicep-curl machine; uses independent weights. 
 

The third type of machines produces resistance from the deformation of an elastic 

member. This design eliminates the need for weights, greatly reducing the weight of the 

machine. By switching between elastic members having different deformation properties, the 

user can vary the amount of resistance for each exercise. An example of this type of machine is 

shown in Figure 1-4. As with the stack-loaded machines, elastic resistance machines are 

typically limited in the number of different resistance levels they can provide the user, since the 

number and stiffness of the elastic members is preset when the machine is manufactured. Even 

though the elastic members are designed not to fail for millions of cycles, many potential users, 

who are use to steel weightlifting machines do not trust them. 



 7

 

 

 

Figure 1-4 An example of an elastic resistance machine, the Bowflex XTL. 

 

There are also other minor types of weightlifting machines. Among these are machines 

that produce their resistance using a damper system, machines that use pneumatic or hydraulic 

springs, and machines that use electromagnetic/electromechanical devices. Damper-based 

machines produce resistance forces that are directly related to velocity, which limits their 

usefulness. The electromagnetic/electromechanical tend to be expensive, but may become a 

viable option in the future. These minor types currently do not occupy a large share of the 

weightlifting machine market.  

This thesis will focus on the second type of setup, the user added weight setup. This setup 

is more interesting from a design point of view than the first setup because of the possible 
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nonlinear motion of the load mass results in a more general problem. Moreover, the first setup is 

a constrained subset of the plate-loaded case. If the second setup is solved then the first setup 

design problem is solved. The major design issues in the third setup type result from the design 

of the elastic members rather than the kinematics and dynamics of the machine. 

There are two common approaches to designing weightlifting machines to match human 

strength curves. One approach focuses on machines that use linkages and the other focuses on 

using cams. Cams traditionally require complex machining, whereas linkages are easy and 

inexpensive to produce. Linkages are also easier to assemble than cams, since unlike cams, links 

do not have to have their rotational position set during assembly to provide the correct 

relationship between the user input and the rotation of the cam. While the cam assembly problem 

can be made easier with the use of a keyway, it cannot be eliminated. The link’s positions are 

inherently correct to within manufacturing tolerance given that the linkage was assembled in the 

desired closure. For these reasons, there exists a great deal of interest in the use of linkages in 

weightlifting machines, which partially motivates this thesis. 

A good synthesis routine must include the dynamics of the mechanism, especially the 

dynamics associated with the weight mass. An example of this need is shown in Figure 1-5 

where the strength curve of a row exercise was matched by Scardina (1996) using a static force 

only approach is compared with the same mechanism analyzed by the dynamic methods 

developed in this thesis. The input angle differs from what is shown in Scardina (1996). The 

angles displayed in Figure 1-5 are the supplementary angles to the ones in the original work due 

to difference in the angle definitions in the two analyses. A constant angular velocity of 1 radian 

per second was chosen for the input velocity. The exercise has a stroke of 40°, thus the entire 

exercise would be completed in approximately 1.4 seconds at the chosen velocity. The resistance 
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mass was varied until the middle section of the dynamic roughly approximated the static curve. 

By examining Figure 1-5, one can see that the static and dynamic analyzes produce markedly 

different results. The difference can be directly attributed to the acceleration of the resistance 

mass. Figure 1-6 shows the angular acceleration of the resistance mass. The shape of the 

acceleration curve resembles the shape of the dynamic resistance curve, indicating a strong 

negative correlation between the resistance force and the inertia forces associated with the 

acceleration of the mass. These graphs clearly indicate that the dynamics of the mechanism 

dominates the static force at the two ends of the force curve even though the user is applying a 

time invariant input. The difference between the two curves may be greater if the user varies his 

or her input velocity during the exercise.   
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Figure 1-5 Comparison of static and dynamic results for the rowing machine. 
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Figure 1-6 Angular acceleration of the weight mass for the row machine. 

 

Section 1.2 Literature Review 

The previous work done in kinematic synthesis that is of interest in this thesis falls into 

two categories; namely, optimal synthesis and synthesis involving the dynamics and forces of the 

linkage. An overview of relevant works follows. 

Midha, Turcic and Bosnik (1984) published case studies in kinematic synthesis where 

complex number, algebraic, and numeric (optimal) synthesis techniques were applied to similar 

punching machine design problems. A discussion on the quality of the solutions to each problem 

is included in the paper. The optimized synthesis problem dealt with relating the position of the 

punch to the rotation of the input link. In other words, the case was a position synthesis problem. 

The optimization method did include checks on whether the mechanism would assemble and a 
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check to insure that the input link rotated completely. Completely satisfactory solutions were not 

obtained in this case study. 

Another work on optimized synthesis was published by Bagci and Rieser (1984). In their 

work, Bagci and Rieser successfully utilized optimization in designing four-bar linkages for 

position function generation. Unlike Midha, et al (1984), the synthesis dealt not just with 

position, but also with the velocity and acceleration of the linkage. By including the velocity and 

acceleration, the authors were able to design linkages that better represented the desired function. 

The optimization technique used rigidly defined set of equations for the objective function. This 

rigid definition of the objective function made mathematical manipulations easy, but limits the 

range of problems that can be dealt with. The optimization routine uses derivates of the objective 

function in finding the optimized solution. This method used by Bagci and Rieser is similar to 

the Linear Quadratic Regulator method frequently used in optimal control (Friedland, 1986).  

Another notable work is that of Venkataraman et al (1992) where optimization was used 

to handle the synthesis of a four-bar linkage with inexact links that was to be used for body 

guidance; a task impossible to do using closed-form methods. As with many other works, this 

one uses a two-step optimization process. In this case, the process is the combination of 

traditional precision-point approach (Venkataraman, et al, 1992) to arrive a general idea of where 

in the solution space the optimal solution would lie followed by what Venkataraman called a 

Sequential Unconstrained Minimization Technique to refine the linkage design to get the final 

optimal solution. The importance of this work is that it shows the flexibility and robustness that 

optimal synthesis offers the designer. 

 
The need to include dynamics has been known for some time (Starr, 1974 and Reinholtz, 

1983), but little work has been done in this area. Starr (1974) discussed various works where 
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dynamics were included in the synthesis routines and emphasized the advantage of dealing with 

the kinematics and dynamics of the linkage simultaneously rather than in a trial-and-error loop. 

The examples dealt with the forces generated by the masses and inertias in the linkage, but none 

of the works tried to specify the forces generated by the linkage.  

The best work in the area of optimized synthesis that included dynamics was done by 

Rigelman and Kramer (1988). While their work includes the dynamics of the links with mass and 

inertia, it does not address the issue of force generation. In their synthesis method, they require 

the use of two different optimization routines to produce acceptable results. Also, the link design 

from which the mass and inertia was calculated was not verified as to whether the links could 

handle the forces (stresses) generated during the loading of the mechanism. As a result the links 

may not be an accurate representation of the links actually used in the final production design.    

Soper (1995) produced an excellent compilation of analytical synthesis techniques for the 

force-generation problem. While Soper did include a discussion of the dynamic effects on the 

force generated by a linkage, the synthesis methods Soper developed were based on static forces. 

Soper also included a brief introduction to optimization, but did not utilize it in any way. 

Some good work on optimized force-generating-mechanism synthesis has been done by 

Scardina (1996). Scardina developed an approach that found an optimized planar four-link 

mechanism that produced a resistance force curve that matched a desired human strength curve. 

The force analysis was based on a static loading of the mechanism by a mass attached to the 

linkage. No attempt was made to incorporate the dynamic effects of this load mass on the shape 

of the resistance force curve. As shown in Section 1.1, the lack of the dynamic effects may 

produce erroneous results. 
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Section 1.3 Review of Planar Linkage Kinematics 
 

The position analysis of a four-bar linkage can easily be done by using Loop-Closure 

equations (Mabie and Reinholtz, 1986). The nomenclature used in the following derivation 

comes from the four-bar linkage shown in Figure 1-7. Writing the closure equation in complex 

polar form results in Equation (1.1), 

045137
4537 =−−+ θθθθ jjjj erererer      (1.1) 

The ground link is customarily taken to lie along the real axis and thus the position equation can 

be rewritten as 

0453
4537 =−−+ θθθ jjj erererr      (1.2) 

The link lengths, the ri’s and the input angle, θ2, are generally known, but the angles, θ3 and θ4, 

are unknown and need to be solved for. First, Equation (1.2) must be rearranged so that 4
4

θjer (or 

5
5

θjer ) is isolated on one side of the equation as shown in Equation (1.3) 

534
5374

θθθ jjj ererrer −+=      (1.3) 

After forming the complex conjugate of Equation (1.3) 

534
5374

θθθ jjj ererrer −−− −+=      (1.4) 

and then multiplying the conjugate with the original equation yields 

( ) ( ) ( )53535533
535737

2
5

2
3

2
7

2
4

θθθθθθθθ jjjjjjjj eeeerreerreerrrrrr −−−− +−+−++++=  (1.5) 

Expanding Equation (1.5) using the identity of θθθ sincos ie j +=  

53535353557337
2

5
2

3
2

7
2

4 sinsin2coscos2cos2cos2 θθθθθθ rrrrrrrrrrrr −−−+++=       (1.6)  
One is then in a position to take advantage of the following trigonometric identities: 
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where, 







=

2
tan 5θ

t               (1.8)  

After applying these simplifications to Equation (1.6) and rearranging, one arrives at an equation 

in quadratic form with respect to t;  

02 =++ CBtAt       (1.9) 

where 

35357337
2

5
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3
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7
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Equation (1.9) can be solved for t using the quadratic formula, since the expressions for A, B, and 

C contain only known quantities. Once t has been found, θ5 can be solved for using Equation 

(1.8). With θ5 now known, Equation (1.4) can be solved for θ4. If the linkage cannot be 

assembled given the input angle and link lengths, both of the angles θ5 and θ4 will come out as 

complex numbers. 
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Figure 1-7 Drawing of a four-bar linkage with descriptive notation. 
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Chapter 2 Problem Definition 
 

Based on the motivation and background given in Section 1.1, it has been deemed desirable 

to develop a synthesis method for designing weightlifting equipment. The focus of the equipment 

design has been selected to concentrate on planar four-bar linkages coupled with a resistance 

mass that produce a resistance curve that matches the human strength curve. The method must 

include the dynamics, as well as the kinematics, associated with the linkage. To produce the best 

match to the resistance curve, rather than a few precision points on the curve, an optimization 

technique will be used for the synthesis. Details regarding optimization will be discussed in 

Chapter 3. This chapter discusses the kinematic and dynamic analyses that arise from the 

requirements of the stated problem. 

Section 2.1 Kinematics of a Planar Weightlifting Mechanism 

The starting point for any mechanical analysis is to define the system being analyzed. As has 

previously been stated, the goal is to design a weightlifting machine that uses a linkage to 

achieve a specified resistance curve. Practical consideration dictated that the linkage should have 

one resistance mass and one user input. Such requirements limit the design to single degree-of-

freedom mechanisms. Good engineering practice implores the engineer to try to keep the 

machine being designed as simple as possible. For this reason, a planar linkage is preferable to a 

spatial linkage. With these considerations, the desired mechanism is a planar four-bar linkage 

with the resistance mass loaded on one link and the user input applied to another link, such as is 

shown in Figure 2-1. 
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Figure 2-1 Generic Four-Bar Linkage with Resistance Mass 

The links of the mechanism, denoted by the Ri’s, are assumed to be rigid, massless links 

whose lengths are available as design variables with the exception of R1 and R2. The notation of 

an upper case R denotes that both the length (r) and orientation (θ) are included in the link 

designator. The links R1 and R2 make up the user input link. The ground link (R7), shown as a 

dashed line) is taken as a fixed link from O5 to O2. The angles γ (Gamma) and β (Beta) in Figure 

2-1 are rigid offset angles for the user input and the resistance mass, respectively. These angles 

are available as design variables. The inertia of the mass (I) is not a design variable; rather it is 

the intrinsic inertia associated with the design variable mass (M) and is shown only to indicate 

that the dynamics of the mass are included in the problem. 

 The kinematic analysis of the four-bar linkage was developed in Section 1.3. The 

additions of the mass on link R6 and user-input (R1+R2) links does not significantly impact the 

kinematic analysis since they are rigidly attached to links R5 and R3, respectively. Therefore, the 

angular velocities and accelerations of the mass and user-input links are the same angular 

velocities and accelerations as links R5 and R3, respectively. Since for this problem, the angular 

position, velocity and acceleration will be assumed for the user input link, the position, velocity 

and acceleration of R3 are the known inputs used in the four-bar kinematic analysis. 
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 The assumption that the user input is known is based on a couple of aspects. The first is 

that the human body is a feedback-controlled machine that, within a reasonable operational 

range, is capable of controlling the motion and force generation of any of its members. This 

aspect allows the designer to assume that the user’s angular input (acceleration and velocity) and 

the applied force are independent of each other as long as both are within the maximums that the 

person may achieve. Another is the idea that one can measure the motion of a person doing a 

bicep-curl with sufficient accuracy to allow the designer to claim a set of input values, position, 

velocity and acceleration, as being the known inputs to the system. When making this decision, 

the designer must recognize that each person is different. The user input will vary to a certain 

degree. The designer must examine these differences once a design has been made. 

