
Improved Abstractions and Turnaround Time for FPGA Design

Validation and Debug

Yousef Shafik Iskander

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Cameron D. Patterson, Chair

Thomas L. Martin

Paul D. Plassmann

Sedki M. Riad

Ricardo A. Burdisso

August 6, 2012

Blacksburg, Virginia

Keywords: FPGA, reconfigurable computing, debug, design validation, partial

reconfiguration, development

Copyright 2012, Yousef S. Iskander

Improved Abstractions and Turnaround Time for FPGA Design Validation

and Debug

Yousef Shafik Iskander

(ABSTRACT)

Design validation is the most time-consuming task in the FPGA design cycle. Although

manufacturers and third-party vendors offer a range of tools that provide different perspec-

tives of a design, many require that the design be fully re-implemented for even simple

parameter modifications or do not allow the design to be run at full speed. Designs are typi-

cally first modeled using a high-level language then later rewritten in a hardware description

language, first for simulation and then later modified for synthesis. IP and third-party cores

may differ during these final two stages complicating development and validation. The de-

veloped approach provides two means of directly validating synthesized hardware designs.

The first allows the original high-level model written in C or C++ to be directly coupled

to the synthesized hardware, abstracting away the traditional gate-level view of designs. A

high-level programmatic interface allows the synthesized design to be validated with the

same arbitrary test data on the same framework as the hardware. The second approach

provides an alternative view to FPGAs within the scope of a traditional software debugger.

This debug framework leverages partially reconfigurable regions to accelerate the modifica-

tion of dynamic, software-like breakpoints for low-level analysis and provides a automatable,

scriptable, command-line interface directly to a running design on an FPGA.

This work is supported by DARPA and the United States Army under Contract Number W31P4Q-
08-C-0314. The views, opinions, and/or findings contained in this article/presentation are those of
the author/presenter and should not be interpreted as representing the official views or policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the Department
of Defense. Approved for Public Release, Distribution Unlimited.

Dedication

To my unconditionally loving and supportive parents, Shafik and Horia Iskander, to whom

I owe so much in teaching me the value of education and making sacrifices for me to have

one.

To my wife Tere and son Alex, who have brought me untold joy with their wonderful dis-

tractions. I wrote much of my preliminary exam while holding Alex as an infant so he could

sleep, and took many breaks to play blocks while writing this dissertation.

iii

Acknowledgments

I am permanently indebted to many people for the completion of this dissertation. I have

surely forgotten to mention someone, and am unable to properly express my gratitude to

those I have listed.

My adviser, Cameron Patterson provided me with an opportunity when I had all but given up

and provided exceptional support and meaningful insight which has been the real education.

I am grateful for his mentoring. Thanks are also due to Dr. Jaime de la Ree for helping get

past some particularly difficult obstacles. Thanks are of course due to all who served on my

committee, Tom Martin, Sedki Riad, Paul Plassmann, and Ricardo Burdisso who held me

to very high standards to which I can be proud of.

I’m indebted to my longtime friend Stephen Craven who not only encouraged me to continue

when I was about to give up, but provided the motivation to return to school to pursue my

doctorate, provided an opportunity to do so, and pushed me to do even better. He also

provided invaluable support and advice throughout.

I’m grateful to the many special friends I made during my once in a lifetime stay in Los

Alamos, New Mexico at the Los Alamos National Laboratory. Thanks are due to Kei

Davis, Heather Quinn, Zack Baker, Paul Graham, Sara del Valle, Hugh Greenberg, and

Tony Salazar for selflessly sharing their knowledge, friendship, and experience; to M’hamed

“Jebb” Jebbanema for his friendship and hiking trips through White Rock Canyon; and to

iv

Jim and Gabriela Stiner for memorable evenings at the “Stiner Diner” at their lovely home

in White Rock.

I’m also grateful to Dr. Linda Wills of Georgia Tech, a patient and insightful woman to

whom I owe so much for forming my first graduate school experience. She was instrumental

in my desire to return to complete my doctorate and my success as graduate student. Her

husband Scott was also an influential professor. Sadly, he passed away while I was writing

this dissertation.

Thanks to the members of the Configurable Computing Machinery (CCM) Lab at Virginia

Tech, including Neil Steiner, Lee Lerner, Tingting Meng, and the students who worked on

this project with me: Athira Chandrasekharan, Suresh Raja Gopalan, Tony Frangieh, and

Guruprasad Subbarayan. Thanks also to Brian Knight for his invaluable support on this

project and his friendship.

Thanks is due to the always friendly staff of Sub Station II in Blacksburg, Va. I was sitting

in that restaurant with my good friend Stephen Craven when I decided to attend Virginia

Tech and it is also there I spent many enjoyable lunches thinking about my work. I highly

recommend the #9.

I, like so many other in this field, are indebted to the authors of open-source software which

is frequently used without credit or thanks to the many anonymous authors. Please see the

Appendix for a listing of the open-source software packages that were instrumental in this

research.

This work was performed at Virginia Tech in Blacksburg, Va. with support provided through

Luna Innovations Incorporated in Roanoke, Va.

v

Contents

List of Figures x

List of Tables xii

List of Listings xiii

Acronyms xv

1 Introduction 1

1.1 Motivation . 3

1.2 Problem Statement . 4

1.3 Contributions . 5

1.4 Organization . 6

2 Background 9

2.1 An Overview of Programmable Logic . 9

2.2 FPGA Development . 17

vi

2.2.1 Design Flow Overview . 21

2.3 Debug Methodologies . 29

2.3.1 Custom Methods . 31

2.3.2 Simulator-Based Development . 32

2.3.3 Commercial Debug Solutions . 33

2.3.4 Assertion-Based Verification . 35

2.4 High-Level Language Synthesis . 36

2.5 Dynamic Runtime Reconfiguration . 39

2.6 Summary . 42

3 Related Work 44

3.1 Categorization of Debug Approaches . 44

3.2 Commercial Debug Products . 48

3.2.1 Vendor Products . 48

3.2.2 Third-Party Products . 48

3.3 Debug-Related Research . 50

3.4 High-Level Synthesis . 53

3.5 Deficiencies in Existing Approaches . 55

3.6 Summary . 57

vii

4 Improving Abstraction and Turnaround Time 59

4.1 High-Level Validation . 62

4.1.1 Mapping Software Procedures to Hardware Modules 64

4.1.2 Mapping Data and Control Signals to the Software Model 65

4.2 Low-Level Debug . 66

4.2.1 Improving Visibility . 67

4.2.2 Improving Controllability . 69

4.2.3 Improving Agility . 72

4.3 Dynamic Modular Design and Validation . 73

4.3.1 PATIS . 74

4.4 Summary . 78

5 Implementation 79

5.1 High-Level Validation . 79

5.1.1 Reference Model Execution and Hardware Data Staging 81

5.1.2 Test Harness and API . 82

5.2 Low-Level Debug . 86

5.2.1 Programmable Debug Controller . 88

5.2.2 Unified Software Interface . 98

5.2.3 Logic Model and Symbol Table Creation 102

5.3 Summary . 108

viii

6 Evaluation 111

6.1 High-Level Validation . 111

6.1.1 Secure Hash Algorithm . 112

6.1.2 Results . 112

6.1.3 Summary and Future Work . 115

6.2 Low-Level Debug . 116

6.2.1 Benchmark Designs . 116

6.2.2 Results . 118

6.2.3 Summary and Future Work . 128

7 Conclusions and Future Work 131

7.1 Review of Contributions . 131

7.2 Future Work . 134

Bibliography 135

A Open-Source and Free Software Acknowledgement 144

B Source Code 145

B.1 High-Level Validation . 145

B.2 Low-Level Debug . 154

ix

List of Figures

1.1 Hardware development flow. 5

2.1 Early programmable logic devices with discrete gates connected by programmable

interconnects. 10

2.2 Modern FPGAs organized as a regular array of resources. 11

2.3 LUTs replace arbitrary logic with simple memories. 13

2.4 Overview of software development flow. 19

2.5 Simplified view of FPGA development flow. 20

2.6 Detailed overview of FPGA development flow. 22

2.7 The model verification gap in hardware development. 30

2.8 Partial reconfiguration for multiple logic modules in the region. 41

3.1 JTAG chains visit every resource in the FPGA. 45

3.2 JTAG daisy chains require few connections. 47

3.3 ChipScope gathers data through physically routed nets. 49

4.1 Refactoring code improves maintainability. 64

x

4.2 Mapping data paths in hardware and software. 65

4.3 Developing a software model for hardware control signals from simulation

models. 66

4.4 a) A serial model of accessing register state; b) a random access model in

which registers are accessible as memory locations. 68

4.5 Symbol table mapping logical design elements to physical locations in an FPGA. 69

4.6 Schematic representation of a simple clock buffer. 71

4.7 Accelerating debugging turnaround with a reconfigurable region for debugging

logic. 74

4.8 PATIS provides each top-level module its own reconfigurable region. 76

4.9 Dynamic Modular Design flow. 77

5.1 Overview of High-Level Validation. 80

5.2 MicroBlaze architecture. 83

5.3 HLV capture window parameters. 85

5.4 Overview of LLD. 88

5.5 LLD clock control. 90

5.6 LLD breakpoint region detail. 92

5.7 Relationship between device resources and configuration frames. 99

5.8 Logic allocation record format. 102

5.9 Algorithm to retrieve register values. 107

6.1 SHA-1 block diagram. 113

6.2 Benchmark design implementation times. 121

6.3 Percentage of time required for LLD implementation. 123

6.4 Execution call graph of console application. 130

xi

List of Tables

2.1 Timeline of logic density of Xilinx FPGAs. 14

2.2 PAR times for non-trivial designs with typical timing goals. 35

3.1 Timeline of Xilinx Boundary Scan chain length. 46

3.2 Summary of debug products. 56

4.1 Truth table for a simple clock buffer. 71

5.1 Summary of HLV API. 84

5.2 Register map for the HLV peripheral. 86

5.3 Register map for Programmable Debug Controller. 89

5.4 Summary of on-chip debugger commands. 100

5.5 Summary of workstation commands. 110

6.1 Benchmark design implementation times (hours:minutes:seconds). 120

6.2 LLD implementation times (minutes:seconds). 122

xii

Listings

2.1 Verilog shift register definition from XST synthesizer documentation. 24

2.2 Implementation of a counter with HLS. 39

2.3 Synthesizable RTL generated from Listing 2.2. 40

5.1 Sample HLV program. 87

5.2 Breakpoint data structure. 94

5.3 Generated Verilog breakpoint module for reconfigurable breakpoint region. . 95

5.4 BitInfo data structure. 104

6.1 Transcript of an HLV test session. 114

6.2 LLD debug transcript for a SHA-1 core. 124

B.1 HLV User Logic. 145

B.2 SHA Test Code. 149

B.3 SHA Test Code. 153

B.4 Logic Allocation Data Structure Definition Header. 154

B.5 Breakpoint Data Structure Header. 155

B.6 Serial Communications Source. 156

xiii

B.7 Debugger Commands Header. 158

B.8 ICAP Access Routines Header. 161

B.9 ICAP Access Routines Source. 162

B.10 LLD Workstation Console Source. 170

B.11 Main FPGA LLD Console. 184

B.12 Logic Allocation Lexer. 188

B.13 Logic Allocation Parser. 190

B.14 Programmable Debug Controller. 194

B.15 Example of Generated Breakpoint Logic. 200

xiv

Acronyms

ABV Assertion-Based Verification

API Application Programming Interface

ASIC Application Specific Integrated Circuit

BRAM Block RAM

BSCAN Boundary Scan

CFFT Complex Fast Fourier Transform

DRC Design Rule Checks

DSP Digital Signal Processor

DUT Device Under Test

EDA Electronic Design Automation

EDIF Electronic Data Interchange Format

FIFO First In, First Out

FPGA Field Programmable Gate Array

FSL Fast Simplex Link

GSR Global Set/Reset

GUI Graphical User Interface

HAL Hardware Abstraction Layer

HDL Hardware Description Language

HLL High-Level Language

HLS High-Level Synthesis

HLV High-Level Validation

IC Integrated Circuit

ICAP Internal Configuration Access Port

IDE Integrated Development Environment

I/O Input/Output

IP Intellectual Property

JTAG Joint Test Action Group

xv

LED Light Emitting Diode

LLD Low-Level Debug

MAC Media Access Control

NoC Network-on-Chip

OS Operating System

PAL Programmable Array Logic

PAR Place-and-Route

PATIS Partial module-producing, Automatic, Timing-aware, Incremental,

Speculative floorplanner

PDC Programmable Debug Controller

RAM Random Access Memory

ROM Read-Only Memory

RTL Register Transfer Level

RTR Runtime Reconfiguration

SHA-1 Secure Hash Algorithm

VHDL VHSIC Hardware Description Language

VHSIC Very High-Speed Integrated Circuit

xvi

Chapter 1

Introduction

Digital system validation has reached a critical turning point. With the rate of new produc-

tions at an all time high due to a rapidly increasing consumer and commercial demand, the

importance of an efficient and productive debug methodology has reached a tipping point.

Time-to-market is a critical metric directly tied to production cost, however the increas-

ing complexity and density of these systems works directly against the goal of improving

efficiency and productivity.

In the last 20 years Field Programmable Gate Arrays (FPGA), a type of programmable logic

device, have dramatically reduced design and validation times for developing complex digital

systems. FPGAs give developers a near instantaneous means of prototyping and physically

validating a digital design in real world conditions, when compared to the weeks-long wait

required to manufacture an Application Specific Integrated Circuit (ASIC). However, even

this level of rapid prototyping environment is not as flexible as needed. Build times for

FPGAs may take days making even small changes a lengthy and unpleasant process.

In addition to long build times, FPGAs are notorious for the lack of visibility and control into

the design, possibly the two most important attributes of validating and understanding any

1

Yousef S. Iskander Chapter 1 Introduction 2

system. By their very nature, FPGAs are blank slates allowing any arbitrary, custom design

to created. The excellent reputation they have earned in high-performance, small-area,

and low-power industry sectors such as telecommunications, defense, and high-performance

computing, as well as an effective prototyping technology for practically any sector highlights

the necessity for increasing productivity and efficiency during validation and debug.

Several debug approaches are currently in widespread use. FPGA vendors, who are able to

leverage their own knowledge of these proprietary devices overwhelmingly favor recreating

the look and feel of an actual logic analyzer. To do so, special cores need to be configured

and built into the design. Embedded logic analyzers internally record signal activity based

on preselected criteria defined during the build phase and are physically integrated into the

design. Third-party vendors, at a disadvantage by not being able to seamlessly integrate

their products into the normal design flow, rely on add-on modules also integrated into the

design, but also rely on aging interfaces that reduce the effectiveness, speed, and interactivity

required for validation and debug.

FPGAs are unique in that they can reprogrammed an unlimited number of times, while some

even allow one or more sub-regions of the configurable fabric to reconfigured independently

from the rest of the device. This Runtime Reconfiguration (RTR) or Partial Reconfiguration

(PR) capability has, to our knowledge, never been been leveraged for development-time

methodologies. In addition, the ability to validate against the original software reference

model, also suffers. Once hardware development begins, the reference model is physically

isolated from the rest of the design process, and must be repeatedly and manually checked.

The wealth of external interfaces and cores available on FPGAs allows some unique ap-

proaches for debug. Software allows a great amount of flexibility since it can be easily

changed within a matter of minutes, and the availability of small, unobtrusive processors

that can be embedded into a design afford interesting new approaches to design validation.

Yousef S. Iskander Chapter 1 Introduction 3

If the perspective and context of debugging is changed from outside the FPGA to within,

design validation and exploration are no longer limited in visibility, and the entire scope of

all design registers are easily accessible. Software control of a design allows interesting ap-

proaches to exploration and inspection, and if coupled with a means of controlling execution,

unprecedented perspective and insight into a working design is possible.

