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(ABSTRACT)

Control Allocation as it pertains to aerospace vehicles, describes the way in which control
surfaces on the outside of an aircraft are deflected when the pilot moves the control stick
inside the cockpit. Previously, control allocation was performed by a series of cables and
push rods, which connected the 3 classical control surfaces (ailerons, elevators, and
rudder), to the 3 cockpit controls (longitudinal stick, lateral stick, and rudder pedals). In
modern tactical aircraft however, it isnot uncommon to find as many as 10 or more control
surfaces which, instead of being moved by mechanical linkages, are connected together by
complex electrical and/or hydraulic circuits. Because of the large number of effectors, there
can no longer be a one-to-one correspondence between surface deflections on the outside of
the cockpit to pilot controls on the inside. In addition, these exterior control surfaces have
limits which restrict the distance that they can move as well as the speed at at which they
can move. The purpose of Constrained Control Allocation isto deflect the numerous con-
trol surfacesin response to pilot commandsin the most efficient combinations, while keep-
ing in mind that they can only move so far and so fast. The implementation issues of Con-
strained Control Allocation techniques are discussed, and an aerodynamic model of a
highly modified F-15 aircraft is used to demonstrate the various aspects of Constrained
Control Allocation.

This work was conducted under NASA research grant NAG-1-1449 supervised by John
Foster of the NASA Langley Research Center
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CHAPTER 1.

| ntroduction

The primary idea behind the design of aircraft flight control surfaces has been to
position them in such away that they function primarily as moment generators, allowing 3
types of rotational motion (roll, pitch, and yaw). Classically, these 3 degrees of freedom
were manipulated by 3 primary control surfaces. The ailerons, located on the trailing edges
of the wings, were designed to operate differentially, thus causing the aircraft to roll. The
elevators, located on the trailing edge of the horizontal tail, were used to change the pitch
attitude of the aircraft. Finally, the rudder, located on the vertical tail, could be deflected in
such away to cause the aircraft to yaw. In these classical designs, the control surfaces were
generaly directly connected to pilot controlsinside the cockpit.

Itisalso easy to seethat if the control effectivenessis known for each of the 3 con-
trol surfaces mentioned above, then the classical 3 control/3 degree of freedom system can
be defined by an agebraic problem with 3 equations (the commanded moments) and 3
unknowns (the control deflections). Assuming that the mathematical system of equationsis
consistent, then a unique control configuration exists for any desired vector of control-
generated moments.

While modern aircraft may have the 3 conventional sets of aircraft control surfaces,
they are generally designed to operate independently of one another. The ailerons for
instance, may be able to deflect both symmetrically and differentially, allowing some pitch
control in addition to the conventional roll and yaw effects. The elevators on modern tacti-
cal aircraft are now divided into left and right stabilators, which in addition to deflecting
symmetrically, can operatein adifferential senseaswell. Other nonconventional flight con-
trol surfaces such as canards and thrust vectoring have also been introduced. In addition,
with the development of the modern fly-by-wire control system architectures, the mechani-
cal linkages between control surfaces and cockpit inceptors have been made obsolete.
Thus, the problem of finding the required combinations of control deflections for a given
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vector of commanded aircraft moments is no longer the previously mentioned algebraic
system with one solution, but is an under-determined system having an infinite number of
solutions, provided that the 3 moments can be attained.

With so many possible combinations of control deflections for any attainable set of
moments, the question of how to allocate the controls in response to pilot commands no
longer has an obvious answer. This question has recently been the topic of a great deal of
research and development and hasled to many techniquesincluding the constrained control
allocation algorithms presented here. In answering this question, Constrained Control Allo-
cation has been developed to utilize the controls maximum capabilities in generating
moments such that a solution to any attainable moment vector will result in the most effi-
cient use of control deflections. While the underlying theory behind these techniques is
described in detail in References 1 and 2, it will be paraphrased here.

In order to understand the nature of Constrained Control Allocation, it isimperative
to think of the control surfaces on an aircraft as generating some m dimensional control
space where m represents the number of aircraft controls. Each control surface generally
has a maximum and minimum deflection limit which is determined either by the control’s
physical limitations or by some aerodynamic constraint. Within the control space then,
there exists an admissible subset of controls (W), which represents all possible combina-
tions of controlsthat do not violate any constraints.

In addition to the control surface limits, each control also has some effectivenessin
generating the 3 aircraft moments. Therefore, a3 by mcontrol effectivenessmatrix (B) can
be defined which serves as alinear mapping between the m-Dimensional admissiblesubset
of controls and the 3-Dimensional subset of attainable moments (F ). The problem of allo-
cating controls then consists of extending the commanded moment vector to the boundary
of F, and finding the point of intersection. Using concepts of linear mappings, the (unique)
vector of controls which map to this point on the boundary can be found, and can then be
scaled to achieve the desired moment magnitudes. Of course, if the commanded moment is
not attainable, (ie. the moment is somewhere outside of F), then the resulting control con-
figurationis not scaled, and asolution is returned which at |least, produces amoment vector

that points in the commanded direction. Note that one of the unique aspects of this control
2
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dlocation scheme is that none of the defined control constraints will ever be viol ated.

1.1 Background

Researchinto the Constrained Control Allocation methodswasoriginally stimulated
by a broader field of research. This research involved the design and structure of modern
aircraft control laws that would allow the pilot to fly with * reckless abandon” in high angle
of attack flight regimes, having no concern for the possibilities of aircraft departure.

This design philosophy is based on a generalized structure allowing a modular
architecture and is shown in Figure 1.1. In this figure, the control stick logic receives the
required information from the control law to simulate a control stick “feel” that provides
satisfactory flying qualities. In addition, control surface rate information is fed back from
the control allocation scheme so that the stick deflection rates can be controlled, thus pre-
venting the pilot from exceeding the aircraft’ s capabilities for any particular flight condition.
The logic then uses the pilot inputs to calculate some desired aircraft behavior such as
desired roll rate, pitch rate, or normal acceleration to be sent down stream to the control
law.

The proposed control law type is one of the model-following or dynamic inversion
schemes since they are potentially capable of operating in awider range of flight conditions
than the classical feedback designs. The control law also receives information about the
current controlS' moment generating capabilities so that control stick deflection can be syn-
chronized to the aircraft’s current capabilities. That is, full stick would imply that the air-
craft should perform its desired behavior (like pitch acceleration) to its maximum capabili-
tieswhile half stick would result in half of those desired capabilities. The control law then
takes the desired aircraft behavior and converts it to a set of required control-generated
moments using the aircraft equations of motion and an onboard aerodynamic database or
aircraft simulation.
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Required
Pilot Aircraft generated Control
Inputs Behavior Moments Deflections
—p»| Control Stick | ——p»! Robust Con- | gl Control Allo- |—p»
Logic trol Law cation

Stick Moment-generating Control Moment-generating
Capabilities Capabilities

Moment and Control Deflection Rate Saturation Levels

Figure 1.1 A “Reckless Abandon” Control Stick/Law/Allocation System
This diagram represents a preliminary design architecture for amodular
aircraft control system. The blocks representing the control stick logic,
control law, and control allocation scheme are generalized to allow easy
implementation of new and improved ideas.
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The control allocation scheme then uses the desired momentsto find aset of admis-
sible control deflection commands to achieve those moments. These commands should not
violate any prescribed position or rate limits. The subject of thisthesisisbased on the third
block of Figure 1.1 (Control Allocation), and how it should be implemented. It is not
meant to be a complete description of the Constrained Control Allocation theory. A theoreti-
cal background can be referenced from afew of the numerous papers and journal publica-
tions published during this research. (The author’ s suggested reading list includes refer-
ences 1 and 2 for atheoretical introduction followed by references 3, 4, and 5.) Some of
the theory, as it applies to various implementation issues, is presented.

1.2 Research Objectives

This Thesis covers a rather diverse area of research which includes many objec-
tives. The primary goals were to develop a generic constrained control allocation architec-
ture to alow quick and easy implementation of different aircraft configurations. At the same
time, the numerical robustness and functional abilities of these algorithms were also
improved.

In previouswork at Virginia Tech, these algorithms were tested using control effec-
tiveness data and control constraints representative of modern aircraft. Reference 6
describes one of the early simulation implementations involving actual aircraft data, and ref-
erence 5 builds upon this implementation with the introduction of non-linear effectiveness
and moment rate allocation. The results from these works prompted a renewed interest in
constrained control allocation from industry and led to the secondary objectives of this
research, which include implementing the algorithms into the F-15 ACTIVE (Advanced
Control Technologiesfor Integrated VEhicles) flight control laws for further testing.

The F-15 ACTIVE aircraft is a research project co-developed and supported by
McDonnell Douglas Aerospace, NASA Dryden Flight Research Laboratory, Pratt and
Whitney, and the United States Air Force, in an attempt to demonstrate new control law
philosophies and thrust vectoring technologies. Virginia Tech signed a cooperative agree-
ment with McDonnell Douglas Aerospace that included the study of control alocation asa

5
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part of the F-15 ACTIVE program. This research can be subdivided into 3 phases. Phase 1
consists of extracting and formatting the non-linear control effectiveness data for the 9 aero-
dynamic and thrust vectoring controls to fit within the control allocation architecture, and
testing the algorithms using the acquired datain batch simulations. Phase 2 of thisresearch
includes plans to implement the developed code and data into a six degree of freedom,
piloted simulation to analyze real-time and flying quality aspects. Ultimately, phase 3 will
consist of programming the algorithmsinto the F-15 ACTIVE flight control computers for
actua flight testing. The research documented here marks the completion of the phase 1
effort.

1.3 Comments and Suggestions to the Reader

The primary focus of this thesis is the implementation issues of control allocation.
As aresult, there are no theories or ideas presented here that have not been mentioned in the
references cited previously. Any theory presented is only discussed in terms of implemen-
tation and software devel opment issues. Because of the broad area of research covered, the
author feels that the best presentation format is to discuss the work in chronological order.
Unfortunately, this format results in adocument which contains guidelines and theory dis-
persed throughout. It is therefore suggested that the reader who is only interested in imple-
menting control allocation into different aircraft models, should read Chapters 2, 7, 8, and
Appendices I-111. These sections contain most of the guidelines that should be followed, as
well as the code listings written in FORTRAN. Chapters 3 - 6 discuss some of the theory
behind the features of control allocation and should be read by those who desire amorein
depth understanding of the current control allocation agorithms.

The author understands that there exist an infinite number of possible control alloca-
tion schemes for any aircraft having more controls than degrees of freedom. However,
when the terms “control allocation” are mentioned here, it should be understood that the
author is referring to the Constrained Control Allocation (sometimes referred to as Direct
Control Allocation) methods developed at VirginiaTech. Any exceptions to these conven-
tionswill otherwise be explicitly stated.
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Data Collection

Like any control allocation agorithm, the constrained control allocation techniques
discussed here require knowledge of the controls' effects on aircraft moment coefficients.
Thethree coefficients of interest are C| (roll), Cm (pitch), and Cp, (yaw). In addition, data
may also be included which can be used to minimize a particul ar objective as afunction of
control surface deflections. Other data requirements specific to constrained control alloca-
tion techniques include control minimum and maximum position limits and actuator rate
limits. These data may also be dependent on other variables. As an example, many control
laws may have software constraints, determined by the dynamic pressure, which are
imposed on the available surface deflections. It isalso obviousthat the control actuatorsare
not able to maintain a constant rate across the entire flight envelope, since hinge moments
can changequiteradically. Althoughinthe current implementations, rate limits are assumed
constant, there have been some experiments involved with adjustable position limits, par-
ticularly, those associated with thrust vectoring on the F-15 ACTIVE aircraft. The purpose
of this chapter is to discuss some of the preferred data format methods with some of the
lessons learned, and conclude with a description of the data collection utilities devel oped
for this implementation.

2.1 Data Format and Dependencies

Since the fundamental theories behind constrained control alocation methods
involve such conceptsaslinearity and linear mappingst, some care must be taken to ensure
that the control effectiveness datafits asuitable format. One of the most important assump-
tionsisthat any two controls' deflection capabilities are uncoupled from one another. The
left and right stabilators on the F-15 ACTIVE for example, are completely isolated such that
one can move without regard to the other, allowing both symmetric and/or differential hori-
zontal tail deflections. By applying the position constraints to this two degree of freedom
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system, a subset of admissible control deflections (W) can be found. A typical figure of
what this subset may look like in control space for two controls is shown in Figure 2.1.
Two important insights can be gathered from this figure. First of all, not only are the con-
trols uncoupled from one another inside the constraints, but they are also uncoupled at the
constraints. This property allows one control to be held at one of its constraining values
whilethe other isfree to move between its maximum and minimum constraints, resulting in
amove aong the edge of the constraining “box”. Second, the linear independent nature of
the controlsimpliesthat any point in Wcan be expressed as alinear combination of the two
controls, just as a point in any vector space can be represented by a linear combination of
its basis vectors. While the consequences of violating these facts will be discussed later, it
should be pointed out that as long as these conditions are met, more controls can be added,
resulting in higher dimensional admissible subsets. Using two controls, W can be described
by a2-Dimensiona “box”. When athird independent control is added to the system, Figure
2.1 would be best described as a “cube”. Although harder to visualize, larger numbers of
controls generate higher dimensional “hypercubes’, yet the same linear concepts apply as
with the smple 2-Dimensional case.

As mentioned earlier, the fact that any point in W can be uniquely expressed as a
combination of the individual control surfaces, gives rise to the most preferred (and most
convenient) method of gathering data. This format involves specifying the dependent data
in terms of theindividual left and right control deflections subject to their respective mini-
mum and maximum constraints. Unfortunately, many existing databases think of controls
as being symmetric and differential, with definitions given below in equations 2.1 and 2.2.

Symmetric Portion: s =(d +d)/2 (2.1)
Differential Portion: d=d - d; (2.2)

One might first think to use the datain thisform sinceit ismost readily availablein
the aerodynamic databases. However, when implementing non-linear data, this method car-
riesthe burden of having to add an unnecessary table lookup dimension to the interpolation
routines.
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Figure 2.1 A Typica Subset of Admissible Controls



Chapter 2

For instance, extracting the pitching moment effectiveness due to symmetric stabilator only,
would require an interpolation using both the current symmetric and differential deflections.
This extra step is required because of the coupling between the symmetric/differential
deflection conventions. That is, specifying either a symmetric or differential deflection
alone does not map to aunique left/right control configuration. In contrast, gathering effec-
tiveness data for aleft or right control surface only requires that the current position of the
control in question be known (assuming that there are no interaction effects from the
opposing control).

Perhaps the best incentive of avoiding this type of data format is the fact that the
subset of admissible controls given in terms of symmetric deflection (s), and differential
deflection (d), is defined by Figure 2.2. Note that because of the “diamond shape’ nature
of thisfigure, the constraint lines cannot be followed without having to vary both symmet-
ric and differential controls. Thus, the controls are coupled along the constraints. There are
also other instances when inconveniences such as this occur, and special steps need to be
taken to avoid them. (Discussion of these will be saved until Chapter 8 when the F-15
thrust vectoring limits are presented). Furthermore, when allocating symmetric and differ-
ential control deflections, the process of adapting to individual control failures becomes
somewhat problematic.

In early control allocation implementations, the nature of control effectiveness was
assumed linear and was generally interpolated as functions of Mach number and angle of
attack only. This assumption was known to be arather simplistic approximation, yet, when
small deflections were commanded, it seemed to produce satisfactory results. Upon extend-
ing thedirect alocation methodsto include actuator rate capabilitiest, amore accurate data-
base could be utilized. These algorithms all ocate controls during each sample frame, using
as constraints, the most restrictive of either the amount of deflection that an actuator can
produce in that given frame (determined from its rate capabilities), or the control’s global
position limits. The alocated changes in control deflections then produce the desired
change in moment coefficients. Since these algorithms reset the origin in control space for
each sample frame, it makes sense to include control effectiveness as a function of control
deflection as well as other aircraft states. These properties are shown in Figure 2.3.

10
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Figure 2.2 A Typica Subset of Admissible Controls Using Symmetrical vs. Differential
Coordinates

11
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Cm vs. Right Stabilator

0.2 - -
E Local coord. E
a // system a
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-30 -25 -20 -15 -10 -5 0 5 10 15

d

Figure 2.3 A Typica Plot of Moment Coefficient vs Right Stabilator Deflection
Shown with this plot is a local coordinate system resulting from the
frame wise limits imposed on Control Allocation with Rate Limiting.
The constraints on this system represent the actuator rate capabilities.
The constraints on the larger coordinate system represent the global
position limits. Note that as the global position changes, the local coor-
dinate system moves along this curve. Effectiveness data is taken as the
slope of the Cm vs. d curve at the origin of the local coordinate system.
This data is based on the F-15 ACTIVE aerodynamic database for a
Mach number of 0.4, angle of attack of 8.0 deg. and an altitude of
20000 ft.

12
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Because of the abilities to handle non-linearities with respect to control deflections,
therate limiting algorithms allow theinclusion of other dependent data such asdrag effects,
which were to non-linear (with respect to control deflection), to give valid results using the
early control allocation methods. These other effects can be used as additional objectives
that the allocation algorithms can optimize.The optimization aspects will be demonstrated
later where control allocation with rate limiting is used to minimize control-induced drag
while obtaining the commanded moments. There is no limit to the type of minimizing
objectives that can be included. However, there are a few restrictions to the use of such
objective data. First, only one objective can be utilized at any given time. While a control
allocation database may contain datafor objectives such asminimizing drag and minimizing
hinge moments, only one (or some weighted combination of the two objective functions)
can be optimized. Thus, the control law may need some type of switching function to
instruct the control alocation algorithms when to switch from one objective to another.
Second, the objectives should be in a form such that they can be expressed as continuous
functions of control deflections.

Current control allocation algorithms also require linear control effectiveness data
for the purpose of calculating attained moments. Two methods that have been attempted
involvethe global slope method, which basesthe control effectiveness on non-linear dataat
zero deflections, and the secant-slope method, which cal cul ates the slope of the line drawn
between the minimum and maximum control induced moment. These two methods are
demonstrated graphically in Figure 2.4. Notice that the secant slope method produces accu-
rate results at the control constraints but generates errors at other control positions. Like-
wise, the global slope method givesfairly accurate results for small deflections at the price
of obtaining less accurate results for large deflections. Of course, the terms “large” and
“small” arerelative terms and areinfluenced by how non-linear the datais. Other possibili-
tiesthat have not been investigated include using the exi sting aerodynamic table look-upsto
find the moment contributions due to the controls. This method will provide results as
accurate as the results from which the tables were constructed, but will consume a great
deal of computing cycles. In the control allocation agorithmsimplemented, the global slope
method is the preferred choice since the non linear effectiveness tables already contain the
data needed, thus aleviating some of the storage requirements.

13
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Cm vs. Right Stabilator
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Figure 2.4 Different Methodsto Find Linear Control Effectiveness Data
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2.2 Data Interpolation Methods

Dueto the large computational requirements of these control allocation algorithms,
the speed of the methods used to interpolate control effectiveness dataareimportant. Inthis
section, different types of interpolation methods available are discussed in terms of speed,
storage requirements, and other problems that have been discovered. At present, two dif-
ferent techniques have been investigated for various control allocation implementations. In
the early experiments, where linear control effectiveness was assumeds, the data were
acquired using third and fourth order polynomial curve fits across the known aerodynamic
table break-points to account for the changes in control effectiveness due to changesin air-
craft states like angle of attack and Mach number. In addition, all of the polynomial coeffi-
cients were stored off-line and loaded into computer memory during an initialization pass.
Another method which is currently implemented is very similar to the curve fit methods
except that the interpolation functions are treated as being affine. That is, any 2-D planar
dlice of the data results in a linear function. With this type of data extraction scheme,
severa affine functions must be generated for arange of independent parametersto account
for any non-linearities. Just like the curve fit methods, the coefficients for these functions
are aso stored off-line and then loaded into memory during an initialization pass. The stan-
dard linear interpolation methods employed in most simulation environments has been
avoided here because of their large computational demands for multi-dimensional data sets.

The curvefit methods proved to be very desirable in terms of memory requirements
when there wererelatively few data dependencies. Unfortunately, the method of generating
these polynomial curvefits beginsto break down asthe number of independent parameters
increases. As an example, consider the drag increments due to the left stabilator for the F-
15 ACTIVE shown in Figure 2.5. After inspection of the original data, it was decided that a
quadratic should provide sufficient accuracy. The resulting function is plotted along with
the actual values returned from the aerodynamic database, showing a smooth and well
matched curve. This information can be carried along in the simulation if desired (it only
requires storing 3 real number coefficients).
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Figure 2.5 Incrementsin Drag Coefficient Dueto Left Stabilator Deflection
Flight conditions for this data are for a Mach number of 0.8, an Angle
of Attack of 8.0 deg. and an dtitude of 20000 ft. The curve fit results
arefor aquadratic function{ Cd = (6.5x 10"-5)d? + (1.2 x 10"-3)d + 2.4
x 10"-3} where control deflection is measured in degrees.
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On the other hand, if it is only the control effectiveness that is needed, then this function
can be differentiated with respect to control deflection off-line and the amount of required
storage then reduces to only two real coefficients.

Of course, this simple case only accounts for the non-linearitiesin control position
at one particular flight condition. In general, there may be as many 4 dependencies on drag,
which result in a more complicated function. The drag effectiveness lookup for the F-15
ACTIVE thrust vectoring nozzles for instance, require knowledge of nozzle pressure ratio,
Mach number, angle of attack, and nozzle deflection. Recall that in Figure 2.5, the general
shape of the data was visually inspected first, and an appropriate function was chosen.
Obviously, thismethod of picking functionsfails when the dependencies are higher dimen-
sional, since the ability to view the shapes of such functions becomes nearly impossible.
An aternative is to generate curve-fit polynomials for each 2-Dimensional “dlice” of data
and perform alinear interpolation between them when the independent parameters do not lie
on one of these 2-Dimensional planes. This procedure, however, reintroduces the problem
of dow data interpolation due to computationally intensive table lookup algorithms.

What isrequired then isaway of utilizing the speed benefits obtained when saving
data as an analytical function while avoiding the necessity of having to know the general
nature of the function prior to performing the curve fits. This form of interpolation is best
handled using affine functions of the independent variables. For example, afunction F(x,y)
can be represented in this fashion by:

F(x,y) = Cixy + Cox + C3y + Cy (2.3)

This function then has the special form that any planar slice (ie. setting all but one of the
independent parameters to a constant), reduces to alinear function of the remaining parame-
ter. Asaresult, this interpolation method gives the same results as the higher dimensional
linear interpolation methods commonly seen in aerodynamic table look-up routines, yet
reduces the time required to do the interpolation since there is a significant reduction in the
required floating point operations?. The drawback to this method however is that the stor-
age requirements, (the mesh constants C,, C,, Cz, and C4 for each table “block” must be
stored), become quite large as the dimension of the table increases. It can be shown that the
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number of mesh constants per table block increases according to 2" where n is the number
of independent parameters. Reference 7 performs someinteresting tests to evaluate the tra-
deoffs associated with this method and the standard linear interpolation methods. The con-
clusions gathered from this paper suggest that the affine interpol ation methods be avoided
when the number of independent variables exceeds three.

In the current implementations, the affine interpolation method is used to gather
control effectiveness data. All of the data for the F-15 ACTIVE depends on 3 parameters,
while the two thrust vectoring tables contain an additional independent parameter describing
the effects due to nozzle pressure ratio. These 4-D cases are handled in aslightly different
way, and will be discussed later. The next section will describe thisinterpolation technique
in more detail.

2.3 The Affine Data Interpolation Procedure

Equation 2.3 gives the form of the affine function for a 2-Dimensiona case. It is
also assumed that the dependent data is known at incremental points throughout the 2-D
table. (For the F-15 ACTIVE implementation, a utility was written in FORTRAN to inter-
face with the aerodynamic table |ook-up routines, and perform the necessary independent
variable sweeps). These known values will be referred to as nodes. The nodes for arepre-
sentative table are depicted in Figure 2.6. From this figure, it can be seen that the nodes
produce distinct subdivisionswithin the table (referred to here as blocks). These blocks can
be labeled according to their row number and column number. That is, block (1,4) would
be represented by the subdivision created by taking the intersection of row 1 with column
4.

Itis now desired to find the coefficients for equation 2.3 for each block in the table.
Note that for the 2-D case, there are 4 unknown coefficients which determine the equation
for any block. These blocks in turn, are defined by 4 known node points. Thus, by apply-
ing equation 2.3 at each node, a system of 4 linear equations with 4 unknowns is formulat-
ed, and the coefficients for the particular block can be uniquely determined. The coeffi-
cients can then be stored off-line and loaded during an initialization pass.
18
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Figure 2.6 A 2-Dimensiona Data Table Showing The Known “Nodes’ and “Block”
Subdivisions
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The only remaining CPU operations required are finding out which block the current flight
condition residesin, and using the corresponding mesh coefficientsto cal cul ate the depend-
ent datafrom equation 2.3.

While this example applies to a 2-Dimensional table look-up, the techniques used
can be applied to higher n-Dimensional tables as well since there will always be 2N mesh
coefficients and 2N nodes per block. The current Matlab® utilities, developed for this
research, can handle tables having as many as 3 dimensions. For the case of the thrust vec-
toring nozzles which require a4-D table look-up, the 3-D datais generated for incremental
values of the 4th parameter, and the simulation is required to perform one linear interpola
tion in the 4th parameter’ s direction.

In implementations prior to the F-15 ACTIVE, it was thought that the amount of
storage required was actually half of what the table dimensionality indicated. This hypothe-
siswas formul ated because of the fact that only the derivatives with respect to control posi-
tions were desired, so that after differentiating functions of the form in equation 2.3, only
the mesh constants multiplying terms containing the controls’ deflections remained. Affine
interpolation methods, however, only guarantee continuous functions across the entire
table. The theory does not account for continuity in first (or higher) order derivatives asthe
independent variables move from one table block to another. As aresult, the reduced data
sets often led to discontinuous effectiveness data with respect to control deflections, and
caused control chattering problems to occur in situations where the control positions were
on the boundary between two table blocks. The solution to the problem wasto calculate the
derivative information before generating the mesh constants. This step is currently donein
the FORTRAN “Sweep Data’ utility using a4th order central difference approximation to
the derivative.

The utilities mentioned here have been written to provide a set of tools for extracting
effectiveness data from a given aerodynamic look-up module, using the extracted data to
generate the affine datainterpol ation constants, and saving the constantsin data files so that
the control allocation algorithms can use them. Furthermore, the algorithms used to inter-
polate the data have been modularized and isolated from the rest of the control allocation

software. While the structure of the data interpolation functions that the control allocation
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algorithms require will be described later, the intended goal hereis to provide a standard,
quick, and relatively easy method of developing appropriate data that can be plugged into
the control alocation software with minimal effort.

2.4 The Data Extraction Utilities

This section describes the utilities that can be used to extract and format the control
effectiveness data so that it can be processed by the current control allocation algorithms.
The set of tools assumesthat the affine datainterpol ation technique discussed earlier will be
used. It iscomposed of a FORTRAN executable “ Sweep Data’, and three Matlab® scripts
“MMCS2D”, “MMCS3D”, and “MAT2ASCII”. The complete source code and documen-
tation for these utilities can be found in Appendix I.

The “Sweep Data’ utility isa FORTRAN executable program that was originally
designed to interface the F-15 ACTIVE aerodynamic database and extract effectiveness
information in a form suitable to that described earlier. However, the final project turned
out to be a very useful and powerful tool, and so its features and source code are docu-
mented here with the goal of making the process of implementing future models faster and
easier. The utility includes acommand-line shell interface used to change various parame-
ters, program flags, and to perform the data sweeps. The source documentation for these
interface routines can be found in Appendix IV. In addition, the data obtained from the
sweeps are exported as Matlab® workspace (*.mat) files, and require use of the Matlab®
Externa Interface librariess.

The purpose of this utility is to allow the user to increment as many as three pre-
scribed independent parameters between their minimum and maximum possible values and
record the aerodynamic coefficients that are returned from the aerodynamic database. The
powerful flexibility in the program is provided by a set of user-defined flags that alter the
way datais recorded or calculated. Some of these options include:

1) The ability to enable or disable any flap scheduling functions: In some cases, the

leading and trailing edge flaps may be treated asintegral parts of the basic airframe.

In such instances, it may be desired to let the flap scheduling functions set the flap
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positions before the aerodynamic coefficients are calculated. At other times howev-
er, it may be desired to calculate the exclusive effects due to the controls without
any flap interactions.

2) The ability to use right/left control deflections or symmetric/differential deflec-
tions: Many aircraft databases build up the aerodynamic coefficients using symmet-
ric and differential control surface deflections based on the definitions in equations
2.1 and 2.2. Thisflag allows either convention to be used by using the equations to
convert from oneto the other.

3) The ability to record the total aerodynamic coefficients or increments due to a
control only: When this utility is supported, Sweep Data can optionally record the
intermediate control effects that are normally averaged with other terms. This fea-
ture allows a method of excluding all other control interaction effects that are nor-
mally built into the total aerodynamic coefficients returned by the database.

4) Derivative extracting: Normally, Sweep Datareturnstheincrementsin aerodyna-
mic coefficients due to some change in an independent parameter. These data are
useful for generating plots to see how effective a control is, but it does not provide
the true effectiveness data required by control allocation. With this option enabled,
the control effectiveness is extracted by using a fourth order central difference
approximation to the derivative with respect to the independent parameter.

Other features include the ability to specify certain parameters as constant values

other than zero for a particular data sweep, and the ability to adjust the increment size for
each independent parameter. All of these features and their commands are displayed in a
text menu within the shell interface so that the user does not have to memorize a set of com-
plicated commands.

To demonstrate the capabilities of this utility, two data sweeps have been plotted.

The first example shows an angle of attack and left canard sweep with Mach number and
atitude held constant to 0.5 and 10000 feet. The stored dependent datais the increment in
the pitching moment coefficient due to canard only (no interaction effects) and isplotted in
Figure 2.7. Figure 2.8 shows data for the canard effectivenessin pitch (ie. TCm/d) gener-
ated by setting the derivative extraction flag. All independent parameters are exactly as
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specified for the first sweep. It isthis figure which represents the data required by the con-
trol allocation agorithms, and it must be converted into the mesh constant data for the
affine interpolation tables. This conversion may be done using the Matlab® scripts
MMCS2D or MM CS3D, which use the theory developed in section 2.3 to find the required
constants by solving a system of linear equations for each table block. (See appendix | for
specific details about these functions). Since Figure 2.8 represents a 2-Dimensional table,
the MMCS2D script was used to calculate the mesh constants. Using these constants, the
left canard was swept across its deflection range, holding the angle of attack at zero. The
results, along with the original datafor the zero angle of attack slice are plotted together in
Figure 2.9, demonstrating the fact that the affine look-up procedure gives the same results
asthe standard linear interpolation techniques. Asafinal step, the mesh constant data could
be converted to an ascii text file using the MAT2ASCI | script so that the control allocation
algorithms can read them. The details of this code are aso contained in Appendix I.

This section, along with the source documentation in Appendix I, has outlined the
basic procedure for creating a control effectiveness database for practically any aircraft
model. The steps are summarized here:

1.) Interface the Sweep Data application with the desired aerodynamic database.

This step will generally be the most time consuming process since the source code

will require some dight modifications.

2.) Run the Sweep Data application, using the appropriate flags to generate the

desired data.

3.) Generate the affine interpol ation mesh constants for the data using the Matlab®

scripts MM CS2D or MMCS3D.

4.) Export the mesh constants data to ascii files for inclusion in the control alloca-

tion algorithms using the Matlab® MAT2ASCII procedure.

The only remaining tasks are developing the aircraft specific control allocation modules to
initiaize the affine data, interpolate the data, and calculate control constraints. Discussion of
these steps will be reserved for Chapter 7.
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Cm Increment

Left Canard Deflection 40 -10

Angle of Attack

Figure 2.7 Cm Increments as a Function of Angle of Attack and Left Canard Deflection
This plot was generated using Matlab® and the FORTRAN *“Sweep
Data’ utility linked with the F-15 ACTIVE Aerodynamic Database.
Angle of Attack was swept between -10 and 40 degrees and L eft Canard
was swept from -35 to 15 degrees. Reference Mach number is 0.5 and
reference Altitude is 10000 ft.
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Figure 2.8 Cm Effectiveness (TCm/qd) expressed as a Function F(a,d)
This plot was generated using Matlab® and the FORTRAN *“Sweep
Data’ utility linked with the F-15 ACTIVE aerodynamic database and
the derivative extraction flag set to TRUE. All sweep ranges and refer-
ence conditions are identical to those in figure 2.7.
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Figure 2.9 Cm Effectiveness (TCm/f[d) expressed as a Function F(d), a =0

This plot shows the results obtained from using the affine interpolation
procedure (dashed line) along with the a = 0 dlice from figure 2.8
(dotted line). Note that both methods produce identical results.
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CHAPTER 3.

Control Allocation with
Rate Limiting

This chapter provides background information about the Control Allocation with
Rate Limiting (CARL) algorithmsthat are currently implemented. The nameis derived from
the fact that these algorithms account for deflection limits, (which were handled in the prev-
ious Direct Control Allocation methods), aswell asindividual surface deflection rate limits.
Recall that direct alocation methods produced commanded moments using the most effi-
cient combination of control deflectionsin the sense that their maximum moment-generating
capabilities were utilized, without violating the control position constraints. Likewise, the
rate limiting algorithms utilize the controls' maximum abilitiesin generating moment rates
to find an optimal vector of control deflection rates, without violating the respective limits.

To motivate a discussion on these algorithms, the topic of Pilot Induced Oscillations
(PIO) iscited. PIO’ s have been attributed to recent aircraft accidents like the F-22 and the
Gripen, both occurring in 19929.10, In fact, there have been postul ated theories which sug-
gest that certain types of PIO’s may be caused by the non-linearities associated with rate
limiting11.12, Unlike the direct control allocation schemes that cal culate commanded posi-
tions based on some commanded moment, the Control Allocation with Rate Limiting algo-
rithms presented here guarantee not to exceed the controls’ rate capabilities so long as the
control law commands attai nable moments. Thisfact offers a significant benefit to modern
control law integration since one of the possible culprits of PIO's can be eliminated. The
basic theory behind Control Allocation with Rate Limiting, along with its advantages and
disadvantages, will be presented next.
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3.1 Early Control Allocation Experiments

Thefirst control allocation algorithms developed were limited by the assumptions of
linear control effectiveness and constant constraints. They were also considered primarily
as research tools since the methods used to generate the Attainable Moment Subset (AMYS)
were quite complex and time consuming. Although the theory behind these early toolsis
beyond the scope of thisthesis, it should be pointed out that after devel oping the more effi-
cient facet-generating algorithms described in references 2 and 3, the implementation of
direct control allocation methods could be considered for simulation and real -time applica-
tions. Reference 6 describesthefirst ssimulator implementation of adirect control alocation
algorithm using an F-18 Hornet batch ssmulation. The version of control allocation used
was rather simplistic when compared to the current implementations, yet it still demon-
strated the fundamental aspectsinvolved. That is, for agiven desired moment vector mqy, a
vector of allocated control deflections u, can be found such that,

mg=Buj,
where ug liesin the bounds: Umin £ Ug £ Umax (3.2)

and the 3 by m B matrix representsthem (m > 3) controls' effectiveness on the 3 aircraft
moments.

_ Jcm

B, ™
J (3.2)

These early algorithms provided aircraft trajectories very similar to those resulting from the
origina F-18 control mixing logic, yet, there were some aspects that were somewhat unre-
alistic. First, the existing F-18 control laws did not compute desired moments, but com-
manded surface deflectionsdirectly. Therefore, adeallocation/reall ocation schemehad to be
implemented so that the surface deflections provided by the original control laws could be
substituted into Eq. 3.1 to give the desired moments, which were then used as inputs to the
control allocation software. Second, the control effectiveness data were assumed to be lin-
ear across the whole range of control deflections. Although this assumption proved to be a
fairly accurate approximation for moments, it prohibited the use of more non-linear effects
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(eg. drag), in the control alocation procedure. In other words, this restriction implied that
controls were treated as moment generators only, having no effects on aircraft forces.
Unfortunately, there may be situations (such as cruising flight), when the drag produced by
controls is just as important as the moments that they produce. A final limitation to these
methods was the fact that even though the controls' position constraints were accounted
for, there was no logic to guarantee that actuator rate limits would not be violated. For rea-
sons mentioned previoudly, this drawback could become a serious problem for the pilot.

Thefirst problem mentioned could easily be overcome by implementing adifferent
type of control law. Dynamic inversion and Model Following control laws offer a conveni-
ent solution since moment commands are easily extracted from their formulations. The limi-
tations of linear effectiveness data and the possibilities of exceeding actuator rate limits
were specific to the control allocation algorithms however, and led to the research and
development of the rate limiting allocation methods such as CARL.

3.2 Expansion Into The Discrete Time Domain

Equation 3.1 describes the basic operations behind the control alocation algo-
rithms. Given a commanded (or desired) moment vector, a control deflection vector is
found which lies within some prescribed minimum and maximum deflection constraints,
and produces the desired moment. Through deductive reasoning, it can also be said that
given adesired moment rate, the appropriate algorithms could produce a commanded con-
trol deflection rate subject to some minimum and maximum rate constraints. An algorithm
to achieve thistype of allocation procedure is derived asfollows:

Differentiate Eq. 3.1 with respect to time. It is assumed that the time rate of change

of B isnegligible when compared to the control deflection rates so that:
my = Bu,

- Ui £Ug £ Upax (3.3)

The minimum and maximum rate constraints prescribed here denote the rate limits of the
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controls as they move towards their respective minimum and maximum position limits.
Note that while the relations established in Eq. 3.3 describe a moment rate allocation
scheme, they neglect the position limits associated with the classic direct alocation meth-
ods. However, since modern aircraft control systems areimplemented on digital computers
in discrete time, it does not make sense to implement thistype of algorithm directly. Equa-
tion 3.3 can be discretized by approximating the time derivative with a backwards dif-
ference equation for the current framek:

U - U,

m, - mk-1:B

Dt Dt (3.4)

Now, the Dt can be dropped from both sides of the equation, and by using the notion of the
first differencel3, Eq. 3.4 becomes:

Nm, = BNu, (3.5)

The bounding constraints require that Numin £ Nu £ Numax (k subscripts dropped).

3.3 Benefits of Control Allocation with Rate Limiting

Therelationin Eq. 3.5 isvery powerful because it allows the inclusion of both rate
limits and position limits as constraints (whichever is the most restrictive). This considera-
tion is accomplished by specifying as the constraints the amount the control surface can
move in one frame, determined by either its rate capabilities or position limits, leading to
the following:

NUma = Min[(UpmeDt), (Umax = U] (3.69)
Numin = max[- (Umin[x)’ (umin - uy)] (3.6b)
Thefirst termsin the functions of Egs. 3.6a and 3.6b contain the continuous time actuator
rates multiplied by the sampletime, thus giving the amount that the actuators can move dur-
ing one frame without regard to their positions. Note also that these terms account for the
fact that the actuators can move at different rates toward one direction than in the other

30



Chapter 3

direction. As an example, it is often less work on the actuators to move toward a control’ s
free float position (the point at which the hinge moment is zero), than away from it, result-
ing inaquicker deflection rate for the former situation. The second termsin these functions
take into account that a control surface may be close to its physical stops and therefore will
not be ableto movethedistancethat itsrate capabilitiesdictate. The current implementation
of Control Allocation with Rate Limiting utilizes the discrete time relations just described
and is summarized below for agiven sample framek.
1.) The control law calculates a commanded moment vector my. CARL calculates
the desired change in moment (Nm) by finding the difference between the com-
manded moment and the attained moment from the previous frame. The attained
moment is based on the current measured control positions and an assumed global-
slope control effectiveness matrix.
2.) CARL extracts the local control effectiveness matrix (B), based on the current
measured deflections and states and calculates the “delta’ constraints according to
Egs. 3.6aand 3.6b.
3.) CARL calculatesthe “delta’ control vector (Nu) such that the controls' rate lim-
itsand position limits at the end of frame k are not violated.
Since CARL alocatesachangein control deflections at every sampleframe, the notion of a
“zero deflection” origin in control space can be arbitrarily defined. For thisreason, the ori-
ginisshifted to the current control positionsfor every sample frame. The control effective-
ness matrix can then be calculated by linearizing about the new reference point. Thus, while
the control effectivenessdatais till treated aslinear, it is done so on amuch smaller local-
coordinate scale, resulting in better accuracy. Furthermore, the fact that the control effec-
tiveness data can be extracted for the current control positions at each sample frame allows
the inclusion of non-linear effects which often vary as the control positions change. The
ideaof updating the effectiveness matrix at each frameto account for the non-linearitiesdue
to controls was demonstrated in Figure 2.3.
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3.4 The Control Wind-Up Problem

Unfortunately, the Control Allocation with Rate Limiting algorithm introduces a
rather serious problem. Recall from Eq. 3.5 and the 3 steps previously highlighted in sec-
tion 3.3, that CARL only commands changes in controls based on desired changes in
moments. The commanded positions for each sample frame can then be extracted from the
definition of thefirst difference and the previous positions according to:

U, =u., *Nu, (3.7)

so that the control positions at some time t = nDt, are the summation of all of the com-
manded changesin controls for each frame:

Nu,
1 (3.89)

Qo5

U(t) = un = l"IO+

=~
1

Assume that theinitial commanded moment vector is zero so that the resulting initial con-
trol positions are zero. Equation 3.8a can then be written:

=1 (3.8b)

Equation 3.8b reveals an interesting problem. Consider some maneuver that begins at the
origin in moment space mq (requiring zero control deflectionsug), and moves along some
path P1 to another point in moment space m1, then returns to mg along some other path P2.
The change in control deflections for each frame will be a function of the current desired
change in moment, and the control positions at timet will be the summation of all the pre-
viously allocated changesin controls. Asaresult, if the two paths in moment space P1 and
P2 arenot identical, it is sufficient to conclude that the final control configuration at the end
of the maneuver will generally not return to ug.

On the other hand, identical pathsin moment space do not always guarantee that the
controls will return to their initial configuration. In some instances, a constraint may be
reached (either rate saturation or position saturation), causing the two pathsin control space
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to differ. In situations such as this, (even with identical paths in moment space), the prob-
lem still occurs. Obvioudly, the non-zero control deflections are arranged so that the total
moment contribution is zero, yet this problem (best described as control wind-up), is unde-
sirable since the controls may be producing unnecessary drag. In addition, the potential
exists for some controls to end up close to their limits, which may reduce the maneuvering
capabilities of the aircraft at some future time.

Thethree cases mentioned are demonstrated in the following examples based on the
F-15 ACTIVE with atrue airspeed of 400 ft/sec, an angle of attack of 8 deg, and an altitude
of 10000 ft. Figure 3.1 shows the commanded moments used in these examples. The top
plot represents a maneuver which moves from the origin in moment space to some other
point, and then returns to zero along the same path, indicated by the symmetry about thet =
10 sec. point. The bottom plot represents a time-asymmetric maneuver which begins and
ends at the origin in moment space, but takes a different path going out than coming back
in. The nature of these curvesis not important since they do not represent any real maneuv-
er. However, the resulting control time histories for all three examples produced identical
moments given in Figure 3.1.

Example 1 demonstratesthe ideal situation in which the two paths in moment space
coincide, with no saturation of controls. The resulting control deflections are shownin Fig-
ure 3.2, showing that for this case, the controls are commanded back to their origin.

For a second example, the same symmetric maneuver is used, but the throttle set-
ting has been multiplied by a factor of 2 so that the pitch thrust vectoring nozzles become
position saturated during the maneuver. The time histories are plotted in Figure 3.3. Note
that although the two paths in moment space coincide, the paths in control space do not
because of the position saturation in the thrust vectoring nozzles. As a result, some slight
control wind-up occurs and the control deflections do not return to zero.

Asafinal example, thetime-asymmetric maneuver is performed whose commanded
moments match those shown in the bottom plot of Figure 3.1. The asymmetric nature of
this plot is analogous to saying that the two paths in moment space differ. Therefore,
according to the relations described earlier, some control wind-up will occur. Thetimehis-
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tories of the control deflections for this maneuver are plotted in Figure 3.4, thus proving
this hypothesis.

This chapter has discussed the benefits gained by using the Control Allocation with
Rate Limiting algorithms as well as their limitations. The local frame-wise cal culations of
control effectiveness data allows for the inclusion of non-linear forces such as control-
induced drag, and increasesthe overall accuracy of the attainable moments. In addition, the
abilitiesto include rate limit capabilities and position limitsin the control constraints by allo-
cating discrete “delta’ controls provide obvious advantages to other control allocation
schemes, but the inherent control wind-up problems produce undesired side effects. These
problems are alleviated by using the redundant nature of the controlsto continuously drive
their deflections toward some desired configuration. This technique, known as control
restoring, is documented in Chapter 4.
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These two plots represent commanded moment time histories for
maneuvers which move from the origin in moment space to some non-
zero point and back to the origin. The top graph represents a scenario in
which the two paths are equal (indicated by the symmetry about the 10
second point), whereas the bottom plot shows a maneuver that takes

two different paths.
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Figure 3.2 Control Time Histories for an “Identical Path” Maneuver (No Saturation)
These plots show the control deflections for the symmetric maneuver
shown in Figure 3.1. Since the two paths in moment space are identi-

cal, and because no controls are saturated, the commanded deflections

return to their starting positions after the maneuver.
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Figure 3.3 Control Time Histories for an “Identical Path” Maneuver (With Saturation)
These plots show the control deflections for the symmetric maneuver
shown in Figure 3.1. Although the two paths in moment space are
identical, the throttle position has been increased for this example so
that the pitch thrust vectoring nozzles become position saturated during
the maneuver, resulting in non-zero deflections at the end of the
maneuver.
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These plots show the control deflections for the second maneuver
shown in Figure 3.1. Since the two paths in moment space are not
equal, the commanded control deflections do not return to their original
starting positions.



CHAPTER 4.

Control Restoring
Algorithms

In Chapter 3, a control allocation scheme was presented which operated in a dis-
crete time domain by allocating changes in controls based on some desired change in
moments for every sample frame. This agorithm proved to have significant advantages
over other allocation methods because of itsabilitiesto include non-linear control effective-
ness data and to allocate control deflections while avoiding saturation of both control rate
and position limits. Y et, due to the discrete nature of the algorithm and path dependencies
of the control time histories on the moment time histories, an undesirable control wind-up
problem could occur over time, resulting in non-zero control deflections for zero com-
manded moments.

The notion of zero control positions for zero commanded moments is somewhat
arbitrary since the origin can be defined at any desired deflection without affecting the dis-
crete control alocation problem. What is desired, however, is a method which drives the
controlsto amore suitable control configuration. In other words, if after some maneuver, a
control surface has become position saturated due to the wind-up problems of Control Allo-
cation with Rate Limiting, it would be advantageous to restore the control to some desired
position between its minimum and maximum limits. Of course, if the commanded moments
required the control to be saturated, then the restoring process would affect the behavior of
the aircraft and the pilot would have to compensate for the error introduced by the restoring
provided. Therefore, control restoring should be considered a minor priority task, and
should be used only when there are sufficient moment generating capabilities and control
rate capabilities to allow control reconfiguration without affecting the attained moments.

Fortunately, the control allocation algorithms presented herein are designed for sit-
uations in which there are redundant controls, (ie. more controls than degrees of freedom).
In mathematical terms, the control redundancy produces an under-determined system of
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eguations for the m controls and 3 moments. When linearized, the resulting system then
has an infinite number of solutions for any given vector of moments, providing that the
control effectiveness matrix has at least one non-singular 3 by 3 partition. From a control
alocation perspective, this statement is not entirely correct. Recall that the constraints
define the boundary of the Attainable Moment Subset (AMS), which represents moments
for which there is only one solution2. For moments on the interior of the AMS however,
there can be an infinite number of valid control deflection vectors. These can be found by
obtaining one solution, and then adding any vector of controlswhich liein the null space of
the control effectiveness matrix without violating any constraints. Therefore, when the
desired moments lie on the inside of the AMS, (indicating that there is some rate and
moment generating capability remaining after the desired moment rates have been accounted
for), the null space of the control effectiveness matrix can be utilized to drive the controls
toward any desired configuration in an effort to alleviate the wind-up problem. It should be
noted that because of the infinite possibilities of valid control solutions, there can be an infi-
nite number of restoring methods, and if oneis not careful, the restored control deflections
may not be any better than the original deflections. This chapter will discuss some of the
more practical restoring methods and will present the necessary algorithms needed in
obtaining such results.

4.1 Minimum-Norm Restoring:
(The Null Space Projection Method)

Recall that in Chapter 3, the wind-up problem was unacceptable because it had the
potential of driving the controls close to their position limits, thus reducing available
maneuvering capabilities at some future time. With this problem in mind, a procedure is
desired which allocates control s such that they remain as close to their zero deflection posi-
tionsasispossible. Thisobjectiveisachieved by requiring the 2-norm of the controlsto be
a minimum, and is accomplished by utilizing the right pseudo-inversel4 of the control
effectiveness matrix defined as:

8" =B"[B>8"]" 41
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By using this notion of the pseudo-inverse, the system of equations given by
B>u=m (4.24)

can be solved for u according to:

—_ pA
u=B">xm (4.2b)

where the vector u represents a solution to Eq. 4.2a whose norm is the smallest possible
value. The idea of using the pseudo-inverse solution to Eq. 4.2a provides a control alloca
tion scheme in its own. However, an agorithm of this type would not be as efficient as
direct allocation since it would not guarantee the use of the controls' maximum moment
generating capabilities while avoiding control saturatior¥. Therefore, an agorithm is
desired which first alocates controls based on the direct allocation theory described in
Chapter 3 to achieve the desired moments, and uses any remaining rate capability to contin-
uously drive the controls toward their minimum-norm solution without affecting the
attained moments obtained from direct allocation. Thistype of restoring is outlined as fol-
lows:

1.) Based on the current moment commands my and the global (slope at the origin)

control effectiveness matrix B, find the minimum-norm solution of controls up

based on the pseudo-inverse in Eq.. 4.2b.

2.) Calculate the difference in control deflections from the pseudo-inverse solution

and the control positions obtained in the previous frame according to:

Nup = Up - Uk-1 (4.3)

Note that substituting Nup into Eq. 4.2a produces the current change in desired
moment Nmy used by the control allocation agorithms.

3.) Find the difference between the former change in controls and the change in
controls given by the control allocation algorithms:

Nu’ = Nup - Nuy (4.4)

Thus, by the definitions of Nu, and Nuy, and by assuming that the control effec-
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tiveness matrix is constant with respect to control position, the difference Nu’ sub-
stituted back into Eq. 4.2a, resultsin avector of zeros, and therefore liesin the null
space of B.

4.) The pseudo-inverse equation used in step 1 has no knowledge of the control
constraints and will generally produce results which, when combined with the alo-
cated control vector in step 3, give aNu’ vector which violates either arate limit or
position constraint for one or more controls. Therefore, it isimportant to scale this
vector as necessary so that no individual control surface violatesits constraint. This
scaling step can be easily accomplished by shifting the origin in control space after
the alocated control vector has been found using:

(4.5a)
(4.5b)

and applying a variable scale factor K to the Nu’ vector so that none of the shifted
congtraints are violated. The method for finding K involves inspecting each restored
control in the restoring vector Nu’, and proceeding as follows:
i.) for every Nu' greater than its shifted maximum constraint Nu’ ya, find
theratio:

"~ Nu (4.69)

i.) for every Nu' less than its shifted minimum constraint NU’ in, find the
ratio:

"~ Nu (4.6b)
iii.) The scaling factor K, isthen the minimum of these evaluated ratios:

K =min(r,) (4.60)

5.) Asafinal step, the commanded control vector for the current frame is built up
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according to:
Uk = Ug.1 + Nuy + KNu’ (4.7)

Equation 4.7 will be called the restoring equation. Two key aspects of this equation
should be evident. First, by ignoring the last term on the right side of the equality (the
restoring term), the equation reduces to the same form as Eq. 3.7 (basic control allocation
with rate limiting). Second, the restoring term takes into account the difference between the
allocated changein controlsand the required change needed to approach the pseudo-inverse
solution, so that during maneuvering flight, the controls are continuously driven toward
their minimum-norm configurations, provided that the scale factor K, never becomes zero.
In static flight, the moments are not changing, and the alocated changesin controlswill be
zero. In this case, the restoring term represents the difference between the minimum-norm
solution and the current control configuration. The controls will then be commanded to
move until the restoring term is zero, implying that the controls have reached their mini-
mum-norm configuration.