Optimization is being used to find the set of design variables that best solves the problem. 

For each analysis, the following quantities will always be known: the Ri’s, β, γ, M, I and all of 

the input link motion data. The unknowns are, thus, limited to the angular position, velocity and 

acceleration. The angular position can be solved used the previously mentioned methods. 

Angular velocity and acceleration equations can then be developed by differentiating the position 

equations. Now all of the kinematic properties of the mechanism have been found and are 

available for dynamic analysis. 

Section 2.2 Dynamics of a Planar Four-Bar Linkage 

Since the mechanism is being driven in a controlled fashion, the motion of all of the 

members of the mechanism can be found from the assumed user input. Before beginning the 

dynamic analysis, two decisions must be made. The first decision is on whether the links have 

mass properties or not. If the links are to have mass, one must know how the links are designed, 

or failing that, have a reasonable estimate of the inertial properties of the links. It sounds simple 
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just to design the links and incorporate them into the analysis, but since the dynamic analysis is 

part of an optimized synthesis routine, the links will change for each iteration, meaning that the 

design of the link must also be updated for each iteration. A simple link design would be to 

choose a cross-sectional area for each link and assume that the area will give the link sufficient 

strength to prevent any failure, such as yielding or buckling, for all loading and link length 

conditions. The link mass and inertia would then simply be functions of the link length. The 

problem with this method is that the link-strength assumption may not be valid. The links could 

be over-engineered and, thus, could be larger than need be. One must also consider how 

important the mass of the links really is to the problem. If the mass is considered to contribute 

little to the forces of interest, then the mass could be left out with minimum impact on accuracy 

of the design. The actual results can be checked after the mechanism is constructed to verify or 

disprove this assumption. In this thesis, the dynamic effects of the load weight are assumed to be 

the dominant dynamic effect and the mass of the other linkage members was neglected.  

The other issue that needed to be resolved was how to represent the load mass. The problem 

here is not whether to include it, but exactly how should it be modeled. In particular, one must 

determine how the mass is distributed when calculating the inertia. Usually weights in user-

loaded weightlifting machines are thin disks. However, a given weight can be accomplished by 

using different combinations of plates. Each combination would generally have a different 

inertia. Since there is no way of knowing how each user will load the machine, there is no easy 

answer as to which set of plates will be used to make up each weight. In addition, while the 

drawing in Figure 2-2 shows the weight plates aligned such that the disks are shown in their 

circular view, this may not be the best arrangement for them. The actual production model of the 

machine may have the weights oriented in a different way. Thus, the inertia would need to be 
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recalculated. One solution to this problem would be to choose a radius and an orientation for the 

load weight and then calculate the inertia. In this thesis, the decision was made to set the radius 

to zero, that is to make the mass a point mass. This decision was based on the difficulty of 

choosing an accurate radius and on the treatment that the mass receives in the dynamic 

equations. Since O5 is a fixed point, the most natural way of solving the dynamics of the linkage 

subsection shown in Figure 2-2 is to take moments about O5. The inertia of mass M about O5 will 

include an term from the Parallel Axis Theorem, M(r6)2. So, if r6 is larger than the radius of the 

weight plate, the Parallel Axis term will, be significantly larger due to the squaring of the radius, 

than the term due to the geometry of the plates. Due to possible clearance issues with the fixed 

pivot at O5, one would in general want r6 to be larger than the largest possible plate radius. For 

example, if the weight plate is oriented in its circular view, the orientation of highest inertia, it 

has a moment of inertia of ½ Mrw
2. If rw equals r6, then the inertia due to the geometry of the 

plate is 33% of the total inertia. If rw is one-half of r6, the inertia of the plate is 11% of the total 

inertia. If rw is one-quarter of r6, the inertia of the plate is 3% of the total inertia. So, by choosing 

the mass to be a point mass, the dominant component of the inertia is retained. 

To begin the analysis of the linkage substructure shown in Figure 2-2, some clarification 

must be made on the nomenclature used in this and subsequent figures. The force Fij is the force 

applied by link i onto link j, taken as a positive force on link j. Thus, F54 is negative in Figure 2-2 

since we are looking at the force from the reference frame of link 5 instead of the link 4 frame. 

Taking moments about O5 results in 

5
2

6564545545455 )cos()sin()cos()cos()sin( θβθθθθθ &&MrMgrFrFr =++⋅+⋅−     (2.1) 
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Figure 2-2 Diagram of weight loaded link. 

Since the links are assumed massless, the coupler link becomes a simple two-force 

member. A free-body diagram of the coupler link (link R4) is shown in Figure 2-3. The analysis 

of this link is trivial and yields that F54 = -F34. This relationship allows for the coupling of the 

equations for the two “ends” of the linkage. 

 
 

 

Figure 2-3 Free-body diagram of coupler link. 

 

A diagram of the input subsection of the linkage is shown in Figure 2-4. As with the mass 

side of the linkage, moments were summed about the fixed pivot point, O2, which yields, 

0)cos()sin()sin()cos()( 234542345421 =+⋅++⋅−+⋅ γθθγθθ rFrFrrF   (2.2) 

Examining Equations (2.1) and (2.2), one sees that the only unknowns are F and F54. By 

rearranging the Equation (2.1), F54 is found to be 

r5 

-F54M

g 
β 

θ5 r6

O5 

r4 
θ4 

F54 

F34 



 22

)sin()cos()cos()sin(
))cos((

455455

565
2

6
54 θθθθ

βθθ
rr

grrMF
−

++=
&&

    (2.3) 

Equation (2.3) can now be substituted in to Equation (2.2) and the resulting equation solved for 

F. Finally, F is found to be 
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The resistance force, F, can now be calculated at any user input angle. The linkage’s resistance 

curve can be compared to the desired strength curve. Notice that the Equation (2.4) is linear with 

respect to mass and the user-input-link length. This result guarantees that the final linkage design 

will provide the desired level of resistance, irrespective to how strong the user is. In addition, the 

curve is preserved for any sized user, though the necessary load mass will change. These 

properties are desirable since one wants a weightlifting machine to be useful to the maximum 

number of possible users.  

Figure 2-4 Diagram of user input and four-bar input links. 

Throughout the dynamic analysis, there has been an assumption of frictionless joints. The 

joints on weightlifting machines often include rolling element bearings that keep the friction to a 

minimum. Another assumption has been that the links are rigid. The assumption of rigidity is 

common and usually valid in design problems since during the design process one can usually 
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control the rigidity of the mechanism. One assumption that was made, and is usually made by 

others, but is often over looked, is the assumption of sea-level value for the acceleration of 

gravity, g. However, since almost all mass-based weightlifting equipment is used on the Earth’s 

surface, there is little need to question this assumption. 

Section 2.3 Dynamics when the Links Have Mass 

Let us re-examine the dynamics of the four-bar linkage for the case when the links have 

mass. In this case, the link masses are considered to be point masses located at the ends of each 

link that vary in magnitude by the linear relationship, mi = 2ai ri. The ai’s are constant, positive 

real numbers representing the mass per unit length of the beam. While representing the mass in 

this manner is a rough approximation, it does create a potentially more accurate model than the 

single-load mass model. These additional masses increase the complexity of the synthesis 

routine. 

The dynamic analysis must be redone, since many of the simplifications from the 

previous section no longer apply. The biggest difference is in the dynamics of link R4. For this 

reason, the dynamic analysis will begin with link R4. A free-body diagram of link R4 is shown in 

Figure 2-5. Notice that the addition of the mass means that the link is no longer a simple two-

force member. The angles δ and φ are necessary since the force F34 and F54 can no longer be 

assumed to act along Link R4. 

Figure 2-5 Diagram of the coupler link with point mass. 
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To perform a complete dynamic analysis of link R4, the motion of the center of mass 

needs to be known. Since the exact geometry of the links is unknown, we will assume that the 

centers of mass are at the link midpoints. To find the acceleration of the center of mass, we will  

define the acceleration relative to the acceleration of an endpoints, since the acceleration of the 

endpoints are known. Therefore, for the endpoint shared with link R5 (point L), see Figure 2-1 

and Figure 2-5, we have, 
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To compute aG from aL, 
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Free-body diagrams of the other two substructures of the linkage are shown in Figure 2-6 

and Figure 2-7.  

 

Figure 2-6 Diagram of the input link with point masses. 
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Figure 2-7 Diagram of the output link with point masses. 

 

Figure 2-8 Joint and center of mass locating vectors diagram. 
 

Analyzing the links shown in Figure 2-5, Figure 2-6 and Figure 2-7 by summing forces and 

summing moments about the center of gravity of each link yields the following equations, 
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5575554545: θ&&ITFRFRM w =+×+×Σ               (2.11) 

4445444334: θ&&IFRFRM =×−×−Σ      (2.12) 

where the mass and inerita properties for all links are defined as, 

4
2

2
ii

iiii
rMIraM ==      (2.13) 

Note that the inertial torque due to the load mass, Tw, is considered separately. The vectors, Rij 

are defined as the vectors that located link j’s center of mass relative to the joint i. The joint, link 

and locating vector notations are shown in Figure 2-8. To find Tw, moments are summed about 

O5 for the weight link, 

)cos( 565
2

6 βθθ +−−= MgrMrTw
&&           (2.14) 

Rewriting the system equations by expanding the force equations into x and y components and 

then putting the resulting set of 9 scalar equations into matrix form yields, 

 

Ts can now be calculated. Note that Ts is the torque applied to link R3 by the user-input link and 

is not directly the torque due to the user force F. By summing moments on the user-input link, 

which was not included in the matrix equation above, yields the following equation for F, 
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Chapter 3 Optimization 
 

Optimization, as defined by Reinholtz (1983), “… the process of seeking the best result 

under a given set of circumstances.” Based on this definition, optimization can be broken down 

into two parts: the optimization routine (the process) that finds minimum values of the second 

part, the objective function (the circumstances). Optimization routines are based on one or more 

numerical or closed-form-root finding techniques. These discussed in the first section of this 

chapter. Objective functions are defined by the user to quantify the characteristics that a perfect 

solution should, or should not have. The design of objective functions is discussed in the second 

section of this chapter. 

Section 3.1 Optimization Routine 
 

Many references on optimization exist and the examination of just a few can give one an 

excellent overview of the optimization routines available to the designer. Many of the more 

“intelligent” optimization routines rely on differentiating the objective function (Rao, 1984). The 

need to take partial derivatives is almost guaranteed when one looks at the so-called “global” 

optimization routines (Floudas and Pardalos, 1992). Obviously, this requirement creates a 

significant hurdle when dealing with complex functions often encounters in linkage synthesis. 

This requirement also forces the use of only continuous functions, which may not be appropriate 

for the problem (Vanderplaats, 1984). Not only is rewriting the objective function to include the 

linkage evaluation functions time consuming, the resulting function may not be differentiable. 

Often for problems with difficult derivatives, approximations of the functions are made allowing 

for easier derivatives, which allows gradient methods to be used (Vanderplaats, 1984). These 

methods has been found to greatly increase solution times, making the gradient routines slower 
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than direct search routines for these types of problems (Eason and Fenton, 1974). Even for the 

routines that do not require differentiation, the fact that objective functions may return imaginary 

numbers causes problems with implementing them. For these reasons, direct search, often called 

“brute force”, techniques are popular. These techniques use the simplest method of optimization 

that is choosing an initial set of values for the design variables, evaluating the objective function 

at the initial position and then deciding where to choose the next position. The selection of the 

next position is based on examining the results of a pattern search in the area of the first position. 

The pattern search tells the routine where the lowest or highest value, depending on the problem,  

of the objective function is in the search area, and this location is taken for the next position. 

Techniques of this type usually differ primarily in the pattern that is used to select the next set of 

points. 

The Hooke and Jeeves (1961) optimization routine was chosen for this thesis. Aside from 

the reasons listed above, one reason this routine was chosen is its relative simplicity as a routine, 

making it easy to program and to use. In addition, this author has had some experience with this 

routine and has found that it produces good results on problems of this type. A flow chart for the 

Hooke and Jeeves (1961) optimization routine is shown in Figure 3-1. In the figure, the X’s are 

the different sets of values for the design variables and q is a counting variable that keeps track 

of the number of iterations completed. Hooke and Jeeves is based on a two step routine. In the 

first step, small incremental changes (positive and negative) to each design variable with a check 

on the effect these small changes (step) have on the objective function. This first step is used to 

determine the “direction” for the next move. The next stage consists of proceeding to move in 

this “direction” (pattern move) until such a move no longer reduces the value of the objective 

function. To improve the convergence rate of the routine, after each successful pattern move, the 
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step size increases, allowing the routine to proceed quickly along a good direction. A failed 

pattern move resets the step size to the original user defined default. A failed exploratory move 

causes a reduction in the step size. The routine terminates when the exploratory move does not 

significantly change the value of the objective function or if the number of iterations reaches a 

predetermined limit. Hooke and Jeeves evaluates the changes in the objective function for a 

change in each design variable independent of the changes in the other variables. When making 

its exploratory move, there does exists a highly contrived case where the routine will not 

converge on a minimum. This case assumes if the initial variable values place the initial 

objective function value exactly in the middle of a “ridge” and the lay of the ridge is aligned 

relative to the variable axes in such a way that the direction dictated by the step sizes lie along 

the direction of the ridge. The routine will end up walking along the ridge, or terminating at the 

initial position. This case primarily arises because Hooke and Jeeves evaluates each variable 

independently as to the effect it has on the value of the objective function. So, the program has 

no way of knowing that a combined variable change will land position the next evaluation point 

on the ridge until the routine tries to make its first move. Since the step size is known, as well as 

any change in step size, the relationship between the design variables and the objective function 

could be easily determined. As such there would be little need for an optimization routine for a 

case of this type. So, for all practical purposes, the assumption that Hooke and Jeeves is always 

locally convergent is acceptable.  
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Figure 3-1 Hooke and Jeeves Optimization Flowchart 

Choose vectors 0X , ∆X, ∆Xmin, q Initialize X, X= 0X

Set q=1 

Let qXXX ∆+= 01

 
    Is 
  )()( 01 XfXf <  ? 