1.1 Motivation

Once the design is implemented and programmed into the FPGA, debugging or analyzing the

design is difficult. There are no general purpose input/output facilities such as a keyboard or

console as with a general-purpose computer, and no industry-wide standard targeted specif-

ically for FPGAs. Current solutions are often borrowed from the ASIC industry, such as

Joint Test Action Group (JTAG), which addresses a limited portion of the design. Manufac-

turer solutions, as well as the multitude of ad-hoc solutions also only allow a limited view of

the design either spatially or temporally. The trade-off being that only a limited portion of

the design can be viewed or a limited segment of the execution can be observed. Changing

the perspective of this view is tightly coupled to the actual implementation and difficult to

modify. The typical debugging solution is typically to instantiate cores within the design

and record signal activity for later inspection. Changes to the perspective are treated like

any change to the design and often require the same time-consuming implementations. In

contrast, software development and debug environments allow complete visibility and control

of the memory and execution space.

The frequent comparisons in productivity studies to software development environments

are no coincidence. FPGA development environments and flows have been harshly judged

against their software counterparts [1,2]. Software development environments are frequently

Yousef S. Iskander Chapter 1 Introduction 4

cited as the gold standard for hardware development because of the speed and efficiency

that they bring. This research aims to adopt several of these facilities for FPGAs, all based

around the concepts of controllability, agility, and visibility of a design loaded and running

on hardware.

1.2 Problem Statement

Typically, a hardware design is first modeled using a conventional high-level programming

language, such as C/C++, Java or even a formal modeling framework such as Matlab. The

development then proceeds by reconstructing a more concise design, this time specifically

oriented towards the actual hardware. This is achieved by filling in implementation details

unique to the platform such as specialized resources and device constraints. The high-

level reference model is algorithmic in nature, rather than cycle-accurate and contains no

references to timing, which is elemental to hardware implementation. The transition from

reference model to hardware implementation creates both a logical and physical gap in the

designers understanding of the design space and the continuity of the design from model

to reality. There are no failsafe automated solutions to converting the reference model to

RTL, rather this is a manual process and the effort in validating the model is then repeated

anew for the hardware design. The process of validating the original, vetted reference to

hardware is a manual, unreliable, and error-prone approach. These separate flow processes

are shown in Figure 1.1. It is noteworthy that not only is each phase of the development cycle

almost entirely independent of the other, but also that no validation or debug techniques

are applicable across any of the stages.

Furthermore, once implemented onto the FPGA, little meaningful and interactive interac-

tion with the design is possible. There exists little to no abstraction between the physical

Yousef S. Iskander Chapter 1 Introduction 5

S i m u l a t i o n M o d e l s

A s s e r t i o n - B a s e d
Ve r i f i ca t i on

S i m u l a t o r - B a s e d
T e s t i n g

F o r m a l
Ve r i f i ca t i on

H i g h - L e v e l
R e f e r e n c e M o d e l

S i m u l a t i o n

M o d e l V e r i f i c a t i o n
G a p

H a r d w a r e D e v e l o p m e n t

H a r d C o r e s

T h i r d - P a r t y I P

E m b e d d e d L o g i c
A n a l y z e r s

J T A G

A d - h o c M e t h o d s

A p p l i c a t i o n
H D L

Figure 1.1: Hardware development flow.

implementation and the debugger’s perspective of the design. Much like the development

language, debugging is mostly a low-level task. Lengthy, error-prone implementations ham-

per FPGA productivity, as does limited visibility into the designs. Other than the primary

inputs and outputs, the design is effectively sealed off from inspection. A cohesive and inter-

active control mechanism of a design is needed that allows both rapid and unlimited access

to all aspects of the design.

1.3 Contributions

The contributions of this work are as follows:

• Development of a tool that addresses the model verification gap by raising the abstrac-

tion level for FPGA validation and debug.

Yousef S. Iskander Chapter 1 Introduction 6

Debugging is traditionally a frustrating process since developers are responsible for

closing the loop when validating synthesized hardware against earlier reference mod-

els. The customary view of hardware validation is at the RTL level, which when

validating high-level functionality, is much too primitive. The developed system al-

lows synthesized hardware and the implementation to be concurrently executed and

compared at the target design speed on the same platform.

• Development of a tool that improves visibility, control, and agility for FPGA debug by

introducing software development environment facilities.

Unlike software development, FPGAs have few means to inspect or debug a running

design. The internal state elements of the design have limited or no visibility, and

execution occurs at millions of clock cycles per second. An error may occur and by the

time it manifests itself, the state of the device may have changed so much that its diag-

nosis is impossible. The developed framework brings some of the useful facilities found

in software development environments to FPGAs. The system presented here allows

a running, implemented design to be controlled and inspected at its target speed with

the interface and agility of software development tools. While most FPGA develop-

ment tools place the debugger’s viewpoint outside the design, the developed framework

places it within the FPGA. The presented work moves the designer’s perspective inside

the FPGA where its execution can be manipulated and its state explored from within,

treating the FPGA itself as a random access memory.

1.4 Organization

The remainder of this dissertation is organized as follows:

Chapter 2 Background

This chapter provides background material on both hardware and software development

Yousef S. Iskander Chapter 1 Introduction 7

to frame the perspective of the challenges faced in developing for FPGAs. Development

and debug life cycles for FPGAs are explored, beginning from modeling and ending with

simulation and hardware-based verification and validation. Commercial solutions, including

the high-level language development techniques meant to mirror software development flows

are also reviewed.

Chapter 3 Related Work

A survey of current debug-related work, both commercial and academic, is provided in this

chapter. FPGAs are proprietary and the means of gaining insight into a design are limited

and generally restricted to two methods: signal capture and JTAG. High-level synthesis is

also discussed in this section since raising the abstraction of design entry to an algorithmic

level also alleviates the need to do low-level analysis. Finally, a review of shortcomings of

many of these methods looks to frame the presented research’s contributions.

Chapter 4 Improving Abstraction and Turnaround Time

The model verification gap is analyzed to define the High-Level Validation framework. This

framework aims to map untimed software models to implemented hardware designs by lever-

aging the wealth of information that can be extracted during hardware development through

simulation. Rather than relying on simulation to validate, the proposed framework aims to

move validation to hardware and tie its execution directly to the software model. Visibility,

agility, and control for hardware-level debugging are then addressed by proposing a software-

style debugging environment for FPGAs. A method for implementing breakpoints as well

as rapidly enabling, disabling, and altering them is also presented through the use of an

on-board microprocessor.

Chapter 5 Implementation

In this chapter, the two debug and validation frameworks are implemented and benchmarked.

First, the High-Level Validation framework is developed to non-invasively instrument and

Yousef S. Iskander Chapter 1 Introduction 8

map a C-language reference model of an encryption core. The framework requires the de-

velopment of a custom hardware peripheral to interface to the module to be tested. The

system is shown to be capable of testing a hardware design executing at its intended target

design speed. Finally, the Low-Level Debug framework is constructed, leveraging the Xilinx

Runtime Reconfiguration flow. With this framework, debug scenarios can be modified and

re-implemented into the hardware within minutes by isolating the debug breakpoint and top-

level modules each into their own separate reconfigurable region. Capabilities such as those

found in software debugging environments, including breakpoints, stepping capabilities, and

full immediate access to all design registers are demonstrated. The Low-Level Debug frame-

work is demonstrated on three large designs where implementation time is prohibitively

long.

Chapter 2

Background

In this chapter, an overview of programmable logic and how it evolved into modern day Field

Programmable Gate Arrays (FPGA) is presented, followed by a step-by-step discussion of the

stages of development. The various methods of FPGA debugging and some of the challenges

of each method are then presented. Next, high-level synthesis, an alternative to traditional

hardware development languages that seeks to retarget conventional software programming

languages for FPGAs, is presented. Finally, runtime and partial reconfiguration is explained.

2.1 An Overview of Programmable Logic

In the dawn of digital development, designers were required to physically build systems

in order to test and validate them. Each wire of a design was individually connected to

discrete logic chips, transistors, and other components. Often to improve visibility, colorful

wires were used, each wrapped around small posts, lending this style of development its

descriptive name wire wraps. The resulting rat’s nest of wiring revealed the fragility and

complexity of even a modestly-sized design. Frequently, finished products were just neater

9

Yousef S. Iskander Chapter 2 Background 10

implementations of these prototypes, now committed to a manufactured component board

with embedded traces. It would be some time before electronic design automation (EDA)

tools established a more rapid and reliable means of prototyping designs while simultaneously

introducing a new set of challenges.

FPGAs derive their name from their ability to be repeatedly programmed in the field or

wherever they are installed, without the need to physically replace the device. Today, FPGAs

are even more flexible and support the means of remotely re-programming the devices, further

reducing the cost of ownership and maintenance. The gate array portion of the name refers

to a historical and now purely logical organization of the array of logic gates that could

be programmed to implement an arbitrary logic function, as shown in Figure 2.1. The

gate arrays have since been replaced by a more efficient and compact mechanism. Modern

FPGAs are still organized as arrays as seen in Figure 2.2, however specialized resources such

as arithmetic blocks, memories, and processors are now interspersed among a vast sea of

programmable logic elements.

Figure 2.1: Early programmable logic devices with discrete gates connected by programmable
interconnects.

Yousef S. Iskander Chapter 2 Background 11

L o g i c R e s o u r c e s

S p e c i a l P u r p o s e C o r e s

Figure 2.2: Modern FPGAs organized as a regular array of resources.

As Integrated Circuit (IC) technology advanced, multiple discrete components were com-

bined into chips defining fundamental building blocks of digital systems, thereby allowing

more complexity to be embedded into a smaller area. The need for a practical, repeat-

able, and efficient means of developing and prototyping complex designs became evident.

Early FPGAs made their debut as precisely such an integrating technology allowing the

interconnections and necessary logic (also referred to as glue logic) between these chips to

be reconfigurable through software programming rather than physical wires. Manufacturers

could now quickly deliver a product, placing the components on a board, all connected to

an FPGA. The necessary connections and required logic could be experimented with and

repeatedly revised, deferring the final design to even after units were installed. This also

allowed revisions to be issued to previously sold and shipped products, which could then be

updated on-site. Vendors who might not otherwise have had the financial means or num-

ber of forecasted products to justify an ASIC could still produce a viable and compelling

Yousef S. Iskander Chapter 2 Background 12

product to compete in what was previously an exclusive market open only to the wealthiest

companies.

Rather than be relegated to the ranks of a prototyping technology, FPGAs began to ma-

ture into their own distinct product line and became the focal point in the realm of high-

performance industries once reserved for ASICs. Input/Output (I/O) speeds of FPGAs

became competitively fast for real-world applications and the logic density—the equivalent

number of physical logic gates—skyrocketed when innovative means of implementing and

packing logic functionality into smaller areas was developed. One such innovation was the

Lookup Table (LUT) [3] that eliminated the need to physically implement an array of logic

gates and the means to programmatically connect them to realize an arbitrary logic function.

Instead, the inputs of a logic function are replaced with address lines to a programmable

read-only memory that returns the expected result of the original logic function when the

corresponding lines are activated. As a result, the functionality of a LUT resembles that of

the logic function’s truth table. A conceptualization of this is shown in Figure 2.3. In reality,

the actual implementation of a LUT is less intuitive but more compact. The vendor’s EDA

tools determine which signals to group as address lines, and compute the resulting output

to be stored in the LUT’s memory. This is far more space- and speed-efficient than trying

to map a logic function to a statically built array of gates and determining the connections

necessary in order to realize that function.

Advancing EDA tools and increasingly more powerful workstations advanced the state-of-

the-art, and as a result design processes became more productive. The advent of Hardware

Description Languages (HDL) made the representation, modeling, simulation, and validation

of hardware systems even more efficient. Whereas previously a digital system could not be

validated without physically building and prototyping it with discrete components, validation

could now be done within a simulation, quickly finding and fixing logic errors before building

the design.

Yousef S. Iskander Chapter 2 Background 13

A d d r e s s O u t p u t

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0

1

0

1

0

0

0

1

1

1

0

1

1

0

0

1

0

1

L o o k u p T a b l e

I n p u t L i n e s

A

B

C

D

O u t p u t L i n e

I n p u t l i n e s s e r v e a s
a d d r e s s l i n e s t o

R O M .

Figure 2.3: LUTs replace arbitrary logic with simple memories.

Figure 2.1, shows a simplified representation of one early implementation of a Programmable

Array Logic (PAL) device, and the predecessor to modern FPGAs. The logic gates in this

case—AND, OR, and inverter gates—are placed in a regular grid pattern and connected

by programmable interconnects. The device is programmed by selectively enabling the pro-

grammable interconnects where crossing wires intersect, which when set create a route be-

tween a source and one or more sinks. Innovations such as LUTs obsoleted this architecture

allowing more logic to be packed into an equivalent area. At the same time, smaller manu-

facturing processes also contributed to the increasing density and speed. A timeline of the

densities of LUT-based architectures is shown in Table 2.1.

The data in Table 2.1 was compiled from Xilinx data sheets [4–12] of major FPGA releases

between 1998 and 2010. For each release, the largest part was selected. When two companion

families existed (typically manufacturers will build a more modest companion part that is

Yousef S. Iskander Chapter 2 Background 14

Table 2.1: Timeline of logic density of Xilinx FPGAs.

ReleaseYear Device Number of Logic
Cells/LUTs

1997 XC5215 1936
1999 XC40250XV 20,102
2000 Virtex-II XC2V8000 93,184
2002 Virtex-II-Pro XC2VP100 99,216
2004 Virtex-4 XC4VLX200 200,448
2006 Virtex-5 XC5VLX330 207,360
2009 Virtex-6 XC6VLX760 758,784
2010 Virtex-7 XC7V2000T 1.955 M

smaller in size, consumes less power, and subsequently less expensive), the larger family was

selected. Logic cells were chosen as the comparison metric because it appeared across all

devices, albeit under different names. One logic cell equates to one LUT (the word LUT

does not appear until the release of the 4000-series in 1999). Logic cells were also chosen

because this is the smallest, most primitive user-programmable structure in the device and

from where FPGAs derive their core functionality. The number of inputs to the LUT also

increased during this time period, further compressing the amount of logic that could be

packed into a single logic cell. Logic capabilities increased rapidly yet as shown in Chapter 3,

methods of working with the devices has remained relatively unchanged.

It should be noted that there is no one clear metric by which to truly measure FPGA

density. Vendors frequently change terminology, restructure the architectures, and empha-

size different parameters in the product literature. While earlier literature focused on the

number of “equivalent logic gates”—the equivalent number of primitive Boolean logic gates

that the device could implement—this terminology quickly fell out of favor. Later releases

would also cite of the “maximum number of gates”—another ambiguous and short-lived

parameter—which also similarly increased over the same period. The effectiveness of at-

tempting to measure logic density is further confused when hard macros or hard cores are

Yousef S. Iskander Chapter 2 Background 15

considered. Macros are discrete components physically built into the FPGA, typically com-

plex or frequently utilized cores that are useful across a large number of designs. Requiring

designers to implement their own cores promotes poor design practices, reduces re-use, forces

high levels of design specialization for a particular architecture which makes it difficult to

port to future releases while at the same time wasting valuable real estate in the reconfig-

urable fabric. Common hard macros include memories, signal processing cores, multipliers,

communications cores such as Ethernet MACs, and even microprocessors (dual PowerPCs

were available on the Xilinx Virtex II-Pro). The impact of including such cores is dramatic

when the number of resources freed and the potential for increased performance and power

efficiency are considered.

FPGAs are not only expensive, but difficult to program as well. Unlike conventional com-

puters, programmable logic design has not had its renaissance. Whereas higher level pro-

gramming languages such as C or FORTRAN eventually obsoleted the use of assembly-level

languages ushering in an era of innovation, progress, and accessibility [13], the complexity

of FPGAs and their chief purpose—to accelerate computation well beyond the capabilities

of conventional architectures—make these obstacles unlikely to be resolved for some time.

