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Row-Action Methods for Massive Inverse Problems

J. Tanner Slagel

(ABSTRACT)

Numerous scientific applications have seen the rise of massive inverse problems, where there

are too much data to implement an all-at-once strategy to compute a solution. Addition-

ally, tools for regularizing ill-posed inverse problems are infeasible when the problem is too

large. This thesis focuses on the development of row-action methods, which can be used

to iteratively solve inverse problems when it is not possible to access the entire data-set or

forward model simultaneously. We investigate these techniques for linear inverse problems

and for separable, nonlinear inverse problems where the objective function is nonlinear in

one set of parameters and linear in another set of parameters. For the linear problem, we

perform a convergence analysis of these methods, which shows favorable asymptotic and

initial convergence properties, as well as a trade-off between convergence rate and precision

of iterates that is based on the step-size. These row-action methods can be interpreted as

stochastic Newton and stochastic quasi-Newton approaches on a reformulation of the least

squares problem, and they can be analyzed as limited memory variants of the recursive least

squares algorithm. For ill-posed problems, we introduce sampled regularization parameter

selection techniques, which include sampled variants of the discrepancy principle, the un-

biased predictive risk estimator, and the generalized cross-validation. We demonstrate the

effectiveness of these methods using examples from super-resolution imaging, tomography

reconstruction, and image classification.



Row-Action Methods for Massive Inverse Problems

J. Tanner Slagel

(GENERAL AUDIENCE ABSTRACT)

Numerous scientific problems have seen the rise of massive data sets. An example of this is

super-resolution, where many low-resolution images are used to construct a high-resolution

image, or 3-D medical imaging where a 3-D image of an object of interest with hundreds of

millions voxels is reconstructed from x-rays moving through that object. This work focuses

on row-action methods that numerically solve these problems by repeatedly using smaller

samples of the data to avoid the computational burden of using the entire data set at once.

When data sets contain measurement errors, this can cause the solution to get contaminated

with noise. While there are methods to handle this issue, when the data set becomes mas-

sive, these methods are no longer feasible. This dissertation develops techniques to avoid

getting the solution contaminated with noise, even when the data set is immense. The

methods developed in this work are applied to numerous scientific applications including

super-resolution imaging, tomography, and image classification.
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Chapter 1

Introduction

The efficient computation of solutions to inverse problems is critical in many scientific ap-

plications. For example, x-ray tomography uses measurements of the intensity from x-rays

passing through the human body to obtain an image of the internal bone structure. Another

example is automated image classification, where a training set of images is used to create a

model that classifies images outside of the training set. In addition to medical imaging and

machine learning, inverse problems appear in applications such as geophysics, atmospheric

science, astrophysics, and signal processing (see [4, 8, 78, 81, 121, 154, 160], and the sources

therein).

An emerging challenge is finding a numerical solution to massive inverse problems, where

the entire forward model or the observation data are not available all-at-once. This unavail-

ability could be due to size, for example, in automated image classification where there are

millions of training images [20] or 3-dimensional medical and scientific imaging where the

number of voxels can be in the hundreds of millions [109, 113, 127]. Alternatively, the data

may be unavailable all-at-once because it is being streamed. An example of this is super-

resolution, where hundreds of low-resolution images are being collected in time and the goal

is to reconstruct a high-resolution image with millions of unknown pixel values [41, 91].

When massive inverse problems are ill-posed, regularization must be introduced. An inverse

problem is ill-posed if the solution is not unique, does not exist, or does not depend con-

tinuously on the observation data [75]. When the solution does not depend continuously on

1
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the observation data, small errors in the observations can result in substantial changes in

the solution approximation. A regularization term is often included to remedy ill-posedness,

but this often requires parameter tuning to balance the data-fit with the regularization

[57, 77, 153]. When facing a massive inverse problem, the traditional tools to choose the

correct regularization parameter are no longer feasible because they often require full access

to the forward model.

This work focuses on two main thrusts of solving massive inverse problems–First, the analysis

and implementation of row-action methods to numerically solve the enormous optimization

problems, and second, the development of sampled regularization methods for finding an

appropriate regularization parameter while performing row-action methods.

1.1 Mathematical Models

The implementation of row-action methods depends heavily on the underlying model of the

inverse problem being solved. This section describes two models for massive inverse problems

that are considered in this thesis. In both models, Tikhonov regularization is introduced as

a tool to combat ill-posedness. We remark that there are other choices such as `1 and total

variation regularization, but Tikhonov regularization is considered the most popular choice,

and is thus the main regularization choice of this work [72].

1.1.1 The Linear Inverse Problem

Consider the linear inverse problem

b = Axtrue + ε,
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where xtrue ∈ Rn contains the unknown and desired input parameters, A ∈ Rm×n is a

matrix describing the forward model, ε ∈ Rm is random additive noise, and b ∈ Rm contains

the noisy output measurements. Here the linear inverse problem is assumed to be massive

which means that m,n ∈ R are so large that a min{m,n} × min{m,n} matrix cannot fit in

computer memory, or that the entries of the observation vector b are being streamed and

thus not available all-at-once.

When the noise ε is assumed to be have independent and identically distributed entries with

mean zero, it is appropriate to find the minimizer of the linear least squares (LS) problem

[27]

min
x

‖Ax − b‖22 ,

where ‖·‖2 is the vector 2-norm defined as ‖y‖2 =
√∑m

i=1 yi, for y ∈ Rm with entries {yi}mi=1.

The LS problem above can have infinitely many minimizers. If A is full column rank then

xLS =
(
A>A

)−1 b is the unique minimizer, which is an unbiased estimator of xtrue [107].

When the linear inverse problem is ill-posed, regularization must be introduced. The

Tikhonov-regularized linear LS problem is given by

min
x

‖Ax − b‖22 + λ ‖Lx‖22 , (1.1)

where λ > 0 is the regularization parameter and L ∈ Rn×n the regularization matrix. L is

often chosen to be the identity matrix, but it can be chosen to reflect prior knowledge about

the solution xtrue [8]. When
[
A> L>

]>
is full column rank the unique solution is given by

xTik =
(
A>A + λL>L

)−1 A>b.
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Massive linear inverse problems of this form arise in applications such as 3-D tomography,

image classification, support vector machines, compressed sensing, rigid body dynamics, and

computer vision [47, 52, 92, 99, 127, 158, 165].

1.1.2 The Separable, Non-linear Inverse Problem

The separable, nonlinear inverse problem is given by

b = A(ytrue)xtrue + ε , (1.2)

where xtrue ∈ Rn contains the desired linear input parameters, ytrue ∈ Rp contains the

desired nonlinear input parameters, A(·) : Rp → Rm×n is a nonlinear operator describing

the forward model, ε ∈ Rm is random additive noise, and b ∈ Rm contains the noisy output

measurements. In this scenario, xtrue and ytrue contain the unknown parameters. As with

the linear inverse problem, the separable nonlinear problem is assumed to be massive which

means that m,n ∈ R are so large that is it not feasible to fit a min{m,n} × min{m,n}

matrix in computer memory, or the entries of the observation vector b are being streamed

and thus not available all-at-once.

Similar to the linear inverse problem, when the problem is ill-posed, regularization is needed

to compute a reasonable solution. The Tikhonov-regularized optimization problem is of the

form

min
x,y

f(x,y) = ‖A(y)x − b‖22 + λ ‖Lx‖22 , (1.3)

where λ > 0 is the regularization parameter and L ∈ Rn×n the regularization matrix.

Problem (1.3) is called separable since the objective function f is a linear function in x

and a nonlinear function in y. Separable nonlinear inverse problems are sometimes called



1.2. Outline 5

partially separable [129].

Massive separable nonlinear inverse problems of this form arise in applications such as super-

resolution image reconstruction, neural networks, biomedical system dynamics, and molec-

ular imaging [38, 39, 64, 109, 133, 141, 162].

1.2 Outline

When an inverse problem is massive, the challenge is two-fold. First, numerical algorithms

that can approximate the solution without requiring the full forward model at once must

be introduced, analyzed, and effectively implemented. Second, numerical methods to find

a regularization parameter that balance the data-fit with regularization must be developed

and implemented despite the inverse problem’s massive size. This dissertation addresses

both of these challenges.

In Chapter 2, a thorough background on row-action methods is provided. In Chapter 3, novel

row-action methods are introduced to solve the linear LS problem. Convergence theory is

presented to show the benefits of these methods analytically. This analysis is extended to

the Tikhonov LS problem in Chapter 4, and sampling techniques to update the regulariza-

tion parameter are investigated and implemented. The row-action methods introduced in

Chapters 3 and 4 are extended to the separable nonlinear inverse problem in Chapter 5. Nu-

merical results are offered at the end of Chapters 3, 4, and 5 to illustrate the computational

effectiveness of the methods in each chapter. Proofs of theorems in each of these chapters

are provided in the Appendices. Concluding remarks are made in Chapter 6.
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1.3 Overview of Contributions

The contributions of this work include developing numerical algorithms to solve and effec-

tively regularize massive inverse problems, providing convergence analysis for these methods,

and implementing the methods effectively on applications related to medical imaging, as-

trological imaging, and data science. Below is a detailed list of contributions made in this

dissertation. The corresponding chapters are listed at the end of each description, and the

citation to the relevant paper or manuscript is provided.

• Linear Inverse Problems

– The linear LS problem is recast as a stochastic optimization problem. The connec-

tion between stochastic approximation methods and row-action methods allow for

development of asymptotic convergence theory for some well-known row-action

methods, including the Kaczmarz, block Kaczmarz, and damped block Kaczmarz

algorithms. We show that these algorithms are stochastic Newton methods ap-

plied to the stochastic reformulation of the linear LS problem. Chapter 3, appears

in [42, 144].

– The row-action method slimLS is introduced, with appropriate convergence the-

ory. This algorithm is shown to be more favorable than other methods due to

the lack of bias in the asymptotic convergence, as well as the quicker convergence

due to the use of more information from previous iterates. Chapter 3, appears in

[144]

– The algorithm slimLS is shown to be an extension of the damped block Kaczmarz

method. Non-asymptotic convergence analysis for the damped block Kaczmarz

shows an expected linear convergence rate. Bounds on the expected mean square

error show the trade-off between convergence rate and precision of iterates, that
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depends on step size. Chapter 3, appears in [144].

– The Tikhonov LS problem is recast as a stochastic optimization problem. Con-

nections between slimLS and the recursive LS algorithm lead to the development

of the slimTik method, which uses sampled regularization parameter selection

methods to choose an appropriate regularization parameter. Chapter 4, appears

in [143, 144].

– The recursive LS algorithm is shown to be a full memory variant of the slimTik

algorithm. Convergence theory by epoch compares cyclic, random, and random

without replacement sampling. Chapter 4, appears in [143].

– Sampled variants of regularization parameter selection methods including the

discrepancy principle, the unbiased predictive risk estimator method, and the

generalized cross validation are analyzed for massive inverse problems. Chapter

4, appears in [143].

– Efficient implementations of slimLS and slimTik are applied to massive in-

verse problems, including tomography, image classification, and super-resolution.

Chapters 3 and 4, appears in [42, 143, 144].

• Non-linear Separable inverse problems

– The separable, nonlinear Tikhonov LS problem is reformulated as a stochastic op-

timization problem, and SlimTik is extended to nl-slimTik, a row-action version

of the variable projection method for separable, nonlinear Tikhonov problems.

Chapter 5, appears in [43].

– An efficient implementation of the nl-slimTik method is applied to a massive

super-resolution problem. Chapter 5, appears in [43].



Chapter 2

Row-action Methods

The focus of this chapter is on row-action methods for solving a system of linear equations,

Ax = b, (2.1)

where A ∈ Rm×n and b ∈ Rm, for m,n ∈ N. If there exists an x ∈ Rn that satisfies (2.1),

then the system of linear equations is consistent. When (2.1) is consistent, we denote the

minimum norm solution to be xtrue, meaning xtrue is the unique vector that satisfies (2.1)

and has the property that if a vector z ∈ Rn satisfies (2.1), then ‖xtrue‖2 ≤ ‖z‖2. Otherwise,

we consider the linear LS problem,

min
x

f(x) = ‖Ax − b‖22 , (2.2)

for which there is always a minimum norm solution, namely xLS.

Row-action methods are known for their cheap computational cost and their ability to ap-

proximate solutions rapidly. Row-action methods have been used in a number of applications

from signal processing [103], compressed sensing [124], artificial intelligence [97], medical

imaging [123], geophysics [145], and game theory [128]. The methods discussed here will

provide a foundation for the methods developed in Chapters 3 and 4 for solving massive

linear inverse problems and eventually in Chapter 5 for solving massive separable nonlinear

inverse problems. We begin by defining row-action methods in 2.1, with various choices of

8
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sampling methods and step sizes discussed in Sections 2.2 and 2.3 respectively. Section 2.4

introduces the Kaczmarz method, which is the most common and widely used row-action

method. Extension of this method including the block Kaczmarz and damped block Kacz-

marz methods are described in Sections 2.5 and 2.6. An extension of the block Kaczmarz

method that allows for more general sampling for the consistent linear system is described

in Section 2.7. We will review work done on row-action methods for solving the Tikhonov

LS problem in 2.8 and end with a brief discussion of row-action methods in a more general

optimization context 2.9. To the best of our knowledge, no row-action methods have been

developed to solve the separable nonlinear inverse problem.

2.1 Definition and Notation

In the context of (2.1), a row-action method is defined as an iterative method that at each

iteration

1. makes no change to the original matrix A,

2. does not require any operations involving the entire matrix A, and

3. uses only a selection of rows of A and b.

The above definition is the same as the one in [30], except for the third criterion which allows

each iteration to use a selection of rows of A and b instead of only one row of A and b at

each iteration. In the following discussion, we denote the ith row of A and b as ai and bi

respectively, and we denote a block of rows of A and the corresponding entries in b as Ai

and bi respectively. Unless otherwise mentioned, the blocks are assumed to correspond to
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the following partition of A and b,

A =


A1

...

AM

 , b =


b1

...

bM

 , (2.3)

where M ∈ N is chosen such that, for each i such that 1 ≤ i ≤ M , Ai ∈ R`×n where

` = m/M ∈ N.

Given an initial vector x0 ∈ Rn, row-action methods are iterative methods that take the

form

xk = xk−1 + αksk (xk−1) , (2.4)

where αk > 0 is the step size and sk can depend on the current and previously sampled rows.

The next two sections describe common choices of sampling strategies and different methods

for determining the step size.

2.2 Sampling Methods

At the kth iteration, a row-action method described in (2.4) uses a new selection of rows

Aτ(k) and bτ(k). Here the function τ (k) represents the selection strategy at the kth iteration.

We describe four sampling methods.

• Cyclic sampling sweeps through the blocks in order, by setting τ(k) = (k−1 mod M)+

1. After every M iterations, every block has been visited the same number of times

and in the same order.
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• Random uniform sampling chooses a random block at each iteration, by setting τ(k)

to the random uniform variable on the set {1, . . .M}. In Chapter 4 this is referred to

as sampling without replacement.

• Random non-uniform sampling chooses a random block based on its relative size to

other blocks. Here τ(k) is the random variable such that p(τ(k) = i) =
‖Ai‖F
‖A‖F

for each

i ∈ {1, . . .M}, where ‖ · ‖F denotes the Frobenius norm.

• Random cyclic sampling is an extension of sampling without replacement that allows

access to blocks more than once. This is done by, for each j ∈ N, setting {τ(k)}(j+1)M
k=jM+1

to a random permutation on the set {1, . . . ,M}. This way after every M iterations,

every block has been visited the same number of times in random order.

Most of the work on row-action methods use cyclic or random uniform sampling, with a

few results utilizing random non-uniform sampling. Random cyclic sampling, or sampling

without replacement, has been noted as an area that needs more development [149], and we

give some attention to this in Chapter 4.

2.3 Step Sizes

The sequence of step sizes {αk} can take various forms. In this work, we consider two options.

• Constant step size where αk = α for some α > 0. Here, α is called the relaxation

parameter. When α > 1 this is called over-relaxation, and when α < 1 this is called

under-relaxation.

• Decaying step size chooses a sequence {αk} such that αk
k→∞−→ 0. A decaying step size

often helps to guarantee asymptotic convergence of a row-action method, but it will
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slow convergence.

2.4 The Kaczmarz Method

The first row-action method is accredited to Stephan Kaczmarz in 1937 [111, 150]. Given

an initial guess x0, the Kaczmarz method is defined as

xk = xk−1 − αk

aτ(k)xk−1 − bτ(k)∥∥aτ(k)

∥∥2
2

a>
τ(k). (2.5)

The Kaczmarz method has an intuitive geometric explanation–for αk = 1, the Kaczmarz

method orthogonally projects xk−1 onto the hyperplane aτ(k)x = bτ(k). Due to the geometric

nature of the Kaczmarz method, it has a natural connection to the method of projection

onto convex sets (POCS) [30] and alternating projection methods [16, 58].

Much of the early work on the Kaczmarz method was for consistent linear systems of equa-

tions. First, we present the theory for this case. Then we look at the corresponding theory

for LS problems.

2.4.1 Consistent Linear System

Kaczmarz proved that for a consistent linear system, with the additional assumption that

xtrue is unique, the iterates defined in (2.5) converge to xtrue under cyclic sampling with

αk = 1 [100, 101]. The Kaczmarz method initially received little attention (except in [17,

61, 156]), but in the 1970s the method began to receive recognition within the medical

imaging community under the name algebraic reconstruction technique (ART) [67]. ART

was recognized for its cheap computational cost and its ability to produce approximates of
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xtrue rather quickly [2, 18, 29, 63, 84, 90, 114, 123, 151, 155, 159]. Due to its simplicity, the

Kaczmarz method was used in the first medical commercial CT scanner in 1972 [10, 89].

Convergence theory was developed to incorporate different step sizes. For constant step

size, αk = α ∈ (0, 2) it was shown that the iterates in (2.5) converge at a linear rate to

the minimum norm solution, xtrue, of the linear consistent system under cyclic sampling.

The convergence rates at this time relied heavily on the geometric nature of the problem

and included values that were hard to compute, and thus hard to compare to other existing

methods [84, 123, 159]. In 2014, a more accessible bound for convergence of the Kaczmarz

method with cyclic sampling was derived. Assuming that A ∈ Rm×m is invertible in (2.1),

the iterates in (2.5) with cyclic sampling satisfy, for each j ∈ N,

‖xjm − xtrue‖22 ≤
[(

1− det
(
D−1A

) 2
m

)]jm
‖x0 − xtrue‖22 , (2.6)

where D ∈ Rm×m is the diagonal matrix whose entries are the 2-norms of the rows of A, i.e.

D =


‖a1‖2

. . .

‖am‖2

 . (2.7)

It is easily verified that 0 < det (D−1A) ≤ 1 [161].

The converge rate in (2.6) depends on the number of rows in A. For the Kaczmarz method

under cyclic control, convergence rates often depend on m, which is not reflective of the

favorable quick convergence of the algorithm. Furthermore, convergence theory of the Kacz-

marz method often uses cyclic sampling, but it was observed that when the Kaczmarz

method was performed with random uniform sampling, the algorithm convergence was faster
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[59, 85, 123, 151]. In 2009, a convergence rate for the Kaczmarz method with non-uniform

random sampling was shown to have a linear convergence rate based on the scaled condition

number of A, κ (A) = ‖A‖F

∥∥A†
∥∥
2
, where A† is the Moore-Penrose pseudo-inverse of A and

‖·‖F is the matrix Frobenius norm defined as ‖A‖F = ‖vec (A)‖2. This rate is given by

E ‖xk − xtrue‖22 ≤
(
1− κ (A)−2)k ‖x0 − xtrue‖22 ,

assuming that A has full column rank [148, 149]. Notice that this convergence rate does not

depend on the number of rows of A.

Later it was noted that non-uniform random sampling has overall little influence on the

convergence rate [33]. For uniform random sampling, the bound on the convergence rate can

easily be modified

E ‖xk − xtrue‖22 ≤
(
1− κ

(
D−1A

)−2
)k

‖x0 − xtrue‖22 ,

where D ∈ Rm×m is defined as in (2.7) [161]. Additionally when A ∈ Rn×n is invertible,

κ(D−1A) =
∥∥D−1A

∥∥
F

∥∥A−1D
∥∥
2
≤ maxi ‖ai‖2√∑m

i ‖ai‖22
‖A‖F

∥∥A−1
∥∥
2
≤ κ(A), (2.8)

implying that the bound for the rate of convergence from sampling uniformly is better than

the rate of convergence from sampling non-uniformly, i.e.,

(
1− κ

(
D−1A

)−2
)
≤
(
1− κ (A)−2) . (2.9)

To complete the convergence theory for the Kaczmarz method under random uniform sam-
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pling for the consistent linear system of equations, the asymptotic behavior of the randomized

Kaczmarz method was studied in [35] showing that the iterates xk converged almost surely

to the true solution, i.e., xk
a.s.−→ xtrue.