Let qXX ∆−=∆  
& Recalculate  

qXXX ∆+= 01  

     Is 
  )()( 01 XfXf <  ? 

Retain new point Increase step 
qq XX ∆∗=∆ 2.1

q=q+1 

       Is 
    q < n ? 

Reduce step 
qq XX ∆∗=∆ 5.0  

       Is    
?0 XX =  

   Is 
   ?minXX ∆<∆   Try pattern move 

( )01 XXXX −+=

    Is 
  )()( 01 XfXf <  ? 

0XX =

10 XXX ==

0X  is a local minimum 



 33

 

 

Section 3.2 Objective Function Design 
 

The objective function defines the problem to be solved by the optimization routine. As a 

result, the solution that the optimization routine produces is a function of the problem definition. 

The optimization routine minimizes (or maximizes) a set of mathematical relationships. The 

objective function must be designed in such a way that the conditions of accomplishing a desired 

task are represented in a well-defined mathematical form. Because the value of the objective 

function is usually designed to increase as the solutions deviate from the ideal solution, or in 

other words, penalize the solution for failing to meet the specifications, objective functions are 

also referred to as penalty functions. Clearly then, the design of the objective function is critical 

to having the optimization routine produce good results.  

Ideally, an objective function will result in just one minimum that corresponds to the best 

possible mechanism for the particular application, but this standard is difficult to achieve when 

dealing with complex problems. The general trend is that the more complex the problem, the 

greater the number of local minima, and the more prevalent the ridges and undulations are in the 

solution space. While the solution space is rarely as low order as three dimensions, the three 

dimensional topographical terms are often used to provide the reader and the designer a better 

visual understanding of the nature of the solution space. A more practical goal is to develop an 

objective function that results in an easily discernable, finite region in which the optimal solution 

exists, but that also contains many “good” solutions that may be acceptable to the designer. In 

view of this more generalized goal of objective function design, the objective function needs to 

have a large, in a relative sense, value in the region outside of the acceptable design space and to 
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have a slope that will force the optimization routine back into the acceptable region if routine 

tries to leave the region. One way of accomplishing this goal is to add a large number (a penalty) 

to the value of the objective function for any solutions outside of the acceptable region coupled 

with a function that increases rapidly, such as an exponential or power function, as the solutions 

move further from the acceptable region. For example, in the example problems discussed in this 

thesis, the step component of the penalty for closure failure is 1040. To achieve the same 

objective function value from the quality of fit assessment would require each design point to be 

36,889,000 times larger than desired. This type of objective function is often called a penalty 

function, since it adds a penalty when a constraint is violated. Defining the acceptable region in 

this manner is often categorized as imposing a set of inequality constraints on the problem. One 

should note that this method creates a discontinuity in the objective function and this may cause 

problems with optimization routines that depend on taking or estimating derivatives.  

The question is then raised, what defines the acceptable region. The acceptable region is 

defined by a fundamental relationship that applies to the problem that cannot be violated. Some 

examples of this would be the Conservation of Energy and Mass, and the limitation of no 

physical object being able to travel faster than light. For linkage synthesis, this region would be 

defined by the requirement that the linkage must actually assemble in all of the desire positions. 

Quantitatively this requirement can be stated as: all the angles and link length calculations for the 

linkage must result in real numbers. While fulfilling this requirement is necessary, the fulfillment 

of this requirement does not guarantee that the linkage will work or that it will have the desired 

characteristics. Further requirements may need to be included in the objective function to handle 

other defects that the mechanism may have. Among these defects are branch defects, order 

defects and Grashoff defects (Mabie and Reinholtz, 1986). One may also need to set limits on the 
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size or another linkage property that must be met. If this need exists then, similarly designed 

objective functions will need to be implemented. 

 Within the constrained region, the objective function is inversely proportional to how 

closely the mechanisms actual properties match the desired properties. Before the objective 

function can be designed, careful consideration must be given to what criteria the mechanism 

should be judged by, as well as the relative importance of each criterion.  

Obviously, in this case, a cost associated with the deviation of the mechanism’s 

resistance curve from the desired curve must be included. In the case being dealt with here, this 

part of the objective function contains the primary objective that is to produce a mechanism with 

a desired resistance curve. Since the difference between the actual and desired curves can be both 

positive and negative and penalty functions need to be positive, some means must applied to the 

difference to convert it to a positive only values. One way of handling the negatives is to simply 

raise the difference by an even power and the resulting value will always be positive. The choice 

of which power to use will depend on the magnitude relative to the other objective function 

terms that works best for the particular problem. For example, if the cost is too small, it will not 

provide the optimization routine with enough information on the fit for it to be able to improve it. 

If the cost is too large, it can overwhelm the other costs, and can cause the optimization routine 

to seek a solution outside the constrained region. Clearly the number of points that one is trying 

to match will impact the choice of function for the fit cost, since 20 points will result in a larger 

cost than 10 points will for the same function. So, caution must be used. For example, if the 

objective function has been decided on, and the designer changes the number of points being 

matched, the objective function will not perform as originally intended, affecting the overall 

performance of the optimization routine. Optimization presents no limit on how many properties 
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one may try to match at once, but the odds of finding a solution to a problem decrease with the 

number of properties being matched. For this reason, one should closely examine whether a 

property needs to be matched exactly or whether it could be simply given a one-sided constraint. 

Frequently, one may need to include in the objective function a representation of any 

secondary objectives in the problem. Secondary objectives represent properties or conditions that 

one would like the solution to have, but are not critical. An example from the weightlifting 

problem is that there is a desire to keep the resistance mass as small as possible, but a solution 

with a large resistance mass would be accepted if no other solution exists. Clearly, the costs 

associated with the secondary objectives need to be relatively smaller than cost associated with 

the primary objective. In addition, one sees that secondary objectives are usually represented by 

one-sided constraints that try to minimize or maximize a property. Secondary objectives allow 

the optimization routine to see differences in otherwise identically valid solutions. 

 Another consideration in designing objective functions is computational complexity of 

the function. Since the objective function is used many times by the optimization routine (see 

Figure 3-1), an overly complex objective function can slow down the entire process. In addition, 

often the more complex objective functions are likely to have more local minima, increasing the 

possibility of the optimization routine finding a solution that is not desired.  

 The last issue in objective function design is testing and iteration. Before the objective 

function is used in optimization, it needs to be tested. The designer needs to check the values of 

each of the sub-functions of the objective function in relation to the solutions that the objective 

function produces. Often one or more of the sub-functions needs to be adjusted to achieve the 

correct balance between the sub-functions. This testing is best done by starting from the same 
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starting point for the optimization and seeing if the routine produces improved solutions for each 

variation of the objective function. Several iterations of this step may be necessary.  
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Chapter 4 Example Problem 1: Bicep-curl Exercise 
 

Section 4.1 Bicep-curl Exercise 
 

As discussed in Section 1.1, the goal of this thesis is to develop a method for designing a 

weightlifting machine with a resistance curve that matches the human-strength curve. For the 

example problem used in this chapter, the exercise of interest is the bicep-curl. A strength curve 

for a bicep-curl is shown in Figure 4-1. The curve was plotted with 180 degrees corresponding to 

the arm being fully extended. The force data was recorded in a series of static situations where 

the force measured was the force generated in the direction normal to the forearm and in the 

plane of motion. Several data sets were averaged to produce the smooth curve plotted on the 

graph. No specific physiological information was given about user or users on whom the 

strength-curve experiment was done (Clarke et al, 1950).  
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Figure 4-1 Human-strength curve for a bicep-curl taken from Clarke, et al (1950). 
 
 Discrete points were read from the graph in Figure 4-1 for use in the synthesis process. 

While reading points off of a graph does introduce some uncertainty, the uncertainty in the 

formulation of the original strength curve and general variation in human response makes the 

graph reading error insignificant. Strength curves may be formulated in many ways. Strength 

curves can be made for concentric and eccentric parts of the exercise, and the strength can be 

measured in either a static or a dynamic manner. Since these points must reasonably represent 

the strength curve, proper spacing of the points and having a sufficient number of points was 

critical. The angular position of the design points was converted into a coordinate frame where 

the user’s arm is oriented along the vertical axis and where all angles are measured relative to the 

positive horizontal axis. Thus at a straight down position in Figure 4-1 the angle is 180°, but with 

reference to the new coordinates, the angle to be used is would be –90°. This conversion was 

necessary to have the data agree with the standard kinematic convention on the angular 
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measurement of linkage positions which the kinematic and dynamic analyzes use. The selected 

design points are listed in Table 4-1.  

The spacing of these points was determined by first taking 

10° increments, then subdividing that increment to 5° in the 

critical areas of the curve, areas with the greatest change in 

function value. Further subdivisions were done during the 

design process as the need for closer spacing in certain areas 

of the curve became apparent. 

 While the values in Table 4-1 are static 

measurements, the actual exercise is done with in a 

continuous motion. Therefore, a velocity and acceleration 

must be assigned to each of the design points. Based on 

observations by this author, one reasonable approximation of 

the motion is that other than the accelerations at the beginning and end of the exercise, the bicep-

curl is a constant velocity motion with an angular velocity around 1.8-1.9 radians per second. So, 

for all but the beginning and end points, the design points were given a velocity of 1.9 radians 

per second and zero acceleration. This velocity profile is shown in Figure 4-2. While the average 

velocity could be roughly measured using a stopwatch, measuring the acceleration would require 

a more complicated setup. This thesis deals with mechanism synthesis and not exercise 

physiology. Because of this, the decision was made to approximate the acceleration curve. In 

addition, if one assumes an acceleration and designs the machine with it, the effects any error 

with the assumed acceleration will have on the strength curve will be partially contained. What 

will happen is that the user may not be able generate an acceleration greater than the assumed 

Table 4-1 List of Design Points
Angular Position Force 

(degrees) (pounds) 
-90.0 65 
-83.7 66 
-77.3 67 
-70.0 70 
-60.0 80 
-55.0 85 
-45.0 88 
-39.5 89 
-30.0 90 
-25.0 91 
-20.0 90 
-15.0 89.5 
-10.0 88 
-5.0 86 
0.0 84 
10.0 80 
30.0 64 
50.0 46 
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acceleration since any acceleration greater than the assumed may result in a higher resistance 

force, an increase that the user will not have the strength to overcome assuming that the strength 

curve is approximately matched. In addition, the spacing of the design points is too coarse to 

allow for a proper representation of an accurate acceleration curve. For these reasons, the 

acceleration of the end points was set as a constant equaling to the slope of the velocity curve. 

This slope is equal to the steady state velocity squared divided by 0.22 in units of radians/s2. So, 

for a velocity of 1.9 radians per second, the acceleration is ±16.4 radians/s2. 
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Figure 4-2 Velocity profile of the exercise. 

 One more assumption must be made before the synthesis can begin. The length of the 

user input link must be selected. To best maintain the normalcy of the resistance force to the 

user’s forearm, the user-input link needs to be approximately the length as the distance between 

the users elbow and the middle of the users palm. Using the average hand length of 7.6 inches 
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and the average elbow to fingertip length of 19.0 inches, a user input arm length of 15 inches was 

taken as approximately average (Woodson et al, 1992). 

Section 4.2 Implementation of Synthesis Routine  
 

The actual process of solving the synthesis problem was done on a computer. The large 

numbers of calculations need to perform the optimization precludes other solution methods. All 

of the kinematic, dynamic and optimization equations and routines were programmed into The 

Math Works technical computing language, MatlabTM. Matlab provides the user with a higher 

level programming environment with many built-in functions that are designed specifically with 

engineering computational needs in mind. 