FPGAs are programmed using low-level, primitive languages which describe the transfer

and transformation of signals between registers. Higher levels of abstraction are difficult to

obtain.

Despite the many drawbacks, FPGAs are popular in the communications, industrial, and

military sectors. FPGAs are the primary processing power for Internet router giant Cisco’s

flagship products. FPGAs are frequently deployed in aircraft, satellites, and other vehicles

where lots of processing power is needed but space and power are limited. FPGAs are

particularly attractive for satellites since the application can be remotely changed, allowing

the satellite to be dynamically retasked while in orbit to changing mission requirements.

Yousef S. Iskander Chapter 2 Background 16

Due to the cost and difficulty in development, FPGAs are not typically found in consumer

electronics, however vendors are now producing a family targeted specifically towards the

automotive industry’s information and entertainment (“infotainment”) consoles found in

high-end vehicles. German automakers BMW and Mercedes have outfitted their high-end

sedans with FPGA-powered video processing equipment [14] such as night-time, low-light,

or rear-facing assistive technologies; other auto manufacturers are following suit by replacing

certain on-board systems with FPGAs.

FPGAs currently operate at a comparatively lethargic clock rate, yet can outperform con-

ventional systems running at an order of magnitude higher clock speed. In the last decade,

operating frequencies have risen from sub-100 MHz to around 500 MHz clock rates in the

premium speed-grades. In comparison, commodity processors such as those from Intel and

AMD achieved the 1 GHz milestone in 2000 [15]. Yet, FPGAs remain as one of the few

viable means of accelerating streaming applications, and performance may exceed that of

even high-performance commodity processors. The explanation for this discrepancy is in the

flexibility of the FPGA’s unique architecture.

FPGAs do not carry the customary operational overhead of conventional computers; they

are not general-purpose processors that have a single or limited thread of execution and a

fixed instruction set. Yet neither are FPGAs natively multi-process capable as are most

modern microprocessors. Multi-processing is a clever slight-of-hand that gives the appear-

ance of simultaneously processing several unrelated tasks, when in fact the processor is only

physically capable of servicing one process at a time. Multi-processing capability allows

the processor to quickly and transparently change processes either after a predetermined

time interval or when a higher priority task has preempted the current task. The general-

purpose, fixed-instruction set architecture and multi-process capabilities of microprocessors

make them difficult if not impossible to target to specialized, high-performance applications,

Yousef S. Iskander Chapter 2 Background 17

particularly those that process continuous streams of data. In addition, operating systems

(OS), specifically user-friendly consumer OSes, are busy servicing device driver requests,

controlling peripherals such as network interfaces or hard drives, and managing memory

allocation to improve user experience.

Dramatic performance gains achieved with FPGAs are possible through the flexible, recon-

figurable architecture. Unlike conventional processors and associated software tools that

serialize a set of predefined instructions to perform a task, FPGAs have no such restrictions.

Instead, FPGA developers can custom design an accelerator to include as many specialized

pipelines or processors as desired. FPGA applications are referred to as a custom processors,

hardware accelerators, co-processors, or any number of similar names. With a custom design

such as this, performance can dramatically improve. The inclusion of high-performance, spe-

cialized cores has increased the capabilities of FPGAs to enter many more industry sectors

rather than simply serving as glue logic.

Despite the great potential of FPGAs, the development process is not as streamlined as it is

for software development. In contrast, the growing prominence of software engineering has

heightened structured software architecture and reuse, while the same is rarely true or even

possible with hardware development. The primary culprit is the uniqueness and variations

of subsequent architectures and how tightly-coupled a design becomes to the target device,

and as explained next, the complex development process.

2.2 FPGA Development

FPGA development typically begins with a functional, high-level language (HLL) model

that is used throughout the design cycle as a reference for both simulation and hardware

development. HLLs provide access to elegant data structures, complex control constructs,

Yousef S. Iskander Chapter 2 Background 18

and resources such as file systems and debuggers that enable rapid algorithmic development

and extensive testing, yet are not burdened with timing and synchronization details.

Once the high-level model has been validated against the original specification, HDLs such

as VHDL or Verilog are used to develop cycle-accurate simulation models targeting a specific

hardware platform. HDLs are low-level languages used to describe the transfer of signals

between registers and characterize the concurrent nature of a hardware design. Simulation

models specify the register-level transfer and processing of data, bus-widths and control sig-

nals that were not defined in the functional reference model. Most device families contain

specialized, high-performance cores, such as Digital Signal Processing (DSP) cores and mem-

ories that are common in designs. These can be instantiated into a user design like any other

component, however their interfaces, behavior, or configuration are frequently specialized for

the specific architecture and are subject to change in subsequent architectures.

With some effort, simulation models may be validated against the reference design, but this

is often of limited usefulness. Simulation models for Intellectual Property (IP) and hard-

ware modules are often themselves non-synthesizable behavioral HDL models optimized for

simulation or obfuscated to protect the IP. These may inadvertently differ from the actual

implementations. As a result, the model being simulated will not accurately reflect the

synthesized hardware version. Additionally, simulators silently accept legal but physically

impossible coding practices for FPGAs. Optimizing synthesizers may misinterpret a devel-

oper’s intent and alter the design producing unexpected results, whereas synthesis pragmas

are intended to produce alternate versions in synthesis [16]. There are a handful of solutions

available to debug the resulting physical design, none of which offer the rapid turnaround

and full visibility found in software development.

On the other hand, software developers have created generations of tools to rapidly validate

and debug their applications. Build tools such as Make [17] analyze source code dependencies

Yousef S. Iskander Chapter 2 Background 19

and selectively rebuild only the necessary dependencies. Linkers and library archives preserve

object independence until the final static linkage or, as in the case of dynamic linkage, until

runtime. Small revisions can quickly be made to an application and tested directly on the

target platform, usually in a matter of minutes for even complex applications. Debuggers and

profilers offer extensive visibility into an executing application and allow complex breakpoints

to be specified and altered without recompiling. Figure 2.4 shows the software compilation

flow. Software compilation units remain as independent intermediate objects even after

being compiled and integrated into a library archive until linkage or runtime, and as such

are easily revised. No such development model is readily available for FPGAs.

C o m p i l e r

O b j e c t F i l e s

L i n k e r

E x e c u t a b l e

O b j e c t F i l e sO b j e c t F i l e s

O b j e c t F i l e sO b j e c t F i l e sS o u r c e F i l e s

Figure 2.4: Overview of software development flow.

This flow is in stark contrast to the traditional FPGA flow. In software compilation, a rela-

tively short time is required and high level of parallelism is possible in producing intermediate

files. The intermediate object files remain independent even within their destination library

archive, and are easily individually replaced. However, in FPGA design flows the separate

components of the design are combined into a monolithic format during the early stages of

Yousef S. Iskander Chapter 2 Background 20

compilation, typically following synthesis. A basic depiction of the FPGA flow is shown in

Figure 2.5.

S y n t h e s i s

T r a n s l a t e

M a p

P A R

P r o g r a m m i n g F i l e
G e n e r a t i o n

Figure 2.5: Simplified view of FPGA development flow.

Unlike software, FPGA development flow is serial. While individual modules may be synthe-

sized in parallel, the rest of the flow aggregates all the individual components into a singular

monolith and operates on the entire design globally. Unlike software, many operations can

have a global impact on the rest of the design. For instance, logic optimizations or reductions

can have a ripple-effect that emanate beyond module boundaries and throughout the entire

design. Place-and-Route must find an optimum solution that locates components where

they can be successfully connected using the FPGA’s complex routing architectures. This

is a challenging problem in that there may be a limited number of routes with acceptable

latencies. At that stage, large designs are fragile and changes to accommodate routing or

Yousef S. Iskander Chapter 2 Background 21

timing can be disruptive causing a series of changes. A thorough discussion of each of the

stages is given in Section 2.2.1.

Vendors are aware of the time burden associated with FPGA development and have at-

tempted to address these issues. Modular and incremental flows for FPGAs, ideas borrowed

directly from ASIC development, attempt to compartmentalize designs and avoid lengthy

re-implementations [18, 19]. However these flows require that floorplans and interfaces be

stable. This is a difficult prerequisite to meet especially in the early stages of development

where the design may be in a constant state of flux. Even with modular and incremen-

tal flows, a seemingly small change may still require a full re-implementation. The PATIS

project [20] discussed in Section 4.3.1 addresses this problem.

2.2.1 Design Flow Overview

The FPGA development flow is an elaborate multi-stage process. Vendors attempt to mask

the complexity by providing applications that automatically generate scripts or interfaces for

specialized cores, or graphical, user-friendly applications to control and monitor the entire

build process. Yet, there remains a great deal of device- and design-specific information

that must be known and applied at each step. Originally, the tool flow was developed to

be a definitively layered sequence, with each stage performing a distinct task while deferring

the low-level, device-specific implementations for later stages. However for optimization

purposes, device-specific information is now included at every stage and the layers have lost

their well-defined boundaries. Typically, an application will provide suggestions or attempt

a preliminary effort for subsequent stages enabling iterative executions between the two

without user intervention. Proprietary file formats also have evolved to include much of

the meta-information produced in earlier stages, reducing the number and complexity of

Yousef S. Iskander Chapter 2 Background 22

command-line switches that needed to be passed along to different stages. These are subtle,

yet welcome improvements.

FPGA flow consists of five steps: synthesis, translation, mapping, place-and-route, and fi-

nally programming file generation. Vendors have not adopted a universal terminology, but

the purpose of each stage is consistent across different vendor’s flows. A general diagram

outlining the flow between stages is shown in Figure 2.6 with an overview of each of the

stages following.

S y n t h e s i s

T r a n s l a t e

M a p

P A R

P r o g r a m m i n g
F i l e G e n e r a t i o n

S o u r c e
F i l e s

D e v i c e
Pro f i l e

S y n t h e s i z e d
Ne t l i s tC o n s t r a i n t s

B R A M
In fo

Bi t f i leM e m o r y M e r g eS o f t w a r e
E x e c u t a b l e

T i m i n g
R e p o r t

Figure 2.6: Detailed overview of FPGA development flow.

Synthesis

During synthesis, the original HDL is converted to a structural netlist. The structural netlist,

also referred to as simply a netlist, consists of elements in the design and their connections.

HDL can be written as a behavioral specification, which raises the layer of abstraction

Yousef S. Iskander Chapter 2 Background 23

to higher-level constructs (including control flow, clock events, and some basic arithmetic

operations) or as structural HDL which defines a more primitive, precise but less intuitive

definition of the design. Netlists are purely structural in makeup, defining the elements and

their interconnects of the design without any high-level elements or language representations.

Rather, only primitives, the most basic elements of digital design such as Boolean gates, or

physical structures found on the FPGA are found in netlists. The synthesizer is one of the

few applications for FPGA development that can be written by independent third parties.

However, users are rewarded for using the vendor’s synthesis tool since these are typically

tightly integrated with the rest of the tool flow.

In the past, synthesis was device-independent. However the increasing number of high-

performance and device-specific cores found on FPGAs which can be explicitly instantiated

into the design forces the synthesizer to possess some knowledge of the device. Also, being

the first stage of the development process, the synthesizer is in the unique position to analyze

the original source including pragmas written by the original author and perform prelimi-

nary mapping efforts based on design patterns found in the original HDL. Synthesizers rely

heavily on hard-coded HDL design patterns that it uses to recognize and build optimized

code or instantiate hard macros for the target architecture. The process of identifying and

producing specific design elements is referred to as inference. A core is inferred when the syn-

thesizer recognizes the predefined HDL pattern, such as a memory, state machine, shifter, or

arithmetic core and then instantiates an optimized interface for that pattern. If the synthe-

sizer is not able to infer the pattern correctly such as from a non-standard implementation,

the component will not be built in the most optimized manner and placed into one of the

FPGA’s physical cores, or may not operate as expected. For example, memory inference fails

when specified in capacities other than powers-of-two. The list of inferences and their cor-

responding HDL patterns are listed in the synthesizer’s documentation. An example of one

Yousef S. Iskander Chapter 2 Background 24

module v_shift_registers_1 (CLK , SI, SO);

input CLK ,SI;

output SO;

reg [7:0] tmp;

always @(posedge CLK)

begin

tmp <= tmp << 1;

tmp [0] <= SI;

end

assign SO = tmp [7];

endmodule

Listing 2.1: Verilog shift register definition from XST synthesizer documentation.

such pattern for a Verilog shift register, taken directly from the documentation of Xilinx’s

XST synthesizer [21], is shown in Listing 2.1.

There are several advantages to inference. First, common components of a design can be

created in a structured, repeatable manner without the need to explicitly instantiate device-

specific components. This promotes some level of platform-independence as well as reusabil-

ity. Second, the user or the tools can allocate inferred instances across available resources

for the device or if necessary implement them in logic if there are not a sufficient number

of cores available. For optimization purposes, the synthesizer needs to know architectural

details of the target device to determine if there are a sufficient number of cores available,

either through instantiation or inference. However, the synthesizer does not definitively

allocate or assign resources. The final assignment is done later once the entire design’s

resource requirements have been resolved. The design can also be entered schematically

and processed by the synthesizer, however in practice this is not as common as HDL. The

synthesizer produces a structural netlist, either in the industry-compliant Electronic Data

Interchange Format (EDIF) or the vendor’s proprietary binary format. The advantage of

Yousef S. Iskander Chapter 2 Background 25

using the vendor-specific format is that additional information may be passed within the

files to subsequent tools of the flow, reducing the burden on the developer. Synthesis occurs

relatively quickly (on an order of seconds at best) depending on the size and complexity of

the module. Modules may also be separately synthesized, providing some separation from

the rest of the build process.

Translation

Once the synthesizer has produced a netlist, the design must then be translated. During

translation, also referred to as building, netlist components produced during synthesis are

further reduced to primitive logic gates. Device-specific cores instantiated in the original

HDL are also not processed during this phase. This is the last stage of the flow where non-

proprietary or industry-wide input files are accepted. The rest of the flow occurs entirely

within proprietary file formats and must be handled using the vendor’s tools. Along with

the device information, user constraints are also provided to the build tool. User constraints

are specifications such as physical pin assignments, timing constraints, and memory param-

eters for the proper operation of the design that the tools cannot infer on their own. Pin

assignments map the device’s physical external pins to the design’s top-level module input

and output ports. Timing constraints specify timing and signal-related parameters, typi-

cally for interfaces with strict timing requirements such as Ethernet MACs, high-speed I/O

interfaces, or the design’s clocks. Timing is not significant for translation and is principally

used once the design’s connections have been routed (during place-and-route) to ensure that

the design will meet timing. Since the tools are proprietary, it is not definitively known to

what extent timing is addressed at this stage, but it is most likely that they are integrated

into the design databases, analyzed for preliminary design rule enforcement, and referenced

for mapping optimizations.

Yousef S. Iskander Chapter 2 Background 26

Mapping

During the next phase, the mapper will logically map components produced during trans-

lation onto the target device. The mapper does not physically map elements to a specific

core, but logically identifies candidate target core types. It is during this phase that the

abstraction benefits of inference are realized. The mapper can now definitively determine

which, if any instantiations must be implemented as logic, rather than the preferred core

assignment strategy. For example, a design with more RAMs than the available physical

memory cores will require some of those RAMs to be implemented as distributed RAMs.

The distributed specifier indicates that the component will built using the FPGA’s logic

blocks rather than be instantiated to a physical, special-purpose core. Decisions during this

and later stages have the potential to create a ripple-effect of complications. If an instance

must be implemented as distributed, more logic is now required than originally assumed.

Tightly interconnected cores such as memories require that all the corresponding logic be

placed in close proximity to one another in order to meet timing requirements. As the design

components of the design have no physical locations assigned at this time, the mapper has

no way of determining if the final design will fit on the part, if there are sufficient routing

resources available, or if the final routing will meet timing. These issues are addressed during

the next Place-and-Route phase. Mapping handles optimizations such as constant folding

where a constant signal makes logic in its path unnecessary. For instance, a constant zero

signal feeding an AND gate will make the gate unnecessary as its output will in turn always

be a constant zero. This gate can be removed without affecting the operation of the design.