2.4.2 Linear Least Squares

For inconsistent systems, the Kaczmarz method does not necessarily converge to a minimizer

of LS problem in (2.2). Under cyclic sampling, for constant step size αk = α ∈ (0, 2) and

x0 ∈ Range
(
A>) = {x | x = A>y for some y ∈ Rm}, the cyclic subsequences {xjm+i}∞j=1

converge for each i ∈ N such that 0 ≤ i ≤ m− 1. More specifically, for matrices

B(i) =



a((i−1)modm)+1

a(imodm)+1

...

a((i+m−2)modm)+1


, y(i) =



b((i−1)modm)+1

b(imodm)+1

...

b((i+m−1)modm)+1


, (2.10)

D(i) = diag
(
BiB>

i

)
, and

L(i) =



0

a(imodM)+1a>
((i−1)modm)+1 0

... . . .

a((i+m−2)modm)+1a>
((i−1)modm)+1 . . . a((i+m−2)modm)+1a>

((i+m−3)modm)+1 0


,

(2.11)



16 Chapter 2. Row-action Methods

the cyclic subsequence {xjm+i}∞j=1 converges

lim
j→∞

xjm+i = x̃i,

where x̃i is the unique solution in Range
(
A>) to

B>
(i)

(
D(i) + αL(i)

)−1 B(i)x = B(i)

(
R(r) + αL(r)

)−1 y(i).

The vector x̃i is not necessarily the LS solution. Although, as α → 0, x̃i → x̃, where x̃ is

the minimum norm solution to

min
∥∥D−1 (Ax − b)

∥∥2
2
, (2.12)

with D ∈ Rm×m is defined as in (2.7) [98, 114, 123, 151, 159].

This result has two significant contributions. First, for constant step size, the iterates do not

converge in the traditional sense but vary from one “solution” to the next. A diminishing

step size remedies this variation in the iterates. Second, as the step size gets smaller, the

iterates do not converge to a minimizer of the LS problem but rather to a minimizer of

the weighted LS problem in (2.12). These two quantities can be arbitrarily far apart, see

Chapter 3, Section 3.3 for an illustration.

For random uniform samples, similar results have been derived. For constant step size α < 1

and x0 ∈ Range
(
A>),



2.4. The Kaczmarz Method 17

E ‖xk − x̃‖22 ≤
[(

1− 2α(1− α)

κ (D−1A)

)]k
‖x0 − x̃‖22 +

α

1− α
κ
(
D−1A

)
r̃, (2.13)

where r̃ = ‖D−1 (Ax̃ − b)‖22 /m and x̃ is the minimum norm solution to (2.12) [125]. This

bound shows that the mean square error between iterates of the randomized Kaczmarz al-

gorithm converge to a weighted LS solution linearly up to what is known as a “convergence

horizon.” As α gets closer to zero, the rate of convergence goes to 1, while the convergence

horizon gets smaller. This demonstrates a trade-off between speed of convergence and pre-

cision of iterates that is based on the step size.

By modifying the step sizes, the Kaczmarz method can be made to converge to the LS

solution under cyclic and random sampling [125]. For cyclic sampling, setting αk = α
∥∥aτ(k)

∥∥2
2

for α ∈
(
0, 2mini ‖ai‖−2

2

)
ensures that xk → xα, where xα ∈ Rn depends on step size α,

such that xα
α→0−→ xLS [32]. For random uniform sampling, setting αk = α

∥∥aτ(k)

∥∥2
2

for

α ∈ (0, ‖A‖−2
F ) gives the following bound

E ‖xk − xLS‖22 ≤
[(

1− 2α(1− 2α)

κ (A)

)]k
‖x0 − xLS‖22 +

α

1− 2α
κ (A)

2r̂
n ‖A‖2F

, (2.14)

where r̂ = E
∥∥∥a>

τ(k)

(
aτ(k)x̃ − bτ(k)

)∥∥∥2
2

[125].

As we will see in Chapter 3, these choices of step sizes are effectively transforming the

Kaczmarz method from a stochastic Newton method to a stochastic gradient method, to fix

the bias in the convergence of the iterates. For further discussion see Section 3.2.2.
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2.5 The Block Kaczmarz Method

The Kaczmarz method can be naturally extended to the block Kaczmarz method. For an

initial guess x0 ∈ Rn, the block Kaczmarz iterates are defined by

xk = xk−1 − αkA†
τ(k)

(
Aτ(k)xk−1 − bτ(k)

)
. (2.15)

For αk = 1 and a consistent linear system, this method projects the iterate xk−1 onto the

hyperplane Aτ(k)x = bτ(k). In the case of block size ` = 1, this method is equivalent to

the Kaczmarz method. The block Kaczmarz method was first studied under cyclic control

[54], and was studied extensively in the medical imaging context. For a consistent system

of linear equations, x0 ∈ Range
(
A>), and αk = α ∈ (0, 2), the iterates in (2.15) converge

to the minimum norm solution xtrue [152]. If the matrix A has full column rank and each

block Ai has full row rank, then for each j ∈ N,

‖xjM − xtrue‖2 ≤

(1− (det(A))2∏M
i=1 det(A>

j Aj)

) 1
M


jM
2

‖x0 − xtrue‖2 , (2.16)

where xtrue is the unique solution to the system [7].

For the LS problem, the iterates are shown to have convergent cyclic subsequences, which is

similar to the Kaczmarz method [53, 54]. In a randomized context, convergence bounds on

the mean square error have been developed, similar to those for the Kaczmarz method. For

A full column rank, step size α = 1, and x0 ∈ Rn,

E ‖xk − xLS‖22 ≤
[
1− σ2

min (A)

mAmax

]k
‖x0 − xLS‖2 +

Amax

Amin

‖AxLS − b‖22
σ2 (A)

where Amax and Amin are positive scalars such that Amin ≤ λmin (Ai) and λmax (Ai) ≤ Amax
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for each i such that 1 ≤ i ≤M . For all k, this bound again shows a linear convergence rate

up to a convergence horizon. For more general step sizes, no similar bound has been derived.

For a decaying step size, no asymptotic convergence has been shown for the block Kaczmarz

method with random sampling. However, the randomized extended block Kaczmarz method

utilizes blocks of columns of A in addition to blocks of rows of A to guarantee convergence

of iterates to the LS solution. In Section 3.3 we show that convergence to the LS problem is

not guaranteed when only row samples are available.

2.6 The Damped Block Kaczmarz Method

When the matrix blocks Ai are ill-conditioned, the inversion in (2.15) can cause iterates

to become contaminated with noise. To remedy this, the damped block Kaczmarz method

introduces a damping term in the inversion,

xk = xk−1 −
(
α−1
k I + A>

τ(k)Aτ(k)

)−1 A>
τ(k)

(
Aτ(k)xk−1 − bτ(k)

)
. (2.17)

Notice that the sequence of step sizes has been moved and is now represented as the sequence

of damping terms.

A convergence analysis of this method has only been investigated in a cyclic context. As-

suming that the step sizes αk satisfy
∑
αk = ∞ and αk → 0, and that there is a c ∈ R such

that A>
τ(k)

(
Aτ(k)xk − bk

)
≤ c for all k, the iterates in (2.17) satisfies the condition

lim
k→∞

‖Axk − b‖22 = ‖AxLS − b‖22 . (2.18)

This shows, in the case of A being full column rank, that xk → xLS. For constant step size
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α ∈ (0, 2),

lim inf
k→∞

‖Axk − b‖2 = ‖AxLS − b‖2 +
αM2c2

2

(
4 +

1

M

)
. (2.19)

This shows a subsequence of xk produces values Axk−b to within a threshold of the optimal

residual AxLS − b. Note that as the step size gets smaller, the threshold goes to zero [3]

2.7 Generalized Block Structure for Consistent Sys-

tems

Row-action methods for consistent linear systems have been developed that allow for a more

general selection of blocks Ak and bk. For a random matrix W ∈ Rm×`, blocks may be

define as Ak = W>
k A and bk = W>

k b where the matrices {Wk}∞k=1 are independent and

each identically distributed to W. This allows the blocks Ak and bk to contain linear

combination of rows of A and corresponding entries of b. For x0 ∈ Rn the iterates

xk = xk−1 − A>
k

(
AkA>

k

)−1
(Akxk−1 − bk)

satisfy the following convergence properties

‖E [xk − xtrue]‖22 ≤ ρk ‖x0 − xtrue‖22 ,

and

E ‖xk − xtrue‖22 ≤ ρ2k ‖x0 − xtrue‖22 ,
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where xtrue is the unique solution to the consistent linear system with A full column rank,

and W is chosen in such a way to guarantee ρ = 1 − λmin

(
E
[
AW

(
W>AAW

)† W>A
])

is between 0 and 1. These bounds show a linear convergence rate to the true solution of

a consistant system for the sequence of first moments E [xk] and the mean square error

E ‖xk − xtrue‖22. Specific choices of W produce the randomized Kaczmarz and block Kacz-

marz method [69], which we will also see in Section 3.2.

2.8 Row-action Methods for the Tikhonov LS Problem

There have been fewer works on extensions of row-action methods to solve the Tikhonov

problem, (1.1). In the case of L = In, the minimum norm solution to (1.1), xTik, can be

found by applying the Kaczmarz method to the consistent system of linear equations

[
Im A√

λ

]u

x

 =
b√
λ
. (2.20)

This is because the minimum norm solution in (2.20) is given by

u∗

x∗

 =

Im
A>
√
λ

(In +
1

λ
A>A

)−1 b√
λ
, (2.21)

which implies

x∗ = A> (Im + AA>)−1 b =
(
In + A>A

)
A>b = xTik

[86, 87].

A row-action method that uses past samples to obtain the Tikhonov least square problem
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has been introduced. Under cyclic control, the Sherman Morrison iteration defines iterates

at the kth iteration for 1 ≤ k ≤ m as

xk = xk−1 −
a>
τ(k)xk−1

1 + a>
τ(k)zk−1,k

zk−1,k, (2.22)

and for k + 1 ≤ j ≤ m as

zk,j = zk−1,j −
a>
τ(k)zk−1,j

1 + a>
τ(k)zk−1,k

zk−1,k, (2.23)

where x0 =
1
λ2

(
L>L

)−1 and z0,j =
1
λ2

(
L>L

)−1 a>
τ(j) for 1 ≤ j ≤ m.

At the Mth iteration xM = xTik [112, 142]. We will see that this algorithm can be generalized

to include larger blocks of A and has connections to the recursive LS algorithm discussed in

Chapter 4.

To solve the Tikhonov problem, any row-action method can be applied to

min
x

∥∥∥∥∥∥∥
 A
√
λL

x −

b

0


∥∥∥∥∥∥∥
2

2

, (2.24)

however when the Kaczmarz and block Kaczmarz methods are applied to the underlying

linear system, convergence is not guaranteed. In Chapter 4, we consider the approach

of applying row-action methods to (2.24), developing row-action methods that guarantee

asymptotic convergence to xTik while utilizing regularization parameter updates.
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2.9 Other Row-action Methods

The row-action methods described in this chapter were primarily focused on the linear sys-

tem of equations; however, row-action methods can be applied to more general problems.

Row-action can be seen as a much more broad class of algorithms for unconstrained and

constrained optimization [30]. The Kaczmarz method has been applied to optimization

problems involving linear operators in a Hilbert space [62, 118], finding the inverse of a

matrix [68] quadratic equations [37], convex optimization [147] and has been applied to

nonlinear functions of different forms [24, 48, 117, 118].

Row-action methods have been connected to other classes of algorithms. The Kaczmarz

and block Kaczmarz method can be seen as a particular case of the projection onto convex

sets algorithm and alternating projections methods [28, 31, 58]. There are also connections

between the Kaczmarz method the Gauss-Seidel method for the LS problem [15]. Row-action

methods have recently been connected with proximal gradient methods, where variants of

the Kaczmarz method have been applied to the LS problem with total variation and `1

regularization [3, 13, 14].



Chapter 3

Stochastic Newton and Quasi-Newton

methods

Randomized row-action methods can be interpreted as stochastic Newton and quasi-Newton

methods applied to a stochastic reformulation of the LS problem. This observation allows

new insights into the convergence properties of known algorithms including the block and

damped block Kaczmarz algorithms. Furthermore, from this stochastic optimization frame-

work, we will develop a new row-action method, called slimLS, that utilizes memory of past

samples and has favorable convergence properties.

This chapter is concerned will solving the massive LS problem,

min
x
f(x) := ‖Ax − b‖22 , (3.1)

where A ∈ Rm×n and b ∈ Rm, with m,n ∈ N being massive in the sense that a min{m,n}×

{m,n} is too large to store in computer memory and matrix vector multiplications of A with

a dense vector are not feasible.

We begin by reformulating the LS problem as a stochastic optimization problem in Section

3.1. The equivalence between stochastic approximation methods applied to this reformu-

lation and row-action methods for the LS problem is presented in Section 3.2, and the

stochastic quasi-Newton methods rrls and slimLS are defined. We present novel asymp-

24



3.1. Stochastic Reformulation of the LS Problem 25

totic convergence theory for the block Kaczmarz method in Section 3.3, showing that under

random sampling the iterates converge to a weighted LS solution. In Section 3.4, we show

that the rrls and slimLS methods converge to the LS solution. We study slimLS and find

a trade-off between precision in iterates and convergence rate that is based on step size.

Numerical examples are presented in 3.5, Proofs for theorems and lemmas in this chapter

are shown in Appendix A.2. In Chapter 4 we extend the described methods to the Tikhonov

LS problem.

3.1 Stochastic Reformulation of the LS Problem

Let W ∈ Rm×` be a random variable such that E
[
WW>] = βIm, where `� m and β > 0.

Define fW (x) :=
∥∥W> (Ax − b)

∥∥2
2
. For each x ∈ Rn,

E
∥∥W> (Ax − b)

∥∥2
2
= E

[
(Ax − b)> WW> (Ax − b)

]
(3.2)

= β (Ax − b)> (Ax − b) (3.3)

= β ‖Ax − b‖22 . (3.4)

Therefore the stochastic optimization problem,

min
x

E
∥∥W> (Ax − b)

∥∥2
2
, (3.5)

has the same solution set as the LS problem in (3.1). In the context of randomized linear

algebra, W would be called a sketching matrix [9, 36, 50, 51, 135, 163].
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3.2 Stochastic Approximation Algorithms

In this section, we describe stochastic approximation (SA) methods for computing a solution

to (3.5), and connect them to row-action methods for the LS problem (3.1). Stochastic

approximation algorithms are iterative optimization methods for objective functions that

contain an expected value. For a general introduction to SA methods, see [11, 105, 106, 140].

Given an initial vector x0 ∈ Rn, SA methods applied to (3.1) define a sequence of iterates

xk = xk−1 + sk, (3.6)

where {sk} is a sequence of search directions such that sk depends on the iterate xk−1 and the

random variables W1, . . . ,Wk, where each Wk independent and has an identical distributed

to W.

At the kth iteration A>
k = W>

k A ∈ R`×n, bk = W>
k b ∈ R` will denote the block of rows

of A and b that are sampled. The size of these blocks allows them to be used in numerical

computations unlike the full matrix and vector A and b.

3.2.1 Generalized Block Structure

The choice of W described below determines the linear combination of rows of A and b that

are sampled from the LS problem. There are many choices of W that are available:

1. Random sparse matrices. Let W ∈ Rm×` be a random matrix with i.i.d. random elements

wij where, for a fixed 0 < ψ ≤ 1, wij takes the values ±
√
β/`ψ for a β > 0 each with

probability ψ/2 and the value zero with probability 1− ψ. It is straightforward to verify

that E(WW> ) = βIm. Notice that as ψ gets closer to zero, more sparsity is introduced

in W. It is worth mentioning that this choice of W is a generalization of Achlioptas
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random matrix (ψ = 1/3 and β = `) and the Rademacher distribution (ψ = 1 and

β = `), see [1, 74].

2. Generalized Kaczmarz matrices. For i = 1, . . . , p, let Qi ∈ Rm×`i be such that Q =

[Q1, . . . ,Qp] ∈ Rm×m is an orthogonal matrix. Define the distribution of W to be uniform

on {Q1, . . . ,Qp}. Then

E
(
WW>) = 1

p

p∑
i=1

QiQ>
i = 1

p
Im.

Notice that selecting Q = Im, and leads to sampling blocks of rows of A, i.e. W>A =

Aτ(k), where τ(k) is the random uniform variable on the set {1, . . . ,M/`}, this is the

typical block choice for row-action methods, described in Chapter 2, Section 2.1. We will

refer to this particular choice of blocks as Kaczmarz blocks. Choosing the elements of Q to

be ±1 (or in {0,±1}) leads to (sparse) randomized Hadamard matrices [23, 83]. Notice,

that sparsity may be introduced by the particular choice of Q and that the number of

columns in the Qi’s can differ.

3. Sparse Rademacher matrices. Fix p ≤ m. The columns wi of W ∈ Rm×` are i.i.d.

and each column can be any m × 1 vector with p-nonzero entries in {±1} with equal

probability. Hence, conditional on a vector configuration, C, of p ones and m− p zeros,

each column wi has conditional expectation

E(wiw>
i | C ) = Im,C ,

where Im,C is the diagonal matrix with the configuration C in the diagonal. It follows
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that

E(wiw>
i ) = EE(wiw>

i | C ) =

m− 1

p− 1


m
p


Im = p

m
Im,

and therefore E(WW> ) = (` p/m) Im. Note that the case p = m generates full Rademacher

matrices. The distinction between the other choices of W is that entries of the sparse

Rademacher matrices are not i.i.d., as in the random sparse matrices, and do not nec-

essarily come from partitions of orthogonal matrices, as in the generalized Kaczmarz

matrices.

As discussed in Section 3.1, the solutions to problems (3.1) and (3.5) are equivalent if

E(WW>) = βIm. Adjusting the sampling matrix W such that E(WW>) = Γ−1 for a

positive definite matrix Γ ∈ Rm×m would make the stochastic optimization method in (3.5)

have the same solution set as the weighted LS problem

min
x

‖Ax − b‖2Γ−1 .

This could be useful when, for example, solving the inverse problem

b = Ax + ε,

in the case where ε ∼ N (0,Γ) [27]. However, for simplicity of presentation, we consider

Γ = βIm.
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3.2.2 Connection to Row-action Methods

Different choices of sk in (3.6) produce different row-action methods.

• Stochastic gradient methods. The most common SA approach is the stochastic gradient

method, where sk = αk∇fWk
(xk−1) and iterates are defined as

xk = xk−1 − αkA>
k (Akxk−1 − bk) , (3.7)

for a given x0 ∈ Rn, where {αk} is the sequence of step sizes. A discussion on the

choice of step size is made in the section below. Iterates in (3.7) have been studied as

variants of the Kaczmarz and block Kaczmarz algorithms, see Chapter 2 Sections 2.4

and 2.5. In general, the popularity of the stochastic gradient method stems from its

proven consistency properties and its easy implementation [19]. However, the stochas-

tic gradient method is known to converge slowly [164] and is sensitive to the choice of

step size αk [139, 166]. Thus, higher order methods are desired.

• Stochastic Newton methods. For the stochastic Newton (SN) method, the search di-

rection is typically defined as

sk = αk

(
∇2fWk

)† ∇fWk
(xk−1), (3.8)

where the sample Hessian is given by ∇2fW = A>
k Ak , and † denotes the Moore-Penrose

pseudoinverse. Using properties of the pseudoinverse, the iterates become identical to

the block Kaczmarz method,

xk = xk−1 − αkA†
k(Akxk−1 − bk ). (3.9)
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When the sample Hessian is ill-conditioned, a damping term is added to the sample

Hessian in the search direction,

sk =
(
α−1
k I +∇2fWk

)† ∇fWk
(xk−1),

which yields the damped block Kaczmarz method,

xk = xk−1 −
(
α−1
k I + A>

k Ak

)−1 A>
k (Akxk−1 − bk) .

• Stochastic quasi-Newton methods. For the stochastic quasi-Newton method, the search

direction is given by

sk = −Bk∇fWk
(xk−1), (3.10)

where the sequence of positive definite matrices {Bk} approximate the inverse Hessian(
A>A

)−1, choices discussed below.

The randomized recursive least squares algorithm, rrls, uses all previous samples to

approximate the Hessian, and the iterates are given as

xk = xk−1 −

(
α0C +

k∑
i=1

A>
k Ak

)−1

A>
k (Akxk−1 − bk) ,

where C is a positive definite matrix and α0 ∈ R+. We will see in Chapter 4 the

connection between this algorithm and the recursive least squares algorithm, which

gives it powerful convergence properties. The main disadvantage is that this algorithm

requires storing an n × n matrix in memory or solving a progressively larger linear

LS system at each iteration, which makes it impractical for massive problems. The
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sampled limited memory method for the LS problem, slimLS, uses only a few previous

samples to approximate the Hessian
(
A>A

)−1 to avoid this computational bottleneck.