While this restoring technique initially seemed to fix the control wind-up problem, it
was later discovered that the algorithm would fail under certain situations. Recall that the
pseudo-inverse solution calculated in step 1 usesthe control effectiveness matrix linearized
about the zero control positions (global slope data), whereas the allocated control vector
uses local control effectiveness data as a function of current control position. In generadl, if
the non-linear effects with respect to the controls are significant, then the restoring vector
calculated in step 3will not liein the null space of thelocal control effectiveness matrix and
the restoring process will result in errors between the commanded and attained moments.
The assumption of constant control effectiveness with respect to control position is gener-
ally adequate for small deflections, yet, under circumstancesrequiring large deflections, the
underlying theory of the null space projection method breaks down. This problem and the
proposed solution will be presented later in this chapter. For now however, the discussion
of restoring techniques will continue in the chronological order in which they were imple-
mented.
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4.2 Minimum-Drag Restoring

Theidea of including control generated forces as well as moments when allocating
controlswasfirst introduced in reference 2. Y et, because of the globally linear assumptions
inherent in these early algorithms, it did not make sense to include such forces because their
effects were significantly more non-linear across the controls’ deflection ranges than the
moment effects. Asan example, thedrag incrementsdueto the F-15 ACTIVE | eft stabilator
were plotted in figure 2.5. For that particular flight condition, the control-induced drag was
aminimum for a10 degree trailing edge up deflection, and increased as the control position
strayed from this minimum-drag point. By taking these characteristicsinto consideration, it
would be impossible to prescribe a non-zero global slope to account for the drag effective-
ness of the left stabilator. However, by using the Control Allocation with Rate Limiting
(CARL) agorithms, which make use of locally linearized data about smaller frame-wise
deflection limits, and assuming that these frame limits are suitably small, then the non-
linear effects can be included since the assumptions of linearity become more valid.

Minimizing control-induced drag is certainly a design consideration when devel op-
ing control allocation or control mixing algorithms. However, the idea of using minimum-
drag control restoring is based on theintuition that such deflections produce a*“clean” con-
figuration. Such configurations are normally the case for low to moderate angles of attack
and angles of side-dlip. But this technique begins to break down as these angles become
large in magnitude since the minimum control-induced drag deflections tend to migrate
toward their position constraints. In cases such asthis, it may be more beneficia to revert
to a minimum-norm restoring algorithm instead. An example illustrating this fact will be
presented towards the end of this chapter.

By including drag in the control allocation problem, the control effectiveness matrix
defined in Chapter 3 gets augmented with a 4th row corresponding to each control’ s effect
ondrag. That is,

G

By =g
J

(4.8)
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Thus, the augmented B matrix now represents a transformation from control space to the
Attainable Objective Subset (AOS) whose coordinates consist of the 3 control-induced
moments plus drag. The mathematical problem of finding the AOS geometry is practically
the same as in the three-moment problem and its associated Attainable Moment Subset
(AMYS) described in references 2 and 3. The difference between the two isthe increase in
the dimensionality of all of the matrices and vectorsrequired to generate the 4-dimensional
AOS. The actual allocation of controls however, is dlightly different due to the fact that the
4th objective (eg. drag) is not specified explicitly like the three aircraft moments, but ispre-
scribed to be minimized. A procedurefor an allocation scheme of this nature with examples
was described in detail in reference 5. To motivate this discussion, the direct control alloca-
tion problem isrevisited.

Direct control allocation, as it pertains to a vector space of objectives, is accom-
plished by first determining the geometry of the AOS for the given controls’ effectiveness
and physical constraints, and then cal cul ating which one of the bounding facets the current
objective vector points toward. The coordinates of the objective vector’ s intersection with
one of these facets represents the maximum attainable value in that direction in objective
space, and can be transformed back to control space to give the unigque solution of admissi-
ble controls associated with that intersection. These controls are then scaled to achieve the
desired objective magnitude.

In the current discussion, the objectives are the changes in the three aircraft
moments and the desired change in drag. Define the objective vector as:

RNc={Rc,,Nc, ¢, Rc,}' (4.9
If the desired objective vector is specified as NC = {0, 0, 0, -1} T, then direct allocation
will first find the intersection of thisvector with the AOS, and if the scaling step is omitted,
will return an alocated change in controls which produces no change in moment coeffi-
cients, but produces the greatest reduction in drag coefficient. Recall that the constraints
imposed on Nu are the most restrictive of either the controls' rate limits or their position
limits. Assuming the former is the more restrictive, then the controls will move at their

maximum rate toward their minimum drag configuration.
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The vector {0, 0, 0, -1} T certainly demonstrates the minimization capabilities of
direct allocation, but it does not satisfy any arbitrary desired moment commands. The vec-
tor {NC;, NCp, NG, -1}T does not solve the problem either since al four components
will have to be scaled to the boundary of the AOS. What is required then is a method that
first calculates aNu which yields the desired moment commands { NC;, NC,,, NC,} T for
an unspecified NCp, relocates the origin of the AOS to this point, and then allocates a fur-
ther Nu’ satisfying the minimization vector {0,0,0,-1} T. That is,

1.) Solvethe classical three-moment problem from:

~ ~ ~ ~ ~ ~ T
Nm, =B Nu,;Nm, ={NG,NC,,NC} (4.10)
subject to the constraints Nupmin £ Nu £ Numa (k subscripts dropped). Note that
thisis no different from the CARL algorithm presented in Section 3.2.

2.) Shift the origin in control space to the allocated vector of controls Nuy. This

step also requires that the constraints be shifted according to:

min min (411a)
NUnay = Nma - NU (4.11b)
3.) Solve the 4-objective problem on the boundary of the AOS from:
~ _ ~ v . ~ _ _ T
NC =By, Nu;NC={0,0,0, - 1} (4.12)
subject to the shifted minimum and maximum constraints defined above.
4.) Finally, apply the restoring equation:
Uk = Ug-1 + Nu + KN’ (4.13)

The 4-objective problem solved in step 3isin fact adirect alocation problem. Therefore,
the limitsimposed on the controls by either their rate capabilities or position constraints are
guaranteed not to be violated. The purpose of the scaling factor in step 4 is to account for
the slope reversals in drag effectiveness about the minimum-drag positions, which gener-
ally cause the controls to oscillate about such positions. Thisfactor can be set to some value
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between 0 and 1, where O results in no restoring, and 1 causes the controls to use al of
thelr remaining rate capabilities for the restoring process.

Additional trendsto note are that small values of K tend to decrease the amplitudes
of the minimum-drag control oscillations at the price of obtaining a slower convergence to
the minimum-drag configuration. Second, the algorithm as presented does not purport to
converge to a minimum drag position for every frame. An optimization problem of this
nature would be quite time consuming and impractical since the minimum-drag configura-
tion for one frame may be obsolete in the next. Instead, it drives the controls toward their
minimum-drag deflections at each frame. Only in cases of static moment commands for
extended periods of time will it actually achieve aminimum drag configuration.

As mentioned in section 4.1, the null space projection method proved to be atech-
nology demonstration only. Because of an invalid assumption, its use had to be limited to
relatively small magnitude deflections and as a result, it was not well suited for any real-
timeimplementation. The minimum-drag restoring described above, although providing the
benefits of being able to include non-linear control effectiveness data, utilizes a 4-
dimensional direct allocation method which generally requires more computational time.
These problems led to the development of more efficient algorithms that have the speed
benefits associated with the null space projection method, and the non-linear capabilities of
the minimum-drag 4-dimensional allocation scheme. Such methods will be generalized as
non-linear restoring technigues and may include non-linear minimum-norm restoring, mini-
mum-drag restoring, or any other restoring objective that can be expressed in terms of cur-
rent control deflections.

4.3 Non-Linear Restoring Techniques

For the minimum-drag restoring mentioned before, a4-dimensional direct allocation
method was originally employed. Although this agorithm performs exceptionally well, it
may be considered overkill for such aminor priority task. That is, during a maneuver, it is
most important that the commanded moments be obtained if possible. Direct allocation
methods ensure this by using the controls' maximum capabilities in generating moments.
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What is not so important however, is how the controls are restored to some desired config-
uration. For instance, it is not necessary that the controls take advantage of their maximum
capabilitiesin reducing drag to get to some minimum-drag configuration, but only that they
tend toward this configuration. Therefore, arestoring algorithm will be used that may not
utilize the best combinations of controlsto decrease drag, but saves val uable computational
time. The resulting algorithm is a hybrid of the null-space projection method and the 4-
dimensional alocation method in that it utilizes the pseudo-inverse solution based on the 4-
dimensional local dope control effectiveness matrix. It is summarized below:
1.) Solvethe classical three-moment problem from:

RNim, =B, *Nu,Rm, ={Ng,Kc,,Rc}’ (4.14)
subject to the constraints Numin £ Nu £ Numay (k subscripts dropped)..
2.) Augment the control effectiveness matrix with a 4th row containing the objective
datato minimize,
3.) Solve the 4-objective problem using the pseudo-inverse of the augmented B
matrix for

NC =B Nu;NC={0,00,- 3" (4.15)
Note that the structure of the objective vector will result in a solution which liesin
the null space of the original 3 by m control effectiveness matrix, but movesin the
direction for which the objective decreases.
4.) Since the pseudo-inverse solution has no knowledge of control constraints, they
must be scaled in the same manner that was done in step 4 of Section 4.1 (K).
5.) To decrease control chattering about their minimum-objective configurations, an
additional minimization factor must be applied asin step 4 of Section 4.2 (K.y).
6.) Based on the previously obtained control positions uy.1, the allocated control
vector Nuy, the restoring vector Nu’, and the two scaling factors Kp (from step 3)
and K, (step 4), restore the controls according to:

Uy = Uy, +Nu, +K <K Nu (4.16)
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The proceduresfor thisa gorithm remain the same regardl ess of the restoring objec-
tive used. The only difference liesin the type of data used to generate the 4th row of the B
matrix in step 2. For minimum-drag restoring, this data is the control effectivenessin drag
that can be extracted from the aerodynamic database. For minimum-norm restoring, this
row can be thought of as the control derivatives of some continuous function whose mini-
mum occurs at zero. In the current implementations, thisfunction isthe value of the control
positions (converted to radians) raised to the second power:

_®p 5
180 (4.172)
so that the actual effectiveness data used for each 4th row entry is:
fF_p
—_— xq
Ty 0 (4.17b)

The purpose of the degreesto radians conversionin Eq. 4.173, is so that the 4th row of the
control effectiveness matrix contains entries that are of the same order of magnitude asthe
other control effectiveness entries. Of course, some implementations may be such that not
al of the controls can be expressed as deflections. In cases such as this, a different objec-
tive function may haveto be defined. The following section will demonstrate the effects of
control restoring using this algorithm.

4.4 Effects of Control Restoring

In Chapter 3, a maneuver was demonstrated which originated at the origin in
moment space, moved to some other point along a specified path, and returned back to the
origin along a different path. Due to the path dependent nature of the control deflections
with the moment commands, this maneuver resulted in non-zero control deflections for
zero commanded moments. For reference, the control time histories are reproduced herein
Figure4.1.
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Figure 4.1 Control Histories For a Time-Asymmetric Maneuver (No Restoring)
This figure shows the control deflections for the maneuver depicted in
the second plot of Figure 3.1 with no restoring, and demonstrates the
control wind-up problem discussed in Chapter 3.
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The fact that the controls are non-zero after the maneuver is not entirely undesirable,
since the controls could possibly result in some symmetrical configuration. As an example,
drooping the ailerons during power approach is not uncommon, even though for this flight
regime the required moments are for the most part constant. What is undesirable about the
wind-up problem however, isthat the controls are not guaranteed to be symmetric for static
conditions. In Figure 4.1, the rudders wind up to a6 degree trailing edge left deflection,
whereas the yaw thrust vectoring nozzles remain deflected approximately 4 degrees to the
right, most likely to cancel the yaw produced by the non-zero rudder deflections. In addi-
tion, there are also some amounts of differential deflection remaining in the canards, stabi-
lators, and ailerons even though the commanded and resulting moment vector is zero.

Figure 4.2 compares the attained moments with the commanded moments for the
same time-asymmetric maneuver introduced in Chapter 3, but with minimum-norm restor-
ing (first plot) and minimum-drag restoring (second plot) enabled. The purpose of these
plots is to demonstrate the fact that these restoring techniques, while producing signifi-
cantly different control time histories than the standard CARL algorithms, result in deflec-
tions which lie in the null space of the control effectiveness matrix. In other words, the
deflections produced by the restoring process do not contribute to the overall moments pro-
duced in the previous direct allocation steps. The resulting sets of control time histories for
the different restoring methods are shown in Figures 4.3 and 4.4.

Figure 4.3 represents the control deflections for the minimum-norm restoring exam-
ple. It should be noted that these deflections are generally smaller in magnitude than those
with no restoring shown in Figure 4.1. This result is no surprise since the objective func-
tion implemented for this scheme s prescribed to have aminimum at zero deflection for all
controls. It is also evident that this type of restoring will eventually produce zero control
deflections for zero commanded moments.

Figure 4.4 represents the control time histories for minimum-drag restoring. Thisis
one method which does not necessarily command zero deflections for zero moments. How-
ever, because thefinal flight condition for the sample maneuver issymmetric, it commands
symmetric deflections. All of the controls which affect the lateral and directional axes only

(eg. ailerons, rudder, and yaw thrust vectoring), are restored to their zero positions.
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Figure 4.2 Commanded Moments and Attained Moments for Control

Allocation with Restoring

These plots compare the commanded moments with the actual attained
moments for control alocation with minimum-norm restoring (top),
and control allocation with minimum-drag restoring (bottom). The fact
that the attained moments coincide with the commanded moments
proves the idea that control restoring is performed within the null space
of the control effectiveness matrix, so that it has no effect on the con-
trol-generated moments.
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Figure 4.3 Control Histories For a Time-Asymmetric Maneuver

(Minimum-Norm Restoring)
This figure shows the control deflections for the maneuver depicted in
Figure 4.2 with minimum-norm restoring. Note that the control deflec-
tions are generally smaller in magnitude, and that they return to their
zero deflections after the maneuver.
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Figure 4.4 Control Histories For a Time-Asymmetric Maneuver
(Minimum-Drag Restoring)
This figure shows the control deflections for the maneuver depicted in
Figure 4.2 with minimum-drag restoring. In this case, the controls do
not necessarily return to their original positions, but return to their
minimum-drag configurations for this particular flight condition.
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Of course, if thefinal flight condition was not symmetric (perhaps asteady side-dlip condi-
tion), then these controls would not be commanded to zero because their minimum drag
positions would change. The longitudinal controls (canards, stabilators, and pitch thrust
vectoring) are restored to non-zero positions in order to minimize their respective incre-
ments in drag, while at the same time, producing control-induced moments which cancel
each other out, so that the overall moment contribution is zero.

From the example in Figure 4.4, Minimum-Drag restoring is seen as a method
which generally does not command zero controls for zero moments. One should be careful
when implementing these types of algorithms since there is always the possibility that the
restored controls will not be any more advantageous than the unrestored controls. A funda-
mental problem with minimum-drag restoring is the fact that at some flight conditions, the
minimum control-induced drag configurations may require the controls to be close to their
physical limits. This presents a disadvantage to the pilot since it may inhibit the maneuver-
ing capabilities of the aircraft at some future time. As a demonstration, the controls asso-
ciated with astatic flight condition typical of ahigh angle of attack, level flight, trim condi-
tion are shown in Figure 4.5. For this example, theinitial conditions were set for a 15 deg.
angle of attack, 270 ft/sec velocity and an altitude of 10000 ft. Theinitia control deflections
were set by direct allocation using global slope effectiveness data and physical position
constraints for a static control-generated pitching moment coefficient of approximately
0.02. A simulation was then run for 8 sec with minimum-drag restoring enabled. Since the
total commanded moment vector remained constant throughout this simulation, CARL did
not allocate controls, and the only changes in commanded control deflections were direct
results of the restoring process only. From this figure, a rather serious problem with mini-
mum-drag restoring isreveaed, in that some of the controls have been driven to their posi-
tion limits. Itisverified in Figure 4.6 that for this particular flight condition, the minimum-
drag configuration for the controls requires rather large trailing edge up deflections. In
cases such asthe ailerons and thrust vectoring nozzles, the minimum actually occurs at the
physical position limits.

It is also interesting to note that the slope of the drag effectiveness for the pitch
thrust vectoring nozzles remains positive throughout the entire deflection range.
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Figure 4.5 Minimum-Drag Restoring for a Static Flight Condition
This figure shows the control deflections for a static flight condition at
15 degrees angle of attack, and 270 feet per second at 10000 ft. Note
that for this flight condition, minimum-drag restoring drives the pitch
thrust vectoring nozzle to its deflection limit (-14.2°).
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Figure 4.6 Drag Increments Due to Symmetric Control Deflections
These plots show the increments in drag due to symmetric stabilator,
symmetric aileron, symmetric canard, and symmetric pitch thrust vec-
toring for a flight condition of 15 deg angle of attack, 0.25 Mach

number, and 10000 ft altitude.
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Thus, at the instant when the thrust vectoring nozzles reach their position limits, the restor-
ing agorithm is still commanding negative changes in deflection in order to continue
decreasing drag. However, because the shifted constraint in this direction is zero, the calcu-
lated scaling factor becomes zero, so that the remaining controls are prevented from being
restored toward their minimum drag configurations. This example representsaconditionin
which the large magnitude deflections may be a high price to pay for trying to achieve a
minimum-drag control configuration..

In summary, Chapter 3 introduced the idea of using a frame-wise direct control
alocation scheme in order to include non-linear control effects and to compensate for their
deflection rate capabilities as well as their position limits. For this reason, the algorithm
was named Control Allocation with Rate Limiting (CARL). This chapter has built upon the
CARL agorithm by presenting a restoring technique which takes advantage of the non-
linear control effectiveness data to drive the controls toward some desired configuration,
thus, aleviating the control wind-up problem which would otherwise occur. The building
blocks for abasic CARL algorithm are now complete. The next two chapters will discuss
further enhancements which are readily implemented. Chapter 5 will present the idea of
control reconfiguration in response to a failure, and Chapter 6 will discuss the modifica-
tions necessary when control actuator dynamics are introduced.
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CHAPTER 5.

Control Allocation with
Adaptive Failure Control

In the age of modern aircraft and fly-by-wire control systems, the inclusion of
mechanical backup systems for handling instances of control failures is becoming more
uncommon. As a result, pilots rely on the failure immunities designed into these systems
and be assured that, should such failures occur, the aircraft can maintain adequate flying
qualitieslong enough for asafe gjection or an emergency landing. One of the more obvious
advantagesto control allocation schemesistheideathat once acontrol failureisdetected, it
can be dropped from the vector of controls to alocate, and the remaining controls can be
reconfigured to obtain the desired moments. The commanded moments will still be
attainable providing that the remaining control surfaces have enough control power, and
that the remaining control effectiveness matrix defines a 3-Dimensional moment space (ie.
the control effectiveness matrix has at least 3 linearly independent columns). The aircraft
will then be able to recover from such failures with perhaps a minor degradation in
performance and handling qualities. This chapter discusses the agorithms specific to
Control Allocation with Rate Limiting required to provide a reconfigurable control
allocation scheme.

5.1 Failure Immunity and Failure Safety Requirements

Flying qualities specifications give general guidelinesfor designing failure-immune
and failure-safe flight control systems so that no subsystem failure results in a dangerous
environment to the pilot. Reference 15 outlines these guidelines from MIL-F-9490D as
follows:

“Failure immunity requires that no failure, not extremely remote, can result in any
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of the following before apilot or safety device can react:
1) Flutter, divergence, or other aeroelastic instabilities within the permissible
flight envel ope of the aircraft, or astructural damping coefficient for any critical
flutter mode below the fail-safe stability limit of MIL-F-8870.
2) Uncontrollable motions of the aircraft within its permissible flight envel ope,
or maneuvers which generate limit airframe loads.
3) Inability to safely land the aircraft.
4) Any asymmetric, unsynchronized, unusual operation or lack of operation of
flight controls that produces operation below FCS Operationa Statelll.
5) Exceedence of the permissible flight envelope or inability to return to the
service flight envelope.”

The purpose of these guidelines is to ensure that any failures not considered extremely
remote, do not result in an in-flight hazard for the pilot. In most cases, the flight control
computer must constantly test for potential hazard-creating failures and react to them
appropriately without any input from the pilot. Some extreme circumstances, however,
may require that the pilot deactivate the failed controls or subsystem manually, or override
them with the available cockpit inceptors.

In addition to the 5 previously mentioned specifications, the military guideline also
requires that failures due to unforeseen natural occurrences like lightning strikes, or other
induced environments such as enemy fire, do not result in flying qualities below level 3 (ie.
the aircraft will still be able to be controlled safely, but it may require excessive workload
by the pilot and may not be able to adequately perform its mission). In following these
guidelines, many modern aircraft control systems are designed with redundant subsystems
to include fail-operate, fail-safe operation. That is, after one type of failure (electric or
hydraulic), the subsystem in question remains operative, and after a second similar failure,
the subsystem revertsto a safe mode. In the case of an actuator for instance, this safe mode
may require that the control surface be free to move as the hinge moments change, and is
commonly referred to as adamper model5. While this philosophy handles internal failures
in the actuators, electrical systems, or hydraulic systems very well, it does not provide an
adequate solution for cases in which a control surface is externally damaged due to an

60



Chapter 5

enemy encounter or natural occurrence. These situationstypically require the pilot to either
disable the offending system, or in the case of physical damage due to enemy fire, to
manually override the effects due to the failure.

For this reason, the idea of reconfigurable control allocation schemes has become
an important design consideration. As an example, in the event of physical damage to an
aileron (leaving it either inoperable in some non-zero position, or resulting in a complete
loss of the control surface), the control law must be able to recognize the failure. It can then
send thisinformation to some control allocation scheme, which can then ignore the control
in question and continue allocating the remaining controls. In allocation schemes which
calculate the required controls based on moment commands, the remaining functional
controls are alocated to satisfy the pilot commanded inputs, and the failed control(s) will
produce an error between the obtained moments and commanded moments. This error
would then appear to the control law as a disturbance and would have to be compensated
for accordingly.

The Control Allocation with Rate Limiting (CARL) algorithm allocates changesin
control deflections based on some desired change in moments. The desired change in
moment vector is found according to the error between the obtained moments in the
previous sample frame and the commanded moments in the current sample frame. As a
result, aself-correcting algorithm is achieved in which the effects due to the failed controls
are canceled. Thisfact will be demonstrated in the next section with asimple, hypothetical
example.

5.2 Control Reconfiguration for the CARL Algorithms

The algorithms used to handle control alocation with failed control surfaces are
identical to those devel oped in Chapters 3 and 4 with some additional “book keeping” logic
to keep track of the functional and non-functional controls. The responsibility of control
alocationisto utilize thisinformation, which is assumed to be given by the control law, to
adjust the size of the control effectiveness matrix, the number of controls, and their
minimum and maximum constraints accordingly.
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The key concept which allows CARL to adapt to failuresisthe fact that it allocates
changes in controls based on some desired change in moments. That is, given a local
control effectiveness matrix B3xm, as a function of aircraft states and control deflections,
and a desired change in moment vector Nm, a m -Dimensional control vector Nu can be
found such that

Nm = BNu (5.1)

subject to the controls’ minimum and maximum constraints. The Nm input to the control
allocation software is based on the difference in the current moment commands produced
by the control law mck, and the allocated moments from the previous sample frame mg.1.
The moment vector mgk.1, is generally unknown and must be approximated using either
global effectiveness data referenced from the controls’ origins or secant-slope data as
discussed in Chapter 2, and the alocated control positions, ugk-1, such that,

Mak-1 = BUgk-1 (5.2

In situations where a control surface may be damaged to the point where its position cannot
be measured, theresulting aircraft accel erations could be sensed and converted into attained
moments.

Under ideal circumstances, where the control effectiveness data is assumed to be
exact, the allocated controls produce the commanded moments exactly, and the Nm vector
is strictly aresult of some dynamic process. A failed control surface (either a hardover,
jammed actuator or physical damage caused by enemy encounters), would then show up as
an error between the commanded moments and attained moments.

Asasimple example, consider an aircraft in atrimmed flight condition, and assume
acontrol faillure is detected in the k-1 frame. This information is passed on to the control
alocation software, and the controls are reconfigured as necessary to achieve the
commanded moments. Divide the total moment vector for thisframe, my_1 into two parts;
one being the part that is acquired with control allocation, mgk.1, and the other being the
unknown moment vector induced by the failed control(s), mfk.1. As time proceeds on to
the kth frame, the commanded moment vector remains constant (because of the static flight
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condition). Furthermore, because the control effectiveness data is assumed to be exact,
Mak-1 = Mck-1 = Mck. The control allocation algorithms find a desired change in moment
for the current frame k, according to:

~

Nm, = Mck - Mk-1 (5.3a)
= mck - (Mak-1 + Mfk-1) (5.3b)
= -(Mfk.1) (5.3c)

Thus, even in the trimmed case, there would exist a non-zero Nmy, which the alocator
would use to offset the effects of the failed controls and drive the error to zero.

In general, the aircraft may be involved in some maneuver, and the control
effectivenessdatawill not be known exactly. Y et, this control allocation algorithm will still
cancel the effects of any failed controls. In this case however, the desired change in
moment vector contains the terms needed to cancel the errors due to the failed control(s),
the error associated with the control effectiveness data, and the necessary changes in
moments required to perform the desired maneuver.

5.3 Control Allocation with Adaptive Failure Control:
An Example

Thissectionwill demonstrate the ability of Control Allocationwith Rate Limitingto
reconfigure the controls in response to a fallure. In this example, the previous time-
asymmetric maneuver depicted in the second plot of Figure 3.1 is used to provide the
inputs that would normally be calculated by some control law with adaptive failure logic.
Theflight conditionsfor this maneuver areidentical to those used in Chapters 3 and 4 (400
ft/sec, 8 deg angle of attack, 10000 ft altitude). At t = 3 sec, atrailing edge up hardover is
simulated in the left aileron. The failure indicator for this particular control surface is
assumed to be given by the control law and is passed to the CARL algorithms for
reconfiguration.

Figure 5.1 shows the control time histories for this simulation using the minimum-
norm restoring technique described in Chapter 4.
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Figure 5.1 Control Time Historieswith a Control Failure
These plots demonstrate the control reconfiguration capabilities of
Control Allocation with Rate Limiting in response to atrailing edge up
hardover in the left aileron. The moment commands followed were
those associated with the time-asymmetric maneuver introduced in

Chapter 3.
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Figure 5.2 Moment Time Histories with a Control Failure
This plot shows that with the control failure depicted in Figure 5.1,
Control Allocation with Rate Limiting is still able to follow the
commanded moments very accurately. The error between the
commanded and attained moments at the instant of the failure are
insignificant when compared to the magnitudes of the commanded
moments and are therefore difficult to analyze in this figure. A more
detailed error analysisis presented in Chapter 6.
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In contrast to the results presented in Figure 4.3 however, the remaining controls are
required to have significantly larger magnitude deflections, (some of the controls actually
become position saturated). This result is expected since the left aileron is constrained to
remain at its negative position limit. In addition, the failure requires that the controls be
used differentialy after the maneuver to cancel the rolling and yawing moment effects of
the left aileron.

Figure 5.2 compares the commanded moments with the attained moments. At the
instant of control failure, thereisasmall error spike in all three moment axes. The error is
due to the fact that the control allocation routines only receive the position of the control
surface at the beginning of each frame and have no way of extrapolating its location to the
end of the frame. However, once the left aileron reaches its physical position limits, the
errors are canceled by the “delta’ moment allocation scheme. It isimportant to emphasize
that this ssimulation was performed without a control law, and the error dynamics are
therefore aresult of the discrete allocation process only. Implementation of a control law
may provide some additional compensation to further improve the error dynamics.

Another interesting aspect of Control Allocation with Rate Limiting isrevealed in
Figure 5.1. Because the |eft aileron is rate saturated, intuition would suggest that the right
aileron should be rate saturated as well in an effort to cancel the effects due to the left
aileron. However, the right aileron is allocated at a noticeably slower rate. One of the
reasons is the fact that al of the remaining controls are collectively utilized to cancel the
effects due to the failure so that the right aileron is generally not required to travel at its
maximum rate. Thisresult reemphasizesthefact that Control Allocation with Rate Limiting
utilizes the most efficient capabilities of the controls in generating moment rates. Another
contributing factor arises from the effects that actuator dynamics have on the control
alocation system. These effects will be presented in more detail in Chapter 6.
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Control Allocation and
Actuator Dynamics

Until now, a major assumption in developing the Control Allocation with Rate
Limiting schemes was that the control deflection commands, which were calculated by
adding the allocated changes in controls to the previous frame's control positions, could
always be obtained. This assumption was used because the allocated changes in controls
were guaranteed not to violate any rate or position limit constraints. The position limits
were taken as the absolute minimum and maximum control deflections alowed for any
particular flight condition, and could be imposed by either the controls’ physical limits or
software limits specific to some flight condition. Likewise, the rate limits were imposed by
using the maximum rate for both positive and negative deflection directions. Thus, if the
rate limit capabilities resulted in the most restrictive constraint, then the largest magnitude
command that control allocation could produce would be obtained by deflecting the control
at itsmaximum rate for the entire sample period. What was not modeled in these algorithms
however, was the fact that the control surfaces are manipulated by either hydraulic or
electric actuators, and constitute a dynamic system which cannot produce the infinite
accelerations that were assumed with control alocation. In other words, if a control was
initially at rest, and later commanded to move at its maximum rate in some direction for a
specified amount of time t, it would gradually build up speed until it reached the
commanded rate. The final position of the control would therefore not be the same as that
calculated using the commanded rate and the time during which it was instructed to move.
Thischapter will introduce the effects of actuator dynamicson Control Allocationwith Rate
Limiting and present the necessary modifications required to compensate for these
dynamics.
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6.1 The Actuator Model

In most modern aircraft, the need for mechanical linkages to transfer pilot
commands into control surface deflections has been eliminated. Some of the more obvious
reasons for discarding the old mechanical control systems involve the weight savings and
the ssimple fact that most tactical aircraft are designed to be either unstable or nearly
unstable, requiring a digital computer for stability and control augmentation. In addition,
when considering that such aircraft can have as many as 20 aircraft controls for 3 primary
cockpit inceptors, a mechanical linkage system would be very difficult to design and very
impractical in terms of weight, cost, and functionality. As aresult, modern aircraft control
surfaces are typically driven by either hydraulic, electric, electro-hydraulic, or any other
variance of the so-called actuator.

The dynamics of one of the more “simple’ hydraulic actuator models described in
reference 16 are actually quite complex. This particular example modelsthe spool valve and
hydraulic ram components of the actuator based on flow rate and hydraulic pressure
relations. In addition, the control surface and actuator piston are treated collectively as a
spring, mass, and damper system. Thus, even this ssmple model describing the
actuator/control surface system may contain as many as 4 dynamic states. For practical
purposes however, these dynamics are often ssmplified to produce a simple first-order lag
filter16,

The current implementation of the CARL algorithms assume a first-order lag
actuator model with non-linear el ementsto account for actuator position and rate saturation.
The differential equation for thismodel is given by:

u= }(uc - u)
t (6.1)

where u represents the instantaneous control position, uc represents the commanded
position, and t represents the actuator time constant. The block diagram model with
saturation elementsis shown in Figure 6.1.
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Figure 6.1 A First Order Actuator Model
This block diagram represents a first order mathematical model for an
actuator with non-linear elements for rate limiting and position
limiting.
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6.2 The Actuator Response
One of the advantages of using the ssimple dynamic model given by Eg. 6.1 and
depicted in Figure 6.1 is that an analytical expression for the position with respect to time

can readily be found. By assuming zero initial conditions and a commanded step input of
magnitude uc, the actuator response follows:

U(t) = Uc(l- e—t/t) (62)

provided that the actuator does not become rate or position-saturated. Eq. 6.2 can then be
differentiated with respect to time to find the actuator velocity as a function of time.

t/t

a(t) = & f
6.3)

which is the same result obtained had Eq. 6.2 been substituted directly into Eq. 6.1.

Now that the time response of the actuator is known, afew important observations
should be made. First, Eg. 6.1 reveds that the actuator rate at each instant in time is
proportional to the difference between the commanded position and the actual position.
Since the initial position is assumed to be zero here, the initial difference is in fact the
magnitude of the command. After thisinstant, as the position approaches the commanded
signal, the instantaneous rates approach zero. These trends are easily verified through
equations 6.2 and 6.3. A generic response for an actuator of this type is shown in Figure
6.2 to graphically depict these trends. Note that had the actuator vel ocity remained constant
throughout time (as was previously assumed in control allocation), then it would have
traveled along the dashed line representing the initial slope (given asug/t), and would have
reached the steady-state commanded position sooner.
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Figure 6.2 Time Response of aFirst-Order Actuator
This plot shows the general shape of the position response for the
actuator model shown in Figure 6.1 with no position or rate saturation.
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6.3 The Actuator Response For Discrete Signals

The dynamic equationsfor afirst-order actuator model have been presented and the
response to a commanded step u; has been analyzed for the continuous-time system.
Control laws on modern aircraft however, are implemented in digital computers which
sample data and send control signals to the actuators at discrete intervals of time. One
unigue feature of these so-called sampled data systems is that between samples, the
continuous plant (or aircraft) runsin an open-loop environment whose inputs are supplied
by adigital to analog (D/A) device. The purpose of these devicesisto take the last discrete
input calculated by the flight control computer and perform some type of extrapolation so as
to provide a continuous signal to the aircraft between samples. One of the most common
types of D/A devicesisthe zero-order hold, for which the discrete inputs are held constant
over the sampling interval. Thus, the continuous system sees a series of finite step inputs.

Recall that the Control Allocation with Rate Limiting algorithm commands control
positions based on their previous positions and some allocated change in the control vector,
which may or may not include a restoring term to drive the controls toward a desired
configuration. For this discussion, the allocated control vector and the restoring vector will
be convolved into one variable, signified by NU such that:

Uk = Uk.1 + NU (6.4)

Since these agorithms will also be implemented in the flight control computer, they will
operate in a discrete-time domain as well. This type of sampled data scenario for one
control actuator is depicted in Figure 6.3. Note that at each sample instant (assuming no
transport delay between the time data is sampled and the time that input signals are sent to
the aircraft), the commanded input is found by adding the alocated “delta’ control to the
current position and sent to the hold device. Inside the continuous model of the actuator,
there is a negative feedback of the current position that produces the error signal between
the commanded and actual positions. This negative feedback of the position will cancel the
Uk-1 termin Eq. 6.4 at the sampling instant so that the actuator essentially sees a step input
with magnitude NU at the beginning of each sampleinterval.
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Figure 6.3 A Sampled Data System
This block diagram represents the actuator model from Figure 6.1 when
connected to a digital allocation scheme such as Control Allocation
with Rate Limiting. The components within the dashed lines represent
the continuous-time system.

73



Chapter 6

From Figure 6.2, the amount of actuator travel for a step of magnitude u, is
expressed in terms of the number of time constants passed. That is, after a period of time
egual to t, the actuator has moved to 63.2% of its commanded position, and at 2t, it has
moved to 86.5% of its commanded value. While the response, in general, will never reach
the commanded input, it does approach this so-called steady-state val ue as time approaches
infinity, so that for practical purposes, there exist some timet, at which the error signal is
negligible. It can be concluded however, that if the sample period is on the same order of
magnitude as the actuator time constant, then there will be a significant error between the
position obtained at the end of the sample frame and theinitial commanded position. Figure
6.4 depicts this graphically for a situation in which the sample period is the same as the
actuator time constant. At t = 0, the actuator receives astep command which correspondsto
some desired rate multiplied by the sasmpling interval. Theinitial rate of the actuator given
by Eq. 6.3 is ud/t, and decreases as the error between the step command and the actual
position decreases. The final position obtained at the end of the sample period is
approximately 63.2% of the commanded signal, so that the average rate obtained is
significantly less than the commanded rate. At the beginning of the next frame, the next
commanded step is calculated by adding the allocated NU to the actuator position at that
time, and the actuator responds in the same fashion asit did in the previous frame.

Note that without the actuator dynamics, the effective rate of the actuator would
have been much faster. This fact presents a serious problem since the control allocation
algorithmsare cal cul ating changesin control s based on maximum rate capabilitiesthat must
be obtained during the sample interval in order to achieve the desired moment rates. What is
required then is a method to overdrive the control actuators using some vector of gains so
that they obtain the commanded positions by the end of the sample interval. The procedure
for finding the required gain for one control is outlined as follows:

1) Evaluate Eq. 6.2 over the sampling interval T, with the NU input calcul ated by

Control Allocation with Rate Limiting:

NU(T)=RU,(1- ™)

C

(6.5)
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Figure 6.4 Response of a Sampled Data System
This figure shows the response of the actuator described in Figure 6.3
for two sample periods. Note that the sample period in this plot is equal
to the actuator time constant. As a result, the actual response does not
reach its steady state value by the beginning of the next sample frame,
and the average rate is not equal to the commanded rate.
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Note that when the sample period is close to the same order of magnitude as the
time constant, then NU(T) will be less than NU_.

2) Now, it is desired to amplify the commanded input NU¢,with some gain K, such
that the obtained output NU(T), is equal to the commanded inpui:

RU(T) = RU, = KRU(1- & ™) 6.6)

3) The unknown gain isfound to be:

(6.7)

Thus, by applying the gain K given by Eq. 6.7 to each allocated NUy, it is ensured that the
amount of deflection obtained by each actuator is the same as that commanded by the
control allocation software.

Of course, this method assumes that the actuator does not become rate saturated
during the sample period. If the compensated commanded input attempts to exceed the
actuator’ srate capabilities, then rate limiting will occur and the obtained deflection will be
somewhat |ess than the commanded deflection. The point at which rate limiting results from
the compensated command is dependent on the amount of rate saturation commanded by
the control allocation algorithms as well as the ratio of the sample period to actuator time
constant and is plotted in Figure 6.5. To theright of this curve, rate limiting occurs and the
commanded deflection is not obtained. To the left, no rate limiting occurs and the
commanded deflection isobtained exactly. Note that at 100% commanded rate, the T/t ratio
approaches zero so that the gain as calculated in Eq. 6.7 approaches infinity. Thus, in
mathematical terms, Eq. 6.6 cannot be solved. For al practical purposes however, alarge
enough gain will cause the actuator to be rate limited across the entire sample period, so that
the commanded deflections will be obtained. The resulting block diagram for the control
allocation scheme implemented here is shown in Figure 6.6.
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Figure 6.5 Regions Where Actuator Rate Limiting Occurs
This plot shows the regions where actuator rate limiting occurs as a
function of the amount of commanded rate saturation and the sample
period to time constant ratio. This information was obtained using the
actuator compensation gain calculated in Eq. 6.7.
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Figure 6.6 Control Allocation with Rate Limiting and Actuator Dynamics

This block diagram represents the way that Control Allocation with
Rate Limiting is implemented when actuator dynamics are modeled.
The compensation gain vector represented by K ensures that the

commanded deflection is obtained so long as no actuator rate limiting
ocCurs.
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6.4 Simulation of a Control Failure with Actuator Dynamics

The purpose of this section isto demonstrate the effects that actuator dynamics have
on the control allocation/control actuator system described by Figure 6.6. The example
presented is the same as that used in Chapter 5 to demonstrate the control reconfiguration
capabilities of Control Allocation with Rate Limiting. All actuators have a T/t ratio of
0.2525. Thus, after the compensation gains are applied, the onset of rate limiting will occur
when the allocated controls are commanded at approximately 90% of their maximum rates
(see Figure 6.5). Since the full time histories for this example can be referenced in Figures
5.1 and 5.2, only the relevant time range around the left aileron hard-over will be shown
here. Figure 6.7 compares the responses of the right aileron, with and without the gain
compensation for the actuator dynamics, to the response of the left aileron, which was
given atrailing edge up hardover command at t = 3 sec.

The saturation level in the discrete “delta” moment space, (ie. how much of the
moment rate-generating capabilities are utilized), for the compensated and uncompensated
systemsis shown in Figure 6.8. Because the compensation gains have effectively increased
the control deflection rates availableto Control Allocation with Rate Limiting, the required
moment saturation is considerably less for the compensated system.

In Figure 6.9, the control-generated rolling moment coefficients are compared for
the compensated and uncompensated systems. It shows that the increase in rate capabilities
achieved from this type of overdrive compensation has helped significantly in decreasing
the error between the commanded and attained moment during the aileron hard-over. This
chapter concludesthe discussion of the theory and mathematical algorithms associated with
Control Allocation with Rate Limiting. The following chapter will describe the Control
Allocation software from afunctional perspective.
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Figure 6.7 Simulation of a Control Failure with Actuator Dynamics (Control Effects)

This plot shows the effect that the compensation gains have on the
control allocation/control actuator system shown in Figure 6.6.
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Figure 6.8 Percent Moment Saturation For an Aileron Hard-Over Simulation
This plot compares the amount of moment saturation (ie. how close the
desired moment vector is to the AMS boundary), for the Control
Allocation/Control Actuator system shown in Figure 6.6 with and
without the compensation gains implemented. The effect of the gain
vector is to increase the control deflection rates available to control
allocation, so that the saturation level in moment space decreases.

81



Chapter 6

0

...... Cl Command
] Cl (no comp.)

-0.002 4 L - ,
Do se=e=e=e=o Cl (with comp.)

-0.004 - ¥ -

-0.006 T T T T

0 1 2 3 4 5

Time (s)

Figure 6.9 Smulation of a Control Failure with Actuator Dynamics (Moment Effects)
This plot shows the effect that the overdrive gain has on the control
allocation/control actuator system shown in Figure 6.6. The extra rate
capabilities achieved with the actuator dynamics compensation helps
considerably in decreasing the error in rolling moment caused by the left
aileron hard-over.
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The Control Allocation
with Rate Limiting Soft-
ware

One of the goals of thisresearch wasto generalize the control allocation algorithms
and to compile them into an independent software suite (written in ansi-standard FOR-
TRAN) so that future implementations of these techniques for different aircraft would
require minimal time and effort. The code istherefore divided into two segments. The first
segment consists of all of the generic routines. They perform the general constrained con-
trol allocation procedures which apply to any aircraft, and are as follows:

1) CONALLO The main control alocation executive.

2.) ALLODIAGSOUT An optional module that writes diagnostic informa-
tionto afile.

3.) RESTORE U Performs various restoring techniques as described
in Chapter 4.

4) GET_FACET Determines the facet geometry of the AMS given a
pair of face-defining controls.

5.) GET_MAT Stores the facet geometry for agiven pair of controls
in amatrix.

6.) GET_U Finds the allocated control vector given the appro-

priate facet geometry, control constraints, and
desired moments.

7.) PINVB4 Calculates the Right Pseudo-inverse of a 4 by m
rank-4 matrix.

8.) INVMAT3 Cdculatestheinverse of a3 by 3 invertible matrix.

9.) INVMAT4 Cdculatestheinverse of a4 by 4 invertible matrix.

10.) D3 Calculates the determinant of a 3 by 3 matrix.

These routines will typically remain unchanged from one implementation to another. The
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constrained control allocation techniques however, also require knowledge of control effec-
tiveness data and control constraints, (which are aircraft dependent). Therefore, a second
segment of user-defined routines is required, and consists of

1) A_C$GETUEFF Returns the effectiveness of a given control for a
given moment (objective) axis.
2.) A_C$GETCSTR Calculates the vectors of minimum and maximum

position limits and rate limits.

The developer isfreeto design these routinesto hisor her liking, provided that they adhere
to the calling conventions used in the CONALL O executive. In addition, aset of initializa-
tion routines may be required to set up the control effectiveness|ookup tables and other air-
craft dependent data. Theseroutinesare not called directly by CONALLO and aretherefore
omitted from thisdiscussion. Whilethe calling conventions and detailed functional descrip-
tionsfor the CARL software, along with the code listings, are documented in Appendix 11,
abasic overview of the software architecture and featuresis presented in this chapter.

7.1 Generic Routines

The 10 generic CARL routines previously listed have been designed in such away
to allow easy implementation of different aircraft data without the need to make significant
changesto the underlying control allocation code. Thisfeature is made possible by the fact
that the flight control computer (or flight simulator) must maintain a vector of allocatable
controls (U) to be accessed by CARL. Once this vector is passed to CARL, its physical
meaning islost. That is, it isno longer important that the first entry of the control vector is
an aileron for instance, but only that it has a certain amount of effectivenessin generating
the 3 aircraft moments and any additional objective (if restoring isused). The responsibility
of maintaining information relating entriesin the U vector to actual control surfaces on the
aircraft is left for the control laws to handle. In addition to the generalized nature that this
feature provides, it also allows great freedom in deciding which controls to allocate. Asan
example, the aircraft flaps are generally regarded as secondary controls and are not used for
primary maneuvering capabilities. They can therefore be omitted from the U vector, and
aternatively be controlled by some other type of control mixing logic.
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The CARL main executive (CONALLO) serves primarily as afront end between the
flight control computer and the actual control allocation algorithms. It currently supports as
many as 20 aircraft controls and can allocate either changes in controls using non-linear
effectiveness data and desired changes in moments (Control Allocation with Rate Limiting),
or can allocate absol ute control surface commands based on global (slope at the origin) data
and absolute moment commands. It also has the ability to reconfigure the allocatable con-
trols in response to a reported failure and can invoke control restoring whenever there are
sufficient rate capabilities remaining after the desired moments have been accounted for.

Theability to switch between Direct Control Allocation and Control Allocationwith
Rate Limiting is handled by the USE_GLOBALS flag. When its valueis true, global con-
trol effectiveness datais used and direct allocation is performed. This algorithm issimilar to
that described in Reference 6 except that it is more robust in terms of error handling and
rare (but possible) exceptions to the theory. For instance, the modern algorithms can handle
situations where the origin and desired moment lie on the same bounding facet. Thiscaseis
arare circumstance which can only occur when one or more controls are position saturated,
yet, it presented a serious problem in earlier algorithms. If the USE_ GLOBALS flag is
false, then the discrete rate limiting allocation scheme described in Chapter 3 is invoked.
During this mode, additional features such as control reconfiguration and control restoring
can be enabled.

Control reconfiguration is accomplished by using avector of integer flags (I FAIL)
whose entries correspond to the controlsin the U vector. Aslong as al of these flags are
zero, (indicating that all of the control surfaces are functional), control allocation proceeds
in anormal fashion. The existence of any non-zero element indicates that a particular con-
trol hasfailed. Regardless of the type of failure, CONALL O drops the offending control(s)
from theU vector, and then allocates the remaining functional controls. Findly, if restoring
isdesired, and if there are sufficient rate capabilities remaining after the moment demands
have been satisfied, CONALLO calls the RESTORE_U routine to apply minimum-
objective restoring. The resulting allocated “delta’ control deflection commands are then
multiplied by their respective actuator compensation gains discussed in Chapter 6.

The direct control allocation concept is implemented within the GET_FACET and
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GET _U routines. These modules comprise modifications made over several years of test-
ing and debugging in an attempt to produce the most robust and efficient algorithms possi-
ble. Enhancements have been made to the method of determining facet geometries, check-
ing facets for control allocation, and error reporting.

In Reference 3, amethod is presented to determine, for agiven pair of face-defining
controls, the positions of the other controls required to generate the bounding facets of the
AMS. This determination is made by finding a rotationa transformation such that when
applied to the original control effectiveness matrix, the faces defined by the pair of controls
on the AMS lie perpendicular to the first axis defined by the first row of the transformed
effectiveness matrix. The idea is that these two controls will then have no contribution
along therotated axis. Finding the deflections of the other controls needed to generate max-
imum and minimum momentsin that direction simply requires an inspection of the signs of
the transformed entries. That is, to maximize the moment contributions in the given direc-
tion, any controls having an effectiveness along that direction greater than zero would need
to be at their maximum deflections. Likewise, any controls having negative effectiveness
along the specified direction would need to be at their minimum deflections. Furthermore,
since the only information required is that describing the controls' effects along the first
transformed axis, only the first row of the unknown transformation matrix is required,
resulting in a system of 2 equations with 3 unknowns. In the algorithm presented in Refer-
ence 3, one of the entriesis arbitrarily set to 1 and the remaining two entries are found by
solving a set of two linear equations for two unknowns. Unfortunately, the required 2 by 2
matrix inversion is often numerically ill-conditioned, and results in significant round-off
errors within the hosting computer.

In the most recent version of GET_FACET, amore suitable algorithm is employed.
Since the face defined by the two specified controls is essentially alinear combination of
the two respective columns of the control effectiveness matrix, anormal vector to thisface
can be found by simply calculating the cross product of the two columns. The normal vec-
tor can then be scaled such that its magnitudeis 1, resulting in avector of direction cosines
for atransformed axis, (perpendicular to the face), with respect to the original 3 moment
axes. This vector then represents the first row of the transformation matrix described in
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Reference 3, and upon multiplying it by the control effectiveness matrix, the signs of each
entry in the resulting row can be inspected as before to find the required positions of the
remaining control surfaces.

In some specia cases, after multiplying the transformation by the effectiveness
matrix, additional entries (besides those associated with the two specified controls) become
zero. In other words, one or more of the controls are redundant, meaning that their effects
can be duplicated by one or more other controls. In this case, the required positions of such
controls are not easily determined, and each possible combination of their minimum and
maximum deflections must be checked. A rather efficient algorithm for handling these so-
called“specia” controlsisincluded in GET_FACET. Theagorithm allowsfor any number
of redundant controls. However, the number of possible minimum and maximum combina-
tions to check increases according to 2N, where n is the number of special controls. As an
example, if there are 2 special controls, then there would be 4 possible combinations to
account for when checking facets. Based on the binary facet coordinate nomenclature from
Reference 1, the four combinations for the two redundant controls that must be checked
would be {(0,0), (0,2), (1,0), (1,1)}. In the current implementation, a limit of 4 special
controlsisimposed on GET_FACET.

Once the facet geometry is calculated and stored asamatrix by GET_MAT, GET_U
uses the desired moment vector (referenced from the origin in moment space), the facet
geometry, and the vector of control constraints to check if the moments intersect the facet.
This search agorithm, as described in Appendix |1, fails when the origin lies on the facet
because the matrix containing the facet geometry becomes singular. Therefore, amethod of
incorporating this singular case is also included. The remaining routines, (INVMATS3,
INVMATA4, PINVB4, and D3) perform the generic matrix functions required by the CARL
and restoring algorithms, and are described in detail in Appendix Il aswell. For quick ref-
erence, a very basic flowchart of the CARL software dictating the order in which each
moduleiscalledisshownin Figure7.1.
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Figure 7.1 Architectural Diagram of the CARL Software
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every frame.
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7.2 Aircraft-Specific Routines

The open framework design of the two aircraft-specific routines, A_C$GETUEFF,
and A_C3$GETCSTR, has been developed for two reasons. First, this type of design
allows for easier integration of different aircraft models without having to modify the
generic modules mentioned above. At present, two models have been successfully tested
using this approach. One model, (an F-18 HARV), consists of a 5 control configuration,
whilethe F-15 ACTIVE model, (which will be described in detail in Chapter 8), employs 9
controls. The second advantage to this type of architecture, isthat it allows great flexibility
in the methods used to calculate the aircraft-specific data as well asin the precision to which
the datais calculated. For example, if the hinge moments are known for the aircraft control
surfaces, A_C$GETCSTR could be built to return control rate limits as a function of the
control hinge moment data, resulting in a more accurate description of control constraints.
In addition, the control effectiveness lookups in A_C$GETUEFF could also account for
any number of non-linear effects, or utilize any method of datainterpolation.