Optimizations such as these may free up resources, making it possible to pack even more

logic into a smaller area which in turn may make routing and timing closure easier. Tim-

ing closure, which is addressed during Place-and-Route, is achieved if components are both

placed and connected (“routed”) in such a way that the signal’s latency does not violate the

Yousef S. Iskander Chapter 2 Background 27

timing constraints. For example, a signal whose latency along a path exceeds that of of the

clock period violates timing or does not meet timing.

Place-and-Route

In Place-and-Route (PAR), the components that were previously logically mapped onto the

FPGA’s resources are now physically placed and the wires routed between them. Conven-

tionally, the Map and PAR stages were distinct, however current tool implementations will

perform a preliminary PAR during the map stage and reiterate mapping if required. With-

out this optimization, mapping would need to be rerun manually if PAR fails. Placement

and more specifically routing are very computationally and memory intense. At this stage,

precise models of both the FPGA and the design must be built and stored in memory. The

algorithms used during PAR rely heavily on traversing these structures, and as such require

many non-adjacent memory accesses which quickly overrun caches. PAR is the most time-

consuming stage of the build process, and is the stage most likely to fail for complex designs

with high device utilization.

Meeting timing requirements are also the responsibility of PAR. A poorly placed design

stresses the router which must find an efficient route—out of a vast number of possibilities—

to meet timing. Further complicating PAR is that routing is not a simple distance-dependent

metric. That is, placing two components physically close to one another does not guarantee

that a low-latency route exists between the two. FPGAs have complex, segment-based

routing architectures where wires are categorized as local or long-distance, spanning one

or multiple segments before reaching a programmable interconnect where it is patched to

another segment. The individual segments, along with the programmable interconnects

which add latency, do not have simple timing models. Furthermore, routes may be congested

resulting in a circuitous path to connect two components. The best placement of a component

Yousef S. Iskander Chapter 2 Background 28

for timing purposes may be non-intuitive, such as physically distant location where there

are fewer, but physically longer routing segments to the destination. Counter-intuitively,

this can improve timing. As such, PAR is a lengthy and iterative process. For large designs

utilizing a high percentage of the FPGA, PAR times exceeding a day are not uncommon.

Timing report generation is a separate procedure from PAR and is useful to determine details

of which parts of the design are causing timing to fail. Often, a different design technique

such as pipelining an operation alleviate timing failures. A successfully placed and routed

design is ready to be committed to a programming file and loaded onto an FPGA.

Programming File Generation

Finally, the actual file that will be loaded into the FPGA is produced during programming

file generation. The bitfile, programming file, configuration file, or bitstream is produced by

interpreting the final placed and routed design into a binary file comprised of a stream of

bits which configure the FPGA’s resources. It is common in this stage for the generation

application to perform a final design check ensuring there are no conflicting programming

options, such as a conflict that might physically damage the device. A header is prepended

to the programming file that contains special instructions for the loader and may activate

special features on the FPGA, such as security. The FPGA is ready to be programmed

with a special programming cable and loader application which either directly programs the

FPGA or commits the design to an on-board FLASH memory or other external storage.

If the design contains RAM blocks, the contents can now be initialized. If RAMs were

specified early in the design and build process, a logical mapping of design elements to

memory elements would have been produced. This mapping is initially used during the

translate phase, but is again referenced to prepopulate the RAMs before configuration so that

memories are not empty at power up. This is particularly relevant if the design contains a

Yousef S. Iskander Chapter 2 Background 29

microprocessor. Without this capability, processors would need temporary boot up sequences

to hold them in a legitimate state until the RAMs are populated or require firmware to load

programs from another source, such as FLASH or external disks. ROMs on the other hand,

are typically initialized during synthesis by specifying their contents either in the HDL or as

an external file that the synthesizer processes and incorporates into the netlist.

2.3 Debug Methodologies

For FPGA design debugging, there are a limited number of strategies. FPGAs are propri-

etary devices, which limits third party products in this area. Unlike conventional, commodity

computers, FPGAs have no standardized architecture or discernible platform like an oper-

ating system or even basic input/output by which to interact. Debugging generally requires

intimate knowledge of the device and the design. Improvised solutions are common, such

as activating diagnostic LEDs when certain events occur. This requires an intimate knowl-

edge of the design and is a lengthy process of progressively interpolating to the cause and

re-implementing the design each time. External logic analyzers can be effective, but require

signals of interest to be routed to external physical pins. This can interfere with design

pin assignments and affect timing closure. If the signal is within several layers of modules,

each enclosing module will need its interface modified in order to route the signal to the

external pin. Once finished, the interfaces must be reverted and the design re-implemented

anew. Lengthy implementation times, especially during place-and-route make these ineffec-

tive strategies.

In the creation of large or complex designs, a high-level language reference model is often

first created to develop and validate the algorithm. This reference model becomes isolated

from the remaining development cycles due to language and technological incompatibilities.

Yousef S. Iskander Chapter 2 Background 30

Subsequent development in HDLs re-implements the algorithm anew, focusing on data flow,

extracting parallelism, timing, and control signal interaction—aspects not captured in the

reference model. After simulation, the HDL design may be adapted for synthesis. Though the

same HDL may be used for both simulation and synthesis, this is not always the case. Third-

party IP may be implemented differently for simulation and synthesis for faster simulation

and optimized for the target platform. Simulation models may be obfuscated or encrypted

to protect intellectual property. Unintentional variations between the models may exist

or an optimizing synthesizer may misinterpret designer intentions, providing unreliable or

unpredictable results during development [16]. The resulting gap between HLL models and

synthesizable hardware is the model verification gap, illustrated in Figure 2.7.

H i g h - L e v e l M o d e l D e v e l o p m e n t
C / C + + , M a t l a b

H a r d w a r e D e v e l o p m e n t
H D L , s i m u l a t i o n

Ne t l i s t Ve r i f i ca t i on
(f o r m a l e q u i v a l e n c y , s i m u l a t i o n s)

H a r d w a r e V e r f i c a t i o n
(l o g i c a n a l y z e r , o n - c h i p d e b u g)

H a r d w a r e D e v e l o p m e n t
(s y n t h e s i s)

M a n u a l
Ve r i f i ca t i on

M o d e l V e r i f i c a t i o n G a p

Figure 2.7: The model verification gap in hardware development.

The model verification gap is a significant shortcoming in hardware development. The design

validation team must develop ad-hoc solutions to bridging it, or bridge it manually. Either

way, the effectiveness and productivity of validating against the original reference model is

limited and largely targeted towards the simulation model. No tools are known to exist

Yousef S. Iskander Chapter 2 Background 31

that allow the original HLL reference model to be directly linked to the synthesized and

implemented hardware.

Designers have long relied on many of the same debugging methods, many of which are

complex and difficult to adapt to different scenarios. As designs have increased in size and

complexity, tools have lagged in the ability to adequately handle these demands. The size of

FPGAs has increased so dramatically in recent years; 32-bit processor based workstations are

now incapable of targeting these larger parts while 64-bit processors are now the norm [22].

Visibility into a design programmed onto an FPGA is limited, and some types of design errors

such as timing errors, can be elusive across design turns. Even worse, the synthesized version

of a design can differ from what was prototyped in simulation. Unlike software designers

who can frequently develop and test on their target environment, hardware developers do

not have the same visibility.

Third-party IP, which addresses the growing interest in modular design and reuse long prac-

ticed in software development, also presents its own challenges. A vendor may develop several

models of an IP core: one optimized for fast simulation using high-level, non-synthesizable

behavioral constructs and another device-optimized version for synthesis. Often these mod-

els differ. Pragmas (suggestions that the designer can provide to the tools) placed in the code

to guide the synthesizer or enable special conditions during simulation may also complicate

the crossover from simulation to synthesis. The result is a design that performs differently

in simulation than it does on the hardware [16].

2.3.1 Custom Methods

Developers frequently employ improvised solutions while debugging. One such prevalent

practice is to activate diagnostic LEDs commonly found on development boards when certain

conditions or events occur. Developers will iteratively place triggers throughout the design to

Yousef S. Iskander Chapter 2 Background 32

illuminate an LED when certain areas of logic are active or desired conditions have been met.

This technique is carried out by iteratively placing activating logic around areas believed to

be problematic and interpolating to a likely cause of failure. An intimate knowledge of the

circuit and often the device is required. If a shared memory or on-board processor is present,

a developer may develop custom programs to inspect those memory locations. External logic

analyzers are also used, but require signals of interest to be routed to external physical pins.

This sometimes interferes with design pin assignments and can affect timing closure.

The drawback to these techniques is that any change triggers a full and lengthy rebuild of

the entire design, which in some cases can be an entire day. The worst and all too common

scenario is that several days may pass with no appreciable insight into the cause of the error.

2.3.2 Simulator-Based Development

Simulators are a standard tool available to developers, but have a rapidly diminishing rate of

return of usefulness if too much time or effort is invested in the simulation model. Simulators

are useful in developing custom logic, yet integrating with third-party IP or proprietary

vendor cores can be problematic. To do so, developers rely on vendors to provide an accurate

simulation model of their core, which is not always the case [16]. In some scenarios, such

as with I/O or device configuration cores, no simulation model is feasible. An example

particularly relevant to this research is the Internal Configuration Access Port (ICAP) core

available on Xilinx FPGAs. The ICAP allows direct internal access to the configuration

registers of the FPGA and enables a form of introspection on the configuration registers or

more commonly allows the design logic to trigger and perform a reconfiguration of a portion

of the FPGA while it is running. Since the ICAP relies on a configured FPGA and its fabric,

a simulation model is unfeasible. This makes the ICAP a very difficult target for developers

and requires multiple development turns.

Yousef S. Iskander Chapter 2 Background 33

Simulators make all signals and registers in the design readily available and have intuitive

user interfaces where waveforms can be arranged and compared. Signal transitions or values

can be searched for, breakpoints can be set, and results saved for later analysis or regression

testing. In contrast, the same level of flexibility is available to software developers directly

on the target platform.

Newcomers to digital design quickly learn that even though a design appears to work well

in simulation, it may not behave as expected once implemented on the FPGA. While it is

common for software developers to debug directly on the target hardware, to do the same

is difficult in hardware development. Simulators are a convenient development environment,

but one that can be overused since they provide no guarantee of accuracy. This mismatch

is further compounded by hardware languages which allow practices that are legal in simu-

lation, but impossible to implement in hardware. Optimizing synthesizers may misinterpret

a designer’s intention and implement the logic differently or even strip it from the design

altogether [16]. Additionally, fine-grain simulation can be very costly in terms of time and

resource requirements. Extremely large and complex designs, such as processors, may take

days to accurately simulate even a single minute of operation.

2.3.3 Commercial Debug Solutions

The proprietary nature of FPGAs places the burden of creating the highly specialized tools

necessary to debug them primarily on the manufacturer. As such, there are a limited number

of third-party commercial tools that enable debugging directly on FPGAs, with the vendor’s

own tools being the most frequently used. Of those, embedded logic analyzers (ELA) are the

most common class of debug tool, most often implemented as cores that are instantiated as

part of the design with the results viewed through a software application with the look and

Yousef S. Iskander Chapter 2 Background 34

feel of an actual physical logic analyzer. Third party debug tools are often external state

analysis applications.

When using embedded logic analyzers, designs may eventually accommodate or adapt to

their presence and when removed create timing or routing anomalies that are difficult to

trace and necessitate a new series of fixes. Frequently, this requires full re-implementation of

the design. Routing and logic resources become a concern as wires are physically routed for

each monitored signal and the cores consume on-chip resources. The addition of monitoring

signals creates an increased burden for the router which must now incorporate the additional

signals while continuing to meet timing constraints. These tools primarily rely on the limited

on-chip memory for data storage and may compete with the user’s design for these resources.

Graphical user interfaces restrict interaction with the design since they can not be scripted as

part of an automated testbench or integrated with other tools. Unlike software debuggers or

test environments, these tools have no programmatic or script-engine capability of accessing

or manipulating the design despite interest in such features [23].

These techniques suffer from long turnaround times since they are integrated into the design.

The entirety of the design must be run through the tool flow, regardless of which portion or

even how little of it has changed. In a worst-case and all too frequent scenario, a developer

may only be able to test one revision per day, whereas in software development it is common

practice to unit test or debug code directly on the target machine upwards of tens of times

per day. Debugging may require multiple revisions in order to fully understand the design

flaw.

To demonstrate the often lengthy time requirements for design turnaround, Table 2.2 presents

Xilinx ISE 9.2i place-and-route CPU times for five non-trivial designs performed on a 2.66

GHz Intel Core i7-920 processor, targeting an XC4VFX100 part [20]. Blank table entries

represent implementations that did not produce a result after 30 hours and that were termi-

nated. The Xilinx MicroBlaze processor [24] is a configurable, pipelined, soft-core processor,

Yousef S. Iskander Chapter 2 Background 35

Table 2.2: PAR times for non-trivial designs with typical timing goals.

Design fclk (MHz) Flat design
implementation
(minutes)

Normal floorplan
implementation
(minutes)

5 Microblazes 127.4 330 80
10 Microblazes 127.4 - 270
20 Microblazes 125 - -
3 CFFTs 256.4 - 35
6 CFFTs 250 75 -

whereas Complex Fast Fourier Transforms (CFFT) are commonly found in DSP applica-

tions. These results make evident that even a few design iterations might result in week’s

worth of work, provided that the designs achieve closure at all. The time required for place-

and-route is a common complaint amongst designers in surveys [25] and is responsible for

lengthy verification cycles.

2.3.4 Assertion-Based Verification

Assertion-Based Verification (ABV) or simply assertions provide designers a means of veri-

fying simulation designs by specifying conditions that must or must not occur. This requires

an extensive understanding of the design in order to formally capture and characterize the

assertions and how they must be formulated. There are two classes of assertions: static

assertions are mathematically proven against the design, while dynamic assertions are per-

formed during an extensive and exhaustive simulation. Neither method can provide complete

coverage of all possible execution branches, but are widely accepted as necessary for verifying

designs prior to production.

Assertions can be specified through a wide variety of different languages and environments.

Verilog and VHDL both have language facilities to implement assertions and are defined

Yousef S. Iskander Chapter 2 Background 36

in IEEE Standard 1364 [26] for Verilog and IEEE Standard 1076 [27] for VHDL, as does

SystemC [28] and System Verilog [29]. Cadence’s e [30, 31] (formerly known as SpecMan)

and Bluespec [32] are two examples of commercially supported languages that can be used

for assertion-based verification.

2.4 High-Level Language Synthesis

The efficiencies of high-level programming languages are an attractive goal for hardware

design. High-level language synthesis (HLS) aims to provide the same level of abstraction

to hardware that is provided to software, isolating the source code from the underlying

architecture which allows the program to be built for different platforms. HLLs allow the

design to be layered, separating algorithms from low-level implementation details, thereby

simplifying maintenance. HLS on the other hand, is still in its infancy and is not yet the

equivalent of a HLL for hardware development.

Designs are typically first prototyped in an HLL, such as C, C++, or Matlab, where

functional and algorithmic aspects of the design are specified using complex control con-

structs [33]. However, HLLs are untimed and do not capture the necessary architectural

details for the complete specification of a hardware implementation. High-level models serve

a critical purpose in providing a reference or “golden” design for development and are ref-

erenced throughout the development cycle to determine functional correctness. These com-

parisons are often manually performed and limited by the restricted access to the physical

design.

High-level programming languages were developed to provide a level of abstraction above the

underlying hardware architectures. As software design methods evolved—from the earliest

programs being coded directly in machine code, then later in assembly languages—the need

Yousef S. Iskander Chapter 2 Background 37

for platform independence quickly became evident. The advent of compilers and high-level

languages makes this abstraction possible, changing the programmer’s view of hardware from

physical registers and architecture-specific opcodes to meaningful, symbolic variables, com-

plex control constructs, data types, and universal operators. Pursuit of a similar paradigm

for hardware design was inevitable.