The programming consisted of creating a main program and two separate subroutines. The 

main program contains the code for the Hooke and Jeeves optimization routine (Figure 3-1). As 

this program runs, it repeatedly calls the first sub-routine, which contains the kinematic and 

dynamic analysis as well as the objective function. The output of this subroutine to the main 

program is a single value for the objective function. This output allows the main program to 

determine the move direction and duration. This output is often displayed so that the user may 

track the progress of the optimization routine. The main program calls the second routine only 

once per run. This subroutine contains all of the code from the first sub-routine plus code to 

create plots of various linkage properties, such as the resistance curve, position, velocity and 

acceleration data. The sub-routine also outputs to the display the final value of the objective 

function. This sub-routine can also be easily manipulated to provide any additional outputs that 

may be desired. The final values for all of the design variables are output to display by the main 

program. These programs are included in Appendix A. 
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The main program and the subroutines purposely lack graphical user interfaces (GUIs). The 

programs are designed to be used, not as a “black box” where one simply inputs a couple of 

parameters and lets in run, but as a tool for a knowledgeable kinematic designer. The user needs 

to have some understanding of kinematic synthesis and numerical optimization to implement the 

changes to the program that are required for the unique aspects of the specific problem one is 

trying to solve. For example, each problem will almost certainly require changes to the objective 

function and will require various initial design variable values. These changes must be made by 

the user. One also can easily fall into believing the results of a program without questioning them 

when one takes the “black box” viewpoint. For this reason, any results need to receive a “does 

this make sense” check from the user. 

Another reason for the lack of GUIs is to keep the program as simple as possible. As stated 

above, the user will need to make changes to the program. Adding GUIs complicates the 

program and making changes becomes more difficult. In addition, keeping the program simple 

makes the program smaller and quicker to run. Also, by maintaining the simplicity, the program 

can more easily be incorporated into other programs as desired. Any GUIs would have to be 

eliminated or reworked to allow the program to be combined with other programs. This change 

would take time and expertise that could be better used elsewhere. 

Section 4.3 Synthesis Results 

When examining the synthesis results, one should recall the goal of this thesis. The goal 

was develop a synthesis routine to design force generating planar four-bar linkages. In particular, 

this problem focused on matching the resistance curve of the linkage to the human-strength curve 

for the bicep-curl exercise. After the synthesis routine was applied to the bicep-curl problem, a 

satisfactory solution to the problem was found. The values for all of the design variables for the 
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final optimized solution are given in Table 4-2. This linkage had an associated objective function 

value of 65,611. This value is in and of itself, meaningless, since it is by nature a relative 

number. The value is only recorded for possible future comparisons with other linkages and 

objective functions. Please note that this solution is an optimized solution, that is the best 

solution found from an optimization routine, and not necessarily the optimal solution, that is the 

best solution possible.  

Table 4-2 Final design variable values. In units of feet, radians, and slugs. 

Variable R1 + R2 R3 R4 R5 R6 R7 β γ M 
Value 1.4 0.744 2.435 1.403 0.656 1.838 1.680 -0.100 10.04

 

 Drawings of the linkage in its starting and final positions are shown in Figure 4-3 and 

Figure 4-4, respectively. The circle at the end of the one link represents the resistance mass, and 

as such, it clarifies which link is the output and which is the user input links. 

 

Figure 4-3 Optimized bicep-curl exercise mechanism in the initial position. 
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Figure 4-4  Optimized bicep-curl exercise mechanism in the final position. 

The final linkage design produces the resistance curve shown in Figure 4-5. While the 

resistance curve is not an exact match, it is close enough for the mechanism to be usable in its 

desired role in a weightlifting machine. Where the quality of the match may be a concern is in 

the regions where the resistance curve is greater than the strength curve since this will cause the 

curl motion to stall. Since the user strength cannot be increased to bring the entire resistance 

curve under the strength curve. The resistance curve must be shifted down below the strength 

curve. This shift can be easily accomplished without distorting the curve by reducing the 

resistance mass. Reducing the mass will reduce the maximum resistance, but the overall effect of 

matching the resistance curve to the strength curve is what is most desired and that effect will not 

be significantly affected by this change. 
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Figure 4-5 Resistance curve of the final optimized solution. 

To better understand force generating synthesis, a breakdown of the effects on the force 

curve of the three main factors, static loading, dynamic loading and kinematics, would be useful. 

The static loading in this problem is developed from the weight of the resistance mass. The 

moment generated by the resistance mass is function of the magnitude of the mass and the length 

of the moment arm. The moment arm length consists of the length of R6 and its angle relative to 

weight vector. This angle is the only component of the static loading that changes during the 

exercise, which affects the shape of the resistance curve. For this reason, the deviation of this 

angle from the maximum moment angle of 90° has been plotted in Figure 4-6. One can see that 
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the static moment increases almost linearly to a peak at –5° and then decreases with the same 

linear relationship. This peak is 25° out-of-phase with the resistance curve. Also, since the 

resistance curve is not perfectly symmetrical, the changing static moment cannot be solely 

responsible for the shape of the resistance curve. This fact indicates that the other two force 

factors, dynamic loading and kinematics, play an important role in the determination of the 

resistance force. 
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Figure 4-6 Relative static moment angle deviation during the exercise. 
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The dynamic loading is determined by the acceleration of the mass, so an examination of 

the acceleration will provide the insight that is needed into the effects of the dynamic loading. 

The angular acceleration for the coupler (α4) and output (α5) links is plotted in Figure 4-7.  
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Figure 4-7 Angular accelerations for the coupler and output links. 

Comparing the shape of the output acceleration curve (Figure 4-7) with the resistance 

curve (Figure 4-5), we see that the shapes are not the same. However, we see that the 

acceleration curve for the resistance mass is not symmetrical about the –30° line. These facts 

indicate that the acceleration of the mass does affect the resistance curve. 

To obtain a complete picture of how the resistance is generated, the last force component, 

kinematics, needs to be examined. A kinematic property of interest is the transmission angle. The 

transmission angle is the angle between the coupler link and the output link (Mabie and 

Reinholtz, 1987). This angle indicates the efficiency of the force transfer between the output link 



 49

and the coupler link. As the transmission angle deviates from 90°, more of the force is directed 

along the link and into the ground, rather than moving the resistance mass. The result is that 

more force must be applied by the input link to achieve the same motion of the resistance mass. 

The transmission angle is plotted in Figure 4-8.  
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Figure 4-8 Variation of the transmission angle during the bicep-curl exercise. 

Examining all three of the force components shows that a combination of the three produce 

the desired resistance curve. None of the three can be ignored or simplified out of the problem 

without impacting the solution. How much impact do these factors have on the solution? To 

answer this question, the resistance curve produced by the design linkage when only static 
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effects are considered was plotted with the resistance curve for when the dynamic effects are also 

included. This comparison is shown in Figure 4-9. The figure shows that the static forces 

completely dominate over most of the exercise. However, by comparing this figure with the 

acceleration plot in Figure 4-7 one sees that where the combined effects curve deviates from the 

static curve is in the same regions where angular acceleration of the output link is not near zero. 

This attribute is especially true at the end points, where the user applied acceleration causes large 

output link accelerations.  The conclusion that can be made is that when a problem involves an 

input acceleration, one needs to include the dynamics. In cases where there is no input 

acceleration, the acceleration of the output link needs to be checked. If the output acceleration is 

near zero, then one may ignore the dynamic effects, but if the output acceleration is not near 

zero, one should include the dynamic effects. 
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Figure 4-9 Contributions of the static and dynamic force components. 
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Due to uncertainty in the exact manner in which the weightlifting machine will be used, 

the linkage needs to be analyzed for its performance in a range of situations. In Figure 4-10, the 

resistance curve for the linkage given a ±50% variation in the user input velocity from the 

nominal design velocity. The general trend is as the velocity increases the resistance force 

decreases. This decrease is caused by the acceleration increasing in magnitude, but the 

acceleration is negative, thus reducing the resistance force. The starting point experiences the 

greatest change. The system must accelerate at a greater to reach the higher velocities since the 

acceleration region is fixed. This assumption in the velocity profile is clearly not accurate over 

the span of velocities. Therefore, the end point forces should not be taken as exact. This graph 

also illustrates the importance of dynamics when calculating the resistance force, because the 

change in the resistance curve in Figure 4-10 is due solely to the dynamics of the system, since 

gravity and the mass are not changing. 
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Figure 4-10 Effects of input velocity on the resistance force curve. 

Two other usage considerations that exist are possible variations in the user input link length 

and variations in the magnitude of the resistance mass. The need for a longer or shorter input arm 

length is due to the natural differences in user body size. A higher or lower resistance force than 

was used in the initial design is expected since the magnitude of the strength of each user is 

different. The equations in Section 2.2 show that the resistance force is linear with respect to 

these two variables. The affects of changing mass and user input link length are shown in Figure 

4-11. 
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Figure 4-11 Resistance force as a function of user input length (left) and of the load mass. 

 The resistance mass is more important than just its effect on the resistance curve. 

Controlling the amplitude of the mass was a secondary objective derived from the practical 

desire to have a resistance mass of the same order of magnitude as the peak resistance. The 

resistance mass of the final design was around 10.0 slugs or 322 pounds. Since this resistance 

mass produces a peak resistance of 91 pounds, the mass is of an unacceptable magnitude. This 

criteria was not incorporated into the final objective function since the restrictions on the solution 

space was found to be too stringent, and that they needed to be relaxed so that a solution with an 

acceptable resistance curve could be found. 

 The angular jerk of the mechanism is an important property from the stand point of user 

safety and comfort. If the jerk is too high, the exercise motion will be uncomfortable for the user. 

The angular jerk of the coupler and output links are shown in Figure 4-12. The jerk curve of the 

output link is small in magnitude for most of the curve. Near the end points the jerk is higher 

since the end points experience the user-applied accelerations. 
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Figure 4-12 Angular jerk for the coupler and output links. 

 The sensitivity of the system to small changes in the design variables needs to be 

examined since there is always uncertainty in the dimensions of any real object. A low sensitivity 

to changes in the design variables is desired. A design that exhibits this behavior is said to be 

robust. Each of the design variables in this problem were subjected to a ±1% change in value. 

The resistance curves for these changes were plotted in Figure 4-13 for R3 and R4, Figure 4-14 

for R5 and R6, Figure 4-15 for β and γ, and Figure 4-16 for R7. As these figures show, the design 

is generally insensitive with the exception of the link changes that cause the acceleration at the 

starting position to increase or decrease. These acceleration changes cause the resistance force to 

change significantly at this point. Only the cases where the force increases is there a concern, 

since the increase takes the resistance force far above the strength curve. 
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Figure 4-13 Sensitivity plots for R3 (left) and R4 (right). 
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Figure 4-14 Sensitivity plots for R5 (left) and R6 (right) 
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Figure 4-15 Sensitivity plots for the weight offset angle (l) and the user input angle (r) 
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Figure 4-16 Sensitivity plot for the ground link (R7) 
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Chapter 5 Example Problem 2: Bicep-curl Revisited 

Section 5.1 Purpose of Re-examining this Problem 

This example problem deals with the same bicep-curl exercise as in the first example 

problem (Chapter 4), except that the dynamic model of the mechanism has changed. In this 

problem, the links that make up the mechanism have their mass modeled as point masses located 

at the ends of each link, producing a center of mass at the midpoint of each link. The dynamics 

of this model was discussed in Section 2.3. While this mass model is not exact, it demonstrates 

that the real links will have dynamic properties and that these properties give rise to a more 

complex force generation problem. Since the inclusion of the dynamic properties of the links 

makes for a more difficult problem, the question is logically raised; do we really need to include 

them? For an answer, let us examine the resistance curve of the mechanism synthesized in 

Chapter 4 for the original single-mass case, and the case of all the links having mass. The two 

resistance curves are plotted in Figure 5-1. The two resistance curves, while similar, are not 

similar. This difference indicates that the link masses can be important factors when designing 

for force generation. The link mass coefficients (ai’s) for this example problem were given the 

value of 0.03 slugs per foot. This value means that a 1 ft. long link would weigh a, 1.9 lbs. For 

comparison, a foot of round steel tubing of 1.5 inch diameter and 1/8 inch wall weights 1.8 lbs. 
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Figure 5-1 Comparison of the dynamic forces for the single and multiple mass systems. 

 Since the resistance-force curve changes with the addition of link masses, the linkage will 

need to be resynthesized for the case where the links have mass. The synthesis routine will be 

reworked to account for the dynamics of the links. A new optimized solution will then be found 

using this reworked dynamic analysis. The implementation of the improved synthesis routine 

will be the same as for the original routine. The analysis equations and the optimization routine 

will be programmed in Matlab and run until a satisfactory solution is found. Then the results will 

be output, analyzed and plotted. 

Section 5.2 Synthesis Results 

When examining the synthesis results, one should recall the goal of this thesis. The goal 

was develop a synthesis routine to design force generating planar four-bar linkages. In particular, 
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this problem focused on matching the resistance curve of the linkage to the human strength curve 

for the bicep-curl exercise. After the synthesis routine was applied to this more complete version 

of the bicep-curl problem, an acceptable solution to the problem was found. The values for all of 

the design variables for the final optimized mechanism are given in Table 5-1. This linkage had 

an associated objective function value of 160,100. This value is in and of itself, meaningless, 

since it is by nature a relative number. The value is only recorded for possible future 

comparisons with other linkages and objective functions. Please note that this solution is an 

optimized solution, that is the best solution found from an optimization routine, and not 

necessarily the optimal solution, that is the best solution possible. 

Table 5-1 Final design variable values. In units of feet, radians, and slugs. 