Obvioudly, this type of design approach prevents any generic functional descrip-
tions from being defined in this chapter, and as a result, their discussion will be omitted.
However, Appendix Il contains details concerning the calling conventions that these rou-
tines must adhere to in order to avoid modifying the control allocation routines mentioned
in Section 7.1. A discussion of the functional details of these modules as they apply to the
F-15 ACTIVE implementation will be presented in Chapter 8.
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F-15 ACTIVE Implemen-
tation

This chapter describes the aircraft-specific details of Control Allocation with Rate
Limiting asthey apply tothe F-15 ACTIVE (Advanced Control Technologiesfor Integrated
VEhicles) research aircraft. This aircraft, which is shown in Figure 8.1, is a highly modi-
fied version of the McDonnell Douglas F-15B Fighter co-devel oped and supported by the
NASA Dryden Flight Research Center, McDonnell Douglas Aerospace, Pratt and Whitney,
and the United States Air Force as a research tool for various control law and control allo-
cation philosophies, aswell as atest platform for future thrust vectoring technologies. The
aircraft is fitted with a unique quad redundant, digital, fly-by-wire flight and propulsion
control system with 10 primary flight control surfaces (Ieft/right canards, left/right ailerons,
left/right stabilators, left/right rudders, and pitch/yaw thrust vectoring). For thisimplemen-
tation however, the rudders are used symmetrically only and are therefore combined into 1
control surface, resulting in avector of 9 allocatable controls. It should be pointed out that
the model used for this research does not include a control law, nor any equations of
motion required for an aircraft ssimulation. It is merely used to test the control allocation
algorithms using non-linear control effectiveness data representative of an actual aircraft.
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Figure 8.1 The F-15 ACTIVE (Advanced Control Technologiesfor Integrated VEhicles)

91



Chapter 8

8.1 Data Dependencies

The control effectivenessdatafor this particular implementation was extracted from
the complete F-15 ACTIVE non-linear aerodynamic database contributed by McDonnell
Douglas Aerospace using the* SweepData” utility documented in Chapter 2. Theindepend-
ent state parameters that the data are based on are Mach number and angle of attack for the 7
aerodynamic surfaces with an additional dependency on nozzle pressureratio for the thrust
vectoring nozzles. The sweeps were performed for aMach range of 0.2t0 2.0in 0.2 incre-
ments, an angle of attack range of -10 to 40 in 5 deg. increments, and nozzle pressure
ratios from 1 to 25 in increments of 4. In addition, non-linearities with respect to the con-
trols' deflections are also included. Data for these dependencies are taken from minimum
position limit to maximum position limit in 5 degree increments. Other effects which are
present in the complete aerodynamic database but not modeled here include flexibility
effects, control/flap interaction effects, and other state dependencies such as sideslip angle,
or the 3 rotational ratesfor the roll, pitch, and yaw axes.

Interpolation between the known node points is accomplished using the 3-D affine
datainterpolation technique described in Chapter 2 with Mach number, angle of attack, and
control deflection as the independent lookup parameters. The 4-D lookup, (required to
account for changes in nozzle pressure ratio), for the thrust vectoring effectiveness also
takes advantage of the 3-D affine technique, but uses standard linear interpolation between
nozzle pressure ratios. The available control effectiveness data contained in this database
along with the functional dependencies are summarized in Table 8.1.

The mesh constants required for the affine data interpolation scheme and other
parameters needed for control allocation are initialized by BD_ACSINIT and ACSINIT.
These modulesin turn call other various subroutines. After initialization, control effective-
ness data for a particular axis and control is acquired through the aircraft-specific call to
A_C$GETUEFF. Documentation on these subroutines can be referenced in Appendix I11.
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Table 8.1 Functional Dependencies for the F-15 ACTIVE Control Effectiveness Database
(N = Nozzle Pressure Ratio; M = Mach Number; a = Angle of Attack; d = Control Deflection)

Control's Control Surfaces
Effects| Left/Right | Left/Right | Symmetric | Left/Right Pitch/Y aw
On... | Stabilators | Ailerons Rudder Canard |Thrust Vectoring
a (M, a, d) (M, a, d) M, a, d) (M, a, d) (N, M, a, d)
Cm (M, a, d) (M, a, d) M, a, d) (M, a, d) (N, M, a, d)
Cn (M, a, d) (M, a, d) (M, a, d) (M, a, d) (N, M, a, d)
CD (M, a, d) (M, a, d) (M, a, d) (M, a, d) (N, M, a, d)
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8.2 Control Surface Position and Rate Limits

Control surface position and rate limits may not be representative of the actual air-
craft configuration since some of this information was not officially released for this
research. For the aerodynamic controls and thrust vectoring nozzles, rate limits are taken as
the unloaded maximum attainable rates and are assumed to remain constant regardless of
the flight condition. Position limits for the aerodynamic surfaces are also taken as the
unloaded limits. However, the position limits on the thrust vectoring nozzles are con-
strained such that the radial force exerted by each engine on the airframe structure remains
below 4000 Ibs. The no-load position and rate limits for the F-15 ACTIVE controls are
shown in Table 8.2.

In addition, Control Allocation with Rate Limiting has the ability to compensate for
actuator dynamics by over driving the alocated changes in control commands. This gain
assumes afirst order actuator model and requires the time constants for each control, and
the sample period of the control law. For thisimplementation, all controls have atime con-
stant of .0495 sec. The samplerate is assumed to be 80 Hz.
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Table 8.2 Nomina Position and Rate Limits for the F-15 ACTIVE Control Surfaces

Controls Position Limits (deg.) Rate Limits (deg./sec.)
Left/Right Stabilators -29,+15 +45
Left/Right Ailerons +20 +90
Symmetric Rudder +30 +135
Left/Right Canards -35,+15 75
Axisymmetric Thrust Vectoring +20* +80
* These limits may be reduced as a function of thrust
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8.3 Thrust Vectoring Limits

Recall from Chapter 2 that one of the assumptionsin direct control allocation theory
isthat any two controls are uncoupled of each other, meaning that one control can be held
constant while the other isfree to move between its minimum and maximum deflections. It
was also demonstrated in Chapter 2, that certain control allocation philosophies, such as
commanding differential and symmetric controls, resulted in an admissible control subset
which did not have this assumed characteristic. In the differential/symmetric allocation
scheme for instance, any two related controls (ie. the left and right ailerons), produce adia-
mond-shaped subset (as shown in Figure 2.2) when the constraints are imposed. Under
this circumstance, the two control deflection coordinates are coupled since both surfaces are
required to move simultaneously along a constraint.

The mechanics of the F-15 ACTIVE thrust vectoring system produce a similar
problem. One of the unique aspects of the thrust vectoring implementation on thisaircraftis
that the engines are equipped with an axisymmetric, Pitch/Y aw Balance Beam nozzle con-
figuration allowing as much as 20 degrees of nozzle deflection in any direction. This type
of configuration results in a rather unusual aircraft control in that it does not necessarily
rotate within the aircraft body axis systems. In this implementation, the thrust vectoring
nozzles are treated as two distinct controls: a pitch nozzle deflection dp, and a yaw nozzle
deflectiondy. It is therefore necessary to define these controls in terms of the axes about
which they deflect.

Define an orthogonal thrust-axis frame Ft as follows: x7 points in the direction of
the current thrust line, zt liesin the aircraft plane of symmetry and points “down”, yt com-
pletes the right-handed coordinate system. It is desired to rotate the thrust-axis frame into
one of the body-axis systems (preferably the one whose x-axis lines up with the unmodi-
fied F-15 thrust line, denoted here as Frg). This requires the following sequence of rota-
tions:

1.) Rotate Ft about the zr-axis through the angle -dy to bring xt into the aircraft

plane of symmetry. Call thisintermediate axis-system F'.

2.) Rotate F' about the y’-axis through the angle -dp, completing the sequence of

rotations.
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Thus, for a given yaw and pitch nozzle configuration, the thrust forces along the x, y, and
z axes (in frame Fg) are found according to:

&, 9 écos(dp)coddy) - cos(dp)sin(dy) sin(dp)ieTs
T,2=€  sin(dy) cos{dp) 0 Ugos
éT,o & sin(dp)cos(dy) sin(dp)sin(dy) cos(dp)He0g ©.1)
Using the conventions specified above, the zero-thrust subset of admissible pitch and yaw
deflections for the axisymmetric nozzles then comprise a circle with aradius of 20 degrees.

The airframe structure has been modified to accommodate any additional lateral
forces produced by the off-axis engine thrust up to 4000 Ibs. This structural constraint
obvioudy requires that the radius of the previously mentioned circle change as a function of
engine thrust, and offers additional complications to the control allocation agorithms. Since
thiscircul ar-shaped subset of admissible controls does not produce an uncoupled pitch/yaw
nozzle configuration, it must be redefined before control allocation can allocate the respec-
tive controls. In addition, it must also account for the amount of engine thrust produced and
be enlarged or reduced as required. This section will therefore discuss the necessary posi-
tion limit calculations performed in A_C$GETCSTR in order to produce a linearly inde-
pendent subset of controls.

Under low thrust conditions, where the 20 degree maximum nozzle deflection does
not exceed the lateral force limit of 4000 Ibs, all that isrequired isto find a subset of nozzle
deflections having the uncoupled properties presented in Chapter 2. This procedure is done
by imposing a set of box constraintsinside the circle as shown in Figure 8.2.

The problem with this method however, isthat not all of the avail able nozzle deflec-
tions can be acquired. Therefore, a prioritization factor, F 3 0, can be specified to give
more or less control deflection capability in either the pitch or yaw directions. Thisfactor is
defined asthe ratio of available pitch deflection to yaw deflection and determines the dimen-
sions of the prescribed set of box constraints.
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Pitch 20° axisymmetric deflec-

Nozzle A /_ tion limit

pYaw
Nozzle

Prescribed Linearlk
Independent Box

Constraints

Figure 8.2 Imposed Constraints on the F-15 ACTIVE Thrust Vectoring Nozzles
This figure represents the method of imposing box constraints inside
the circle of admissible nozzle deflections. The angle q is calculated
from the prioritization factor and determinesthe “height” and “width” of
the box.
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Theconstraintsfor aparticular axisymmetric deflectionlimit dmax, and prioritization
factor F, are found as follows:
1.) Find the angle from the origin to the corner of the box constraints, g, using

q = tanr1(F) (8.2)
2.) The available pitch (dp) and yaw (dy) nozzle constraints are found according to:

dPmax, min = £ Omax*SiN(Q) (8.39)
dYmax,min = * dmax™c0s(q) (8.3b)

Under large thrust conditions, these 2 steps are preceded by an algorithm which determines
the maximum axisymmetric nozzle deflection.

The radia force exerted by the engine nozzles can be found from Eq. 8.1 and is
expressed by:

Tr = T*sin’(dy) + T* cos*(dy)sin*(dp) (8.4)

where T is the total engine thrust. To avoid possible violation of the 4000 Ib. radial limit
(Trmax), requires that:

T?sin’(dy) + T? cos’(dy)sin(dp) £ Tr?,, (8.5)

Equation 8.5 can then be reduced to:

sn'(ay) + cos’ (o) s ) £ 1Lz

(8.6)

Now, using the fact that the reduced subset of admissible deflections will still be acircle,
either dp or dy can be set to zero, so that the maximum allowable dha can be substituted
into the equation, leaving:

2
Tr o

sn®(d_, ) £ —=
(¢ T (8.7)

99



Chapter 8

and the maximum allowabl e axisymmetric deflection can be found by:

e =sin e 8

€T (8.8)
The 2 steps highlighted previously can then be carried out using the maximum allowable
deflection calculated in Eq. 8.8.

It should be pointed out that these techniques define the global (actual deflection)
limitsonly, and the limitsimposed by the nozzl e rate capabilities remain unchanged. Docu-
mentation of the A_C$GETCSTR module that performs these steps can be referenced in
Appendix I11.
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Preliminary Timing Sta-
tistics

Asaconclusion to this research, some preliminary timing investigations of Control
Allocation with Rate Limiting will be presented. The ultimate goal is to have the control
allocation algorithms operating within areal flight control computer running at 80 Hz. Itis
therefore assumed that within the 1/80 sec. window, the computer must finish all of the
control law calculations, invoke control allocation, and output avector of control deflection
commands.

Unfortunately, calculating the time required to allocate controlsis not a straight for-
ward task. Recall that the allocation process requires a search of each facet on the AMS
until a valid intersection of the moment vector with a facet is found. Depending on the
direction in moment space that the desired moments point toward, the valid facet could be
either the first checked or the last. As aresult, the time required to allocate is not constant
from one frame to another. It may be possible to implement a“smarter” search algorithm
that would allow control allocation to start searching facets which lie in the vicinity of the
desired moment vector first. This method would have the benefit of decreasing the time
required to allocate significantly, yet, as of now, no algorithm of this type has been found.
The current implementation however, begins searching the facet that produced resultsin the
previous frame. The ideafor thistype of search is based on the fact that the overall control
configuration will not change considerably from one frame to another. Of course, there are
some exceptions to this rule as well. It is not hard to imagine a maneuver that traverses
along the edge of two facets such that the intersection jumps between them, leaving the
control allocator with the task of starting a new search every frame.

Because of the current facet searching scheme, the control allocation timing isheav-
ily dependent on the maneuver chosen. A smooth set of moment time historiesthat point in
the same general direction in moment spacewill result in better timing statisticsthan aset of
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moment time histories which change directions very frequently. Asaresult, the question of
which type of maneuver to perform when gathering timing data is not an easy one to
answer. For this research, it was decided to provide random moment inputs for a 10 sec.
time duration. Although atiming analysis of this nature may not be a fair estimate of the
true speed of control allocation, it is assumed to provide a worst case scenario in which
practically every sample frame requires control alocation to invoke a new search.

9.1 Timing Results

Timing statistics are taken from a 66 MHz PowerPC 601 RISC computer system,
running the simulation at 80 Hz. Thus, if the amount of computational time required by the
control laws is assumed to be negligible, then the maximum time available to CARL for
allocating controls without missing asample frame is 0.0125 sec. Of course, the amount of
time required by the control lawsis usually quite significant, and is generally afunction of
the type of flight control computer implemented, and the complexity of the control law
algorithms. For the timing test presented here, however, it was decided to allocate half of
the sampl e period to the control law and the remaining half to CARL, resulting in an accept-
able time frame between 0 and 6.25 msec.

The 9 controlsof the F-15 ACTIVE control allocation model result in aminimum of
72 facets that may have to be searched in any given frame. (Note that whenever redundant
controls are present, not all of the 72 facets can be directly determined and the control allo-
cation algorithms will have to check some of the interior faces as well). Minimum norm
restoring was also enabled.

Elapsed time was calculated through a call to an operating system function that
returns the time since startup, quantized to 1/60 sec. intervals. Thus, the results had to be
partitioned into 4 possible time ranges, each bracketed by an odd multiple of 1/120 of a sec-
ond. These are shown in Figure 9.1. Out of the 801 iterations performed during this worst
case simulation, control allocation was only ableto allocate in an acceptable timeframe (the
0 - 0.0083 sec. range) 15.4% of the time (about 123 iterations).
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2.1%

Moo -00083s

B 0.0084 - 0.0250 s
[Jo.0251-0.0416 s
[J0.0417 - 0.0583 s

37.8%

%Time to Allocate

Figure 9.1 Control Allocation with Rate Limiting: Timing Statistics
This pie chart represents the amount of time needed to allocate controls
and the recurrence of each time range. Percentages are based on random
vectors of moments for a 10 second simulation run at 80 Hz. Minimum
Norm restoring is enabled.
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Based on the timing results shown in Figure 9.1, thistest indicates either aneed for
faster, more powerful computers, or consideration of aparallel processing implementation.
Since the greatest amount of time is spent by control allocation searching facets, which
simply requires the same set of calculations to be performed repeatedly, a parallel process-
ing implementation may be the best option. In addition, the cal culations performed for each
facet search are nothing more than afew floating point additions and multiplications, so that
the processors would not have to be extremely powerful.

Since the bounding facets of the AMS always occur in pairs (ie. think of facets as
being the front and back faces of a cube), the proposed device would only need one proces-
sor per every two facets. Thus, the F-15 ACTIVE device would consist of 36 processors.
The need for a separate “Control Allocator” computer module may increase the costs
required to implement such techniquesinto an aircraft. However, an implementation of this
type would also introduce severa benefits. First of al, recall from Figure 9.1 that the time
required to allocate varied considerably, depending on the order in which the facets were
checked. Thetime required to allocate controls using a multiprocessing, Control Allocator
Box would be constant, so that there would no longer be any concerns for the effects of
variable transport delays. Second, all the benefits of constrained control allocation would
beavailabletotheaircraft. Theseincludeall of the moment rate capabilities of Control Allo-
cation with Rate Limiting, various control restoring algorithms such as minimum drag con-
trol allocation, and the ability to reconfigure controlsin the event of failures.
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Conclusions

Thedirect determination of controlsin the constrained control allocation problemis
computationally more complicated than other control allocation methods. This complexity is
due to the geometrical principlesinvolved, such as defining the boundaries of the Attainable
Moment Subset, and finding the intersection of the desired moment vector with one of the
bounding facets. However, once the intersection is found, determining the required control
deflections becomes straight forward. By understanding the theory behind these direct
methods, the advantages of using them becomes quite clear. Since they guaranteeto usethe
maxi mum moment-generating capabilities of the control surfaces, they can be used to eval-
uate the efficiency of other control allocation methods. These utilitieswould then alow the
designer or contractor to determine for a particular design, whether additional control cap-
abilitiesarerequired, or whether existing controls offer little capabilities and may be elimi-
nated. Additionally, these techniques could be integrated into current aircraft designs, that
may not utilize the controls as efficiently as possible, to produce a more maneuverable air-
craft.

The focus of this research has been aimed toward the implementation of Con-
strained Control Allocation techniques into current aircraft configurations. The following
conclusions and recommendations have been drawn:

Due to the uncoupled control surface requirements of Constrained Control Alloca-
tion, the best (and preferred) method of gathering control effectiveness datais in terms of
left and right control surfaces as opposed to symmetric and differential deflections. In Situa-
tions where a set of uncoupled constraints does not exist, (such asthe F-15 ACTIVE thrust
vectoring nozzles), an algorithm may need to be employed to transform the set of admissi-
ble controlsinto aform more suitable for control allocation.

Constrained Control Allocation can be implemented in a discrete time domain to
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allocate deflection rates in response to commanded moment rates. This type of allocation
scheme, known as Control Allocation with Rate Limiting (CARL), has the advantage of
being able to include nonlinear control effects, and to allocate controls without violating any
position or rate limits. One of the drawbacks to this scheme however, is the control wind-
up problem that results from the path-dependent nature of the discrete agorithm. This prob-
lem must be alleviated by applying sometype of control restoring technique. Any optimiza-
tion objective can be defined in the restoring problem provided that it can be expressed in
terms of control deflections. Restoring techniques investigated so far include minimum-
norm restoring and minimum-drag restoring.

One of the advantages of control allocation schemes in genera is the ability to
reconfigure controls in response to a detected failure. The “delta” moment allocation
scheme used by CARL builds upon this idea by introducing a method of canceling the
errors associated with these failed controls.

When using discrete algorithms like CARL that alocate changes in controls for
every sample frame, careful attention must be paid to the sample period and how it relates
to the controls’ actuator dynamics. If the sample period is suitably “small”, then the actua-
tor dynamics may play asignificant role in the allocation process and may have to be cor-
rected through some type of compensation. In this research, a vector of gains is found,
based on afirst order actuator model, to overdrive the allocated changes in controls so that
the actuator responses match the desired responses more accurately.

Finally, when allocating controls, these algorithms have to search each facet on the
boundary of the Attainable Moment Subset in series. The time required to allocate then
varies considerably and depends on the order in which the facets are checked. For thisrea
son, it may be very beneficial to investigate the possibilities of a multi-processing imple-
mentation in which each processor isresponsible for asmall, predetermined number of fac-
etsto check.
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APPENDIX I.

Data Collection Utilities

This appendix contains detailed descriptions of the utilities required to extract effectiveness data from an aircraft
database, generate the mesh constants for a given table using the affine data interpolation technique, and to convert
the datato areadable format.

1. The Sweep Data Utility

A. Usage

This FORTRAN application can be linked to a given aerodynamic database and used to extract effectiveness data or
data increments for a wide range of independent and dependent parameters, and to store the extracted data as Matlab
workspace (*.mat) files. It has been designed as a stand-alone program and uses a convenient command line interface
library. Additional static libraries required are the Matlab external interface libraries, and an aircraft specific library
containing the necessary aerodynamic lookup routines.

Al LAUNCH_SD
Function Prototype, PROGRAM
COMMON SIMPARS, SHELLPARMS, SWEEPPARMS, UEFFECTS

Thisisthe main PROGRAM unit required to launch the Sweep Data utility.
LAUNCH_SD

LAUNCH_SD initializes the necessary variables required for the Shell interface, initializes the Sweep Data program
specific parameters, and initializes the aerodynamic table lookup routines

Global Definitions
SIMPARS [global] Contains the “Simulation Shell” parameters. Some of these are
required by the Shell Interface library.
SHELLPARMS [global] Contains additional Shell interface parameters
SWEEPPARMS  [global] Contains global variables specific to the Sweep Data utility
UEFFECTS [global] Contains intermediate results calculated in the aerodynamic
database

B. General Remarks

The SIMPARS common block contains two arrays, a 30 element LOGICAL array and a 10 element
CHARACTER*80 array. For the Sweep Data utility, only two of these variables are required. These are the
INITIALIZED flag (SIMPARL(8)) and the DO_DIAGS flag (SIMPARL(1)). The SHELLPARMS common block is
required by the Shell interface code. The CALLERID and MODE variables within this common should be set to 0
and 1 at launch time. The other variables are handled by the Shell interfaces and should not be tampered with. The
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contents of the SWEEPPARMS common block are described below. NP represents the number of independent
parameters that the user is allowed to sweep, and NC represents the number of dependent aerodynamic coefficients
that the user can record during a sweep.

Variable Type Description

PARM(NP) REAL*8 Stores the current values for all “NP’ independent
parameters

PARMNAME(NP) CHARACTER*8 The name of each independent parameter

PARMDSCRP(NP) CHARACTER*32 A brief description of each independent parameter

PARMMIN(NP) REAL*8 The minimum possible value for each ind. parameter

PARMMAX(NP) REAL*8 The maximum possible value for each ind. parameter

PARMINC(NP) REAL*8 The amount to increment each ind. parameter by

COEFF(NP,NC) REAL*8 Stores the total change of the “NC” dependent variable
associated with the “NP” independent variable

COEFFNAME(NC) CHARACTER*8 The name of each dependent variable

COEFFDSCRP(NC) CHARACTER*32 A brief description of each dependent variable

The contents of the UEFFECTS common block contain intermediate results gathered in the aerodynamic database
and are optional. For instance, if it is desired to store the pitching moment increments due to the right stabilator
only (no other interactions like flexibility effects), then this intermediate result would be stored in this common
block. UEFFECTS is defined by:

Variable Type Description
UEFF(NP,NC) REAL*8 Stores the change of the “NC” dependent variable

associated with the “NP” independent variable only (no
other interactions)

UEFFNAME(NP,NC) CHARACTER*8  The name of the intermediate result associated with the
NP independent parameter and the NC dependent variable

C. Functional Description

As previously mentioned, this module serves only to initialize the required elements when the Sweep Data utility is
launched. The first call isaMacOS system call to OUTWINDOWSCROLL to set up the scrolling properties for the
applications Shell window. Next, BDSWEEPDATA is called to initialize the independent and dependent variable
names, minimum values, maximum values, and descriptions for the common blocks SWEEPPARMS and
UEFFECTS. After the cal to BDSWEEPDATA, some of the Shell interface parameters are initialized.
INITIALIZED is set to FALSE, indicating that the application has not yet initialized itself, CALLERID isset to O
(indicating to the shell interface libraries that the user interface is in command line mode), MODE is set to 1 (This
effects the way the Sweep Data shell reacts to a carriage return at the command prompt), and the Command buffer is
cleared by setting COMMANDBUFFER to a blank string. The next section initializes the aerodynamic lookup
routines. Although the code in this section can change depending on the database that is being used, the developer
should ensure that when the database is called from this module it is initialized. (This can be done by including the
INITIALIZED flag in the argument list to the database lookup routine). Finally, SHELL GLOBALS and
SHELL SWEEPDATA are cdled to initialize the global and “Sweep Data’ valid command records. After
initialization, INITIALIZED isset to TRUE and SHELL_SWEEPDATA iscalled to start handling user commands.

D. Errors and Restrictions

This utility has been successfully compiled and tested on both 68040 Macintosh computers and PowerPC Macintosh
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computers using the MPW 3.4.2 programming environment and the Language Systems FORTRAN compiler. It is
not guaranteed that the code as it exists, will run, or even compile on other machines without errors.

Be aware that the Shell Interface libraries contain some Macintosh Toolbox calls that are used to display dialog
boxes and windows when the CALLERID flag is set to 1. This utility does not support the use of a graphical
frontend, and errors will certainly occur if CALLERID is not O. In addition, indications of an improper MODE
setting may include program quitting every time the carriage return is pressed at the command prompt. To prevent
this, make sure that MODE is always 1. This simply causes the Shell code to redraw the menu without exiting.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012

|
! Modul e Nane: Launch_SD

! Cal l ed By: none

! Calls to: BDSWEEPDATA, SHELL_SWEEPDATA, F15AERQ,
! SHELL_GLOBALS

|

Functi on: Sets up the SweepData application if it is |aunched
seperately fromthe Sinulation Shell.

Modi fi cati ons:

Dat e Pur pose By
JUN 10 1996 Creat ed J. Bolling
| e e i e e i e e e e i e e e et i e i aceee s ssmacmmessssaecmssssssmmecsssssmsmaam—a=~
I MPLI CI' T NONE

LOG CAL S| MPARL( 15)
CHARACTER* 80 SI MPARCS0( 3)

LOG CAL Initialized

R R Shell Parameters-------------c-mcomomomonnn
| NTEGER Cal | er | D, Mbde
LOE CAL Do_Menu, Di d_Menu
CHARACTER* 80 ConmandBuf f er

e i Sweep Parameters--------------------------
| NTEGER NPar ns, NCoef f s
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PARAVETER (NParnms = 29, NCoeffs = 6)

DOUBLE PRECI SI ON PARM NParns), PARMM N(NParns), PARMVAX( NPar ns),
COEFF( NPar s, NCoef fs), UEFF( NPar s, NCoeffs),
PARM NC( 3)

CHARACTER* 8 PARVNAME( NPar ms) , COEFFNAME( NCoef f s),

UEFFNANE( NPar s, NCoef f s)

CHARACTER* 32 PARMDSCRP( NPar ns), COEFFDSCRP( NCoef f s)

REAL CDT, CYT, CLT, CLLT, CMI, CNT, VT, ALFA, XMACH OBAR P, Q
R, ALT, BETA, NPRNR4, LEXA, REXA

LOG CAL Do_COLLECTI VE

DOUBLE PRECI SI ON CSMODE

COWDON / SWEEPPARMS / PARM PARVNAME, PARNMDSCRP, PARMM N, PARMVAX,
PARM NC, CCEFF, COEFFNAME, COEFFDSCRP

COWDON / UEFFECTS / UEFF, UEFFNAME

COMWON / SHELLPARMS / Cal lerl D, Mde, Do_Menu, D d_Menu,
ConmandBuf f er

COWDN / SI MPARS / SI MPARL, SI MPARC80

CALL CQut W ndowScr ol | (9999)
up Data Sweep specific itens here
CALL BDSWEEPDATA

Initialized = . FALSE.
CallerID=0
Mode = 1
ComuandBuf fer =

Initialize the database

Do_COLLECTI VE = . FALSE.
CSMODE = 1.0

CALL F15AERQ(CDT, CLT, CMI, CYT, CNT, CLLT, ALFA, XMACH, QBAR
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VT, P, Q R, ALT, 0.0, BETA, 0.0, 0.0,
0.0, NPRNR4, LEXA, REXA, CSMODE, Initialized,
Do_COLLECTI VE)

Initialize SHELL_G.OBALS and t he SweepData Shel

CALL SHELL_G.OBALS
CALL SHELL_SWEEPDATA

Initialized = . TRUE
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1.1 Sweep Data Initialization and the Shell Interface

A. Usage

This section describes the subroutines required to initialize and handle execution of the Sweep Data utility

A.l BDSWEEPDATA
Function Prototype, BLOCK DATA
COMMON SWEEPPARMS, UEFFECTS

Use this BLOCK DATA module to initialize al of the independent and dependent variable names, limits, and
descriptions, as well as the names of any intermediate results (if used).

CALL BDSWEEPDATA

BDSWEEPDATA contains no executable statements and only initidlizes the data in common blocks
SWEEPPARMS and UEFFECTS.

Global Definitions
SWEEPPARMS  [global] Contains global variables specific to the Sweep Data utility
UEFFECTS [global] Contains intermediate results calculated in the aerodynamic
database

A.2 SHELL_SWEEPDATA
Function Prototype, SUBROUTINE
COMMON SHELLPARMS, SWEEPPARMS, SIMPARS, DSMENU

This subroutine handles user commands for the Sweep Data shell interface
CALL SHELL_SWEEPDATA

SHELL_SWEEPDATA displays the Sweep Data command menu, displays a command prompt, and waits for user
response.

Global Definitions
SWEEPPARMS  [global] Contains global variables specific to the Sweep Data utility
SIMPARS [global] Contains the “Simulation Shell” parameters. Some of these are
required by the Shell Interface library.
SHELLPARMS [global] Contains additional Shell interface parameters
DSMENU [global] Contains the valid command record for the Sweep Data interface

B. General Remarks

Since the structure of aerodynamic databases varies significantly for different aircraft models, the BDSWEEPDATA
module has been designed to provide a standard way of defining the available independent parameters, their
descriptions, and their maximum and minimum allowable values for any table lookup architecture. All the developer
needs to do after creating this module, is to assign (or EQUIVALENCE) the desired parameters within the table
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lookup procedures, and within the SWEEPDATA routine itself.

The SHELL_SWEEPDATA event loop acts as the interface shell to the SWEEPDATA algorithm and depends
heavily on the parameters defined in BDSWEEPDATA.

C. Functional Description

BDSWEEPDATA has no executable statements.

After initialization, SHELL SWEEPDATA will start an “event loop” in which it cals GETMENUTEXT and
GETMENUCOMMAND, to display the list of commands and wait for wuser response. When
GETMENUCOMMAND receives avalid command it returns the command record index in the STATEMENT field.
SHELL_SWEEPDATA then performs the following actions, and then repeats the loop:

STATEMENT = 1; SHELL SWEEPDATA toggles the DO_COLLECTIVE flag (allows the use of symmetric and
differential control deflections instead of right and left deflections)

STATEMENT = 2; SHELL SWEEPDATA togglesthe DO_TOTAL flag (Results obtained from the datasweep are
thetota coefficients returned from the database instead of intermediate results)

STATEMENT = 3; SHELL_SWEEPDATA toggles the DO_FLAPSCD flag (Allows leading and trailing edge flap
schedulesto override current flap positions)

STATEMENT = 4; SHELL_SWEEPDATA toggles the DCDU derivative extraction flag (results returned from
datasweep are derivatives w.r.t the last independent parameter instead of increments)

STATEMENT =5; SHELL SWEEPDATA requests the names of the independent parameters to sweep.

STATEMENT = 6; SHELL_SWEEPDATA requests the names of the dependent variables to save.

STATEMENT =7; SHELL _SWEEPDATA requests the name of an independent parameter to set and hold constant.

STATEMENT = 8; SHELL_SWEEPDATA reguests the amount to increment each specified independent parameter
for adata sweep.

STATEMENT = 9; SHELL SWEEPDATA calls the SWEEPDATA agorithm to perform a data sweep using the
specified independent parameters and increments.

STATEMENT = 10; SHELL_SWEEPDATA displays the available independent sweep parameters, dependent
variables, and their descriptions.

STATEMENT =11; SHELL SWEEPDATA setsdl independent parametersto O

STATEMENT = 12; (aglobal command was entered) SHELL_SWEEPDATA does nothing

STATEMENT = 13; (carriage return was pressed at the command prompt) SHELL SWEEPDATA redraws the menu

D. Errors and Restrictions

The Shell Interface libraries are in their 3rd year of development and are relatively stable. Two known limitations
still exist however. When typing multiple commands on one line, separate them by a SPACE. Other characters
causeinvalid command errors. Second, when entering numerical information (for instance, the SET command), make
sure that the data entered is the same type as the data expected. Entering ascii characters when the interface expects a
numerical value often resultsin an 1O error.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012

! Modul e Nanme: BDSWEEPDATA
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Cal  ed By: Launch_SD
Calls to: none

Functi on: Bl ock Data nodule for the Sweep Data utility. The
purpose of this nmodule is to initialize the independent
and dependent paraneter nanmes and descriptions for the
particul ar database to be swept. This nodule is cur-
rently witten to support the F15 ACTI VE dat abase
F15AERQ.

Modi fi cati ons:

Dat e Pur pose By
JUN 10 1996 Cr eat ed J. Bolling
| MPLI CI' T NONE

| NTEGER NPar s, NCoef f s
PARAVETER (NParnms = 29, NCoeffs = 6)
DOUBLE PRECI SI ON PARM NParns), PARMM N( NParns), PARMVAX( NPar ns),
COEFF( NPar s, NCoef fs), UEFF( NPar s, NCoeffs),
. PARM NC( 3)
CHARACTER* 8 PARWNAME( NPar ms), COEFFNAME( NCoef fs),
. UEFFNAME( NPar s, NCoef f s)
CHARACTER* 32 PARNMDSCRP( NPar ns), COEFFDSCRP( NCoef f s)
| NTEGER |, J

COWDON / SWEEPPARMS / PARM  PARVNAME, PARMDSCRP, PARMM N, PARMVAX,
. PARM NC, CCEFF, COEFFNAME, COEFFDSCRP
COWDON / UEFFECTS / UEFF, UEFFNAME

DATA PARWNAME /



1
2
3
4
5
6

OO WNBE

OO WNPRE
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"ALPHA ', ' MACH ', ' BETA 'P ,'Q
'R "L UALT ", "NPR ", ' DCL ", "' DCR
' DAL ', " DAR ", " TEFL ', " TEFR ', " DRL
' DRR ', " DHTL ", "'DHTR ","DNOZP ', ' DNOzZY
"DCANRD ','DDCANRD ','DRAILD ','DAILD ','DTEFD
'DDTEF ',"'DsTBD ','DTALD ','DRUDD
. /
DATA PARWM N /
-10.0 , 0.2 , -20.0 , -6.28 , -6.28
-6.28 , 0.0 , 1.0 , -35.0 , -35.0
-20.0 , -20.0 , 0.0 , 0.0 , -30.0
-30.0 , -30.0 , -30.0 , -20.0 , -20.0
-35.0 , -15.0 , -20.0 , -40.0 , 0.0
0.0 , -30.0 , -45.0 , -30.0
. /
DATA PARVMAX /
40.0 , 2.0 , 20.0 , 6.28 , 6.28
6.28 , 50000.0 , 25.0 , 15.0 , 15.0
20.0 , 20.0 , 20.0 , 20.0 , 30.0
30.0 , 15.0 , 15.0 , 20.0 , 20.0
15.0 , 15.0 , 20.0 , 40.0 , 20.0
0.0 , 15.0 , 45.0 , 30.0
. /
DATA PARM NC /
0.0 , 0.0 , 0.0
/

DATA PARMDSCRP /

O©oOoO~NOOULDWNE

O©COoO~NOOOA,WNPE-

A WN PP

"Angl e of attack (deg)',

" Mach number (nd)',

"Sideslip angle (deg)',

'"Body axis Roll Rate (rad/sec)',
'"Body axis pitch rate (rad/sec)',
'Body axis yaw rate (rad/sec)',
"Altitude (ft)',

'Nozzl e pressure ratio (nd)',
"Left Canard deflection (deg)',

Ri ght Canard defl ection (deg)',
Left Aileron deflection (deg)',
Ri ght Aileron deflection (deg)',
Left T.E. Flap deflection (deg)',
Right T.E. Flap deflection (deg)',
Left Rudder deflection (Deg)',

Ri ght Rudder deflection (deg)',
Left stabilator deflection (deg)',
Ri ght stabilator def. (deg)',
Pitch Nozzle Deflection (deg)',
Yaw Nozzl e Defl ection (deg)',
"Symmetric Canards (deg)',
Differential Canards (deg)',
Synmmetric ailerons (deg)',
Differential ailerons (deg)',
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5 '"Symetric T.E.F. (deg)',
6 'Differential T.E.F. (Deg)',
7 'Symetric stabilator (deg)',
8 'Differnetial stabilator (deg)',
9 'Symetric Rudder (deg)
. /

DATA CCEFFNAME [/

' CD ", CL L' CM L' CY L' Cl ",
' ON '

. /

DATA CCEFFDSCRP /
1 'Drag Coefficient',
2 'Lift Coefficient',
3 'Pitch Monent coefficent',
4 ' Sideforce coefficient',
5 '"Rolling nmonent coefficient',
6 ' Yawi ng nmonment coefficient
. /

DATA ((UEFFNAME(i,j),]j =1, NCoeffs),i=1, NParmns) /
1' CFX1 ', CFZ1 RN Y%} ', CFYL oMl ", CWNL ",
2' CFX1 ', CFZ1 RN Y%} ', CFYL oMl ", CWNL ",
3'DCXsB ','DCZzsB ','DCwMSB ','CFY1 oMl ", CWNL ",
4' CFX1 ', CFZ1 RN Y%} ', CFYL ', CMLP ", ' CWN\P ",
5' CFX1 ', CFZ1 e\ \Ye) ', CFYL oMl ", CWNL ",
6' CFX1 ', CFZ1 RN Y%} ', CFYL ', "CMLR ', CMNR ",
7' CFX1 ', CFZ1 RN Y%} ', CFYL oMl ", CWNL ",
8 DXNOz ','DZNQz ','DWMNOZ ','DYNOZ ','DLNQZz ','DNNQzZz ',
9'CXCAND ','CZCAND ','CMCAND ','CYDC ', ' CLDC ', ' CNDC ",
."CXCAND ','CZCAND ','CMCAND ','CYDC ', ' CLDC ', " CNDC ",
1'DCXDA1 ' ,'CZTEF ','CMIEF ','CYDAD ','CLDAD ','CNDAD ',
2'DCXDA1L ' ,'CZTEF ',"CMIEF ','CYDAD ','CLDAD ','CNDAD ',
3'DCXDAL ' ,'CZTEF ' ,"'CMIEF ','CFYFLP ','CMLFLP ' ,'CWNFLP ',
4' DCXDA1 ','CZTEF ','CMIEF ','CFYFLP ','CMLFLP ','CWNFLP ',
5'DCXDR1L ' ,' CFZ1 ','DCVMDRL ','CYDRD ','CLDRD ','CNDRD ',
6' DCXDRL ' ,' CFzZ1 ','DCVMDRL ','CYDRD ','CLDRD ','CNDRD ',
7'DCXDS1  ','DCzDS1 ','DCMDS1I ','CYDTD  ','CLDTD ','CNDID ',
8 DCXDS1 ','DCzDsS1 ','DCMDS1I ','CYDID ','CLDTD ','CNDID ',
9'DXPNOZ ','DZPNQz ','DWPNQZ ','DYPNOZ ','DLPNOZ ','DNPNQZ ',
."DXYNQzZ ','DZYNOZ ','DWNQZ ','DYYNOZ ','DLYNQZ ','DNYNQZ ',
1' CXCAND ','CZCAND ','CMCAND ','CYDC ', ' CLDC ', ' CNDC ",
2'CXCAND ','CZCAND ','CMCAND ','CYDC ', ' CLDC ', ' CNDC ",
3'DCXDAL ' ,'CZTEF ',"CMIEF ','CYDAD ','CLDAD ','CNDAD ',
4'DCXDA1 ','CZTEF ' ,"CMIEF ','CYDAD ','CLDAD ','CNDAD ',
5'DCXDA1L ' ,'CZTEF ' ,'CMIEF ','CFYFLP ','CMLFLP ','CWNFLP ',
6' DCXDA1L ' ,'CZTEF ','CMIEF ','CFYFLP ','CMLFLP ' ,' CWNFLP
7'DCXDS1 ','DCzDS1 ','DCMDS1I ','CYDID  ','CLDTD ','CNDTD '
8 DCXDS1 ','DCzDs1 ','DCvMDS1I ','CYDID  ‘','CLDTD ','CNDTD '
9' DCXDR1L ' ,' CFZ1 ','DCVMDRL ','CYDRD ','CLDRD ',"'CNDRD ‘'

/
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End of BDSWEEPDATA

C23456789012345678901234567890123456789012345678901234567890123456789012

Modul e Name: SHELL_SWEEPDATA
Cal  ed By: Launch_SD
Calls to: SWEEPDATA, Shell library routines

Functi on: Performs the user interface tasks for the Sweep
Data utility

Modi fi cati ons

Dat e Pur pose By
JUN 10 1996 Cr eat ed J. Bolling
| MPLI CI' T NONE

LOG CAL SI MPARL( 15)
CHARACTER* 80 SI MPARC80( 3)

LOG CAL Initialized

-------------------------- Shel |l Paranmeters--------------------------

| NTEGER Cal | er | D, Mode
LOE CAL Do_Menu, Di d_Menu
CHARACTER*80 CommandBuf f er

-------------------------- Sweep Paranmeters--------------------------

| NTEGER NPar s, NCoef f s

PARAVETER (NParnms = 29, NCoeffs = 6)

DOUBLE PRECI SI ON PARM NParnms), PARMM N(NParns), PARMVAX( NPar ns),
COEFF( NPar s, NCoef fs), UEFF( NPar s, NCoeffs),
PARM NC( 3)

CHARACTER* 8 PARVNAME( NPar ms) , COEFFNAME( NCoef f s),

UEFFNANME( NPar s, NCoef f s)

CHARACTER* 32 PARNMDSCRP( NPar ms) , COEFFDSCRP( NCoef f s)
--------------------------- Local S-----------m o
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| NCLUDE ' : I NCLUDES: Crd_St ructure. txt/LI ST
| NTEGER STATEMENT, [COstat, NIP, NDP, I, J, K |PARM3),
| COEFF( 6)

CHARACTER*80 Message(40)

CHARACTER*8 DSPronpt, NI LPronpt, | VAR, DVAR, VARPr onpt
CHARACTER* 12 VARPr onpt 12

PARAVETER (DSPronpt = 'DS>', N LPronpt ="' ')

LOG CAL Do_FLAPSCD, Do_COLLECTI VE, Do_TOTAL, | Foundit, DCDU
REAL TEMPR4

| NTEGER Processl OString

CHARACTER*8 Get CHARI nput, 14ToString
REAL Get REALI nput

| NTEGER Get | NTI nput

LOG CAL Get LOG CALI nput

COMWON / SHELLPARMS / Cal lerl D, Mde, Do_Menu, D d_Menu,
ConmandBuf f er

COWDON / SWEEPPARMS / PARM  PARWNAME, PARMDSCRP, PARMM N, PARMVAX,

PARM NC, CCEFF, COEFFNAME, COEFFDSCRP

COWDN / SI MPARS / SI MPARL, SI MPARCB0

COWON / DSMENU / DSCMVD

| NCLUDE ' : | NCLUDES: SDCnd. t xt/ LI ST'

IF (.not. Initialized) THEN

DO 1060 | = 1, NParns
PARM 1) = 0.0D0
CONTI NUE
END | F

Do_FLAPSCD = . FALSE.
Do_COLLECTI VE = . FALSE.
Do_TOTAL = . TRUE.

DCDU = . FALSE.

| VAR = ' none'

Do_Menu = . TRUE.
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IF (Initialized) THEN

100  CALL Get MenuText ( DSCVD)
CALL CGet MenuConmand( DSCVD, DSPr onpt , STATEMENT)

G0 TO (40, 15, 30, 50, 10, 20, 25, 55, 60, 80, 85, 100, 100) STATEMENT

10 CONTI NUE I Set I ndependent Variables to sweep
NIP = 0
I VAR = '
DO WH LE (I VAR . NE. 'none' .AND. NIP .LT. 3)
NIP = NP + 1

| VAR = ' none'
VARPronpt = "I VAR //14ToString(N P)
| VAR = CGet CHARI nput ( VARPr ompt , | VAR)
| Foundit = . FALSE.
DO 1010 | = 1, NParns
IF (1 VAR . EQ PARWMNAME(1)) THEN
| PARMNI P) = |
| Foundit = . TRUE.
END | F
1010 CONTI NUE

IF (.not. IFoundit .AND. IVAR .NE. 'none') THEN
Message(1l) = 'Variable not found: '//1VAR
| OStat = Processl OString(Message, 1,0, 4)
CommandBuffer ="' '
NIP = NP - 1

END | F

IF (IVAR .EQ 'none') NNP = NP - 1

END DO

I This section shifts the IPARMS to the far right in the | PARM array.
I (That is if only 2 paraneters are being swept, |PARM 3) becones

I |PARM 2), | PARM 2) becones | PARM 1) etc.)

IF (NP .EQ 1) THEN
| PARM(3) = | PARM NI P)

ELSE
IF (NP .EQ 2) THEN
| PARM(3) = | PARM NI P)
| PARM(2) = | PARM NI P- 1)
END | F
END | F
GO TO 100
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15 CONTI NUE I Set the Do_TOTAL Fl ag
Do_TOTAL = Get LOd CALI nput (' Do_TOTAL' , Do_TOTAL)
GO TO 100
20 CONTI NUE I Set dependent variables to record
NDP = 0
DVAR = ' '

DO WHI LE (DVAR . NE. 'none' .AND. NDP .LT. 6)
NDP = NDP + 1
DVAR = ' none'
VARPronpt = 'DVAR //14ToStri ng( NDP)
DVAR = Cet CHARI nput ( VARPr onpt , DVAR)
| Foundit = . FALSE
DO 1020 | = 1, NCoeffs
| F (DVAR . EQ CCEFFNAME(1)) THEN
| COEFF(NDP) = |
| Foundit = . TRUE.
END | F
1020 CONTI NUE
IF (.not. IFoundit .AND. DVAR .NE. 'none') THEN
Message(1l) = 'Variable not found: '//DVAR
| OStat = Processl OString(Message, 1,0, 4)
ConmmandBuffer ="' '
NDP = NDP - 1

END | F
IF (DVAR .EQ 'none') NDP = NDP - 1
END DO
GO TO 100
25 CONTI NUE I Set a constant variable
| VAR = CGet CHARI nput (' | VAR , | VAR)
| Foundit = . FALSE.
DO 1015 | = 1, NPar ns
IF (I VAR . EQ PARWNAME(I)) THEN
TEMPR4 = REAL(PARM 1))
TEMPR4 = Get REALI nput (| VAR, TEMPR4)

PARM 1) = DBLE( TEMPR4)
| Foundit = . TRUE.
END | F
1015 CONTI NUE
IF (.not. IFoundit .AND. IVAR .NE. 'none') THEN
Message(1l) = 'Variable not found: '//I1VAR
| OStat = Processl OString(Message, 1,0, 4)
CommandBuffer ="' '
G0 TO 25
END | F
GO TO 100

30 CONTI NUE I Set Do_FLAPSCD I ogi cal
Do_FLAPSCD = Get LOG CALI nput (' Do_FLAPSCD , Do_FLAPSCD)
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GO TO 100
40 CONTI NUE I Set Do_COLLECTI VE | ogi cal
Do_COLLECTI VE = Get LOG CALI nput (' Do_COLLECTI VE' , Do_COLLECTI VE)
GO TO 100
50 CONTI NUE I Set the derrivative extraction flag
DCDU = Cet LOd CALI nput (' DCDU , DCDU)
GO TO 100
55 CONTI NUE I Set the Data sweep increments for |VARS

DO 1025 1=3,4-NIP, -1
J = | NDEX( PARMNAME( | PARM1))," ') - 1
VARPr onpt 12 = PARWNAVE(| PARM 1)) (:J)//"' _inc'
TEMPR4 = REAL( PARM NC(1))
TEMPR4 = Get REALI nput ( VARPr onpt 12, TEMPR4)
PARM NC(1) = DBLE( TEMPR4)
1025  CONTI NUE
GO TO 100

60 CONTI NUE I Start the Data Sweep
CALL SWEEPDATA( Do_FLAPSCD, Do_TOTAL, Do_COLLECTI VE, DCDU, NI P,
. | PARM NDP, | COEFF)
GO TO 100

70 CONTI NUE I Quit the Data Sweep Uility
G0 TO 999
80 CONTI NUE I Hel p requested, show Ivars and Dvars
Message(1l) = 'Avail abl e I ndependent Variabl es:'
DO 1030 | = 1, NPar ns
J=1+1
Message(J) = PARMNAME(|)// PARNMDSCRP( 1)
1030 CONTI NUE
Message(J+1) ="' '
Message(J+2) = 'Avail abl e dependent Vari abl es:'
DO 1040 | = 1, Ncoeffs
K=J+ 2 + 1

Message(K) = COEFFNAME(I)// COEFFDSCRP(I)
1040 CONTI NUE
| Cstat = Processl OString(Message, K, 0, 0)
GO TO 100

85 CONTI NUE | Reset all paraneters to zero
DO 1041 | 1, NPar s
PARM I) 0.0
1041 CONTI NUE
GO TO 100
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! End OF SHELL_SWEEPDATA

C23456789012345678901234567890123456789012345678901234567890123456789012
R

File Nane: :INCLUDES: Crd_Structure.txt

|

|

!

I Command structure for simulation. Max. allowable comands set to 30.

I Each nenu uses its own custom nunber of conmands. CndH i s the header

I for each command menu. (More than one header can occurr in a menu)

I CndU and CndL are conmands in upper and | ower case respectively. CnmdD
I is the command decription diplayed in the nenu. HasSubMenu is a

I' logical flag for each command.

STRUCTURE / CMD_STRUC /
| NTEGER Num_Conmands
CHARACTER* 40 CndH( 0: 30)
CHARACTER*4 CrdU( 30)
CHARACTER*4 CndL( 30)
CHARACTER* 40 CndD( 30)
LOAd CAL HasSubMenu( 30)

END STRUCTURE

C23456789012345678901234567890123456789012345678901234567890123456789012

! Fil e Nane: : | NCLUDES: SDCnd. t xt

RECORD / CMD_STRUC / DSCMD
IF (.NOT. Initialized) THEN

DSCVD. Num Cormands = 11

DSCNMD. CndH( 0) "Data Sweep Utility: Commands’
DSCMD. CndH( 1) b
DSCMD. CndU( 1) ' COLL

DSCMD. CndL( 1) ‘col I

DSCMD. CndD(1) = 'Set the Collective Controls Flag'
DSCMD. HasSubMenu( 1) = . FALSE.

DSCMD. CndH( 2) b
DSCMD. CndU( 2)
DSCMD. CndL( 2)

" TOT
"tot'
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DSCMVD. CndD(2) = ' Set the Total Coefficient returned Flag'
DSCMD. HasSubl\/Enu(Z) = . FALSE.

DSCMD. CndH(3) =

DSCMVD. CndU(3) = ' FLAP

DSCMVD. CndL(3) = 'flap'

DSCMVD. CndD(3) = 'Set the Flap Scheduling Flag'
DSCMD. HasSubl\/Enu(3) = . FALSE.

DSCMVD. CndH(4) =

DSCMD. CndU(4) = ' DDU

DSCVD. CndL(4) = ' ddu’

DSCMVD. CndD(4) = 'Set the Derrivative extracting Flag'
DSCMD. HasSubl\/Enu(4) = . FALSE.

DSCMD. CndH(5) =

DSCMD. CndU(5) = ' I VAR

DSCMVD. CndL(5) = "ivar'

DSCMVD. CndD(5) = ' Specify the | ndependent sweep vari abl es'
DSCMD. HasSubl\/Enu(S) = . FALSE.

DSCMVD. CndH(6) =

DSCMD. CndU(6) = ' DVAR

DSCMD. CndL(6) = 'dvar'

DSCMVD. CmdD(6) = ' Specify the Dependent sweep vari abl es’
DSCMD. HasSubl\/Enu(G) = . FALSE.

DSCVD. CndH(7) =

DSCMVD. CmdU(7) = ' SET'

DSCMVD. CndL(7) = 'set'’

DSCMVD. CndD(7) = 'Set a Variable to a constant'
DSCMD. HasSubI\/Enu(?) = . FALSE.

DSCMD. CndH(8) =

DSCMD. CmdU(8) = ' INC

DSCMD. CndL(8) = 'inc'

DSCMVD. CndD(8) = ' Set | VAR | ncrenents'

DSCMD. HasSubl\/Enu(8) = . FALSE.

DSCMD. CndH(9) =

DSCMD. CmdU(9) = ' RUN

DSCVD. CndL(9) = 'run’

DSCMVD. CmdD(9) = ' Begi n Data Sweep'

DSCMD. HasSubMenu(9) = . FALSE.