Given a memory parameter r ∈ N, the kth slimLS iterate is defined as

xk = xk−1 − BkA>
k (Akxk−1 − bk) (3.11)

with

Bk =
(
α−1
k /(r + 1)Ck + M>

k Mk

)−1 and Mk =

[
Ak−r, . . . , Ak

]>
.

Here {Ck} is a sequence of positive semi-definite matrices. On the one hand slimLS

is a limited memory variant of the rrls algorithm that only uses r previous samples

instead of all previous samples. The slimLS method could also be interpreted as

a generalization of the damped block Kaczmarz method, where the block Kaczmarz

method is recovered when r = 0 and Ck = In.

There are many benefits of the slimLS method. slimLS exhibits favorable initial

convergence, similar to stochastic Newton-type methods, but with the added benefit

of asymptotic convergence to the LS solution, which we will discuss in Section 3.4.

3.2.3 Choice of Step Size

Selecting a good step size αk (or learning rate, as it is referred to in machine learning)

is critical. A variety of methods have been proposed to improve convergence rates, see

for instance [19, 46, 146]. To ensure asymptotic convergence, a decaying step size is often
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necessary. In this case we will assume the step size meets the following conditions

∑
αk = ∞ and

∑
α2
k <∞, (3.12)

when proving asymptotic convergence in Sections 3.3 and 3.4. This is satisfied, for example,

by setting the step sizes to the harmonic sequence αk = 1/k, see [137]. We will also consider

the case when αk = α is constant, for α ∈ (0, 2). By using a constant step size, we sacrifice

the asymptotic convergence properties of the algorithm, but we see the favorable initial

convergence properties that these algorithms are known for.

3.3 Almost Sure Convergence of the SN Method

In this section, we study the consistency of the SN method, which provides new convergence

theory for the randomized block Kaczmarz method. The following result shows that the

SN method does not necessarily converge to an LS solution, but instead to a weighted LS

solution. See Section A.2 in the appendix for the proof.

Theorem 3.1 (a.s. convergence of the SN method). Let A ∈ Rm×n have rank n and b ∈

Rm. Let W ∈ Rm×` be a random variable with M realizations and with the property that

E
[
WW>] = βIn for some β > 0. Let {αk} be a positive sequence of scalars such that

∞∑
k=1

αk = ∞ and
∞∑
k=1

α2
k <∞.

Set P = E
[
A†

kW>
k

]
and x̃ = (PA)−1Pb, and let x0 ∈ Rn be an arbitrary initial vector.

Define

xk = xk−1 + αkA†
k (Akxk−1 − bk)
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Then xk
a.s.−→ x̃.

When W is chosen so that Ak are Kaczmarz blocks as defined in Section 3.2.1. Theorem

3.1 shows asymptotic convergence to a weighted LS solution for the Kaczmarz and block

Kaczmarz method. For the Kaczmarz method, iterates converge to

x̃ = arg min
x

∥∥D† (Ax − b)
∥∥2
2
,

where D ∈ Rm×m is defined as in (2.7) For the block Kaczmarz method, iterates converge to

x̃ = arg min
x

∥∥F† (Ax − b)
∥∥2
2

where

F =


A1

. . .

AM

 .
These are the first almost sure convergence results for the Kaczmarz and block Kaczmarz

methods for a non-consistent linear system [42]. In general, the solution to this weighted LS

problem can be arbitrarily far away from the solution to the standard LS problem.

We now provide some insight regarding the potential discrepancy between the desired LS

solution x̂ and the solution to which the SN method converges, namely,

x̃ = (PA)−1Pb = (E [(W>A)†W>A ] )−1 E[ (W>A)†W> ]b. (3.13)

The difference between x̂ and x̃ depends on P, and we can say the following. Assuming that

b = Axtrue + ε, (3.14)
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where the random noise ε has zero mean and covariance matrix Var(ε) = σ2Im, we have

ExLS = xtrue, Var(x̂) = σ2 (A>A)−1,

E x̃ = xtrue, Var(x̃) = σ2 (PA)−1PP>(A>P>)−1.

This shows that x̂ and x̃ are both unbiased estimators of xtrue, but by the Gauss-Markov

theorem, x̂ is expected to have smaller variance. Consider the following simple example:

Example. Consider the LS problem, where

A =


µ 0

0 1

1 −1

 and b =


1

1

ν

 ,

for some fixed µ, ν ∈ R. We compare the LS solution and the solution obtained via stochastic

Newton with random Kaczmarz vectors w ∈ Rm×1 (see page 27). It is easy to see that in

this case we have

P = A>D−1 with D−1 = diag{1/‖a1‖2, 1/‖a2‖2, 1/‖a3‖2},

where ai are the rows of A. It follows that x̃ minimizes the weighted LS functional (b −

Ax)>D−1(b − Ax). We obtain the following solutions:

x̂ =
1

2µ2 + 1

 2µ+ ν + 1

µ− µ2ν + µ2 + 1

 and x̃ =
1

4

1 + ν + 3/µ

3− ν + 1/µ

 ,
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respectively. The covariance matrices of x̂ and x̃ are

Var(x̂) = σ2

2µ2 + 1

2 1

1 µ2 + 1

 , Var(x̃) = σ2

4µ2

2µ2 + 9 8µ2 + 3

8µ2 + 3 10µ2 + 1

 .
It is clear that the variances of the components x̃ can be much larger than those of x̂. The

solution x̃ would have smaller variance if the covariance matrix of the noise was proportional

to P−1 instead of Im. Figure 3.1 shows the error ω(µ, ν) = ‖x̂ − x̃‖ for various choices of µ

and ν. The left panel shows that ω → ∞ as µ → 0, which makes sense as the first row of

A becomes all zeros. The right panel shows that even for µ 6= 0, a significant error can be

incurred by varying ν – and therefore the “observation vector” b.
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Figure 3.1: Error ω(µ, ν) of the stochastic Newton solution x̃ compared to x̂. In the plot on
the left, ν = 10 and we vary µ. Notice that a pole exists at µ = 0, where the relative error
becomes arbitrarily large. The plot on the right illustrates the impact of varying ν for fixed
µ = 1.

Although the difference between x̃ and x̂ can be significant, there are cases where they

are identical. Some previous works have studied the problem of how close x̃ is to x̂, e.g.,

[50, 163]. However, their assumptions do not apply to our matrix P. For our problem, x̃ = x̂

when the linear system is consistent, since in this case, PAx̂ = Pb, or when (A>A)−1A> =

(PA)−1P, which is equivalent to null(A>) ⊆ null(P), since Ax̂−b ∈ null(A>) implies that
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P(Ax̂−b) = 0. In the example above, this occurs when ν = 1/µ−1 (e.g., µ = 1 and ν = 0).

3.4 Analysis of quasi-Newton Methods

In this section, we present the convergence properties of rrls and slimLS. First, we analyze

the asymptotic behavior, showing almost sure convergence to the LS solution. Then, a non-

asymptotic analysis is done to show expected linear convergence of the first moment and

mean square error of the iterates.

3.4.1 Almost Sure Convergence

Iterates defined by rrls and slimLS converge to the LS solution. For the linear inverse

problem discussed in Section 1.1.1, this convergence is more favorable than the convergence

to a weighted LS solution of the stochastic Newton methods.

Theorem 3.2. Let A ∈ Rm×n be full column rank and b ∈ Rm. Let W ∈ Rm×` be a random

variable with M realizations and with the property that E
[
WW>] = βIn for some β > 0.

For an initial x0 ∈ Rn, define

xk = xk−1 − BkA>
k (Akxk−1 − bk)

with

Bk =

(
α0C +

k∑
i=1

A>
k Ak

)−1

where

• α0 ≥ 0 and
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• C is a positive definite matrix

Then xk
a.s.−→ xLS.

Theorem 3.3. Let A ∈ Rm×n be full column rank and b ∈ Rm. Let W ∈ Rm×` be a random

variable with M realizations and with the property that E
[
WW>] = βIn for some β > 0.

For memory parameter r ∈ N and initial x0 ∈ Rn, define

xk = xk−1 − BkA>
k (Akxk−1 − bk)

with

Bk =
(
α−1
k /(r + 1)Ck + M>

k Mk

)−1 and Mk =

[
Ak−r, . . . , Ak

]>
,

where

•
∑
αk = ∞ and

∑
α2
k converges,

• {Ck} is a sequence of symmetric positive definite matrices with Ck being W1, . . . ,Wk−1

measurable, with eigenvalues bounded below and above by ηmin, ηmax ∈ R+ respectively,

and

•
∥∥A>

k (Akxk−1 − bk)
∥∥
2
≤ g for g ≥ 0 and all k ∈ N

Then xk
a.s.−→ xLS.

The assumption that
∥∥A>

k (Akxk − bk)
∥∥
2
≤ g is essentially a bound on the second moment

of the search direction BkA>
k (Akxk−1 − bk), since the eigenvalues of Bk are assumed to be

bounded. Bounds of this type are assumed frequently when proving asymptotic convergence

of such algorithms, e.g., in stochastic optimization [11, 19, 20, 22, 71, 106, 120] and for cyclic

control [3, 13, 14].
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As seen in Section 3.3, there is bias in the asymptotic behavior of the stochastic Newton

methods. This bias is from using only the sample Hessian information A>
k Ak. In slimLS as

the step size αk gets small, the sample Hessian A>
k Ak is given less weight in the curvature

matrix Bk. This allows asymptotic convergence to the LS solution but allows early iterations

to use the sample Hessian to get a fast initial convergence, which is why row-action methods

are so popular. In the next section, we show that for a constant step size there is a trade-off

between convergence rate and accuracy of iterations that is based on the step size or how

much weight is put on the sample Hessian.

3.4.2 Convergence Rates

One benefit of row-action methods is their favorable initial convergence properties. With

a decaying step size, the convergence of stochastic approximation algorithms can be quite

slow (sub-linear) in general [21, 126]. In many cases, it is much more practical to use a

constant step size to obtain fast initial convergence, at the cost of sacrificing accuracy of the

approximation, see, e.g., [11, Ch. 3].

For constant step size α ∈ R+, memory level r = 0 and Ck = In, we present converge rate

properties of slimLS. More specifically, we show linear convergence of the expectation of the

iterates and a linear convergence up to a convergence horizon of the mean squared error.

Such analyses have been done for the Kaczmarz and block Kaczmarz methods, but not for

the damped block Kaczmarz method; see Chapter 2 for details.

In the case of constant step size, there will be bias in solution. Define

B = E
[(
α−1In + A>

k Ak

)−1 A>
k Ak

]
. (3.15)



3.4. Analysis of quasi-Newton Methods 39

When A is full column rank, B is symmetric positive definite, see A.2. Define

x̂ = arg min
x

∥∥Bx − E
[
BkA>

k bk

]∥∥2
2

(3.16)

= B−1E
[
BkA>

k bk

]
. (3.17)

We would like to quantify the difference between x̂ and xLS. Notice that when the system

is consistent, i.e., AxLS = b, then x̂ = xLS. This is because we may re-write

x̂ = arg min
x

∥∥E [BkA>
k W>

k

]
(Ax − b)

∥∥2
2
. (3.18)

Clearly,
∥∥E [BkA>

k W>
k

]
(AxLS − b)

∥∥2
2
= 0, and so x̂ = xLS.

For a general LS problem (including inconsistent problems), we provide the following theorem

that gives a loose bound on the difference between xLS and x̂.

Theorem 3.4. Let A ∈ Rm×n be full column rank and b ∈ Rm. Let W ∈ Rm×` be a

random variable with M realizations {W(i)}Mi=1 with the property that E
[
WW>] = βIn for

some β > 0. Define x̂ = B−1E
[
BkA>

k bk

]
where B = E

[(
α−1In + A>

k Ak

)−1 A>
k Ak

]
and

xLS =
(
A>A

)−1 A>b. Then

‖x̂ − xLS‖2 ≤ α
1 + αAmin

1 + αAmax

Amax

pminAmin
E
[∥∥A>

k Ak

∥∥
2

∥∥∥(βA>A
)−1
∥∥∥
2

∥∥A>b
∥∥
2
+
∥∥A>

k bk

∥∥
2

]

where Amax and Amin are the largest and smallest non-zero eigenvalue of A>
k Ak across all

realizations of W, and pmin = min
i
p
(
W = W(i)

)
where p is the probability density function

of W.

In Theorem 3.4, it is important to notice the relationship between the step size α and the

upper bound. Notice that as α gets smaller, the difference between x̂ and xLS gets smaller.
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In light of the asymptotic properties that xk → xLS for a decaying step size in Section 3.4.1,

this result makes sense. In the following theorem, we show linear convergence of the first

moment of xk to x̂, and linear convergence of the mean squared error between xk and x̂ to

what is known as a convergence horizon. We see that there is a trade-off between step size

and the bias in the iterates. Additionally, there will be a trade-off between step size and

convergence rate.

Theorem 3.5. Let A ∈ Rm×n be full column rank and b ∈ Rm. Let W ∈ Rm×` be a random

variable with M realizations and with the property that E
[
WW>] = βIn for some β > 0.

For memory parameter r ∈ N and step length α ∈ R+, define

xk = xk−1 − BkA>
k (Akxk−1 − bk)

Bk =
(
α−1In + A>

k Ak

)−1

Define B = E
[
BkA>

k Ak

]
and x̂ = B−1E

[
BkA>

k bk

]
, then

1. E [xk] → x̂, more specifically

‖E [xk − x̂]‖2 ≤ ρk ‖E [x0 − x̂]‖2

where ρ =
∥∥∥E (In + αA>

k Ak

)−1
∥∥∥
2
< 1,

2.

E
[
‖xk − x̂‖22

]
≤ (1− 2c)k ‖x0 − x̂‖22 + α2c−1σ2

where

(a) 0 < (1 − 2c) < 1, with c = αλmin(B)
(1+αAmax)

, λmin (B) is the minimum eigenvalue of B,
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Amax maximum possible eigenvalue of A>
k Ak, and

(b) σ = E
∥∥A>

k (Akx̂ − bk)
∥∥
2
.

The first part of this theorem shows an expected linear convergence to the weighted LS

solution x̂. The second bound shows linear convergence of the mean square error of iterates

up to a convergence horizon. Notice that as α → 0 the convergence rate approaches one,

but the convergence horizon gets smaller. Additionally as α → 0, x̂ → xLS. This shows a

trade-off between convergence rate and precision of the iterates.

3.5 Numerical Experiments

In this section, we present three experiments. The first experiment is on synthetic data,

numerically comparing the asymptotic behavior of the randomized block Kaczmarz and the

rrls algorithms. The second experiment considers the convergence behavior of slimLS. The

last experiment implements rrls on a large scale image classification problem. Numerical

experiments that implement slimLS on massive inverse problems are deferred to Chapter 4,

when slimLS is applied to the Tikhonov LS problem.

3.5.1 Experiment 1: Asymptotic Behavior of Block Kaczmarz and

rrls

First, we compare the asymptotic behavior of rrls and the block Kaczmarz method. We con-

sider a linear regression problem, where A ∈ R50,000×1,000 is a random matrix with elements

drawn from a standard normal distribution. We let xtrue = 1 ∈ R1,000 and b = Axtrue + ε,

where the additive noise ε is also assumed to be standard normal. We choose W ∈ R50,000×625

to be a block Kaczmarz matrix with block size ` = 625. For the block Kaczmarz method we
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use step size αk = 1/k. For rrls, we chose the initial α0 = 10−5 and C = In. To avoid a

n × n inversion at each step, we update the Bk matrix with the Woodbury formula [65] at

each iteration

Bk = Bk−1 − Bk−1A>
k

(
I` + AkA>

k

)−1 AkBk−1. (3.19)

For both algorithms, we start at a random initial guess x0. In Figure 3.2 we provide plots of

relative errors. In the top left panel, the relative errors are computed as ‖xk − xLS‖/‖xLS‖,

where xk are the rrls iterates, and in the top right panel, the relative errors are computed

as ‖xk − x̃‖/‖x̃‖, where xk are block Kaczmarz iterates. These plots illustrate convergence

of rrls and block Kaczmarz iterates to xLS and x̃ respectively, as shown in Sections 3.3

and 3.4.1. Notice that the block Kaczmarz method exhibits much slower convergence to x̃

than the convergence of rrls (solid blue line) to xLS. The block Kaczmarz method requires

20,000 iterations to reach a relative error of 3.3 ·10−3, while the rrls iterates reach a relative

error of 3.3 · 10−3 after 175 iterations. Moreover, it takes the stochastic quasi-Newton only

22 iterations to achieve a relative error of 10−2.

In the bottom panel of Figure 3.2, we provide reconstruction errors relative to the true

solution ‖xk − xtrue‖ / ‖xtrue‖ , for both methods, which demonstrates that rrls is faster

than the block Kaczmarz method at providing a better approximation of the true solution.

For this experiment the relative error between xLS and x̂ is ‖x̃ − xLS‖ / ‖xLS‖ = 5.69 · 10−3.

It is worth noting that the moderate size of this problem still allows one to use a QR solver

(e.g., Matlab’s “backslash”) to solve the LS problem, which takes about 6 seconds whereas

rrls requires about 12 seconds to run k = 200 iterations.
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Figure 3.2: Experiment 1: The top left panel contains relative errors for rrls iterates,
computed as ‖xk − xLS‖/‖xLS‖, where xLS is the LS solution. The top right panel contains
relative errors for block Kaczmarz iterates, computed as ‖xk− x̃‖/‖x̃‖, where x̃ is defined in
Theorem 3.1. Notice that we display 20,000 iterations for block Kaczmarz iterates and only
200 iterations for rrls. The bottom panel contains relative errors, ‖xk − xtrue‖/‖xtrue‖, for
both rrls and the block Kaczmarz method.
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3.5.2 Experiment 2: Convergence Behavior of slimLS

Decaying Step Size

We now compare the asymptotic behavior of rrls and the slimLS algorithm for the same

experimental set-up as Experiment 1 in Section 3.5.1. For slimLS we choose a step size

αk = 1/k with Ck = In, and vary the memory level r for r = 0, 3, 5. To efficiently compute

the search direction in (3.11), we notice it can be computed by solving the regularized least

squares problem

BkA>
k (Akxk−1 − bk) = arg min

s

∥∥∥∥∥∥∥Mks −

 0

Akxk−1 − bk


∥∥∥∥∥∥∥
2

2

+
r − 1

αk

‖s‖22 , (3.20)

which can be solved using standard Krylov subspace methods such as LSQR [131, 132].

In Figure 3.3 we provide plots of relative errors. The top two plots contains relative errors

for rrls and slimLS iterates for the first 200 and 100,000 iterations, computed as ‖xk −

xLS‖/‖xLS‖, where xLS is the LS solution. The bottom plot relative errors for rrls and

slimLS iterates for the first 100,000 iterations, computed as ‖xk−xtrue‖/‖xtrue‖, where xtrue

is the true solution.

Notice that the convergence of slimLS speeds up the memory level increases. The rrls

method uses all the information from past samples, so its convergence is the fastest. However

rrls is very slow, and for problems where n is massive, not feasible because it requires storing

a n× n matrix in memory. The slimLS method avoids this storage by only keeping r of the

past samples, and replacing the n× n matrix inversion with the linear solve in (3.20).
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Figure 3.3: Experiment 2: The top two plots contains relative errors for rrls and slimLS
iterates for the first 200 and 100,000 iterations, computed as ‖xk − xLS‖/‖xLS‖, where xLS
is the LS solution. The bottom plot relative errors for rrls and slimLS iterates for the first
100,000 iterations, computed as ‖xk − xtrue‖/‖xtrue‖, where xtrue is the true solution.
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Constant Step Size

We now numerically illustrate the convergence properties of slimLS for constant step size.

We us the same problem set-up as Section (3.5.2). For memory level three we vary the step

size α = {10−i}4i=1. In Figure 3.4 we see that for larger step size, the initial convergence

is quick, but the error levels off very early in the iterative process. For smaller step sizes

the initial convergence is slower, but the relative error gets smaller at later iterations before

leveling off. This illustrates the trade-off between convergence rate and precision of iterates,

as shown in Section 3.4.2.

Figure 3.4: Experiment 2: Relative errors for the slimLS iterates for the first 300 it-
erations for different values of constant step size α. The relative error is computed as
‖xk − xLS‖/‖xLS‖, where xLS is the LS solution.