Variable R1 + R2 R3 R4 R5 R6 R7 β γ M 
Value 1.4 0.636 1.215 0.856 0.363 0.993 1.806 -1.307 14.26 

 

Drawings of the linkage in its starting and final positions are shown in Figure 5-2 and 

Figure 5-3 respectively. The circle at the end of the one link represents the resistance mass and, 

as such, it clarifies which link is the output and which is the user input links. While the peak 

resistance force is 91 pounds, the resistance mass weights 459 pounds. This weight to peak 

resistance force advantage is not desirable from a practical viewpoint. Just looking at the 

resistance mass can be misleading since the links themselves provide an additional 8.0 pounds of 

the resistance mass, so that the overall there is 467 pounds of mass in the linkage to produce the 

91 pounds of peak resistance force. 
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Figure 5-2 Final multiple-mass design drawn in the initial position. 

 

Figure 5-3 Final multiple-mass design drawn in the final position. 
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The resistance force curve for the final solution is plotted with the human strength curve 

in Figure 5-4. One quickly notices that the resistance force curve in this problem is nearly as 

good of a match to the strength curve as the single-mass system curve is. This result is 

unexpected. The multiple-mass system has the same number of design variables as the single-

mass system, but multiple-mass system has more force generating components (link mass and 

inertia) that the linkage design must handle. This arrangement creates an expectation that one 

may not be able to control the performance of the design of the multiple-mass system to the 

degree possible with the single-mass system. The performance of the synthesis routine in dealing 

with the multiple-mass system is, thus, satisfactory. 
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Figure 5-4 Resistance curve for the final multiple-mass solution. 

 From examining the graph in Figure 5-4, a few interesting observations can be made. The 

resistance curve in the graph does not match the strength curve well in the rise section. This 

mismatch can also be seen in the single mass system resistance curve, Figure 4-5. In both cases; 

the linkage is unable to produce a concave rise in the resistance curve that would be able to 

match the strength curve in this region. However, both linkages have little difficulty in matching 

the roughly linear fall in the strength curve. One would logically expect to find a linkage with the 
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opposite trait, being able to match the rise, but not the fall. The optimization routine did not 

produce such a design with a similar objective function value.  

 In the region around the peak resistance force, the resistance force curve is greater than 

the strength curve. This difference will cause a problem when the exercise is performed. The 

user will not be able to overcome the resistance in this region and the exercise motion will stall. 

To correct for this problem, the mass can be reduced. The resistance mass was reduced by 6%, 

and the new resistance curve was plotted as shown in Figure 5-5. While this new curve solves the 

problem of the excessive resistance in the peak region, the resistance curve does not match the 

rest of the strength curve as well. 
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Figure 5-5 Resistance curve for the mass adjusted case. 

 There are four components involved in producing the resistance force; the static and 

dynamic effects of the resistance mass, and the static and dynamic effects of the links. In Section 

4.3, a comparison of the static and dynamic effects of the resistance mass showed that the 

dynamic effects should be included for the problem of the bicep-curl exercise. How much impact 

do the links have on the solution? To answer this question, the resistance curves produced by the 

design linkage when only resistance mass effects are considered, and when only the static effects 
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of the links are considered were plotted with the resistance curve for when the all of the effects 

are included. This comparison is shown in Figure 5-6. The figure shows that the links do have a 

significant effect on the resistance curve. While most of the effect is due to the static link effects, 

the dynamic effects have an impact similar to what was seen in the single mass system.  
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Figure 5-6 The effect of the links on the resistance curve. 

The angular jerk of the mechanism is an important property from the standpoint of user 

safety and comfort. If the jerk is too high, the exercise motion will be uncomfortable for the user. 

The angular jerk of the coupler and output links are shown in Figure 5-7. The jerk curve of the 

output link is small in magnitude for most of the curve. Near the end points the jerk is higher 

since the end points experience the user-applied accelerations. 
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Figure 5-7 Angular jerk for the coupler and output links. 

Due to uncertainty in the exact manner in which the weightlifting machine will be used, 

the linkage needs to be analyzed for its performance in a range of situations. In Figure 4-10, the 

resistance curve for the linkage given a ±50% variation in the user input velocity from the 

nominal design velocity. The general trend is as the velocity increases the resistance force 

decreases. This decrease is caused by the acceleration increasing in magnitude, but the 

acceleration is negative, thus reducing the resistance force. The starting point experiences the 

greatest change. The system must accelerate at a greater to reach the higher velocities since the 

acceleration region is fixed. This assumption in the velocity profile is clearly not accurate over 

the span of velocities. Therefore, the end point forces should not be taken as exact. This graph 

also illustrates the importance of dynamics when calculating the resistance force, because the 
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change in the resistance curve in Figure 5-8 is due solely to the dynamics of the system, since 

gravity and the masses are not changing. 
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Figure 5-8 Resistance force as a function of user input velocity. 

Two other usage considerations that exist are possible variations in the user input link length 

and variations in the magnitude of the resistance mass. The need for a longer or shorter input arm 

length is due to the natural differences in user body size. A higher or lower resistance force than 

was used in the initial design is expected since the magnitude of the strength of each user is 

different. The affects of changing mass and user input link length are shown in Figure 5-9. The 

variation in resistance force is linear with respect to resistance mass. As expected, the resistance 

force is almost linear with varying user input link lengths. A slight nonlinearity exists because 

the mass of the user input link varies with its length, but the resistance generated by this mass is 

quite small. 
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Figure 5-9 Resistance force as a function of user input length (left) and of the load mass. 

The last aspect of the linkage that should be examined is how tolerant the linkage is to 

changes in the mass of the links. This property is important because the link mass coefficients, ai, 

was assumed to be 0.03 slugs/ft, but there is a great deal of uncertainty in this value. The 

resistance force curve was plotted for a range of values for the ai’s, with all other factors held 

constant and is shown in Figure 5-10. While the resistance force increase with increasing ai’s, the 

impact on the shape of the resistance curve is minimal. This result means that the mechanism can 

tolerate a range of linkage designs without needing to be re-synthesized. 
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Figure 5-10 Effects of the link masses on the resistance-force curve. 

The sensitivity of the system to small changes in the design variables needs to be examined 

since there is always uncertainty in the dimensions of any real object. A low sensitivity to 

changes in the design variables is desired. A design that exhibits this behavior is said to be 

robust. Each of the design variables in this problem were subjected to a ±1% change in value. 

The resistance curves for these changes were plotted in Figure 5-11 for R3 and R4, Figure 5-12 

for R5 and R6, Figure 5-13 for β and γ, and Figure 5-14 for R7. As these figures show, the design 

is generally insensitive with the exception of the link changes that cause the acceleration at the 

starting position to increase or decrease. These acceleration changes cause the resistance force to 

change significantly at this point. Only the cases where the force increases is there a concern, 

since the increase takes the resistance force far above the strength curve. 
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Figure 5-11 Sensitivity plots for R3 (left) and R4 (right). 
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Figure 5-12 Sensitivity plots for R5 (left) and R6 (right). 
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Figure 5-13 Sensitivity plots for weight offset angle (left) and user input angle (right) 
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Figure 5-14 Sensitivity plot for the ground link (R7). 
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Chapter 6 Conclusions 

Section 6.1 Summary 

As demonstrated in Chapter 1, there exists a need to develop a linkage-synthesis routine 

that incorporates the dynamics of the linkage and provides the designer with the ability to handle 

large numbers of design points. In addition, this need was shown to best be satisfied by a routine 

that incorporates numerical optimization. The shortcomings of existing tools were discussed. 

Furthermore, an example of an application in need of such a design tool, a bicep-curl 

weightlifting machine, was presented. 

The components of the synthesis routine, the kinematics, the dynamics and the numerical 

optimization were discussed in detail in Chapter 2 and Chapter 3. The equations and routines 

developed from these components were incorporated into a number of MatlabTM program files, 

as discussed in Section 4.2.  

The optimized synthesis process did produce two useable linkages that improve the 

performance of the standard bicep-curl exercise while meeting a range of practical 

considerations. The two linkages were the solutions to two different definitions of the bicep-curl 

problem. The first linkage was for a simple model that did not assign any mass properties to the 

mechanism’s links. Details on this example problem are given in Chapter 4. The second linkage 

was designed using a model where the links were assumed to have point masses located at the 

ends of the links and that these masses were linearly dependent on the length of the links. Details 

on this example problem are given in Chapter 5. As these example problems illustrate, the 

development of the synthesis routine was successful. Modifications can easily be made to the 
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code included in this thesis to allow for the creation of solution to other application problems. 

The extent of the modifications will depend on how much the application varies from the 

example given in this thesis, but the general framework of this synthesis method allows for a 

wide range of problems to be solved. This general applicability is the strength and purpose 

behind the development of this tool. 

Section 6.2 Future Work 

While this thesis presents a meaningful step forward in the field of linkage synthesis, more 

can be done. The most obvious step is to include the properties of the links. The difficulty here is 

determining what those properties should be. Clearly, the properties would need to be defined as 

a function of the link length, but even a rough approximation of these functions would require 

the inclusion of other areas of machine design, since details regarding the design of the links 

must be determined. Designing the links would require a stress analysis that dictates the cross 

section and thickness of the links, which affects the mass and inertia of the links, which then 

influences the forces experienced by the links and the overall force curve. Using links with more 

realistic properties would also invalidate the rigid link assumption. The integration of these 

design areas would result in a total machine synthesis method that would provide a powerful, but 

complex, design tool for solving many problems. 
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Appendix A: Matlab Programs 
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% Hook and Jeeves optimization code
% Brian Rundgren - Thesis Work - Fall 2001
clear all;
close all;

% Define initial parameters
param = [0 0 0 0 0 0 0 0 0];
newparam = zeros(size(param));
q = length(param);
% Initial drop into design space (the first guess for mechanism dimensions)
r1 = 0.7; % r1 and
r2 = 0.7; % r2 make up the user input link
r3 = 0.36; % 4-Bar input link
r4 = 6.20; % Coupler link
r5 = 5.60; % Output link
r6 = 8.40; % Weight arm length
r7 = 1.00; % Ground link
mass = 2.00; % Resistance mass
beta = 1.95; % Weight offset angle
gama = 0.98; % Input offset angle

% Initalize the variable param.
param(1) = r1+r2;
param(2) = r7;
param(3) = r3;
param(4) = r4;
param(5) = r5;
param(6) = r6;
param(7) = mass;
param(8) = beta;
param(9) = gama;

% Set step size (these are the starting delta link lengths)
% The first step size = 0 since param 1 is fixed by user
% for this particular application.
StepSize = [0 0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.01];
% Compute current cost function
% and check parameters
CurrentCost = OF2(param);
% Maybe not the best programming practice, but this gives a starting values
for comparison
OldCost = 1000000;
CostDifference = 1;
StepCheck = [0 0.01 0.01 0.01 0.01 0.01 0.001 0.001 0.001];
iteration=0

% The comparison below uses the or command to check to see if the
% cost is still improving and, at the same time, checks to see of the
% if all of the steps sizes are below their preset minimum

while abs(OldCost-CurrentCost) > CostDifference | sum(StepCheck<StepSize)>0

newparam=param;

OldCost = CurrentCost;

% Exploratory Search, the steps have a magnitude (stepsize) and a + or - sense
% determined by the direction vector. During the exploratory loop below, the
direction may also be
% set to zero to indicate that neither a plus or a minus step in that
direction lowered the cost.

Direction = [0 1 1 1 1 1 1 1 1];
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% Step in each direction and check for reduction in objective function (OF2).
% Direction(j)= 0 if both + and - directions fail to reduce objective function
value
for j=1:q
newparam(j) = param(j)+StepSize(j)*Direction(j);
NewCost = OF2(newparam);

if NewCost > CurrentCost
Direction(j) = -Direction(j);
newparam(j) = param(j)+StepSize(j)*Direction(j);
NewCost = OF2(newparam);
if NewCost > CurrentCost

Direction(j) = 0;
StepSize(j) = StepSize(j)/2;

end
end

end

% End of the Exploratory Search
move = StepSize

% Start the Pattern Move
newparam = param + StepSize.*Direction;
newcost = OF2(newparam);

while newcost < CurrentCost
param = param + move.*Direction;
CurrentCost = newcost;
move = move*1.25
newparam = param + move.*Direction
param
newcost = OF2(newparam);

end

iteration=iteration+1;
end

% Export linkage dimensions and call plotting routine.
param
PLT(param)
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The following program is the first subroutine used in example problem number 1 called OF2.m. 
The file must be saved with this name or the main program and sub-routine must be edited for 
the new name.  
 
 
function OFtotal = OF2(param)
% Brian Rundgren - Thesis Work - Fall 2001
% Kinematic and Dynamic Analysis of Four-bar Linkage
% With Objective Function Calculation.

% Input design values.
theta2 = [-1.571 -1.46 -1.35 -1.222 -1.0472 -0.9599 -0.7854 -0.6981 -0.524 -
0.436 -0.3491 -0.2618 -0.175 -0.0873 0 0.175 0.524 0.873];
Fdesired = [65 66 67 70 80 85 88 89 90 91 90 89.5 88 86 84 80 64 46];

value = 1.9; % Steady state angular velociy.