DSCMD. CndH( 10) b

DSCMVD. CndU( 10) ' HELP'

DSCMD. CndL(10) " hel p'

DSCNVD. CndD( 10) 'List the available | VARS and DVARS
DSCMD. HasSubI\/Enu(lO) = . FALSE.

DSCMD. CdH( 11)
DSCMVD. CndU( 11)
DSCMVD. CndL( 11) "rest’

DSCNVD. CndD( 11) '"Reset all |VARS to zero'
DSCMD. HasSubMenu( 11) = . FALSE.

" REST'

END | F
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1.2 The Sweep Data Algorithm
A. Usage

This module performs the data sweeps for as many as 3 independent parameters at a time, and saves the results as a
Matlab binary workspacefile.

A.1 SWEEPDATA
Function Prototype, SUBROUTINE

LOGICAL DO_FLAPSCD, DO_TOTAL, DO_COLLECTIVE, DCDU
INTEGER NIP, IPARM(3), NDP, ICOEFF(6)
COMMON SWEEPPARMS, UEFFECTS

Assign datato all variables

CALL SWEEPDATA(DO_FLAPSCD, DO_TOTAL, DO_COLLECTIVE, DCDU, NIP, IPARM, NDP,
ICOEFF)

SWEEPDATA increments the NIP parameters defined by IPARM() and saves the appropriate data to a specified
Matlab workspace file.

Argument Definitions
DO_FLAPSCD [in] Enables/disables calls to flap scheduling functions.

DO _TOTAL [in] Total aero. coefficient data is returned if value is TRUE

DO_COLLECTIVE [in] Enables/disables the use of symmetric and differential control
commands

DCDU [in] Enables/disables estimation of derivatives using a 4th order central
difference approach.

NIP [in] Number of independent parameters to sweep.

IPARM() [in] Array indicating which parameters are to be swept

NDP [in] Number of dependent variables to save.

ICOEFF() [in] Indicates the dependent results that are to be saved

B. General Remarks

This module saves al of the results in the SWEEPPARMS and UEFFECTS common blocks (see section 1.1 for a
description of these globals). It may also require some dight modifications in order to interface properly with
different databases. This version iswritten for the F-15 ACTIVE database and should only be used as a template for
other lookup routines. Part C below gives more details about the standard sections of this code.

C. Functional Description

When SWEEPDATA is called, it may need to initialize some database specific parameters. These should appear
before any other executable statements. Next, the FILEEXIST parameter is set to FALSE (so that when the
CREATE_MATFILE routineis called, it generates a new file), and the NCALLS array is set to avector of 1's. The
results are saved as double precision arrays that are sent to the Matlab External Interface libraries. The next section
calculates the number of times that the database will have to be called based on the number of independent parameters
and each parameter’s increment (NCALLS). If any of these numbers exceed the size set for the data arrays, then an
error message is generated and SWEEPDATA returns. Assuming these tests pass, the independent parameters are set
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to their minimum allowable values, and a call is made to the shell interface routine GETFILENAME to request the
name of the file to store the data. The database is then swept using a 3 level DO loop for the possible 3 independent
sweep parameters. Within the inner most loop, (associated with the last independent parameter specified), the
following tasks are performed:

1) The arguments for the table lookup routine (excluding control surfaces) should be defined. Recall that the
independent parameters to sweep are stored in the PARM field of the SWEEPPARMS common block. So if
PARM(3) were defined as angle of attack, then a statement should appear setting the angle of attack argument to
PARM(3).

2) After all table lookup arguments have been defined, SWEEPDATA calls ADC2. This subroutine calculates static
pressure PS, dynamic pressure QBAR, and true airspeed in feet/sec VT, based on the current Mach number XMACH,
and dtitude ALT.

3) If DO_FLAPSCD is enabled then the Flap Scheduling functions should be called to set the flap positions based
on the current aircraft states. Note that if this feature is chosen not to be supported, either a dummy routine should
be implemented, or the lines commented out so that link errors will not occur.

4) Next, the derivative extraction logic is performed. Derivative calculations are done by calling the table lookup
routine within a loop. If DCDU is TRUE, the lower bound for the loop (LB) is -2 and the upper bound (UB) is 2,
resulting in 5 calls to the lookup routine. For each call, the inner most parameter is given a small “delta’ from its
reference value (PFTEMP), such that a 4th order central difference equation can be applied. If DCDU is FALSE then
the upper and lower bounds are both set to 0 so that the database is only called once using the reference value for the
3rd independent parameter.

5) Within the database calling loop, the inner most independent parameter is given a small offset from the reference
value if derivative extracting is enabled. The increment applied is based on the current loop count M and base “ delta”
value H. After this point, the table lookup arguments representing control surface deflections can be defined. and the
database routine can be called.

6) If DO_TOTAL is TRUE, then the aerodynamic coefficients returned are defined to the MCOEFF array (this array
is sent to the Matlab External Interface functions for export). Otherwise, the control specific intermediate resultsin
the UEFFECTS common block are defined to the array. In addition, a temporary 6 by 5 array CTEMP stores the
newly defined MCOEFF array for derivative extracting purposes. At this point, the lower bound/upper bound loop
repeats as described in step 4.

7) I1f DCDU is enabled, then the MCOEFF array is redefined by a call to the EXTRACTD function using the entries
of the CTEMP array. (This function returns the numerically calculated derivative). The MPARM array (this array is
sent to the MEX libraries as well) is defined based on the number of independent sweep parameters, and the inner
most parameter isincremented. This ends the inner most loop

For each middle parameter value, (the next to last independent parameter specified), the procedures above are
performed for the entire allowable range of the inner most parameter. When this is completed, the inner parameter is
reset to its minimum, the 2nd parameter isincremented, and the loop begins again. When the 2nd parameter has been
swept through its allowable range, the 6 K x J MCOEFF matrices contain data associated with the Kth inner most
parameter and the Jth middle parameter. In other words, the rows of the matrix contain data variations associated with
the middle parameter changing and the inner most parameter constant, while the matrix columns contain data
variations due to the inner most parameter, holding the middle parameter constant. The requested matrices are
exported to a Matlab file using a call to the shell interface routine CREATE_MATFILE (This routine in turn
references the Matlab External Interface libraries). If three parameters are being swept, then each matrix name is
appended with a number representing the current outer-most parameter index. For example, assume a Mach number
(MACH), angle of attack (ALPHA) and left stabilator (DSL) sweep is being performed, and the Drag coefficient
effects (CD) are being recorded. If the MACH number at the end of the middle parameter loop is the 3rd value
between its minimum and maximum alowable range, then the exported matrix will be given the name
CDALPHADSL3.
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After the matrix datais exported and if a 3 level sweep is being performed, the inner most and middle parameters are
reset to the minimum values, the outer-most parameter is incremented, and the loop continues, using a FILEEXIST
value of TRUE so that the additional datais appended to the specified file. If only two parameters are being swept or
the 3 level sweep isfinished, then the independent parameter vectors are saved to the Matlab file, and SWEEPDATA

returns.

D. Errors and Restrictions

Current restrictions on the number of available independent parameters, dependent parameters, and number of database
cals are 29, 6, and 240 respectively. These can be changed by modifying the PARAMETER statements, and

recompiling the executable.

E. Source Listing

APPENDIX I.

C23456789012345678901234567890123456789012345678901234567890123456789012

Calls to:

Modul e Name: SWEEPDATA
Cal | ed By: SHELL_DATASWEEP
Aer oDBLi brary, MATLAB external interface library.

(Consult The Matlab MEX technical documentation.)

R
SUBROUTI NE SWEEPDATA ( Do_FLAPSCD, Do_TOTAL, Do_COLLECTI VE, DCDU, NI P,

| PARM NDP, | COEFF)

Functi on:

Varies specified i ndependent paraneter(s) and records

t he specified dependent paraneter(s). Data is exported
in MATLAB bi nary format (.MAT.)

|
! d ossary
|

I Variabl e
*Do_FLAPSCD
*Do_TOTAL

C
*Do_COLLECTI VE
C

* DCDU

C

C

*NI P

*| PARM

* NDP
* | COEFF

Section

Type
LOCGE CAL
LOCGE CAL
LOCGE CAL
LOCGE CAL
| NTEGER
| NTEGER()

| NTEGER
| NTEGER( )

Local s
Descri ption

Deternines if Flaps are schedul ed or not.
Determines if total coefficients are returned
or individual increments due to controls.
Deternines if Collective symmetric and diff
controls are used instead of Left and Ri ght
(Coefficient)/f(Control) flag. F - do not
cal culate derrivatives, T - Calculate der-
rivatives using a 5 point formula.
nunber of independent paraneters to sweep
array indicating which variables are to be
swept .
nunmber of coefficents to record
array indicating which coefficients are to
be returned.
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Modi fi cati ons:

Dat e Pur pose By
DEC 04 1995 Creat ed J. Bolling
JUN 05 1996 Began meki ng extensive nodifications to work
with the F-15 SDF dat abase and the V1.5 Shell
i nterface. J.B.
JUN 14 1996 Added the Derrivative extracting | ogic. J. B.
| MPLI CI' T NONE

I NTEGER NI P, NDP, |PARM 3), | COEFF(3)
LOG CAL Do FLAPSCD, Do TOTAL, Do_COLLECTI VE, DCDU
---------------------------- Sweep Parameters--------------------------
| NTEGER NPar s, NCoef f s
PARAVETER (NParnms = 29, NCoeffs = 6)
DOUBLE PRECI SI ON PARM NParnms), PARMM N( NParns), PARMVAX( NPar ns),
COEFF( NPar s, NCoef fs), UEFF( NPar s, NCoeffs),
. PARM NC( 3)
CHARACTER* 8 PARWNAME( NPar ms), COEFFNAME( NCoef fs),
. UEFFNAME( NPar s, NCoef f s)
CHARACTER* 32 PARNMDSCRP( NPar ns), COEFFDSCRP( NCoef f s)
-------------------------- Surface CommBnds----------------------------
DOUBLE PRECI SI ON  SURCOM 41)
DOUBLE PRECI SI ON

DAl LD, DAILL_L, DAI LR L, DCANRL, DCANRR,
DCANRD, DDCAND, DDNQZD, DDTEF, DNQOZD,
DNOZL, DNOZR, DRAI LD, DROTVB, DROTVD,
DROTVT, DRUDD, DRUDL, DRUDR, DSPLD,
DSTBD, DSTBL_L, DSTBR L, DTALD, FLAPL,
FLAPR, NQZY, NQOZP, NDUMD 3, NDUMD4,
NDUMD5, NDUMDG, NDUMD7, NDUMDS, NDUMD9,
NDUMLO, NDUML1, NDUML2, NDUML3, NDUML4,
. NDUML5
------------------------------ Local S-----------““ e

REAL ALFA, BETA, XMACH, P, Q R ALT, VT, QBAR, PS, CLLT, OCM,
. CNT , CLT, CDT , CYT

I NTEGER |, J, K, JJ, JJJ, KK, NCALLS( 3), Matrows, Mat col ums, L, LL,
. Cl NDEX1, Cl NDEX2, Cl NDEX3, M LB, UB

| NTEGER Maxarraysi ze, Maxarraysi ze2

PARAVETER ( Maxarraysi ze = 240)

PARAVETER ( Maxarraysi ze2 = Maxarraysi ze**2)

CHARACTER* 16 Mat nane
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CHARACTER* 20 Fi | enane, Header

CHARACTER* 16 Fil etype

CHARACTER*4 Fil e_ext

PARAMETER (File_ext = "'.nmat')

REAL*8 MCOEFF( 6, Maxarraysi ze, Maxarraysi ze)

REAL*8 MPARM Maxarraysi ze, 3), Mat dat a( Maxarr aysi ze2)

LOG CAL Fileexist,CallEntry

REAL NPRNR4, LEXA, REXA, H

PARAMETER (H = 0.01)

DOUBLE PRECI SI ON CSMODE

DOUBLE PRECI SI ON CTEMP( 6, - 2: 2), PTEMP
e Functions--------mommmm o

CHARACTER*8 | 4t oStri ng

DOUBLE PRECI SI ON EXTRACTD

COWDON / SWEEPPARMS / PARM  PARVNAME, PARNMDSCRP, PARMM N, PARMVAX,
. PARM NC, CCEFF, COEFFNAME, COEFFDSCRP
COWDON / UEFFECTS / UEFF, UEFFNAME

COWDON / SURFACE / SURCOM

C  EQUI VALENCE STATEMENTS FOR SURFACE COMVANDS

EQUI VALENCE (SURCOM 1), DAILD),  (SURCOM 2), DAILL_L)
EQUI VALENCE ( SURCOM 3), DAI LR L), (SURCOM 4), DCANRL)
EQUI VALENCE ( SURCOM 5), DCANRR), ( SURCOM 6), DCANRD)
EQUI VALENCE ( SURCOM 7), DDCAND), ( SURCOM 8), DDNCZD)
EQUI VALENCE (SURCOM 9), DDTEF),  ( SURCOM 10), DNOZD)
EQUI VALENCE ( SURCOM 11), DNCZL),  ( SURCOM 12), DNOZR)
EQUI VALENCE ( SURCOM 13), DRAILD), ( SURCOM 14), DROTVB)
EQUI VALENCE ( SURCOM 15), DROTVD), ( SURCOM 16) , DROTVT)
EQUI VALENCE ( SURCOM 17), DRUDD),  ( SURCOM 18), DRUDL)
EQUI VALENCE ( SURCOM 19), DRUDR),  ( SURCOM 20) , DSPLD)
EQUI VALENCE ( SURCOM 21), DSTBD),  ( SURCOM 22), DSTBL_L)
EQUI VALENCE ( SURCOM 23), DSTBR L), ( SURCOM 24), DTALD)
EQUI VALENCE ( SURCOM 25), FLAPL),  ( SURCOM 26), FLAPR)
EQUI VALENCE ( SURCOM 27) , NOZY) , ( SURCOM 28) , NOZP)
EQUI VALENCE ( SURCOM 29) , NDUMD3),  ( SURCOM 30) , NDUMD4)
EQUI VALENCE ( SURCOM 31), NDUMD5),  ( SURCOM 32) , NDUMD6)
EQUI VALENCE ( SURCOM 33), NDUMD7),  ( SURCOM 34) , NDUMD8)
EQUI VALENCE ( SURCOM 35), NDUMD9),  ( SURCOM 36) , NDUMLO)
EQUI VALENCE ( SURCOM 37), NDUML1), ( SURCOM 38), NDUML2)
EQUI VALENCE ( SURCOM 39), NDUML3),  ( SURCOM 40) , NDUML4)
EQUI VALENCE ( SURCOM 41) , NDUML5)

131



30

APPENDIX I.

DATA CSMODE / 1.0 /
DATA LEXA, REXA /6.6, 6.6/

Fi |l eexi st = . FALSE.
NCALLS(1) =1
NCALLS(2) =1
NCALLS(3) =1

find how many calls we will have to make for the data sweep.
DO30 I = 3,4-NP,-1

NCALLS(1) = N NT(( PARMVAX(I PARM 1)) - PARWM N(I PARM1)))/
PARM NC(1)) + 1
| F (NCALLS(Il) .GI. Maxarraysize) THEN
VWRI TE(*, *) ' ERROR Maxi mum array size exceeded i n SWEEPDATA'
RETURN
END | F
Set the I VARS that we are sweeping to their mninums

PARM | PARM 1)) = PARMi n(1 PARM 1))
CONTI NUE
Get the nane of the file to store data to (Shell Interface call)

Header = 'Data Sweep'
CALL GetFil enane (Header, File_ext, Fil enane, Fil etype)

Sweep dat abase

DO 40 | = 1, NCALLS(1)
WRI TE(*, *) ' GETTI NG DATA. . ."
DO 50 J = 1, NCALLS(2)

DO 60 K = 1, NCALLS(3)
ALFA = REAL(PARM 1))
BETA = REAL(PARM 3))
XMACH = REAL( PARM 2))
P = REAL(PARM 4))
Q = REAL(PARM 5))
R = REAL( PARM 6))
ALT = REAL(PARM 7))
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= MAX( REAL( PARM 8)), 1. 0)
CALL ADC2(XMACH, ALT, VT, QBAR PS)

| F (Do_FLAPSCD) THEN
CALL FLAPSCD

Schedul e the flaps if desired--------------------

---------- Supporting Logic for derrivative extracting----------------

t he dat abase here

PTEMP + MH

END | F
| F (DCDU) THEN
LB = -2
UB = 2
PTEMP = PARM | PARM 3))
ELSE
LB =0
UB =0
PTEMP = PARM | PARM 3))
END | F
-------------------- Cal |
DO 61 M= LB, UB, 1
| F (DCDU) THEN
PARM | PARM 3) )
END | F
DCANRL = PARM 9)
DCANRR = PARM 10)
DAILL_L = PARM 11)
DAILR L = PARM 12)
FLAPL = PARM 13)
FLAPR = PARM 14)
DRUDD = PARM 15)
DRUDD = PARM 16)
DSTBL_L = PARM 17)
DSTBR L = PARM 18)
NOZP = PARM 19)
NOZY = PARM 20)
DCANRD = PARM 21)
DDCAND = PARM 22)
DRAILD = PARM 23)
DAILD = PARM 24)
NDUMD3 = PARM 25)
DDTEF = PARM 26)
DSTBD = PARM 27)
DTALD = PARM 28)
DRUDD = PARM 29)

I Used for DCDU

CALL F15AERQ(CDT, CLT, CMI, CYT, CNT, CLLT, ALFA, XMACH, QBAR

V-I-7

P, Q R, ALT, 0.0, BETA 0.0, 0.0,

0.0, NPRNR4, LEXA, REXA, CSMODE, . TRUE.,
Do_COLLECTI VE)
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| F (Do_TOTAL) THEN

MCOEFF( 1, K, J) = DBLE( CDT)
MCOEFF( 2, K, J) = DBLE(CLT)
MCOEFF( 3, K, J) = DBLE( CMI)
MCOEFF( 4, K, J) = DBLE(CYT)
MCOEFF(5, K, J) = DBLE(CLLT)
MCOEFF( 6, K, J) = DBLE( CNT)

ELSE
MCOEFF( 1, K, J)
MCOEFF( 2, K, J)
MCOEFF( 3, K, J)
MCOEFF( 4, K, J)
MCOEFF( 5, K, J)
MCOEFF( 6, K, J)

END | F

UEFF( | PARM 3) , 1)
UEFF( | PARM 3) , 2)
UEFF(1 PARM 3), 3)
UEFF( | PARM 3) , 4)
UEFF(1 PARM 3) , 5)
UEFF(1 PARM 3) , 6)

! nore DCDU stuff

CTEMP(1, M = MCOEFF(1, K, J)

CTEMP(2, M = MCOEFF(2, K, J)

CTEMP(3, M = MCOEFF(3, K, J)

CTEMP(4, M = MCOEFF(4, K, J)

CTEMP(5, M = MCOEFF(5, K, J)

CTEMP(6, M = MCOEFF(6, K, J)
61 CONTI NUE

I Extract the derrivatives here for each dependent variable

| F (DCDU) THEN
DO 62 M= 1,6
MCCEFF(M K, J) = EXTRACTD(CTEMP(M -2), CTEMP(M -1),
. CTEMVP(M 1), CTEMP(M 2),H)
62 CONTI NUE
PARM | PARM 3)) = PTEWP | Retore to original val.
END | F

MPARM K, 3) = PARM | PARM 3))

IF (NP .GT. 1) MPARMJ, 2) = PARM | PARM 2))
IF (NP .GT. 2) MPARMI,1) = PARMIPARM 1))
PARM | PARM 3)) = PARM | PARM 3)) + PARM NC(3)

60 CONTI NUE

PARM | PARM 3)) = PARMM N(| PARM 3))
IF (NP .GT. 1) THEN

PARM | PARM 2)) = PARM | PARM(2)) + PARM NC(2)
ENDI F

50 CONTI NUE
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I Export the data that we have so far (This is the matrix of coefficient
I data. for the | PARM and | PARM3 sweeps. There will will be nore matri -
I ces to follow for each consecutive | PARM

WRI TE(*, *) ' EXPORTI NG DATA. ..

DO 75 JJ=1, NDP

IF (NP .EQ 1) THEN
| F (Do_TOTAL) THEN

Cl NDEX1 = | NDEX( COEFFNANME( | COEFF(JJ))," ") - 1
Mat name = COEFFname( | COEFF(JJ)) (: Cl NDEX1)//
PARMhame( | PARM 3))
ELSE
Cl NDEX1 = | NDEX( UEFFNAME(| PARM 3), | COEFF(JJ))," ') - 1
Mat name = UEFFNAME( | PARM 3), | COEFF(JJ)) (: Cl NDEX1)
ENDI F

Matrows = NCALLS(3)
Mat col ums = 1
ENDI F

IF (NP .EQ 2) THEN
| F (Do_TOTAL) THEN

Cl NDEX3 = | NDEX( PARWNAME(| PARM3))," ') - 1
CI NDEX2 = | NDEX( PARWNAME(I PARM2))," ') - 1
Cl NDEX1 = | NDEX( COEFFNANME( | COEFF(JJ))," ') - 1
Mat name = COEFFname( | COEFF(JJ)) (: Cl NDEX1)//
PARVhame( | PARM 2) ) (: Cl NDEX2) //
PARVhane( | PARM 3)) (: Cl NDEX3)
ELSE
Cl NDEX3 = | NDEX( UEFFNAME( | PARM 3), | COEFF(JJ))," ') - 1
Mat name = UEFFNAME( | PARM 3), | COEFF(JJ) ) (: Cl NDEX3)
END | F

Mat rows = NCALLS( 3)
Mat col umms = NCALLS( 2)
END | F

IF (NP .EQ 3) THEN
| F (Do_TOTAL) THEN

Cl NDEX3 = | NDEX( PARVhane(| PARM3))," ') - 1

CI NDEX2 = | NDEX( PARVhane(| PARM2))," ') - 1

Cl NDEX1 = | NDEX( COEFFNANME( | COEFF(JJ))," ") - 1

Mat name = COEFFname( | COEFF(JJ)) (: Cl NDEX1)//
PARVhane( | PARM 2) ) (: Cl NDEX2) //
PARVhame( | PARM 3) ) (: Cl NDEX3) //
[ 4toString(l)

ELSE
Cl NDEX3 = | NDEX( UEFFNAME( | PARM 3), | COEFF(JJ))," ') - 1
Mat name = UEFFNAME( | PARM 3), | COEFF(JJ)) (: Cl NDEX3)//
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[4toString(l)
END | F
Mat r ows = NCALLS( 3)
Mat col umms = NCALLS( 2)
ENDI F

L=0
VR TE(*,' (15x, A)') Mat name
DO 80 JJJ = 1, NCALLS(2)
DO 85 KK = 1, NCALLS(3)
Mat dat a( L+KK) = MCOEFF(1 COEFF(JJ), KK, JJJ)

LL = KK
85 CONTI NUE

L=1L+LL
80 CONTI NUE

CALL Create_MATFi | e(Fil enane, Fi |l eexi st, Mat nane, Mat r ows,
Mat col ums, Mat dat a)
Fil eexi st = . TRUE
75 CONTI NUE

I Finished exporting the matrices, continue with incrementing | PARML or
I finsh by exporting the rest of the variables.

PARM | PARM 3)) = PARMM N(| PARM 3))
IF (NP .GT. 1) PARMIPARM2)) = PARWM N(| PARM 2))
IF (NP .GT. 2) THEN

PARM | PARM 1)) = PARM | PARM(1)) + PARM NC(1)
ENDI F

40 CONTI NUE

Mat nanme PARMhame( | PARM 3))

Mat r ows NCALLS( 3)

Mat col ums = 1

WRI TE(*, ' (15x, A)') Matnane

DO 65 J=1, NCALLS(3)

Mat dat a(J) = MPARMJ, 3)

65 CONTI NUE

CALL Create_MATFi | e(Fil enane, Fi |l eexi st, Mat nane, Mat r ows,
Mat col ums, Mat dat a)

IF (NP .GTI. 1) THEN
Mat name = PARMhane(| PARM 2))
Mat rows = NCALLS(2)
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Mat col ums = 1

WRI TE(*, ' (15x, A)') Matnane

DO 70 J=1, NCALLS(2)

Mat dat a(J) = MPARM J, 2)

70 CONTI NUE

CALL Create_MATFi |l e(Fil enane, Fi |l eexi st, Mat nane, Mat r ows,
. Mat col ums, Mat dat a)
ENDI F

IF (NP .GI. 2) THEN

Mat name = PARMhane(| PARM 1))

Mat rows = NCALLS(1)

Mat col ums = 1

WRI TE(*, ' (15x, A)') Matnanme

DO 1200 J=1, NCALLS(1)

Mat dat a(J) = MPARM J, 1)

1200 CONTI NUE

CALL Create_MATFi | e(Fil enane, Fi |l eexi st, Mat nane, Mat r ows,
. Mat col ums, Mat dat a)
ENDI F

I End of MAT File export
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1.3 Miscellaneous Functions and Subroutines

A. Usage

These small functions and subroutines perform more general calculations not specific to the SWEEPDATA module
but are required for execution.

A.1 ADC2
Function Prototype, SUBROUTINE
REAL MACH, ALT, VT, QBAR, PS

Assign valuesto MACH and ALT
CALL ADC2(MACH, ALT, VT, QBAR, PS)
ADC2 caculatesthe values of VT, QBAR, and PS

Argument Definitions

MACH [in] Mach number (ND)
ALT [in] Altitude (ft)

VT [out] True airspeed (ft/sec)
QBAR [out] Dynamic pressure (psf)
PS [out] Static pressure (psf)

A.2 EXTRACTD
Function Prototype, REAL*8
REAL*8 V1,V2,V3,V4, H

Assign values to all arguments
D = EXTRACTD(V1, V2, V3, V4, H)

EXTRACTD returns a 4th order centra difference derivative approximation based on the values V1 - V4 and step size
H.

Argument Definitions

V1 [in] reverence value - 2*H
V2 [in] reverence value - 1*H
V3 [in] reverence value + 1*H
V4 [in] reverence value + 2*H
H [in] Step size

B. General Remarks

ADC?2 is a modified form of the standard atmosphere model (subroutine ADC) found in appendix A of Aircraft
Control and Smulation (See reference 16). The difference is that Mach number is treated as a known value to
calculate velocity.
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EXTRACTD usesasimple 5 point formula to approximate the derivative

C. Source Listing

R I R I R I R R R S R I I R R I R I R I I R I I I S R R I I R I I

SUBROUTI NE ADC2( AMACH, ALT, VT, QBAR PS)
REAL VT, ALT, AMACH, GBAR
REAL RO, TFAC, T, RHO, PS

DATA RO/ 2. 377E- 3/

TFAC = 1.0 - 0.703E-5 * ALT
T = 519. 0*TFAC

| E (ALT. GE. 35000. 0) T=390.0
RHO = RO*( TFAC**4. 14)

VT = AVACHt SQRT(1.4*1716. 3*T)
QBAR=0. 5* RHO* VT* VT

PS=1715. 0* RHO* T

RETURN

END

C EE R I R R I R I I R R R S R R S S R I I R I I I R R R I S I R I I

FUNCTI ON EXTRACTD( V1, V2, V3, V4, H)

| MPLI CI T NONE
DOUBLE PRECI SI ON EXTRACTD, V1, V2, V3, V4

REAL H

EXTRACTD = (V1 - 8.0*V2 + 8.0*V3 - V4)/(12.0*H)
RETURN

END
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2. Creating Mesh Constants for 2D and 3D Tables

A. Usage

The functions MMCS2D (Make Mesh Constants) and MMCS3D can be used to generate the affine table lookup
mesh constants for each table block

A.l MMCS2D
Function Prototype, Matlab m-file

This script file has no arguments. At the Matlab prompt:
»MMCS2D

MMCS2D prompts the user for the required information, calculates the mesh constants, and saves the data to the
generic MCSData.mat file

Argument Definitions
none

A.2 MMCS3D
Function Prototype, Matlab m-file

This script file has no arguments. At the Matlab prompt:
»MMCS3D

MMCS3D prompts the user for the required information, calculates the mesh constants, and saves the data to the
generic MCSData.mat file

Argument Definitions
none

B. General Remarks

The MMCS functions require the following input from the user:

1) the name of the Matlab file that contains the Sweep Data results
2) the function (or function family name) for which to generate the mesh constants.
3) the independent parameters.

Make sure that when entering the independent parameters, they are entered in the correct order. For reference, Sweep
Data stores the dependent variations in columns. These columns are stacked side by side for two dimensional data
sweeps, and for three dimensional sweeps, slices associated with the outer-most independent parameter are stored as
separate matrices.
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A Note about the MCSData.mat file:

After the mesh constants have been calculated for the complete table range, the MCSData.mat file is created. This
file contains the “C_" mesh constants, the minimum values for each independent parameter (P_min), and the
independent parameter increments (P_inc). The underscore for each mesh constant nameisreplaced by the parameters
that is multiplies. For instance, CP1P3 represents the mesh constant that multiplies the 1st (outer-most parameter)
and the 3rd (inner most) parameters. The underscores in the P_min and P_inc variables are replaced by their
respective parameter number (ie. Pmin and Plinc).

C. Functional Description

MMCS2D first clears the workspace and requests the name of the file to load. It then displays all of the variables
saved in the file so that the user will easily be able to enter the correct parameters. MMCS2D prompts for the
function matrix to be used to generate the mesh constants, followed by the independent parameters associated with
the rows and columns of the matrix. Using this data, the number of table blocks are found (P2meshsize X
P1lmeshsize), the minimum and maximum values for the independent parameters are extracted, and the parameter
increments are calculated. After the mesh constant matrices areinitialized to zeros, a2 level DO loop is performed to
calculate the 4 mesh constants CP1, CP2, CP1P2, and CO for each block in the data table by solving a system of 4
equations for the 4 known node-defining points. After al of the mesh constants have been calculated, the data is
saved to the MCSData.mat file, the workspace is cleared, and the script ends.

MMCS3D performs the same procedures as MM CS2D, modified to account for a 3rd dimension. Basically, this adds
a 3rd DO loop, and necessitates the calculations of 8 mesh constants CP1P2P3, CP1P2, CP2P3, CP1P3, CP1,
CP2, CP3, and CO. The user input section however, is slightly different. MMCS3D asks for the name of the file to
load and displaysits variables as usual, and proceeds with a function name request. The request here is different from
that in MMCS2D in that MMCS3D only needs the function “family” name. Thus, the index numbers appended to
the end of each matrix should be omitted. Next, the independent parameters associated with the different matrices,
matrix rows, and matrix columns are requested.

D. Errors and Restrictions

Matlab requires that character data be enclosed in quotes. Therefore, the function family name in MMCS3D and the
requested filenames to load in MMCS3D and MMCS2D must be typed within quotes or an error will occur.

E. Source Listing

% MMCS2D (Make Mesh Constants; 2-D Tabl es)

% This script generates the 4 constants for each block in the 2
% di mensi onal Affine interpolation tables.
cl ear;

% Load a file containing the interpolation data

eval (['load '
whos

func = input (' Function to generate nesh constants> ');

, (input (" Filename: '))]);

% set up the independent variable paraneters
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par ml i nput (' 1st | ndependent paraneter (Row Data)> ');
par nm2 i nput (' 2nd | ndepentent paraneter (Colum Data)> ');
Plmeshsi ze = | ength(parnml) - 1;

P2rmeshsi ze = | engt h(parn) - 1;

Plmin = parnl(1);

Plmax = parnil(l ength(parnt));

P2mi n = parn(1);

P2max = parn2(l engt h(parn®));

Plinc = (Plmax - P1lmin)/Plnreshsi ze;
P2inc = (P2max - P2mi n)/ P2meshsi ze;

%initialize the coefficient matrices

CP1 = zer os(P2neshsi ze, Plneshsi ze) ;
CP1P2 = zeros(P2meshsi ze, Plneshsi ze);
CP2 = zer os(P2neshsi ze, Plneshsi ze) ;
Co = zer os(P2neshsi ze, Plneshsi ze) ;

% Start generating nesh constants

X0 = P1m n;

X1l = P1lm n + Plinc;
DO = P2min;

D1 = P2m n + P2inc;
for i = 1:Plneshsize;

for j = 1:P2nmeshsi ze;

F = [func(j,i),func(j+1,i),func(j,i+1),func(j+1,i+1)]";
A = [ X0, DO, X0*D0, 1; X0, D1, X0*D1, 1; X1, DO, X1* DO, 1; X1, D1, X1*D1, 1] ;
C=1inv(A)*F
CPL(j,i1) = 1);
cP2(j,i) = d2);
CP1P2(j,i) = (3);
Co(j,i) = d4);
D0 = Di;
D1 = D1 + P2inc;
end;
% get ready for next nesh
DO = P2min;
D1 = P2m n + P2inc;
X0 = Xi;
X1l = X1 + P1linc;
end;

% Export the data to a file

save MCSData CP1 CP1P2 CP2 Co Plnin P2m n Plinc P2inc;
cl ear;

end;

% MMCS3D (Make Mesh Constants; 3-D Tabl es)
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% This script generates the 8 constants for each block in the 3
% di mensi onal Affine interpolation tables.
%

cl ear;

% Load a file containing the interpolation data
eval (['load ', (input('Filenane: '))]);
whos

funnane = input (' Enter the Function Name>');

% set up the independent variabl e paraneters

parml = input (' 1st | ndependent paraneter (Matrix Data)>');
parnm2 = input('2nd | ndepentent paraneter (Row Data)>');
parnm3 = input (' 3rd | ndependent paraneter (Colum Data)>');

Plneshsi ze
P2neshsi ze
P3neshsi ze

| engt h(parml) - 1;
| engt h(parnm) - 1;
| engt h(parnmB) - 1;

Plmin = parnl(1);

Plmax = parnil(l ength(parnt));

P2mi n = parn(1);

P2max = parn2(l engt h(parn®));
P3min = parnB(1);

P3max = par nB(1 engt h(parnB));

Plinc = (Plmax - P1lmin)/Plnreshsi ze;
P2inc = (P2max - P2mi n)/ P2nmeshsi ze;
P3inc = (P3max - P3mni n)/ P3neshsi ze;

%

nitialize the Coefficients

CP1 = zeros(Plneshsi ze*P3neshsi ze, P2meshsi ze) ;
CP2 = zeros(Plneshsi ze*P3neshsi ze, P2meshsi ze) ;
CP3 = zeros(Plneshsi ze*P3neshsi ze, P2meshsi ze) ;
CP1P2 = zeros(Plmeshsi ze*P3neshsi ze, P2neshsi ze);
CP1P3 = zeros(Plnmeshsi ze*P3neshsi ze, P2neshsi ze) ;
CP2P3 = zeros(Plnmeshsi ze*P3neshsi ze, P2neshsi ze) ;

CP1P2P3 = zeros(Plneshsi ze*P3neshsi ze, P2neshsi ze) ;
Co = zer os(Plneshsi ze*P3neshsi ze, P2nmeshsi ze) ;

% Start generating the nesh constants (X <-> Parml;Y <-> Parn®;Z <-> ParnB)

X0 = P1m n;

X1 = P1lmin + Plinc;
YO = P2ni n;

Y1 = P2nmin + P2inc;
Z0 = P3m n;

Z1 = P3min + P3inc;
for i = 1:Plneshsize;

mat name = [funnane,int2str(i)];
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eval (['funcl = [',matnane,'];"']);
mat name = [funnane,int2str(i+1)];
eval (['func2 = [',matnanme,"'];"'])
for j = 1:P2nmeshsi ze;
for k 1: P3neshsi ze;
kO (i-1)*P3neshsi ze + k
F = [funcl(k,j),funcl(k,j+1),funcl(k+1,j),funcl(k+1,j+1),...
func2(k,j),func2(k,j+1),func2(k+1,j), func2(k+1,j+1)]";
A = [ X0* YO* Z0, X0* YO, X0* Z0, YO* Z0, X0, YO, Z0, 1; ..
X0* Y1* 70, X0* Y1, X0* Z0, Y1*Z0, X0, Y1, Z0, 1; ..
X0* YO* Z1, X0* YO, X0* 71, YO*Z1, X0, YO, 71, 1; . .
X0*Y1*Z1, X0* Y1, X0*Z1, Y1*Z1, X0, Y1, 71, 1; . .
X1*Y0* Z0, X1* Y0, X1* Z0, YO* Z0, X1, YO, Z0, 1; ..
X1*Y1* 70, X1* Y1, X1*Z0, Y1*Z0, X1, Y1, Z0, 1; ..
X1*Y0*Z1, X1* Y0, X1* 71, YO*Z1, X1, YO, 71, 1; . .
X1*Y1* 71, X1* Y1, X1* 71, Y1*Z71, X1, Y1, 71, 1] ;

C=1inv(A)*F
CP1P2P3( kO, j) = C1);
CP1P2( kO, j) = C2);
CP1P3(kO, j) = C(3);
CP2P3( kO, j) = C(4);
CP1(kO,j) = (5);
CP2( kO, j) = (6);
CP3(kO, j) = q7);
Co(kO,j) = (8);
Z0 = Z71;
Z1 = Z1 + P3inc;
end;
Z0 = P3m n;
Z1 = Z0 + P3inc;
YO = VY1,
Y1l = Y1 + P2inc;
end;
Z0 = P3m n;
Z1 = Z0 + P3inc;
YO = P2ni n;
Y1 = YO + P2inc;
X0 = Xi;
X1l = X1 + P1linc;
end;

% Export the data to a file

save MCSData CP1P2P3 CP1P2 CP1P3 CP2P3 CP1 CP2 CP3 Co Plmin P2mn P3nin...
Pli nc P2i nc P3inc;

clear;

end;
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3. Converting the MCS Output Filesto ASCII Files
A. Usage

The MAT2ASCII function converts the mesh constant data in the MCSData.mat file created by one of the MMCS
scriptsinto an ASCI| text file that can be read by the Control Allocation INITUEFF module.

A.l MAT2ASCII
Function Prototype, Matlab m-file

This script file has no arguments. At the Matlab prompt:
»mat2ascii
MAT2ASCII will convert abinary (*.mat) fileinto an ASCII text formatted file

Argument Definitions
none

B. General Remarks

MAT2ASCII conforms to the FORTRANT77 standard by not writing any data past the 72nd column. This often
makes the mesh constant matrices hard for the human eye to read since it is not uncommon to have to continue each
matrix row across multiple lines. This feature can be overridden by setting the ISF77 flag to O.

C. Functional Description

MAT2ASCII begins by clearing the workspace and setting the I1SF77 flag appropriately (see B. above). It then
reguests the name of the MCSData file to load, the name of the ASCII file to create (asciiname), and the number of
table dimensions for the data represented in the file. The size of the mesh constant matricesis calculated and stored in
matsize. The format to write the matrix rows in is determined in a DO loop. If ISF77 is set to 1, then MAT2ASCI|
writes at most 4 E14.6 numbers per text line. The locations of the carriage returns in the format string depend on 1.)
whether or not the 4 numbers per line constraint is violated and 2.) whether or not the format string accounts for
every entry in the matrix row. Once the format string is created, the data (with comments) is exported to the file
specified by asciiname.

D. Errors and Restrictions

Matlab requires that character data be enclosed in quotes. Note this limitation when specifying filenames.

E. Source Listing

% mat 2ascii: This script wites all of the Affine Interpolation constants
% to afilein ascii format. It adheres to the FORTRAN 77 standard
% of not witting past the 72nd colum. To wite a regular table
% wi t hout conforming to FORTRAN 77's needs, set |SF77 to O.
%

cl ear;
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% |1 SF77 = 1 -> Conformto the Fortran77 standard.
% | SF77 = 0 -> Do not conformto the Fortran77 standard.
| SF77 = 1;

% Load the data file
eval (['load ',input('Enter a .mat file to load>")]);
asciinane = input('Save ascii data to: ');
tbl dim= input(' Tabl e D nensions: ');

% start creating the format string

mat si ze = size(Co);
formatstr = [' 9%14.6¢€e'];

=1
for i = 2:matsize(2);
i =] + ISF77;
if (] <4 &i < mtsize(2))
formatstr = [formatstr,' 9%14.6¢€e'];
end
if (j == 4)
formatstr = [formatstr,' 9%14.6e\n'];
j =0
end
if (i == matsize(2))
formatstr = [formatstr,' 9%14.6e\n'];
end
end;

% out put data

if (tbldim== 2)
fid = fopen(asciinane,'w);
fprintf(fid,'c \nc CP1P2\nc \n');
fprintf(fid,formatstr, CP1P2');
fprintf(fid,'c \nc CP1l\nc \n');
fprintf(fid,formatstr, CP1');
fprintf(fid,'c \nc CP2\nc \n');
fprintf(fid,formatstr, CP2"');
fprintf(fid,'c \nc Co\nc \n');
fprintf(fid, formatstr, Co');
fclose(fid);

else if (tbldim== 3)
fid = fopen(asciinane,'w);
fprintf(fid,'c \'nc CP1P2P3\nc \n');
fprintf(fid,formatstr, CP1P2P3");
fprintf(fid,'c \nc CP1P2\nc \n');
fprintf(fid,formatstr, CP1P2");
fprintf(fid,'c \nc CP1P3\nc \n');
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fprintf(fid, formatstr, CP1P3");
fprintf(fid,'c \nc CP2P3\nc \n');
fprintf(fid,formatstr, CP2P3");
fprintf(fid,'c \nc CP1l\nc \n');
fprintf(fid,formatstr, CP1');
fprintf(fid,'c \nc CP2\nc \n');
fprintf(fid,formatstr, CP2"');
fprintf(fid,'c \nc CP3\nc \n');
fprintf(fid, formatstr, CP3");
fprintf(fid,'c \nc Co\nc \n');
fprintf(fid, formatstr, Co');
fclose(fid);

el se

end
end
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The CARL Software

1. Generic Routines

This section describes the generic subroutines required for the Control Allocation with Rate Limiting software and
how to use them. It is assumed that the software is implemented in the “SimShell 1.5” aircraft simulation
environment developed for this research. Otherwise, some of the global variables may be undefined, and some slight
modifications may need to be made.

1.1 The Main CARL Executive
A. Usage

CONALLO is the main executive for the Control Allocation with Rate Limiting software. Its purpose is to check
the failure status of all of the controls and readjust the allocatable control vector, determine if control alocation with
rate limiting is to be used or just the global direct allocation method, and load appropriate control constraints and
effectiveness data. It then calls the GET_FACET routine to allocate the controls, and if required, calls RESTORE_U
to restore the controls to a desired configuration.

A.1 CONALLO
Function Prototype, SUBROUTINE
COMMON A_CVARS, SIMVARS, SIMPARS, FLAGS, ALLOCAT, ALLODIAGS

ConAllo takes no arguments. To invoke Control Allocation,
CALL CONALLO

CONALLO sets up the necessary parameters and interacts with the rest of the constrained control allocation software
to alocate controls based on a commanded moment.

Common Definitions
A_CVARS [global] contains all of the aircraft global variables (“SimShell1.5” specific).

SIMVARS [global] contains all of the global simulation variables (“SimShell1.5” specific).

SIMPARS [global] contains all of the global simulation flags and parameters (“SimShell1.5”
specific).

FLAGS [global] contains the simulation real-time flags (“SimShell1.5” specific).

ALLOCAT [global] Control Allocation with Rate Limiting Globals.

ALLODIAGS [global] Diagnostics globals for Control Allocation with Rate Limiting (Optional).

B. General Remarks

Although ConAllo declares al three of the simulation COMMON blocks, very few of the variables are required. The



variables that ConAllo accesses and/or changes are:

Variable
Trimming

Do _Linrize
Initialized

Do _Diags

DT
MOMCMD(i)
OLDMOM(i)
LMOM

MMOM

NMOM

u(i)
PSAT
RSAT

NCTRLS
UCMD(i)
IFALL (i)

Type
LOGICAL
LOGICAL
LOGICAL
LOGICAL
REAL
REAL
REAL
REAL

REAL
REAL
REAL
REAL
REAL
INTEGER

REAL
INTEGER

APPENDIX II.

Description

Status of Trimmer.

Status of Linearization Utility.

Initialization flag.

Diagnostics flag.

Sample period (sec).

Commanded moment vector (control generated).

Attained moment vector due to controls (previousiter.).
Generic input to control alocation (Used in direct allocation
mode only).

Generic input to control allocation (Used in direct allocation
mode only).

Generic input to control allocation (Used in direct allocation
mode only).

Actual control deflections vector (deg).

Control position saturation flag.

% rate saturation for the hardest-driven control (Calculated by
the restoring algorithms).

Number of allocatable controls.

Commanded control deflection vector (deg).

Control failure status vector.

The ALLOCAT Common block is broken down as follows:

Variable

M

Ul

u2

RTYPE
1U(20)
MOM(3)
BMAT(3,20)
UMIN(20)
UMAX(20)
URMIN(20)
URMAX (20)
UALLO(20)
SATM
RSATU

Type
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

C. Functional Description

Description

Number of controlsto allocate.

Number of 1st facet defining control.

Number of 2nd facet defining control.

Type of restoring logic 0 - none 1 - min norm, 2 - min drag.
Bookkeeping: UALLO(i) <-> U(1U(i)).

Commanded moment inputs (deltas or global).

Control power matrix (local or global).

The minimum control deflection limits.

The maximum control deflection limits.

Deflection rate limits (toward the minimum pos. constraint).
Deflection rate limits (toward the maximum pos. constraint).
The alocated control deflections.

Saturation level (measured in moment space).

Saturation level for the hardest driven control.

CONALLO begins by calculating the attained moments from the previous frame by formulating the global (slope at
the origin) control effectiveness matrix through a call to A_C$GETUEFF, and multiplying the resulting matrix by
the obtained control position vector. The result is stored in OLDMOM(). Next, the USE_GLOBALS flag is set
based on whether the simulation is trimming, linearizing, or running. (In run mode, rate-limiting control allocation
can be used and the flag is set to FALSE). CONALLO proceeds by checking the IFAIL flag for each alocatable
control. If a control is reported as failed, then it is dropped from the list of controls to allocate. Bookkeeping is
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maintained by the parameter vector 1U() which maps the allocated control to its corresponding aircraft control. For
example, if control 2 on the aircraft is reported as failed, then the second alocated control is actually the third aircraft
control and so 1U(2) = 3. The vector of failed controls and their mappings is also maintained in UFAIL() and IUF()
so that the moment due to failed controls may be calculated. (Note that OLDMOM contains the genera control
generated moments for both failed and functional controls). After the allocatable control vector isresized and shifted
as necessary, a check is performed to make sure that there are still 3 or more available controls. If not, then the
ABORT flag (in the FLAGS COMMON block) is set to 1 and CONALLO stops execution.

Assuming there are sufficient controls to allocate, CONALLO constructs the effectiveness matrix BMAT using
either global effectiveness if USE_GLOBALS is TRUE or local effectiveness if USE_ GLOBALS is FALSE. This
information is extracted from the A_C$GETUEFF function as before. Next, the constraint vectors are set using
another aircraft-specific call to A_C$GETCSTR. The constraints returned are the minimum and maximum position
constraints, and the rate limits for the minimum and maximum directions. If USE GLOBALS is FALSE,
CONALLO uses the position constraints and rate capabilities to determine the most restrictive limit as either the
amount a control can move in one frame or the amount a control can move without violating its position
constraints. Otherwise, CONALLO simply uses the returned position constraints. The input moments are then
specified using either moment commands or the changes in commanded moment, depending once again on the state
of the USE_GLOBALS flag. With knowledge of the constraints, CONALLO then sets the position saturation flag
to 1 if any of the constraints are zero (indicating that a control is saturated). It also checks to see if the input
moments are zero. If so, then no allocation is required and the ALLOCATED flag is set to TRUE

If the ALLOCATED flag is FALSE, then CONALLO continues by making a call to GET_FACET using the
coordinates of the facet that worked in the previous frame (if a previous frame existed). If the controls could not be
allocated, then it starts a facet search by calling GET_FACET with different combinations of the “2” controls until
either a solution is found or no more facets are available to search. If there is enough rate capability remaining after
direct allocation has been performed, control restoring can be invoked (but only if USE_ GLOBALS is FALSE and
the RTY PE parameter is not zero). The restored control vector is combined with the allocated control vector within
the RESTORE_U subroutine. Finally, the commanded control vector is obtained by either adding the allocated
controls to the current control positions (in the case of rate limiting alocation) or by simply taking the allocated
control vector. If diagnostics is enabled, it also calls ALLODIAGSOUT to write the diagnostic information for the
current frame,

D. Errors and Restrictions

When there are less than 3 controls, CONALLO sets the ABORT flag to 1, writes a message to the output window
and halts execution. Any other errors that may occur within other control allocation modules are given an ID number
and description. These can be found in the ISTATUS and MSG fields (or adternatively, the DG _ISTAT and
DG_IMSG fields). In any event of afailure, CONALLO treatsit asa“missed frame” and does not allocate controls.
However, control restoring can still take place.

During real-time mode, when Control Allocation with Rate Limiting is active, the alocated change in controls
vector is overdriven with again to compensate for the fact that CARL commands average deflection rates which may
not be obtained by the actuators. This gain is based on a first order actuator model and will have to be changed if
different models are to be used.

E. Source Listing
C23456789012345678901234567890123456789012345678901234567890123456789012
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Modul e Nane: CONALLO
Cal l ed By: SHELL _CONALLO, TRI MMER, LI NRIZE, SIMBATCH
Calls to: A CBGETUEFF, GET_FACET, A C$CGETCSTR, RESTORE_U,
ALLODI AGSOUT

Functi on: Main Control Allocation executive

Modi fi cations:
Dat e Pur pose By
JUL 09 1996 Created. (Based on mmjor revisions to version
3.0) JB

d obal Vari abl es

! Nane | Type | Descri ption

*Tri nm ng LOG CAL Status of Trinmer

*Do_Linrize LOG CAL Status of Linearization Uility
*Initialized LOG CAL Initialization flag

*Do_Di ags LOG CAL Di agnostics flag

*DT REAL Time step (sec)

* MOMCVD( 1) REAL Commanded C (control generated)

* OLDMOM 1) REAL Actual C due to controls (previous iter.)
*LMOM REAL Input to Control allocation (O or dd)
* MMOM REAL Input to control allocation (Cmor dCn
* NMOM REAL Input to control allocation (Cn or dCn)
*U(1) REAL Control 1 deflection (deg)

* PSAT REAL Control Position saturation flag

* RSAT REAL % control rate saturation

*NCTRLS | NTEGER Nunber of configurable controls

*UCMD( 1) REAL Control 1 def. Conmand (deg)

*| FAIL(1) I NTEGER Failure Status: Control 1

*UTAU( 1) REAL 1st order tine constant U(1)

CONALLO d obal s

! Nane | Type | Descri ption

* MF | NTEGER Nunber of failed controls

*M | NTEGER Nunmber of controls to allocate

*Ul | NTEGER Nunber of 1st control defining facet
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*U2 | NTEGER Nunber of 2nd control defining facet

*TUWM | NTEGER Book keeping: UALLO(M <-> UI1UM)

* RTYPE | NTEGER Type of restoring logic to use

*

*

*URM N(M REAL The deflection rate linmts (min. direction)

*URMAX(M REAL The deflection rate linmts (max. direction)

*UM N(M REAL The mini mum control deflection constraints

*UMAX(M REAL The maxi mnum control deflection constraints

*BMAT(3, M REAL Control power matrix (local or gl obal)

*UALLO(M REAL The al |l ocated control deflections

*MOM 3) REAL Conmanded nmonent inputs (deltas or gl obal)

*SATM REAL saturation | evel (taken in nonent space)

* RSATU REAL maxi mum rate saturation |level (control space)

*

I

! Local Vari abl es

!