HDLs, such as Verilog and VHDL, provide a similar, but lower form of abstraction than

those of software languages. HDLs are Register Transfer Level (RTL) languages, describing

the flow of signals between registers and the operations on those signals. RTLs can further

be divided into two variants: behavioral and structural RTL. Behavioral RTL describes a

design by its behavior in terms of high-level operations such as if-else or other control

statements and operations such as addition or subtraction.

Structural RTL provides the lowest-level of specification, instead declaring the structures of

the circuit and the connections between them. Structures can be primitive operations such

as Boolean or bitwise operations or even the macros provided by the architecture. Structural

RTL is also used to design high-performance cores since more control is possible to reduce

space requirements or ensure timing will be met. Designers using structural RTL have precise

control over each signal, yet the implementation of such a design can be laborious, confusing,

and error-prone.

Behavioral representations allow the design to be described using more abstract, higher-

level expressions, such as defining an addition operation to occur on two signals rather than

having to explicitly specify the implementation of an addition across the entire signal. Most

notably, behavioral languages can specify events for signal transitions, such as clock edges,

and have control constructs similar to those in high-level programming languages. These two

features alone can be used to describe complex and fundamental design elements, such as

state machines. Behavioral language constructs are further subdivided into synthesizable and

Yousef S. Iskander Chapter 2 Background 38

non-synthesizable, where the latter provides even more complexity and abstraction suitable

for design testing.

HLS is an extension of these abstractions for FPGAs where a subset of a high-level language

is processed to produce synthesizable RTL. HLS requires that the design entry be critically

analyzed for structure and flow in order for the translators to correctly interpret the intent.

Important constraints in hardware design, such as size and power, are no longer within the

precise control of the designer. The abstraction performs its intended function, in part. De-

signs entered using HLS resolve to functional correctness far quicker than when using HDLs.

Yet, long verification cycles still remain. Designs must be precise in their implementation

because integration with traditional verification tools, such as formal equivalency, can be

difficult or even impossible. Despite the front-end language portability of HLS, designs tend

to evolve around the specific compiler being used, defeating the objective of portability. HLS

designs also perform poorly in coverage tests because of the additional overhead that these

tools introduce. The translation of HLL to RTL may produce artifacts, such as unreachable

states or logic that can never be activated, known as dead logic. Debugging at the RTL level

or integrating third-party IP are hampered by the unintelligible machine-generated RTL.

Additionally, the untimed nature and various transformations from HLL to RTL make co-

simulation and debug difficult, if not impossible. Often, the only solution is to attempt to

debug the generated RTL which is frequently unresolvable to the original design [34]. An

example design of a counter implemented in Accelerated Technologies ImpulseC is shown in

Listing 2.2, while an abbreviated synthesizable netlist generated from the code is shown in

Listing 2.3.

The listing shows a few of the disadvantages of using HLS. While a counter is a trivial

function, the HLS implementation is not. The required overhead code is compiler-specific,

requiring numerous special calls in order to set up and handle input and output. These

Yousef S. Iskander Chapter 2 Background 39

void counter(co_stream input_stream , co_stream output_stream)

{

int counter;

do {

co_stream_open(output_stream , O_WRONLY , INT_TYPE (32));

co_stream_open(input_stream , O_RDONLY , INT_TYPE (32));

counter = 1;

co_stream_write (output_stream , &counter , sizeof(int));

while ((co_stream_read(input_stream , &counter , sizeof(int))

== co_err_none) {

counter ++;

co_stream_write (output_stream , &counter , sizeof(int));

}

co_stream_close (output_stream);

} while (1);

}

Listing 2.2: Implementation of a counter with HLS.

sections are not portable, as is a high-level language. The example uses blocking First In,

First Out (FIFO) queues to control execution without the need for flags or signals. A read or

write request will block until the FIFO is ready. The use of FIFOs in this manner simplifies

a design, making it a streaming operation without additional overhead or checks.

The resulting synthesizable HDL exhibits more complexity than a hand-written counter.

Nowhere in the HDL can the actual counter—a simple addition—be discerned. In a more

complex module, it would be even more difficult to try and locate signals of interest to debug

or integrate additional IP.

Yousef S. Iskander Chapter 2 Background 40

process (clk ,reset)

begin

if (reset=’1’) then

thisState <= init;

elsif (clk ’event and clk=’1’) then

if (stateEn = ’1’) then

thisState <= nextState;

end if;

end if;

end process;

stateEn <=

’0’ when thisState = b0s1

and p_output_stream_rdy = ’0’ else

’0’ when thisState = b0s2

and p_output_stream_rdy = ’0’ else

’0’ when thisState = b0s3

and p_output_stream_rdy = ’0’ else

’0’ when thisState = b1s0

and p_input_stream_rdy = ’0’ else

’0’ when thisState = b1s1

and p_output_stream_rdy = ’0’ else

’0’ when thisState = b2s0

and p_output_stream_rdy = ’0’ else

’1’;

// **** Several lines cut ****

process (ni113_suif_tmp ,thisState)

begin

case thisState is

when init =>

nextState <= b0s0;

when b0s0 =>

nextState <= b0s1;

when b0s1 =>

nextState <= b0s2;

when b0s2 =>

nextState <= b0s3;

when b0s3 =>

nextState <= b1s0;

when b1s0 =>

if ((not ni113_suif_tmp (0)) = ’1’) then

nextState <= b2s0;

else

nextState <= b1s1;

end if;

when b1s1 =>

nextState <= b1s0;

when b2s0 =>

nextState <= b0s0;

when b3s0 =>

nextState <= finished;

when finished =>

nextState <= finished;

when others =>

nextState <= init;

end case;

end process;

Listing 2.3: Synthesizable RTL generated
from Listing 2.2.

2.5 Dynamic Runtime Reconfiguration

Xilinx’s Partial Runtime Reconfiguration (RTR) [35] allows preselected regions of an FPGA

to be reconfigured while the rest of the device continues normal, uninterrupted operation.

There is tremendous potential for design size reduction with RTR as one or more modules

that are not simultaneously required can be swapped in and out temporally, saving space.

Reconfiguration takes less than a second, making it practical for many applications. This

concept is illustrated in Figure 2.8. The reduced space requirements can be significant as

opposed to the traditional methodology of allocating static, permanent space to the entire

design. By convention, most FPGAs designs are static without regard to the actual execution

profile [36]. However, the dynamic methodology of RTR has yet to achieve acceptance.

Implementing RTR is a manual and imprecise art form. The RTR tool set has never been

part of the mainstream application suite, rather it is distributed as a patch. Recently, the

RTR patch requires an additional license fee. The I/O interfaces to reconfigurable regions,

referred to as bus macros, are restricted to only one edge of the region. Until recently bus

Yousef S. Iskander Chapter 2 Background 41

R e c o n f i g u r a b l e
R e g i o n

R e c o n f i g u r a b l e
M o d u l e 1 , 2 , 3 , . . .

B u s M a c r o

R e s e r v e d r e s o u r c e s
f o r r e c o n f i g u r a b l e r e g i o n

Figure 2.8: Partial reconfiguration for multiple logic modules in the region.

macro creation and placement was a manual task. Automated bus macro placement was

the subject of a recent research topic at Virginia Tech [37] as part of the PATIS project,

and was eventually eliminated from the vendor’s build process altogether in favor of another

method. The interface between the reconfigurable region and the rest of the design is critical

to reliable, error-free operation. Alignment between the two is analogous to constructing

two physical, interlocking parts. During reconfiguration, I/O between the reconfigurable

region and the rest of the design must be suspended. Furthermore, the I/O ports must

be properly physically aligned on all reconfigurable modules. Reconfigurable regions are

restricted to only rectangular shapes (as opposed to ASICs where rectangular shapes are

merely a convention) and developers are responsible for placing and sizing the region within

the FPGA so that it has sufficient resources for all of the candidate modules. If a module

with different resources or interface is later added to the set of reconfigurable modules, this

may disturb the floorplan of the static region. Resource estimation floorplanning was the

subject of another area of research in the PATIS project [38].

Yousef S. Iskander Chapter 2 Background 42

Besides the increased burden of development, designers are reluctant to adopt RTR because

of its dynamic nature. In RTR, the act of swapping modules into and out of the reconfigurable

region turns a single design into multiple, distinct designs, increasing the test space. Unlike

most components of a manufacturer’s portfolio, RTR cannot be simulated and developers

must develop directly on the hardware where visibility is limited. This uncertainty and the

resulting difficulty in verifying such a design are a few reasons that commercial designers

avoid RTR.

2.6 Summary

FPGAs contain not only programmable logic, but many are available with an assortment

of specialized processing cores such as microprocessors, memories, DSP cores, and spe-

cialized I/O cores. Combined with the capability to realize and implement an arbitrary

function while also extracting parallelism, this flexible architecture provides a performance-

competitive platform on which to produce high-speed, space-efficient, low-power streaming

applications. FPGAs are capable of processing high-speed streams of continuous data, rather

than the non-deterministic read-buffer-process-write cycle required with conventional com-

puter architectures.

The great flexibility and power of FPGAs comes at a price: the design process is complex,

time-consuming, and prone to subtle problems. Unlike software which has a widely accepted

and open process with a wealth of independently contributed tools, FPGA tools are pro-

prietary and vendor-specific. The complexity of FPGAs is instrumental in the difficulties

encountered when trying to debug and diagnose problems. The lengthy implementation

cycle, as well as the lack of visibility into a design are the most significant obstacles. Al-

ternative design methods, such as high-level languages which were elemental to the rise of

Yousef S. Iskander Chapter 2 Background 43

computers and software, has not made FPGAs more accessible in the same manner. Rather,

HLS faces other obstacles to acceptance.

A unique capability of FPGAs is the ability to dynamically reconfigure a select region of the

device. This capability was previously commercially inaccessible or undesirable because of its

complexity and uncertainty in production environments, however it holds significant promise

in development and debug environments. A review of debug-related research and products

reveals partial reconfiguration as an unexplored and potentially useful tool in accelerating

the debug process.

Chapter 3

Related Work

The FPGA debugging field has amassed a large body work. The goal of developing an

intuitive and productive means of debugging is ambitious given the closed nature of FPGAs

and their prominent role in electronic system design. The earliest implementations have

their roots in the ASIC market, many based around long-standing industry standards such

as JTAG which were developed to verify individual components as well as entire systems.

FPGA-specific products are firmly rooted in leveraging on-chip components, such as JTAG

cores or embedding specialized debug cores into the design.

3.1 Categorization of Debug Approaches

A review of commercial and research FPGA debugging products reveals two prominent

approaches: embedded logic analyzers and JTAG-based analysis tools. Embedded logic

analyzers recreate the familiar interface of physical logic analyzers but are implemented as

part of the FPGA design by inserting special cores wired directly to signals of interest. These

cores rely on a capture methodology where the selected signal’s activity is internally recorded

44

Yousef S. Iskander Chapter 3 Related Work 45

beginning when predetermined conditions are met. While some limited changes may be made

at runtime, the trigger conditions that initiate the capture in addition to the selected wires are

implemented as part of the design’s logic and specified at design time. As part of the physical

design, these cores compete for system resources, specifically on-chip RAM. Captured signal

traces are stored on-chip until read out via JTAG and displayed in a graphical user interface

resembling a simulator’s waveform viewer. Interaction with the design is limited: neither

debug scenarios nor tasks can be scripted into a larger comprehensive or automated test

framework. Capture conditions cannot be appreciably modified without re-implementing

the entire design, and different parts of the design cannot be inspected other than those

whose signals were initially specified. However, designs can typically run at or close to their

target operating frequency.

Figure 3.1: JTAG chains visit every resource in the FPGA.

Yousef S. Iskander Chapter 3 Related Work 46

Table 3.1: Timeline of Xilinx Boundary Scan chain length.

Release
Year

Device Approximate Size of
Configuration Chain (bits)

2002 Virtex-II Pro XC2VP100 34,272,000
2004 Virtex-4 XC4VLX200 51,367,424
2006 Virtex-5 XC5VLX330T 82,696,192
2009 Virtex-6 XC6VLX760 184,823,072
2011 7 Series XC7V2000T 447,337,216

The other prominent debug approach utilizes JTAG for state inspection. JTAG is an acronym

for the Joint Test Action Group, an industry board assembled to define the standard now

found in IEEE Standard 1149.1 [39]. JTAG is a generic, non-proprietary means of debugging

and controlling electronic components, embedded in a range of products from simple compo-

nents to sophisticated processors. While JTAG tools do not require the invasive instantiation

of cores and routing of signals as found in embedded logic analyzers, it is slower to operate.

A snapshot of the device state is captured internally and must be serially shifted out in its

entirety for inspection. Figure 3.1 shows a conceptualized JTAG chain winding throughout

the entire FPGA, passing by each resource. The snapshot typically requires that the design’s

execution be halted. Once retrieved, any state register of the design can be inspected.

JTAG-based tools offer complete visibility without significantly altering the design as is the

case with embedded logic analyzers, however they are limited in how much control can be

exerted over the design. JTAG-based tools do not offer the ability to control an FPGA

design’s execution, nor can the debug scenario be altered. JTAG operates at a significantly

slower clock rate than the average FPGA design and as devices increase in size, density,

and complexity, the time required to shift the entire chain out proportionally increases. A

simplified schematic representation of a JTAG chain is shown in Figure 3.2 and Table 3.1

shows the size of the configuration bitstream for the largest of the major device releases since

Yousef S. Iskander Chapter 3 Related Work 47

2002 [40–44]. The configuration bitstream is a good approximation of the boundary-scan

chain length.

Figure 3.2: JTAG daisy chains require few connections.

JTAG requires few connections but is flexible enough to allow devices to be daisy-chained.

Each JTAG-enabled device is manufactured with vendor- and model-specific identifiers so

that multiple devices can be placed into the same chain and still be uniquely identified.

JTAG requires only small number of input and output pins making it easy to place on the

smallest of component boards. As such, it has become the defacto standard for debug and

testing on virtually all electronic devices. It is found on virtually all FPGA devices.

As shown in the Figure 3.2, the header’s external input is wired to the first device’s TDI

pin; in turn, its TDO output is connected to the next device’s TDI input and so on until the

final device’s TDO pin is wired back to the header. A single master clock and device select

are globally wired to all devices of the chain. One of JTAG’s weaknesses stems from its

simplicity. The sole data line restricts data transfer to a serial model throughout the entire

chain. JTAG’s modest clock rate makes this model unsustainable as devices and likewise

chain length increases. Rapidly increasing FPGA densities make JTAG less practical for

future devices.

Yousef S. Iskander Chapter 3 Related Work 48

3.2 Commercial Debug Products

3.2.1 Vendor Products

The proprietary nature of FPGAs restricts development of debug products mostly to the

original manufacturer. However there have been a few notable third-party contributions.

By far, vendors prefer developing embedded logic analyzers (ELA), extending the waveform

viewer window found on simulators into the debug environment. Xilinx’s ChipScope Pro [45]

and Altera’s SignalTap II [46] are two examples of the embedded logic analyzer class of

tools. ELAs require that specialized cores be instantiated as part of the design. Signals of

interest are manually selected through a user interface. The entire design is then run through

the standard tool flow. Figure 3.3 shows how different components of Xilinx’s ChipScope

Pro interact with and become deeply integrated into the design. Wires for the framework

and signals of interest are routed globally while the debug cores compete with the primary

design for resources. The most obvious and limited resource is RAM, which are plentifully

required by debug cores since signal traces are stored on-chip until read out and displayed.

Modifications to the debug configuration, such as changing which signals are to observed

can be disruptive, create routing contention, which in turn may cause the design to fail

subsequent timing analyses. ELA tools are often restricted to the top-level design signals

and are not able to inspect arbitrary internal signals without the need to modify intermediate

interfaces.