3.5.3 Experiment 3: Image Classification

Next, we investigate the use rrls that arises in extreme learning machines (ELMs). ELM

is a machine learning technique that uses random hidden nodes or neurons in a feedforward



3.5. Numerical Experiments 47

network to mimic biological learning techniques. The literature on ELM in the machine

learning community is vast, with cited benefits that include higher scalability, less com-

putational complexity, no requirement of tuning, and smaller training errors than generic

machine learning techniques. ELM is commonly used for clustering, regression, and classi-

fication. Full details and comparisons are beyond the scope of this paper, and we refer the

interested reader to papers such as [73, 92, 93, 94, 95, 96] and references therein.

At the core of ELM is a very large and potentially dynamically growing linear regression

problem. In this experiment, we investigate the use of stochastic algorithms for efficiently

solving these LS problems. In particular, we consider the problem of handwritten digit

classification using the “MNIST” database [45], which contains 60,000 training images and

10,000 testing images of handwritten digits ranging from 0 to 9. Each image is 28×28 pixels

and converted into a vector ξ ∈ R784 (e.g., corresponding to 784 features).

We begin with a brief description of the classification problem for the MNIST dataset.

Suppose we are given a set of m examples in the form of a training set

S = {(ξ1, c1), · · · , (ξm, cm)} ,

where ξi ∈ R784 and ci takes values from the set of classes C = {0, 1, · · · , 9}. Consider an

ELM with a hidden layer of n nodes. Then the goal is to solve an LS problem of the form,

min
X

‖HX − Y‖2F , (3.21)
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where the hidden-layer output matrix is defined as

H =


h(ξ1)

...

h(ξm)

 ∈ Rm×n

with h(ξ) =

[
h1(ξ) · · · hn(ξ)

]
being the output (row) vector of the hidden layer with

respect to the input ξ, X =

[
x1 · · · x10

]
where xj ∈ Rn contains the desired output

weights for class j , and the training data target matrix Y ∈ Rm×10 takes entries

yij =

 1, if ci = j − 1,

−1, else.

For this example, h(ξ) can be interpreted as a map from the image pixel space to the n-

dimensional hidden-layer feature space. Although various activation functions could be used,

we employ a standard choice of sigmoid additive hidden nodes with

hj(ξ) = G(dj, δj, ξ) = 1/(1 + exp(−d>
j ξ + δj)),

where all of the hidden-node parameters (dj, δj)
n
j=1 are randomly generated based on a

uniform distribution [73]. For our experiments, we set the number of hidden neurons to be

n = 300.

The main computational work of ELM is to solve (3.21). Regularized or constrained so-

lutions have been investigated (e.g., [6, 73, 110]). However, our focus will be on solving

the unconstrained LS problem efficiently and for enormous sets of training data. In order

to generate larger datasets, we performed multiple random rotations of the original 60,000
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training images. More specifically, each image was rotated by 20(η−0.5) degrees, where η is

a random number drawn from a beta distribution with shape parameters equal to 2. In our

experiments, we consider up to 15 random rotations per image, resulting in up to 900,000

training images. Notice that as the number of training images increases, the number of rows

of H increases accordingly, while the number of columns remains the same.

We consider three approaches to solve (3.21) and compare CPU timings. In the original

implementation of ELM [93, 94], the LS solution was computed as X̂ = H†Y where H† is

the Moore-Penrose pseudoinverse of H. We denote this approach “PINV”. Another approach

to solving large (often sparse) LS problems is to use an iterative method such as LSQR

[131, 132], but since the LS problem needs to be solved for multiple right-hand sides (here,

10 solves), we use a global LS method (Gl-LSQR) [157] with a maximum of 50 iterations

and a residual tolerance of 10−6. It was experimentally shown in [157] that Gl-LSQR is more

effective and less expensive than LSQR applied to each right-hand side. We use the rrls

method where W corresponds to the sparse Rademacher matrix with ` = 50 and λ1 = 10−5.

We use a maximum number of iterations of 1,000, a stopping tolerance of tol = 10−4, and

an initial guess of 0. Since the Bk matrices only depend on H and W, rrls can be applied

to multiple right-hand sides simultaneously.

Each LS solver is repeated 20 times in Matlab R2015b on a MacBook Pro with 2.9 GHz Intel

Core i7 and 8G memory, and in Figure 3.5, we provide the median and 5th–95th percentiles of

the CPU times vs. the number of training images (e.g., number of rows in H). It is evident

that for smaller training sets, all three methods perform similarly, but as the number of

training images increases, rrls quickly surpasses PINV and Gl-LSQR in terms of faster

CPU time. For various numbers of training data, we provide in Table 3.1 the mean and

standard deviation of the relative reconstruction error for the rrls estimate, rel = ‖Xrrls−

X̂‖F/‖X̂‖F, and of the number of rrls iterations, k. Our results demonstrate that rrlsdoes
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not necessarily provide the most accurate solutions; however, it can be used to achieve

sufficiently good solutions efficiently.

Figure 3.5: Experiment 3: CPU times (median and 5th–95th percentiles) for solving LS
problem (3.21) using rrls, global LSQR (Gl-LSQR), and the Moore-Penrose pseudoinverse
for various numbers of training images m.

Table 3.1: For various numbers of training images, we provide the mean and standard
deviation for the relative reconstruction errors and the iteration counts for rrls.

m 60,000 120,000 300,000 600,000 900,000
rel 0.2705±0.046 0.2665±0.045 0.2456±0.035 0.2649±0.044 0.2568±0.036

k 632±219 675±227 706±194 631±196 663±180

Next, we test the performance of these estimates for classification of the MNIST testing

dataset. That is, once computed, the output weights X can be used to classify images in the

following way. For each test image, the predicted class is given by

Class of ξ = arg max
j

h(ξ)xj .
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In Figure 3.6 we provide a visualization of the computed classifications for the 10,000 testing

images, where accuracy values in the titles are calculated as 1 − r/10000 where r is the

number of misclassified images. An accuracy value that is close to 1 corresponds to a

good performance of the classifier. These results correspond to training on 60,000 images,

and the testing set was sorted by class for easier visualization. Notice that in Figure 3.6

the misclassified images are almost identical for all three methods, and the classification

accuracy for rrls is only slightly smaller than that of PINV and Gl-LSQR. Thus, we have

shown that the rrls method can achieve comparable classification performance as PINV

and GL-LSQR with much faster learning speed.

It is worth noting that the matrices considered here, though large, can still be loaded into

memory. For problems where this is not the case (e.g., data too large or being dynamically

generated [167]), PINV and Gl-LSQR would not be feasible, while rrls could still be used.

3.6 Remarks and Future Directions

In this chapter, we introduced row-action methods for the LS problems as stochastic approx-

imation methods. Utilizing the connection between SA methods and row-action methods,

the asymptotic behavior of the block Kaczmarz method was derived. We developed a new

row-action method called slimLS, which uses information from past blocks to speed up the

convergence of iterations. This method with memory level zero is identical to the damped

block Kaczmarz method. We show that there is a trade-off between the convergence rate of

this method and the precision of the iterates that is based on step size, and applied these

methods to a large scale classification problem.

There are many future directions that this research can go. For a constant step size, a

thorough analysis of the convergence rates for slimLS for a general memory parameter r
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Figure 3.6: Expiroment 3: Classification (with corresponding accuracy) for the MNIST test
images after training on 60,000 images, using different LS solvers.
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would help understand the properties of slimLS. Additionally adapting the choice of the

random variable W to sample the more essential parts of A could speed up convergence. An

adaptive sampling strategy would be related to importance sampling.

Although rrls has the most favorable convergence properties, it is not feasible when n is

massive, because it requires the storage of an n× n matrix in computer memory. The algo-

rithm slimLS is a limited memory variant of rrls that can be applied to massive problems

where n is massive. In the next chapter, we extend rrls and slimLS to the Tikhonov LS

problem. The connection between these methods and the recursive least squares algorithm

gives new insight into sampling methods and choice of the regularization parameter in the

Tikhonov LS problem.



Chapter 4

Sampled Tikhonov Regularization

When the linear inverse problem is ill-posed, regularization must be introduced to recover

a meaningful solution. This chapter focuses on row-action methods to solve the massive

Tikhonov-regularized problem,

min
x
fλ(x) = ‖Ax − b‖22 + λ ‖Lx‖22 , (4.1)

where λ > 0 is the regularization parameter, and for simplicity we assume that L has full

column rank. When all of b and A are available or can be accessed at once (e.g., via

matrix-vector multiplication with A), the Tikhonov solution,

x(λ) = (A>A + λL>L)−1A>b , (4.2)

can be computed using a plethora of existing iterative methods (e.g., Krylov or other op-

timization methods [78, 102]). There are also many techniques to chose an appropriate

regularization parameter λ when all of A and b are available [25, 56, 72, 76, 78]. These

techniques are not possible for the massive Tikhonov LS problem. Note that x(0) in (4.2) is

the unregularized solution, which is defined if A has full column rank.

In this chapter we extend the row action methods introduced in Chapter 3 to the massive

Tikhonov LS problem in (4.1), and develop sample based regularization techniques to find a

useful regularization parameter during the iteration process. We introduce the block struc-

54
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ture of the problem in Section 4.1. In Section 4.2 we describe two row-action methods for

Tikhonov regularization, rrls and sTik, that utilize all previous blocks of data at each iter-

ation. The sTik method converges asymptotically to a Tikhonov-regularized solution, while

rrls converges to the LS solution, making sTik more favorable for the Tikhonov LS prob-

lem, as seen in Theorem 4.2. Asymptotic convergence results for random uniform sampling

and random cyclic sampling are provided. In Section 4.3 we describe sampled regularization

parameter selection methods that can be used to update the regularization parameter. In

Section 4.4 we show that slimLS applied to the Tikhonov LS problem in (4.1) produces

a limited memory version of sTik, which we call slimTik. Applying the convergence re-

sults of Section (3.4) shows asymptotic convergence of slimTik to the Tikhonov solution.

Numerical illustrations are provided throughout the chapter. Numerical experiments in 4.5

apply slimTik to a tomography problem and a massive super resolution problem. Con-

clusions and future work are discussed in Section 4.6. Derivation of sampled regularization

parameter selection methods are available in Appendix B

4.1 Problem Formulation

In the following, we describe a mathematical formulation of the problem that allows us to

solve (4.1) in situations where samples of A and b become available over time. Since we

would like to use random, cyclic, and random cyclic sampling (introduced in Section 2.2),

we introduce the block structure in a slightly different way than in Chapter 3.

Formally, at the kth iteration, we assume that a set of rows of A and corresponding elements

of b become available, which we denote by W>
k A and W>

k b respectively. Here the matrix

Wk ∈ Rm×` is a sampling matrix, which selects rows of A and b. For a fixed M ∈ N we

assume that matrices {Wi}Mi=1 satisfy the following properties:
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1. for each i ∈ {1, . . . ,M}, Wi ∈ Rm×`, where ` = m
M

and

2. the sum
∑M

i=1 WiW>
i = Im.

The first assumption implies that the size of W>
i A is smaller than the size of A, and thus

computationally manageable. The second assumption guarantees that all rows of A are given

equal weight; however, importance sampling could be included and results in a weighted LS

problem.

There are many suitable choices for {Wi}Mi=1. We will primarily consider the case where

{Wi} are the realizations of block Kaczmarz matrices described in Section 3.2.1. Notice

that the Wi defined in this chapter are matrices and not random variables as in Chapter

3. We will introduce the sampling method at the kth iteration through the variable τ(k) in

Section 4.2, as previously seen in Chapter 2.

4.2 Full Memory Row-action Methods for Tikhonov

Regularization

We investigate two row-action methods that use all previous blocks of data at each iteration.

Let y0, x0 ∈ Rn be initial iterates and let Wi ∈ Rm×`, i = 1, . . . , k be arbitrary matrices.

For notational convenience, we denote Ai = W>
i A and bi = W>

i b. Assuming a fixed

regularization parameter λ, the first method that we consider is regularized recursive least

squares (rrls)1, which is defined as

yk = yk−1 − BkA>
k (Akyk−1 − bk), k ∈ N, (4.3)

1This should not be confused with the residual-reducing LS (RRLS) algorithm referenced in [132].
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where Bk =
(
λL>L +

∑k
i=1 A>

i Ai

)−1

. If Wi is the ith column of the identity matrix, rrls

is an extension of the recursive LS algorithm [15] that includes a Tikhonov term. Since it

may be difficult to know a good regularization parameter in advance, we propose a sampled

Tikhonov (sTik) method, where the iterates are defined as

xk = xk−1 − Bk

(
A>

k (Akxk−1 − bk) + ΛkL>Lxk−1

)
, k ∈ N, (4.4)

where Bk =
(∑k

i=1 ΛiL>L +
∑k

i=1 A>
i Ai

)−1

. Compared to rrls, the main advantages of

the sTik method are that the regularization parameter can be updated during the iterative

process and that in a sampled framework, the sTik iterates converge asymptotically to a

Tikhonov solution whereas the rrls iterates converge asymptotically to an unregularized

solution. Of course, selecting a suitable regularization parameter can be difficult, especially

for problems with a small range of good values. In any case, for inverse problems, it is

desirable that the numerical method for solution computation converges to a regularized

solution.

In this section, we begin by showing that for arbitrary matrices Wi, both rrls and sTik

iterates can be recast as solutions to regularized LS problems.

Theorem 4.1. Let A ∈ Rm×n and b ∈ Rm. Let L ∈ Rs×n have full column rank and

Wi ∈ Rm×`, i = 1, . . . , k be an arbitrary sequence of matrices.

(i) For λ > 0 and an arbitrary initial guess y0 ∈ Rn, the rrls iterate (4.3) with Bk =(
λL>L +

∑k
i=1 A>

i Ai

)−1

is the solution of the LS problem

min
x

∥∥[W1, . . . ,Wk]
>(Ax − b)

∥∥2
2
+ λ ‖L(x − y0)‖22 . (4.5)

(ii) For λk =
∑k

i=1 Λi > 0 for any k and an arbitrary initial guess x0 ∈ Rn, the sTik iter-
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ate (4.4) with Bk =
(∑k

i=1 ΛiL>L +
∑k

i=1 A>
i Ai

)−1

is the solution of the LS problem

min
x

∥∥[W1, . . . ,Wk]
>(Ax − b)

∥∥2
2
+ λk ‖Lx‖22 . (4.6)

Proof of Theorem 4.1. For (ii), note that the solution of the LS problem (4.6) is given

by

x(λk) = Bk

k∑
i=1

A>
i bi.

Noticing the relationship B−1
k = B−1

k−1 + A>
k Ak +ΛkL>L, we get the following equivalencies

for the sTik iterates

xk = xk−1 − Bk

(
A>

k (Akxk−1 − bk) + ΛkL>Lxk−1

)
= Bk

(
B−1

k xk−1 − A>
k Akxk−1 + A>

k bk − ΛkL>Lxk−1

)
= Bk

(
B−1

k−1xk−1 + A>
k bk

)
= Bk

k∑
i=1

A>
i bi = x(λk).

A similar proof can be made for (i).

The above results are true for any arbitrary sequence of matrices {Wk}. Next, we consider a

fixed set of matrices, as described in the introduction, and allow random sampling from this

set. To be precise, define Wτ(k) to be a random variable at the kth iteration, where τ(k) is a

random variable that indicates a sampling strategy. For example, if we let τ(k) be a uniform

random variable on the set {1, . . . ,M}, then we would be sampling with replacement. In

Section 4.2.1 we prove asymptotic convergence of rrls and sTik iterates using this sampling

strategy. We then focus on random cyclic sampling, where for each j ∈ N, {τ(k)}(j+1)M
jM+1 is a

random permutation on the set {1, . . . ,M}. Note, cyclic sampling, where τ(k) = k mod M ,

is a special case of random cyclic sampling. We note that, until all blocks have been sampled,

random cyclic sampling is just sampling without replacement. For random cyclic sampling,
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we characterize iterates after each epoch and prove asymptotic convergence of rrls and sTik

iterates in Section 4.2.2. An illustrative example comparing the behavior of the solutions

is provided in Section 4.2.3. For notational simplicity we denote Aτ(k) = W>
τ(k)A and

bτ(k) = W>
τ(k)b.

Notice that for both random sampling and random cyclic sampling, we have the following

property,

E
[

Wτ(k)W>
τ(k)

]
=

1

M
Im =

`

m
Im . (4.7)

There are many choices for {Wi}, see e.g., [42, 108, 116], but a simple choice is a block

column partition of a permutation matrix. For the choice of {Wi} we will consider, Aτ(k) is

just a predefined block of rows of A.

4.2.1 Random Sampling

Next we investigate the asymptotic convergence of rrls and sTik iterates for the case of

uniform random sampling. This is also referred to as sampling with replacement.

Theorem 4.2. Let A ∈ Rm×n and b ∈ Rm. Let L ∈ Rs×n have full column rank and define

x(λ) as in (4.2). Let {Wi}Mi=1 be a set of real valued m × ` matrices with the property that∑M
i=1 WiW>

i = Im, and let τ(k) be a uniform random variable on the set {1, . . .M}.

(i) Let λ > 0, y0 ∈ Rn be arbitrary, and define the sequence {yk} as

yk = yk−1 − BkA>
τ(k)(Aτ(k)yk−1 − bτ(k)), k ∈ N, (4.8)

where Bk =
(
λL>L +

∑k
i=1 A>

τ(i)Aτ(i)

)−1

. If A has full column rank, then yk
a.s.−→

x(0).
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(ii) Let
∑k

i=1 Λi > 0 for all k, and λ = limk→∞
M
k

∑k
i=1 Λi > 0 be finite. Let x0 ∈ Rn be

arbitrary, and define the sequence {xk} as

xk = xk−1 − Bk

(
A>

τ(k)(Aτ(k)xk−1 − bτ(k)) + ΛkL>Lxk−1

)
, (4.9)

where Bk =
(∑k

i=1 ΛiL>L +
∑k

i=1 A>
τ(i)Aτ(i)

)−1

. Then xk
a.s.−→ x(λ).

Proof of Theorem 4.2. 1. From Theorem 4.1 for any k ∈ N we have

yk =

(
λL>L +

k∑
i=1

A>Wτ(i)W>
τ(i)A

)−1( k∑
i=1

A>Wτ(i)W>
τ(i)b + λL>Ly0

)

=

(
λL>L +

∑k
i=1 A>Wτ(i)W>

τ(i)A
k

)−1(∑k
i=1 A>Wτ(i)W>

τ(i)b + λL>Ly0

k

)
.

Using the fact that EWτ(i)W>
τ(i) = `

m
Im (see equation (4.7)), by the law of large

numbers and Slutsky’s theorem for a.s. convergence [154]

∑k
i=1 A>Wτ(i)W>

τ(i)b + λL>Ly0

k

a.s.−→ `

m
A>b,

and (
λL>L +

∑k
i=1 A>Wτ(i)W>

τ(i)A
k

)−1

a.s.−→ m

`

(
A>A

)−1
.

and therefore

yk
a.s.−→

(
A>A

)−1 A>b = x(0).
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2. In a similar fashion, for any k ∈ N we have

xk =

(∑k
i=1 ΛiL>L + A>Wτ(i)W>

τ(i)A
k

)−1(∑k
i=1 A>Wτ(i)W>

τ(i)b
k

)
.

Using the fact that EWτ(i)W>
τ(i) =

`
m

Im and limk→∞

∑k
i=1 ΛiL>L

k
= `

m
λL>L, we have

∑k
i=1 A>WiW>

i b
k

a.s.−→ `

m
A>b

and (∑k
i=1 ΛiL>L + A>WiW>

i A
k

)−1

a.s.−→ m

`

(
A>A + λL>L

)−1
,

and thus we conclude that

xk
a.s.−→

(
A>A + λL>L

)−1 A>b = x(λ).

The significance of Theorem 4.2 is that the rrls iterates converge asymptotically to the

unregularized LS solution, (A>A)−1A>b, which is undesirable for ill-posed inverse problems.

On the other hand, the sTik iterates converge asymptotically to a Tikhonov-regularized

solution. Note that for a given λ, convergence to x (λ) is ensured by setting Λk = λ/M .

A more realistic scenario would be to adapt Λk as data become available since the desired

regularization parameter is typically not known before the data is received. Hence, parameter

selection strategies for selecting Λk are addressed in Section 4.3.
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4.2.2 Random Cyclic Sampling

Next we investigate rrls and sTik with random cyclic sampling. In addition to proving

asymptotic convergence in this case, we can also describe the iterates as Tikhonov solutions

after each epoch, where an epoch is defined as a sweep through all the data.

Theorem 4.3. Let A ∈ Rm×n and b ∈ Rm. Let L ∈ Rs×n have full column rank and

{Wi}Mi=1 be a set of real valued m×` matrices with the property that
∑M

i=1 WiW>
i = Im, and

let τ(k) be a random variable such that for j ∈ N, {τ(k)}(j+1)M
jM+1 is a random permutation on

the set {1, . . . ,M}.