! Nane Type Descri ption

*Al | ocat ed LOG CAL TRUE i f allocation successful

*Isfailure LOG CAL TRUE if there is a failure present

*Use_d obal s LOG CAL TRUE if global limts and eff. is to be used

*

* UFAI L( MF) REAL vector of failed controls

*| UF( MF) | NTEGER Book keeping: UFAIL(M) <-> U(lI UF(MF))

| o e e o o e e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aea e
| MPLI CI' T NONE

REAL A CVARR (250)
CHARACTER*4 A _CVARC (100)
| NTEGER A CVAR ( 20)
CHARACTER*80 SI MPARC80( 10)
LOG CAL SIMPARL ( 30)
REAL SI WVARR  (200)
| NTEGER SIMAR  ( 40)

| NTEGER Max_Control s
PARAMETER (Max_Controls = 20)

LOGd CAL Trinming, Do_Linrize, Initialized, Do_Di ags

| NTEGER | FAI L( Max_Contr ol s)

| NTEGER NCTRLS

REAL DT

REAL MOMCMX 3), OLDMOM 3), LMOM MMOM NMOM PSAT, RSAT
REAL U(Max_Control s), UCMD(Max_Controls), UTAU(Max_Control s)

------------------------- CONALLO dobal s------------------mmmmm oo -

REAL URM N( Max_Control s), URMAX(Max_Control s), UM N(Max_Control s),
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UMAX( Max_Control s) , BMAT(3, Max_Control s),
UALLQ( Max_Control s), MOM 3), SATM RSATU
INTEGER M Ul, W2, 1U(Max_Controls), RTYPE
-------------------------- Di agnostic Records-----------------mmmommon
| NTEGER DG _| STAT, DG_FACET( Max_Contr ol s)
LOAd CAL DG U d obal s
REAL DG ET, DG_MAXET
CHARACTER* 80 DG_| MSG
--------------------------- REALTIME Flags---------------“-------------
| NTEGER GEARDOWN, BRAKEON, AG LEVUON, ABORT

LOA CAL Al located, Isfailure, Use_d obals
INTEGER I, J, M-, |UF(Max_Controls), |STATUS
REAL UFAI L( Max_Control s), SECNDS, ETOTAU, K
CHARACTER* 80 MSG
--------------------------- Shared Library------------mmommmmmaoo
PO NTER / REAL / ptr2A CVARS
REAL A C$CGETUEFF

COWON / A CVARS / A CVARR A CVARI, A CVARC
COWON / SI WARS / S| WARR, S| WARI
COWON / SI MPARS / S| MPARL, SI MPARCS0

COWDN / FLAGS /| GEARDOMN, BRAKEON, AG LEVUON, ABORT

COWDN / ALLOCAT / M Ul, U2, RTYPE, IU MOM BMAT, UM N, UMAX

. URM N, URMAX, UALLO, SATM RSATU

COMMON / ALLODI AGS / DG_FACET, DG | STAT, DG U_d obal s, DG ET,
DG_MAXET, DG | M5G

EQUI VALENCE (SI MPARL(15) , Trinmming )
EQUI VALENCE ( SI MPARL( 5) , Do_Linrize )
EQUI VALENCE ( SI MPARL( 8) , Initialized )
EQUI VALENCE ( S| MVARR( 1) , DT )
EQUI VALENCE (A CVARR(32) , MOMCMX( 1) )
EQUI VALENCE (A CVARR(36) , OLDMOM 1) )
EQUI VALENCE (A CVARR(30) , LMOM )
EQUI VALENCE (A CVARR(31) , MVOM )
EQUI VALENCE (A CVARR(35) , NVOM )
EQUI VALENCE (S| WARR(111) , U(1) )
EQUI VALENCE (A CVARR(44) , PSAT )
EQUI VALENCE (A CVARR(53) , RSAT )
EQUI VALENCE (A _CVARI (3) , NCTRLS )
EQUI VALENCE (S| WARR(131) , UCMX 1) )
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EQUI VALENCE (SI WARI (11) , IFAIL(1) )
EQUI VALENCE ( SI MPARL( 1) , Do_Di ags )
EQUI VALENCE (A CVARR(144) , UTAU(1) )

DG _ET = SECNDS( 0. 0)
M- =0

Al | ocat ed
Isfailure
SATM = 0.
RSATU = 0.
| STATUS =
MSG = ' !

. FALSE.
. FALSE.

-99
I Get location of the COMMON bl ock A CVARS (used for the
I ppc shared library interface)

ptr2A CVARS = % OC(A CVARR(1))

I Get the approximate control generated nmonents for current franme using
I the slope at the origin nethod.

DO 1005 | = 1,3
OLDMOM(1) = 0.0
DO 1006 J = 1, NCTRLS
BMAT(1,J) = A C$GETUEFF(ptr2A CVARS, I, J, 0. 0)
OLDMOM ) = OLDMOMI) + BMAT(1, J)*U(J)

1006 CONTI NUE
1005 CONTI NUE

I Use local effectiveness and contraints during RUNTIME, and use the
I slopes at the control origins and global contraints during
I TRIM LI NEARI ZATI ON.

IF (Trimming .OR Do_Linrize) THEN
Use_d obals = . TRUE

ELSE
Use_d obal s = . FALSE.

END | F

DG U d obals = Use_d obal s

155



APPENDIX II.

I See if all of the controls are working and reconfigure the controls
I to allocate if we have to.

J 1
M = NCTRLS
DO 1020 | = 1, NCTRLS
IF (IFAIL(l) .NE. 0) THEN

Isfailure = . TRUE

M=M- 1

M- = NCTRLS - M

| UF(MF) =

UFAIL(MF) = U(I)

IF (UL .GI. M.OR W .GI. M THEN
! the columm for the control eff. of the control that worked | ast
! frame has changed. W better search from scratch

END | F
ELSE
1yJd) = I
J=J+1
END | F
1020 CONTI NUE

DO 1025 | = 1, M
UALLO(1) = 0.0
1025 CONTI NUE

I Can we still allocate? If not, get out.

IF (M.LT. 3) THEN
WRI TE(6,' (1x, A)') ' TOO FEW CONTROLS TO ALLOCATE- - EJECT! EJECT!"
ABORT = 1
RETURN

END | F

I Get the control power matrices for the controls (that work).

DO 1030 | = 1,3
DO 1031 J = 1, M
| F (Use_G obal s) THEN
BMAT(1,J) = A C$GETUEFF(ptr2A CVARS, |, 1 U(J), 0. 0)
ELSE
BMAT(1,J) = A CSGETUEFF(ptr2A CVARS, I, 1U(J), U(1U(J)))
END | F

1031 CONTI NUE
1030 CONTI NUE

I Set the control m nimum and maxi num contraints for allocation. This
I is done by getting the position limts and rate Iimts and then taking
I the nost restrictive of either the position linmt or the anpunt that
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I a control can nove in one frane (for run node only, otherw se,
I take the position limts)

CALL A C$GETCSTR(ptr2A CVARS, M IU, UMAX, UMN, URMAX, URM N)

I F (.NOT. Use_gl obals) THEN

DO 1035 | = 1, M
UM N(I) = AM NL(AMAXL((UM N(T) - U(TU(1))), -URM N(I)*DT), 0. 0)
UMAX(1) = AMAXI(AM NL((UMAX(1) - U(1U(1))), URMAX(I)*DT),0.0)
1035  CONTI NUE
END | F

I I nput noment conmands. (we use absol ute nonent commands when
I TRIEMM NG For RUNMODE, we use "delta" nmonent comands.)

| F (Use_G obal s) THEN

MOM 1) = LMOM

MOM 2) = MVOM

MOM 3) = NMOM
ELSE

DO 1042 | = 1,3

MOM ) = MOMCMD(I) - OLDMOMI)
1042  CONTI NUE
END | F

I Check for any position saturation of controls

PSAT = 0.0

DO 1050 | = 1, M

IF (UMAX(1) .EQ 0.0 .OR UMN(I) .EQ 0.0) THEN
PSAT = 1.0

END | F

1050 CONTI NUE

I Check to see if we even need to allocate or not

IF (MOM1) .EQ 0. .AND. MOM2) .EQ 0. .AND. MOM3) .EQ 0.) THEN

Al |l ocated = . TRUE.
END | F

IF (.NOT. Allocated) THEN

I Start Control Allocation. W check the facet that worked | ast frane

I right now

IF (Ul .NE. O .AND. U2 .NE. 0) THEN
CALL CGET_FACET(UALLO, Allocated, SATM | STATUS, N5G
BVAT, U1, U2, UM N, UMAX, MOM M

IF (Al ocated) THEN
GO TO 1059
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END | F
END | F

I Ch man! now we have to start searching fromscratch

DO 1051 Ul = 1, M1
DO 1052 U2 = Ul+1, M
CALL CGET_FACET(UALLO, Allocated, SATM | STATUS,
MSG, BMAT, U1, W2, UM N, UMAX, MOM M

IF (Al ocated) THEN
GO TO 1059
END | F

1052 CONTI NUE
1051 CONTI NUE

END | F
1059 CONTI NUE I we're done allocating
I F (.NOT. Use_d obals) THEN
RSAT = SATM I rate saturation (nonent space)
I Time for sone control restoring algorithns
IF (RTYPE .GT. 0 .AND. RSAT .LT. 1.0) THEN
CALL RESTORE_U (MOMCMD, U)
END | F
I Get allocated Control comrands. (The CGK factor is the gain required
I to overdrive the control conmands so that actuator position = com
I manded position
DO 1060 | = 1, M

ETOTAU = EXP( DT/ UTAU(1 U(1)))
GK = ETOTAU (ETOTAU - 1.0)

UCVD( I U(1)) = U(TU(1)) + GK*UALLO(I)
1060 CONTI NUE
ELSE
I Here we are dealing with global positions not deltas
PSAT = SATM I Position saturation (noment space)
DO 1070 | =1, M

UCMD( 1 U(1)) = UALLO(I)
1070  CONTI NUE
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SECNDS( DG_ET)
AVAX1( 0. 0, DG_ET)
5 | STAT = | STATUS

> | MBG = MBG
| F (Do_Di ags) THEN

CALL ALLODI AGSOUT
END | F
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1.2 CARL Diagnostic Output

A. Usage

When diagnostics is enabled, CONALLO can write some of its internal results to a data file, thus allowing easier
debugging and testing.

A.1 ALLODIAGSOUT
Function Prototype, SUBROUTINE
COMMON A_CVARS, SIMVARS, SIMPARS, ALLOCAT, ALLODIAGS

ALLODIAGSOUT takes no arguments
CALL ALLODIAGSOUT

Internal CONALLO information is written to two text files, CONALLO _DIAGS.TXT, and
CONALLO _TIMING.TXT

Common Definitions
A_CVARS [global] contains all of the aircraft global variables (“SimShell1.5” specific).

SIMVARS [global] contains all of the global simulation variables (“SimShell1.5” specific).
SIMPARS [global] contains all of the global simulation flags and parameters (“SimShell1.5”
specific).

ALLOCAT [global] Control Allocation with Rate Limiting Globals.
ALLODIAGS [global] Diagnostics globals for Control Allocation with Rate Limiting (Optional).

B. General Remarks

A sample of the type of diagnostic output that is generated when ALLODIAGSOUT iscaled is shown below:

File CONALLO_DIAGS.TXT

Simulation Time: 0.1000 sec Use_Globals: F
Failure Status: O 0 0 0 0 0 0 0 0
Control Position: 1.31 -1.48 2.23 -2.05 1.15 -1.19 1.51 -2.03 -1.64

Moment Commands: -0.0049 0.0032 -0.0006

Control Eff. Matrix:

0.0008 -0.0008 0.0006 -0.0006 0.0001 -0.0001 0.0001 0.0000 0.000O0
-0.0057 -0.0056 -0.0001 0.0001 0.0001 0.0030 0.0028 0.0000 -0.0021
0.0004 -0.0005 0.0001 -0.0001 -0.0014 0.0004 -0.0004 -0.0026 0.0000

Control Constraints

MIN: -2.25 -2.25 -4.50 -4.50 -6.75 -3.75 -3.75 -4.00 -4.00
MAX : 2.25 2.25 4 .50 4.50 6.75 3.75 3.75 4.00 4.00
Allocation:

FACET CODE: O 1 0 1 2 1 0 1 2

ISTAT: O NORMAL
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RSAT: 0.51
UALLO: -0.97 0.90 -2.16 2.13 -2.92 1.93 -1.91 2.04 -0.93

Restore Type: 1
Commanded Position: 0.34 -0.59 0.07 0.08 -1.78 0.74 -0.40 0.01 -2.57

Execution Time: 0.0162

For each frame, ALLODIAGSOUT writes the failure status of the contrals, the current control positions and control
generated moments, the control effectiveness matrix for the functional controls, (USE_GLOBALS determines if the
data is global or local), the current control constraints for the functional controls, (Once again this data depends on
USE _GLOBALYS), and the allocation results, which include the Facet code for which controls were allocated to, the
error status and description, the amount of rate saturation, and the allocated control vector. The commanded control
vector is displayed (which depends on the restoring type), and the time required to allocate is reported. The
CONALLO _TIMING.TXT file contains only the time required to allocate for each frame.

C. Functional Description

The steps that ALLODIAGSOUT takes depend on the two parameters BATRUN and DO_DIAGS, (located in the
SIMPARS common block). When diagnostics is enabled and before the simulation begins running, the batch mode
simulation loop makes an initialization call to ALLODIAGSOUT. Since BATRUN is FALSE and DO_DIAGS is
TRUE, ALLODIAGSOUT initializes the two diagnostic files. Once the simulation loop starts, BATRUN is TRUE,
and the path taken by ALLODIAGSOUT is to write the diagnostic output. Once the simulation stops execution, the
diagnostic output files must be closed by making a call to ALLODIAGSOUT with DO_DIAGS set to false. In this
case, thelogical file units are closed and ALLODIAGSOUT returns.

D. Errors and Restrictions

When using the diagnostic output routines in the Shell, it is important to close the files before they are viewed.
(This is done by calling any diagnostic routine with DO_DIAGS temporarily set to FALSE). Ideally, any module
utilizing the diagnostics feature should contain a diagnostic “DUMP” or similar command to do this automatically.
Be warned that diagnostic output consumes a great deal of processor time dueto all of the data 1/O. Its use should be
avoided for real-time simulations.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012
R

]

! Modul e Nanme: ALLODI AGSOUT
! Cal l ed By: CONALLO

! Calls to: none

!

Functi on: Wites the ConAllo diagnostic output to the file
CONALLO DI AGS. TXT.
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|
! Modi fi cati ons:

! Dat e Pur pose By

I JAN 11 1997 Cr eat ed J. B.
|

! d obal Vari abl es

! Nane | Type | Descri ption

*Do_Di ags LOG CAL Di agnostics flag

*Bat Run LOG CAL Si mul ati on running in batch node
*T REAL Ti me (sec)

*| FAIL(1) I NTEGER Failure Status: Control 1

*U(1) REAL Control 1 deflection (deg)
*NCTRLS | NTEGER Nunber of configurable controls
* RSAT REAL % control rate saturation

*UCMD( 1) REAL Control 1 def. Conmand (deg)
|
Local Vari abl es

|
!
! Nane | Type | Descri ption
*

VARNAME VARTYPE VARDESCRI PTI ON
R
I MPLICI T NONE

REAL A CVARR (250)
CHARACTER*4 A _CVARC (100)
| NTEGER A CVAR ( 20)
CHARACTER*80 SI MPARC80( 10)
LOG CAL SIMPARL ( 30)
REAL SI WVARR  (200)
| NTEGER SIMAR  ( 40)

| NTEGER Max_Control s

PARAMETER (Max_Controls = 20)
LOAd CAL Do_Di ags, BatRun

REAL T, U(20), UCMX 20)

| NTEGER | FAI L(20), NCTRLS, I, J
CHARACTER*1 TAB

R Di agnostic Records--------------------------
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| NTEGER DG | STAT, DG_FACET( Max_Contr ol s)
LOAd CAL DG U d obal s

REAL DG ET, DG_MAXET

CHARACTER* 80 DG_| MSG

--------------------------- CONALLO dobal s------------------mmmmm oo
REAL URM N( Max_Control s), URMAX(Max_Control s), UM N( Max_Control s),
UMAX( Max_Control s) , BMAT(3, Max_Control s),
UALLQ( Max_Control s), MOM 3), SATM RSATU
INTEGER M Ul, W2, 1U(Max_Controls), RTYPE

COWON / A CVARS / A CVARR A CVARI, A CVARC
COWON / SI WARS / S| WARR, S| WARI
COWON / SI MPARS / S| MPARL, SI MPARCS0

COWDN / ALLOCAT / M Ul, U2, RTYPE, IU MOM BMAT, UM N, UMAX

. URM N, URMAX, UALLO, SATM RSATU

COMMON / ALLODI AGS / DG_FACET, DG | STAT, DG U_d obal s, DG ET,
DG_MAXET, DG | M5G

EQUI VALENCE (S| MPARL( 1) , Do_Di ags )
EQUI VALENCE (SI MPARL(17) , BatRun )
EQUI VALENCE (S| WARR( 2) T )
EQUI VALENCE (SI WARI (11) , IFAIL(1) )
EQUI VALENCE (S| WARR(111) , U(1) )
EQUI VALENCE (A_CVARI (3) , NCTRLS )
EQUI VALENCE (SI WARR(131) , UCM( 1) )

TAB = CHAR(9)
IF (.Not. BatRun) THEN
| F (Do_Di ags) THEN
OPEN (UNIT = 66, FILE
VRI TE( 66, 101)
OPEN (UNIT = 67, FILE
VWRI TE( 67, 201)
VWRI TE (67, 202) TAB
ELSE
CLCSE (66)

" CONALLO DI AGS. TXT', STATUS = ' NEW)

" CONALLO TI' M NG TXT', STATUS = ' NEW)
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101
102
103
104
105
106
107
108
109
110
111
112
113
114

CLOSE (67)
RETURN
END | F
END | F

WRI TE (66, 102)

APPENDIX II.

T, DG U d obal s

WRI TE (66, 103) (IFAIL(1),TAB, | = 1, NCTRLS)
WRI TE (66,104) (U(1),TAB, | = 1, NCTRLS)
WRI TE (66, 105) (MOM 1), TAB, | = 1, 3)
WRI TE (66, 106)
DO 1010 | = 1,3
WRI TE (66, 107) (BMAT(1,J),TAB, J = 1, M
CONTI NUE
WRI TE (66, 108)
WRI TE (66, 109) (UM N(1),TAB, | = 1, M)
WRI TE (66, 110) (UMAX(1),TAB, | = 1, M
WRI TE (66, 111)
WRI TE (66, 112) (DG FACET(1),TAB, | =1, M

WRI TE (66, 113)
VRl TE (66, 114)
WRI TE (66, 115)

WRI TE (66, 116)
VRl TE (66, 117)

WRI TE (66, 118)

WRI TE (67, 203)

DG | STAT, TAB, DG_|MSG
SATM

(UALLO(1),TAB, | = 1,M
RTYPE
(UCMD(I), TAB, | = 1, NCTRLS)
DG ET

T, TAB, DG _ET

FORMAT (1x,' ConAll o Di agnostic Qutput'/)

FORMAT (/,1x,"'Sinulation Tinme: ',F7.4,' sec ','Use_d obals:
FORMAT (1x,'Failure Status: ', <NCTRLS>(12, Al))

FORMAT (1x,' Control Position: ', <NCTRLS>( F10. 6, A1), /)
FORMAT (1x,' Morent Commands: ', 3(E15.8,A1),/)

FORMAT (1X,' Control Eff. Matrix:")

FORMAT (1X, <M>( E15. 8, Al))

FORMAT (/, 1X,' Control Constraints')

FORMAT (1X," M N ', <M>(F8.4, Al))

FORMAT (1X,' MAX: ', <M>(F8.4,A1),/)

FORMAT (1X,' Allocation:")

FORMAT (3X,' FACET CODE: ', <Mx(12,Al))
FORMAT (3X,'ISTAT: ',13,Al, A
FORVAT (3X,' Saturation: ', F6.2)
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115 FORMAT (3X,' UALLG ', <M>(F8.4,A1),/)

116 FORMAT (1X,' Restore Type: ',12)

117 FORMAT (1X,' Commanded Position: ', <NCTRLS>(F8.4,Al),/)
118 FORMAT (1X,' Execution Tinme: ',F6.4,/)

201 FORVAT (' *')

202 FORMAT (' Sim Tine', Al,' El apsed Tine')
203 FORMAT (F7.4, Al, F6. 4)
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1.3 Control Restoring Techniques

A. Usage

These algorithms can be used by control allocation with rate limiting to restore the controls to some desired position
while attaining desired moments.

A.l RESTORE_U

Function Prototype, SUBROUTINE
REAL MOMCMD(3), U(M),RSAT
COMMON A_CVARS, ALLOCAT

Assign valuesto MOMCMD and U
CALL RESTORE_U(MOMCMD, U, RSAT)

RESTORE_U combines the restored control deflections with the allocated deflections in UALLO, and returns the
percent of rate saturation in RSAT

Argument Definitions

MOMCMD(3) [in] The Commanded moment vector for the current frame.
u(Mm) [in] The vector of current aircraft control positions
RSAT [out] The highest amount of rate saturation calculated for all of the controls

ALLOCAT [global] ConAllo globals

B. General Remarks

The current implementation of RESTORE_U provides 2 restoring methods. When the RTYPE flag in the
ALLOCAT common block is 1, minimum norm restoring is used. The objective function that is minimized in this
case is F = [(p/180)* du]"2. When RTYPE is 2, minimum drag restoring is used. The gradient of F for this case is
taken as the drag effectiveness of each of the controls.

C. Functional Description

Both restoring methods use the same restoring algorithm. The only difference is in the data that is used to augment
the 4th row of the control effectiveness matrix. When RTYPE is 1, RESTORE_U augments the control
effectiveness matrix BMAT with a4th row corresponding to F/u, (2* (p/180)* du). Otherwise, if RTYPE is 2 then
it augments BMAT with the controls drag effectiveness. RESTORE_U then proceeds to create the objective vector
DELO = (0,0,0,—1)-r and calculates the pseudo-inverse of the augmented 4xm BMAT with a call to PINVB4. Using
this matrix, a solution is found for Du=BT[BBT]"IDELO. Since the pseudo-inverse solution has no knowledge of
the control constraints, it is checked to make sure that none are violated. In the case of a constraint violation, a
scaling factor is found such that when the solution vector is uniformly scaled, the offending control is just at the
point of saturation. An additional minimization factor of 0.1 is applied to the scaled solution vector. Finally, the Du
vector found above is combined with the allocated control vector, and the % rate saturation of the hardest driven
control is calculated and returned in RSAT.

D. Errors and Restrictions
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In some cases (like minimum drag restoring at high angles of attack), the effectiveness data indicates that the
minimum objective occurs at a control constraint. As a consegquence, RESTORE_U will attempt to drive the
controls toward these positions. This may have adverse effects on the available maneuverability of the aircraft and
should therefore be avoided.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012

|

! Modul e Narme: RESTORE U

! Cal l ed by: CONALLO

! Calls to: PINVB4, A C$GETUEFF
|

Functi on: Perfornms various control-restoring techni ques
accordi ng to RTYPE.

RTYPE = 0 -> No Restoring
RTYPE = 1 -> Restore towards the M ni mum Nor m sol uti on.
RTYPE = 2 -> Restore towards the nmn CD solution.

Modi fi cati ons:

Dat e Pur pose By
JUL 09 1996 Creat ed, JB
OCT 21 1996 Rewrote the m nimumnormrestoring logic. |Instead

of using the null-space projection nethod of the
pseudo inverse, we use a |east squares approach
by specifying a function of the the squares of the

control s.
MAR 23 1997 Rermoved t he RSAT argument (Now defined in ALLOCAT
Conmon bl ock) JB

| NTEGER Max_Control s
PARAVETER (Max_Control s = 20)
e CONALLO G obal s------------mmmmaeim oo
REAL URM N( Max_Control s), URMAX(Max_Control s), UM N(Max_Control s),
UMAX( Max_Control s) , BMAT(3, Max_Control s),
UALLQ(Max_Control s), MOM3), SATM RSATU
167



APPENDIX II.

INTEGER M UL, U2, |U(Max_Controls), RTYPE

REAL UP(Max_Controls), DU(Max_Control s), U(Max_Controls),

. PMAT(Max_Control s, 3), MOMCMX 3), RSATO, SC, SCl
| NTEGER I, J
REAL P4(Max_Control s, 4), ROM(Mux_Controls),

. BAMAT( 4, Max_Control s), DELQ((4)

L Shared Library------------mmommmmaoo

PO NTER / REAL / ptr2A CVARS
REAL A C$CGETUEFF

COMWON / ALLOCAT / M UL, U2, RTYPE, IU, MOM BMAT, UM N, UNVAX,
URM N, URMAX, UALLO, SATM RSATU

I Get the 4th row of the B matrix (Y = .001745*U)

DO 1012 1=1, 3

DO 1013 J=1, M

BAMAT(I,J) = BMAT(I,J)
1013 CONTI NUE
1012  CONTI NUE
DO 1014 J=1, M

BAMAT(4,J) = 1.74533E-3*U(1U(J))

1014  CONTI NUE

I make the Dobjective vector (0,0,0,-1)"t

DELQ( 1)
DELQ( 2)
DELQ( 3)
DELQ( 4)

0
0
0

1.0
CALL PINVB4(M B4NAT, P4)
I find a solution Du satisfying Du = P4*DELO

DO 10151 =1, M
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DU(1) = 0.

DO 1016 J = 1,4
DU(1) = DU(I) + P4(I,J)*DELQ(J)

1016  CONTI NUE

1015 CONTI NUE

I now check that the pseudo inverse solution has not violated constraints
I and fix if necesary

SC = 1.
DO 1020 1=1, M
SCl = SC
IF (DU(1) .GT. (UMAX(1) - UALLO(1))) THEN
SCL = (UMAX(1) - UALLQO(1))/DU(1)
END | F
IF (DU(1) .LT. (UMN(I) - UALLO(1))) THEN
SCL = (UMN(I) - UALLO(1))/DU(1)
END | F
SC = AM NI( SC, SC1)
1020  CONTI NUE

I apply minimzation factor to the scale factor also and scale controls

M

DO 1025 | = 1,
. 1*SCrDUY(I)

DU(1) =
1025 CONTI NUE

I Calculate the restored controls and rate saturation

RSATU = 0.
DO 1030 =1, M
RSATO = RSATU
UALLO(I) = UALLO(1) + DU(I)
|F (UALLO(1) .LT. 0.) THEN
RSATU = 1. - (UM N(I1)-UALLO(1))/ UM N(I)
ELSE
|F (UALLO(1) .GT. 0.) THEN
RSATU = 1. - (UMAX(1)-UALLO(1))/ UMAX(I)
ELSE
RSATU = 0.
END | F
END | F
RSATU = AMAX1( RSATU, RSATO)
1030  CONTI NUE
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I' M nimmdrag restoring
ptr2A CVARS = % OC(A CVARR(1))
I Get the 4th row of the B matrix (corresponding to drag)

DO 1952 =1, 3

DO 1951 J=1, M

BAMAT(1,J) = BMAT(I, J)
1951 CONTI NUE
1952  CONTI NUE
DO 1953 J=1, M

BAMAT(4,J) = A CSGETUEFF(ptr2A CVARS, 4,1 U(J), U(1U(J)))

1953  CONTI NUE

I make the Dobjective vector (0,0,0,-1)"t

DELQ( 1)
DELQ( 2)
DELQ( 3)
DELQ( 4)

0
0
0

1.0
CALL PINVB4(M B4NAT, P4)
I find a solution Du satisfying Du = P4*DELO

DO 1060 | = 1, M
DU(1) = 0.
DO 1061 J = 1,4
DU(1) = DU(I) + P4(I,J)*DELQ(J)
1061  CONTI NUE
1060 CONTI NUE

I now check that the pseudo inverse solution has not violated constraints
I and fix if necesary

SC = 1.
DO 1066 1=1, M
SCl = SC
IF (DU(1) .GT. (UMAX(1) - UALLO(1))) THEN
SCL = (UMAX(1) - UALLQO(1))/DU(1)
END | F
IF (DU(1) .LT. (UMN(1) - UALLO(1))) THEN
SCL = (UMN(I) - UALLO(1))/DU(l)
END | F
SC = AM NL( SC, SC1)
1066 CONTI NUE

I apply minimnmization factor to the scale factor also and scale controls
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M

DO 1067 | = 1,
. 1*SCrDUY(I)

DU(1) =
1067  CONTI NUE

| Calculate the restored controls and rate saturation

RSATU = 0.
DO 1068 1=1, M
RSATO = RSATU
UALLO(I) = UALLO(1) + DU(I)
|F (UALLO(1) .LT. 0.) THEN
RSATU = 1. - (UM N(I1)-UALLO(1))/ UM N(I)
ELSE
|F (UALLO(1) .GT. 0.) THEN
RSATU = 1. - (UMAX(1)-UALLO(1))/ UMAX(I)
ELSE
RSATU
END | F
END | F
RSATU = AMAX1( RSATU, RSATO)
1068 CONTI NUE

0.
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1.4 Defining Facet Geometries

A. Usage

These subroutines calculate the geometry of the Attainable Moment Subset (AMYS) facets given a pair of “face-
defining” controls, their maximum and minimum constraints, and the control effectiveness matrix.

A.1 GET_FACET
Function Prototype, SUBROUTINE

REAL UALLO(M), RSAT, BMAT(3,M), UMIN(M), UMAX(M), MOM(3)
INTEGER ISTATUS, U1, U2, M

LOGICAL ALLOCATED

CHARACTER*80 MSG

Assign datato BMAT, UMIN, UMAX, MOM, U1, U2, and M

CALL GET_FACET(UALLO, ALLOCATED, RSAT, ISTATUS, MSG, BMAT, U1, U2,
UMIN, UMAX, MOM, M)

GET_FACET sets up the facet geometry pertaining to controls U1 and U2 and determines the required positions of
the remaining controls. It then calls GET_MAT and GET_U in an attempt to allocate controls for the U1/U2 defined
facets.

Argument Definitions
UALLO(M) [out] Allocated control vector (global or delta)
ALLOCATED [out] True if controls were allocated, otherwise false

RSAT [out] amount of rate saturation (of the DAMS or AMS)
ISTATUS [out] Status code of the allocation procedure

MSG [out] description of the ISTATUS code

BMAT(3,M) [in] The Control effectiveness matrix (global or local)
Ul [in] number of the first facet defining control

uz2 [in] number of the second facet defining control
UMIN(M) [in] vector of minimum control constraints

UMAX(M) [in] vector of maximum control constraints

MOM(3) [in] vector of desired moments (global or delta)

M [in] number of controls to allocate

ALLODIAGS [global] Diagnostics globals for ConAllo

A.2 GET_MAT

Function Prototype, SUBROUTINE
REAL UR(M), BMAT(3,M), UMIN(M), UMAX(M), MAT(3,3)
INTEGER Ui, uz2, M

Assign datato BMAT, UMIN, UMAX, UR, U1, U2, and M
CALL GET_MAT(M, MAT, BMAT, UR, U1, U2, UMIN, UMAX)

GET_MAT calculates the current facet geometry and savesitin MAT
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Argument Definitions

M [in] The number of controls to allocate

MAT [out] A matrix containing the current facet geometry

BMAT(3,M) [in] The Control effectiveness matrix (global or local)

UR(M) [in] The vector of required control positions that generate the current facet.
Ul [in] number of the first facet defining control

uz2 [in] number of the second facet defining control

UMIN(M) [in] vector of minimum control constraints

UMAX(M) [in] vector of maximum control constraints

B. General Remarks

The code in GET_FACET and GET_MAT was originaly taken from some of the early AMS drawing utilities.
However, over a few years of development, it has lost most of its graphical functionality and now serves primarily
as a preprocessor for the heart and soul of the control allocation software, GET_U. The current implementation has
moved the callsto GET_U inside GET_FACET. Thisis done so that facet geometries can be calculated and checked
one at a time, allowing the search to stop once the controls have been alocated. In addition, the geometry of the
entire AMSis not built up asit wasin the past.

C. Functional Description

The most important function of GET_FACET is the process of finding the outer-most facets of the AMS given a
pair of face-defining controls, and determining the required positions of the other controls on these facets. The theory
behind thisimplementation is based on the discussion in reference 3. However, the current algorithm used to find the
transformation matrix has been modified. GET_FACET begins by finding the normal to the two columns associated
with U1 and U2, and proceeds to find the magnitude of the resulting normal vector. If the magnitude of this vector is
zero, (indicating that the two controls do not describe a face in moment space), then GET_FACET returns with an
error code of 4. Otherwise, it finds the first row of atransformation matrix using the direction cosines of the normal
vector (ie. the normal divided by its magnitude), such that when multiplied by the control effectiveness matrix,
produces zeros in the first row entries corresponding to controls U1 and U2. In other words, A rotation is found such
that the faces defined by controls U1 and U2 are perpendicular to the 1st axis in the rotated moment space. Next, the
first row of the rotated B matrix is calculated by multiplying BMAT by the known 1st row of the transformation
matrix. By inspecting the signs of these entries, the facet coordinates for the “positive” and “negative’ (opposite)
facets can be defined. Positive entries receive 1's (implying maximum deflection), negative entries receive 0's
(minimum deflections), and the entries associated with U1 and U2 (the varying controls), are given 2's. At the same
time, the opposite facet is defined as having the opposite coordinates given by the positive facet. In some instances,
other control pairs may define perpendicular faces as well, resulting in more than two zeros in the first row of the
transformed B matrix (these are termed “specia” controls). The required facet coordinates of the special controls are
not easily determined, and so each possible combination of minimum and maximum deflection must be checked.
Next, the positive facet geometry is defined in moment space through a call to GET_MAT, followed by a call to
GET_U to check the facet and allocate controls. If the facet fails the tests in GET_U, then the opposite facet
geometry is defined in moment space and sent to GET_U for checking and allocation. Control is then returned back
to ConAllo.

GET_MAT takes the minimum or maximum control positions in the vector UR, changes the controls associated
with Ul and U2 to their minimum values (0,0), and pre-multiplies by BMAT, giving the vertex of the U1/U2
defining facet in moment space with respect to the origin (M0). Next, it changes the U2 control to its maximum
value (0,1) and multiplies by BMAT, giving another vertex of the U1/U2 defining facet (M1). Finally, the U2
control is reset to its minimum, the U1 control is set to its maximum (1,0), and the UR vector is multiplied by
BMAT once again. This produces yet a 3rd vertex in moment space w.r.t. the origin (M2). The facet geometry in
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moment space is then stored in a matrix as follows: Column 1 contains the 1st vertex with controls U1 and U2 set
to their minimum values (M0), referenced from the origin, column 2 contains the vector from MO to M2, and
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column 3 contains the vector from MO to M 1.

D. Errors and Restrictions

For the case when extra zeros appear in the rotated control effectiveness matrix in GET_FACET (indicating that
other pairs of controls generate perpendicular faces besides the U1 and U2 controls), each combination of minimum
and maximum deflection for each of these redundant controls must be checked. This is done within a loop in which
GET_MAT and GET_U is repeatedly called. In the current implementation, the maximum number of redundant
controls allowed is 4. If the maximum number of redundant controlsis exceeded, GET_FACET returns with an error

code of 5.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012

Modul e Name: GET_FACET

Cal | ed By:
Calls to:

CONALLO
GET_MAT, GET_U

SUBROUTI NE GET_FACET(UALLO, Al |l ocated, RSAT, |STATUS, MG

BVAT, U1, U2, UM N, UVAX, MOM M

Functi on: This subroutine generates and finds a valid FACET
according to a given pair of controls and effectiveness

mat ri

X and sends its geonetry to GET_U for control

al | ocati on.

Modi fi cati ons:
Dat e
APR 15 1997

JUL 09 1996

Pur pose By
Added logic to test all the possible 0 and 1
conbi nations for any "special" controls (any
controls which formfaces perp. to the Ul and
U2 controls) The logic that does this is pretty
slick and can handl e any nunber of special con-
trols. However the nunber of conbinations gets
really big as the # of special controls gets
large. So | included the MAXS paraneter to set
t he maxi mum nunber of special cases that will be
checked before we just declare a m ssed frane.
Ri ght now MAXS is set to 4 special controls. JB
Creat ed J. Bolling
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! d obal Vari abl es

! Nane | Type | Descri ption
* VARNANE VARTYPE VARDESCRI PTI ON

! Local Vari abl es

! Nane | Type | Descri ption

*Ul | NTEGER Nunber of 1st control defining facet

*U2 | NTEGER Nunber of 2nd control defining facet

*M | NTEGER Nurmber of controls to allocate

*MOM 3) REAL Conmanded nmonent inputs (deltas or gl obal)

*BVAT(3, M REAL Control power nmatrix

*UALLO(M REAL Vector of Allocated Controls

*Al | ocat ed LOG CAL Successful allocation flag

* RSAT REAL Rate Saturation |evel

*| STATUS | NTEGER Error Status ldentifier

* VBG CHARACTER notivational nessage

*UM N(M REAL M ni mum control constraints

*UMAX(M REAL Maxi mum control constraints

| e e e e e e e f e e f ff e e e m e e e e e e e e e e e e e ;e e e e e e e e e e e e e e e m e mm— =
| MPLI CI' T NONE

| NTEGER Ul, U2, M
| NTEGER Max_Control s
PARAMETER (Max_Controls = 20)
REAL MOM 3), BMAT(3, Max_Control s), UALLQ( Max_Control s),
. UM N(Max_Control s), UMAX(Max_Controls), RSAT
| NTEGER | STATUS
LOG CAL Al |l ocated
CHARACTER* 80 MSG
R Di agnostic Records-----------------momommon
| NTEGER DG _| STAT, DG_FACET( Max_Contr ol s)
LOAd CAL DG U d obal s
REAL DG ET, DG_MAXET
CHARACTER* 80 DG_| MSG

I Local 8- ----------mmm o
| NTEGER | MAXFAC( Max_Control s), | M NFAC(Max_Control s),
| S(Max_Controls), I, J, NS, K [INMax_Controls), NN, DV,
. BIT
| NTECER MAXS

PARAMETER ( MAXS = 4)
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REAL BROW Max_Control s), MAT_MAX(3,3), MAT_M N(3,3), NORVAL(3),
NORMVAG A(2,2), AINV(2,2), TR1(3), UMAXFAC(Max_Controls),
. UM NFAC( Max_Controls), D, ZERO
PARAVETER (ZERO = 1E-10)

COWON / ALLODI AGS / DG FACET, DG | STAT, DG U @ obal s, DG _ET,
DG_MAXET, DG | MSG

I Get the transformation matrix T which rotates a nonent axis perpin-
I dicular to the faces forned by controls Ul and U2.

I find the normal vector to the face formed by controls Ul and U2

NORMAL(1) = BMAT(2, UL)*BMAT(3, U2) - BMAT(3, UL)* BMAT(2, U2)
NORMAL(2) = BMAT(3, UL) *BMAT(1, U2) - BMAT(1, UL)*BMAT(3, U2)
NORMAL(3) = BMAT(1, UL)*BMAT(2, U2) - BMAT(2, UL)* BMAT(1, U2)

I Row one of the transformation matrix is the direction cosine represen-
I tation of the NORVMAL vector. Find its |ength.

NORMVAG = SOQRT(NORMAL(1)**2 + NORMAL(2)**2 + NORMAL(3)**2)

I If NORMMAG is zero then these controls are redundant and we can't
| allocate with them

| F (ABS(NORWAG) .LE. ZERO) THEN

| STATUS = 4
M5G = ' REDUNDANT CONTRCOLS'
RETURN
END | F
1030 CONTI NUE I These controls forma face in nmonent space

DO 1033 K = 1,3
TR1(K) = NORMAL( K)/ NORMVAG I Direction cosine vector
1033 CONTI NUE

DO 1035 K

BROW( K)
1035 CONTI NUE

1, M
TRL(1) *BMAT(1, K) + TRL(2)*BMAT(2, K) + TRL(3)*BMAT(3, K)

I BROW shoul d now have zeros corresponding to Ul and U2. The signs of
I other entries deternine if they are a mininumor a maxi numon this
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I face. (0 -> mininmmdeflection, 1 -> maxi num deflection, 2 -> sone-
I where in between.

NS
NN

0
0

DO 1040 K = 1, M
IF ((K.NE. Ul) .AND. (K .NE U2)) THEN
| F (ABS(BRONK)) .LE. ZERO THEN I special controls
IMNFAC(K) = 0
| MAXFAC(K) = 0

NS = NS + 1
IS(NS) = K
ELSE
| F (BROWK) .GT. 0.0) THEN
UM NFAC(K) = UM N(K)
UMAXFAC(K) = UMAX( K)
I M NFAC(K) = 0
| MAXFAC(K) = 1
ELSE
UM NFAC(K) = UMAX(K)
UMAXFAC(K) = UM N( K)
I M NFAC(K) = 1
| MAXFAC(K) = 0
END | F
NN = NN + 1
IN(NN) = K
END | F
ELSE
NN = NN + 1
IN(NN) = K
UM NFAC(K) = UM N(K)
UMAXFAC(K) = UM N( K)
I M NFAC(K) = 2
| MAXFAC(K) = 2
END | F

1040 CONTI NUE

I W& night have exceeded the maxi mum nunmber of special controls that
I we can handle

IF (NS .GT. MAXS) THEN

| STATUS = 5
M5G = ' TOO MANY REDUNDANT CONTROLS'
RETURN

END | F

I Now if we have any "special" controls (ie. controls other than Ul
I and U2 that produce perpindicular faces) we have to guess what they
I might be. W try every possible conbination of 0 and 1 for the
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I special controls

IFE (NS .GT. 0) THEN

J = INT((2**NS)/2 - 1)
ELSE

J=0
END | F

Basically we find every possible conbination of facet codes for the
special controls by converting the |I counter to binary notation where
each facet elenent contains 1 bit. Then based on this facet, we form
t he opposite facet, and call GET_MAT and GET_U as before. If there
are no special controls, then this loop is only done once.

DO 1060 | = 0,J

IFE (NS .GT. 0) THEN
DIV = |
BIT = NS

I Inthis |loop we convert the counter | into binary form

DO WHI LE (DIV . GT. 0)
| MAXFAC(1 S(BI T)) = JMOD( DIV, 2)
DIV = I NT(DI V/ 2)
BIT=BIT- 1

END DO

DO 1061 K = 1, NS
I F (I MAXFAC(1S(K)) .EQ 1) THEN

UMAXFAC( 1 S(K)) = UMAX(I S(K))
I M NFAC(I S(K)) = 0
UM NFAC(1 S(K)) = UM N(I S(K))

ELSE
UMAXFAC( | S(K))
I M NFAC( 1 S(K))
UM NFAC( 1 S(K) )
END | F
1061 CONTI NUE
END | F

UM N(I S(K))
1

UMAX( 1 S(K))

I Make a matrix whose colums are the vertex vector (ref. fromthe
I origin), and the two edge vectors (ref. fromthe vertex).

CALL GET_MAT (M MAT_MAX, BMAT, UMAXFAC, Ul, W2, UM N, UMAX)
I Call CGET_U to check this facet and allocate controls if possible.

CALL GET_U (M UALLO, RSAT, Allocated, |STATUS, MG U1, U2,
MAT_MAX, MOM UM N, UMAX, | MAXFAC)

DO 1100 K = 1, M
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DG FACET(K) = | MAXFAC(K)
1100  CONTI NUE

I F (.NOT. Allocated) THEN
! Check the opposite facet now
CALL GET_MAT (M MAT_M N, BMAT, UM NFAC, U1, U2, UM N, UMAX)
I Call CGET_U to check this facet and allocate controls if possible.

CALL GET_U (M UALLO, RSAT, Allocated, |STATUS, MG U1, U2,
MAT_M N, MOM UM N, UMAX, | M NFAC)

DO 1110 K = 1, M
DG FACET(K) = | M NFAC(K)
1110 CONTI NUE
END | F

IF (Al ocated) THEN
IF (NS .GTI. 0) THEN

| STATUS = 0
M5G = ' ALLOCATI ON SUCCESSFUL: SOVE CONTROLS WERE REDUNDANT'
END | F
RETURN
END | F

1060 CONTI NUE

C23456789012345678901234567890123456789012345678901234567890123456789012
R

!

! Modul e Name: GET_MAT

! Cal | ed By: GET_FACET
! Calls To: none

!

Functi on: This subroutine forms the 3X3 matrix (in noment
space), whos colums consist of the vector to a facet
vertex (ref. fromorigin) and the vectors of two facet
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edges (ref.

Modi fi cati ons:

|
!
! Dat e
|
|
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fromvertex)

Pur pose By

JUL 09 1996 Creat ed J. Bolling
| o e e o o e e o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aea e
I
! d ossary Section
!
| e e o e e e e e e e e e e m e e e e e m e e e e e e e e e e e e e e m e e e e e e mm
! d obal Vari abl es
!
! Nane Type | Descri ption
* VARNANE VARTYPE VARDESCRI PTI ON
!
! Local Vari abl es
!
! Nane Type | Descri ption
*M | NTEGER Nunber of controls to allocate
*Ul | NTEGER Nunber of 1st control defining facet
*U2 | NTEGER Nunber of 2nd control defining facet
*B(3, M REAL* 8 Control power matrix
*U M REAL* 8 Vector of controls (either min or max def.)
*UM N(M REAL* 8 Vector of mnininum defl ections
*UMAX(M REAL* 8 Vect or of maxi mnum defl ections
*MAT( 3, 3) REAL* 8 Qut put matrix
| e e o e e e e e e e e e e m e e e e e m e e e e e e e e e e e e e e m e e e e e e mm

| MPLI CI' T NONE

INTEGER M U1, W2
| NTEGER Max_Control s

PARAVETER (Max_Control s =
REAL B( 3, Max_Control s),
UM N( Max_Control s),

REAL MD(3),
I NTEGER |,

ML(3),
J, K

! Initialize vertices

M(3),

20)
U( Max_Control s),
UVAX( Max_Control s),

VL(3),

MAT( 3, 3)

V2( 3)
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DO 1010 |
MO(1)
ML(1)
Me(1)

1010  CONTI NUE

I
cool

I Vertex #0 free controls at (0,0)
U(ul) = UM N(U1)
U(u2) = UM N(U2)

DO 1011 | = 1,3
DO 1012 J = 1, M
MD(1) = MD(1)+B(I,d)*U(J)

1012 CONTI NUE
1011 CONTI NUE

I Vertex #1 free controls at (0, 1)

U(u1) UM N( U1)

U(u2) = UMAX(U2)

DO 1013 | 1,3

DO 1014 J = 1, M
ML( 1) ML(I)+B(1,J)*U(J)

1014 CONTI NUE
1013 CONTI NUE

I <

I Vertex #2 free controls at (1,0)
U(ULl) = UMAX(U1)
U(u2) UM N( U2)
DO 1015 | 1,3
DO 1016 1, M
M2( 1) (1) +B(I1,J)*yYd)
1016 CONTI NUE
1015 CONTI NUE

I <

MR

I Formmatrix. Colum 1 is the vector fromthe origin to vertex #0
I Colum 2 is the vector fromvertex #0 to vertex #2 (U(Ul) varying)
I Colum 3 is the vector fromvertex #0 to vertex #1 (U(U2) varying)

DO 1020 J=1, 3

MAT(J, 1) = M(J)
MAT(J,2) = M2(J)-MD(J)
MAT(J, 3) = ML(J)-MD(J)

1020 CONTI NUE

! End OF GET_MAT
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1.5 Allocating Controls
A. Usage

This module is used once the required facet geometry has been determined to check the facet, and if possible, allocate
the controls

A.l GET_U
Function Prototype, SUBROUTINE

REAL UALLO(M), SAT, GEOM(3,3), MOM(3), UMIN(M), UMAX(M)
INTEGER M, ISTATUS, U1, U2, IFAC(M)

LOGICAL ALLOCATED

CHARACTER*80 MSG

Assign datato GEOM, MOM, UMIN, UMAX, M, IFAC

CALL GET_U(M, UALLO, SAT, ALLOCATED, ISTATUS, MSG, U1, U2, GEOM, MOM,
UMIN, UMAX, IFAC)

GET_U performs various tests on the facet defined by GEOM and all ocates controls if possible.

Argument Definitions

M [in] number of controls to allocate

UALLO(M) [out] Allocated control vector (global or delta)

SAT [out] amount of rate saturation (of the DAMS)
ALLOCATED [out] True if controls were allocated successfully, otherwise false
ISTATUS [out] Status code of the allocation procedure

MSG [out] description of the ISTATUS code

Ul [in] number of the first facet defining control

uz2 [in] number of the second facet defining control
GEOM(3,3) [in] A matrix containing the current facet geometry
MOM(3) [in] vector of desired moments (global or delta)
UMIN(M) [in] vector of minimum control constraints
UMAX(M) [in] vector of maximum control constraints

IFAC(M) [in] Facet defining control vector in base 3 notation

B. General Remarks

This module contains many facet checking and special case error handling abilities. Although some of these errors
may be impossible. It is always better to be safe than sorry.

C. Functional Description

GET _U first attempts to invert the GEOM matrix through a call to INVMATS3. If the matrix is found to be singular,
then error detection beginsimmediately.

GEOM issingular (check that origin lies on the bounding facet).
First a search is begun for a non-singular 2x2 partition of the GEOM matrix. If none are found then the
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facet is degenerate and has co-linear edges. ISTATUS is set to 2 and GET_U returns control to
GET_FACET. Otherwise, GET_U attempts to express the vector from the origin to the vertex (MO) in
terms of the two edge vectors M1 and M2, (indicating that it does in fact, lie in the plane of the facet). This
is done by first solving the 2x2 sub matrix problem for the unknown constants C2 and C3, and then
checking that the excluded row of the original 3x3 matrix is also satisfied by these constants. If this does
not hold, then some unknown singularity has occurred and GET_U returns with an ISTATUS of 1. The
next test involves checking to see if the moment is in the plane of the facet or not. This is done in the
same manner that the origin was checked. If the moment does not lie in the plane of the facet, GET_U
returns with an ISTATUS of 3. If this test is passed, then the moment lies in the plane of the facet. To
check whether or not the moment lies within the facet requires making sure that the two constants C2 and
C3 (which are used to find the linear combination of the facet edge vectors) are between 0 and 1. If not, then
the moment does not lie within the facet and GET_U returns with an ISTATUS of 3 again. Assuming this
test is passed, the controls can be allocated by transforming the base 3 vector IFAC into its related control
positions, and scaling the varying controls using the edge vectors (in control space), and the constants C2
and C3 (Clis1.0in thiscase).

GEOM is non-singular (the typical case).

Under normal circumstances, GET_U solves the system [C1,C2,C3]T = [GEOM]-1*MOM. The saturation
in moment space SAT is set to CL. If C1is0, (An indication that the moment vector does not intersect the
facet) then GET_U returns with ISTATUS set to -1. Otherwise, the moment is scaled to the boundary by
dividing the constants C2, and C3 by C1. (C1 should be positive; if not, then GET_U returns with
ISTATUS set to 7) Next, C2 and C3 are checked to make sure they lie between zero and one. If so, then
ISTATUS is set to 0 and the controls are allocated as before (Except that C1 may lie somewhere between 0
and 1, so that the controls may be scaled back). Otherwise, the current facet is not the correct one and
GET_U returns with ISTATUS set to 6.

D. Errors and Restrictions

The descriptions of the different error status codes and where they are defined are described below.

ISTATUS Setin... Description
-99| CONALLO Allocation has not been performed
-1/ GET_U Moment vector is parallel to the current facet
O/GET_U Controls allocated successfully
1/ GET U Unknown singularity in geometry (origin not on the boundary)
2|GET_U Degenerate Facet has co-linear edges
3|/GET_U Origin on the boundary, moment is not
4| GET_FACET The current pair of face-defining controls are redundant
5| GET_FACET The number of redundant controls has exceeded the limit
6| GET U Normal operation, wrong facet
7/ GET_U Negative saturation C1 <0

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012
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Modul e Name: GET_U
Cal | ed by: GET_FACET
Calls to: | NVMAT3

SUBROUTI NE GET_U (M U, SAT, ALLOCATED, |STATUS, MsG Ul, U2, NAT,
MOM UM N, UMAX, |FAC)

Functi on: Thi s subroutine checks the facet (Defined by MAT) to
see if we can allocate. If we can, then it solves for
t he vector of controls.