3.2.2 Third-Party Products

Despite the closed nature of FPGAs, there are several notable commercial products. Gate-

Rocket’s Device Native Verification [47] system allowed designs to be run directly on an

Yousef S. Iskander Chapter 3 Related Work 49

I L A

I L A

I L AI C O NJ T A G

F P G A

Figure 3.3: ChipScope gathers data through physically routed nets.

FPGA. The system comprised of an external Rocket Drive housing an FPGA which con-

nected directly to a workstation. The system tightly integrated with several simulators,

utilizing their user interface and waveform viewers. Individual waveforms could be displayed

in the waveform viewer directly from the hardware while bypassing traditional and slower

software simulation. Technical details were sparse in public literature and documentation

was restricted to customers so the system’s architecture was not widely understood. Despite

widespread marketing efforts and enthusiastic praise as an innovative approach, GateRocket

ceased operations in July of 2011 due to lackluster sales [48].

Sandbyte’s FPGAXpose [49] framework provides visibility into all design storage elements

by reading their state through a JTAG connection. While eliminating the need to instantiate

cores into the design, this exposes the application to the disadvantages of JTAG. JTAG is

a comparatively slower interface more suitable for interactive work, rather than full-speed

analysis. Like other third-party products reviewed, details of this architecture are not widely

publicized.

Yousef S. Iskander Chapter 3 Related Work 50

Synopsys’ Identifty RTL debugger [50] bears a close resemblance to conventional software in-

tegrated development environments. Debugging is performed in a source code viewer on the

original RTL, or through a waveform viewer. Like embedded logic analyzers, a specialized

Instrumentor core is instantiated into the design but rather than recording signal traces, an-

notations are displayed on the original source RTL. Identify combines traditional integrated

software development environment features such as syntax highlighting and context pop-ups

for symbolic register values with hardware debugging. The incremental development flow

is leveraged which attempts to preserve previous implementations, thereby reducing build

times. JTAG is used to shift the FPGA’s state out to the Identify user application for

inspection.

The Cadence Palladium toolset, part of the Incisive XE suite, is a stand-alone emulator/

accelerator allowing rapid hardware/software co-verification. Product literature claims from

100 up to 1,000,000 times speedup over conventional software-based RTL simulation. Debug-

ging capabilities include embedded logic analyzer access with immediate test point modifica-

tion without the need for re-implementation, global visibility without the use of physical or

routed wire probes, and limitless trace capture [51]. It is unclear what architecture supports

these claims.

3.3 Debug-Related Research

The most ambitious debug products have been the product of research projects. Research-

related debug products are often very innovative, but tend to be restricted to specific archi-

tectures. Unfortunately, the most exciting debug products are no longer supported.

During development, the NPU processor [52] incorporated custom logic that automatically

halted execution and allowed automated, full inspection of the state. NPU is a 32-bit,

Yousef S. Iskander Chapter 3 Related Work 51

binary compatible processor based on the Intel 486 architecture. Developed on an FPGA,

the developers were motivated by some common FPGA obstacles to productivity. Long

turnaround times and limited visibility into the design were responsible for slow progress

in development. Incorporating custom breakpoint logic activated by the program counter,

the breakpoint logic automatically suspended execution and triggered an automated state

dump over JTAG. The technique relies on JTAG’s ability to push custom instructions into

the design and later shift out the device state. The breakpoint address was set by JTAG,

and when activated triggered a JTAG shift making the device’s internal state available. This

research presented several novel approaches to debugging including generously segmenting

the design into 11 distinct and manageable JTAG chains to accelerate the otherwise lengthy

shift operation, and the automated approach to shifting out state and automatically resuming

execution. This domain-specific technique is not suitable for arbitrary designs and aspects

of it required re-implementation for modifications to the debug framework.

Researchers at the Lappeenranta University of Technology developing an embedded active

magnetic-bearing controller on a Virtex-II Pro FPGA used the device’s PowerPC processors

to read internal signal data and to debug the design. The authors make note of the difficulty

in achieving target clock rates and the large amount of memory required for their debug

activities [53]. Approaches such as these tend to be domain-specific and require repeated

modification and re-implementation of the design.

An in-situ debugging system developed at the Los Alamos National Laboratory employed

JTAG for state readback [54] in a unique way. Based on a Xilinx reference design [55],

the researchers extended the capabilities of an external Microchip PIC processor to provide

access to both transactions and internal state. The system was primarily developed to aid in

debugging otherwise inaccessible installations, such as those deployed into orbiting satellites.

The microcontroller directly drives a JTAG chain, through the second of the FPGA’s two

Yousef S. Iskander Chapter 3 Related Work 52

Boundary Scan (BSCAN) modules, leaving the first available for vendor tools. The debug

core included a programmable triggering mechanism which enabled system traces to be

recorded directly into internal Block RAMs (BRAM). The framework allowed both reading

and writing to arbitrary design registers and was accessible from a Linux command-line

application.

JHDL [56] developed at Brigham Young University, was first conceived as a high-level hard-

ware description language for RTR applications. JHDL evolved into one of the earliest

full-blown design environment supporting high-level design entry, floorplanning, netlist gen-

eration, schematic generation, and an integrated debug and simulation environment. Despite

the use of Java, JHDL is a structural design environment, enabling rapid design entry using

a popular high-level language that appears to have effectively separated the design from

the platform, a limitation that plagues conventional HDLs. The target device is specified

as part of the design and is easily re-targeted to another supported platform. Low-level,

device-specific instantiations are avoided through the use of abstracted component libraries.

JHDL also provided several unique perspectives to hardware development. First, both hard-

ware and software could be co-developed in the same environment using the same language.

While hardware development occurred by extending preexisting JHDL libraries, software

development occurred in the conventional sense. Another unique aspect of JHDL was the

combined hardware and simulation environment that could be executed in parallel, effort-

lessly switching between the two while annotating different views of the design, such as a

schematic or waveform view. Development appears to have halted years ago, with the last

supported devices being the Xilinx XC4000, Virtex, and Virtex II [57].

Like JHDL, JBits [58] was also Java-based circuit design language. Developed by Xilinx and

first targeted towards the Virtex line of FPGAs, JBits provided a hierarchical, object-oriented

approach to design entry. Using Xilinx’s Runtime Parameterizable (RTP) Core library, a

Yousef S. Iskander Chapter 3 Related Work 53

parameterizable library interface to Xilinx’s core device components, runtime reconfiguration

was accessible from a high-level language as were floorplanning capabilities using JPlace.

These unique high-level capabilities have not reappeared since JBits was discontinued. JBits

was unique in that it allowed direct manipulation of the low-level bitstream implementation

from a high-level language. However this direct access made JBits complex requiring the tool

to contain architecture-specific details for each of the supported devices. JBits’ bitstream

manipulation capabilities made it an ideal candidate for hardware-based debugging tools. A

project at Brigham Young University used JBits to instrument a JHDL design for debug by

directly manipulating the final bitstream and was demonstrated to be effective [59].

The BoardScope [60] debugging suite provided graphical and command-line user interfaces

to the design’s data flow. BoardScope was integrated with the JBits [59] suite and the

DDTScript language which enabled instantiation of a run-time core abstraction that could

be precisely placed and manipulated on the FPGA fabric. Inputs to cores could be altered,

state read, and bitstreams exported for later use, allowing for interactive debugging [61].

BoardScope never appears to have been offered as a commercial product and is not available

for architectures beyond the Virtex-II Pro.

3.4 High-Level Synthesis

HLS is in of itself not a debug methodology, but a means of raising the abstraction layer

away from the low-level hardware implementation, thereby eliminating the need to debug at

that level. HLS offers a direct path to creating synthesizable HDL from an HLL. While HLLs

are the fastest, most precise, and abstract means of specifying and validating algorithmic

correctness, HLS has yet to gain widespread acceptance for reasons such as poor coverage,

large overhead, and dead logic. The automatically machine-generated RTL is difficult to

integrate with third-party IP cores and to process with formal verification tools [34].

Yousef S. Iskander Chapter 3 Related Work 54

Accelerated Technologies ImpulseC [62] high-level synthesis framework is based off a subset

of the C programming language. The compiler is based off the StreamsC compiler [63]

developed at Los Alamos National Lab, which in turn relies on the Stanford University

Intermediate Format (SUIF) [64] to generate synthesizable netlists from high-level language.

The user interface is similar to software development environments, with features such as code

completion and syntax highlighting. Like many HLS environments, the machine generated

RTL is difficult to reconcile to the original source code, making it difficult if not impossible to

manually debug or verify. A complete reference on programming for FPGAs with ImpulseC

can be found in [65].

ImpulseC was the basis of at least two notable research projects investigating improving

developer productivity. Research done at the University of Florida [66] developed a means

of embedding assertions authored from the high-level programming environment into the

synthesized netlist, providing more visibility of the synthesized design. The synchronous

assertions provided immediate feedback to the developer, increasing confidence and verifia-

bility. An overview of assertion-based verification can be found in Section 2.3.4.

A Virginia Tech doctoral dissertation [36] focused on abstracting away low-level implementa-

tion details for partial Runtime Reconfiguration (RTR) into ImpulseC’s high-level language.

This work was significant in several regards. First, RTR is a low-level, device-dependent

technique which requires significant knowledge of both the device and the design. RTR is

an unlikely candidate to be transparently integrated into a high-level language. Second,

RTR enables a smaller, less-expensive, more power-efficient device to have a region des-

ignated for temporally allocating modules for on-demand execution rather than statically

allocating all the modules at design time. This satisfies one of the criticisms for HLS that

machine-generated RTL designs are less power-efficient than custom RTL designs.

Yousef S. Iskander Chapter 3 Related Work 55

3.5 Deficiencies in Existing Approaches

The previous overview of commercial and academic debug environments betrays a pattern:

vendors provide embedded logic analyzers while third-party vendors favor JTAG access meth-

ods. This is not surprising. Vendors have the distinct advantage of leveraging the knowledge

of their own proprietary architectures and in some cases embedding on-chip debug peripher-

als to assist. Third-party vendors are left with few options other than the industry-standard

JTAG to access the internals of the FPGA or to develop their own interfaces. The primary

shortcoming of all the approaches is the lack of visibility into the FPGA.

Third-party providers depend largely on JTAG since it is one of the only standardized

interfaces found on all platforms. There is the option using the abundance of I/O that

the FPGA has to offer, however this is not as attractive as option as it may seem. The

GateRocket and Cadence products sell their own development platforms to leverage this

opportunity, providing a higher level of service. There is a drawback to this approach, notably

that these platforms are more than likely not at all similar to the final target platform. They

most certainly will lack the peripherals, connectors, and configuration of the final platform.

Porting to another device, even to a different sized part within the same family, can be

problematic particularly with regards to placing and routing the design.

The benefits of the vendor’s embedded logic analyzers are clear, however there are drawbacks

to the approach. These tools are sealed within their user interface which makes integration

with other tools difficult. The primary disadvantage of ELA-style approaches is the semi-

permanence of the chosen context. That is, the use of these tools is akin to a design decision.

The debug facilities become deeply integrated into the design, particularly in regard to wire

routing. Memory requirements are also a difficult trade-off. Onboard memory is hardly ever

sufficient for the design and with ELA it must be shared. Memory use must be delicately

balanced between the number of signals to monitor and the number of samples to record.

Yousef S. Iskander Chapter 3 Related Work 56

Table 3.2: Summary of debug products.

Source Product Class Comments Status

Vendor
Xilinx
ChipScope Pro

ELA Instantiated cores, on-chip
trace recording, graphical user
interface

Available

Third-Party

GateRocket Proprietary External platform; waveform
viewer integration

Defunct
July 2011

Sandbyte
FPGAXpose

JTAG No embedded cores, complete
state visibility

Available

Synopsys
Identify RTL

JTAG Embedded core; annotations
on waveform viewer, source
code viewer

Available

Cadence
Palladium

Proprietary External, stand-alone acceler-
ator; software co-verification;
embedded logic analyzer;
rapid test point modification;
very expensive; targeted
toward ASIC development

Available

Research

JHDL Unknown High-level language with inte-
grated debugging and simula-
tion support; rapid perspec-
tive change between simula-
tion and on-hardware debug-
ging

No longer
supported

JBits Unknown Direct manipulation of bit-
stream; rapid debugging; lim-
ited to select devices

No longer
supported

BoardScope Unknown Graphical and command-line
support

No longer
supported

Capture methodologies are not always appropriate for low-level debugging. In addition to

Xilinx’s ChipScope Pro, the offerings from Sandbyte and Synopsys fall into this category as

well.

The obstacles to providing a fast and visible architecture for debugging are the limited access

points into an FPGA and an unobstructed view of the design. JTAG has been a reliable

and robust standard for debugging for well over a decade. However it is slow, serial, and

typically applied globally across the device. With JTAG, the debug vantage point is the

Yousef S. Iskander Chapter 3 Related Work 57

equivalent to that of a long, narrow tube: significant time and effort is required to pass

information along the tube and the tube must be emptied each time, regardless of how

much information is relevant. A summary of the debug products covered in this section is

given in Table 3.2. Domain-specific approaches, such as those implemented for the NPU

processor, the Lappeenranta University project, and the work undertaken at Los Alamos

were not included. The most innovative approaches, those generated from research projects

quickly faded. There is little documented evidence to explain why these projects failed to

achieve commercial success. However the growing concern over IP protection suggests that

tools such as JBits, BoardScope, and JHDL exposed too much of the internal architectural

details.

3.6 Summary

Debug solutions are limited. Vendors provide embedded-logic analyzers to extend the orig-

inal development environment found in simulation to debugging, while third-party vendors

are rather limited in their approaches. Applications for JTAG are the most common, how-

ever the least likely to scale to future platforms. JTAG is a universally adopted and open

standard, but places the debugging context at the end of a slow serial line. Some third-party

approaches also include stand-alone development platforms alleviating some of the short-

comings, however this does not permit development directly on the final target platform.

The most innovative approaches have been research products, but these typically exposed

more architecture-specific details.

A significant shortcoming in almost all the approaches reviewed is one of perspective. The

debugging context is placed outside the FPGA, with a restricted view onto the FPGA’s

state. Embedded solutions, such as those requiring cores to be instantiated into the design

Yousef S. Iskander Chapter 3 Related Work 58

are based on capture methodologies. The storage requirements limit the width or depth of

information viewable. With JTAG solutions, this view is serialized requiring the entire state

to be shifted out regardless of how much information is needed. A new perspective, one from

within the FPGA with random access, is needed.

Chapter 4

Improving Abstraction and

Turnaround Time

The model verification gap and the deficiencies discussed in the previous chapters highlight

some of the weaknesses in FPGA development flows. The model verification gap exists

because high-level reference models are used primarily to verify against simulation models

and because they can not be directly coupled to the hardware. In many cases, validation

against high-level models is manual. Furthermore, there are significant gaps in the ability

to analyze the implemented hardware in detail without compromising time or accuracy.

FPGA development environments lack the flexibility found in software development envi-

ronments, most notably intuitive means for quickly testing modifications and validating

designs. Three prominent attributes of software development are identified and targeted in

this research for FPGAs: visibility, controllability, and agility.

Visibility is the extent to which design elements, such as signals, ports, and registers, are

observable once implemented in hardware. In software debugging, special annotations such

as symbol tables are compiled into the binaries and performance-enhancing optimizations

59

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 60

are avoided to improve the observability of the application. Once a variable is in scope, it

can be printed or “watched” within a debugger where changes to the variable are trapped.

No such standardized facility is natively available in FPGAs other than diagnostic LEDs,

and debugging remains largely technology- and vendor-dependent as well as a learned skill.

Controllability is the extent to which a design’s state can be manipulated or altered during

execution. Examples include forcing variables to values at runtime, a feature widely sup-

ported by software debuggers but not architecturally supported in FPGAs. Altering the

state of the debug mechanism is also not natively supported. Software breakpoint modifi-

cations do not require re-compilation or restarting of the affected unit, while most FPGA

vendor tools implement capture or trigger mechanisms as part of the monolithic design flow.