1. If λ > 0, y0 = 0, and the sequence {yk} is defined as (4.8) with

Bk =

(
λL>L +

k∑
i=1

A>
τ(i)Aτ(i)

)−1

,

then the rrls iterate at the jth epoch is yjM = x
(

1
j
λ
)

.

2. Let {Λk} be an infinite sequence with the property that λk =
∑k

i=1 Λi > 0. If x0 is

arbitrary and the sequence {xk} is defined as (4.9) with

Bk =

(
k∑

i=1

ΛiL>L +
k∑

i=1

A>
τ(i)Aτ(i)

)−1

,

then the sTik iterate at the jth epoch is xjM = x
(

1
j
λjM

)
.

Proof of Theorem 4.3. Notice that for random cyclic sampling schemes and for any it-

eration jM ,
∑jM

i=1 A>Wτ(i)W>
τ(i)A = jA>A and

∑jM
i=1 A>Wτ(i)W>

τ(i)b = jA>b are deter-
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ministic. Hence

yjM = j
(
λL>L + jA>A

)−1 A>b =

(
λ

j
L>L + A>A

)−1

A>b = x
(

1
j
λ
)

and

xjM = j
(
λjML>L + jA>A

)−1 A>b =

(
λjM
j

L>L + A>A
)−1

A>b = x
(

1
j
λjM

)
.

Notice that at every epoch, the effective regularization parameter for rrls, i.e., λ/j, is

reduced. Also, if A has full column rank, we have limj→∞ yjM = x(0). On the other hand, the

sTik iterates converge to a Tikhonov-regularized solution, since at each epoch j = k/M and

we have xjM = xk = x
(
M
k
λk
)

and M
k
λk > 0. In Section 4.2.3 we illustrate the convergence

behavior of the rrls and sTik iterates, but first we make some connections to existing

optimization methods.

4.2.3 An Illustration

In the following illustration, we use a small toy example to highlight the convergence be-

havior of rrls and sTik iterates. We investigate both random sampling and random cyclic

sampling, and we demonstrate convergence by plotting solutions after multiple epochs of the

data. The example we use is a Tikhonov problem of the form (4.1), where

A =

1 δA

0 1

 ∈ R10×2, b = Axtrue + δb, and xtrue = 1.
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Figure 4.1: Illustration of convergence behaviors of rrls and sTik iterates. Shown in the
left panel are the true solution xtrue, the unregularized solution x(0), the Tikhonov solution
x(λ), and rrls iterates after multiple epochs. Both rrls with random sampling iterates
{yr

k} and rrls with random cyclic sampling iterates {yc
k} converge asymptotically to the

unregularized solution. In the right panel, we provide sTik with random sampling iterates
{xr

k} and confidence bounds. These iterates stay close to the Tikhonov solution. The axis
for the right figure corresponds to the rectangular box in the left figure. The concentric gray
circles represent the 95% confidence interval for these iterates after subsequent epochs.

The vectors δA and δb are realizations from the normal distributions N (0, 0.005 I9) and

N (0, 0.1 I10) respectively, and 1 is the vector of ones of appropriate length. We further

choose L = I2 and fix λ = 0.2 for the rrls iterates yk. For sTik iterates xk, we choose the

parameters Λk such that the regularization is constant at each epoch, i.e., 10
k

∑k
i=1 Λi = 0.2.

With this setup we have x(0) = [1.0869,−1.3799]> and x(λ) = [1.0698,−0.0271]>. We let

Wτ(i) be the τ(i)th column of the identity matrix, and set x0 = y0 = 0.

In Figure 4.1, we provide two illustrations. In the left panel, we provide the true solution xtrue,

the unregularized solution x(0), the Tikhonov solution x(λ), and the rrls iterates after each

epoch. The rrls iterates with random sampling with replacement are denoted by yr
k, and the
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rrls iterates with random cyclic sampling are denoted by yc
k. Notice that by Theorem 4.3,

yc
k at each epoch is a Tikhonov solution, i.e., after the jth epoch yc

jM = x
(

1
j
λ
)

. Thus, we

get a set of Tikhonov solutions with vanishing regularization parameters, and these iterates

asymptotically converge to the unregularized solution. For rrls with random sampling,

we run 1,000 simulations and provide one sample path, along with the mean (dotted line)

and region of the 95th percentile shaded in grey. We note that the mean of {yr
k} is almost

identical to the random cyclic sequence {yc
k} (red line) suggesting that the random sequence

{yr
k} is an unbiased estimator of the deterministic sequence {yc

k} (at each epoch). In the

right panel of Figure 4.1, we provide the sTik iterates with random sampling, which are

denoted by xr
k. Again, we run 1,000 simulations and provide one simulation along with the

shaded percentiles. It is evident that with more epochs, the iterates approach the desired

Tikhonov solution. To aid with visual scaling, the axis for the right figure corresponds to

the dotted rectangular box in the left figure. The sTik iterates with random cyclic sampling

are omitted since xc
jM = x(λ) (i.e., we get the Tikhonov solution after each epoch).

We observe that for random sampling, both rrls and sTik iterates contain undesirable un-

certainties in the estimates. Although rrls iterates provide approximations to the Tikhonov

solution, the main disadvantages are that the regularization parameter cannot be updated

during the process and the iterates converge asymptotically to the unregularized solution.

Hence, we disregard the rrls method and focus on sTik with random cyclic sampling, where

λ can be updated via Λk.
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4.3 Sampled Regularization Parameter Selection

Methods

The ability to update the regularization parameter without sacrificing favorable convergence

properties make the sTik and slimTik methods appealing for massive inverse problems.

However, sampled regularization parameter selection methods must be developed to enable

proper updates Λk. Adapting regularization parameters during iterative processes is not a

new concept; however, much of the previous work in this area utilize projected systems, see,

e.g., [104, 136], or are specialized to applications such as denoising [82]. Another common

approach is to consider the unregularized problem and to terminate the iterative process

before noise contaminates the solution. This phenomenon is called semi-convergence, and

selecting a good stopping iteration can be very difficult. There have been investigations into

semi-convergence behavior of iterative methods such as Kaczmarz, e.g., [55].

Unfortunately, standard regularization parameter selection methods are not feasible in this

setting because many of them require access to the full residual vector, r(λ) = Ax(λ) − b,

which is not available. In this section, we investigate variants of existing regularization

parameter selection methods [4, 8, 154] that are based on the sample residual. In the following

we assume that at the kth iteration, Λi for i = 1, . . . , k − 1 have been computed. Then the

goal is to determine an appropriate update parameter Λk. From Theorems 4.1 and 4.3, the

kth sTik iterate can be represented as

xk(λ) = Ck(λ)b, where (4.10)

Ck(λ) =

((
λ+

k−1∑
i=1

Λi

)
L>L +

k∑
i=1

A>Wτ(i)W>
τ(i)A

)−1 k∑
i=1

A>Wτ(i)W>
τ(i) .

Similar to standard regularization parameter selection methods, we assume that ε ∼ N (0, σ2I).
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For methods that require estimates of σ2, there are various ways that one can obtain such

an estimate, see e.g., [49, 154].

4.3.1 Sampled Discrepancy Principle

The basic idea of the sampled discrepancy principle (sDP) is that at the kth iteration, the

goal is to select the parameter Λk so that the sum of squared residuals for the current sample∥∥∥W>
τ(k)(Axk − b)

∥∥∥2
2

is equal to E
∥∥∥W>

τ(k)ε
∥∥∥2
2
. Using properties of conditional expectation,

we find

E
∥∥W>

τ(k) (Axtrue − b)
∥∥2
2
=E

∥∥W>
τ(k)ε

∥∥2
2

=EE
[
ε>Wτ(k)W>

τ(k)ε | ε
]

=σ2tr
(
EWτ(k)W>

τ(k)

)
=σ2`,

where tr(·) corresponds to the matrix trace function. Thus, at the kth iteration and for a

given realization, we select λ such that

∥∥W>
τ(k) (Axk(λ)− b)

∥∥2
2
≈ γσ2` ,

where γ > 1 is a predetermined real number. For the sampled methods, we select λk that

solves the optimization problem,

min
λ

(
‖W>

τ(k) (Axk(λ)− b) ‖22 − γσ2`
)2
, (4.11)

where γ = 4 as suggested in [81, 154] and σ2 is the true noise variance.
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4.3.2 Sampled Unbiased Predictive Risk Estimator

Next, we describe a method to select Λk based on a sampled unbiased predictive risk estimator

(sUPRE). The basic idea is to find Λk to minimize the sampled predictive risk,

E
∥∥W>

τ(k)(Axk(λ)− Axtrue)
∥∥2
2
,

which is equivalent to

E
∥∥W>

τ(k) (Axk(λ)− b)
∥∥2
2
+ 2σ2 E tr

(
Wτ(k)W>

τ(k)ACk(λ)
)
− σ2` .

See B.0.1 for details of the derivation. Then, similar to the approach used in the standard

UPRE derivation, the parameter Λk is selected by finding a minimizer of the unbiased

estimator for the sampled predictive risk,

Uk(λ) =
∥∥W>

τ(k) (Axk(λ)− b)
∥∥2
2
+ 2σ2tr

(
W>

τ(k)ACk(λ)Wτ(k)

)
− σ2` , (4.12)

for a given realization.

4.3.3 Sampled Generalized Cross Validation

Lastly, we describe the sampled generalized cross validation (sGCV) method for selecting Λk

and point the interested reader to B.0.2 for details of the derivation. The basic idea is to use

a “leave-one-out” cross validation approach to find a value of Λk, but the main differences

compared to the standard GCV method are that at the kth iteration, we only have access to

the sample residual and the iterates only correspond to Tikhonov solutions with only partial
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data. The parameter λk is selected by finding a minimizer of the sGCV function,

Gk(λ) =
`
∥∥∥W>

τ(k)(Axk(λ)− b)
∥∥∥2
2

tr
(

I` − W>
τ(k)ACk(λ)Wτ(k)

)2 =
`
∥∥∥W>

τ(k)(Axk(λ)− b)
∥∥∥2
2(

`− tr
(

W>
τ(k)ACk(λ)Wτ(k)

))2 . (4.13)

4.3.4 A Second Illustration

In this example we investigate the behavior of the previously discussed sampled regularization

parameter update strategies, i.e., sDP, sUPRE, and sGCV, for multiple ill-posed inverse

problems from the Matlab matrix gallery and from P. C. Hansens’ Regularization Tools

toolbox [79, 115]. For simplicity, we set m = n = 100 and use the true solutions xtrue

that are provided by the toolbox. If no true solution is provided, we set xtrue = 1. We

let L = I100, and set ε ∼ N (0, 0.01 I100). Sampling matrices Wj ∈ R100×10 are given as

Wj = [010(j−1)×10; I10;010(10−j)×10] for j = 1, . . . , 10, such that A and b are sampled in 10

consecutive blocks. Here, we sample W in a random cyclic fashion and let σ2 be the true

noise variance for sDP and sUPRE.

We first consider the prolate example where A is an ill-conditioned Toeplitz matrix from

Matlab’s matrix gallery. In Figure 4.2 we illustrate the asymptotic behavior of the sampled

parameter selection strategies by plotting the number of epochs against the value of λ for

sDP, sUPRE, and sGCV. For comparison, we provide the regularization parameter for the

full problem corresponding to DP, UPRE, and GCV. DP and UPRE use the true noise vari-

ance, and γ is as above for DP. For comparison, we also provide the optimal parameter λopt

for the full problem, which is the parameter that minimizes the 2-norm of the error between

the reconstruction and the true solution. This last approach is not possible in practice. We

observe that with more iterations, the sampled regularization parameter selection methods

tend to “stabilize” in that after some point, they do not change much. The sDP regular-
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Figure 4.2: “Asymptotic” behavior of the sampled regularization parameter selection meth-
ods for the prolate example. Corresponding regularization parameters computed using the
full data are provided as horizontal lines for comparison.

ization parameter stabilizes near the DP parameter for the full problem, but both sUPRE

and sGCV stabilize closer to the optimal regularization parameter. While we observe similar

results for other test problems (results not shown), the sampled regularization parameters

may not necessarily be close to the corresponding parameter for the full system. Never-

theless, the sampled regularization parameter selection methods often lead to appropriate

reconstructions xk(λ) after a moderate number of iterations. Next, we investigate the rela-

tive reconstruction error ‖xk(λ)− xtrue‖2 / ‖xtrue‖2 of sampled regularization methods after

one epoch (corresponding to k = 10). Figure 4.3 illustrates results from four test prob-

lems (prolate, baart, shaw, and gravity). First note that by Theorem 4.3, all solutions

are Tikhonov solutions for a λ determined by the method, hence all relative reconstruction

errors lie on a curve of relative errors for Tikhonov solutions.

We note that the above regularization parameter selection methods (including the standard

DP, UPRE, and GCV) can only provide empirical estimations. However, we observe that
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in terms of relative reconstruction errors, our sampled regularization parameter selection

methods perform reasonably well on the test problems.

As we have shown, our sampled regularization parameter selection methods can be used

to update the regularization parameter in the sTik method, where the main benefit is the

favorable convergence property. In the next section, we turn our attention to problems where

it may be infeasible to construct or work with the n×n matrix Bk. Although reduced models

or subspace projection methods may be used to reduce the number of unknowns, obtaining

a realistic basis for the solution may be difficult.

4.4 The slimTik Method

For the massive Tikhonov least squares problem in (4.1), the sTik method is not feasible

due to the size of n. In this section we first introduce the slimTik algorithm as a limited

memory variant of sTik, then we show how slimTik with random uniform sampling is

nothing more that the slimLS algorithm introduced in Chapter 3 applied to the Tikhonov

LS problem in (4.1). The connection between slimTik and slimLS allows us to prove almost

sure convergence of the slimTik algorithm under random uniform sampling.

4.4.1 Limited Memory sTik

To avoid construction of the n × n Bk, iterates of sTik iterates defined in (4.4) with a

sampling method τ , can be equivalently defined as

xk = xk−1 − sk, (4.14)
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Figure 4.3: Relative reconstruction errors of the sampled and full regularization methods
for four test problems prolate, baart, shaw, and gravity. All solutions lie on the solid
line, which corresponds to relative errors for Tikhonov solutions. Note that the UPRE and
GCV estimation in the prolate and baart test problem underperform significantly and are
therefore omitted. The relative errors for λsUPRE and λDP coincide in the shaw example.
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where

sk = arg min
s

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Aτ(1)

...

Aτ(k−1)

Aτ(k)√∑k
i=1 ΛiL


s −



0
...

0

Aτ(k)xk−1 − bτ(k)

Λk√∑k
i=1 Λi

Lxk−1



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

.

With this reformulation, we must solve a LS problem with matrix
[
A>

τ(k) · · · A>
τ(k)

]>
,

which grows with each iteration. To avoid this computation we select a memory parameter

r ∈ N0 and define Mk =

[
A>

τ(k−r) · · · A>
τ(k)

]>
∈ Rr`×n and Aτ(k−r) = 0 for non-positive

integers k − r. The slimTik iterates are given as

xk = xk−1 − s̃k, (4.15)

where

s̃k = arg min
s

∥∥∥∥∥∥∥∥∥∥∥

 Mk√∑k
i=1 ΛiL

 s −


0

Aτ(k)xk−1 − bτ(k)

Λk√∑k
i=1 Λi

Lxk−1



∥∥∥∥∥∥∥∥∥∥∥

2

2

. (4.16)

Notice that the LS problem in (4.16) with the matrix Mk does not get arbitrarily large.

By sacrificing past samples, slimTik is a computational feasible limited memory variant of

sTik.
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4.4.2 Connection to slimLS

The iterates of slimTik defined in (4.15) can be seen as the iterates of slimLS defined in

(3.11) applied to the Tikhonov LS problem (4.1). The Tikhonov LS problem in (4.1) may

be re-written as

xTik = arg min
x

∥∥∥∥∥∥∥
 A

√
λL

x −

 b

0


∥∥∥∥∥∥∥
2

2

. (4.17)

Let W ∈ Rm×` be a random variable defined as in Section 3.2.1 that has a uniform distribu-

tion across M ∈ N realizations {W(i)}Mi=1. (for example, the generalized Kaczmarz matrices

satisfy this condition). We can now define Ŵ ∈ Rm+n×`+n as

Ŵ =

 W 0m×n

0n×`
1√
M

In

 . (4.18)

The random variable Ŵ has the property that E
[
ŴŴ>

]
= βIm+n. The Tikhonov least

square problem may be reformulated as the stochastic optimization problem

arg min
x

∥∥∥∥∥∥∥
 A

√
λL

x −

 b

0


∥∥∥∥∥∥∥
2

2

= arg min
x

E

∥∥∥∥∥∥∥Ŵ>


 A

λL

x −

 b

0



∥∥∥∥∥∥∥
2

2

= arg min
x

E
∥∥W> (Ax − b)

∥∥2
2
+

λ

M
‖Lx‖22 . (4.19)

For the random variable W, W>A = Aτ(k), where τ(k) is the random uniform variable on the

set {1, . . . ,M} and Ak =
(
W(k)

)> A. For Ck = L>L and step size α̂−1
k = r+1

M
(kλ− r + 1)
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applying slimLS to (4.19) defines iterates

xk = xk−1 −
(
kλ

M
L>L + M>

k Mk

)−1(
A>

τ(k)

(
Aτ(k)xk − bτ(k)

)
+

λ

M
xk−1

)

this is precisely the same as the slimTik iterates defined in (4.15), where the regularization

parameter Λi is assumed to be fixed Λi =
λ
M

for all i ∈ N. Using the analysis from Section

3.4 we can show slimTik will almost surely converge to the Tikonov solution (1.1).

Theorem 4.4. Let A ∈ Rm×n and b ∈ Rm. Let L ∈ Rs×n have full column rank and define

x(λ) as in (4.2). Let {Wi}Mi=1 be a set of real valued m × ` matrices with the property that∑M
i=1 WiW>

i = Im, and let τ(k) be a uniform random variable on the set {1, . . .M}. For

λ > 0 and x0 ∈ Rn, define the sequence {xk} as

xk = xk−1 −
(
kλ

M
L>L + M>

k Mk

)−1(
A>

τ(k)

(
Aτ(k)xk − bτ(k)

)
+

λ

M
xk−1

)

with

Mk =

[
Aτ(k−r), . . . , Aτ(k)

]>
,

where

•
∑
αk = ∞ and

∑
α2
k converges and

•
∥∥∥A>

τ(k)

(
Aτ(k)xk−1 − bτ(k)

)
+ λ

M
xk−1

∥∥∥
2
≤ g for g ≥ 0 and all k ∈ N

Then xk
a.s.−→ x (λ) .

Proof. This result follows from Theorem 3.3, using the Ŵ in (4.18) as the choice of W,

applied to the LS problem (4.17).
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Theorem 4.4 is the first convergence result for a limited memory variant of the recursive LS

algorithm. However, the connection between the full recursive LS and stochastic approxima-

tion methods was noted in [105]. The connection between slimTik and slimLS also reveals

that the regularization parameter at the kth iteration Λk can also be considered a step size.

Sampled methods for finding a good Λk discussed in Section 4.3 can be seen as a search for

an optimal step size.

4.4.3 A Third Illustration

We illustrate convergence of slimTik for an example from the Regularization Tools toolbox

[78]. We use the gravity example which provides a matrix A ∈ R1,000×1,000 and a vector

xtrue. We partition A into M = 100 blocks with ` = 10 and let λ = 0.0196. We simulate

observed data by adding Gaussian white noise with zero mean such that the noise level is

0.01, i.e., b = Axtrue + ε where ‖ε‖2
‖Axtrue‖2

= 0.01. First, we run slimTik for one epoch

under cyclic sampling with memory levels r = 0, . . . ,M − 1, and we report the relative

error between the reconstructions xM and the Tikhonov solution xTik in the left panel of

Fig. 4.4. Note that for full memory (i.e., r = M − 1), the relative error is within machine

precision. Also, for lower memory levels, the reconstructions xM are close to the Tikhonov

solution. The right panel of Fig. 4.4 illustrates the asymptotic convergence of slimTik for

memory levels r = 0, 2, 4, 6, and 8, where we also compare to a standard sampled gradient

(sg) method without regularization. Errors are plotted after each full epoch. Empirically,

we observe that the iterates xk converge to xTik as k → ∞
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Figure 4.4: Convergence of the slimTik method. The plot in the left panel contains the
relative errors between the iterates after one epoch and the Tikhonov solution, for different
memory levels. The plot in the right panel illustrates asymptotic convergence of the slimTik
method for memory levels r = 0, 2, 4, 6, and 8. For comparison we include relative errors for
a sample gradient method.
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4.5 Numerical Experiments

In this section we present three numerical experiments. Experiment 4 in Section 4.5.1 il-

lustrates the convergence of slimTik compared to other methods that do not contain reg-

ularization for a large scale tomography problem. Experiment 5 in Section 4.5.2 considers

convergence of the sampled regularized parameter selection methods for a small test problem.