Modi fi cations:
Dat e Pur pose By
APR 10 1997 Changed the ranges on the constants C2, and C3
by a small anount so that round-off errors are
handl ed better when checki ng facets and the nonent
happens to lie on an edge JB
JUL 09 1996 Creat ed J. Bolling

d obal Vari abl es

Nane | Type | Descri ption

* VARNAVE VARTYPE VARDESCRI PTI ON

Local Vari abl es

! Nane | Type | Descri ption

*M | NTEGER Nunber of controls to allocate

*Ul | NTEGER Nunber of 1st control defining facet

*U2 | NTEGER Nunber of 2nd control defining facet

*U M REAL Vector of allocated controls

*UM N(M REAL Vector of nininum defl ections

*UMAX(M REAL Vect or of maxi mum defl ections

*MAT( 3, 3) REAL Matrix of facet geonetry

* SAT REAL Saturation |evel

* ALLOCATED LOG CAL Al l ocat ed successful flag

*| FAC | NTEGER Base three facet code

| e e e e e e e f e e f ff e e e m e e e e e e e e e e e e e ;e e e e e e e e e e e e e e e m e mm— =
| MPLI CI' T NONE
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! Decl arati on Secti on

INTEGER M U1, W2

| NTEGER Max_Control s

PARAMETER (Max_Controls = 20)

| NTEGER | FAC(Max_Control s), | STATUS

REAL U(Max_Controls), MAT(3,3), UM N(Max_Control s),
. UMVAX( Max_Control s), MOV 3)

REAL SAT

CHARACTER* 80 MSG

LOG CAL ALLOCATED, GOOD

REAL D, TRANS(3,3), A(2,2), AINV(2,2), Cl, C2, C3,
ZERO

PARAVETER (ZERO = 1E-10)
INTEGER I, J, K

ALLCCATED = . FALSE.
I Invert MAT to get TRANS

CALL | NVMAT3( TRANS, MAT, D)
I First Check the Determ nate of MAT, D

IF (ABS(D) .LE. ZERO THEN

Det is zero ...
Either the origin is on the facet or the two edges are parallel.
In the first case, the desired nonent may be on the boundary as well,
in which case, we can allocate. Ot herwi se, we shouldn't even be here.

I Oigin on the boundary? First find a non-singular 2x2 partition

DO 2007 1=1,2
DO 2006 J=I +1, 3

A(1,1) = MAT(I,2)
A(1,2) = MAT(I, 3)
A(2,1) = MAT(J, 2)
A(2,2) = MAT(J, 3)

D=A11)*A(2,2)-A(1,2)*A(2,1)

IF (ABS(D) .GI. ZERO) GO TO 2008 ! Found one. Keep | and J
2006 CONTI NUE
2007 CONTI NUE

2008 CONTI NUE
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|F (ABS(D) .LE. ZERO) THEN ! Couldn't find one
| STATUS = 2
MSG = ' CO- LI NEAR EDGES'
RETURN

END | F

IF ((1.EQ1).AND.(J.EQ2)) K = 3

IF ((1.EQ1).AND.(J.EQ3)) K= 2

IF ((1.EQ2).AND.(J.EQ3)) K=1

AINV(1,1) = A(2,2)/D

AINV(2,2) = A(1,1)/D

AINV(1,2) = -A(1,2)/D

AINV(2,1) = -A(2,1)/D

I See if colum 1 of MAT lies in the plane of the facet

C2 = - (AINV(1, 1)*MAT(I, 1) +AI NV(1, 2) *MAT(J, 1))

C3 = - (AINV(2, 1) *MAT(I, 1) +AI NV(2, 2) *MAT(J, 1))

Cl = C2*MAT(K, 2) + C3*MAT(K, 3)

IF (ABS(MAT(K,1) - Cl) .GI. ZERO) THEN ! sone other singularity
| STATUS = 1
MBG = ' SNGLR, ORGN NOT ON BDRY'
RETURN

END | F

I I's the nmonent on the boundary?

C2 = - (AINV(1, 1)*MOM 1) +Al NV(1, 2) *MOM J))
C3 = - (AINV(2, 1) *MOM | ) +Al NV( 2, 2) *MOM J) )
Cl = C2*MAT(K,2) + C3*MAT(K, 3)

|F (ABS(MOMK) - Cl) .GI. ZERO) THEN

| STATUS = 3

MSG = ' ORGN ON BDRY, MOM | S NOT'

RETURN

END | F

' If we nade it this far, then the origin and the nonent are on the
I boundary. but does it lie within this facet?

Cl1=1.0

GOD = ( (-0.01 .LE. C2) .AND. (-0.01 .LE. C3)
_AND. (C2 .LE. 1.01) .AND. (C3 .LE. 1.01))

| F (.NOT. GOOD) THEN
| STATUS = 3
MSG = ' ORGN ON BDRY, MOM | S NOT'
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RETURN
ELSE

| STATUS = 0

MBG = ' ORGN ON BDRY'

SAT = 1.0

GO TO 2010 I W& got one. skip the next part
END | F

END | F

I W are finished checking the special cases associated with a sing-
I ularity in NMAT

2009 CONTI NUE I NOW THE NORMAL (?) CASE

| Get C1,C2,C3 as in MOMIN = Cl*VERTEX 0 + C2*EDGE_1 + C3*EDGE_2

c1
C2
C3

coo
o O o

DO 1013 1=1,3

Cl = CL + TRANS(1,1)*MOMI)
C2 = C2 + TRANS(2,1)*MOM I)
C3 = C3 + TRANS(3,1)*MM 1)

1013 CONTI NUE
SAT = C1 | Saturation |evel
I IF Cl1 IS ZERO VWE SHOULDN T EVEN BE HERE

| F (ABS(Cl) .LE. ZERO) THEN
GOOD = . FALSE.

| STATUS = -1
MSG = ' MOMENT || FACET
RETURN
END | F
GO00D = (C1 .GT. 0.0) I So far, so good

| F (GOOD) THEN

(67 c/cl I scale to the boundary
C3 =C3/Cl
IF (CL .GIl. 1.0) C1 =1.0

GO = ( (-0.01 .LE. C2) .AND. (-0.01 .LE. C3)
_AND. (C2 .LE. 1.01) .AND. (C3 .LE. 1.01))

| F (GOOD) THEN
| STATUS = 0
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M5G = ' NORMVAL'

ELSE
| STATUS = 6
MSG = ' ALL OK, JUST WRONG FACET'
END | F
ELSE I Cl is negative
| STATUS = 7
MSG = ' NEGATI VE SATURATI ON
END | F

2010 CONTI NUE
I I'f we have a good one, allocate it
| F (GOOD) THEN
I First allocate and scale the fixed controls

DO 1014 1=1, M
IF ((I .NE. Ul) .AND. (I .NE. U2)) THEN I skip UL nad W2
IF (IFAC(1) .EQ 0) U(l) = UMN(I)*CL
IF (IFAC(1) .EQ 1) U(1) = UMAX(1)*ClL
END | F
1014  CONTI NUE

I Now t he varying controls

U( UL)
U U2)

CL* (UM N(U1) + C2*(UMAX(UL)-UM N(UL)))
CL* (UM N(U2) + C3*(UMAX(U2)-UM N(U2)))

ALLCCATED = . TRUE.
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1.6 M iscellaneous Subroutines and Functions
A. Usage

This section describes some of the general functions and subroutines that supplement the ConAllo software.

A.l PINVB4

Function Prototype, SUBROUTINE
REAL BMAT(4,20), PINVB(20,4)
INTEGER M

Assign valuesto M and BMAT
CALL PINVB4(M, BMAT, PINVB)
PINV B4 returns the right pseudo inverse of the matrix in BMAT

Argument Definitions
M [in] Number of columns in matrix BMAT
BMAT(4,M) [in] The 4 x M matrix BMAT
PINVB(M,4) [out] The right pseudo inverse of BMAT

A.2 INVMATS3
Function Prototype, SUBROUTINE
REAL MATOUT(3,3),MATIN(3,3),D

Assign datato MATIN
CALL INVMAT3(MATOUT, MATIN, D)
INVMATS3 returns the inverse of MATIN in MATOUT (if it exists), and the determinant of MATIN in D

Argument Definitions
MATOUT(3,3) [out] The inverse of MATIN
MATIN(3,3) [in] The 3 x 3 matrix to be inverted
D [out] The determinant of MATIN

A.3 INVMAT4
Function Prototype, SUBROUTINE
REAL MATOUT(4,4),MATIN(4,4),D

Assign datato MATIN
CALL INVMAT4(MATOUT, MATIN, D)

INVMATA4 returnsthe inverse of MATIN in MATOUT (if it exists), and the determinant of MATIN in D
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Argument Definitions
MATOUT(4,4) [out] The inverse of MATIN
MATIN(4,4) [in] The 4,4 matrix to be inverted

D [out] The determinant of MATIN
A.4 D3
Function Prototype, REAL

REAL MATIN(3,3)

Assign datato MATIN
DET = D3(MATIN)
D3 returns the determinant of the matrix MATIN

Argument Definitions
MATIN(3,3) [in] The 3 x 3 matrix to calculate the determinant of

B. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012
I o e n o e e e e e e e e e e e e e e e e e e e e edeeaean

!

! Modul e Name: Pl NVB4

! Cal l ed By: RESTORE_U
! Calls to: | NVMAT4

[

Functi on: Finds the minimumnormright inverse P for a 4XM
matrix B.

P = B *(inv(B*B')) such that BP = |

I NTEGER M 1, J, K, Max_Control s

PARAMETER (Max_Controls = 20)

REAL PI NVB(Max_Control s, 4), BMAT(4, Max_Control s)

REAL BVATT(Max_Control s, 4), BBT(4,4), |NVBBT(4,4),
BBTK, PINVBK, D
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! Run Secti on

DO 10 1=1, M
DO 20 J=1, 4
BMATT(I,J) = BMAT(J, 1)
20 CONTI NUE
10  CONTI NUE

I B*B"T

DO 30 I=1,4
DO 40 J=1, 4
BBT(1,J) =0
DO 50 K=1, M
BBTK = BMAT(I, K) * BMATT(K, J)
BBT(1,J) = BBT(I,J) + BBTK
50 CONTI NUE
40 CONTI NUE
30  CONTI NUE

| [B*B T]A-1
CALL | NVNAT4( | NVBBT, BBT, D)
I (BMT)*[B*BAT]A-1

DO 60 |=1, M
DO 70 J=1, 4
PINVB(1,J) = 0
DO 80 K=1, 4
PI NVBK = BMATT(I, K) *I NVBBT(K, J)
PINVB(I,J) = PINVB(I,J) + PINVBK
80 CONTI NUE
70 CONTI NUE
60  CONTI NUE

! Modul e nane: | NVMAT3
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! Called by: GET_U
! Calls to: D3

! Functi on: Inverts a 3X3 matrix

REAL MATOUT(3,3), MATIN(3,3), D, D3
| NTEGER |, J

DO 2 I=1, 3
DO 1 J=1, 3
MATOUT( I, J) =0. 0
CONTI NUE
2 CONTI NUE

=Y

D = D3( MATI N)

| F (D.NE.0.0) THEN

MATOUT(1,1) = (MATIN(2,2)*MATI N(3, 3) - MATI N( 2, 3) *MATI N(3, 2))/ D
MATOUT(1, 2) = - (MATI N(1, 2) * MATI N( 3, 3) - MATI N( 1, 3) *MATI N(3, 2) )/ D
MATOUT(1,3) = (MATIN(1,2)*MATI N(2, 3)- MATI N(1, 3) *MATI N(2, 2))/ D
MATOUT(2, 1) = - (MATI N(2, 1) * MATI N( 3, 3) - MATI N( 2, 3) *MATI N(3, 1))/ D
MATOUT(2,2) = (MATIN(1,1)*MATI N(3, 3)- MATI N(1, 3) *MATIN(3, 1))/ D
MATOUT(2, 3) = - (MATI N(1, 1) * MATI N( 2, 3) - MATI N( 1, 3) *MATI N(2, 1))/ D
MATOUT(3,1) = (MATIN(2, 1)*MATI N(3, 2) - MATI N( 2, 2) * MATI N(3, 1))/ D
MATOUT(3, 2) = - (MATI N(1, 1) * MATI N( 3, 2) - MATI N( 1, 2) * MATI N(3, 1))/ D
MATOUT(3,3) = (MATIN(1,1)*MATI N(2, 2)- MATI N( 1, 2) *MATI N(2, 1))/ D

END | F

RETURN

END

C23456789012345678901234567890123456789012345678901234567890123456789012
R

!

! Modul e nane: | NVMAT4
! Cal I ed by: PI NvB4
! Calls to: D3

!
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! Functi on: Inverts a 4x4 matrix

REAL MATOUT(4,4), MATIN(4,4), D
REAL TEMP3(3,3), TEMP4(4,4), D3
INTEGER 1,J,11,JJ, ROWCOL, | SI GN

DO 2 I=1, 4
DO 1 J=1, 4
MATOUT(1,J) = 0.0
CONTI NUE
2 CONTI NUE

=Y

I COFACTORS
ISIGN = 1
DO 10 1=1,4
DO 9 J=1,4
I MAKE 3X3s

=1, 3
.EQ11) ROW= ROM1

|| I

7 JJ=1,3
IF (J.EQJJ) COL = COL+1
TEMP3(11,JJ) = MATI N( ROW COL)
CcoL = COL+1
7 CONTI NUE
ROW = ROM1
8 CONTI NUE
TEMPA(1,J) = D3(TEMP3)*1 Sl GN
ISIGN = -1 SIGN
9 CONTI NUE
ISIGN = -1SIGN
10  CONTI NUE

I END COFACTORS
I DETERM NANT
D=20.0
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DO 11 J=1, 4
D = D + MATIN(1,J)*TEMP4( 1, J)
11  CONTI NUE

| F (D.EQ0.0) RETURN

DO 13 1=1,4
DO 12 J=1, 4
MATOUT(1,J) = TEMP4(J,1)/D
12 CONTI NUE
13 CONTI NUE

RETURN
END

C23456789012345678901234567890123456789012345678901234567890123456789012
R

!

! Modul e Nane: D3

! Cal | ed By: | NVMAT3
! Calls to: none

!

! Functi on: Determ nant of a 3X3 matrix

| MPLI CI T NONE
REAL D3, MATIN(3,3)

= MATIN(1, 1) * MATI N( 2, 2) * MATI N( 3, 3)
+ MATIN( 1, 2) * MATI N( 2, 3) * MATI N( 3, 1)
+ MATIN( 1, 3) * MATI N( 2, 1) * MATI N( 3, 2)
MATI N( 1, 3) * MATI N( 2, 2) * MATI N( 3, 1)
- MATIN(1, 2) * MATI N( 2, 1) * MATI N( 3, 3)
- MATIN(1, 1) * MATI N( 2, 3) * MATI N( 3, 2)

R0 Qo Ro Ro Ro

RETURN
END
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2. Aircraft-Specific Routines

This section describes the aircraft-specific modules required for gathering control effectiveness data and control
position and rate limits. Since these routines must be developed for any aircraft using Control Allocation with Rate
Limiting, no pre-defined set of instructions is given. This section merely discusses the function prototypes and
calling conventions for each module.

2.1 The Control Effectiveness Lookup Module
A. Usage

A_C$GETUEFF isadynamically loaded function which is called several times from the CONALLO main executive
when building the control effectiveness matrices. While the functional details of this module are left up to the
developer to design, it should adhere to the following calling conventions.

Al A_CS$GETUEFF
Function Prototype, REAL

POINTER P
INTEGER IAXIS, IU
REAL U

Assign values to all arguments.
UEFF = A_C$GETUEFF(P, IAXIS, 1U, U)

A_C$GETUEFF returns the control effectiveness on the IAXIS moment or objective axis with respect to the |U
control as afunction of aircraft states and control positions.

Argument Definitions

P [in] Points to the COMMON location of the aircraft state variables.

IAXIS [in] Represents the current axis for which to return the control effectiveness.

U [in] Represents the current control index for which to return the control
effectiveness.

U [in] The current position of the U control.

B. General Remarks

Since this function is loaded dynamically by CONALLO, it needs the location of any aircraft state variables required
to perform the control effectiveness table lookup. For this implementation using the “SimShell1.5” environment,
the necessary aircraft state information is stored in the A_CVARS common block, and is passed to A_ C$GETUEFF
through the POINTER variable P.

The lAXIS parameter indicates the aircraft moment (or objective) axis for which the control effectiveness data should
be returned and is defined asfollows:
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IAXISVaue Description
1 Return eff. data for the rolling moment axis
2 Return eff. data for the pitching moment axis
3 Return eff. data for the yawing moment axis
4 (Objective axis) Return effectivenessin Drag

If new restoring algorithms are added, then the additional objectives should be given their own IAXIS value.

C. Functional Description

N/A

D. Errors and Restrictions

Recall that CARL allocates a control vector only and has no knowledge of how each entry in the vector corresponds
to an actua aircraft control. Therefore, it is important for this lookup routine to keep track of the order of the
controlsin this vector so that the correct effectiveness datais returned for a given U argument.
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2.2 Control Position and Rate Limits

A. Usage

A_C$GETCSTR is adynamically loaded subroutine which is called from the CONALLO main executive to get the
control position and rate limit vectors. While the functiona details of this module are left up to the developer to
design, it should adhere to the following calling conventions.

Al A_CS$GETCSTR
Function Prototype, SUBROUTINE

POINTER P
INTEGER M, IUV
REAL UMAX, UMIN, URMAX, URMIN

Assign valuesto P, M and the IUV vector.
CALL A_C$GETCSTR(P, M, IUV, UMAX, UMIN, URMAX, URMIN)

A_C$GETCSTR calculates the minimum and maximum position constraints and the respective rate limits in their
minimum and maximum directions for the M allocatable controls as afunction of aircraft states.

Argument Definitions

P [in] Points to the location of the aircraft state variables.

M [in] Number of controls to allocate.

IUV(M) [in] Contains a list of the aircraft control indices that are to be allocated.

UMAX(M) [out] The maximum position limits for the M controls represented by IUV.

UMIN(M) [out] The minimum position limits for the M controls represented by IUV.

URMAX(M) [out] The deflection rates in the maximum position direction for the M controls
represented by IUV.

URMIN(M) [out] The deflection rates in the minimum position direction for the M controls

represented by IUV.

B. General Remarks

Since this function is loaded dynamically by CONALLO, it needs the location of any aircraft state variables required
to perform the control effectiveness table lookup. For this implementation using the “SimShell1.5” environment,
the necessary aircraft state information is stored in the A_CVARS common block, and is passed to A_ C$GETUEFF
through the POINTER variable P.

In contrast to the A_CSGETUEFF function described in Section 2.1, this subroutine accepts and returns vector
arguments. The IUV vector then represents the actua control indices used in the alocatable controls vector for the
current frame. For instance, if the left stabilator position was stored in the first entry of the aircraft control vector but
was the last control alocated by CARL, then IUV (M) would be 1.

C. Functional Description

N/A
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D. Errors and Restrictions

The restrictions on A_C$GETUEFF apply to this subroutine as well. Because of the reconfigurable nature of
CARL, the order of the controlsin the allocatable control vector and the actual control vector may not always be the
same. Therefore, careful attention must be given to the IUV vector.
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CARL Subroutines for the
F-15 ACTIVE

1. Data I nitialization For Control Allocation

This section describes the aircraft-specific routines needed to initialize the required Control Allocation with Rate
Limiting database and other parameters.

1.1 Required Aircraft Parameters

A. Usage

These routines initialize al of the model-specific control allocation parameters.

A.l BD_ACSINIT
Function Prototype, SUBROUTINE
COMMON A_CVARS, SIMPARS

This subroutine takes no arguments.
CALL BD_ACSINIT
BD_ACSINIT assigns values to some model specific parameters

Common Definitions
A_CVARS [global] contains all of the aircraft global variables (“SimShell1.5” specific).
SIMVARS [global] contains all of the global simulation variables (“SimShell1.5” specific).

A.2  ACSINIT
Function Prototype, SUBROUTINE
COMMON A_CVARS, SIMPARS

This subroutine takes no arguments.
CALL ACSINIT
ACSINIT performs the remaining initialization procedures not done by BD_ACSINIT.

Common Definitions
A_CVARS [global] contains all of the aircraft global variables (“SimShell1.5” specific).
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SIMVARS [global] contains all of the global simulation variables (“SimShell1.5” specific).

B. General Remarks

The purpose of BD_ACSINIT isto assign values to some of the required aircraft and control allocation parameters
only and should be regarded as being a BLOCK DATA prototype. Therefore, this subroutine should not contain any
equations or calling statements. The ACSINIT subroutine handles al other initialization that may require using
equations or calling additional subroutines.

C. Functional Description

BD_ACSINIT initializes the following aircraft parametersviaDATA statements:
1.) Mass and geometry parameters; wing area, mean chord, wing span, mass, and reference CG location (in
percent mean chord).
2.) Control alocation parameters; the number of aircraft controls, the name of each aircraft control, the
controls' hominal rate and position limits, and actuator time constants for each control surface.
3.) Aircraft states and outputs; the number of states, number of outputs, state names, and output names.
The following parameters areinitialized or reset using assignment statements:
1.) Other aircraft parameters; default CG location, name of the aerodynamic database (if used), location of
the aircraft symbols database, and control law parameters.
2.) Shell override parameters. Note that all of the SimShell 1.5 flags are initialized to FALSE. This section
allows a specific aircraft model to enable a select few.

ACSINIT continues with the initialization process by defining the necessary inertia parameters (as defined in
Reference 16), sets the READ_BINARIES flag to TRUE (indicating that the control effectiveness data is saved in
binary files), and calls INITUEFF to load the control effectiveness data.

D. Errors and Restrictions

In BD_ACSINIT, the current number of states, outputs, and allocatable controls are 30, 30 and 20 respectively. In
ACSINIT, the default value for the READ_BINARIES flag is TRUE. At the time of this writing however, the
binary files exist for the Macintosh platform only.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012
e

|

! Modul e Nanme: BD ACSINIT

! Called By: ACSBDINT
! Calls to: none

!

Functi on: Main initialization nodule for any AirCraft Speci-
fic code. This nodule initializes the F-15 ACTI VE
V1.0 mass and other specific nmodel paraneters
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Modi fi cati ons:

Dat e

JAN 27 1997

|
|
I
I JUL 03 1996
|
|
|

APPENDIX Il1.

Pur pose

Creat ed
Changed this code nodul e to SUBROUTI NE i nst ead
of BLOCK DATR

CHARACTER*4 Contr ol

d obal

Save nonents flag
Save controls flag

Vari abl es

Descri ption
Status of Storage Uility
Status of Control

Wng Area (ft"2)
Wng Span (ft)

Mean Chord (ft)
Ref erence CG (% nmean chor d)
C.G position (% nean chord)

Aircraft

Nurber

Al | ocati on

Mass (sl ugs)
Nunber of configurable controls

of aircraft states
Nunber of aircraft outputs

nanme

CHARACTER*4 St ate nane
CHARACTER*4 Qut put

CHARACTER* 80Nane of current Aero.
CHARACTER*80Path to the A/ C Synbols.db file
Law par anet er
| aw par anet er
| aw par anet er
| aw par anet er
| aw par anet er

! Name Type
*Do_Store LOG CAL
*Do_Conal |l o LOGE CAL
*SaveMons LOGE CAL
*SaveCons LOGE CAL
*S REAL
*B REAL
* CBAR REAL
* XCER REAL
* XCG REAL
* MASS REAL
*NCTRLS | NTEGER
* NSTATES | NTEGER
* NOUTS | NTEGER
* UNAME( 1)
* XNAME( 1)
* YNAME( 1)
* Dat abase
*Synbol sDB
* LAVDAV REAL
* LANVDAW REAL
* LAVDAP REAL
* LAMDAQ REAL
* LANMDAR REAL
* URATEO( 1) REAL
*UM NO( 1) REAL
* UMAXO( 1) REAL
*UTAU( 1) REAL
|

I MPLI CI' T NONE

Cont r ol
Cont r ol
Cont r ol
Cont r ol
Cont r ol
Nomi nal
Limt

Def .
Def. |
1st or

nanme

def. rate
(deg)

imt (deg)

der tinme constant

(deg/ s)

U 1)

Dat abase

J.

By
Bol I'i ng

J.B.
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REAL A _CVARR (250)
CHARACTER*4 A _CVARC (100)
| NTEGER A CVAR ( 20)
CHARACTER* 80 SI MPARCS0( 10)
LOG CAL SIMPARL ( 30)

| NTEGER NCTRLS, NSTATES, NOUTS, |

REAL S, B, CBAR, XCGR, XCG MASS, LAMDAV, LANMDAW LANDAP, LANDAQ
. LAMDAR

CHARACTER* 4 UNAME( 10) , XNAME( 30) , YNAME( 30)

CHARACTER* 80 Dat abase, Synbol sDB

LOd CAL Do_Store, Do _Conall o, SaveMons, SaveCons

REAL URATEO( 10), UM NO( 10) , UMAXO( 10) , UTAU( 10)

COWDN / A CVARS / A CVARR A_CVARI, A CVARC
COWON / SI MPARS / S| MPARL, SI MPARCS0

EQUI VALENCE ( SI MPARL( 7) , Do_Store )
EQUI VALENCE ( SI MPARL( 3) , Do_Conal | 0 )
EQUI VALENCE (SI MPARL(11) , SaveMons )
EQUI VALENCE (SI MPARL(10) , SaveCons )
EQUI VALENCE (A CVARR(71) , S )
EQU VALENCE (A CVARR(72) , B )
EQUI VALENCE (A CVARR(73) , CBAR )
EQUI VALENCE (A _CVARR(70) , XCGR )
EQUI VALENCE (A _CVARR(60) , XCG )
EQUI VALENCE (A _CVARR(69) , MASS )
EQUI VALENCE (A_CVARI (3) , NCTRLS )
EQUI VALENCE (A_CVARI ( 4) . NSTATES )
EQUI VALENCE (A_CVARI (5) . NOUTS )
EQUI VALENCE ( A_CVARC( 1) . UNAVE( 1) )
EQUI VALENCE (A _CVARC(21) , XNAME(1) )
EQUI VALENCE (A _CVARC(51) , YNAME(1) )
EQUI VALENCE (S| MPARC80(1) , Database )
EQUI VALENCE (S| MPARC80(5) , Synbol sDB )
EQUI VALENCE (A _CVARR(28) , LAMDAV )
EQUI VALENCE (A _CVARR(29) , LAVDAW )
EQUI VALENCE (A _CVARR(25) , LAVDAP )
EQUI VALENCE (A _CVARR(26) , LAVDAQ )
EQU VALENCE (A _CVARR(27) , LAVDAR )
EQUI VALENCE (A _CVARR(84) , URATEO(1) )
EQUI VALENCE (A _CVARR(124) , UM NO(1) )
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EQUI VALENCE (A _CVARR(104) , UMAXO(1) )
EQUI VALENCE (A _CVARR(144) , UTAU(1) )

Mass and Ceonetry
DATA S , B , CBAR , MASS , XCGR
/ 608.0, 42.7 , 15.94, 1264.0, 0.2565 /

Control Allocation
DATA NCTRLS / 9 /
DATA (UNAME(1), =1, 10)
/[ 'DHTL', 'DHTR, 'DAL ', 'DAR', 'DRUD', 'DCL "' ,'DCR ',
"YNOZ', ' PNOZ', ' /
DATA (URATEO(I), =1, 10)
/ 45. 0, 45. 0, 90. 0, 90. 0, 135. 0, 75. 0, 75. 0,

. 80.0,  80.0, 0.0 /
DATA (UM NO(1), 1=1,10)
/ -29.0, -29.0, -20.0, -20.0, -30.0, -35.0, -35.0,
. -20.0, -20.0, 0.0 /
DATA (UMBXO(1), 1=1,10)
/ 15.0, 15.0, 20.0, 20.0, 30.0, 15.0,  15.0,
. 20.0, 20.0, 0.0 /
DATA (UTAU(1), 1=1,10)
/ 10*0. 0495 /

St at es/ Qut put s
DATA NSTATES, NOUTS / 23, 14 /
DATA ( XNAME(1), I =1, 30)

/ 'VvIT ', 'ALFA', 'BETA, 'PH ', 'THET', 'PSI ', 'P ',
'Q ', 'R ', '"NORT', 'EAST', 'ALT ', 'POW', 'DHTL',
"DHTR, 'DAL ', 'DAR', 'DRL ', 'DRR', 'DCL ', 'DCR',

. 'YNOZ', ' PNOZ', 7+ ' /

DATA (YNAME(I), 1=1,30)

/ VI ', 'ALFA', 'THET', 'Q ', 'BETA', 'PH ', 'P ',
'R ', "AN ', 'ALAT', 'NORT', 'EAST', 'ALT ', 'PSI ',

16*" ' /

O her

XCG = 0. 2685

Dat abase = ' NONE'

Synbol sDB = ' : Mbdel s: F15: F-15 Synbol s. db’
LAMDAV =
LANVDAW
LANDAP
LAMDAQ

0.0
0.0
0.0
0.0
LAMDAR = 0.0
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I Override the Sim Shell defaults for these vari abl es.

C23
-

;*DO
*Cl
*C2
*C3
*CA

Do_Store = . TRUE.
Do _Conall o = . TRUE.
SaveMons = . TRUE.
SaveCons = . TRUE.

456789012345678901234567890123456789012345678901234567890123456789012

Modul e Nane: ACSINIT
Called By: ACSINIT
Calls to: InitUEff

Functi on: Main initialization nodule for any AirCraft Speci-
fic code. This nodule initializes the F-15 ACTIVE
V1.0 dat abases

Modi fi cati ons:
Dat e Pur pose By
JUL 03 1996 Creat ed J. Bolling

d obal Vari abl es

Nane | Type | Descri ption
_Conal lo LOGE CAL Status of Control Allocation
REAL I nertia Paraneter
REAL I nertia Paraneter
REAL I nertia Paraneter
REAL I nertia Paraneter
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*C5 REAL I nertia Paraneter

*C6 REAL I nertia Paraneter

*C7 REAL I nertia Paraneter

*C8 REAL I nertia Paraneter

*C9 REAL I nertia Paraneter

|

| o o o o o o o o o e e e e e e e e e e e e e e e

| MPLI CI' T NONE

REAL A _CVARR (250)
CHARACTER*4 A _CVARC (100)
| NTEGER A CVAR ( 20)
CHARACTER* 80 SI MPARCS0( 10)
LOG CAL SIMPARL ( 30)

LOQd CAL Do_Conal | 0, Read_Bi nari es
REAL C1, C2, C3, ¢4, C5, C6, C7, C8, C9, GAM XX, 1YY, 12Z, |XZ

COWON / A CVARS / A CVARR A_CVARI, A_CVARC
COWON / SI MPARS / S| MPARL, SI MPARCS0

EQUI VALENCE ( SI MPARL( 3) , Do_Conal | 0
EQUI VALENCE (A CVARR(74) , Cl
EQUI VALENCE (A _CVARR(75) , C2
EQUI VALENCE (A _CVARR(76) , C3
EQU VALENCE (A CVARR(77) , C4
EQUI VALENCE (A CVARR(78) , C5
EQUI VALENCE (A _CVARR(79) , C6
EQUI VALENCE (A _CVARR(80) , C7
EQU VALENCE (A _CVARR(81) , C8
EQUI VALENCE (A _CVARR(82) , C9

DATA I XX, 1YY, 1ZZ ,1XZ [ 25919.0, 197590.0, 218138.0, -4894.0 /
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DATA Read Binaries / .TRUE /

set Inertia paranmeters for subroutine F

GAM = | XX*¥1ZZ - | XZ**2
Cl = ((1YY - 1Z2)*12Z - | XZ**2)/ GAM
((IXX - 1YY + 1Z2)*1 X2) | GAM

| ZZ/ GAM

| XZ/ GAM

(1Z2Z - 1XX) /1YY

| XZ/ 1 YY

1.0/ 1YY

(X (IXX - TYY) + | XZ¥*2) | GAM
| XX/ GAM

B8AZRRABA

Load required databases

| F (Do_Conal | 0) THEN
CALL I nitUEff(Read_Binaries)
END | F
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1.2 L oading The Control Effectiveness Database

A. Usage

These subroutines are used to load the control effectiveness database into memory during the initialization pass. The
assumed format is the Affine Data | nterpol ation technique described in Chapter 2.

A.l INITUEFF
Function Prototype, SUBROUTINE
LOGICAL READ_BINARIES
COMMON S _EFFS, A_EFFS, C_EFFS, R_EFFS, YN_EFFS, PN_EFFS

Assign avalueto READ_BINARIES
CALL INITUEFF(READ_BINARIES)

INITUEFF loads the control effectiveness data from either binary files (if READ_BINARIESis TRUE) or from ascii
files and stores the data in the ?_EFFS common blocks.

Argument Definitions

READ_BINARIES [in] Determines whether or not to load the data from binary files (if
they exist).

S _EFFS [global] Stabilator effectiveness data.

A_EFFS [global] Aileron effectiveness data.

C_EFFS [global] Canard effectiveness data.

R_EFFS [global] Rudder effectiveness data.

YN_EFFS [global] Yaw Nozzle effectiveness data.

PN_EFFS [global] Pitch Nozzle effectiveness data.

A.2 LOADMCSDAT
Function Prototype, SUBROUTINE

INTEGER U, RN, 11, 12, I3
REAL RDATA
LOGICAL READ_BINARIES

Assign valuesto READ_BINARIES, IU, RN, 11, 12, and I3.
CALL LOADMCSDAT(IU, RN, RDATA, 11, 12, 13, READ_BINARIES)

LOADMCSDAT accesses the record RN in the file specified by unit 1U, and returnsthe |1 by 12 by 13 array of mesh
constantsin RDATA.

Argument Definitions

9] [in] Logical file unit to access.

RN [in] Record number to access (used for binary files only).
RDATA [out] Mesh constant I1 by 12 by 13 data array.

11 [in] Dimensional size of RDATA.

12 [in] Dimensional size of RDATA.
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13 [in] Dimensional size of RDATA.
READ_BINARIES [in] Determines whether or not to load the data from binary files.

B. General Remarks

LOADMCSDAT performs all of the file 10 and is called multiple times by INITUEFF to |oad the appropriate data.
INITUEFF simply checks whether or not the binary data files exist, sets the READ_BINARIES flag accordingly,
and provides the necessary arguments to LOADMCSDAT for each array of mesh constants.

C. Functional Description

If the READ_BINARIES argument is TRUE when INITUEFF is called, then it first checks whether or not a binary
file exists. If so, then it instructs LOADMCSDAT to use the binary formatted files. If not, then it assumes no
binary files exist and calls LOADMCSDAT with READ_BINARIES set to FALSE.

LOADMCSDAT reads files according to the READ_BINARIES flag. When its value is TRUE, LOADMCSDAT
reads files via direct access mode in which each row of the mesh constant matrices is stored as a separate record.
When READ_BINARIES is FALSE, LOADMCSDAT reads the data according to the format used by the Matlab
utility “mat2ascii” described in Appendix I.

D. Errors and Restrictions

The stored data arrays begin with an index of 0. Therefore, the dimensional parameters 11, 12, and I3 must be 1 less
than the table sizes. For example, a3 by 2 by 6 affine data table would be represented by 11, 12, and I3 as 2,1 and 5.

INITUEFF only checks for the existence of one of the binary files when READ_BINARIES is TRUE. If one or
more of these filesis missing, then an 10 error may occur when an attempt to open the missing file is made.

The data file format for ascii mode is restricted to comply with the “mat2ascii” output with ISF77 set to 1 (see
Appendix I). In addition, comment lines may be used in these files as long as the first column contains either a
lowercase or uppercase“C”.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012

!

! Modul e Nane: | nit UEff
! Called By: ACSINIT

! Calls to: LOADMCSDAT
!

Functi on: Initializes the control effectiveness data.
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Modi fi cations:
Dat e Pur pose By
JUL 23 1996 Creat ed J.B.

! d obal Vari abl es

! Nane | Type | Descri ption
* VARNANVE VARTYPE VARDESCRI PTI ON

! Local Vari abl es

! Nane | Type | Descri ption

* VARNANVE VARTYPE VARDESCRI PTI ON

| o o o o o o o o o e e e e e e e e e e e e e e e
| MPLI CI' T NONE

I NCLUDE ' UEFF_Conmons. i nc'

INTEGER I,J, U, RN
LOG CAL BI NARY, DOBI NARY, havebi n

CHARACTER* 17 Dat aPat h
PARAMETER (DataPath = ': Mdel s: F15: DATA: ')

! | oad the control power data

210



I F (Bl NARY) THEN

I NQUI RE (FILE = DataPath//' MADS_MCS. bi n',

| F (havebi n) THEN
DOBI NARY = . TRUE.
ELSE
DOBI NARY =
END | F
ELSE
DOBI NARY =
END | F

. FALSE

. FALSE.

U =1
| F (DOBI NARY) THEN
OPEN (UNIT
FI LE

ELSE
OPEN (UNI'T
STATUS =

END | F

RN =0

CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT

CALL
CALL

LOADMCSDAT (I U,
L CADMCSDAT

22 22222222 22222222 22222222
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I U, ACCESS = 'DI RECT',
Dat apat h/ /' MADS_MCS. bi n',

STATUS = ' OLD)

U, FILE = Datapath//' MADS_MCS. dat ',
'OLD)

SC1_MAD, SM,
SC1_MA, SM,
SC1_MD, SM,
SC1_AD, SM,
SCIL M SM,
SC1_A, SM,
SC1_ D, SM,
SC10, SM,

SDi,
SDi,
SDi,
SDi,

SDi,

SDi,

SDi,
SDi,

SAl,
SAl,
SAl,
SAl,

SAl,

SAl,

SAl,
SAl,

DOBI NARY)
DOBI NARY)
DOBI NARY)
DOBI NARY)

DOBI NARY)

DOBI NARY)

DOBI NARY)
DOBI NARY)

SCM MAD, SM,
SCM MA, SM,
SCM MD, SM,
SCM AD, SM,
SCMM SM,
SCM A, SM,
SCM D, SM,
SCMD, SM,

SDi,
SDi,
SDi,
SDi,

SDi,

SDi,

SDi,
SDi,

SAl,
SAl,
SAl,
SAl,

SAl,

SAl,

SAl,
SAl,

DOBI NARY)
DOBI NARY)
DOBI NARY)
DOBI NARY)

DOBI NARY)

DOBI NARY)

DOBI NARY)
DOBI NARY)

SCN_MAD, SM,
SCN_MA, SM,
SCN_MD, SM,
SCN_AD, SM,
SCNM SM,
SCN A, SM,
SCN D, SM,
SCNO, SM,

SDi,
SDi,
SDi,
SDi,

SDi,

SDi,

SDi,
SDi,

SAl,
SAl,
SAl,
SAl,

SAl,

SAl,

SAl,
SAl,

DOBI NARY)
DOBI NARY)
DOBI NARY)
DOBI NARY)

DOBI NARY)

DOBI NARY)

DOBI NARY)
DOBI NARY)

SCD_MAD, SM,
SCD_MA, SM,

SDi,
SDi,

SAl,
SAl,

DOBI NARY)
DOBI NARY)
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SCD_MD, SM, SDI, SAl, DOBI NARY)
SCD_AD, SM, SDI, SAl, DOBI NARY)
SCD_M SM, SDI, SAlI, DOBI NARY)
SCD_A, SM, SDI, SAlI, DOBI NARY)
SCD_D, SM, SDI, SAlI, DOBI NARY)
SCDO, SM, SDI, SAl, DOBI NARY)

CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,

222222

CLOSE( 1 U)

| F (DOBI NARY) THEN

OPEN (UNIT = IU, ACCESS = ' DI RECT',
. FI LE = Datapath//' MADA_MCS. bin', STATUS = 'OLD)
ELSE
OPEN (UNIT = IU, FILE = Datapath//' MADA_MCS. dat ',

. STATUS = ' OLD)
END | F

RN =0

CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,

AC1_MAD, AM, ADI, AAl, DOCBI NARY)
AC1_MA, AM, ADI, AAI, DOBI NARY)
AC1_MD, AM, ADI, AAl, DOBI NARY)
AC1_AD, AM, ADI, AAl, DOBI NARY)
ACI_M AM, ADI, AAl, DOBI NARY)
AC1_A, AM, ADI, AAl, DOBI NARY)
AC1_D, AM, ADI, AAI, DOBI NARY)
AC10, AM, ADI, AAlI, DOBI NARY)

CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,

ACM MAD, AM, ADI, AAl, DOCBI NARY)
ACM_MA, AM, ADI, AAl, DOBI NARY)
ACM MD, AM, ADI, AAl, DOBI NARY)
ACM AD, AM, ADI, AAl, DOBI NARY)
ACMM AM, AD, AAl, DOBI NARY)
ACM A, AM, ADI, AAl, DOBI NARY)
ACM D, AM, ADI, AAl, DOBI NARY)
ACMD, AM, ADI, AAlI, DOBI NARY)

CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,

ACN_MAD, AM, ADI, AAl, DOCBI NARY)
ACN_MA, AM, ADI, AAl, DOBI NARY)
ACN_MD, AM, ADI, AAl, DOBI NARY)
ACN_AD, AM, ADI, AAl, DOBI NARY)
ACN.M AM, AD, AAl, DOBI NARY)
ACN_A, AM, ADI, AAI, DOBI NARY)
ACN_ D, AM, ADI, AAI, DOBI NARY)
ACNO, AM, ADI, AAlI, DOBI NARY)

CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,

ACD_MAD, AM, ADI, AAl, DOCBI NARY)
ACD_MA, AM, ADI, AAl, DOBI NARY)
ACD_MD, AM, ADI, AAl, DOBI NARY)
ACD_AD, AM, ADI, AAl, DOBI NARY)
ACD M AM, AD, AAl, DOBI NARY)
ACD_A, AM, ADI, AAI, DOBI NARY)

222222 22222222 22222222 22222222
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CALL LOADMCSDAT (11U, RN, ACD_D, AM, ADI,
CALL LOADMCSDAT (I1U, RN, ACDO, AM, ADI,

CLOSE( 1 U)
| F (DOBI NARY) THEN
OPEN (UNIT = IU ACCESS = ' DI RECT',

ELSE

FILE = Datapath//' MADR_MCS. bi n',

APPENDIX Il1.
AAl,
AAl,

DOBI NARY)
DOBI NARY)

STATUS = ' OLD )

OPEN (UNIT = IU, FILE = Datapath//' MADR_MCS. dat ',

END | F

RN =
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

0

L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT

L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT

L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT

L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT

CLOSE( 1 U)

(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,

(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,

(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,

(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,

STATUS = ' OLD)

22222222 22222222 22222222 222222232

RCL_MAD, RM, RDI, RAI, DOBI NARY)
RCI_MA, RM, RDI, RAI, DOBI NARY)
RC1I_MD, RM, RDI, RAI, DOBI NARY)
RC1I_AD, RM, RDI, RAI, DOBI NARY)
RCL_M RM, RDI, RAI, DOBI NARY)
RCI_A, RM, RDI, RAl, DOBI NARY)
RC1_D, RM, RDI, RAl, DOBI NARY)
RC10, RM, RDI, RAI, DOBI NARY)
RCM MAD, RM, RDI, RAI, DOBI NARY)
RCM MA, RM, RDI, RAI, DOBI NARY)
RCM MD, RM, RDI, RAI, DOBI NARY)
RCM AD, RM, RDI, RAI, DOBI NARY)
RCMMM RM, RDI, RAI, DOBI NARY)
RCM A, RM, RDI, RAl, DOBI NARY)
RCM D, RM, RDI, RAl, DOBI NARY)
RCMD, RM, RDI, RAI, DOBI NARY)
RCN_MAD, RM, RDI, RAI, DOBI NARY)
RCN_MA, RM, RDI, RAI, DOBI NARY)
RCN_MD, RM, RDI, RAI, DOBI NARY)
RCN_AD, RM, RDI, RAI, DOBI NARY)
RCN.M RM, RDI, RAI, DOBI NARY)
RCN_A, RM, RDI, RAl, DOBI NARY)
RCN.D, RM, RDI, RAl, DOBI NARY)
RCNO, RM, RDI, RAI, DOBI NARY)
RCD_MAD, RM, RDI, RAI, DOBI NARY)
RCD_MA, RM, RDI, RAI, DOBI NARY)
RCD_MD, RM, RDI, RAI, DOBI NARY)
RCD_AD, RM, RDI, RAI, DOBI NARY)
RCDM RM, RDI, RAI, DOBI NARY)
RCD_A, RM, RDI, RAl, DOBI NARY)
RCD D, RM, RDI, RAI, DOBI NARY)
RCDO, RM, RDI, RAI, DOBI NARY)



| F (DOBI NARY) THEN
OPEN (UNIT
FI LE

ELSE
OPEN (UNI'T
STATUS =

. 'OLD)
END | F

RN =0

CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT
CALL LOADMCSDAT

(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT

(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT

(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT
L CADMCSDAT

(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,
(1y,

22222222 22222222 22222222 22222222

CLOSE( 1 U)

| F (DOBI NARY) THEN

APPENDIX Il1.

I U, ACCESS = 'DI RECT',
Dat apat h/ /' MADC_MCS. bi n',

STATUS = ' OLD )

IU, FILE = Datapath//' MADC_MCS. dat ',

CC1_MAD, CM, CDI, CAl, DOBI NARY)
CC1_MA, CM, CDI, CAl, DOBI NARY)
CC1_MD, CM, CDI, CAl, DOBI NARY)
CC1_AD, CM, CDI, CAl, DOBI NARY)
CCL_M CM, CDI, CAl, DOBI NARY)
CCL_A, CM, CDI, CAl, DOBI NARY)
CCl_D, CM, CDI, CAl, DOBI NARY)
CC10, CM, CDI, CAl, DOBI NARY)
CCM MAD, CM, CDI, CAl, DOBI NARY)
CCM MA, CM, CDI, CAl, DOBI NARY)
CCM MD, CM, CDI, CAl, DOBI NARY)
CCM AD, CM, CDI, CAl, DOBI NARY)
CCMM CM, CDI, CAl, DOBI NARY)
CCM A, CM, CDI, CAl, DOBI NARY)
CCM D, CM, CDI, CAl, DOBI NARY)
CCMD, CM, CDI, CAl, DOBI NARY)
CCN_MAD, CM, CDI, CAl, DOBI NARY)
CCN_MA, CM, CDI, CAl, DOBI NARY)
CCN_MD, CM, CDI, CAl, DOBI NARY)
CCN_AD, CM, CDI, CAl, DOBI NARY)
CCN.M CM, CDI, CAl, DOBI NARY)
CCN_ A, CM, CDI, CAl, DOBI NARY)
CCN. D, CM, CDI, CAl, DOBI NARY)
CCNO, CM, CDI, CAl, DOBI NARY)
CCD_MAD, CM, CDI, CAl, DOBI NARY)
CCD_MA, CM, CDI, CAl, DOBI NARY)
CCD_MD, CM, CDI, CAl, DOBI NARY)
CCD_AD, CM, CDI, CAl, DOBI NARY)
CCDM CM, CDI, CAl, DOBI NARY)
CCD_A, CM, CDI, CAl, DOBI NARY)
CCD D, CM, CDI, CAl, DOBI NARY)
CCDO, CM, CDI, CAl, DOBI NARY)

OPEN (UNIT = IU, ACCESS = ' DI RECT',
FI LE = Datapath//' MADYN_MCS. bi n',

STATUS = ' OLD)
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APPENDIX Il1.
ELSE
OPEN (UNIT = IU, FILE = Datapath//' MADYN_MCS. dat ',
. STATUS = ' OLD)
END | F

RN =0

CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,

YNCN_MAD, 48, YNDI, YNAI, DOBI NARY)
YNCN_MA, 48, YNDI, YNAI, DOCBI NARY)
YNCN_MD, 48, YNDI, YNAI, DOCBI NARY)
YNCN_AD, 48, YNDI, YNAI, DOCBI NARY)
YNCN_M 48, YNDI, YNAI, DOBI NARY)
YNCN_A, 48, YNDI, YNAI, DOBI NARY)
YNCN_D, 48, YNDI, YNAI, DOBI NARY)
YNCNO, 48, YNDI, YNAI, DOBI NARY)

22222222

CLOSE( 1 U)

| F (DOBI NARY) THEN
OPEN (UNIT = IU ACCESS = ' DI RECT',
FILE = Dat apat h//' MADPN_MCS. bi n' ,
. STATUS = 'OLD )
ELSE
OPEN (UNIT = IU, FILE = Datapath//' MADPN_MCS. dat ',
. STATUS = 'OLD )
END | F

RN =0

CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,

PNCM_MAD, 48, PNDI, PNAI, DOBI NARY)
PNCM_MA, 48, PNDI, PNAI, DOBI NARY)
PNCM_MD, 48, PNDI, PNAI, DOBI NARY)
PNCM_AD, 48, PNDI, PNAI, DOBI NARY)
PNCM_M 48, PNDI, PNAI, DOBI NARY)
PNCM_A, 48, PNDI, PNAI, DOBI NARY)
PNCM_D, 48, PNDI, PNAI, DOBI NARY)
PNCMD, 48, PNDI, PNAI, DOBI NARY)

CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,
CALL LOADMCSDAT (IU,

PNCD_MAD, 48, PNDI, PNAI, DOBI NARY)
PNCD_MA, 48, PNDI, PNAI, DOBI NARY)
PNCD_MD, 48, PNDI, PNAI, DOBI NARY)
PNCD_AD, 48, PNDI, PNAI, DOBI NARY)
PNCD_M 48, PNDI, PNAI, DOBI NARY)
PNCD_A, 48, PNDI, PNAI, DOBI NARY)
PNCD_D, 48, PNDI, PNAI, DOBI NARY)
PNCDO, 48, PNDI, PNAI, DOBI NARY)

22222222 22222222

CLOSE( 1 U)

End of I nit UEff



APPENDIX Il1.
RETURN
END

C23456789012345678901234567890123456789012345678901234567890123456789012

Modul e Nane: LOADMCSDAT
Cal | ed By: | NIl TUEFF
Calls to: none

SUBROUTI NE LOADMCSDAT (11U, RN, RDATA, 11, 12, 13, BlINARY)

Functi on: Loads the MCS data files for control allocation into
nenory

Modi fi cations:
Dat e Pur pose By
JUL 23 1996 Creat ed J.B.

INTEGER IU, 11, 12, 13, J, K L, RN
LOE CAL Bl NARY

CHARACTER*1 C1

REAL RDATA(O0:11,0:12,0:13)

DO 1010 J = 0,11
DO 1020 K = 0,12
RN = RN + 1
READ(1U,rec = RN) (RDATA(J,K, L),L = 0,13)
1020 CONTI NUE

1010 CONTI NUE
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1040
1030

APPENDIX I11.
I F (.NOT. BINARY) THEN

DO 1030 J = 0,11
DO 1040 K = 0,12
READ(1U, 110) C1
DO WH LE (C1 .EQ 'c¢' .OR Cl .EQ 'C)
READ(1 U, 110) C1
END DO
BACKSPACE (I U)
READ (1U, 120) (RDATA(J, K L),L = 0,13)
CONTI NUE
CONTI NUE

END | F

FORMAT( A1)
FORMAT( 4( 2x, E13. 6), / , 4(2x, E13. 6), /, 2( 2x, E13. 6))

REAL SC1_MAD(O: 8, 0: 8, 0:9), SC1L_MA(0: 8, 0: 8, 0: 9), SCL_MX0: 8, 0: 8, 0: 9),
SC1_AD(0:8,0:8,0:9) ,SCL_MO0:8,0:8,0:9) ,SCL_A(0:8,0:8,0:9) ,
SC1_D(0:8,0:8,0:9) ,SCL0(0:8,0:8,0:09)

REAL SCM MAD(O: 8, 0: 8, 0: 9), SCM_MA(0: 8, 0: 8, 0: 9), SCM_MX 0: 8, 0: 8, 0: 9),
SCM AD(0: 8,0:8,0:9) ,SCM MO0:8,0:8,0:9) ,SCMA(0:8,0:8,0:9) ,
SCM D(0: 8,0:8,0:9) , SCM(O0: 8, 0: 8, 0: 9)

REAL SCN_MAD(0: 8, 0: 8, 0: 9), SCN_MA(0: 8, 0: 8, 0: 9), SCN_MX0: 8, 0: 8, 0: 9),
SCN_AD(0: 8,0:8,0:9) ,SCN_ MO0:8,0:8,0:9) ,SCN A(0:8,0:8,0:9) ,
SCN D(0:8,0:8,0:9) ,SCNO(0: 8, 0: 8,0: 9)

REAL SCD_MAD(O: 8, 0: 8, 0: 9), SCD_MA(0: 8, 0: 8, 0: 9), SCD_MX0: 8, 0: 8, 0: 9),
SCD_AD(0: 8,0:8,0:9) ,SCD MO0:8,0:8,0:9) ,SCD A(0:8,0:8,0:9) ,
SCD_D(0:8,0:8,0:9) ,SCDO(0: 8, 0:8,0:9)

REAL SMWM N, SAMN, SDM N, SM NC, SAI NC, SDI NC
INTEGER SM  , SAl , SDI
DATA SMWM N, SAMN, SDM N, SM NC, SAI NC, SDI NC
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/ 0.2, -10.0, -30.0,

DATA SM , SAI , SD
/ 8 9 , 8

COWON / S_EFFS/ SCL_MAD,
SC1_MA ,
SC1_AD ,
SC1_MD ,
SCI M
SC1_A
sc1 D
scio
SWIN
SM ,

APPENDIX Il1.