% Initalize matrices
theta2dot = [0 value value value value value value value value value value
value value value value value value 0];
% The following is the user input angular acceleration. Calculated based on
% the spacing between the first two design points and the steady state
velocity.
theta2ddot = [value^2/0.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -value^2/0.22];
theta4dot = zeros(size(theta2dot));
theta5dot = zeros(size(theta2dot));
theta4ddot = zeros(size(theta2dot));
theta5ddot = zeros(size(theta2dot));
F = zeros(size(theta2dot));
TA = zeros(size(theta2dot));
OFi = 0;
indx = 1;
q = 18;

% Position Analysis of Fourbar component.
for indx = 1:q

theta3(indx) = theta2(indx) + param(9);
C = param(4)^2-param(2)^2-param(3)^2-param(5)^2-

2*param(2)*param(3)*cos(theta3(indx))+2*param(2)*param(5)+2*param(3)*param(5)
*cos(theta3(indx));

B = 4*param(3)*param(5)*sin(theta3(indx));
A = param(4)^2-param(2)^2-param(3)^2-param(5)^2-

2*param(2)*param(3)*cos(theta3(indx))-2*param(2)*param(5)-
2*param(3)*param(5)*cos(theta3(indx));

% Solve for theta5.
t1 = (0-B+(B^2-4*A*C)^(0.5))/(2*A);
theta5(indx) = 2*atan(t1);

% Imaginary solution penalty (Checks closure).
if (abs(imag(theta5(indx))))>0

OFi = OFi + 100000*abs(imag(theta5(indx)))^8+10^30
end

% Solve theta4.
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theta4(indx) = asin((param(3)*sin(theta3(indx))-
param(5)*sin(theta5(indx)))/param(4));

% Imaginary solution penalty (Checks closure).
if (abs(imag(theta4(indx))))>0

OFi = OFi + 100000*abs(imag(theta4(indx)))^8+10^30
end

end

% Velocity Analysis.

indx = 1
for indx = 1:q

A = param(4)*sin(theta4(indx));
B = param(5)*sin(theta5(indx));
C = param(3)*theta2dot(indx)*sin(theta3(indx));
D = param(4)*cos(theta4(indx));
E = -param(5)*cos(theta5(indx));
F = -param(3)*theta2dot(indx)*cos(theta3(indx));
num4d = ((F*B)-(E*C));
dend = ((D*B)-(E*A));
num5d = ((D*C)-(F*A));
theta4dot(indx) = num4d/dend;
theta5dot(indx) = num5d/dend;

end

% Acceleration Analysis.
indx = 1;
for indx = 1:q

A = param(4)*sin(theta4(indx));
B = param(5)*sin(theta5(indx));
CP =

param(3)*(theta2dot(indx)^2)*cos(theta3(indx))+param(3)*sin(theta3(indx))*the
ta2ddot(indx)+param(4)*(theta4dot(indx)^2)*cos(theta4(indx))-
param(5)*(theta5dot(indx)^2)*cos(theta5(indx));

D = param(4)*cos(theta4(indx));
E = -param(5)*cos(theta5(indx));
FP = param(3)*(theta2dot(indx)^2)*sin(theta3(indx))-

param(3)*(theta2ddot(indx))*cos(theta3(indx))+param(4)*(theta4dot(indx)^2)*si
n(theta4(indx))-param(5)*(theta5dot(indx)^2)*sin(theta5(indx));

dendd = (D*B-E*A);
num4dd = (FP*B)-(E*CP);
num5dd = (D*CP-FP*A);
theta4ddot(indx) = num4dd/dendd;
theta5ddot(indx) = num5dd/dendd;

end

% Dynamic Analysis.

indx = 1;
for indx = 1:q
num1 =
param(7).*(param(6).^2.*theta5ddot(indx)+32.174.*param(6).*cos(theta5(indx)+p
aram(8)));
den1 = param(5).*sin(theta5(indx)).*cos(theta4(indx))-
param(5).*sin(theta4(indx))*cos(theta5(indx));
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F54(indx) = num1./den1;
F(indx) =
(F54(indx)*(cos(theta4(indx)).*param(3).*sin(theta2(indx)+param(9))-
sin(theta4(indx)).*param(3).*cos(theta2(indx)+param(9))))/param(1);
end

% Calculate Transmission Angle.

indx = 1;
for indx = 1:q

Z = param(2)^2+param(3)^2-2*param(2)*param(3)*cos(theta2(indx)+param(9));
TA(indx) = acos((Z-param(4)^2-param(5)^2)/(-2*param(4)*param(5)));

end

% Find link length ratio penalty.
indx = 1;
Rmax = 0; Rmin = 1000;
for indx = 1:6
Rmin = min(abs(param(indx)), Rmin);
Rmax = max(abs(param(indx)), Rmax);
end
if Rmax/Rmin >= 15

OFb = 400 + (Rmax/Rmin)^2;
else

OFb = 0;
end

% Find penalty for negative link length.
OFc = 0;
indx = 1;
for indx = 1:6

if param(indx)<0
OFc = OFc + (100-param(indx))^8;

end
end

% Find penalty for force difference. (Checks quality of fit).
OFa = 0;
diff = 0;
indx = 1;
for indx = 1:q

diff = 3*abs(100*(Fdesired(indx)-F(indx))/Fdesired(indx))^4+diff;
end
OFa = diff;

% Negative force penalty.
indx = 1;
for indx = 1:q

if F(indx)<0
OFa = OFa + abs(F(indx))^4;

end
end

% Minimize the Magnitude of the Weight Relative to Max Force.
OFm = 0;
OFm = 1000^(param(7)*32.174*10000/max(Fdesired));
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% Sum Penalities and Export Total.
OFtotal = OFa + OFb + OFc + OFi
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The following program is the second subroutine used in the first example problem called PLT.m. 
The file must be saved with this name or the main program and subroutine must be edited for the 
new name. This subroutine contains all of the code from the first subroutine (OF2) plus code to 
calculate additional properties, to produce graphs and to output numerical data of interest. 
 
function OFtotal = PLT(param)
% Brian Rundgren - Thesis Work - Fall 2001
% Kinematic and Dynamic Analysis of Four-bar Linkage
% With Objective Function Calculation and Plots Results.

% Input design values
theta2 = [-1.571 -1.46 -1.35 -1.222 -1.0472 -0.9599 -0.7854 -0.6981 -0.524 -
0.436 -0.3491 -0.2618 -0.175 -0.0873 0 0.175 0.524 0.873];
Fdesired = [65 66 67 70 80 85 88 89 90 91 90 89.5 88 86 84 80 64 46];

value = 1.9; % Steady state angular velocity

% Initalize matrices
theta2dot = [0 value value value value value value value value value value
value value value value value value 0];
% The following is the user input angular acceleration. Calculated based on
% the spacing between the first two design points and the steady state
velocity.
theta2ddot = [value^2/0.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -value^2/0.22];
theta4ddot = zeros(size(theta2dot));
theta5ddot = zeros(size(theta2dot));
theta2tdot = zeros(size(theta2dot));
theta4tdot = zeros(size(theta2dot));
theta5tdot = zeros(size(theta2dot));
F = zeros(size(theta2dot));
TA = zeros(size(theta2dot));
OFi = 0;
indx = 1;
q = 18;

% Position Analysis of Fourbar component.
for indx = 1:q

theta3(indx) = theta2(indx) + param(9);
C = param(4)^2-param(2)^2-param(3)^2-param(5)^2-

2*param(2)*param(3)*cos(theta3(indx))+2*param(2)*param(5)+2*param(3)*param(5)
*cos(theta3(indx));

B = 4*param(3)*param(5)*sin(theta3(indx));
A = param(4)^2-param(2)^2-param(3)^2-param(5)^2-

2*param(2)*param(3)*cos(theta3(indx))-2*param(2)*param(5)-
2*param(3)*param(5)*cos(theta3(indx));

% Solve for theta5.
t1 = (0-B+(B^2-4*A*C)^(0.5))/(2*A);
theta5(indx) = 2*atan(t1);

% Imaginary solution penalty (Checks closure).
if (abs(imag(theta5(indx))))>0

OFi = OFi + 100000*abs(imag(theta5(indx)))^8+10^30
end
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% Solve theta4.
theta4(indx) = asin((param(3)*sin(theta3(indx))-

param(5)*sin(theta5(indx)))/param(4));

% Imaginary solution penalty (Checks closure).
if (abs(imag(theta4(indx))))>0

OFi = OFi + 100000*abs(imag(theta4(indx)))^8+10^30
end
devFvert(indx) = abs(pi-(theta5(indx)+param(8)));

end

% Velocity Analysis.

indx = 1
for indx = 1:q

A = param(4)*sin(theta4(indx));
B = param(5)*sin(theta5(indx));
C = param(3)*theta2dot(indx)*sin(theta3(indx));
D = param(4)*cos(theta4(indx));
E = -param(5)*cos(theta5(indx));
F = -param(3)*theta2dot(indx)*cos(theta3(indx));
num4d = ((F*B)-(E*C));
dend = ((D*B)-(E*A));
num5d = ((D*C)-(F*A));
theta4dot(indx) = num4d/dend;
theta5dot(indx) = num5d/dend;

end

% Acceleration Analysis.
indx = 1;
for indx = 1:q

A = param(4)*sin(theta4(indx));
B = param(5)*sin(theta5(indx));
CP =

param(3)*(theta2dot(indx)^2)*cos(theta3(indx))+param(3)*sin(theta3(indx))*the
ta2ddot(indx)+param(4)*(theta4dot(indx)^2)*cos(theta4(indx))-
param(5)*(theta5dot(indx)^2)*cos(theta5(indx));

D = param(4)*cos(theta4(indx));
E = -param(5)*cos(theta5(indx));
FP = param(3)*(theta2dot(indx)^2)*sin(theta3(indx))-

param(3)*(theta2ddot(indx))*cos(theta3(indx))+param(4)*(theta4dot(indx)^2)*si
n(theta4(indx))-param(5)*(theta5dot(indx)^2)*sin(theta5(indx));

dendd = (D*B-E*A);
num4dd = (FP*B)-(E*CP);
num5dd = (D*CP-FP*A);
theta4ddot(indx) = num4dd/dendd;
theta5ddot(indx) = num5dd/dendd;

end

% Dynamic Analysis.

indx = 1;
for indx = 1:q
num1 =
param(7).*(param(6).^2.*theta5ddot(indx)+32.174.*param(6).*cos(theta5(indx)+p
aram(8)));
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den1 = param(5).*sin(theta5(indx)).*cos(theta4(indx))-
param(5).*sin(theta4(indx))*cos(theta5(indx));
F54(indx) = num1./den1;
F(indx) =
(F54(indx)*(cos(theta4(indx)).*param(3).*sin(theta2(indx)+param(9))-
sin(theta4(indx)).*param(3).*cos(theta2(indx)+param(9))))/param(1);
end

% Jerk Analysis
indx = 1;
for indx = 1:q

theta4tdot(indx) =
((sin(theta5(indx))/cos(theta5(indx)))*(3*param(5)*theta5dot(indx)*theta5ddot
(indx)*sin(theta5(indx)) ...

+param(5)*theta5dot(indx)^3*sin(theta5(indx))+3*param(4)*theta4dot(indx)*thet
a4ddot(indx)*sin(theta4(indx))+param(4)*theta4dot(indx)^3*sin(theta4(indx))
...

+param(3)*theta2tdot(indx)*cos(theta3(indx))-
3*param(3)*theta2dot(indx)*theta2ddot(indx)*sin(theta3(indx))-
param(3)*theta2dot(indx)^3*cos(theta3(indx))) ...

+3*param(5)*theta5dot(indx)*theta5ddot(indx)*cos(theta5(indx))+param(5)*theta
5dot(indx)^3*cos(theta5(indx))+param(4)*theta4dot(indx)^3*cos(theta4(indx))
...

+3*param(4)*theta4dot(indx)*theta4ddot(indx)*cos(theta4(indx))-
param(3)*theta2tdot(indx)*sin(theta3(indx))-
3*param(3)*theta2dot(indx)*theta2ddot(indx)*cos(theta3(indx)) ...

+param(3)*theta2dot(indx)^3*sin(theta3(indx)))/(-
param(4)*sin(theta4(indx))+param(4)*cos(theta4(indx))*sin(theta5(indx))/(cos(
theta5(indx))));

theta5tdot(indx) =
(3*param(5)*theta5dot(indx)*theta5ddot(indx)*sin(theta5(indx)) ...

+param(5)*theta5dot(indx)^3*sin(theta5(indx))+3*param(4)*theta4dot(indx)*thet
a4ddot(indx)*sin(theta4(indx))+param(4)*theta4dot(indx)^3*sin(theta4(indx))-
param(4)*theta4tdot(indx)*cos(theta4(indx)) ...