Experiment 6 in Section 4.5.3 applies slimTik to a massive super resolution problem coupled

with sampled regularization parameter selection methods, showing that these methods can

efficiently be applied to massive inverse problems.

4.5.1 Experiment 4: slimTik Applied to X-ray Tomography

Here we illustrate the benefits of slimTik with a large scale tomography test problem.

Tomography is an imaging method where waves are detected after they transmit through

and object of interest, see Figure 4.5 Here we look at an example of 2D parallel-beam

x-ray tomography where we wish to reconstruct the interior densities of an object using

projections of 362 parallel waves at 1,790 different angles. This problem comes from the

AIRtools toolbox [80]. The true image is a 512 × 512 Shepp-Logan phantom. We have

θ = 0 : 0.1 : 179 as our angles, with 362 rays for each angle. Figure 4.6 shows the noisy

sinogram. This produces a linear system where the A matrix is 916,480 × 262,144. We

assume that the measurements are quite noisy with b = Ax + ε where ε ∼ N (0, 0.6Im).

Here {Wi}1, 179i=1 are Kaczmarz blocks of size 362×262,144 such that Ai and bi are the model

and corresponding projection for the angle θi = 0.1 ∗ i. We sample random and uniformly

from these blocks. We compare slimTik applied to the Tikhonov problem with λ = 0.007

with memory level 3 and step size αk = 1
0.7k

to the stochastic gradient method defined in

Section 3.2, the Block Kaczmarz method defined in Section 2.5, and a stochastic LBFGS
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method. The stochastic LBFGS method is a stochastic optimization method that updates Bk

with past iterates to approximate the inverse Hessian
(
A>A

)−1, for details see [26, 70, 120].

To allow the stochastic LBFGS method the same memory allocation as slimTik we set the

memory level to 362 ∗ 3 = 1,086. The stochastic gradient method and stochastic LBFGS

method required a small initial step size αk = 1
120+0.7k

to prevent iterates from getting very

large.

In Fig. 4.7, we provide the absolute errors images of the reconstructions, computed as |xk −

xtrue| for different values of k. The relative error, calculated by ‖xk − xtrue‖ /xtrue is shown

in Figure 4.8 After 5,372 iterations, we see that slimTik out preforms the other methods,

with a relative error of .13. Additionally, the reconstruction from slimTik appears smoother

because that the other reconstructions, see Figure 4.7.

x

y
x-ray source

detector

θ

Figure 4.5: Experiment 4: Illustration of a 2-d parallel beam tomography set-up.
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Figure 4.6: Experiment 4: The noisy sinogram from the parallel beam tomography problem.

4.5.2 Experiment 5: Convergence of Sampled Regularization Meth-

ods

In this chapter, we addressed some of the computational concerns and demonstrated our

methods on a large imaging problem. First, we reformulate the updates as solutions to LS

problems so that iterative methods can be used to compute approximations efficiently. In

addition to being computationally feasible, these methods can take advantage of the adaptive

regularization parameter selection methods described in Section 4.3.

These methods are based on the sTik method. In particular, we consider a sampled gradient

(sg) method where the iterates are defined as (4.4) where Bk =
(∑k

i=1 ΛiL>L + In
)−1

and a sampled block Kaczmarz (sbK) method where the iterates are defined as (4.4) with

Bk =
(∑k

i=1 ΛiL>L + A>
k Ak

)−1

. We also consider slimTik, which we described in 4.4.

In the case where r = 0, slimTik and sbK iterates are identical. First, we investigate the

performance of sg, sbK, and slimTik while taking advantage of the regularization parameter

update described in Section 4.3. We use the gravity example from Regularization Tools,
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Figure 4.7: Experiment 4: Error images the reconstructed images for the 2-D tomography
example. Reconstructions correspond to sg, sbK, sLBFGS and slimTik. For comparisons we
provide the error image after 100, 500, 1000, and 5,373 iterations.
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Figure 4.8: Experiment 4: Comparing the relative error to the true images at each iteration
of the sg, sbK, sLBFGS and slimTik algorithms.
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where A ∈ R1,000×1,000, L = I1,000, and the noise level defined as ‖ε‖2 / ‖Axtrue‖2 is 0.01.

The samples consist of 10 blocks, each comprised of 100 consecutive rows of A. The initial

guess for the regularization parameter is chosen to be 0.1 (the optimal overall regularization

parameter in this example is approximately 0.0196), and we iterate for one epoch.

In Figure 4.9 we provide the relative reconstruction errors per iteration for sg, sbK, slimTik,

and sTik. Overall, we notice a correspondence between the amount of curvature information

used to approximate the Hessian and an improvement in the relative reconstruction error. In-

cluding more curvature results in greater computational costs and storage requirements, e.g.,

sTik may be infeasible for very large problems, but the number of row accesses is the same

for each method. In terms of regularization parameter selection methods, sGCV performs

better than sUPRE and sDP for this example. The relative reconstruction error correspond-

ing to the best overall Tikhonov solution is provided as the horizontal line. Although the

results are not shown here, we note that without regularization, the relative reconstruction

errors will become very large for all of these methods due to semi-convergence.

4.5.3 Experiment 6: Super Resolution

Having demonstrated that regularization parameter update methods can be incorporated

in a variety of stochastic optimization methods, we investigate the performance of these

limited-memory methods for super-resolution image reconstruction. The basic goal of super-

resolution imaging is to reconstruct an n× n high-resolution image represented by a vector

xtrue ∈ Rn2 given M low-resolution images of size ` × ` represented by b1, . . . ,bM , where

bi ∈ R`2 . The forward model for each low-resolution image is given as

bi = RSixtrue + εi ,



84 Chapter 4. Sampled Tikhonov Regularization

Figure 4.9: Experiment 5: Comparison of relative reconstruction errors for sg, sbK, slimTik,
and sTik iterates for gravity using various sampled regularization parameter selection meth-
ods for the first 10 iterations, i.e., one epoch. We compare sDP, sUPRE, and sGCV. The
horizontal black line is the relative error corresponding to the optimal regularization param-
eter for the full problem, which is not feasible to obtain in practice.
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where R ∈ R`2×n2 is a restriction matrix, Si ∈ Rn2×n2 represents an affine transformation

that may account for shifts, rotations, and scalar multiplications, and εi ∼ N (0`2 , σ
2I`2).

To reconstruct a high-resolution image, we solve the Tikhonov problem,

min
x

∥∥∥∥∥∥∥∥∥∥


RS1

...

RSM

x −


b1

...

bM


∥∥∥∥∥∥∥∥∥∥

2

2

+ λ ‖Lx‖22 .

For cases where the low-resolution images are being streamed or where the number of low-

resolution images is very large, standard iterative methods may not be feasible. Furthermore,

it can be very challenging to determine a good choice of λ prior to solution computation

[41, 91, 134].

For our example, we have 30 images of size 128 × 128, and we wish to reconstruct a high-

resolution image of size 2,048 × 2,048. In Figure 4.10, we provide the true high-resolution

image of the moon [34] and three of the low-resolution images. Here, Ai = RSi ∈ R1282×2,0482 .

Due to the inherent partitioning of the problem, we take W>
i ∈ R1282×30·1282 to be a matrix

such that W>
i A = Ai; these Wi matrices are never computed. For the simulated low-

resolution images, Gaussian white noise is added such that the noise level for each image is

0.01 and take L = I2,0482 . Notice that the size of the matrix A is 491,520 × 4,194,304, and

holding A in computer memory is impractical despite its sparse structure.

We compare the performances of sg, sbK, and slimTik, including our sampled regularization

parameter update methods sDP, sUPRE, and sGCV. The true noise variance is used for

sDP and sUPRE, and the memory parameter for slimTik is r = 2. Each iteration of sbK

and slimTik requires a linear solve, which can be handled efficiently by reformulating the

problem as a LS problem as in equation (4.16), and using standard techniques such as LSQR

[131, 132]. These iterative methods can also be used to update the regularization parameter.
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Figure 4.10: Experiment 6: Super-resolution imaging example. On the left is the true high-
resolution image, and on the right are three sample low-resolution images. The red-box
corresponds to sub-images shown in Figure 4.12.
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Furthermore, we use the Hutchison trace estimator to efficiently evaluate the trace term in

sGCV and sUPRE, see (4.12) and (4.13). More specifically, rather than compute 1282 linear

solves, we note that if v is a random variable such that E
(
vv>) = I1282 , then

tr
(
W>

τ(k)ACk(λ)Wτ(k)

)
= Ev>W>

τ(k)ACk(λ)Wτ(k)v.

Here we use the Rademacher distribution where the i.i.d. entries of v are vi = ±1 with equal

probability. We use a single realization of v to approximate the trace, hence resulting in just

one linear solve [5, 74, 138].

Relative reconstruction errors are provided in Figure 4.11, and sub-images of the reconstruc-

tions are provided in Figure 4.12. We observe that, in general, sDP errors are more erratic

than sUPRE and sGCV errors. Notice that for sUPRE and sGCV, sbK produces higher re-

construction errors compared to sg, which may be attributed to insufficient global curvature

information. Furthermore, we observe that slimTik reconstructions contain more details

than sg and sbK reconstructions.

4.6 Remarks and Future Directions

In this chapter, we described row-action methods for solving ill-posed inverse problems for

which it is not feasible to access the data all-at-once and regularization must be introduced.

Such methods are necessary when handling data sets that do not fit in memory and also can

naturally handle streaming data problems.

We investigate two iterative methods, rrls and sTik, and show that under various sampling

schemes, rrls iterates converge asymptotically to the unregularized solution while sTik it-

erates converge to a Tikhonov-regularized solution. Although the sampling mechanisms we
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Figure 4.11: Experiment 6: Relative reconstruction errors for the super-resolution imaging
example for one epoch. We note that sUPRE and sGCV produce good reconstructions.
Additionally, slimTik produces a smaller relative reconstruction error, since it is using more
curvature information.

discuss do not play a role in the asymptotic convergence, they do allow for interesting in-

terpretations. In particular, for random cyclic sampling, we can characterize the iterates

as Tikhonov solutions after every epoch, providing insight into the path that the iterates

take towards the solution. For iterative methods where the regularization parameter can be

updated during the iterative process (e.g., sTik), we describe sampled variants of existing reg-

ularization parameter selection methods to update the parameter. Using several well-known

data sets, we show empirically that sampled Tikhonov methods with automatic regulariza-

tion parameter updates can be competitive. For very large inverse problems, we describe

a limited-memory version of sTik, and we demonstrate the efficacy of the limited-memory
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Figure 4.12: Experiment 6: Sub-images of the reconstructed images for the super-resolution
imaging example. Reconstructions correspond to sg, sbK, and slimTik with regularization
parameter updates computed using sDP, sUPRE, and sGCV. For comparison, we provide
reconstructions corresponding to no regularization, i.e., λ = 0.

approach on a standard benchmark dataset as well as on a streaming super-resolution image

reconstruction problem.

Future directions of research include developing an asymptotic analysis of slimTik for the

case of varying regularization parameter, since the almost sure convergence shown in 4.4

assumed a constant regularization parameter. This analysis would aid in understanding

slimTik when it is coupled with a sampled regularization parameter selection method. Con-

vergence analysis for cyclic and random cyclic sampling would also be beneficial.
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Finally, extensions to nonlinear inverse problems would require more advanced convergence

analyses and further algorithmic developments. We begin this, by extending slimTik to

solve the separable nonlinear inverse problem in Chapter 5.
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Extension to Separable, Non-linear

Inverse Problems

This chapter focuses on extending the row-action methods described in Chapter 4 to the

massive nonlinear separable Tikhonov LS problem

min
x,y

f(x,y) = ‖A(y)x − b‖22 + λ ‖x‖22 , (5.1)

where λ > 0 is a regularization parameter that balances the data-fit and the regularization

term. When (5.1) is not massive, numerical optimization methods to solve the problem have

been investigated and range from fully decoupled approaches (e.g., alternating optimiza-

tion) to fully coupled (e.g, nonlinear) approaches [40]. A popular alternative is the variable

projection method [64, 130], where the linear parameters are mathematically eliminated

and a nonlinear optimization scheme is used to solve the reduced optimization problem.

These methods have been investigated for various image processing applications, see e.g.,

[12, 44, 88]. However, all of these methods require all-at-once access to the data to perform

full matrix-vector multiplications with A(y), and hence they cannot be used for massive

problems.

In this chapter, we develop an iterative sampled method to estimate a solution for (5.1) in

the case of massive or streaming data. The method follows a variable projection approach

91
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by first mathematically eliminating the linear variables. However, to address massive or

streaming data, we use slimTik defined in Chapter 4 to approximate the regularized linear

problem and use a sampled Gauss-Newton method to approximate the nonlinear variables.

An outline of this chapter is as follows. In Section 5.1 we describe iterative sampled methods

for separable nonlinear inverse problems, where the sampled Tikhonov methods from Chapter

4 are integrated within a nonlinear optimization framework for updating estimates of xtrue

and ytrue. Numerical results from super-resolution imaging are presented in Section 5.2, and

conclusions and future work are presented in Section 5.3.

5.1 Row-action Methods for Separable, Non-linear In-

verse Problems

Next for separable nonlinear inverse problems of the form (5.1), we describe an iterative

sampled approach that integrates slimTik within a nonlinear optimization framework so

that both sets of parameters can be updated as data become available.

In this chapter we assume that A ( · ) and b can be partitioned into M blocks,

A =


A(1) ( · )

...

A(M) ( · )

 and b =


b(1)

...

b(M)

 . (5.2)

For simplicity we assume that all blocks have the same dimension, i.e., A(i)( · ) : Rp → R`×n,

i = 1, . . . ,M , and b(i) ∈ R`, i = 1, . . . ,M , with ` = m/M . We also consider these methods

only with cyclic sampling.

For an initial guess of the linear parameters x0 ∈ Rn, nonlinear parameters y0 ∈ Rp, and
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λ > 0, the kth iterate of the separable nonlinear slimTik (sn-slimTik) method can be

written as

xk = xk−1 − sk

yk = yk−1 − αk

(
J>
k Jk

)† J>
k rk (yk−1) (5.3)

with

sk = arg min
s

∥∥∥∥∥∥∥∥∥∥


Mk (yk−1)

Ak (yk−1)√
kλ
M

In

 s −


0

Ak (yk−1)xk−1 − bk√
λ

kM
xk−1


∥∥∥∥∥∥∥∥∥∥

2

2

,

where Ak ( · ) = A(( mod (k−1)M)+1) ( · ), bk = b(( mod (k−1)M)+1), and

Mk ( · ) =
[
Ak−r ( · )> , . . . ,Ak−1 ( · )>

]>
for chosen memory level r ∈ N. The blocks of A and b with negative indices are set to the

zero function and zero vector, respectively. Here rk(·) : Rp → R`(r+1) is the sample residual

function defined as

rk (y) =



Ak−r (y)
...

Ak−1 (y)

Ak (y)


xk −



bk−r

...

bk−1

bk


,

Jk is the Jacobian of rk evaluated at yk−1, and αk is the step size determined by a line search

method [129]. The Jacobian can be approximated with finite differences or found analytically.

Note that † represents the pseudo-inverse in (5.3) and is required since Jk might not have

full column rank. Also, as with any nonlinear, nonconvex optimization method, the initial
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guess must be within the basin of attraction of the desired minimizer. A summary of the

sn-slimTik algorithm is provided below.

Algorithm 1 sn-slimTik
1: Inputs: x0, y0, r, λ, M

2: for k = 1, 2, . . . do

3: Get Ak (yk−1), bk, and Mk (yk−1)

4: sk = arg min
s

∥∥∥∥∥∥∥∥∥∥


Mk (yk−1)

Ak (yk−1)√
kλ
M

In

 s −


0

Ak (yk−1)xk−1 − bk√
λ

kM
xk−1


∥∥∥∥∥∥∥∥∥∥

2

2
5: xk = xk−1 − sk

6: yk = yk−1 − αk

(
J>
k Jk

)† J>
k rk (yk−1)

7: end for

5.2 Numerical Results

In this section, we provide numerical results for super-resolution image reconstruction, which

can be represented as a separable nonlinear inverse problem [41]. Suppose we have M

low-resolution images. The underlying model for super-resolution imaging can be repre-

sented as (1.2), where xtrue contains the high-resolution (HR) image, and b and A(ytrue)

can be partitioned as in (5.2), where b(i) contains the ith low-resolution (LR) image and

A(i)(·) : Rp → R`×n. More specifically, if we assume that the deformation for each LR im-

age is affine (e.g., can be described with at most 6 parameters) and independent of the
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parameters for the other images, then we can partition y as

y =


y(1)

...

y(M)


and have A(i)(y) = RS(y(i)) where R is a restriction matrix that takes a HR image to a

LR one and S(y(i)) represents an affine transformation defined by parameters in y(i). Then

the goal is to solve (5.1) to estimate the HR image as well as update the transformation

parameters.

We will investigate iterative sampled methods for super-resolution problems with massive

or streaming data, but first we investigate a smaller problem where all of the data can be

accessed at once. In Experiment 7, we compare our proposed sn-slimTik method with

different memory levels to the results from the variable projection method. We show that

with relatively modest memory levels, our approaches can achieve reconstructions with sim-

ilar quality to full-memory reconstructions in comparable time. Then in Experiment 8, we

consider a very large streaming super-resolution problem, where both the resolution of the

images as well as the number of LR images present a computational bottleneck.

In both experiments, we initialize x0 = 0, and y0 is obtained by adding Gaussian white noise

with zero mean to ytrue where the variance is 2.45 · 10−3 in Experiment 1 and 4.48 · 10−4 in

Experiment 2. We set the regularization parameter in advance, but mention that methods

for updating the regularization parameter can be found in [143].



96 Chapter 5. Extension to Separable, Non-linear Inverse Problems

Algorithm 2 variable projection
1: Inputs: y0, λ

2: for k = 1, 2, . . . do

3: xk = arg min
x

∥∥∥∥∥∥∥
 A(yk−1)

√
λIn

x −

 b

0


∥∥∥∥∥∥∥
2

2

4: r̃k(yk−1) = A(yk−1)xk − b

5: yk = yk−1 − αk

(
J̃>
k J̃k

)†
J̃>
k r̃k(yk−1)

6: end for

5.2.1 Comparing sn-slimTik to variable projection

Both sn-slimTik and variable projection are iterative methods that update x and y. How-

ever, the variable projection method requires access to all data at once and thus may be

infeasible for massive or streaming problems. The goal of this experiment is to show that we

can achieve similar reconstructions as existing methods, but without the need to access all

data and matrices at once.

For completeness, we provide in Algorithm 2 the basic variable projection algorithm [64, 130],

which is a Gauss-Newton algorithm applied to the problem,

min
y
f(x(y),y).

Here J̃k is the Jacobian of A(y)xk − b with respect to y at yk−1, and αk is a line search

parameter. Analytical methods can be used to obtain the Jacobian, see [41]. Notice that

each iteration of the variable projection algorithm requires access to the entire data set b as

well as matrix A(y) in order to solve the linear LS problem in step 3. For our experiments, we

use the LSQR method to solve the linear Tikhonov problem, where each iteration of LSQR
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(a) HR image (b) HR subimage (c) LR subimage

Figure 5.1: Experiment 7: Super-resolution imaging example. The high-resolution (HR) im-
age and a subimage corresponding to the yellow box are provided in (a) and (b) respectively.
The subimage of one of the low-resolution (LR) images is provided in (c).

requires a matrix-vector multiplication with A(yk−1) and A(yk−1)
>. Each multiplication

requires access to all of the data, and thus, in terms of data access, is equivalent to one

epoch of slimTik.

For this experiment, the goal is to recover a HR image that contains 5122 pixels from a set of

M = 100 LR images, each containing 1282 pixels, i.e., A(y) ∈ R100·1282×5122 . The HR image

is of an astronaut and was obtained from NASA’s website [122]. The HR image and three

of the simulated LR images are provided in Fig. 5.1. The noise level for each LR image was

set to 0.01, and the regularization parameter was set to λ = 8 · 10−2.

In Fig. 5.2, we provide relative error norms for the reconstructions and relative error norms

for the affine parameters,

‖xk − xtrue‖2
‖xtrue‖2

and ‖yk − ytrue‖2
‖ytrue‖2

, (5.4)

respectively. We compare the sn-slimTik method with memory levels r = 0, 1, and 5 for 5

epochs (100 iterations correspond to one epoch), and provide results for 4 iterations of the
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Figure 5.2: Experiment 7: Relative reconstruction error norms for the image xk (left) and the
nonlinear parameters yk (right) for variable projection and sn-slimTik for various memory
levels. Note that variable projection errors are only provided after every 100 iterations of
sn-slimTik.

variable projection method for comparison.