/

0.2

SCM_MAD,

SCM_MA
SCM_AD
SCM _MD
SCM M
SCM A
SCM D
SCMD
SAM N
SAl

, 5.0

SCN_MAD,

SCN_MA
SCN_AD
SCN_MD
SCN_M
SCN_A
SCN_D
SCNO
SDM N
SDI

5.0 /

SCD_MAD,
SCD_MA |,
SCD_AD ,
SCD_MD
SCO M
SCD A
SO D
scoo
SMNC , SAINC,

SDI NC,

REAL AC1_MAD(O: 8, 0:7,0:9), ACL_MA(O: 8,0:7,0:9), ACL_ MXO:8,0:7,0:9),

AC1_AD(O: 8, 0: 7, 0: 9)
AC1_D(0: 8, 0:7,0:9)

,ACl_MO0:8,0:7,0:9)
, AC10(0: 8, 0: 7, 0: 9)

,ACL_A(0:8,0:7,0:9) ,

REAL ACM MAD(O: 8, 0: 7, 0: 9), ACM_ MA(0: 8, 0: 7, 0: 9), ACM MX0: 8, 0: 7, 0: 9),

ACM AD( 0: 8, 0: 7, 0: 9)
ACM D( 0: 8, 0: 7, 0: 9)

, ACM M 0: 8, 0: 7, 0: 9)
, ACMD(0: 8, 0: 7, 0: 9)

, ACM A(0:8,0:7,0:9) ,

REAL ACN_MAD(O: 8, 0: 7, 0: 9), ACN_MA(0: 8, 0: 7, 0: 9), ACN_MX0: 8, 0: 7, 0: 9),

ACN_AD( 0: 8, 0: 7, 0: 9)
ACN_D(0: 8, 0: 7, 0: 9)

, ACN_M0:8,0:7,0:9)
, ACNO( 0: 8, 0: 7, 0: 9)

, ACN_A(0:8,0:7,0:9) ,

REAL ACD_MAD(O: 8, 0:7,0:9), ACD_MA(O: 8, 0: 7, 0: 9), ACD_MXO0: 8, 0: 7, 0: 9),

ACD_AD( 0: 8, 0: 7, 0: 9)
ACD_D(0: 8, 0: 7, 0: 9)

, ACD M 0:8,0:7,0:9)
, ACDO( 0: 8, 0: 7, 0: 9)

REAL AWM N, AAM N, ADM N, AM NC, AAINC,

| NTEGER AM |, AAl ADI

DATA AWM N, AAM N, ADM N, AM NC, AAINC,

/ 0.2, -10.0, -20.0,

DATA AM , AAI | ADI
/ 8 9 .7

COWON / A_EFFS/ ACL_MAD,
ACL_MA ,
AC1_AD ,
AC1_ND ,
ACL M
ACL_A
ACL D
AC10
AM N
AM ,

REAL RC1_MAD(O: 8, 0: 11, 0: 9),

RC1_MX 0: 8, 0: 11, 0: 9)

0.2, 5.0,
/
ACM _MAD, ACN_MAD,
ACM MA , ACN_MA ,
ACM AD , ACN_AD ,
ACM MD , ACN_MD ,
ACMM , ACNM ,
ACMA , ACNA |,
ACMD , ACND |,
ACM , ACNO
AABMN , ADMN |,
AAI . ADI

RCL_MA(O: 8, 0:
., RC1_ADO:8,0:
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ADI NC

ADI NC
5.0 /

ACD_MAD,
ACD_MA ,
ACD_AD ,
ACD_MD ,
ACD M
ACD A
ACD D
ACDO
AMNC , AAINC,

11, 0: 9),
11, 0: 9),

,ACD A(0:8,0:7,0:9) ,

ADI NC,



RC1_MO0: 8, 0: 11, 0: 9)
RC1_D(0: 8, 0: 11, 0: 9)

APPENDIX I11.
., RC1_A(0:8,0:11,0:9) ,
. RC10(0:8,0:11,0:9)

REAL RCM MAD(O: 8,0:11,0:9), RCM MA(O: 8, 0: 11, 0: 9),

RCM_MX( 0: 8, 0: 11, 0: 9)

1 MO0:8,0:11,0:9)
1 D(0:8,0:11,0:9)
REAL RCN_MAD(
RCN_MDX( 0: 8, 0: 11, 0: 9)
RCN_M 0: 8, 0: 11, 0: 9)
RCN_D( 0: 8, 0: 11, 0: 9)
REAL RCD_MAD(
RCD_MX(0: 8, 0: 11, 0: 9)
RCD_ M 0: 8, 0: 11, 0: 9)
RCD_D(0: 8,0: 11, 0: 9)

., RCM AD(O: 8, 0: 11, 0: 9),
., RCM A(0:8,0:11,0:9) ,
. RCMD(0:8,0:11,0: 9)

0:8,0:11,0:9), RCN_MA(O:8,0:11,0:9),

., RCN_AD(O: 8, 0: 11, 0: 9),
., RCON_A(0:8,0:11,0:9) ,
. RCNO(O0:8,0:11,0: 9)

0:8,0:11,0:9), RCD MA(O:8,0:11,0:9),

,  RCD_AD(O:8,0:11,0:9),
., RCD A(0:8,0:11,0:9) ,
. RCDO(O0:8,0:11,0: 9)

REAL RWI N, RAMN, RDM N, RM NC, RAINC, RDI NC

INTEGER RM , RAl , RDI

DATA RWI N, RAMN, RDM N, RM NC, RAINC, RDI NC
/ 0.2, -10.0, -30.0, 0.2, 5.0, 50 /

DATA RM , RAl , RD
/ 8 9 , 11

COWON /R _EFFS/ RCL_MAD,
RCL_MA ,
RCL_AD ,
RCL_MD ,
RCILM ,
RCL_A ,
RCL D ,
RCIO
RW N
RM ,

REAL CCl_MAD(O: 8, 0:9,0:9),

CC1_MX(0: 8, 0: 9, 0: 9)
CC1_MO: 8, 0: 9, 0: 9)

9, 0:
CC1_D(0: 8, 0: 9, 0: 9)

REAL CCM MAD(O: 8, 0: 9, 0: 9),

CCI\/IIVD(08,0909)
,0909)
0:9

/

RCM_MAD, RCN_MAD, RCD_MAD,
RCM MA , RCN_MA , RCD MA ,
RCM AD , RCN_AD , RCD AD ,
RCMMD , RCN.MD , RCD WD,
RCMM , RONM , RCD M
RCMA , RONA , RCD A
RCMD , ROND , RCDD

RAMN , RDMN , RMNC ,
RAI , RO

CC1_MA(O: 8, 0: 9, 0: 9),
,  CCl_AD(0:8,0:9,0:9),
,  CCl_A(0:8,0:9,0:9) ,
,  ©Cl10(0:8,0:9,0:09)

CCM _MA(O: 8, 0: 9, 0: 9),
., CCM AD(O0:8,0:9,0:9),
,  CCM A(0:8,0:9,0:9) ,
,  CCMD(0:8,0:9,0:9)

. CCN_MA(O:8,0:9,0:9),
., CCN_AD(0:8,0:9,0:9),
,  CCN_A(0:8,0:9,0:9) ,
,  CCN0(0:8,0:9,0:9)
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REAL CCD _MAD(O: 8, 0: 9, 0: 9),
CCD_MX(0:8,0:9,0:9) ,

REAL YNCN_MAD( O: 48, 0: 6, 0: 7),
YNCN_MX( 0: 48, 0: 6, 0: 7) ,
YNCN_M0: 48, 0:6,0:7)
YNCN_D(0: 48, 0:6,0:7)

APPENDIX Il1.

CCD_MA(O: 8, 0: 9, 0: 9),
CCD_AD(0: 8, 0: 9, 0: 9),

CCD_M0:8,0:9,0:9) , CCD A(0:8,0:9,0:9) ,
CCD D(0:8,0:9,0:9) ,  CCDO(O:8,0:9,0:9)
REAL CWIN CAMN, COMN, CMNC, CAINC, CDINC

INTEGER CM , CAl , CDI

DATA CWIN CAMN, COMN, CMNC, CAINC, CDINC

. / 0.2, -10.0, -35.0, 0.2, 5.0, 50 /

DATA CM , CA , CD

/8 , 9 , 9 |

COWDON / C_EFFS/ CCl_MAD, CCM MAD, CCN_MAD, CCD_MAD,
CC1_MA, CCMMA , CCN MA , CCD MA ,
CC1_AD, CCMAD , CCN AD, CCD _AD ,
CC1_MD, CCMMD, CCN.MD, CCD WD,
CCLM , CCMM , CCNM , CCD M
CCLA , CCMA , CCNA , CCD A
cc1 D , CCMD , CCND , CCD D
cci0 , CcoM , CCNO , CCDO
CWIN , CAMN , CODMN , CMNC , CAINC, CDI NG
M , CAl , CDI

YNCN_MA( 0: 48, 0: 6, 0: 7),
YNCN_AD( 0: 48, 0: 6, 0: 7),
YNCN_A(0: 48, 0: 6, 0: 7) ,
YNCNO( 0: 48, 0: 6, 0: 7)

REAL  YNWM N, YNAM N, YNDM N, YNM NC, YNAINC, YNDI NC

INTEGER YNM , YNAI , YNDI

DATA  YNWM N, YNAM N, YNDM N, YNM NC, YNAINC, YNDI NC

. / 0.2, -10.0, -35.0, 0.2, 50, 50 /

DATA  YNM , YNAI , YND

/I 6 , 6 , 7 I

COWON / YN_EFFS/ YNCN_MAD, YNCN_MA , YNCN_AD , YNCN_MD ,
YNCN.M , YNNONA , YNCOND , YNCNO
YN\MN , YNASMN , YNDMN , YNMNC
YNAINC , YNDINC , YNM . YNAI ,
YNDI

REAL PNCM MADY O: 48, 0: 6, 0: 7),
PNCM_MDX( 0: 48, 0: 6, 0: 7)
PNCM M 0: 48, 0:6,0:7)
PNCM ( 0: 48, 0:6,0:7)

REAL PNCD_MAD( O: 48, 0: 6, 0: 7),
PNCD_MDX( 0: 48, 0: 6, 0: 7) ,

PNCM_MA( 0: 48, 0: 6, 0: 7) ,
PNCM_AD( 0: 48, 0: 6, 0: 7),
PNCM_A(0: 48, 0:6,0:7) ,
PNCMD( 0: 48, 0: 6, 0: 7)

PNCD_MA( 0: 48, 0: 6, 0: 7)
PNCD_AD( 0: 48, 0: 6, 0: 7),
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APPENDIX I11.
. PNCD_A(0:48,0:6,0:7) ,
., PNCDO(O0: 48, 0: 6, 0: 7)

PNCD_M 0: 48,
PNCD_DX( 0: 48,

0:6,0:7)
0:6,0:7)
REAL PNMWM N, PNAM N, PNDM N, PNM NC, PNAI NC, PNDI NC
I NTEGER PNM , PNAI , PNDI
DATA PNMWM N, PNAM N, PNDM N, PNM NC, PNAI NC, PNDI NC
. / 0.2, -10.0, -35.0, 0.2, 5.0, 5.0 /
DATA PNM , PNAI , PNDI

/6 , 6 , 7 |/

COWON / PN_EFFS/ PNCM MAD, PNCM MA , PNCM AD , PNCM MD ,
PNCMM , PNCMA , PNCMD , PNCMD
PNCD_MAD, PNCD_MA , PNCD_AD , PNCD MD ,
PNCDM , PNCDA , PNCDD , PNCDO
PNVMN , PNAMN , PNDMN , PNMNC
PNAINC , PNDINC , PNM . PNAI ,
. PNDI
C23456789012345678901234567890123456789012345678901234567890123456789012
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2. Subroutines Called By CARL

This section describes the GETUEFF and GETCSTR routines specific to the F-15 ACTIVE implementation.

2.1 Control Effectiveness L ookups

A. Usage

This function is used to gather control effectiveness for a specified control and axis using the Affine Data
Interpolation technique.

A.l GETUEFF
Function Prototype, REAL

INTEGER IAXIS, ICONTROL
REAL DU
COMMON A_CVARS, S_EFFS, A_EFFS, C_EFFS, R_EFFS, YN_EFFS, PN_EFFS

Assign values to all arguments
UEFF = GETUEFF(IAXIS, ICONTROL, DU)

GETUEFF returns the control effectiveness for the control surface represented by ICONTROL, on the axis
represented by |AXIS, based on Mach number, angle of attack, control deflection DU, and nozzle pressure ratio.

Argument Definitions

IAXIS [in] Represents the current axis to return control effectiveness data in.
ICONTROL [in] Represents the control for which to gather control effectiveness data.
DU [in] The current control surface deflection.

A_CVARS [global] Contains all of the aircraft global variables (“SimShell1.5” specific).

S _EFFS [global] Stabilator effectiveness data.

A_EFFS [global] Aileron effectiveness data.

C_EFFS [global] Canard effectiveness data.

R_EFFS [global] Rudder effectiveness data.

YN_EFFS [global] Yaw Nozzle effectiveness data.

PN_EFFS [global] Pitch Nozzle effectiveness data.

B. General Remarks

The |AXIS parameters are defined asfollows:

1 Rolling moment axis
2 Pitching moment axis
3 Y awing moment axis
4 Drag axis

The order of the allocatable controlsis generally aircraft dependent. They are arranged in the following order for this
implementation:

1 L eft Stabilator

2 Right Stabilator
3 Left Aileron

4 Right Aileron
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5 Rudder (symmetric)
6 Left Canard

7 Right Canard

8 Yaw Nozzle

9 Pitch Nozzle

To minimize the size of the control effectiveness tables however, data is stored for the left controls only. For right
control surfaces, amultiplication factor of -1 is applied to the rolling moment and yawing moment axes.

C. Functional Description

Depending of the control index, GETUEFF first finds the location in the appropriate Affine Data I nterpolation table
based on the current Mach number, angle of attack, and control position. It then finds the 8 mesh constants for that
table block and uses them in the 3-D affine data equation presented in Chapter 2 along with the appropriate
multiplication factor as described above.

For the Yaw Nozzle and Pitch Nozzle controls, the previously mentioned mesh constants are calculated for the two
“bracketing” nozzle pressure ratios to give two results. A linear interpolation is then performed between the two.

D. Errors and Restrictions

If the INITUEFF subroutine is not called at least once before this function is invoked, either incorrect data will be
returned or an error will occur. In addition, if the IAXIS or ICONTROL parameters are out of the specified bounds,
GETUEFF will return 0.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012
| o e n o e e e e e e e e e e e e e e e e e e e e e e e eeaeacan

!
! Modul e Nane: Get UEff

! Cal l ed By: CONALLO (or A C$GETUEFF)
! Calls to: none

!

Function: This FUNCTION returns a given control effectiveness on
a given direction in objective space (d,CmnCn,CD) as a
function of MACH ALPHA, and NPR and current Control
posi tion.

Nomencl ature: The noment axes € CmOCn are referred to as 1 2

and 3 respectively. The CD axis is defined as axis
4. Controls are defined as foll ows:

DHTL -> U(1)

DHTR -> U(2)

DAL -> U(3)

DAR -> U(4)

DRUDD -> Y 5)

DCANL -> U 6)
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DCANR -> U(7)

PNOZ -> U(8)

YNCOZ -> U(9)

|
! Modi fi cations:

! Dat e Pur pose By

I JUL 23 1996 Creat ed J.B.
|

! d obal Vari abl es

! Nane | Type | Descri ption

* ALPHA REAL Angl e of attack (degrees)
* MACH REAL Mach nunber (ND)

*NPR REAL Nozzl e Pressure Ratio

! Local Vari abl es

! Nane | Type | Descri ption

* VARNANVE VARTYPE VARDESCRI PTI ON

| e e o e e e e e e e e e e et e e e e e e e f e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m - m
| MPLI CI' T NONE

REAL A CVARR (250)
CHARACTER*4 A _CVARC (100)
| NTEGER A CVAR ( 20)

REAL Get UEFF, LI NTRP, DU
I NTEGER MAXI' S, CONTRCL, || NTERP
REAL MACH, ALPHA, NPR

I NTEGER | ALPHA, | MACH, INPR, I MN, U MILT
REAL C1, C2, C3, 4, G5, G, C7, C8, D1, D2, D3, D4, D5, De, Dv,
D8, X(2), DC_DU(2), DC_DUF

| NCLUDE ' UEFF_Conmons. i nc'
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COWDON / A CVARS / A CVARR A_CVARI, A_CVARC

EQUI VALENCE ( A_CVARR( 3) , ALPHA )
EQUI VALENCE (A _CVARR(61) , MACH )
EQUI VALENCE (A _CVARR(173) , NPR )

I INTERP = 0
IF (CONTROL .EQ 1 .OR CONTROL .EQ 2) THEN | stabilators

| MACH

| MACH

| ALPHA
| ALPHA
U

U

I NT(( MACH - SMM N)/ SM NC)
M N( MAX( 0, | MACH) , SM)

| NT( (ALPHA - SAM N)/ SAI NC)
M N( MAX( 0, | ALPHA) , SAI )

I NT((DU - SDM N)/ SDI NC)

M N(MAX( 0, | U), SDI )

IF (MAXIS .EQ 1) THEN I O axis
|F (CONTROL .EQ 1) THEN
MULT = 1

SC1_MAD( | MACH, | U, | ALPHA)
SC1_MA(| MACH, | U, | ALPHA)
SC1_MD(| MACH, | U, | ALPHA)
SC1_M | MACH, | U, | ALPHA)
SC1_AD(| MACH, | U, | ALPHA)
SC1_A(1 MACH, | U, | ALPHA)
SC1_D(1 MACH, | U, | ALPHA)
SC10( 1 MACH, | U, | ALPHA)

IF (MAXIS .EQ 2) THEN | Cmaxis
MULT = 1
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SCM _MAD( | MACH, | U, | ALPHA)
SCM_MA(| MACH, | U, | ALPHA)

SCM _MD( | MACH, | U, | ALPHA)

SCM M| MACH, | U, | ALPHA)
SCM_AD( | MACH, | U, | ALPHA)
SCM_A(1 MACH, | U, | ALPHA)

SCM D( | MACH, | U, | ALPHA)

SCMD( | MACH, | U, | ALPHA)

Q

IF (MAXIS .EQ 3) THEN I Cn axis
|F (CONTROL .EQ 1) THEN
MULT = 1

SCN_MAD( | MACH, | U, | ALPHA)
SCN_MA(| MACH, | U, | ALPHA)
SCN_MD( | MACH, | U, | ALPHA)
SCN_M | MACH, | U, | ALPHA)
SCN_AD( | MACH, | U, | ALPHA)
SCN_A(| MACH, | U, | ALPHA)
SCN_D( | MACH, | U, | ALPHA)
SCNO( | MACH, | U, | ALPHA)

IF (MAXIS .EQ 4) THEN | CD axis
MULT = 1

SCD_MAD( | MACH, | U, | ALPHA)

SCD_MA(| MACH, | U, | ALPHA)

SCD_MD(| MACH, | U, | ALPHA)

SCD_M | MACH, | U, | ALPHA)

SCD_AD(| MACH, | U, | ALPHA)

SCD_A(1 MACH, | U, | ALPHA)

SCD_D(1 MACH, | U, | ALPHA)

SCDO( | MACH, | U, | ALPHA)

m
RR8AZRIRAAR

RETURN
END | F
END | F
END | F
END | F

END | F

IF (CONTROL .EQ 3 .OR CONTROL .EQ 4) THEN I ailerons
IMACH = I NT((MACH - AWM N)/ AM NO)
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M N( MAX( 0, | MACH) , AM )

| NT( (ALPHA - AAM N)/ AAI NC)

M N( MAX( 0, | ALPHA) , AAI )

I NT((DU - ADM N)/ ADI NC)

M N(MAX( 0, | U), ADI)

| MACH
| ALPHA
| ALPHA
U
U

IF (MAXIS .EQ 1) THEN I O axis
| F (CONTROL .EQ 3) THEN
MULT = 1

AC1_NMAD( | MACH, | U, | ALPHA)
AC1_MA(| MACH, | U, | ALPHA)
AC1_NMD(| MACH, | U, | ALPHA)
ACL_M | MACH, | U, | ALPHA)
AC1_AD(| MACH, | U, | ALPHA)
AC1_A(| MACH, | U, | ALPHA)
AC1_D(| MACH, | U, | ALPHA)
ACL0( | MACH, 1 U, | ALPHA)

IF (MAXIS .EQ 2) THEN | Cmaxis
MULT = 1

ACM_MAD( | MACH, | U, | ALPHA)

ACM_MA( | MACH, | U, | ALPHA)

ACM_MD( | MACH, | U, | ALPHA)

ACM M| MACH, | U, | ALPHA)

ACM_AD( | MACH, | U, | ALPHA)

ACM_A(| MACH, | U, | ALPHA)

ACM D( | MACH, | U, | ALPHA)

ACMD( | MACH, 1 U, | ALPHA)

B8A8KXRBAA

ELSE

IF (MAXIS .EQ 3) THEN I Cn axis
| F (CONTROL .EQ 3) THEN
MULT = 1

ACN_MAD( | MACH, | U, | ALPHA)
ACN_MA( | MACH, | U, | ALPHA)
ACN_MD( | MACH, | U, | ALPHA)
ACN_M | MACH, | U, | ALPHA)
ACN_AD( | MACH, | U, | ALPHA)
ACN_A(| MACH, | U, | ALPHA)
ACN_D( | MACH, | U, | ALPHA)
ACNO( | MACH, 1 U, | ALPHA)

IF (MAXIS .EQ 4) THEN | CD axis
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MULT = 1
Cl = ACD MAD( | MACH, | U, | ALPHA)
C2 = ACD_MA(I MACH, | U, | ALPHA)
C3 = ACD_MD(| MACH, | U, | ALPHA)
C4 = ACD M| MACH, | U, | ALPHA)
C5 = ACD_AD(| MACH, | U, | ALPHA)
06 = ACD_A(| MACH, | U, | ALPHA)
C7 = ACD_D(| MACH, | U, | ALPHA)
C8 = ACDO(| MACH, | U, | ALPHA)
ELSE
RETURN
END | F
END | F
END | F
END | F
END | F

| F (CONTROL .EQ 5) THEN

IMACH = I NT((MACH - RWM N)/RM NO)
I MACH = M N(MAX(0, | MACH), RM)

| ALPHA = | NT((ALPHA - RAM N)/ RAI NC)
| ALPHA = M N(MAX( 0, | ALPHA) , RAI )

U = INT((DU - RDM N)/RDI NO)
U = M N(MAX(0, | U), RDI)

IF (MAXIS .EQ 1) THEN
MULT = 1

Cl = RC1_MAD(| MACH, | U, | ALPHA)
C2 = RC1_MA(| MACH, | U, | ALPHA)
C3 = RC1_MD(| MACH, | U, | ALPHA)
C4 = RC1_M | MACH, | U, | ALPHA)
C5 = RCL_AD(| MACH, | U, | ALPHA)
06 = RCL_A(I MACH, | U, | ALPHA)
C7 = RCL_D(| MACH, | U, | ALPHA)
C8 = RCL0(| MACH, | U, | ALPHA)
ELSE

IF (MAXIS .EQ 2) THEN
MULT = 1

RCM_MAD( | MACH, | U, | ALPHA)
RCM_MA( | MACH, | U, | ALPHA)
RCM_MX( | MACH, | U, | ALPHA)
RCM_M | MACH, | U, | ALPHA)
RCM_AD( | MACH, | U, | ALPHA)
RCM_A(1 MACH, | U, | ALPHA)
RCM_D( | MACH, | U, | ALPHA)
RCMD( | MACH, | U, | ALPHA)

B8A8KIBAA
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ELSE

IF (MAXIS .EQ 3) THEN I Cn axis
MULT = 1

RCN_MAD( | MACH, | U, | ALPHA)

RCN_MA( | MACH, | U, | ALPHA)

RCN_MX( | MACH, | U, | ALPHA)

RCN_M | MACH, | U, | ALPHA)

RCN_AD( | MACH, | U, | ALPHA)

RCN_A(1 MACH, | U, | ALPHA)

RCN_D( | MACH, | U, | ALPHA)

RCNO( | MACH, | U, | ALPHA)

B8A8KXIBAA

ELSE

IF (MAXIS .EQ 4) THEN | CD axis
MULT = 1

RCD_MAD( | MACH, | U, | ALPHA)

RCD_MA(| MACH, | U, | ALPHA)

RCD_MX( | MACH, | U, | ALPHA)

RCD_M | MACH, | U, | ALPHA)

RCD_AD( | MACH, | U, | ALPHA)

RCD_A(1 MACH, | U, | ALPHA)

RCD_D( 1 MACH, | U, | ALPHA)

RCDO( | MACH, | U, | ALPHA)

m
RRAZRIRAAR

RETURN

END | F
END | F
END | F
END | F

END | F
IF (CONTROL .EQ 6 .OR. CONTROL .EQ 7) THEN | canards

| MACH

| MACH

| ALPHA
| ALPHA
U

U

I NT(( MACH - CWMM N)/ CM NC)
M N( MAX( 0, | MACH) , CM )

| NT( (ALPHA - CAM N)/ CAl NC)
M N( MAX( 0, | ALPHA) , AAI )

I NT((DU - CDM N)/ CDI NC)

M N(MAX( 0, | U), CDI)

IF (MAXIS .EQ 1) THEN I O axis
| F (CONTROL .EQ 6) THEN
MULT = 1
ELSE
MLLT = -1
END | F
Cl = CCl_MAD(| MACH, | U, | ALPHA)
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CC1_MA(| MACH, | U, | ALPHA)
CC1_MD(| MACH, | U, | ALPHA)
CC1_M | MACH, | U, | ALPHA)
CC1_AD(1 MACH, | U, | ALPHA)
CCL1_A(1 MACH, | U, | ALPHA)
CC1_D(1 MACH, | U, | ALPHA)
CCL0( | MACH, | U, | ALPHA)

MAXI S . EQ 2) THEN

MIULT = 1

B8A8KXIBAA

ELSE

I F

CCM _MAD( | MACH, | U, | ALPHA)
CCM_MA(| MACH, | U, | ALPHA)
CCM_MD( | MACH, | U, | ALPHA)
CCM M| MACH, | U, | ALPHA)
CCM_AD( | MACH, | U, | ALPHA)
CCM_A(| MACH, | U, | ALPHA)
CCM D(| MACH, | U, | ALPHA)
CCMD( | MACH, | U, | ALPHA)

(MAXIS . EQ 3) THEN
| F (CONTROL .EQ 6) THEN
MULT = 1

CCN_MAD( | MACH, | U, | ALPHA)
CCN_MA(| MACH, | U, | ALPHA)
CCN_MD( | MACH, | U, | ALPHA)
CCN_M( | MACH, | U, | ALPHA)
CCN_AD( | MACH, | U, | ALPHA)
CCN_A(| MACH, | U, | ALPHA)
CCN_D( | MACH, | U, | ALPHA)
CCNO( | MACH, | U, | ALPHA)

IF (MAXIS .EQ 4) THEN
MULT = 1

Cl = CCD_MAD( | MACH, | U, | ALPHA)
C2 = CCD_MA(I MACH, | U, | ALPHA)
C3 = CCD_MD(| MACH, | U, | ALPHA)
C4 = CCD_M | MACH, | U, | ALPHA)
C5 = CCD_AD(| MACH, | U, | ALPHA)
06 = CCD_A(| MACH, | U, | ALPHA)
C7 = CCD_D(| MACH, | U, | ALPHA)
C8 = CCDO(| MACH, | U, | ALPHA)

ELSE

RETURN
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END | F
END | F
END | F
END | F

END | F
| F (CONTROL .EQ 8) THEN I Yaw Nozzl e

| MACH

| MACH

| ALPHA
| ALPHA
U

U

I NPR

I NPR

I NT((MACH - YNVMM N)/ YNM NC)
M N( MAX( 0, | MACH) , YNM )

| NT((ALPHA - YNAM N)/ YNAI NC)
M N( MAX( 0, | ALPHA) , YNAI )

I NT((DU - YNDM N)/ YNDI NC)

M N(MAX( 0, I U), YNDI )

I NT((NPR - 1.0)/4.0)

M N( MAX( 0, | NPR) , 6)

IF (MAXIS .EQ 1) THEN I O axis
Get UEFF = 0.
RETURN

ELSE

IF (MAXIS .EQ 2) THEN | Cmaxis
Get UEFF = 0.
RETURN

ELSE

IF (MAXIS .EQ 3) THEN I Cn axis
I I NTERP = 1 I Interpolate if we can
MILLT = 1
= INPR*(YNM + 1) + | MACH

YNCN_MAD( | MN, 1 U, | ALPHA)

YNCN_MA(I WN, | U, | ALPHA)

YNCN_MD( | WN, | U, | ALPHA)

YNCN_M | W\, | U, | ALPHA)

YNCN_AD( | MN, | U, | ALPHA)

YNCN_A(I W, I U, | ALPHA)

YNCN_D( | M\, | U, | ALPHA)

YNCNO( I MN, | U, | ALPHA)

IF (INPR .LT. 6 .AND. |INTERP .EQ 1) THEN
INPR = INPR + 1
I MN = INPR*(YNM + 1) + | MACH

YNCN_MAD( | MN, 1 U, | ALPHA)

YNCN_MA(T WN, 1 U, | ALPHA)

YNCN_MDX( | WN, | U, | ALPHA)

YNCN_M | M\, | U, | ALPHA)

YNCN_AD( | MN, | U, | ALPHA)

YNCN_A(I MW\, I U, | ALPHA)

YNCN_D( | M\, | U, | ALPHA)

YNCNO( I MN, | U, | ALPHA)

8Q889889§

BYEERERR
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ELSE
[ I NTERP = 0O
END | F
ELSE

IF (MAXIS .EQ 4) THEN | CD axis
Get UEFF = 0.
RETURN

ELSE

RETURN

END | F
END | F
END | F
END | F

END | F
| F (CONTROL .EQ 9) THEN I Pitch Nozzle

| MACH

| MACH

| ALPHA
| ALPHA
U

U

I NPR

I NPR

I NT(( MACH - PNMM N) / PNM NC)
M N( MAX( 0, | MACH) , PNM )

| NT( (ALPHA - PNAM N)/ PNAI NC)
M N( MAX( 0, | ALPHA) , PNAI )

I NT((DU - PNDM N)/ PNDI NC)

M N(MAX( 0, | U), PNDI )

I NT((NPR - 1.0)/4.0)

M N( MAX( 0, | NPR) , 6)

IF (MAXIS .EQ 1) THEN I O axis
Get UEFF = 0.
RETURN

ELSE

IF (MAXIS .EQ 2) THEN I Cmaxis
I I NTERP = 1 I Interpolate if we can
MILLT = 1
= INPR*(PNM + 1) + | MACH

PNCM_MAD( | MN, | U, | ALPHA)

PNCM_MA( I WN, | U, | ALPHA)

PNCM_MD( | WN, | U, | ALPHA)

PNCM_ M | MN, | U, | ALPHA)

PNCM_AD( | MN, | U, | ALPHA)

PNCM_A( I MN, | U, | ALPHA)

PNCM D( | MN, | U, | ALPHA)

PNCMD( | MN, | U, | ALPHA)

IF (INPR .LT. 6 .AND. |INTERP .EQ 1) THEN
INPR = INPR + 1
| MN = INPR*(PNM + 1) + | MACH
D1 = PNCM_MAD( | MN, | U, | ALPHA)

8Q889889§
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PNCM_MA( | MN, | U, | ALPHA)
PNCM_MDX( | MN, | U, | ALPHA)

PNCM M | MN, | U, | ALPHA)
PNCM_AD( | MN, | U, | ALPHA)
PNCM_A(1 MN, | U, | ALPHA)
PNCM _D(1 MN, | U, | ALPHA)
PNCMD( | MN, | U, | ALPHA)

IF (MAXIS .EQ 3) THEN I Cn axis
Get UEFF = 0.
RETURN

ELSE

IF (MAXIS .EQ 4) THEN I CD axis
I I NTERP = 1 I Interpolate if we can
MILLT = 1
= INPR*(PNM + 1) + | MACH

PNCD_MAD( | MN, | U, | ALPHA)

PNCD_MA( I WN, | U, | ALPHA)

PNCD_MD( | WN, | U, | ALPHA)

PNCD_M I MN, | U, | ALPHA)

PNCD_AD( |1 WN, | U, | ALPHA)

PNCD_A(I MN, | U, | ALPHA)

PNCD_D( I MN, | U, | ALPHA)

PNCDO( | MN, | U, | ALPHA)

IF (INPR .LT. 6 .AND. |INTERP .EQ 1) THEN
INPR = INPR + 1
I MN = INPR*(PNM + 1) + | MACH

5

DL = PNCD_MAD(| M, | U, | ALPHA)
D2 = PNCD_MA(I M\, I U, | ALPHA)
D3 = PNCD_MX(| M\, | U, | ALPHA)
D4 = PNCD_M | M\, 1 U, | ALPHA)
D5 = PNCD_AD(| M\, | U, | ALPHA)
D6 = PNCD_A(I M\, I U, | ALPHA)
D7 = PNCD _D(| M\, | U, | ALPHA)
D8 = PNCDO(| M\, | U, | ALPHA)
ELSE
| | NTERP =
END | F
ELSE
RETURN
END | F
END | F
END | F
END | F
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END | F

DC DU(1) = MACH*ALPHA*(CLl*DU + C2) + MACH*(C3*DU + C4) +
ALPHA* (C5*DU + CB) + C7*DU + C8

IF (11 NTERP .EQ 1) THEN
DC DU(2) = MACH*ALPHA*(DL*DU + D2) + MACH*(D3*DU + D4) +
ALPHA* (D5*DU + DB) + D7*DU + D8

X(1) = (INPR - 1)*4.0 + 1
X(2) = INPR*4.0 + 1
DC_DUF = LI NTRP( X, DC_DU, NPR)
ELSE
DC_DUF = DC_DU( 1)
END | F

Get UEFF = MJULT* DC_DUF

C | NTERPOLATI ON FUNCTI ON
FUNCTI ON LI NTRP( X, F, XD)
REAL LI NTRP, X(2), F(2), XD
LINTRP = (XD - X(2))/(X(1) - X(2))*(F(1) - F(2)) + F(2)
RETURN
END
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2.2 Control Constraints

A. Usage

This function is used to calculate vectors of maximum and minimum position constraints and rate limit constraints
for positive and negative deflection directions.

A.l GETCSTR
Function Prototype, SUBROUTINE
INTEGER M, IU
REAL UMAX, UMIN, URMAX, URMIN

Assign datato M and IU.
CALL GETCSTR(M, IU, UMAX, UMIN, URMAX, URMIN)

GETCSTR returns the vectors of maximum and minimum position constraints in UMAX and UMIN, and returns
rate limitsin the positive and negative deflection directionsin URMAX and URMIN.

Argument Definitions

M [in] The number of controls in the allocatable controls vector.

U [in] An m-Dimensional vector of control indices that relates the allocatable
controls vector to the vector of physical aircraft controls.

UMAX [out]  Vector of maximum deflection position limits.

UMIN [out] Vector of minimum deflection position limits.

URMAX [out] Vector of rate limits in the positive deflection direction.

URMIN [out] Vector of rate limits in the negative deflection direction.

B. General Remarks

Because of the reconfigurable nature of CARL, the IU vector is needed to map the alocatable controls vector to the
aircraft controls vector. As an example, if the left and right ailerons are controls 3 and 4 in both the aircraft controls
vector and allocatable controls vector then 1U(3) and 1U(4) will be 3 and 4 respectively. If at some time, the left
aileron is dropped from the allocation procedure because of afailure, then the 3rd allocatable control will be the right
aileron, and 1U(3) will then be 4.

C. Functional Description

This subroutine begins by setting the absolute minimum and maximum constraints for the 7 aerodynamic controls.
For the yaw and pitch thrust vectoring nozzles (aircraft controls 8 and 9), the maximum and minimum deflection
limits are found as a function of engine thrust according to Section 8.3. Both yaw and pitch nozzles are given equal
priority. Following the calculations of the position limits, the rate limits for the positive and negative deflection
directions are assigned for al 9 controls.

D. Errors and Restrictions

With the exception of the thrust vectoring nozzles, this subroutine assumes that the position and rate limits are
constant and equal to the nominal no-load values. It is also assumed that both engines are producing the same
amount of thrust. Therefore, if one engine is shut down, then there is a chance that the position constraints
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calculated will violate the 4000 Ib. radial force limit. The maximum number of controls allowed is 20.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012

Modul e Nane: Get CSTR
Cal l ed By: CONALLO (or A C$CGETCSTR)
Calls to: none

SUBROUTI NE Get CSTR(M U, UNVAX, UM N, URMAX, URM N)

Functi on: Sets up the control constraints for the Control
Al l ocation stuff.

Modi fi cati ons:
Dat e Pur pose By

MAR 23 1997 del eted the URATE argunent and replaced it with
URM N and URVMAX to account for the fact that the
controls may be able to nove faster in one direc-
tion than the other. JB

MAR 08 1997 Revi sed the argument |ist and renoved the section
where the actual constraints that conallo sees
are cal cul ated. This subroutine now just returns
position limts and rate limts and lets conallo

figure out what the actual constraints are. J.B.
SEPT 11 1996 Created so that the contraints in the Control

Al |l ocation subroutines could becone aircraft

(and/or aircraft state) dependant J.B.

d obal Vari abl es

! Nane | Type | Descri ption

* URATEO( 1) REAL Nom nal def. rate (deg/s)
*UM NO('1) REAL Def. Limt (deg)

* UMAXO( 1) REAL Def. limt (deg)

* ENGTHRUST REAL Total Engi ne thrust

Local Vari abl es

236



APPENDIX Il1.

! Nane | Type | Descri ption

* VARNANVE VARTYPE VARDESCRI PTI ON

| e e o e e e e e e e e e e et e e e e e e e f e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e m - m
| MPLI CI' T NONE

| NTEGER Max_Control s
PARAMETER (Max_Control s = 20)

REAL A _CVARR (250)
CHARACTER*4 A _CVARC (100)
| NTEGER A CVAR ( 20)

REAL UM NO( Max_Cont rol s), UMAXO( Max_Contr ol s),
URATEO( Max_Control s), ENGTHRUST, RTOD
e Local S--------mmmi
LOQd CAL Use _d obal s
| NTEGER | U(Max_Control s), M I
REAL UMAX( Max_Control s), UM N(Max_Contr ol s), URMAX( Max_Control s),
. URM N( Max_Cont r ol s)
REAL THRUST, RA_T_LIM T, K, RMAX
PARAMETER (RA_T_LIMT = 4000) I radial force limt

EQUI VALENCE (A _CVARR(84) , URATEO(1) )
EQUI VALENCE (A _CVARR(124) , UM NO(1) )
EQUI VALENCE (A _CVARR(104) , UMAXO(1) )
EQUI VALENCE (A _CVARR(174) , ENGTHRUST )

! Run Section
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THRUST = 0. 5* ENGTHRUST
RTOD = 57. 2958

DO 1010 I =1, M

Position Limts for aero controls

IF (1Y) .NE. 8 .AND. TU(I) .NE. 9) THEN ! aero controls.
UMN(I) = UMNO(CIU(L))

UMAX( 1) = UMAXO(I U(1))

ELSE

Make sure that we don't violate the 4000 Ib radial thrust |imt. First
find the maxi mum “radi al" deflection allowed. Then find PNOZmax and
YNOZmax such that the constraint box lies entirely within the boundi ng
circle.

IF (THRUST .GE. RA T LIMT) THEN

RVAX = ASI N(RA_T_LI M T/ THRUST) * RTOD
RVAX = AM NL( RVAX, 20. 0)

ELSE
RVAX = 20.0

END | F

scal e RMAX
RVMAX = RMAX*SQRT(2.0)/2.0

Thrust vectoring limts

UMN(I) = - RVAX
UMAX(1) = RVAX
END | F
Rate Linmits
URMAX(1) = URATEO(1U(1))

URM N(1) = URATEO(1U(1))

1010 CONTI NUE
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Shell I nterface Routines

This Appendix contains documentation on the Shell Interface routines required for the SweepData utility described in
Appendix I.

1. Text Justification Utilities

A. Usage

These functions can be used to perform various text justification stylesto character strings.

A.1 GETLEFTJUSTIFY
Function Prototype, CHARACTER*(*)
CHARACTER*(*) TEXTFIELD

Assign aCHARACTER string to TEXTFIELD
TEXTLEFT = GETLEFTJUSTIFY(TEXTFIELD)
The CHARACTER string returned has all of the leading spaces deleted and the string shifted accordingly

Argument Definitions
TEXTFIELD  [in] Any CHARACTER variable containing ASCII data

A.2 GETCENTERJUSTIFY
Function Prototype, CHARACTER*(*)
CHARACTER*(*) TEXTFIELD
INTEGER*4 SCRN_W, TEXT_W, ISPACE
Assign valuesto al variables
TEXTCENTER = GETCENTERJUSTIFY(TEXTFIELD, SCRN_W, TEXT_W, ISPACE)
The CHARACTER string returned has various forms of center justification based on the value of ISPACE

Argument Definitions
TEXTFIELD  [in] Any CHARACTER variable containing ASCII data

SCRN_W [in] The width (in # of characters) of the screen that the text is to be centered
in.

TEXT_W [in] The length (in bytes) of the character variable TEXTFIELD.

ISPACE [in] a value of 0 implies to treat trailing spaces as being significant so that the

entire TEXTFIELD is centered. A value of 1 implies to drop the trailing
spaces and center just the bytes containing ASCII characters.
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B. General Remarks

Many compilers now have extensions for removing leading spaces from character data. In fact, the method used in al
of the low level routines for the Shell use the Language Systems extension ADJUSTL. The GETLEFTJUSTIFY
function is still included however to allow other compilers that may not have this extension to use this feature. If
this is the case, then the programmer may alter the name of this function to ADJUSTL instead of having to change
every call statement throughout the code.

C. Functional Description

The GETLEFTJUSTIFY function scans each byte in the data string to determine if it is a space or not. If it is, then
the function continues to the next byte and checks again. If the current byte does not contain a space, then the
function returns, as aresult, a data string whose first character is held by that byte.

The GETCENTERJUSTIFY function operates in a similar fashion when trailing spaces are treated as being
significant (ISPACE = 0). It calculates the starting byte of the result by dividing the difference between the screen
width and text width by 2. When the trailing spaces are not significant, the function first finds the byte at which 2 or
more spaces occur. This index is then subtracted from the screen width and divided by 2 to get the starting byte for
the result. Because the beginning bytes of the result are not specified in this function, they are padded with spaces so
that when the result is printed to the screen, it appears to be centered.

D. Errors and Restrictions

When using the GETCENTERJUSTIFY function, it is important that the text data have no multiple spaces in
sequence. Otherwise, the data will be truncated. The ISPACE integer must also be 0 or 1. If it is not, then the
GETCENTERJUSTIFY function will return a character string full of spaces. The TEXT_W field should always be
less than or equal to the SCRN_W field or an error will occur. The programmer should also make sure that both the
variable expecting the result and the function itself are declared with at least the same length as the screen width field.
Otherwise, the centered data may be truncated, or it may not appear at all, resulting in an error.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012
I o e n o e e e e e e e e e e e e e e e e e e e e edeeaean

!
! Modul e Name: Get LEFTJustify

! Called By: various SHell and FSGA routines
! Calls to: none

!

Functi on: Gven a text field, this function returns a text
string whose | eadi ng spaces have been truncat ed.

* NOTE* This function is only supported for backwards
conpatibility. Shell Versions 1.4 and above shoul d use
t he extensi on ADJUSTL.
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Modi fi cati ons:

|

! Dat e Pur pose By

I FEB 09 1996 Creat ed J. B.

I MAR 12 1996 Modi fied for Shell V1.5. *NOTE* not required

! for V1.4 and above. J. B.

|

| o o o o o o o o o e e e e e e e e e e e e e e e
| MPLI CI' T NONE

CHARACTER* (*) Get LEFTJustify
CHARACTER*(*) Text Field

| NTEGER Ci ndx

LOGE CAL Ci ndxfound

Ci ndxf ound = . FALSE.
Cindx =1

DO VWHI LE (.not. Ci ndxfound)
IF (Text _Field(Ci ndx:Cindx) .NE. ' ') G ndxfound = . TRUE
Cndx = Cndx + 1

END DO

Get LEFTJustify = Text Fi el d(Ci ndx:)

C23456789012345678901234567890123456789012345678901234567890123456789012
I o e n o e e e e e e e e e e e e e e e e e e e e edeeaean

!
! Modul e Name: Get CENTERJustify

! Called By: various SHell and FSGA routines
! Calls to: none

!

! Functi on: Gven a text field, a screen width, and the width
! of the text field, this function returns a text string
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padded with the appropriate nunmber of |eading spaces
such that the string is centered in the mddle of the
screen.

| Space is an integer which deternmines how trailing spaces are
handl ed:

treat spaces as if they are actual characters

renove trailing spaces and center the |left over string

(This is the "True" Center justification of a string)

Modi fi cations:
Dat e Pur pose By
APR 09 1996 Creat ed J.B.

CHARACTER* (*) Get CENTERJustify
| NTEGER Scr_W Text _W I Space
CHARACTER* (*) Text_Field

| NTEGER Chari ndex

Get CENTERJustify ="' '
SELECT CASE (| Space)

CASE (0) I don't truncate spaces

Charindex = INT((Scr_W- Text W/2.0)
Get CENTERJust i fy(Charindex:) = Text_Field

CASE (1) I truncate spaces first
Charindex = | NDEX(Text _Field," ') - 1
Charindex = INT((Scr_W- Charindex)/2.0)
Get CENTERJust i fy(Charindex:) = Text_Field

END SELECT

End of Get CENTERJustify
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2. Text Conversions

A. Usage

This category of functions allows conversions of different data types into character strings.

A.l LTOSTRING
Function Prototype, CHARACTER*1
LOGICAL LVAR
Assign avalueto LVAR
LSTRING = LTOSTRING(LVAR)
The CHARACTER string returned is“T” if LVARisTRUE and “F” if LVAR isFALSE

Argument Definitions
LVAR [in] Any LOGICAL variable

A.2 [ATOSTRING
Function Prototype, CHARACTER*8
INTEGER*4 IVAR
Assign avalueto IVAR
ISTRING = I4TOSTRING(IVAR)
The CHARACTER string returned contains the INTEGER value represented as ASCI| text data (left justified).
Argument Definitions

IVAR [in] Any INTEGER variable

A.3 R4TOSTRING

Function Prototype, CHARACTER*16
REAL*4 RVAR
CHARACTER*3 FORMAT

Assign valuesto al variables

RSTRING = RATOSTRING(RVAR, FORMAT)
The character string returned contains the Real value represented as ASCII text in either afixed point notation or an
exponential notation (left justified)

Argument Definitions

RVAR [in] Any REAL variable

FORMAT [in] Represents the format to be converted to.
B. General Remarks

All of these functions use an internal WRITE statement to save the data to a buffer. They then read this buffer and
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left justify the data using ADJUSTL. They are often used to place numeric data into a string of longer text before it
is sent to other string processing procedures. When using the RATOSTRING function it is acceptable to replace
character literals for the FORMAT argument in the cal statement. Using 'fix' produces a result in fixed point
notation, while 'sci* will result in the data being represented in scientific notation.

C. Functional Description

The LTOSTRING and 14TOSTRING functions simply write the input data to an internal CHARACTER buffer.
Then they left justify the data using the ADJUSTL (or optionally GETLEFTJUSTIFY) function and return the
result. The RATOSTRING function first checks the FORMAT argument. If FORMAT is fix' or 'FIX" it returns the
datain afixed point notation. Otherwise, the data is returned in scientific notation.

D. Errors and Restrictions

When using these functions make sure that the data passed to them represents the data that they expect. Otherwise,
the results returned (if an error does not occur) will be meaningless. The RATOSTRING function currently supports
only fixed and scientific notations formatted as F16.5 and E16.5 respectively. Future versions may support more
options, but as of thiswriting, these formats have been sufficient.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012
R

!
! Modul e Name: LtoString

! Called By: Various string processing requests
! Calls to: none

I

Functi on: Converts a logical variable to a character*1 val ue

CHARACTER*1 LtoString
LOG CAL DALOG CAL
CHARACTER* 1 Buf f er
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WRI TE (Buffer,'(L1)') DALOA CAL
LtoString = Buffer

C23456789012345678901234567890123456789012345678901234567890123456789012
I o e n o e e e e e e e e e e e e e e e e e e e e edeeaean

!
! Modul e Name: 14toString

! Call ed By: Various string processing requests
! Calls to: none

I

Functi on: Converts a | NTEGER*4 variable to a character*8
val ue

CHARACTER*8 14t oString
| NTEGER* 4 DAVALUE
CHARACTER* 8 Buf f er

WRI TE (Buffer,' (18)') DAVALUE
| 4t oString = ADJUSTL(Buffer)

! End of I4toString
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Modul e Name: R4toString
Call ed By: Various string processing requests
Calls to: none

Functi on: Converts a REAL*4 variable to a character*16 val ue
Format specifies how the value is witten and can be:
"fix (Fi xed decinmal point; 5 decinmal places)
'sci (Scientific notation)

CHARACTER*16 R4toString
REAL* 4 DAVALUE
CHARACTER* 3 For mat
CHARACTER* 16 Buffer

IF (Format .EQ 'FIX .OR Format .EQ 'fix') THEN
WRI TE (Buffer, '(F16.5)') DAVALUE

ELSE
WRI TE (Buffer, '(E16.5)') DAVALUE

END | F

R4t oSt ri ng = ADJUSTL(Buf fer)
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3. String Processing Functions

A. Usage

String processing functions allow ways of getting general messages to and from the Shell.

A.1 PROCESSIOSTRING

Function Prototype, INTEGER*4
CHARACTER*80 MESSAGE(NL)
INTEGER*4 NL, MSTAT, MTYPE

Assign values to al arguments
IOSTAT = PROCESSIOSTRING(MESSAGE, NL, MSTAT, MTYPE)

The character stringsin MESSAGE are displayed and the function waits for user interaction depending on the values
of MSTAT. I/O errors, if any, arereturned in IOSTAT.

Argument Definitions
MESSAGE [in] A CHARACTER array containing the text to display.

NL [in] The number of text lines in MESSAGE.
MSTAT [in] an integer representing the “status code” of the message (see Remarks).
MTYPE [in] an integer representing the “type code” of the message (see Remarks).

B. General Remarks

The PROCESSIOSTRING function is the primary means of getting miscellaneous information to and from the
user. It isresponsible for determining when the Shell is active and when the graphical frontend is active and displays
the text accordingly. When the Shell is active, it writes the text to the screen, and when the Frontend is active, it
displays the text in an appropriate dialog box. The MSTAT and MTY PE parameters determine the nature of the
messages. These are defined below:

-MSTAT =0  Send the messages to the screen and return

-MSTAT =1  Wait for amessage from the user. The input string is returned in MESSAGE(1)

-MSTAT =2  Send one message to the screen, wait for a reply. The reply is returned in
MESSAGE(2)

-MSTAT =3  Send one message to the screen and suppress the carriage return. (The next
message sent to the screen will appear on the sameline.)

-MSTAT =4  Send Messages to the screen, wait for a y/n reply. (The reply is returned as the
last message in the array.)

-MTYPE=0  Regular message (no priority) Used in Shell mode only.

-MTYPE=1 Message has notification priority. Implies that no serious errors will occur by
continuing and ignoring the message.

-MTYPE=2  Message has Warning/Caution priority. Implies that an error may or may not
occur if the message isignored.

-MTYPE=3 Message has STOP priority. Display this message before the Fortran statement
STOP has occurred.

-MTYPE=4  Error Message. Use this priority to describe an error.
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By using various combinations of MSTAT and MTYPE, or using multiple cals to PROCESSIOSTRING,
practically any effect can be achieved. It isavery powerful function and should be used whenever possible.

C. Functional Description

This function first adds the appropriate header to the beginning of the first line of the message depending on the
value of MTY PE. These are '(no header)', 'NOTE:", 'WARNING:', 'STOP:', and 'ERROR:' for MTYPE of 0, 1, 2, 3,
and 4 respectively. It then utilizes the SELECT CASE/END SELECT structure to determine what action to take in
response to the status code, and whether or not the Shell is active or the Frontend is active.