+param(3)*theta2tdot(indx)*cos(theta3(indx))-
3*param(3)*theta2dot(indx)*theta2ddot(indx)*sin(theta3(indx))-
param(3)*theta2dot(indx)^3*cos(theta3(indx)))/(param(5)*cos(theta5(indx)));
end

% Calculate Transmission Angle

indx = 1;
for indx = 1:q

Z = param(2)^2+param(3)^2-2*param(2)*param(3)*cos(theta2(indx)+param(9));
TA(indx) = acos((Z-param(4)^2-param(5)^2)/(-2*param(4)*param(5)));

end

% Plot results
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figure(1)
plot(theta2*180/pi, theta4ddot, '-o', theta2*180/pi, theta5ddot, ':d')
xlabel('User Input Angle (degrees)')
ylabel('Angular Acceleration (radians/s^2)')
legend('Alpha 4', 'Alpha 5',0)
grid on

figure(2)
plot(theta2*180/pi, Fdesired, '-^',theta2*180/pi, F, ':o')
xlabel('User Input Angle (degrees)')
ylabel('Resistance Force (pounds)')
legend('Desired', 'Actual',0)
grid on
F
F54
figure(3)
plot(theta2*180/pi, theta4*180/pi, ':+',theta2*180/pi, theta5*180/pi, ':o')
xlabel('User Input Angle (degrees)')
ylabel('Theta 4,5 (degrees)')
legend('Theta 4', 'Theta 5 ', 0)
grid on

figure(4)
plot(theta2*180/pi, TA*180/pi,'-o')
xlabel('User Input Angle (degrees)')
ylabel('Tansmission Angle (degrees)')
grid on

figure(5)
plot(theta2*180/pi, theta4dot, ':+',theta2*180/pi, theta5dot, ':o')
xlabel('User Input Angle (degrees)')
ylabel('Omega 4,5 (radians/second)')
legend('Omega 4', 'Omega 5 ', 0)

figure(6)
plot(theta2*180/pi, devFvert*180/pi, ':o')
xlabel('User Input Angle (degrees)')
ylabel('Deviation From Vertical Normal (degrees)')
grid on

figure(7)
plot(theta2*180/pi, theta4tdot, '-d', theta2*180/pi, theta5tdot, '-o')
xlabel('User Input Angle (degrees)')
ylabel('Angular jerk (radians/s^3)')
legend('Coupler','Output',0)
grid on

% Find link length ratio penalty.
indx = 1;
Rmax = 0; Rmin = 1000;
for indx = 1:6
Rmin = min(abs(param(indx)), Rmin);
Rmax = max(abs(param(indx)), Rmax);
end
if Rmax/Rmin >= 15

OFb = 400 + (Rmax/Rmin)^2;
else
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OFb = 0;
end

% Find penalty for negative link length
OFc = 0;
indx = 1;
for indx = 1:6

if param(indx)<0
OFc = OFc + (100-param(indx))^8;

end
end

% Find penalty for force difference. (Checks quality of fit).
OFa = 0;
diff = 0;
indx = 1;
for indx = 1:q

diff = 3*abs(100*(Fdesired(indx)-F(indx))/Fdesired(indx))^4+diff;
end
OFa = diff;

% Negative force penalty
indx = 1;
for indx = 1:q

if F(indx)<0
OFa = OFa + abs(F(indx))^4;

end
end

% Minimize the Magnitude of the Weight Relative to Max Force.
OFm = 0;
OFm = 1000^(param(7)*32.174*10000/max(Fdesired));

% Sum Penalities and Export Total.
OFa
OFb
OFc
OFtotal = OFa + OFb + OFc + OFi
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The following program was used in solving the second example problem. The program, called 
OF4.m is a replacement for the subroutine OF2.m used with the first example problem. The main 
program was varied only with respect to changing the subroutine calls from OF2 to OF4 and 
PLT to PLT3 (see next program). Since these changes are minor, the main program has not been 
included with these changes. 
 
function OFtotal = OF4(param)
% Brian Rundgren - Thesis Work - Fall 2001
% Kinematic and Dynamic Analysis of Four-bar Linkage
% With Objective Function Calculation and Plots Results.

% Input design values
theta2 = [-1.571 -1.46 -1.35 -1.222 -1.0472 -0.9599 -0.7854 -0.6981 -0.524 -
0.436 -0.3491 -0.2618 -0.175 -0.0873 0 0.175 0.524 0.873];
Fdesired = [65 66 67 70 80 85 88 89 90 91 90 89.5 88 86 84 80 64 46];
a = 1.0.*[0.03 0.03 0.03 0.03 0.03]; % Link mass coefficients.

value = 1.9; % Steady state angular velocity

% Initalize matrices
theta2dot = [0 value value value value value value value value value value
value value value value value value 0];
% The following is the user input angular acceleration. Calculated based on
% the spacing between the first two design points and the steady state
velocity.
theta2ddot = [value^2/0.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -value^2/0.22];
theta4ddot = zeros(size(theta2dot));
theta5ddot = zeros(size(theta2dot));
F = zeros(size(theta2dot));
TA = zeros(size(theta2dot));
OFi = 0;
indx = 1;
q = 18;

% Position Analysis of Fourbar component.

for indx = 1:q
theta3(indx) = theta2(indx) + param(9);
C = param(4)^2-param(2)^2-param(3)^2-param(5)^2-

2*param(2)*param(3)*cos(theta3(indx))+2*param(2)*param(5)+2*param(3)*param(5)
*cos(theta3(indx));

B = 4*param(3)*param(5)*sin(theta3(indx));
A = param(4)^2-param(2)^2-param(3)^2-param(5)^2-

2*param(2)*param(3)*cos(theta3(indx))-2*param(2)*param(5)-
2*param(3)*param(5)*cos(theta3(indx));

% Solve for theta5.
t1 = (0-B+(B^2-4*A*C)^(0.5))/(2*A);
theta5(indx) = 2*atan(t1);

% Imaginary solution penalty (Checks closure).
if (abs(imag(theta5(indx))))>0

OFi = OFi + 100000*abs(imag(theta5(indx)))^8+10^40
end
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% Solve theta4.
theta4(indx) = asin((param(3)*sin(theta3(indx))-

param(5)*sin(theta5(indx)))/param(4));

% Imaginary solution penalty (Checks closure).
if (abs(imag(theta4(indx))))>0

OFi = OFi + 100000*abs(imag(theta4(indx)))^8+10^40
end
devFvert(indx) = abs(pi-(theta5(indx)+param(8)));

end

% Velocity Analysis.

indx = 1
for indx = 1:q

A = param(4)*sin(theta4(indx));
B = param(5)*sin(theta5(indx));
C = param(3)*theta2dot(indx)*sin(theta3(indx));
D = param(4)*cos(theta4(indx));
E = -param(5)*cos(theta5(indx));
F = -param(3)*theta2dot(indx)*cos(theta3(indx));
num4d = ((F*B)-(E*C));
dend = ((D*B)-(E*A));
num5d = ((D*C)-(F*A));
theta4dot(indx) = num4d/dend;
theta5dot(indx) = num5d/dend;

end

% Acceleration Analysis.

indx = 1;
for indx = 1:q

A = param(4)*sin(theta4(indx));
B = param(5)*sin(theta5(indx));
CP =

param(3)*(theta2dot(indx)^2)*cos(theta3(indx))+param(3)*sin(theta3(indx))*the
ta2ddot(indx)+param(4)*(theta4dot(indx)^2)*cos(theta4(indx))-
param(5)*(theta5dot(indx)^2)*cos(theta5(indx));

D = param(4)*cos(theta4(indx));
E = -param(5)*cos(theta5(indx));
FP = param(3)*(theta2dot(indx)^2)*sin(theta3(indx))-

param(3)*(theta2ddot(indx))*cos(theta3(indx))+param(4)*(theta4dot(indx)^2)*si
n(theta4(indx))-param(5)*(theta5dot(indx)^2)*sin(theta5(indx));

dendd = (D*B-E*A);
num4dd = (FP*B)-(E*CP);
num5dd = (D*CP-FP*A);
theta4ddot(indx) = num4dd/dendd;
theta5ddot(indx) = num5dd/dendd;

end

% Dynamic Analysis.

indx = 1;
for indx = 1:q

ag4x = -theta4dot(indx)^2*param(4)*cos(theta4(indx))/2-
theta4ddot(indx)*param(4)*sin(theta4(indx))/2-
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theta5dot(indx)^2*param(5)*cos(theta5(indx))-
theta5ddot(indx)*param(5)*sin(theta5(indx));
ag4y = -theta4dot(indx)^2*param(4)*sin(theta4(indx))/2-
theta4ddot(indx)*param(4)*cos(theta4(indx))/2-
theta5dot(indx)^2*param(5)*sin(theta5(indx))-
theta5ddot(indx)*param(5)*cos(theta5(indx));
ag5x = -theta5dot(indx)^2*param(5)*cos(theta5(indx))/2-
theta5ddot(indx)*param(5)*sin(theta5(indx))/2;
ag5y = -
theta5dot(indx)^2*param(5)*sin(theta5(indx))/2+theta5ddot(indx)*param(5)*cos(
theta5(indx))/2;
ag3x = -theta2dot(indx)^2*param(3)*cos(theta3(indx))/2-
theta2ddot(indx)*param(3)*sin(theta3(indx))/2;
ag3y = -
theta2dot(indx)^2*param(3)*sin(theta3(indx))/2+theta2ddot(indx)*param(3)*cos(
theta3(indx))/2;
agmx = -theta5dot(indx)^2*param(6)*cos(theta5(indx)+param(8))-
theta5ddot(indx)*param(6)*sin(theta5(indx)+param(8));
agmy = -
theta5dot(indx)^2*param(6)*sin(theta5(indx)+param(8))+theta5ddot(indx)*param(
6)*cos(theta5(indx)+param(8));
R63 = [param(3)*cos(theta3(indx))/2 param(3)*sin(theta3(indx))/2];
R44 = [param(4)*cos(theta4(indx))/2 param(4)*sin(theta4(indx))/2];
R55 = [param(5)*cos(theta5(indx))/2 param(5)*sin(theta5(indx))/2];
m3 = 2*a(3)*param(3);
m4 = 2*a(4)*param(4);
m5 = 2*a(5)*param(5);
I3 = m3*param(3)^2/4;
I4 = m4*param(4)^2/4;
I5 = m5*param(5)^2/2;
I6 = param(7)*param(6)^2
Tw = -param(7)*32.174*cos(theta5(indx)+param(8))*param(6)-
theta5ddot(indx)*param(6)^2*param(7);

uns = [1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0

-1 0 0 0 -1 0 0 0 0
0 -1 0 0 0 -1 0 0 0
R63(2) -R63(1) -R63(2) R63(1) 0 0 0 0 1
0 0 0 0 2*R55(2) -2*R55(1) 0 0 0
-R44(2) R44(1) 0 0 R44(2) -R44(1) 0 0 0];

kns = [m3*ag3x
m3*ag3y+m3*32.174
m5*ag5x+param(7)*agmx
m5*ag5y+m5*32.174+param(7)*32.174+param(7)*agmy
m4*ag4x
m4*ag4y+m4*32.174
I3*theta2ddot(indx)

(I5+I6)*theta5ddot(indx)+m5*32.174*param(5)*cos(theta5(indx))+param(7)*32.174
*param(6)*cos(theta5(indx)+param(8))

I4*theta4ddot(indx)];

forces = inv(uns)*kns;
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F54(indx) = forces(2)/sin(theta4(indx));
F(indx) =

(param(1)^3/2*a(1)+param(1)^3*a(2)/8+forces(9))/param(1)+a(1)*32.174*param(1)
*cos(theta2(indx))/2+a(1)*32.174*param(1)*cos(theta2(indx))/4;
end

% Calculate Transmission Angle

indx = 1;
for indx = 1:q

Z = param(2)^2+param(3)^2-2*param(2)*param(3)*cos(theta2(indx)+param(9));
TA(indx) = acos((Z-param(4)^2-param(5)^2)/(-2*param(4)*param(5)));

end

% Find link length ratio penalty.
indx = 1;
Rmax = 0; Rmin = 1000;
for indx = 1:5
Rmin = min(abs(param(indx)), Rmin);
Rmax = max(abs(param(indx)), Rmax);
end
if Rmax/Rmin >= 4

OFb = 400^2 + (Rmax/Rmin)^3;
else

OFb = 0;
end

% Find penalty for negative link length
OFc = 0;
indx = 1;
for indx = 1:6

if param(indx)<0
OFc = OFc + (100-param(indx))^8;

end
end

% Find penalty for force difference. (Checks quality of fit).
OFa = 0;
diff = 0;
indx = 1;
for indx = 1:q

diff = 3*abs(100*(Fdesired(indx)-F(indx))/Fdesired(indx))^4+diff;
end
OFa = diff;

% Negative force penalty
indx = 1;
for indx = 1:q

if F(indx)<0
OFa = OFa + abs(F(indx))^4;

end
end

% Minimize the Magnitude of the Weight Relative to Max Force.
OFm = 0;
OFm = 1000^(param(7)*32.174*10000/max(Fdesired));



 93

% Sum Penalities and Export Total.
OFtotal = OFa + OFb + OFc + OFi
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The following program is the subroutine PLT3.m, and is a replacement for the subroutine PLT.m 
for when the second example problem was being solved. PLT3 has the same relationship with 
OF4 as PLT has with OF2. 
 
function OFtotal = PLT3(param)
% Brian Rundgren - Thesis Work - Fall 2001
% Kinematic and Dynamic Analysis of Four-bar Linkage
% With Objective Function Calculation and Plots Results.