Following the discussion above, it is difficult to provide a fair comparison since each variable

projection iteration requires a linear solve and here we use 20 LSQR iterations for each outer

iteration. Performing one LSQR iteration requires the same memory access as 100 iterations

of sn-slimTik with any memory level. Thus, in Fig. 5.2 we plot the relative reconstruction

error norms for variable projection only after every 100 iterations of sn-slimTik. We see

that for both parameters sets, sn-slimTik produces relative reconstruction errors that are

comparable to the variable projection method. For this experiment variable projection took

644 seconds, sn-slimTik took 366 seconds with memory 0, 800 seconds with memory 1, and

2,570 seconds with memory 5.

Sub-images of sn-slimTik reconstructions at iterations k = 100 and 200 with memory pa-

rameters 0, 1, and 5 are provided in Fig. 5.3. We note that for k = 1 all three reconstructions
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Figure 5.3: Experiment 7: Sub-images of sn-slimTik reconstructions for memory levels
r = 0, 1, and 5 for iterates within the first two epochs of data access.
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(a) HR image (b) LR image (c) LR image (d) LR image

Figure 5.4: Experiment 8: Streaming super-resolution imaging example. The high-resolution
(1,024 × 1,024) image is provided in (a), along with three of the low-resolution (64 × 64)
images in (b)–(d).

are identical since all of them only have access to the first LR image. Reconstructions after

100 iterations are also similar, but after 200 iterations, we see that sn-slimTik with mem-

ory level 5 produces a better reconstruction. These results show that including memory in

the slimTik algorithm may be beneficial, and results are comparable to those of variable

projection.

5.2.2 Experiment 8: sn-slimTik for a Streaming Problem

Next we consider a very large streaming super-resolution problem, where the goal is to

reconstruct a HR image of 1, 0242 pixels from 300 LR images of 642 pixels that are being

observed in time. The HR image comes from NASA [122] and is depicted, along with

three of the LR images, in Fig. 5.4. For this example, once all data has been accessed,

A ∈ R300·642×1,0242 is too large to store in memory. Furthermore, in many streaming scenarios,

we would like to be able to compute partial image reconstructions and update the nonlinear

parameters during the data acquisition process, e.g., while LR images are still being streamed.

Notice that the variable projection method requires us to wait until all LR images are

observed, and even then it may be too costly to access all of A at once.
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Figure 5.5: Experiment 8: Relative reconstruction errors for both the linear (left) and non-
linear (right) parameters for the streaming data super-resolution problem.

Thus, in this experiment, we consider the sn-slimTik method with memory levels r = 0, 1,

and 5. We run 300 iterations (e.g., accessing one epoch of the data) and set the noise

level for each LR image to be 0.01 and λ = 5 · 10−3. In Fig. 5.5 we provide the relative

reconstruction errors for xk and yk. We observe that a higher memory level corresponds

to improved estimates of the nonlinear parameters and the reconstructions. In Fig. 5.6, we

provide sub-images of absolute errors images of the reconstructions, computed as |x300−xtrue|,

error sub-image r = 0 error sub-image r = 1 error sub-image r = 5

Figure 5.6: Experiment 8: Sub-image of absolute error images for sn-slimTik reconstruc-
tions with different memory levels.
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in inverted colormap so that white corresponds to small absolute errors. These images show

that sn-slimTik methods produce better reconstructions with increased memory level, but

an increased memory level comes with an increase in computation time. For this example,

the CPU times for sn-slimTik are 1,035, 1,954, and 5,858 seconds for memory levels of 0,

1, and 5, respectively.

5.3 Remarks and Future Directions

This chapter extended introduced the sn-slimTik method, which is an extension of the

slimTik algorithm that the solution of a separable nonlinear inverse problem, for the case

where the data cannot be accessed all-at-once. The method combines limited-memory sam-

pled Tikhonov methods, which were developed for linear inverse problems, within a nonlinear

optimization framework. Numerical results on massive super-resolution problems show that

results are comparable to those from variable projection, when all data can be accessed at

once. When this is not the case (e.g., streaming or massive data), the sn-slimTik method

can effectively and efficiently update both sets of parameters.

A future area of research is to develop a theoretical analysis of the convergence properties of

sn-slimTik similar to the convergence theory that has been done for slimTik. This would

include asymptotic analysis and bounds on the mean square error. Additionally, sn-slimTik

was only studied under cyclic sampling in this section, but the randomized variant should be

analyzed and implemented. Finally, sn-slimTik should be generalized to nonlinear separable

functions that are massive not only in the linear parameters, but the nonlinear parameters

as well.
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Conclusion

This dissertation focused on constructing numerical solutions to massive inverse problems.

We introduced row-action methods that are tailored for solving LS problems with massive

data sets, and we focused on massive inverse problems for which we have developed regular-

ization parameter selection techniques that can work with only samples of the data at any

given time. By addressing the linear and nonlinear separable inverse problem, we were able

to apply the algorithms developed to a wide range of scientific applications.

This work presented several mathematical contributions. Row-action methods were con-

nected to stochastic approximation methods by exploiting a stochastic reformulation of the

LS problem. Analysis of row-action methods under this context presented the first almost

sure convergence results for the Kaczmarz and block Kaczmarz methods applied to the gen-

eral LS problem. Additionally, the slimLS method was developed and investigated, and we

showed asymptotic convergence to the LS solution. Additionally, in a particular case, we

showed favorable expected linear convergence rate of the slimLS algorithm, making a note

of the trade-off between precision of iterations and convergence rate, that depends on step

size.

We showed that slimLS could be interpreted as a limited memory variant of a recursive LS

algorithm. This connection allowed new insights into sampling with and sampling without

replacement. Additionally, this connection helped to determine how to choose the regular-

ization parameter and displayed a connection between the regularization parameter and step
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size in the iterates. To choose the correct Tikhonov regularization parameter, sampled vari-

ants of the discrepancy principle, the unbiased predictive risk estimator, and the generalized

cross validation method were developed.

In addition to the mathematical contributions of this work, a significant amount of work was

done to ensure computational efficiency of these methods and broader scientific impacts. Ef-

ficient implementations of row-action methods and sampled regularization parameter selec-

tion methods were applied to massive problems related to super resolution, data science, and

tomography. A generalization of slimLS to the nonlinear, separable inverse problem that

arises in super-resolution imaging shows the potential of row-action methods to be applied

to a wide range of inverse problems.
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Appendix A

Proofs for Chapter 3

This chapter contains the proofs for Chapter 3. First, we introduce the quasi-martingale

convergence theorem in Section A.1. Almost sure convergence of stochastic Newton and

quasi-Newton methods will be shown in Section A.2, and convergence rates of slimLS are

shown in Section A.3.

A.1 The Quasi-martingale Convergence Theorem

Let (Ω,A,P) be a probability space, and let {Fk} be a sequence of sub-σ-algebras of A.

Then {Fk} is a called a filtration if Fk ⊂ Fk+1 for all k ∈ N. A sequence of random variables

{uk} on (Ω,A) is said to be adapted to {Fk} if uk is Fk-measurable for all k ∈ N. The

σ-algebra generated by the random variables {ui}ki=1 is denoted by σ (ui : i < k). We use IA

to denote the indicator function of the set A. The quasi-martingale convergence theorem is

stated below. For details and proof, see [60, 105, 119].

Theorem A.1 (quasi-martingale convergence theorem). Let {Xk} be a sequence of non-

negative random variables adapted to a filtration {Fk} such that EXk < ∞ for all k. Let

Zk−1 = E [Xk −Xk−1 | Fk−1]. Then, if

∞∑
k=1

E
[
IZk−1≥0 (Xk −Xk−1)

]
<∞

124
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then there is an non-negative random variable X with finite expectation such that Xk
a.s.−→ X.

A.2 Almost Sure Convergence

Proof of Theorem 3.1. Define Hk = (Ak)
†W>

k , C = E(H>
k Hk ), P = EHk, and Fk =

σ(Wi; i < k ). The matrices C, and P are finite since W takes on only finitely many values.

We split the proof into three parts

(i) The matrices C and ACA> are symmetric positive semi-definite, and PA is symmetric

positive definite (SPD).

(ii) If ek = ‖xk − x̃ ‖2, then E ek <∞ and E( ‖ sk ‖2 ) <∞ for all k .

(iii) xk
a.s.−→ x̃ .

(i) Let v ∈ Rm. Since v>Cv = E( ‖Hkv‖2 ) ≥ 0, it follows that C is semi-positive definite,

and therefore so is A>CA. Since (W>
k A)†W>

k A is symmetric, PA is symmetric. Let

v ∈ Rn. Using properties of the pseudoinverse gives

v>PAv = v>E(HkA )v = E( ‖HkAv ‖2 ) ≥ 0,

where equality holds iff HkAv = 0 a.s., and since E(WkW>
k ) = βIm and A is full column-

rank, it follows that v = 0. Hence PA is SPD.

(ii) Note that

sk = −HkA(xk−1 − x̃)− Hk r, (A.1)
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where r = Ax̃ − b. Therefore

xk − x̃ = xk−1 − x̃ − αk HkA(xk−1 − x̃)− αk Hk r,

and since HkA =
(
W>

k A
)† W>

k A is an orthogonal projection matrix, it follows that

ek+1 ≤ 4(1 + α2
k) ek + 4α2

k ‖Hkr‖2. (A.2)

Using equation (A.2) and properties of the expected value leads to

E ek+1 ≤ 4(1 + α2
k)E ek + 4α2

k ‖Cr‖2,

which implies that E ek <∞ and E( ‖sk‖2 ) <∞ for all k.

(iii) The idea is to use the quasi-martingale convergence theorem. Since Wk and Fk are

independent,

E( ek+1 − ek | Fk ) = 2αk (xk−1 − x̃)>E( sk | Fk ) + α2
k E( ‖sk‖2 | Fk )

= −2αk ‖xk−1 − x̃‖2PA + α2
k E( ‖sk‖2 | Fk ). (A.3)

To put a bound on the second term of (A.3) we use again the fact that HkA is a projection

matrix to obtain:

E( ‖sk‖2 | Fk ) ≤ 2(Ax̃ − b)>C(Ax̃ − b) + 2‖xk−1 − x̃‖2 ≤ c1 + 2‖xk−1 − x̃‖2, (A.4)

where c1 = λmax (C) ‖Ax̃ − b‖2. Therefore, equation (A.3) can be bounded as

E( ek+1 − ek | Fk ) ≤ −2αk ‖xk−1 − x̃‖2PA + c1α
2
k + 2α2

k ek,
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which yields

E( ek+1 − ek(1 + α2
k) | Fk ) ≤ −2αk ‖xk−1 − x̃‖2PA + c1α

2
k ≤ c1α

2
k. (A.5)

Let νk =
∏k−1

i=1 ( 1 + α2
i )

−1 < 1. The sequence {νk} converges to some ν > 0 because∑∞
k=1 α

2
k <∞. Define ẽk = νkek, and multiply both sides of (A.5) by νk+1. We obtain

E( ẽk+1 − ẽk | Fk ) ≤ −2αk νk+1 ‖xk−1 − x̃‖2PA + c1α
2
k νk+1 ≤ c1α

2
k νk+1. (A.6)

Define Zk = E( ẽk+1 − ẽk | Fk ). Then,

E[ IZk≥0 (ẽk+1 − ẽk) ] = E( IZk≥0 E[ ẽk+1 − ẽk | Fk ] ) ≤ c1α
2
k νk+1.

Since
∑∞

k=1 α
2
kνk+1 < ∞ the series

∑∞
k=1 E( IXk≥0 (ẽk+1 − ẽk) ) converges and therefore {ẽk}

converges a.s. by Theorem A.1. But since νk converges to a nonzero value, it also follows that

{ek} converges a.s. The final step is to show that {ek} in fact converges to zero. Rearranging

the terms and taking the expected value of both sides of (A.6) yields

∞∑
k=1

αkνk+1E( ‖xk−1 − x̃‖2PA ) <∞.

Since
∑∞

k=1 αk = ∞ and νk → ν > 0, it follows that E( ‖xnk
− x̃‖2PA ) → 0 for some sub-

sequence (nk), and therefore we also have E( ‖xnk
− x̃‖2 ) = E enk

→ 0. By Fatou’s lemma:

0 ≤ E lim inf enk
= E lim enk

≤ lim infE enk
= 0.

It follows that lim enk
= 0 a.s. and since {ek} converges a.s., this implies ek

a.s.−→ 0 and

therefore xk
a.s.−→ x̃.
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Proof of Theorem 3.2. The proof of 3.2 does not require the quasi-martingale conver-

gence theorem and is nearly identical to the proof of 4.2 part (i), in Chapter 4, Section

4.2.1.

Proof of Theorem 3.3. To prove Theorem 3.3 first we introduce some useful notation.

Denote

• F (x) = ‖Ax − AxLS‖22,

• Fk = F (xk),

• ∇Fk = ∇F (xk),

• sk =
(
Ck + αkM>

k Mk

)−1 A>
k (Akxk−1 − bk),

• Fk = σ (Wi|i = 1, . . . k),

• D = λmax
(
EWW>WW>), and

• η =
λmax

(
A>A

)2
D

ηmin
.

Since F is twice continuously differentiable, by Taylor’s theorem

Fk = Fk−1 + (xk − xk−1)
>∇Fk−1 + (xk − xk−1)

> A>A (xk − xk−1) . (A.7)

Since αksk = xk − xk−1 we may re-write and bound equation (A.7)

Fk = Fk−1 + αks>k ∇Fk−1 + α2
k ‖Ask‖22 (A.8)

≤ Fk−1 + αks>k ∇Fk−1 +
α2
kλmax

(
A>A

)2
ηmin

∥∥WkW>
k (Axk−1 − b)

∥∥2
2

(A.9)

≤ Fk−1 + αks>k ∇Fk−1 +
α2
kλmax

(
A>A

)2
ηmin

∥∥WkW>
k (Axk−1 − b)

∥∥2
2
. (A.10)
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Subtracting Fk−1 from both sides and taking the expectation conditioned on Fk−1 yields

E [Fk − Fk−1 | Fk−1] ≤ αkE
[
s>k | Fk−1

]
∇Fk−1 + α2

kη
(
Fk−1 + ‖AxLS − b‖22

)
. (A.11)

Subtracting α2
kηFk−1 from both sides

E
[
Fk − (1 + α2

kη)Fk−1 | Fk−1

]
≤ αkE

[
s>k | Fk−1

]
∇Fk−1 + α2

kη ‖AxLS − b‖22 . (A.12)

Define γk =
∏k

i=1 (1 + α2
kη)

−1 ≤ 1. Since

0 ≤ − log (γk) ≤ η
∞∑
i=1

α2
i <∞ (A.13)

for any k, it follow that {γk} is a decreasing and convergence sequence to some γ > 0. Define

F̃k = γkFk. Then

E
[
F̃k − F̃k−1 |Fk−1

]
≤ αkγkE

[
s>k | Fk−1

]
∇Fk−1 + α2

kγkη ‖AxLS − b‖22 (A.14)

Now using the Woodbury formula

E
[
s>k | Fk−1

]
∇Fk=−

(
A>(Axk−1−b)

)>C−1
k E

[
A>

k (Akxk−1−bk) | Fk−1

]
+αk

(
A>(Axk−1−b)

)>E
[

C−1
k M>

k

(
I+αkMkC−1

k M>
k

)−1
MkC−1

k A>
k (Akxk−1−bk)

]

Using the fact that E
[
A>

k (Akxk−1 − bk) | Fk−1

]
= βA> (Axk−1 − b) and the Cauchy Schwarz

inequality
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E
[
s>k | Fk−1

]
∇Fk−1≤−λminβ

∥∥A>(Axk−1−b)
∥∥2
2

+αk

∥∥A>(Axk−1−b)
∥∥
2

∥∥∥E[C−1M>
k

(
I+αkMkC−1M>

k

)−1MkC−1A>
k (Akxk−1−bk)

]∥∥∥
2

Using Jenson’s inequality and the fact that the 2-norm is a convex function

E
[
s>k | Fk

]
∇Fk ≤− λmin

∥∥A> (Axk−1 − b)
∥∥2
2

+αk

∥∥A>(Axk−1−b)
∥∥
2
E
[∥∥∥C−1M>

k

(
I+αkMkC−1M>

k

)−1MkC−1
∥∥∥
2

∥∥A>
k (Akxk−1−bk)

∥∥
2

]
≤− λmin (C)

∥∥A> (Axk−1 − b)
∥∥2
2
+ αkc

3d

where
∥∥C−1M>

k MkC−1
∥∥2
2
≤ d. We know that this d exists because W is from a finite sample

space, and the sequence {Ck} has eigenvalues bounded away from infinity. We also know that

E
[∥∥A>

k (Akxk − bk)
∥∥
2

]
≤ c. and

∥∥A> (Axk−1 − b)
∥∥2
2
=
∥∥E [A>WW> (Axk−1 − b)

]∥∥2
2
≤

E
[∥∥A>WW> (Axk−1 − b)

∥∥2
2

]
≤ c2.

E
[
F̃k − F̃k−1 |Fk

]
≤ αkγkE

[
s>k | Fk

]
∇Fk−1 + α2

kγk ‖AxLS − b‖22

≤ −αkγkλmin (C) ‖∇Fk−1‖22 + α2
kγkc

3d+ α2
kγkη ‖AxLS − b‖22 , xt (A.15)

Now note that

∞∑
k=1

E
[
IZk≥0

(
F̃k − F̃k−1

)]
≤
(
η ‖AxLS − b‖22 + c3d

) ∞∑
k=1

α2
k <∞
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By the quasi-martingale convergence theorem F̃k converges almost surely. since γk converges

to a nonzero value, it follows that Fk converges almost surely. The final step is to show that

Fk → 0. It follows from (A.15) that

n∑
k=1

αkγkλmin (C)E ‖∇Fk−1‖22 ≤
(
η ‖AxLS − b‖22 + c3d

) n∑
k=1

α2
k + EF̃1

Therefore there must be a subsequence such that

lim
k→∞

E
∥∥A>A(xnk

− xLS)
∥∥
2
= 0

by Fatou’s lemma we can say that xnk
→ xLS and so we are done.

A.3 Convergence Rates

We begin with a lemma proving a selection of properties that will be useful in the proofs of

Theorems 3.4 and 3.5.

Lemma A.2. Let A ∈ Rm×n be full column rank and b ∈ Rm. Let W ∈ Rm×` be a

random variable with M realizations and with the property that E
[
WW>] = βI. Denote

the realizations of W as {W(i)}Mi=1 with probabilities {p(i)}Mi=1 and associated blocks A(i) =(
W(i)

)> A and b(i) =
(
W(i)

)> b. Define pmin = mini p
(i) and pmax = maxi p

(i). Let Amin

and Amax be the smallest non-zero and largest eigenvalue of all matrices {
(
A(i)

)> A(i)}Mi=1.
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Define Zk =
(
I + αA>

k Ak

)−1 and Z = E
[
ZkA>

k Ak

]
. Then, the following statements are

true:

1. B defined in (3.15), is symmetric positive definite,

2. ‖EZk‖2 < 1,

3. ‖Z−1‖2 ≤
1+αAmin
pminAmin

, and

4.
∥∥αZkA>

k Ak

∥∥
2
≤ αAmax

1+αAmax
,

Proof. We prove this in parts.

1. B is the sum of symmetric semi-definite matrices, and therefore is symmetric semi-

definite or symmetric positive definite . Let y ∈ Null (B). This means that y>By =

0, which implies y> (αI + A>
k Ak

)−1 A>
k Aky = 0 for all realizations of W. Since(

αI + A>
k Ak

)−1 A>
k Ak is semi-positive definite. this means that

y ∈ Null
((
αI + A>

k Ak

)−1 A>
k Ak

)
= Null

(
A>

k Ak

)
.

It follows that

y>A>Ay =
1

β
y>E

[
A>

k Ak

]
y = 0.

Since A is full column rank, A>A is invertible. Therefore, y = 0 and we conclude

that B is invertible.

2. It is true that
∥∥∥∥(I + α

(
A(i)

)> A(i)
)−1
∥∥∥∥
2

≤ 1 for each i such that 1 ≤ i ≤ M , and so
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‖EZk‖2 ≤ 1 since

‖EZk‖2 =

∥∥∥∥∥
M∑
i=1

pi

(
I + α

(
A(i)

)> A(i)
)−1

∥∥∥∥∥
2

≤
M∑
i=1

pi

∥∥∥∥(I + α
(
A(i)

)> A(i)
)−1
∥∥∥∥
2

≤
M∑
i=1

pi = 1.