Finally, agility is defined as the ease and efficiency at which modifications can be made

to a design. It is a common occurrence during FPGA development that a trivial change

requires a re-implementation of the entire design, a lengthy process taking potentially tens

of hours for large designs [20]. Software build tools such as Make selectively rebuild only the

affected units within the dependency tree of the modified unit. FPGA flows have support

for incremental or module-based development methods, but these have strict requirements

which are difficult to attain. Agility as applied to debugging is similar. While most vendor-

specific means of debugging and design analysis are built as part of the design, agility in this

context refers to modifying the debug configuration.

There are two phases of the development cycle where these weaknesses are most prominent:

initial modeling and hardware validation. High-level reference models made during initial

design planning lack integration with the rest of the flow. This inability to integrate reduces

the model’s effectiveness and hinders productivity during validation. Later on during low-

level debugging, the lack of insight into executing hardware during runtime and the inability

to inspect it are significant shortcomings of all FPGAs. These are addressed through two

separate approaches, High-Level Validation and Low-Level Debug.

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 61

The remainder of this chapter is organized as follows:

High-Level Validation

In Section 4.1, the High-Level Validation (HLV) framework is presented. HLV seeks to

couple a normal, high-level reference model written in a standard HLL to synthesized and

implemented hardware without significantly modifying either while simultaneously raising

the layer of abstraction for validation. In essence, HLV serves as a software-based, unit-

testing framework for hardware. Aspects of mapping software and hardware elements are

discussed.

Low-Level Debug

In Section 4.2, the low-level aspects of improving debugging time turnaround are discussed.

Low-Level Debug (LLD) changes the perspective of FPGA debugging from an external view-

point to an internal one, removing much of the latency and design-time commitments from

debugging. LLD changes the model of analyzing FPGA state from the conventional serial

JTAG analysis method to treating the FPGA as a random access memory where state can be

arbitrarily analyzed. Additionally, LLD leverages the rapid implementation times of partial

reconfiguration by separately partitioning off debug logic so that it can be rapidly swapped

out without disrupting the rest of the design. LLD retargets the three attributes of software

development—controllability, visibility, and agility—for FPGAs.

Dynamic Modular Design and Validation

In Section 4.3, the Dynamic Modular Development (DMD) project is discussed. DMD is the

overall framework in which this debugging framework is presented. DMD aims to improve

turnaround time for the entire range of FPGA development tasks including floorplanning

and implementation time as well as the debugging aspects discussed here. PATIS, a major

component of DMD, is an automatic floorplanning tool that isolates all top-level modules

for efficient design turnaround. PATIS is capable of adjusting floorplan boundaries in two

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 62

dimensions while also balancing resource requirements for each module. PATIS’ floorplan

database is populated in the background and ensures that a suitable floorplan is always

instantly available without stalling the development process as a new one is produced.

4.1 High-Level Validation

The HLL functional models that are created during the first phases of the development

cycle serve a critical role throughout the process. In addition to providing a guideline from

which to build the hardware, they also provide critical reference data by which to validate

the design’s accuracy. The model verification gap exists because the reference model is

physically isolated from the subsequent design steps. HLLs are not natively compatible with

HDLs and high-level synthesis has not yet fully matured or been standardized for widespread

use. Any validation that occurs between the reference model and subsequent design steps,

such as simulation or hardware, are mostly manual or require significant user intervention.

Bridging this gap by directly linking the model and simulation is a viable solution, but of

limited usefulness. Both the model and the simulator can run on the same platform and

frameworks such as the deprecated Program Language Interface (PLI), now succeeded by the

Verilog Procedural Interface [26], provide a convenient and structured means of interfacing

HDL simulations to C-language programs. However the vagaries of simulation, such as

unintended differences between the simulation model and the actual implementation, make

this an unreliable strategy. Instead, a means of linking the reference model directly to the

hardware would provide a robust means of directly validating hardware without the use of

HLS.

At first glance, high-level reference models share little in common with hardware implemen-

tations making them unlikely candidates capable of being coupled. HLLs do not characterize

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 63

any timing constructs and are mostly algorithmic in nature. Hardware designs leverage con-

currency and require skillful pipelining for the best designs. Procedural languages provide

a convenient mechanism by which to model a hardware design’s structure. Individual pro-

cedures or functions provide a convenient means of logically segmenting a functional model

and mapping it to individual hardware modules. Hardware modules and software procedures

have much in common and are the most logical pairing for mapping between the two. Both

have well-defined boundaries that hide the functionality, state, and implementation from the

outside. In software, the term scope defines the context wherein variables exist and to what

other areas of the design these are visible. Both also have a well-defined gateway through

which information passes, known as an interface. In software, the function’s arguments de-

fined by its signature or prototype are the primary means of passing data into and out of the

procedure. In hardware, the module’s ports define this interface. Modules and procedures

are also a convenient means by which to reuse functionality. In both cases, repeated use

of functionality warrants that it be encapsulated or refactored into a separate procedure or

module so that it can be repeatedly and reliably be instantiated where needed. Figure 4.1

shows how refactoring frequently used code into a function improves the maintainability of

the code as well as reduces the likelihood of coding errors. In addition, such refactoring may

improve other metrics such as final design size.

Mapping an untimed reference model to hardware can occur only if three conditions are

satisfied. First, functional entities in each must be logically mapped to one another. In the

simplest case, each procedure could be mapped to a corresponding module. Second, the

data inputs and outputs of each should also be mapped. The simplest case again is a direct

one-to-one mapping. Control signals, which are discussed in Section 4.1.2, are excluded

from this mapping. Finally, the interaction of the control signals and the latency of the

hardware module must be modeled in software. All three can be accomplished without

invasive modification of either the reference model or the hardware.

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 64

a = 1 ; n = 1 0 ;

f o r (i = 1 ; i < = n ; i + +)

 a = a * i ;

b = 1 ; n = 1 2 ;

f o r (i = 1 ; i < = n ; i + +)

 b = b * i ;

. . .

c = 1 ; n = 5 ;

f o r (i = 1 ; i < = n ; i + +)

 c = c * i ;

. . .

R e f a c t o r i n g

f a c t (n) :

 x = 1 ;

 f o r (i = 1 ; i < = n ; i + +)

 x = x * i ;

 r e t u r n x ;

. . .

a = f a c t (1 0) ;

. . .

b = f a c t (1 2) ;

. . .

c = f a c t (5) ;

Figure 4.1: Refactoring code improves maintainability.

4.1.1 Mapping Software Procedures to Hardware Modules

HLLs are untimed, meaning that the actual execution time, measured either as real (“wall-

clock”) time or as a function of any parameter related to the platform on which it is running,

is irrelevant. Hardware design on the other hand is characterized by its execution time as

a function of the number of clock cycles required or latency. While the purpose of the

reference model is to clearly define the desired and correct results for given inputs through

an algorithm, additional metrics apply to hardware. Hardware execution is bounded by the

time required for each individual stage of the operation or through some signaling mechanism

to indicate that an operation has completed. Despite this mismatch, it is still possible to

map a functional software representation to a hardware model.

Procedures have well-defined boundaries and a single point of entry. Likewise, hardware

modules also have well-defined boundaries and it is through this similarity that a well-

partitioned software model can be effectively cast in hardware. Figure 4.2 illustrates a

one-to-one mapping of hardware and software elements.

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 65

f u n c A (d a t a _ i n 0 ,

 d a t a _ i n 1 ,

 d a t a _ o u t 1)

M o d u l e A

O n e - t o - O n e
M a p p i n g

Figure 4.2: Mapping data paths in hardware and software.

4.1.2 Mapping Data and Control Signals to the Software Model

Mapping the interface of hardware modules to that of a software procedure is rarely a simple

one-to-one mapping. Hardware module interfaces have two types of ports, data and control,

while software procedures do not typically address these hardware constructs. Data signals

are easily matched to the corresponding data variables of the software model since the model

is algorithmic in nature. Control signals are a broad category of signals that can indicate

actions to be taken such as an operation; the different states of the circuit such as busy,

ready, or acknowledge; or meta-information about data signals. For example, pipelined

designs have several stages in which distinct operations are performed. As the data moves

through the pipeline, each stage must coordinate with its neighbors. A common scenario

in pipelined designs is that valid data may not be available for each clock cycle, thereby

introducing stages that are empty or contain invalid data. These empty stages are known

as stalls or bubbles. Since hardware execution can not be stopped, the stages of the pipeline

must also propagate which data is valid. Invalid data in a pipeline is a normal occurrence

and caused when pipelines must wait for data to become available, such as the time in

between image frames in video processing applications or the service time required for a

memory access. Control signals are shifted along the pipeline with the data to indicate that

the data is valid and not the result of a stall. In software models, control signals are not

considered since they are not part of the algorithm. The simulation model is the first time

in the development cycle that control signals are considered. However, by leveraging the

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 66

low-level detail of signal interaction visible in simulation, a software model of control signal

interactions can be extracted. This model can be integrated into the reference model thereby

creating a means of interacting directly with the hardware implementation. An overview of

this process is illustrated in Figure 4.3.

f u n c A (d a t a _ i n ,

 d a t a _ o u t) M o d u l e A

D a t a

Ct r l

S i m u l a t o r
C o n t r o l S i g n a l
S o f t w a r e M o d e l

D a t a

Figure 4.3: Developing a software model for hardware control signals from simulation models.

4.2 Low-Level Debug

Lack of low-level visibility, control, and agility of a design is the other deficiency of FPGA

development methodologies. Once the design has been implemented, it is difficult if not

impossible to see what the precise state of any register is at any given time, arbitrarily

stop the design to inspect registers, or quickly change the debugging configuration. In

comparison, all these tasks are easily accomplished in software development environments.

The tools providing the most visibility into a design are those that are built into the design,

which are at the same time are the most costly to modify.

Software debugging environments are considered the gold standard of debugging. It is at

all times possible to inspect any variable and stop the application at any arbitrary location

under a variety of conditions. Debugging conditions, such as breakpoints and any conditions

that trigger them, can be changed instantaneously without recompilation. A model similar

to this is desirable for FPGAs.

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 67

There are two primary obstacles to build a transparent and flexible FPGA debugging frame-

work. First, FPGAs do not present a consistent or standardized internal architecture. While

ordinary computers have a discrete, well-defined memory hierarchy where state is main-

tained, FPGAs may have a loosely structured memory hierarchy where the state of a single

register can be physically distributed throughout the device in an almost random pattern.

Furthermore, no two consecutive implementations of the same design are guaranteed to be

implemented the same way in the device. Second, FPGAs have no standardized interface.

Computers have a console consisting of a keyboard and monitor for interactive work, along

with a operating system that presents an abstract interface to the hardware, all of which

are absent from FPGAs. And even though FPGAs have an abundance of input and output

pins, only the JTAG interface is standardized. JTAG’s serial access model is not adequate

for quickly inspecting large devices and has not gracefully scaled with increasing device sizes.

To counter these obstacles, the three attributes of effective debugging as found in software

development environments are described below in the context of FPGAs.

4.2.1 Improving Visibility

The flexible nature of an FPGA’s architecture inhibits visibility into finished designs, as

does the widespread adoption of ASIC development techniques which are not well-suited for

FPGAs. The majority of these approaches rely on external tools, which are at a distinct

disadvantage. Visibility can be improved through two methods. First, by shifting the de-

bugging perspective from outside the FPGA to inside, direct access to the architecture is

simplified. Second, visibility is improved if the FPGA can be accessed like a random access

memory. Traditional access methods process the device’s state by serially shifting it out

in its entirety and then decoding it to reconstruct the original design’s register structure.

From within, the FPGA’s memory structure is randomly accessible in its entirety much like

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 68

a conventional memory. This change in perspective is significantly faster since the entire

structure is readily accessible. Figure 4.4 shows this comparison between the serial model

and a random access model.

J T A G p o r t s

a) b)

Figure 4.4: a) A serial model of accessing register state; b) a random access model in which
registers are accessible as memory locations.

The random distribution of all the design’s bits requires additional steps in constructing a

mechanism to resolve them. In software, a symbol table resolves an identifier to a memory

location. In debugging environments, the symbol table is expanded to include the symbol’s

name as it appears in the source code along with additional information such as size or data

type. A similar symbol table must be built for the purposes of resolving each register’s bit

location so that the original register can be accurately reconstructed within the debugger.

The construction of a symbol table for an FPGA requires additional effort compared to

symbol tables for software applications. Unlike a conventional computer where the details of

the underlying hardware are not proprietary and standardized through interface conventions

such as Hardware Abstraction Layers (HAL) and operating system Application Programming

Interfaces (API), each device family is structured differently and each design turn produces

a different implementation. A combined model of both the FPGA’s architecture and of

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 69

the design is needed. Unlike memory locations in software applications, an FPGA register

does not have a single address. Instead, individual bits are distributed across the FPGA’s

logic resources. Vendor tools must be manipulated in order to produce a mapping of design

registers to bit locations within the FPGA’s architecture. This mapping is illustrated in

Figure 4.5 where the symbol table individually maps each bit of a register to a physical

location within the FPGA.

S y m b o l t a b l e m a p p i n g l o g i c a l
n a m e s a n d b i t i n d i c e s

t o p h y s i c a l l o c a t i o n s

D e s i g n r e g i s t e r b i t s
d i s t r i b u t e d t h r o u g h f a b r i c

N a m e L o c a t i o n

r e g i s t e r A < 0 >

r e g i s t e r A < 1 >

r e g i s t e r A < 2 >

r e g i s t e r A < 3 >

Figure 4.5: Symbol table mapping logical design elements to physical locations in an FPGA.

4.2.2 Improving Controllability

Controllability was previously defined to be the extent to which a design’s state can be

manipulated or altered during execution. In the context of debugging, this relates specifically

to how precisely execution can be controlled. Examples of controllability include starting or

stopping the execution of a design, advancing a precise number of steps, continuing execution,

and defining conditions by which to suspend execution through the use of breakpoints or

assertions.

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 70

In comparison to software which executes serially, hardware is a globally concurrent process:

designs can be created so that many portions are simultaneously active. As such, the defi-

nition of a breakpoint solution in hardware is not defined in terms of an instruction counter

as it is in software, but rather on the overall state of the design. Additionally, a hardware

breakpoint mechanism must be instantaneous so that the design’s state is preserved for in-

spection. If not, the overall state may change so significantly in a single cycle as to make

any diagnosis or inspection impossible.

The most productive hardware design evaluation occurs when execution occurs at the target

frequency. Some debugging frameworks allow the state to be captured at each clock cycle,

however execution must be slowed considerably for this to occur. The primary concern

with this approach is that timing issues can be masked since they will only occur once

the design is executing at full-speed. Even a modest 100 MHz clock rate is sufficient to

cause timing problems given the complex routing architectures of FPGAs. Other issues arise

when certain resources require a minimum frequency for reliable operation, such as video

processing components or digital clock managers. A successful control mechanism should

not only allow execution to run at the design’s target frequency, but be able to halt and

hold the design in its current state. The maximum response time to switch from full-speed

operation to a halted state must be less than a single clock cycle. Additionally, the design

must be reliably held in a steady state and be able to resume execution without introducing

unreliable or noisy transitions which can corrupt logic state, known as glitches.

Clock buffers allow clocks to be reliably controlled without introducing such glitches. At-

tempts to manage clock signals with ordinary logic results in gated clocks. Gated clocks

occur when clock signals are handled as ordinary logic. Gating clocks is permissible in ASIC

design, but is normally an undesirable condition in FPGAs. Unpredictably latency and loss

of clock signal integrity are two risks, since the FPGA’s normal signal routing architecture

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 71

Table 4.1: Truth table for a simple clock buffer.