D. Errors and Restrictions

When calling this function, the MSTAT and MTY PE arguments must be specified correctly. If they are not, then the
function simply returns without sending any output to the screen. Be warned that when the Frontend is active, this
function calls two additional functions, FE_ SHELLALERT and FE SHELLREPLY which use the Macintosh
toolbox. If this function is to be used on another platform without the frontend, then this section could be deleted.
(Although it is recommended that these routines just be replaced by dummy routines). Be warned that when calling
PROCESSIOSTRING with an MSTAT of 2, The MESSAGE argument must be an array with atleast 2 entries
since the user response is returned as MESSAGE(2).

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012
R

!
! Modul e Name: Processl OString

! Cal l ed By: Shell and FSGE nodul es
! Calls to: none

!

Functi on: Reads a text string and either sends it to the
Shell wi ndow or to a dialog box, or reads in a
generic input string.

Callerl D
MBSt at us:

Shell node, 1 = FSA node
CQut put nessage

Recei ve a nessage

Qut put nessage, expect reply
Qut put Message, suppress <CR>
Qut put Message, expect y/n reply.
NIL (used in Shell node only)
Not e al ert box

War ni ng/ Caution al ert box
Stop al ert box

Error nmessage

Li nes: nunber of lines in nessage

0
0
1
2
3
4
Mrlype: 0
1
2
3
4
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Modi fi cati ons:

Dat e Pur pose By
MAR 28 1996 Creat ed John Bol ling
APR 09 1996 Added capability for Mstatus of 2 and Mype
of 4. J. B.
MAY 16 1996 Added Di d_Menu LOd CAL to SHELLPARMS Conmon
for better comunication between the Shell interface
and the Get MenuText nodul e. J. B.
JAN 20 1997 Changed the Message() data type to CHARACTER*80
to allow an easier port to other platforns. J.B.
| MPLI CI' T NONE

| NTEGER Cal | er | D, Mbde
LOG CAL Do_Menu, Di d_Menu
CHARACTER*80 CommandBuf f er

LOd CAL EndString

| NTEGER |, MBt at us, Processl OCstri ng, MIype, Li nes, Cl NDX, | OCODE
CHARACTER*80 Message(Lines), QutWnString

CHARACTER*9 MHeader ( 0: 4)

CHARACTER* 8 Pr onpt

PARAMETER (Prompt ="' ')

| NTEGER FE_SHELLAI ert
CHARACTER*1 FE_SHELLReply, Reply

COVWWON / SHELLPARMS / Callerl D, Mde, Do _Menu, Did_Menu,
ConmandBuf f er

MHeader (0) = '
MHeader (1) = ' NOTE: '
MHeader (2) = 'WARNING
MHeader (3) = ' STOP: '
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MHeader (4) = 'ERROR '

SELECT CASE (Cal | er| D)
CASE (1) | FSG node
! Under Construction...
SELECT CASE ( MBt at us)

CASE (0)
|F (MIype .NE. 0) THEN
Call FE_SHELLAI ert (Message, Li nes, MIype)
| OCODE = 0
ELSE
DO 1060 | = 1, Lines
WRI TE( 6, 110, | OSTAT=I OCODE, ERR=999) Message( )
1060 CONTI NUE
END | F

CASE (1)
DO 1065 | = 1, Lines
READ( 5, 120, | OSTAT=I OCODE, ERR=999) Message(|)
1065 CONTI NUE

CASE (2)
CINDX = 80
EndString = . FALSE.
DO WHI LE (EndString .EQ .FALSE. .AND. CINDX .GTI. 0)
IF (Message(1) (CINDX: CINDX) .EQ ' ') THEN
CINDX = CINDX - 1
ELSE
EndString = . TRUE
END | F
END DO
WRI TE( 6, 130, | OSTAT=I OCODE, ERR=999) Message( 1) (: Cl NDX)
READ( 5, 120, | OSTAT=I1 OCCODE, ERR=999) Message( 2)

CASE (3)
CI NDX = 80
EndString = . FALSE.
DO WHI LE (EndString .EQ .FALSE. .AND. CINDX .GTI. 0)
IF (Message(1) (CINDX: CINDX) .EQ ' ') THEN
CINDX = CINDX - 1
ELSE
EndString = . TRUE
END | F
END DO
WRI TE( 6, 130, | OSTAT=I OCODE, ERR=999) Message( 1) (: Cl NDX)

CASE (4)
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Reply = FE_SHELLRepl y( Message, Li nes, MIype)
Message(Lines) = Reply
| OCODE = 0
END SELECT
CASE DEFAULT I Shell node

SELECT CASE ( MBt at us)

CASE (0)
DO 1010 I = 1, Lines
|F (MIype .NE. 0) THEN
IF (I .EQ 1) THEN I First line, display Miype
Qut WnString = Mileader (Mrype)// Message( )
ELSE
Qut WnString = Mileader (0)// Message(|)
ENDI F
ELSE
QutWnString = Message(l)
END | F

WRI TE( 6, 110, | OSTAT=I OCODE, ERR=999) Qut WnString
1010 CONTI NUE

CASE (1)
DO 1020 | = 1, Lines
READ( 5, 120, | OSTAT=I OCODE, ERR=999) Message(|)
1020 CONTI NUE

CASE (2)
CINDX = 80
EndString = . FALSE.
DO WHI LE (EndString .EQ .FALSE. .AND. CINDX .GTI. 0)
IF (Message(1) (CINDX: CINDX) .EQ ' ') THEN
CINDX = CINDX - 1
ELSE
EndString = . TRUE
END | F
END DO

WRI TE( 6, 130, | OSTAT=I OCODE, ERR=999) Message( 1) (: Cl NDX)
READ( 5, 120, | OSTAT=I OCODE, ERR=999) Message( 2)

CASE (3)
CI NDX = 80
EndString = . FALSE.
DO WHI LE (EndString .EQ .FALSE. .AND. CINDX .GTI. 0)
IF (Message(1) (CINDX: CINDX) .EQ ' ') THEN
CINDX = CINDX - 1
ELSE
EndString = . TRUE
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END | F
END DO

WRI TE( 6, 130, | OSTAT=I OCODE, ERR=999) Message( 1) (: Cl NDX)

CASE (4)
CINDX = 80
EndString = . FALSE.
DO WHI LE (EndString .EQ .FALSE. .AND. CINDX .GTI. 0)
| F (Message(Lines)(CINDX:CINDX) .EQ ' ') THEN
CINDX = CINDX - 1
ELSE
EndString = . TRUE
END | F
END DO
Message(Li nes) = Message(Lines)(:CINDX)//' (y/n)'
CINDX = CINDX + 6
DO 1030 I = 1, Lines-1
|F (MIype .NE. 0) THEN
IF (I .EQ 1) THEN I First line, display Miype
Qut WnString = Mileader (Mrype)// Message( )
ELSE
Qut WnString = Mileader (0)// Message(|)
END | F
ELSE
QutWnString = Message(l)
END | F
WRI TE( 6, 110, | OSTAT=I OCODE, ERR=999) Qut W nString
1030 CONTI NUE
WRI TE( 6, 130, | OSTAT=I OCODE, ERR=999) Message( Li nes) (: Cl NDX)
READ( 5, 120, | OSTAT=I OCCODE, ERR=999) Message( Li nes)

END SELECT
END SELECT

999 Processl GString = | OCODE
IF (1OCODE . NE. 0) THEN
WRI TE( 6, 135) | OCODE
END | F

110  FORMAT(1x, A)

120  FORMAT( A)

130  FORMAT(1x, A, 1x, $)

135  FORMAT( 1x, ' - PROCESSI OSTRI NG | O ERROR ', 1x, | 6)
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END
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4. Command Processing

A. Usage

These functions provide the “Command line” functionality to the Shell.

A.l PROCESSCMDSTRING

Function Prototype, CHARACTER*(*)
CHARACTER*8 PROMPT
LOGICAL CBEMPTY

Assign a string to PROMPT
CMD = PROCESSCMDSTRING(PROMPT, CBEMPTY)

PROCESSCMDSTRING extracts the next command from the command buffer or displays the command prompt and
waits for acommand to be typed.

Argument Definitions
PROMPT [in] A CHARACTER variable representing the “Command line” prompt to
display if there are no commands waiting in the buffer.
CBEMPTY [out] If the command buffer is empty, this logical is TRUE

A.2 GETMENUCOMMAND
Function Prototype, SUBROUTINE

CMD_STRUC COMMANDS
CHARACTER*8 PROMPT
INTEGER*4 STATEMENT

Assign valuesto COMMANDS and PROMPT
CALL GETMENUCOMMAND(COMMANDS, PROMPT, STATEMENT)

GETMENUCOMMAND uses PROCESSCMDSTRING to either prompt for a command or get a command from
the buffer.

Argument Definitions
COMMANDS [in] The valid command record for the current Shell mode (see appendix Il for
a description of the command record.)
PROMPT [in] A CHARACTER variable representing a custom prompt if one is to be
used.
STATEMENT [out] ThisINTEGER variable represents the command index within the command
record for the command that was typed or extracted from the buffer.

B. General Remarks

Under most circumstances, the PROCESSCMDSTRING function will not have to be called directly, but it is
available for rare situations when a Shell module may have to directly access the command buffer. (Although, this
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should be avoided if possible). This function is used by other Low Level routines like GETMENUCOMMAND,
GETREALINPUT, etc.

GETMENUCOMMAND is used in al of the High Level Shell modules that have a valid command record defined
(The command record is discussed in detail in appendix I1). This subroutine also handles cases where acommand isa
global command or the command is invalid. If it is desired to just use the standard Shell prompt ("Command>"),
then the PROMPT argument should be left empty (ie" ).

C. Functional Description

The PROCESSCMDSTRING function first determines if the command buffer is empty or not and sets the
CBEMPTY variable accordingly. If the PROMPT argument is empty (ie. it contains al spaces), then the function
attempts to extract the next command from the buffer. If it is successful, then it returns that command. If the
command buffer is empty, then it returns "CBEMPTY". When the PROMPT argument contains ASCII characters,
the function also attempts to extract a command, but if the buffer is empty in this case, it displays the prompt and
waits for user input. If no input is given (the user pressed return), then PROCESSCMDSTRING returns "<CR>".

The GETMENUCOMMAND procedure first determinesif a custom prompt isto be used or if the standard prompt is
desired. It then invokes the PROCESSCMDSTRING function using the requested prompt to get a command. Once a
command is returned, it checks it with all of the valid commands in its COMMANDS record. If a match is found,
then it returns the command index in the STATEMENT argument. If a match is not found, then it attempts to find a
match with the global command record, and if oneisfound, calls SHELL_GLOBALS to execute the command. If no
match is found with the global commands, then it indicates an invalid command error and prompts for another
command. This procedure also determines if a menu needs to be written to the screen based on whether or not the
buffer is empty and a command that has a submenu was executed.

D. Errors and Restrictions

It is very tempting to send a literad expression in place of the PROMPT argument when calling
GETMENUCOMMAND and PROCESSCMDSTRING. At this time, there is a bug which causes unusual
charactersto be printed when thisis done. Therefore, this should be avoided. Note also that GETMENUCOMMAND
only stops executing when avalid command is found, a global command is found, or the user hits the return key at a
command prompt. In the case where avalid command is typed, GETMENUCOMMAND returns the command index
in the STATEMENT argument. When a carriage return is detected, it takes the number of valid commands in the
COMMANDS record, adds 1, and returnsthisin the STATEMENT argument. If aglobal command is executed, then
it takes the total number of valid commands in the COMMANDS record, adds 2, and returns this value in the
STATEMENT argument. The calling Shell modules should contain logic to deal with these two special cases as
well.

E. Source Listing
C23456789012345678901234567890123456789012345678901234567890123456789012

!
! Modul e Name: ProcessCndString

! Cal l ed by: Get MenuConmand, ot her user input routines
! Calls to: none

!

FUNCTI ON ProcessCrdSt ri ng( Pronpt , CBEnpt y)
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Functi on: In charge of witting the command pronpt to the
screen (whether we are in Shell node or FSG node)
and returning the user's input, or just filters the
current command fromthe Comand Buffer, (If it is

not enpty)

CallerID. 0 = Shell npde, 1 = FSA@ npde

Modi fi cati ons:

Dat e Pur pose By
APR 02 1996 Creat ed John Bol ling
APR 14 1996 Added | ogic to support the NULL pronpt argunent,
in which case the command buffer is checked only. J.B.
MAY 16 1996 Added Di d_Menu LOd CAL to SHELLPARMS Conmon
for better comunication between the Shell interface
and the Get MenuText nodul e. J. B.
| MPLI CI' T NONE

CHARACTER* (*) ProcessCndString

CHARACTER* 8 Pr onpt

LOG CAL CBEnpty

| NTEGER Ci ndex

———————————————————————— Shell Parameters-----------------cooooo-
| NTEGER Cal | er | D, Mode

LOG CAL Do_Menu, Di d_Menu

CHARACTER* 80 ConmandBuf f er

COVWWON / SHELLPARMS / Callerl D, Mde, Do _Menu, Did_Menu,
ConmandBuf f er

if the Cormand buffer is enpty or not
| F (CommandBuffer(1:1) .EQ ' ') THEN
CBEmpty = . TRUE.
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ELSE
CBEnpty = . FALSE.
END | F

IF (CBEmpty .AND. (Pronmpt .NE. ' ')) THEN
C ndex = INDEX(Prompt,' ') - 1
IF (Cindex .GI. 0) THEN
WRI TE( 6, 110) Pronpt (: Ci ndex)
ELSE
WRI TE( 6, 110) Pr onpt
END | F
READ( 5, 120) ConmmandBuf f er
ELSE
IF (CBEmpty .AND. (Prompt .EQ ' ')) THEN
ProcessCndString = ' CBEMPTY'
GOTO 999
END | F
END | F

C ndex = | NDEX( ConmandBuffer,' ')
IF (Cindex .EQ 1) THEN
ProcessCndString = ' <CR>'
ELSE
ProcessCndStri ng = CommandBuf fer (1: (Cl ndex-1))
END | F

I left justify the rest of the text in comand buffer.

ConmandBuf f er
ConmandBuf f er

ConmmandBuf f er (Ci ndex:)
ADJUSTL( CommandBuf f er)

I See if the Command buffer is enpty or not
| F (CommandBuffer(1:1) .EQ ' ') THEN
CBEmpty = . TRUE.
IF (.not. Did _Menu) Do _Menu = . TRUE.
ELSE
CBEmpty = . FALSE.
END | F

110  FORMAT(1X, A, $)
120  FORMAT( A)
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Modul e Name: Get MenuComrand
Cal l ed By: Shell nodul es
Calls to: ProcessCndString

Functi on: For a given simulation node, this nodul e pro-
cesses user input and matches it with the appro-
priate comand

Modi fi cati ons:
Dat e Pur pose By
MAR 29 1996 Created based on the Shell version 1.3
Get MenuCnd nodul e. This version is nore
conpact and allows for multiple commands

to be entered at the pronpt. J.Bolling
MAY 16 1996 Added Did_Menu LOd CAL to SHELLPARMS Conmon

for better comunication between the Shell interface

and the Get MenuText nodul e. J. B
JAN 20 1997 Repl aced the STRING data type Message() with a

CHARACTER* 80 t ype J.B.

d obal Vari abl es

Nane | Type | Descri ption

*Do_Di ags LOGE CAL Di agnostics flag

Local Vari abl es

! Nane | Type | Descri ption

* St at enent | NTEGER Statenent | abel corresponding to comand
*CommandBuf f er CHARACTER*80Hol ds user Commands until needed.

* Pr onpt CHARACTER*8 various di splay pronpts

* Command CHARACTER*4 Command returned by ProcessCndString
*ProcessCndSt. .. CHAR*4FUN  Conmand filtering function

* CBEnpt y LOGE CAL Enpty status of the comand buffer

*Message CHARACTER  Generic nessage

*| OSt at | NTEGER Generic | nput/ Qutput code (1=i nput, O=out put)

*Processl OStr... | NTFUNCTI ON Generic | nput/Qutput processing function

I MPLI CI' T NONE
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CHARACTER* 80 SI MPARCS0( 10)
LOG CAL SIMPARL ( 30)

| NCLUDE ' Cnd_Structure. txt/LIST

RECORD / CMVMD_STRUC / GVC

RECORD / CMVMD_STRUC / G.OBCMVD

CHARACTER*8 Cust om Pronpt, Pronpt, Pronpt _Std, Pronpt _Di ags
CHARACTER*4 Command, ProcessCndStri ng

PARAMETER (Pronpt_Std = ' Conmand>')

PARAMETER ( Pronpt _Di ags = ' CndDi ag>')

LOQd CAL Do_Di ags, CBEnpt y, CndFound, Use_Cust om Pr onpt
I NTEGER St at enent, | OSt at, |

CHARACTER*80 Message( 1)

| NTEGER Processl Cstring

———————————————————————— Shel | Parameters--------------------------

| NTEGER Cal | er | D, Mbde
LOG CAL Do_Menu, Di d_Menu
CHARACTER*80 CommandBuf f er

COVWWON / SHELLPARMS / Callerl D, Mde, Do _Menu, Did_Menu,
ConmandBuf f er

COWDN / SI MPARS / SI MPARL, SI MPARCB0
COWON / GLOBALS / GLOBCWVD

IF (Custom Pronmpt .NE. ' ') THEN
Use_Custom Pronpt = . TRUE.
Pronmpt = Cust om Pronpt

ELSE
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Use_Custom Pronpt = . FALSE.
END | F

CmdFound = . FALSE.

IF (.not. Use_Custom Pronpt) THEN
| F (Do_Di ags) THEN
Pronpt = Pronpt_Di ags
ELSE
Pronmpt = Pronpt_Std
END | F
END | F

Conmmand = ProcessCndStri ng( Pronpt, CBEnpty)
DO 1010 I =1, GVC. Num Conmands

| F (Command .eq. GMC. CndU(l) .or. Comand .eq. GMC. CndL(1)) THEN
CmdFound = . TRUE.
Statement = |
GO TO 20
END | F

Statenent = |
1010 CONTI NUE

| F (Command .eq. '<CR>') THEN
CnmdFound = . TRUE.
Statenent = Statenment + 1

G0 TO 20
END | F
I Still here huh? check to see if it's a global conmand
DO 1020 | = 1, GLOBCVD. Num _Conmands

| F( Command. eq. GLOBCVD. CdU( 1) . or . Command. eq. GLOBCVD. CndL(1)) THEN
CmdFound = . TRUE.
Statement = |
CALL SHELL_GLOBALS( St at enent)
Statenment = GMC. Num Commands + 2
GO TO 20
END | F

1020 CONTI NUE
' If we're still here, it nust have been a bad comand
I F (.not. CndFound) THEN
Message(1l) = ' INVALID COWAND ('//Command//"')"'
| OStat = Processl OGString(Message, 1,0, 4)
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ComandBuffer ="'
GO TO 100
END | F

I Check the status of the commuand buffer and see if we need to show
I a nmenu or not.

20 | F (CBEmpty) THEN

| F (Command . EQ '<CR>' .OR GVC HasSubMenu(Statenent)) THEN
Do Menu = . TRUE. I going to new nenu; show it
Di d_Menu = . FALSE.

END | F

|F (Do_Menu .and. Did_Menu) THEN
Do Menu = .FALSE. ! still in sanme nenu; don't show it

END | F

ELSE I more conmands to do, don't show nmenu

Do_Menu = . FALSE.
| F (GVC. HasSubMenu( St at enent)) THEN
Di d_Menu = . FALSE.
END | F
END | F
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5. Handling Shell Menus

A. Usage

Shell menus are lists that consist of the valid commands for a particular mode, followed by theit descriptions. This
section describes how they can be displayed in the shell.

A.l GETMENUTEXT
Function Prototype, SUBROUTINE
CMD_STRUC COMMANDS

Assign appropriate datato COMMANDS
CALL GETMENUTEXT(COMMANDS)
GETMENUTEXT displays alist of the valid commands followed by their descriptions.

Argument Definitions
COMMANDS [in] The valid command record for the current Shell mode. (see appendix Il for
a description of the command record.)

B. General Remarks

GETMENUTEXT should be caled in each Shell module just before GETMENUCOMMAND is called so that the
user will be able to see the current commands and their functions. This subroutine will display the menu as needed.
As an example, if the command buffer is not empty, then there is no reason for displaying the menu since the user
will not be able to interact with it anyway, and the menu is not written to the screen. There are other instances when
this subroutine does not show the menu also. These are discussed in more detail in the next section.

There are two logical variables in the SHELLPARMS Common block (See App. 1) that GETMENUTEXT depends
heavily on. These are the DO_MENU and DID_MENU logicals. The DO_MENU logica tells GETMENUTEXT
when a menu needs to be written to the screen. It is handled by the GETMENUCOMMAND subroutine. Once
GETMENUTEXT finishes displaying a menu, it sets the DID_MENU logical to TRUE. While the
GETMENUCOMMAND procedure is executing, it keeps track of whether or not the command buffer has a
command waiting or not. If it does, then GETMENUCOMMAND sets the DO_MENU logical to FALSE. When
the buffer is empty, it will set DO_MENU to true if the carriage return was detected or if the HASSUBMENU field
in the COMMANDS record for the chosen command is TRUE (indicating that the Shell is going into a new mode),
and sets the DID_MENU logical to FALSE. Thus, the next time GETMENUTEXT s called, it will display the
menu. If the previous conditions apply (resulting in DO_MENU being TRUE) but the current menu has already been
displayed (DID_MENU is TRUE), then GETMENUCOMMAND sets DO_MENU to FALSE so that the same
menu will not be displayed again.

C. Functional Description

GETMENUTEXT first checks the status of DO_MENU to determine if any menus should be displayed. If
DO_MENU is TRUE. Then it proceeds to format and display the menu based on the COMMANDS record. Any
command Headers (See App |l for a description of these) for a particular command are set double-spaced and then
center justified holding spaces as insignificant (ISPACE = 1). GETMENUTEXT then concatenates each command
with its command description (Commands and descriptions are separated by 6 spaces). The resulting string is then
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center justified using the GETCENTERJUSTIFY function holding trailing spaces as significant (ISPACE = 0).
These steps are repeated for each valid command in the COMMANDS record. If the current Shell mode isthe MAIN
mode, then GETMENUTEXT also adds the global commands and their descriptions to the menu. Otherwise it adds
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the "<CR>" and its description as the last line in the menu.

D. Errors and Restrictions

The GETMENUTEXT procedure assumes a screen width (SCR_W) of 80 characters and a menu line width
(MENU_W) of 50 characters when centering the command/description lines. Although the menu line width should
not be changed, the screen width parameter can be adjusted to achieve better looking menus for different sized

monitors or resolutions.

Thereisaso arestriction on the total number of menu lines (including headers and blank lines) that can be displayed

by GETMENUTEXT. The current limit is 100.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012

Modul e Name: Get MenuText
Cal l ed By: Shell nodul es
Calls to: <Type>Justify routines, ProcesslOString

Functi on: Wites the avail abl e commands and their de-
scriptions based on the current sinulation
node.

Modi fi cati ons:

Dat e Pur pose
APR 09 1996 Created as a part of the Shell V1.5
i nterface.
MAY 16 1996 Added Did _Menu LOG CAL to SHELLPARMS Comon
for better comunication between the Shell interface

and the Get MenuText nodul e.

JAN 20 1997 renoved the STRI NG vari abl e Message() and re-

pl aced with the CHARACTER*80 Message(()

d obal Vari abl es
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! Nane | Type | Descri ption
* VARNANVE VARTYPE VARDESCRI PTI ON

! Local Vari abl es

! Nane | Type | Descri ption

*Mode | NTEGER Qperation node of the sinulation

*Callerl D | NTEGER ID of the active interface (0=Shell, 1=FS3)
*Do_Menu LOGE CAL Di spl ay nmenu status

*Di d_Menu LOGE CAL Menu di spl ay successful status

*MessageC CHARACTER  Generic nessage

*| St at | NTEGER Generi c | nput/ Qutput code

* Get CENTERJust ... CHARFUN Center-justifies a character string

*Processl OStr... INTFUNCTI ON Generic text string processor.

I NCLUDE ' Cnd_Structure. txt/LIST
RECORD / CWVMD_STRUC / GMTI
RECORD / CMD_STRUC / GLOBCMD

I NTEGER I, 1 CStat, WN
CHARACTER*50 MenulLi ne
CHARACTER*80 MessageC(100)
CHARACTER*6 Cnd_Des_Limter
PARAMETER (Cnd_Des_Limiter =" ")
| NTEGER Menu_W Scr_W

PARAMETER (Menu_W = 50)
PARAMETER (Scr_W = 80)

CHARACTER* 80 Get CENTERJusti fy
| NTEGER Processl Cstring
I e R Shell Parameters-----------------cooooo-
| NTEGER Cal | er | D, Mode
LOG CAL Do_Menu, Di d_Menu
CHARACTER* 80 ConmandBuf f er

COVWWON / SHELLPARMS / Callerl D, Mde, Do _Menu, Did_Menu,
. ConmandBuf f er
COVWWON / GLOBALS / GLOBCMD
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| F (Do_Menu) THEN

MenuLi ne ="' '

MessageC(1) = Get CENTERJusti fy(MenuLi ne, Scr_W 10, 0)
MessageC(2) = Get CENTERJusti fy(GMI. CndH(0), Scr_W 40, 1)
MenuLi ne ="' '

MessageC(3) = Get CENTERJusti fy(MenuLi ne, Scr_W 10, 0)

WM = 4 I starting nessage index
1049 DO 1050 | = 1, GVI. Num _Conmmands

IF (GMI.CndH(l) .NE. ' ') THEN
MenuLi ne ="' '
MessageC(MN) = Get CENTERJusti fy(MenulLi ne, Scr _W 10, 0)
MN = MWN + 1
MessageC(MN) = Get CENTERJusti fy(GWI. CrdH(1), Scr_W 40, 1)
MN = MWN + 1
MessageC(MN) = Get CENTERJusti fy(MenulLi ne, Scr _W 10, 0)
MN = MWN + 1

END | F

MenuLi ne = GMI. CdU(1)//Cnd_Des_Limter// GVI. CndD( 1)
MessageC(MN) = Get CENTERJusti fy( MenuLi ne, Scr_W Menu_W 0)
MN = MWN + 1

1050 CONTI NUE

IF (Mode .EQ 1) THEN I Main node, Show d obal s
MenuLi ne ="' '
MessageC(MN) = Get CENTERJusti fy(MenulLi ne, Scr _W 10, 0)
MN = MWN + 1
MessageC(MN) = Get CENTERJusti fy( GLOBCMVD. CndH(0), Scr_W 40, 1)
MN = MWN + 1
MessageC(MN) = Get CENTERJusti fy(MenuLi ne, Scr _W 10, 0)
MN = MWN + 1
DO 1060 | = 1, GLOBCVD. Num _Conmands

MenuLi ne = GLOBCNVD. CndU(1)// Crd_Des _Limter// GOBCNVD. CndD( 1)
MessageC(MN) = Get CENTERJusti fy( MenuLi ne, Scr_W Menu_W 0)
MN = MWN + 1
1060 CONTI NUE
MessageC(MN) = '
ELSE

MenuLine = '<CR>'//Cnd_Des_Limter//'Exit From Menu'

MessageC(MN) = Get CENTERJusti fy(MenuLi ne, Scr_W Menu_W 0)

MN = MWN + 1

MessageC(MN) = '
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END | F

| OStat = Processl OString(MessageC, W, 0, 0)
Di d_Menu = . TRUE.
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6. Processing User Inputs

A. Usage

These functions are generally used to alow data input to the Shell.

A.l GETREALINPUT

Function Prototype, REAL*4
CHARACTER*(*) V_NAME
REAL*4 V_VALUE

Store the name of a REAL variable to be changed in V_NAME and its current valuein V_VALUE
V_VALUE = GETREALINPUT(V_NAME, V_VALUE)
GETREALINPUT prompts for anew valueto set V_NAME to and changesiit.

Argument Definitions

V_NAME [in] A CHARACTER string containing the name of the REAL variable to
change.
V_VALUE [in] The current value of the variable represented by V_NAME.

A.2  GETINTINPUT

Function Prototype, INTEGER*4
CHARACTER*(*) V_NAME
INTEGER*4 V_VALUE

Store the name of an INTEGER variable to be changed in V_NAME and its current valuein V_VALUE
V_VALUE = GETINTINPUT(V_NAME, V_VALUE)
GETINTINPUT prompts for anew valueto set V_NAME to and changesiit.

Argument Definitions

V_NAME [in] A CHARACTER string containing the name of the INTEGER variable to
change.
V_VALUE [in] The current value of the variable represented by V_NAME.

A.3 GETLOGICALINPUT

Function Prototype, LOGICAL
CHARACTER*(*) V_NAME
LOGICAL V_VALUE

Store the name of aLOGICAL variable to be changed in V_NAME and its current valuein V_VALUE

V_VALUE = GETLOGICALINPUT(V_NAME, V_VALUE)
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GETLOGICALINPUT prompts for anew valueto set V_NAME to and changesiit.

Argument Definitions
V_NAME [in] A CHARACTER string containing the name of the LOGICAL variable to
change.
V_VALUE [in] The current value of the variable represented by V_NAME.

A.4  GETCHARINPUT
Function Prototype, CHARACTER*(*)
CHARACTER*(*) V_NAME, V_VALUE

Store the name of a CHARACTER variable to be changed in V_NAME and itscurrent valuein V_VALUE
V_VALUE = GETCHARINPUT(V_NAME, V_VALUE)
GETCHARINPUT prompts for anew valueto set V_NAME to and changesiit.

Argument Definitions
V_NAME [in] A CHARACTER string containing the name of the CHARACTER variable
to change.
V_VALUE [in] The current value of the variable represented by V_NAME.

B. General Remarks

While these functions could easily be replaced by standard READ and WRITE statements, it is not recommended.
These four functions should be used to get their respective user inputs while in the Shell because they have the added
advantage of being able to read from the command buffer as well asfrom the keyboard. They also interpret a carriage
return as keeping the current value. In other words, not only do they allow a variable to be changed, but they also
provide a useful utility to show what the current value of a variable is. Note aso that the nature of these functions
allows the user to type more than one command on the same line just like the standard Shell command prompt. It is
also possible to send character literals in place of the V_NAME arguments.

C. Functional Description

These functions first try to extract the user input from the command buffer by calling PROCESSCMDSTRING If
the buffer is not empty, then they return the value that was extracted. If their is no text waiting in the command
buffer, then they format a prompt made up of the variable name that is to be changed followed by its current value
contained in parenthesis. For example, if the variable to be changed was an integer (cal it J) and its value was 100,
then GETINTINPUT would format the prompt as "J (100)>". They then use the PROCESSIOSTRING function to
display the created prompt and wait for keyboard input. The string returned from PROCESSIOSTRING is then saved
to the command buffer and extracted immediately using PROCESSCMDSTRING. If PROCESSCMDSTRING
returns "CBEMPTY" (implying that the user pressed return at the prompt), then the original value is returned.
Otherwise the new value (extracted by PROCESSCMDSTRING) is returned.

D. Errors and Restrictions

The current status of these functions is not very "bullet proof* and could cause some errors if the user input is not
what the function expects. (That is, if a character string is extracted from the buffer when a real number is expected
from GETREALINPUT). It is easy for programmers to avoid this problem, but due to the scriptable nature of the
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Shell, it is not guaranteed that one of these cases will not arise when a casual user is typing multiple commands at
the prompt. This problem will have to be eliminated in future versions.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012

Modul e Name: Get REALI nput

Cal | ed By:
Calls to:

various REAL input requests
Processl OStri ng, ProcessCmdStri ng

Functi on: Gets a REAL Input fromthe Shell W ndow.

Modi fi cati ons:
Dat e
MAR 04 1996
APR 09 1996

JUN 06 1996

CHARACTER* (*) V_

Pur pose By
Cr eat ed J. B.
Added calls to Processl OString and ProcessCnd-
String for conpatibility with Shell V1.5 J.B.

Any user input requested in this subroutine is
now placed in the Command Buffer first and then
extracted i mediately. (This will allow the user
to input nultiple nunbers or commuands at these
prompts al so). J.B.

Narme

CHARACTER* 32 Pronpt _to_User

CHARACTER*16 Default_V _String, V_Input_String
REAL Get REALI nput, Defaul t _V, V_I nput

I NTEGER Ci ndx, | OSt at

CHARACTER* 80 Message( 2)

LOE CAL CBEmpty
| NTEGER Pr ocessl

OString

CHARACTER* 16 ProcessCmdString
CHARACTER* 8 Pr onpt
PARAMETER (Prompt ="' ')

———————— Shel | Paraneters--------------------------

| NTEGER Cal | er | D, Mode
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LOG CAL Do_Menu, Di d_Menu
CHARACTER*80 CommandBuf f er

COVWWON / SHELLPARMS / Callerl D, Mde, Do _Menu, Did_Menu,
ConmandBuf f er

Default _V String ="' '
V_Input_String = ProcessCmdStri ng(Pronpt, CBEnpty)
IF (V_lnput_String .EQ 'CBEMPTY') THEN

Wite (Default_V String(1l:12), '(F12.4)') Default_V

Read (Default _V String,' (A16)') V_lnput_String

V_Input_String = ADJUSTL(V_I nput _String)

Cndx = INDEX(V_Input_String,' ")

Pronmpt _to User = V_Name//' ('//V_Input_String(:Cndx - 1)//")>
cindx = | NDEX(Pronpt _to_User,'>")

Message(1l) = Pronpt _to User (: C ndx)

| OStat = Processl OGString(Message, 2, 2, 0)
ConmmandBuf fer = Message(2)

V_Input_String = ProcessCmdStri ng(Pronpt, CBEnpty)

END | F
Cndx = INDEX(V_Input_String,' ")
IF (V_lnput_String .EQ 'CBEMPTY') THEN
Get REALI nput = Default_V
ELSE
Read (V_Ilnput_String(:Cindx),'(F)') V_Input

Cet REALI nput = V_I nput
END | F

C23456789012345678901234567890123456789012345678901234567890123456789012
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Modul e Name: Get| NTI nput
Cal l ed By: various |NTEGER*4 i nput requests
Calls to: ProcesslOString, ProcessCndString

Functi on: Gets a INTEGER | nput fromthe Shell W ndow.

Modi fi cati ons:

Dat e Pur pose By
MAR 04 1996 Creat ed J. B.
APR 09 1996 Added calls to Processl CString and ProcessCnd-
String for conpatibility with Shell V1.5 J.B.
JUN 06 1996 Any user input requested in this subroutine is

now placed in the Command Buffer first and then
extracted i mediately. (This will allow the user
to input nultiple nunbers or commands at these
pronpts al so). J.B.

CHARACTER* (*) V_Nane

CHARACTER*32 Pronpt _to_User

CHARACTER*16 Default _V String,V_Input_String

| NTEGER Get | NTI nput, Defaul t _V, V_I nput

| NTEGER G ndx, | OSt at

CHARACTER*80 Message( 2)

LOG CAL CBEnpty

| NTEGER Processl Cstring

CHARACTER* 16 ProcessCndString

CHARACTER* 8 Pr onpt

PARAVETER (Pronpt ="' ')
———————————————————————————— Shel |l Parameters----------------------

| NTEGER Cal | er | D, Mode

LOG CAL Do_Menu, Di d_Menu

CHARACTER* 80 ConmandBuf f er

Conmon Secti on
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COVWWON / SHELLPARMS / Callerl D, Mde, Do _Menu, Did_Menu,
ConmandBuf f er

Default _V String ="' '
V_Input_String = ProcessCrdStri ng(Pronpt, CBEnpty)
IF (V_lnput_String .EQ 'CBEMPTY') THEN

Wite (Default_V String(1l:12), '(112)") Default_V

Read (Default_V String,' (A16)') V_lnput_String

V_Input_String = ADJUSTL(V_I nput _String)

Cndx = INDEX(V_Input_String,' ")

Pronmpt _to User = V_Name//' ('//V_Input_String(:Cndx - 1)//")>
cindx = | NDEX(Pronpt _to_User,'>")

Message(1l) = Pronpt _to User (: C ndx)

| OStat = Processl OGString(Message, 2, 2, 0)
ConmmandBuf fer = Message(2)

V_Input_String = ProcessCmdStri ng(Pronpt, CBEnpty)

END | F
Cndx = INDEX(V_Input_String,' ")

IF (V_lnput_String .EQ 'CBEMPTY') THEN
Get I NTI nput = Default_V

ELSE
Read (V_Input_String(:Cndx),"'(18)") V_Input
Cet | NTI nput = V_I nput

END | F

C23456789012345678901234567890123456789012345678901234567890123456789012
I o e n o e e e e e e e e e e e e e e e e e e e e edeeaean

Modul e Nanme: Get LOG CALI nput

!

!

! Cal l ed By: various LOG CAL i nput requests
! Calls to: ProcesslOString, ProcessCndString
!
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Functi on: Gets a LOA CAL I nput fromthe Shell W ndow.

Modi fi cati ons:

Dat e Pur pose By
MAR 04 1996 Creat ed J. B.
APR 09 1996 Added calls to Processl CString and ProcessCnd-
String for conpatibility with Shell V1.5 J.B.
JUN 06 1996 Any user input requested in this subroutine is

now placed in the Command Buffer first and then
extracted i mediately. (This will allow the user
to input nultiple nunbers or commands at these
pronpts al so). J.B.

CHARACTER* (*) V_Nan®e

CHARACTER*32 Pronpt _to_User

CHARACTER*16 Default _V String,V_Input_String

LOG CAL Get LOGE CALI nput, Defaul t _V, V_I nput , CBEnpt y

| NTEGER G ndx, | OSt at

CHARACTER*80 Message( 2)

| NTEGER Processl Cstring

CHARACTER* 16 ProcessCndString

CHARACTER* 8 Pr onpt

PARAVETER (Pronpt ="' ')
———————————————————————————— Shel |l Parameters----------------------

| NTEGER Cal | er | D, Mode

LOG CAL Do_Menu, Di d_Menu

CHARACTER* 80 ConmandBuf f er

COVWWON / SHELLPARMS / Callerl D, Mde, Do _Menu, Did_Menu,
ConmandBuf f er

Run Section
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Default _V String ="' '
V_Input_String = ProcessCmdStri ng(Pronpt, CBEnpty)
|F (V_Input_String .EQ ' CBEMPTY') THEN

Wite (Default_V String(:1), '(L1)') Default_V

Read (Default_V String,' (A16)') V_lnput_String

V_Input_String = ADJUSTL(V_I nput _String)

Cndx = INDEX(V_Input_String,' ")

Pronmpt _to User = V_Name//' ('//V_Input_String(:Cndx - 1)//")>
cindx = | NDEX(Pronpt _to_User,'>")

Message(1l) = Pronpt _to User (: C ndx)

| OStat = Processl GString(Message, 2, 2, 0)
ConmmandBuf f er = Message( 2)

V_Input_String = ProcessCmdStri ng(Pronpt, CBEnpty)

END | F
Cndx = INDEX(V_Input_String,' ")

IF (V_lnput_String .EQ 'CBEMPTY') THEN
Get LOG CALI nput = Default_V

ELSE
Read (V_Input_String(:C ndx),"'(L1)") V_Input
Cet LOGE CALI nput = V_I nput

END | F

C23456789012345678901234567890123456789012345678901234567890123456789012
I o e n o e e e e e e e e e e e e e e e e e e e e edeeaean

!
! Modul e Name: Get CHARI nput

! Cal l ed By: various Character string input requests
! Calls to: Processl OString, ProcessCndString

!

! Functi on: Gets a Character Input fromthe Shell W ndow.
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Modi fi cati ons:

Dat e Pur pose By
MAR 04 1996 Creat ed J. B.
APR 09 1996 Added calls to Processl CString and ProcessCnd-
String for conpatibility with Shell V1.5 J.B.
JUN 06 1996 Any user input requested in this subroutine is

now placed in the Command Buffer first and then
extracted i mediately. (This will allow the user
to input nultiple nunbers or commands at these
pronpts al so). J.B.

CHARACTER* (*) V_Nan®e

CHARACTER*32 Pronpt _to_User

CHARACTER*16 Default _V String,V_ Input_String, V_| nput

CHARACTER* (*) Get CHARI nput, Defaul t _V

| NTEGER G ndx, | OSt at

CHARACTER*80 Message( 2)

LOG CAL CBEnpty

| NTEGER Processl Cstring

CHARACTER* 16 ProcessCndString

CHARACTER* 8 Pr onpt

PARAVETER (Pronpt ="' ")
———————————————————————————— Shel |l Parameters----------------------

| NTEGER Cal | er | D, Mode

LOG CAL Do_Menu, Di d_Menu

CHARACTER* 80 ConmandBuf f er

COVWWON / SHELLPARMS / Callerl D, Mde, Do _Menu, Did_Menu,
ConmandBuf f er

Default _V String ="' '
V_Input_String = ProcessCmdStri ng(Pronpt, CBEnpty)
IF (V_lnput_String .EQ 'CBEMPTY') THEN
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Wite (Default_V String(:16), '(A)') Default_V

Read (Default_V String,' (A16)') V_lnput_String

V_Input_String = ADJUSTL(V_I nput _String)

Cndx = INDEX(V_Input_String,' ")

Pronmpt _to User = V_Name//' ('//V_Input_String(:Cndx - 1)//")>
cindx = | NDEX(Pronpt _to_User,'>")

Message(1l) = Pronpt _to User (: C ndx)

| OStat = Processl OGString(Message, 2, 2, 0)
ConmmandBuf fer = Message(2)

V_Input_String = ProcessCmdStri ng(Pronpt, CBEnpty)

END | F
Cndx = INDEX(V_Input_String,' ")
IF (V_lnput_String .EQ 'CBEMPTY') THEN
Get CHARI nput = Default_V
ELSE
Read (V_Input_String(:Cndx),'(A"') V_Input

Cet CHARI nput = V_I nput
END | F
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7. Processing File Requests

A. Usage

This section describes how to get the name of a file from the user when data needs to be saved or loaded into
memory.

A.l GETFILENAME

Function Prototype, SUBROUTINE
CHARACTER*20 HEADER, FILENAME
CHARACTER*4 FILE_EXT, FILETYPE

Assign CHARACTER stringsto HEADER and FILE_EXT
CALL GETFILENAME(HEADER, FILE_EXT, FILENAME, FILETYPE)
GETFILENAME either extracts FILENAME from the command buffer or prompts the user to enter aFILENAME.

Argument Definitions

HEADER [in] A CHARACTER string describing the type of file that is to be saved or
opened.

FILE_EXT [in] A CHARACTER string representing the file extension to be appended to
the end of FILENAME.

FILENAME [out] A CHARACTER string representing the name of the file to be opened or
saved.

FILETYPE [out] A CHARACTER string representing the type of file to save or open.

B. General Remarks

GETFILENAME provides a "command line" way of saving files by first looking in the command buffer for a
filename and any file options. It is aso helpful to be able to recognize a file by its name. To accomplish this,
GETFILENAME automatically appends the file extension (usually a period followed by a 3 letter abbreviation)
represented by FILE_EXT to the end of the filename. The file options supported are "/txt" for ascii text files, "/mat"
for matlab workspace files, and "/bin" for binary data files. (Be aware that the module calling this subroutine must
execute according to these options). The default option is "/txt". The FILETYPE argument alows the caling
subroutine to know what type of file is about to be saved or opened, and is based on the option specified at the
command prompt.

Command Line OPTION FILETYPE
[txt TEXT
/mat MATW
/bin SBIN

The HEADER parameter is optional and can be used to describe the type of file to save or open. It is only used when
the subroutine is called and the command buffer is empty. (If the HEADER parameter is not used, send a blank
character string in its place).

C. Functional Description
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GETFILENAME first attempts to extract the filename from the command buffer. If the buffer is empty, then it
formats a prompt containing HEADER concatenated with " Filename (<16 Chars):" and cdls
PROCESSIOSTRING to get a filename from the user. It then checks to make sure that the filename entered is less
than 16 characters long and re-prompts the user if necessary. If the command buffer is not empty, and
GETFILENAME successfully extracted a filename, then it calls PROCESSCMDSTRING again to get any options
and sets FILETY PE appropriately. It then appends the appropriate file extension to the filename.

D. Errors and Restrictions

The "/mat" and "/bin" options override the specified FILE_EXT. GETFILENAME uses ".mat" and ".bin" for these
filetypes. If GETFILENAME is called when the command buffer is empty, it displays a prompt for a filename. In
this case the options cannot be specified and GETFILENAME will assume afiletype of TEXT. If an option is typed
at the prompt, GETFILENAME will ignore it.

E. Source Listing

C23456789012345678901234567890123456789012345678901234567890123456789012
e

!
! Modul e Nane: GetFil enane

! Called By: Various file I/O requests, Shell node only
! Calls to: ProcesslOString, ProcessCmdString

!

Functi on: Reads in a user request for a fil enane and adds
t he appropriate extension.

Modi fi cati ons:

Dat e Pur pose By
SEPT 4 1995 Created to all ow general FORTRAN conpati -
bility for the F18 Sinul ati ons. JB
NOV 2 1995 Added Create MAT File LOd CAL to determ ne

which file extension to use. (Matlab data
file extensions of ".MAT" override the de-

fault file exstensions.) JB
APR 09 1996 Added calls to Processl OString and Process-

CmdString for conpatibility with Shell V1.5 JB
JUN 06 1996 Added additional logic to support the "/mt"

and "/txt" options and renoved all references
to the Create_MAT File logical. This flag will
only be used in the parent subroutines now Also
added the argunents Fil etype and Header. JB

I MPLI CI' T NONE
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LOG CAL CBEnpty

CHARACTER*20 Fi | enane, Header

CHARACTER* 16 Fil e, ProcessCndString
CHARACTER* 8 Pr onpt

CHARACTER*4 Fil e_ext, MAT ext, Fil etype
CHARACTER* 2 Space

| NTEGER | ndx1, indx2, |OStat, Processl GString
CHARACTER*80 Message( 2)

PARAVETER (Pronmpt ="' ")

DATA Space, MAT ext [/ ' ','.mat' /[

IF (File = 'CBEMPTY') THEN

G0 TO 10
ELSE
G0 TO 15
END | F
10 | F (Header .EQ ' ') Header = 'Enter'
I ndx1 = | NDEX( Header,"' ')

Message(1l) = Header(:Indx1)//'Filenane (<16 Chars.):'
| OStat = Processl OGString(Message, 2, 2, 0)
File = Message(2)
Indx1l = INDEX(File,'/")
IF (Indx1 .NE. 0) THEN
File = File(:(indx1-1))

END | F
15 I ndx1 = | NDEX(Fi | e, Space)
IF (Indx1 .EQ 0) THEN
Message(1l) = 'Filenane nust be | ess than 15 characters
| OStat = Processl OGString(Message, 1,0, 4)
G0 TO 10
END | F

Indx2 = Indx1l - 1

IF (.not. CBEnpty) THEN
Filetype = ProcessCndStri ng(Pronpt, CBEnpty)

IF (Filetype .EQ '/txt' .or. Filetype .EQ '/txt') THEN
Filetype = ' TEXT I ascii requested
ELSE
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"/ MAT') THEN
Mat | ab request ed

EQ '/BIN) THEN
Bi nary requested

using ascii'

Default file type

use Default file type

IF (Filetype .EQ '/mat' .or. Filetype .EQ
Filetype = ' MATW !
ELSE
IF (Filetype .EQ '/bin' .or. Filetype .
Filetype = 'SBIN !
ELSE
Message(1l) = 'Invalid File Type,
| OStat = Processl GString(Message, 1,0, 4)
Filetype = ' TEXT !
END | F
END | F
END | F
ELSE
Filetype = ' TEXT I If not specified,
END | F
IF (Filetype .EQ ' MATW) THEN
Filename = File(:1ndx2)//MAT_ext
ELSE
IF (Filetype .EQ 'SBIN ) THEN
Filenanme = File(:Indx2)//"'.bin'
ELSE
Filename = File(:Indx2)//File_ext
END | F
END | F
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8. Writing Matlab™ Workspace Files
A. Usage

This subroutine, along with the Matlab External Interface Libraries, allows Shell data to be saved as hinary
workspace files for platforms running Matlab.

A.l CREATE_MATFILE
Function Prototype, SUBROUTINE

CHARACTER*20 FILENAME
LOGICAL FILEEXISTS
CHARACTER*(*) MATRIXNAME
INTEGER*4 ROWS
INTEGER*4 COLUMNS
REAL*8 MATRIXDATA(*)

Assign values to al arguments, if datais to be added to an existing file or if the file isto be modified, FILEEXISTS
should be TRUE, otherwise create a new file with FILEEXISTS = FALSE

CALL CREATE_MATFILE(FILENAME, FILEEXISTS, MATRIXNAME, ROWS, COLUMNS, MATRIXDATA)
A “FILENAME.mat” fileis created containing the matrix MATRIXNAME with data MATRIXDATA.

Argument Definitions
FILENAME [in] A CHARACTER variable representing the name of the file to create or
modify.
FILEEXISTS [in] A LOGICAL variable indicating whether or not the file specified in
FILENAME already exists.
MATRIXNAME [in] A CHARACTER string representing the name of the matrix to create.

ROWS [in] An INTEGER variable representing the number of rows that the matrix
has.

COLUMNS [in] An INTEGER variable representing the number of columns that the matrix
has.

MATRIXDATA [in] A DOUBLE PRECISION array containing the matrix data arranged by
column.

B. General Remarks

The CREATE_MATFILE subroutine requires the libmat.o or equivalent external interface library for matlab to
work. In addition, this library uses some standard C libraries. Depending on the FORTRAN compiler used, these
libraries may also have to be linked with the Shell. For more information on Matlab specific details, consult the
Matlab External Interface Guide.

C. Functional Description

Depending on the FILEEXISTS parameter, CREATE_MATFILE calls MATOPEN with the filename and either the

‘W' or ‘u parameter to initialize the file. Next a pointer to the ROWS x COLUMNS matrix is created with the

mxCreateFull function. The datain MATRIXDATA isthen copied to the pointer’ s location and the matrix is named

MATRIXNAME using the mxCopyReal 8ToPtr and mxSetName functions. Finally, the matrix is saved in the file

and the file is closed using the MATPUTMATRIX and MATCLOSE functions. Memory cleanup is accomplished
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by acall to mxFreeMatrix.

D. Errors and Restrictions

Although the Shell alows as much as one space in a filename, the external interface libraries do not. Therefore, if a
spaceis used in the filename, and CREATE_MATFILE is called, the saved file will be truncated before the space.

E. Source Listing
Modul e Nane: Create MATFil e

C

C

C Cal l ed By: LINRIZE, SHELLTESTDB
C Calls to: Matlab MEX Libraries
C

(0
SUBROUTI NE Creat e MATFi | e( Fi | enane, Fi | eexi st, Mat name, Mat r ows,

Mat col ums, Mat dat a)
(0
C
C Functi on: WIl initialize and create a Matlab ". MAT" file
C wi th input data.

C
C
(0
C
C Modi fi cations:
C Dat e Pur pose By
C NOv 1 1995 Cr eat ed JB
C
| MPLI CI' T NONE
C
C DECLARATI ON SECTI ON
C
(O L INpUES-------- - e

LOd CAL Fil eexi st

CHARACTER* 20 Fi |l enane

CHARACTER*(*) Mat name

| NTEGER Mat r ows, Mat col umms, Mat el enent s
REAL*8 WMat dat a(*)

| NTEGER mat Open, nxCreateFull, matd ose, nmxGet Pr, natPut Matrix
| NTEGER a, fp, stat
G = = m m o m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e -

C COVMON DATA SECTI ON
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G - & m m o e e e e e eeeiiiiaol

I NI TI ALI ZATI ON SECTI ON

Mat el ements = Mat r ows* Mat Col umms
IF (.NOT. Fileexist) THEN
fp = mat Open(fil enane,'w)
ELSE
fp = mat Open(fil enane,'u')
ENDI F
a = nxCreat eFul | (Matrows, Mat col ums, 0)
CALL nmxCopyReal 8ToPtr ( Mat dat a, nxGet Pr (a), Mat el enent s)
CALL nxSet Nane(a, Mat nane)
stat = mat Put Matri x(fp, a)
stat = mat C ose(fp)
CALL nxFreeMatri x(a)
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