Since Zk is always symmetric semi-definite, EZk is symmetric semi-definite. If ‖EZk‖2 =

1, then there is a vector y such that

Ey>Zky =
M∑
i=1

piy>
(

I + α
(
A(i)

)> A(i)
)−1

y = 1. (A.16)

This means that y is the eigenvector associated with the eigenvalue 1 for
(

I + α
(
A(i)

)> A(i)
)−1

=

1 for each i such that 1 ≤ i ≤M . Therefore bfy is an eigenvector associated with the

eigenvalue 1 for
(

I + α
(
A(i)

)> A(i)
)
= 1 for each i such that 1 ≤ i ≤M .

However this implies that
(
A(i)

)> A(i)y = 0 for all i such that 1 ≤ i ≤M . This means

that

A>Ay =
1

β

M∑
i=1

pi
(
A(i)

)> A(i)y = 0

Which is not possible since A is full column rank. Therefore. ‖EZk‖2 < 1

3. We know that ‖Z−1‖2 = 1
λmin(Z)

. Let y ∈ Rn. Since Z is positive definite y>Zy > 0.

It follows that

y>Zy =
M∑
i=1

piy>
(

I + α
(
A(i)

)> A(i)
)−1 (

A(i)
)> A(i)y.
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It follows that y>
(

I + α
(
A(i)

)> A(i)
)−1 (

A(i)
)> A(i)y > 0, , for some i such that

1 ≤ i ≤M . The minimum eigenvalue of
(

I + α
(
A(i)

)> A(i)
)−1 (

A(i)
)> A(i) is bounded

below by Amin
1+αAmin

. Therefore

y>Zy ≥ pminAmin

1 + αAmin
, (A.17)

which means ‖Z−1‖2 ≤
1+αAmin
pminAmin

.

4. Every eigenvalue of ZkαA>
k Ak take the form αλ

1+αλ
, where λ is an eigenvalue of A>

k Ak.

Therefore, αλ
1+αλ

≤ αAmax
1+αAmax

, and we have our result.

We now prove Theorem 3.4.

Proof of Theorem 3.4. Let Zk =
(
I + αA>

k Ak

)−1 and Z = E
[
ZkA>

k Ak

]
. Using the

definition of x̂ and xLS and the fact that Ab = 1
β
E
[
A>

k bk

]
we have

‖x̂ − xLS‖2 =
∥∥∥Z−1E

[
ZkA>

k bk

]
−
(
βA>A

)−1 E
[
A>

k bk

]∥∥∥
2
.

Adding and subtracting Z−1E
[
A>

k b
]
, using the triangle inequality, and using submultiplica-

tivity of the 2-norm gives us

‖x̂ − xLS‖2 ≤
∥∥Z−1

∥∥
2

∥∥E [ZkA>
k bk − A>

k bk

]∥∥
2
+
∥∥∥Z−1 −

(
βA>A

)−1
∥∥∥
2

∥∥E [A>
k bk

]∥∥
2
.

(A.18)

Using the inequality

∥∥∥Z−1 −
(
βA>A

)−1
∥∥∥
2
≤
∥∥Z−1

∥∥
2

∥∥Z − βA>A
∥∥
2

∥∥∥(βA>A
)−1
∥∥∥
2
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in (A.18) yields

‖x̂−xLS‖2≤
∥∥Z−1

∥∥
2

(∥∥E[ZkA>
k bk−A>

k bk

]∥∥
2
+
∥∥∥(βA>A

)−1
∥∥∥
2

∥∥βA>A−Z
∥∥
2

∥∥E[A>
k bk

]∥∥
2

)
.

Using Lemma (A.2) part (1) we have

∥∥Z−1
∥∥2
2
≤ 1 + αAmin

pminAmin
,

Using the fact that Zk − I = −αZkA>
k Ak and Jensen’s inequality

∥∥E [ZkA>
k bk − A>

k bk

]∥∥
2
=
∥∥E [(Zk − I)A>

k bk

]∥∥
2

=
∥∥E [−αZkA>

k AkA>
k bk

]∥∥
2

≤ E
∥∥αZkA>

k Ak

∥∥
2

∥∥A>
k bk

∥∥
2
.

Using Lemma (A.2) part (4) we have

∥∥E [ZkA>
k bk − A>

k bk

]∥∥
2
≤ αAmax

1 + αAmax

∥∥E [A>
k bk

]∥∥
2
.

Also

∥∥Z − βA>A
∥∥
2
=
∥∥E [(Zk − I)A>

k Ak

]∥∥
2

and so a similar argument gives us the bound

∥∥Z − βA>A
∥∥
2
≤ αAmax

1 + αAmax
E
[∥∥A>

k Ak

∥∥
2

]
,

we have our result.
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Now we present the proof of Theorem 3.5

Proof of Theorem 3.5. We prove each part separately

1. Using the recursive definition of xk, and the expected value conditioned on Fk

E [xk − x̂| Fk ] = xk−1 − x̂ − E
[
BkA>

k (Akxk−1 − bk)| Fk

]
= xk−1 − x̂ − Bxk−1 − E

[
BkA>

k bk

]
= xk−1 − x̂ − B

(
xk−1 − B−1E

[
BkA>

k bk

])
= xk−1 − x̂ − B (xk−1 − x̂)

= (I − B) (xk−1 − x̂)

=
(
I + αA>

k Ak

)−1
(xk−1 − x̂) .

This last equality follows from the fact that

(I − B) = E
[
I −

(
α−1I + A>

k Ak

)−1 A>
k Ak

]
= E

[(
α−1I + A>

k Ak

)−1
α−1
]

= E
[(

I + αkA>
k Ak

)−1
]
.

Now E [xk − x̂] = EE [xk − x̂| Fk ] so taking full expectation of both sides

E [xk − x̂] = E
(
I + αA>

k Ak

)−1 E [xk−1 − x̂] .

Since Ak are all i.i.d., unrolling the recursion gives

E [xk − x̂] =
(
E
(
I + αA>

k Ak

)−1
)k

E [x0 − x̂] .
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Taking the norm of both sides and using sub-multiplicitivity gives us

‖E [xk − x̂]‖2 ≤
∥∥∥E (I + αA>

k Ak

)−1
∥∥∥k
2
‖E [x0 − x̂]‖2 .

The norm
∥∥∥E (I + αA>

k Ak

)−1
∥∥∥
2
< 1 since A is full column rank. we have that

‖E [xk − x̂]‖2 → 0 and so E [xk] → x̂ at a linear rate, which is the result we are

trying to prove.

2. Let us show the iterates xk converge linearly to a convergence horizon near x̂. Using

the definition of xk gives

‖xk − x̂‖22 =
∥∥xk−1 − x̂ − BkA>

k (Akxk−1 − bk)
∥∥2
2

= ‖xk−1 − x̂‖22 − 2
〈
xk−1 − x̂ , BkA>

k (Akxk−1 − bk)
〉
+
∥∥BkA>

k (Akxk−1 − bk)
∥∥2
2

= ‖xk−1 − x̂‖22 − 2
〈
xk−1 − x̂ , BkA>

k (Akxk−1 − bk)
〉

+
∥∥BkA>

k (Ak(xk−1 − x̂)) + BkA>
k (Ak(x̂ − bk))

∥∥2
2
.

Using the fact that ‖x + y‖22 ≤ 2 ‖x‖22 + 2 ‖y‖22 for all x,y ∈ Rn and using sub-

multiplicitivity gives us

‖xk − x̂‖22 ≤‖xk−1 − x̂‖22 − 2
〈
xk−1 − x̂ , BkA>

k (Akxk−1 − bk)
〉

+ 2
∥∥BkA>

k (Ak(xk−1 − x̂))
∥∥2
2
+ 2

∥∥BkA>
k (Akx̂ − bk)

∥∥2
2

≤‖xk−1 − x̂‖22 − 2
〈
xk−1 − x̂ , BkA>

k (Akxk − bk)
〉

+ 2
∥∥BkA>

k (Ak(xk−1 − x̂))
∥∥2
2
+ 2λ2max (Bk)

∥∥A>
k (Akx̂ − bk)

∥∥2
2
.
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Note that λ2max (Bk) ≤ α2, therefore

‖xk − x̂‖22 ≤ ‖xk−1 − x̂‖22 − 2
〈
xk−1 − x̂ , BkA>

k (Akxk−1 − bk)
〉

+ 2
∥∥BkA>

k (Ak(xk−1 − x̂))
∥∥2
2
+ 2α2

∥∥A>
k (Akx̂ − bk)

∥∥2
2
.

BkA>
k Ak is a symmetric semi-definite matrix, so it has a Cholesky factorization

BkA>
k Ak = L>

k Lk [65]. Therefore

∥∥BkA>
k Ak(xk − x̂)

∥∥2
2
=
∥∥L>

k Lk (xk−1 − x̂)
∥∥2
2

≤ ‖Lk‖22 ‖Lk (xk−1 − x̂)‖22

= ‖Lk‖22 〈xk−1 − x̂ , BkA>
k Ak (xk−1 − x̂)〉.

Now ‖Lk‖22 is the maximum eigenvalue of L>
k Lk = BkA>

k Ak =
(
I + αA>

k Ak

)−1
αA>

k Ak.

Let Amax denote the maximum eigenvalue of A>
k Ak for any realization of W. Using

the fact that
∥∥L>

k

∥∥2
2
≤ αAmax

1+αAmax
we get

‖xk − x̂‖22 ≤ ‖xk−1 − x̂‖22 − 2
〈
xk−1 − x̂ , BkA>

k (Akxk−1 − bk)
〉

+ 2
αAmax

1 + αAmax
〈xk−1 − x̂ , BkA>

k Ak (xk−1 − x̂)〉+ 2α2
∥∥A>

k (Akx̂ − bk)
∥∥2
2
.

Taking the expectation of both sides conditioned on Fk gives

E
[
‖xk − x̂‖22 | Fk

]
≤ ‖xk−1 − x̂‖22 − 2 〈xk−1 − x̂ , B (xk−1 − x̂) 〉

+ 2
αAmax

1 + αAmax
〈xk−1 − x̂ , B (xk−1 − x̂)〉+ 2α2E

[∥∥A>
k (Akx̂ − bk)

∥∥2
2

]
= ‖xk−1−x̂‖22−2

(
1− αAmax

1+αAmax

)
〈xk−1−x̂ ,B(xk−1−x̂)〉+2α2E

[∥∥A>
k (Akx̂−bk)

∥∥2
2

]
= ‖xk−1−x̂‖22−

2
1+αAmax

〈xk−1−x̂ ,B(xk−1−x̂)〉+2α2E
[∥∥A>

k (Akx̂−bk)
∥∥2
2

]
.



A.3. Convergence Rates 139

Note that 〈xk−1 − x̂ , B (xk−1 − x̂)〉 ≥ λmin (B), therefore

E
[
‖xk − x̂‖22 | Fk

]
≤
(
1− 2

λmin (B)

(1 + αAmax)

)
‖xk−1 − x̂‖22 + 2α2E

∥∥A>
k (Akx̂ − bk)

∥∥2
2

= (1− 2c) ‖xk−1 − x̂‖22 + 2α2E
∥∥A>

k (Akx̂ − bk)
∥∥2
2
.

Taking the expectation in of both sides, using the fact that EE
[
‖xk − x̂‖22 | Fk

]
=

E
[
‖xk − x̂‖22

]
and unrolling the recursion gives us

E
[
‖xk − x̂‖22

]
≤ (1− 2c)k E

[
‖x0 − x̂‖22

]
+ 2α2E

∥∥A>
k (Akx̂ − bk)

∥∥2
2

k−1∑
i=0

(1− 2c)i

≤ (1− 2c)k ‖x0 − x̂‖22 + α2c−1E
∥∥A>

k (Akx̂ − bk)
∥∥2
2
.

This last inequality is using the fact that

k−1∑
i=0

(1− 2c)i ≤
∞∑
i=0

(1− 2c)i =
1

2c
,

given that 0 < 1− 2c < 1. The last step is to show that 0 < 1− 2c < 1.

Since B is invertible λmin (B) > 0, which implies

(
1− 2

λmin (B)

(1 + αAmax)

)
< 1.

Also

λmin (B) ≤ λmax (B) ≤ αAmax

1 + αAmax
,



140 Appendix A. Proofs for Chapter 3

which means

(
1− 2

λmin (B)

(1 + αAmax)

)
≥
(
1− 2

αAmax

(1 + αAmax)(1 + αAmax)

)
.

Since

2
αAmax

(1 + αAmax)(1 + αAmax)
≤ 1

we have
(
1− 2 λmin(B)

(1+αAmax)

)
> 0. We have our result.



Appendix B

Derivation of the Sampled UPRE and

GCV

B.0.1 Derivation of the Sampled UPRE

The basic idea is to find Λk by minimizing an estimate of the predictive error. Let the

sampled predictive error be given by

P (λ) =
∥∥W>

τ(k)(Axk(λ)− Axtrue)
∥∥2
2
.

Using the notation from (4.10), the expected sampled predictive error, EP (λ), can be written

as

E
∥∥W>

τ(k) (ACk(λ)− Im)Axtrue
∥∥2
2
+ σ2E tr

(
Ck(λ)

>A>Wτ(k)W>
τ(k)ACk(λ)

)
, (B.1)

where the mixed term vanishes due to independence of Wτ(1), . . .Wτ(k) and ε and since

Eε = 0. Similar to the derivation for standard UPRE, the predictive error is not computable

in practice since xtrue is not available. Thus, we perform a similar calculation for the expected

141
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sampled residual norm,

E
∥∥W>

τ(k) (Axk(λ)− b)
∥∥2
2
= E

∥∥W>
τ(k)(ACk(λ)− Im)b

∥∥2
2

= E
∥∥W>

τ(k)(ACk(λ)− Im)Axtrue
∥∥2
2
+ E

∥∥W>
τ(k)(ACk(λ)− Im)ε

∥∥2
2
. (B.2)

Next, notice that using the trace lemma for a symmetric matrix [8], the second term in (B.2)

can be written as

σ2
(
E tr

(
Ck(λ)

>A>Wτ(k)W>
τ(k)ACk(λ)

)
− 2E tr

(
Wτ(k)W>

τ(k)ACk(λ)
)
+ `
)
. (B.3)

Combining (B.1) with (B.2) and (B.3), we get

EP (λ) = E
∥∥W>

τ(k) (Axk(λ)− b)
∥∥2
2
+ 2σ2 E tr

(
Wτ(k)W>

τ(k)ACk(λ)
)
− σ2`.

Finally for a given realization, we get an estimator for the predictive risk

Uk(λ) =
∥∥W>

τ(k) (Axk(λ)− b)
∥∥2
2
+ 2σ2tr

(
W>

τ(k)ACk(λ)Wτ(k)

)
− σ2` ,

which is equivalent to (4.12).

B.0.2 Derivation of the Sampled GCV

Next, we derive the sampled generalized cross validation function, following a similar deriva-

tion of the cross validation and generalized cross validation function found in [66]. For

notational simplicity, we denote Aτ(i) = W>
τ(i)A and bτ(i) = W>

τ(i)b. Then, notice that

the kth iterate of sTik, which is given by xk(λ) = Ck(λ)b is the solution to the following
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problem,

min
x

∥∥Aτ(k)x − bτ(k)

∥∥2
2
+ λ ‖Lx‖22 +

∥∥∥∥∥∥∥∥∥∥


Aτ(1)

...

Aτ(k−1)

x −


bτ(1)

...

bτ(k−1)


∥∥∥∥∥∥∥∥∥∥

2

2

.

To derive sampled GCV, at the kth iterate, define the `× ` identity matrix with 0 is the jth

entry, i.e.,

Ej = I` − e>
j ej,

here ej is the jth column of the identity matrix. Our goal is to find x[j](λ), which is the

solution to

min
x

∥∥Ej

(
Aτ(k)x − bτ(k)

)∥∥2
2
+ λ ‖Lx‖22 +

∥∥∥∥∥∥∥∥∥∥


Aτ(1)

...

Aτ(k−1)

x −


bτ(1)

...

bτ(k−1)


∥∥∥∥∥∥∥∥∥∥

2

2

.

Then, the sampled cross-validation estimate for λ minimizes the average error,

Vk(λ) =
1

`

∑̀
j=1

(
e>
j bτ(k) − e>

j Aτ(k)x[j](λ)
)2
.

Using the normal equations and the fact that E>
j Ej = Ej, an explicit expression for x[j](λ)

is given as

x[j](λ) =

(
A>

τ(k)E>
j EjAτ(k) + λL>L +

k−1∑
i=1

A>
τ(i)Aτ(i)

)−1(
A>

τ(k)E>
j Ejbτ(k) +

k−1∑
i=1

A>
τ(i)bτ(i)

)

=
(
Bk(λ)

−1 − A>
τ(i)eje>

j Aτ(i)

)−1

(
k∑

i=1

A>
τ(i)bτ(i) − A>

τ(k)eje>
j bτ(k)

)
,
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where Bk(λ) =
(
λL>L +

∑k
i=1 A>

τ(i)Aτ(i)

)−1

. Next defining tjj = e>
j Aτ(k)Bk(λ)A>

τ(k)ej and

using the Sherman-Morrison-Woodbury formula, we get

(
Bk(λ)

−1 − A>
τ(i)eje>

j Aτ(i)

)−1
= 1

1−tjj

(
(1− tjj)Bk(λ) + Bk(λ)A>

τ(k)eje>
j Aτ(k)Bk(λ)

)
and after some algebraic manipulations, we arrive at

e>
j Aτ(k)x[j](λ) =

1

1− tjj

(
e>
j Aτ(k)Ck(λ)b − tjje>

j bτ(k)

)
.

Thus,

e>
j bτ(k) − e>

j Aτ(k)x[j](λ) =
1

1− tjj
e>
j

(
bτ(k) − Aτ(k)xk(λ)

)
and we can write the sampled cross-validation function as

Vk(λ) =
1

`

∥∥Dk(λ)(bτ(k) − Aτ(k)xk(λ))
∥∥2
2
,

where Dk(λ) = diag
(

1
1−t11

, . . . , 1
1−t``

)
. Now the extension from the sampled cross-validation

to the sampled generalized cross validation function is analogous to the generalization process

from cross-validation to GCV provided in [66].


	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Mathematical Models
	The Linear Inverse Problem
	The Separable, Non-linear Inverse Problem

	Outline
	Overview of Contributions

	Row-action Methods
	Definition and Notation
	Sampling Methods
	Step Sizes
	The Kaczmarz Method
	Consistent Linear System
	Linear Least Squares

	The Block Kaczmarz Method
	The Damped Block Kaczmarz Method
	Generalized Block Structure for Consistent Systems
	Row-action Methods for the Tikhonov LS Problem
	Other Row-action Methods 

	Stochastic Newton and Quasi-Newton methods
	Stochastic Reformulation of the LS Problem
	Stochastic Approximation Algorithms
	Generalized Block Structure
	Connection to Row-action Methods
	Choice of Step Size

	Almost Sure Convergence of the SN Method
	Analysis of quasi-Newton Methods
	Almost Sure Convergence
	Convergence Rates

	Numerical Experiments
	Experiment 1: Asymptotic Behavior of Block Kaczmarz and rrls
	Experiment 2: Convergence Behavior of slimLS
	Experiment 3: Image Classification

	Remarks and Future Directions

	Sampled Tikhonov Regularization
	Problem Formulation
	Full Memory Row-action Methods for Tikhonov Regularization
	Random Sampling
	Random Cyclic Sampling
	An Illustration

	Sampled Regularization Parameter Selection Methods
	Sampled Discrepancy Principle
	Sampled Unbiased Predictive Risk Estimator
	 Sampled Generalized Cross Validation
	A Second Illustration

	The slimTik Method
	Limited Memory sTik
	Connection to slimLS
	A Third Illustration

	Numerical Experiments
	Experiment 4: slimTik Applied to X-ray Tomography
	Experiment 5: Convergence of Sampled Regularization Methods
	Experiment 6: Super Resolution

	Remarks and Future Directions

	Extension to Separable, Non-linear Inverse Problems
	Row-action Methods for Separable, Non-linear Inverse Problems
	Numerical Results
	Experiment 7: Comparing sn-slimTik to variable projection
	Experiment 8: sn-slimTik for a Streaming Problem

	Remarks and Future Directions

	Conclusion
	Bibliography
	Appendices
	Appendix Proofs for Chapter 3
	The Quasi-martingale Convergence Theorem
	Almost Sure Convergence
	Convergence Rates

	Appendix Derivation of the Sampled UPRE and GCV
	Derivation of the Sampled UPRE
	Derivation of the Sampled GCV