% Input design values
theta2 = [-1.571 -1.46 -1.35 -1.222 -1.0472 -0.9599 -0.7854 -0.6981 -0.524 -
0.436 -0.3491 -0.2618 -0.175 -0.0873 0 0.175 0.524 0.873];
Fdesired = [65 66 67 70 80 85 88 89 90 91 90 89.5 88 86 84 80 64 46];
a = (3/3).*[0.03 0.03 0.03 0.03 0.03]; % Link mass coefficients.

value = 1.9; % Steady state angular velocity

% Initalize matrices
theta2dot = [0 value value value value value value value value value value
value value value value value value 0];
% The following is the user input angular acceleration. Calculated based on
% the spacing between the first two design points and the steady state
velocity.
theta2ddot = [value^2/0.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -value^2/0.22];
theta4ddot = zeros(size(theta2dot));
theta5ddot = zeros(size(theta2dot));
theta2tdot = zeros(size(theta2dot));
theta4tdot = zeros(size(theta2dot));
theta5tdot = zeros(size(theta2dot));
F = zeros(size(theta2dot));
TA = zeros(size(theta2dot));
OFi = 0;
indx = 1;
q = 18;

% Position Analysis of Fourbar component.
for indx = 1:q

theta3(indx) = theta2(indx) + param(9);
C = param(4)^2-param(2)^2-param(3)^2-param(5)^2-

2*param(2)*param(3)*cos(theta3(indx))+2*param(2)*param(5)+2*param(3)*param(5)
*cos(theta3(indx));

B = 4*param(3)*param(5)*sin(theta3(indx));
A = param(4)^2-param(2)^2-param(3)^2-param(5)^2-

2*param(2)*param(3)*cos(theta3(indx))-2*param(2)*param(5)-
2*param(3)*param(5)*cos(theta3(indx));

% Solve for theta5.
t1 = (0-B+(B^2-4*A*C)^(0.5))/(2*A);
theta5(indx) = 2*atan(t1);

% Imaginary solution penalty (Checks closure).
if (abs(imag(theta5(indx))))>0

OFi = OFi + 100000*abs(imag(theta5(indx)))^8+10^40
end
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% Solve theta4.
theta4(indx) = asin((param(3)*sin(theta3(indx))-

param(5)*sin(theta5(indx)))/param(4));

% Imaginary solution penalty (Checks closure).
if (abs(imag(theta4(indx))))>0

OFi = OFi + 100000*abs(imag(theta4(indx)))^8+10^40
end
devFvert(indx) = abs(pi-(theta5(indx)+param(8)));

end

% Velocity Analysis.

indx = 1
for indx = 1:q

A = param(4)*sin(theta4(indx));
B = param(5)*sin(theta5(indx));
C = param(3)*theta2dot(indx)*sin(theta3(indx));
D = param(4)*cos(theta4(indx));
E = -param(5)*cos(theta5(indx));
F = -param(3)*theta2dot(indx)*cos(theta3(indx));
num4d = ((F*B)-(E*C));
dend = ((D*B)-(E*A));
num5d = ((D*C)-(F*A));
theta4dot(indx) = num4d/dend;
theta5dot(indx) = num5d/dend;

end

% Acceleration Analysis.
indx = 1;
for indx = 1:q

A = param(4)*sin(theta4(indx));
B = param(5)*sin(theta5(indx));
CP =

param(3)*(theta2dot(indx)^2)*cos(theta3(indx))+param(3)*sin(theta3(indx))*the
ta2ddot(indx)+param(4)*(theta4dot(indx)^2)*cos(theta4(indx))-
param(5)*(theta5dot(indx)^2)*cos(theta5(indx));

D = param(4)*cos(theta4(indx));
E = -param(5)*cos(theta5(indx));
FP = param(3)*(theta2dot(indx)^2)*sin(theta3(indx))-

param(3)*(theta2ddot(indx))*cos(theta3(indx))+param(4)*(theta4dot(indx)^2)*si
n(theta4(indx))-param(5)*(theta5dot(indx)^2)*sin(theta5(indx));

dendd = (D*B-E*A);
num4dd = (FP*B)-(E*CP);
num5dd = (D*CP-FP*A);
theta4ddot(indx) = num4dd/dendd;
theta5ddot(indx) = num5dd/dendd;

end

% Jerk Analysis
indx = 1;
for indx = 1:q

theta4tdot(indx) =
((sin(theta5(indx))/cos(theta5(indx)))*(3*param(5)*theta5dot(indx)*theta5ddot
(indx)*sin(theta5(indx)) ...

+param(5)*theta5dot(indx)^3*sin(theta5(indx))+3*param(4)*theta4dot(indx)*thet
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a4ddot(indx)*sin(theta4(indx))+param(4)*theta4dot(indx)^3*sin(theta4(indx))
...

+param(3)*theta2tdot(indx)*cos(theta3(indx))-
3*param(3)*theta2dot(indx)*theta2ddot(indx)*sin(theta3(indx))-
param(3)*theta2dot(indx)^3*cos(theta3(indx))) ...

+3*param(5)*theta5dot(indx)*theta5ddot(indx)*cos(theta5(indx))+param(5)*theta
5dot(indx)^3*cos(theta5(indx))+param(4)*theta4dot(indx)^3*cos(theta4(indx))
...

+3*param(4)*theta4dot(indx)*theta4ddot(indx)*cos(theta4(indx))-
param(3)*theta2tdot(indx)*sin(theta3(indx))-
3*param(3)*theta2dot(indx)*theta2ddot(indx)*cos(theta3(indx)) ...

+param(3)*theta2dot(indx)^3*sin(theta3(indx)))/(-
param(4)*sin(theta4(indx))+param(4)*cos(theta4(indx))*sin(theta5(indx))/(cos(
theta5(indx))));

theta5tdot(indx) =
(3*param(5)*theta5dot(indx)*theta5ddot(indx)*sin(theta5(indx)) ...

+param(5)*theta5dot(indx)^3*sin(theta5(indx))+3*param(4)*theta4dot(indx)*thet
a4ddot(indx)*sin(theta4(indx))+param(4)*theta4dot(indx)^3*sin(theta4(indx))-
param(4)*theta4tdot(indx)*cos(theta4(indx)) ...

+param(3)*theta2tdot(indx)*cos(theta3(indx))-
3*param(3)*theta2dot(indx)*theta2ddot(indx)*sin(theta3(indx))-
param(3)*theta2dot(indx)^3*cos(theta3(indx)))/(param(5)*cos(theta5(indx)));
end

% Dynamic Analysis.

indx = 1;
for indx = 1:q

ag4x = -theta4dot(indx)^2*param(4)*cos(theta4(indx))/2-
theta4ddot(indx)*param(4)*sin(theta4(indx))/2-
theta5dot(indx)^2*param(5)*cos(theta5(indx))-
theta5ddot(indx)*param(5)*sin(theta5(indx));
ag4y = -theta4dot(indx)^2*param(4)*sin(theta4(indx))/2-
theta4ddot(indx)*param(4)*cos(theta4(indx))/2-
theta5dot(indx)^2*param(5)*sin(theta5(indx))-
theta5ddot(indx)*param(5)*cos(theta5(indx));
ag5x = -theta5dot(indx)^2*param(5)*cos(theta5(indx))/2-
theta5ddot(indx)*param(5)*sin(theta5(indx))/2;
ag5y = -
theta5dot(indx)^2*param(5)*sin(theta5(indx))/2+theta5ddot(indx)*param(5)*cos(
theta5(indx))/2;
ag3x = -theta2dot(indx)^2*param(3)*cos(theta3(indx))/2-
theta2ddot(indx)*param(3)*sin(theta3(indx))/2;
ag3y = -
theta2dot(indx)^2*param(3)*sin(theta3(indx))/2+theta2ddot(indx)*param(3)*cos(
theta3(indx))/2;
agmx = -theta5dot(indx)^2*param(6)*cos(theta5(indx)+param(8))-
theta5ddot(indx)*param(6)*sin(theta5(indx)+param(8));
agmy = -
theta5dot(indx)^2*param(6)*sin(theta5(indx)+param(8))+theta5ddot(indx)*param(
6)*cos(theta5(indx)+param(8));
R63 = [param(3)*cos(theta3(indx))/2 param(3)*sin(theta3(indx))/2];
R44 = [param(4)*cos(theta4(indx))/2 param(4)*sin(theta4(indx))/2];
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R55 = [param(5)*cos(theta5(indx))/2 param(5)*sin(theta5(indx))/2];
m3 = 2*a(3)*param(3);
m4 = 2*a(4)*param(4);
m5 = 2*a(5)*param(5);
I3 = m3*param(3)^2/4;
I4 = m4*param(4)^2/4;
I5 = m5*param(5)^2/2;
I6 = param(7)*param(6)^2;
Tw = -param(7)*32.174*cos(theta5(indx)+param(8))*param(6)-
theta5ddot(indx)*param(6)^2*param(7);

uns = [1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0

-1 0 0 0 -1 0 0 0 0
0 -1 0 0 0 -1 0 0 0
R63(2) -R63(1) -R63(2) R63(1) 0 0 0 0 1
0 0 0 0 2*R55(2) -2*R55(1) 0 0 0
-R44(2) R44(1) 0 0 R44(2) -R44(1) 0 0 0];

kns = [m3*ag3x
m3*ag3y+m3*32.174
m5*ag5x+param(7)*agmx
m5*ag5y+m5*32.174+param(7)*32.174+param(7)*agmy
m4*ag4x
m4*ag4y+m4*32.174
I3*theta2ddot(indx)

(I5+I6)*theta5ddot(indx)+m5*32.174*param(5)*cos(theta5(indx))+param(7)*32.174
*param(6)*cos(theta5(indx)+param(8))

I4*theta4ddot(indx)];

forces = inv(uns)*kns;
F54(indx) = forces(2)/sin(theta4(indx));
F(indx) =

(param(1)^3/2*a(1)+param(1)^3*a(2)/8+forces(9))/param(1)+a(1)*32.174*param(1)
*cos(theta2(indx))/2+a(1)*32.174*param(1)*cos(theta2(indx))/4;
end

% Calculate Transmission Angle

indx = 1;
for indx = 1:q

Z = param(2)^2+param(3)^2-2*param(2)*param(3)*cos(theta2(indx)+param(9));
TA(indx) = acos((Z-param(4)^2-param(5)^2)/(-2*param(4)*param(5)));

end

% Plot results

figure(1)
plot(theta2*180/pi, theta4ddot, '-o', theta2*180/pi, theta5ddot, ':d')
xlabel('User Input Angle (degrees)')
ylabel('Angular Acceleration (rad/s/s)')
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legend('Alpha 4', 'Alpha 5',0)
grid on

figure(2)
plot(theta2*180/pi, Fdesired, '-^',theta2*180/pi, F, ':o')
xlabel('User Input Angle (degrees)')
ylabel('Resistance Force (pounds)')
legend('Desired', 'Actual',0)
grid on
F
F54
figure(3)
plot(theta2*180/pi, theta4*180/pi, ':+',theta2*180/pi, theta5*180/pi, ':o')
xlabel('User Input Angle (degrees)')
ylabel('Theta 4,5 (degrees)')
legend('Theta 4', 'Theta 5 ', 0)
grid on

figure(4)
plot(theta2*180/pi, TA*180/pi,'-o')
xlabel('User Input Angle (degrees)')
ylabel('Tansmission Angle (degrees)')
grid on

figure(5)
plot(theta2*180/pi, theta4dot, ':+',theta2*180/pi, theta5dot, ':o')
xlabel('User Input Angle (degrees)')
ylabel('Omega 4,5 (radians/second)')
legend('Omega 4', 'Omega 5 ', 0)

figure(6)
plot(theta2*180/pi, devFvert*180/pi, ':o')
xlabel('User Input Angle (degrees)')
ylabel('Deviation From Vertical Normal (degrees)')
grid on

figure(7)
plot(theta2*180/pi, theta4tdot, '-o',theta2*180/pi, theta5tdot, '-d')
xlabel('User Input Angle (degrees)')
ylabel('Angular jerk (radians/s^3)')
legend('Coupler','Output',0)
grid on

% Find link length ratio penalty.
indx = 1;
Rmax = 0; Rmin = 1000;
for indx = 1:5
Rmin = min(abs(param(indx)), Rmin);
Rmax = max(abs(param(indx)), Rmax);
end
if Rmax/Rmin >= 4

OFb = 400^2 + (Rmax/Rmin)^3;
else

OFb = 0;
end

% Find penalty for negative link length
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OFc = 0;
indx = 1;
for indx = 1:6

if param(indx)<0
OFc = OFc + (100-param(indx))^8;

end
end

% Find penalty for force difference. (Checks quality of fit).
OFa = 0;
diff = 0;
indx = 1;
for indx = 1:q

diff = 3*abs(100*(Fdesired(indx)-F(indx))/Fdesired(indx))^4+diff;
end
OFa = diff;

% Negative force penalty
indx = 1;
for indx = 1:q

if F(indx)<0
OFa = OFa + abs(F(indx))^4;

end
end

% Minimize the Magnitude of the Weight Relative to Max Force.
OFm = 0;
OFm = 1000^(param(7)*32.174*10000/max(Fdesired));

% Sum Penalities and Export Total.
OFa
OFb
OFc
OFtotal = OFa + OFb + OFc + OFi
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