Inputs Output
In ENB Out
X 0 0
I 1 I

is not intended for clock signals which require special handling. Gated clocks are commonly

detected by FPGA vendor tools and warnings are issued. Clock buffers can have several

control inputs, clock inputs, and a clock output whose source is determined by the control

lines. The most common uses of clock buffers are to reliably distribute clock signals to a

large number of components (also referred to as high fan-out,) allow for glitch-free transition

between different clock sources (for example, transitioning from a high-speed to a low-speed

clock to reduce power consumption), or transition between an active clock and a constant

signal which safely halts the connected components. The schematic symbol for a simple

clock buffer is shown in Figure 4.6. The truth table for a clock buffer is given in Table 4.1

and shows that while enabled, the buffer passes the input clock directly to the output port,

but when disabled holds the output line at a constant logic level. Clock buffers are not

simply logic gates reserved for clock signals, but rather a specialized component for reliably

distributing clock signals and are frequently capable of being configured to the application.

For instance, clock buffers can be configured to pass logic high or low when enabled. Ad-

ditionally, clock buffers have logic that coordinates the transition of the signal based on its

inputs.

Figure 4.6: Schematic representation of a simple clock buffer.

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 72

Clock buffers are central to an effective control strategy. The most frequently used operations

that define controllability center around execution. Operations such as running, stopping,

and stepping are transferable to a hardware platform through the use of a clock buffer that

sources the master clock of the design. With a clock buffer ensuring glitch-free transitions,

execution control becomes a matter of developing a means of integrating the controlling

factors, such as interactivity and breakpoint management.

Breakpoints are the final element to controllability. Software breakpoints are easy to write,

typically a simple command followed by a location and optionally a condition. Their usabil-

ity also stems from their conditional syntax being in the native language. Since source code

location is not applicable to concurrent hardware designs, asynchronous, conditional break-

points become the basis for a hardware-based debugger. While synchronous logic limits the

complexity that can be implemented, asynchronous logic can exactly satisfy Boolean con-

ditions of its inputs and outputs and more importantly immediately raise a signal without

requiring an additional clock cycle as is the case with synchronous logic.

4.2.3 Improving Agility

The final attribute for productive FPGA debugging is agility. Agility is defined to be the

ease and efficiency at which modifications can be made to a debugging configuration. In

software debugging, breakpoint modification is effortless. With graphical user interfaces,

the breakpoint and any associated condition is annotated in the source code or listed in a

separate window. Even with command-line based debuggers such as the GNU gdb debug-

ger, breakpoints can be quickly specified with a single command and a line number, file

name, or function name. FPGA logic analyzers are the closest to this model of use, but

require more effort to setup and much longer to modify. Modifications to embedded logic

analyzers are typically treated like any design modification and may require a full design

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 73

re-implementation. Given that the general toolflow is time consuming and increases with

design complexity, it is desirable to isolate any debugging logic from the rest of the design.

By physically separating debugging logic from the rest of the design, the debugging module

can be re-implemented multiple times independently of the rest of the design. The debugging

module’s small size relative to the rest of the design would significantly reduce implemen-

tation time. Such a scenario aligns the FPGA debugging environment experience with that

of a software debugging environment where relatively short times are required to alter the

debugging configuration. To achieve this rapid turnaround and design isolation, partial re-

configuration can be leveraged which allows a region of the FPGA to be reserved for multiple

modules that can be swapped in and out on demand. A smaller, isolated region also reduces

the implementation time required. This rapid modification is ideal for interactive scenarios,

such as breakpoint logic implemented in hardware. Figure 4.7 shows a separate reconfig-

urable region dedicated to implementing debugging logic. The distinct module allows rapid

modifications of the debugging logic without re-implementing the entire design.

4.3 Dynamic Modular Design and Validation

The Dynamic Modular Design (DMD) framework envisions Xilinx’s PR [67] flow not as a

runtime strategy, but a design time methodology. While developers have not widely adopted

PR for production designs, the research conducted for DMD has shown that rapid devel-

opment turnaround times can be achieved by partitioning frequently modified modules into

separate PR regions [68]. DMD’s use of PR does not extend beyond the development envi-

ronment since PR regions are gradually and automatically merged out of the design. The

PATIS floorplanner will be discussed briefly as it relates to the overall DMD flow, however an

extensive discussion can be found in [20, 37, 38, 68, 69]. There are two principal components

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 74

B r e a k p o i n t
l og i c

R e c o n f i g u r a b l e
R e g i o n

Figure 4.7: Accelerating debugging turnaround with a reconfigurable region for debugging
logic.

of DMD: the PATIS floorplanner which is discussed below and the debug validation tools

which are the subject of this research.

4.3.1 PATIS

DMD extends the traditional PR flow with the Partial module-producing, Automatic, Timing-

aware, Incremental, Speculative (PATIS) floorplanner [20]. While the standard PR flow has

traditionally been a manual process not normally associated with enhanced productivity,

the PATIS tools simplify much of the implementation details of PR by automating the pro-

cess. Since runtime reconfiguration capabilities are not required, PATIS uses a simplified

version of the PR flow that does not have the complications found in runtime hot-swapped

modules. Bus macros are automatically inserted on module boundaries and provide passive,

readback-based observability of all communication between floorplanned modules [37].

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 75

The primary obstacle to fast implementation times for FPGAs is place-and-route (PAR).

While vendor tools implementing parallel PAR algorithms and leveraging the lower-cost of

multi-core processors have been introduced, they have yielded only a modest speedup due

to the complexity of the algorithms and the large, complex data structures which saturate

memory bandwidth and overrun caches. PATIS counters these obstacles through a “divide-

and-conquer” strategy that creates independent floorplan variants of the design that are

parallelizable on separate machines and do not require shared memory access. By separating

modules that are currently under development into independent PR regions, modules can

be separately implemented without reimplementing the entire design, dramatically reducing

implementation times.

PATIS defines two attributes to describe maturity, fickleness and viscosity, and uses these

to determine when to migrate modules from the reconfigurable regions to the static area.

Fickleness is characterized by the effort required for a module to meet timing requirements,

while viscosity is defined by the frequency of historical changes to the module which may

provide indicators of the likelihood that it will change again.

The goal of PATIS is to recast partial reconfiguration not as runtime strategy, but as a design-

time methodology for static designs. Separate reconfigurable regions for each module, as

shown in Figure 4.8, enable a unique feature of PATIS: the ability to swap a previous revision

of a module out for a more recent one without the need for rebuilding the entire design. This

is similar to linking in software where modified files are recompiled and inserted into library

archives and then linked to executables without recompiling the entire application. The

time-savings can be significant.

The PATIS floorplanner creates a modestly oversized PR region for each top-level module

allowing modules to grow during the course of development without disturbing the rest of the

design. If an updated version of a module no longer fits within its boundaries, PATIS selects

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 76

Figure 4.8: PATIS provides each top-level module its own reconfigurable region.

an appropriate floorplan from a database or re-implements the entire design. A speculative

floorplanning background process runs that explores the design space, generating potential

future floorplans based on estimated module completeness and past changes. Timing is ana-

lyzed across module interfaces and compared to top-level constraints. A thorough discussion

of PATIS can be found in [68].

Figure 4.9 illustrates the DMD flow. Whenever a module change affects the design floorplan,

PATIS tries to accommodate the changes by applying a minimum set of updates to the

existing floorplan. Ripple effects are considered, and a completely new floorplan may be

generated if incremental changes are inadequate. The speculative floorplanning background

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 77

Design entry (Hierarchical)

Synthesize
modif ied module(s)

Incremental/
Speculative modes

Update design constraints

Implement design (Map, Place & Route)

Bitstream

No

Yes

Automatic
f loorplanning

Synthesize
full design

Is this the first
run of the tool?

NoYes

Does generated
floorplan

meet t iming?

Do any of the
modes generate a

valid floorplan?

Yes

No

Figure 4.9: Dynamic Modular Design flow.

process populates the database with design space explorations of potential floorplans based

on past changes. Floorplans include an optimized placement of bus macros. Timing is

analyzed across module interfaces and compared to the top-level constraints.

Implementation acceleration comes from the reduction of a large global optimization problem

to a set of smaller, independent problems. Optimization restrictions across module bound-

aries are generally accepted for the sake of design productivity and timing closure. Although

the PATIS/PR flow adds bus macro overheads to inter-module routing, the use of registered

bus macros may improve system clock frequency when critical nets span module boundaries.

Yousef S. Iskander Chapter 4 Improving Abstraction and Turnaround Time 78

4.4 Summary

This chapter explored some of the key concepts necessary for developing a validating and

debugging framework. HLV seeks to tie the reference model created during the first stages of

development to a functioning hardware implementation. This not only functionally validates

the hardware, but additionally allows increases to testing productivity since the hardware

is now under software control. HLV can assist even during later stages of development by

serving as unit testing framework for individual hardware components. At the other end of

the development process, LLD addresses the three attributes of low-level FPGA productivity:

controllability, visibility, and agility. Methods for establishing fine-grain control over a design,

repositioning the debug perspective to allow uninhibited access to the internal structures,

and a means for mirroring the breakpoint model found in software were discussed. Finally,

the DMD project was summarized including an overview of the PATIS floorplanner which

enables the debugging framework to coexist in the rapid design turnaround environment

created through partial reconfiguration.

Chapter 5

Implementation

Chapter 4 presented two approaches to improving FPGA developer productivity at different

phases during the development cycle. The HLV framework seeks to bridge the model ver-

ification gap by providing a means of directly linking the initial high-level reference model

to implemented hardware. The LLD framework is applied during the later stages of de-

velopment by applying fine-grain control over the execution and providing detailed insight

into an implemented design’s state. Both these frameworks derive their use model from the

debugging environments long prevalent in software. Chapter 5 presents the implementation

details of these two frameworks.

5.1 High-Level Validation

HLV addresses the model verification gap wherein the reference model produced during

the initial development stages becomes isolated from hardware development. HLV provides

automated functional validation of synthesized hardware by binding it directly to the original,

untimed reference model. The resulting framework can be applied to hardware much like

79

Yousef S. Iskander Chapter 5 Implementation 80

S t a g i n g a n d
C a p t u r e Q u e u e s

H a r d w a r e
I m p l e m e n t a t i o n

S o f t w a r e
M o d e l

S o f t w a r e M o d e l
E x e c u t i o n

1) G e n e r a t e I n p u t
T e s t V e c t o r s

2) E x e c u t e
S o f t w a r e M o d e l

3) S t o r e S o f t w a r e
R e s u l t s

4) P r o g r a m C a p t u r e
W i n d o w P a r a m e t e r s

5) S t a g e D a t a t o
H a r d w a r e Q u e u e s

6) E x e c u t e H a r d w a r e
I m p l e m e n t a t i o n

7) C o m p a r e H a r d w a r e
a n d S o f t w a r e R e s u l t s

F P G A

Figure 5.1: Overview of High-Level Validation.

unit testing frameworks are in software for frequent testing, such as nightly or regression

testing. HLV is a hardware/software framework based on capture methodologies similar to

those found in embedded logic analyzers. Since HLV is targeted towards automated tests,

the resource overhead of capture techniques is considered acceptable. Figure 5.1 outlines the

HLV framework which consists of an on-chip processor with a peripheral that functions as

a test harness for the module. The peripheral provides input and output ports for data and

control signals, queues for staging input data as well as capturing output data, and the logic

for controlling the capture. The microprocessor provides a platform for the software-based

testbenches, a user-interface over a serial console, as well as a platform for executing the

reference model. Input data is distributed to both the software model and the hardware

implementation, executed on both, and the results compared for consistency.

HLV can be used as a nightly, software-controlled, hardware unit-testing framework. Sim-

ulation data provides the model with control signal interactions and latencies to develop

the software testbenches. As discussed in Section 4.1.2, control signals found in hardware

Yousef S. Iskander Chapter 5 Implementation 81

cannot be mapped to the corresponding software model. The HLV testbench software can

provide software control of designs during development and debug, scanning the output

for expected data produced by the software model, and reviewing output streams without

re-implementing the design as with conventional hardware debugging. Software-controlled

testbenching has rapid turnaround times and requires no hardware re-implementation to in-

spect different parts of the design, output streams, or to test different scenarios. Elaborate,

software-generated unit tests can be created for each module, enabling hardware validation

against the reference model. The cost for changing a testbench is no longer the time required

for hardware re-implementation, but rather the time required to recompile and reintegrate

the software into the hardware bitstream.

5.1.1 Reference Model Execution and Hardware Data Staging

HLV operates by first executing the software reference model on the microprocessor using

prepared or randomly generated input data and the storing the results for that data set.

Next, the same input data is staged in the input queues of the test harness. Control signal

interaction and latencies gathered during simulation are programmed using HLV’s API. The

same API is then used to configure the capture window which defines the clock cycle range

of the output data to store for comparison to the reference model. Output data that lies

outside the capture window range is discarded. The use of queues for input and output

data enable the design to run at its target operating frequency without having to develop a

technique to control the execution of the design.

HLV uses a processor to allow users to enable programs to interact directly with the hardware

to be tested. The processor provides a platform for the HLV driver software, the software

testbench, and enables communication over a serial console. The Xilinx MicroBlaze processor

was chosen for its small size, large collection of peripherals, and ease of customization. The

Yousef S. Iskander Chapter 5 Implementation 82

MicroBlaze is a configurable soft-processor especially designed for Xilinx FPGAs and includes

a full C-language GNU gcc compiler. The MicroBlaze and its peripherals are specified with

the Xilinx Embedded Development Kit (EDK), a graphical user interface used to build

embedded systems on FPGAs. A wide range of peripherals, including memory controllers,

UARTs, busses, and custom co-processors can be specified and configured. The processor

project created in the EDK can then be instantiated into a higher-level project, such as into

Xilinx’s ISE, as an ordinary HDL component.

No invasive modifications to the reference model are necessary in order to integrate HLV

into the DMD development cycle. The intent of HLV is to create a transparent means

of linking the reference model to synthesized hardware without the need to significantly

modify either. The testbench software applications to be run on the processor can be rapidly

integrated into the bitstream through the use of special vendor tools which initialize internal

BRAMs. Software compilation and reintegration with the bitstream can be done with a

single command from within the EDK.

5.1.2 Test Harness and API

The test harness is a custom MicroBlaze peripheral that connects the processor to the hard-

ware module to be validated. The test harness consists of input/output pairs of First In,

First Out (FIFO) queues which connect the hardware component directly to the data path

of the processor, enabling the DUT to operate at the target frequency. The test harness also

provides logic which controls the capture process.

Through its Fast Simplex Link (FSL) architecture, the MicroBlaze provides direct access to

its data path through special instructions and ports [24, 70]. FSL is a configurable length,

32-bit wide, point-to-point, unidirectional FIFO-based processor interface where data can

be queued for reads or writes at high-speeds, allowing streaming data peripherals to directly

Yousef S. Iskander Chapter 5 Implementation 83

interact with the MicroBlaze’s data path. A low-overhead interface such as FSL reduces

the overhead and complexity between the data path and the DUT. This is preferable to

interfacing through a bus-based peripheral which adds additional hardware and software

overhead and thereby operates slower.

O p e r a t i o n s
(ALU, sh i f t , e t c .)

R e g i s t e r
F i l e

Ins t r .
B u s

I n t e r f a c e

D a t a
B u s

I n t e r f a c e

M e m o r y
M a n a g m e n t

F S L F I F O s

P L B

L M B

P L B

L M B

O t h e r
B u s s e s

Figure 5.2: MicroBlaze architecture.

Figure 5.2 shows that unlike other busses available on the MicroBlaze, such as the PLB

and LMB interfaces which connect to intermediate hardware peripherals and requires driver

software, the FSL connects directly to variable length FIFOs. For this reason, FSL is the

preferred choice for interfacing with custom hardware accelerators. For even higher perfor-

mance, FSL can be configured to use BRAMs rather than distributed RAM implemented

in ordinary configurable logic. Data can be handled deterministically, with latencies for

sending or retrieving data to and from the interfaces at one to two clock cycles, depending

on the configuration [24]. The MicroBlaze includes FSL instructions as part of its binary

interface, further reducing overhead and latencies. Furthermore, FSL instructions are avail-

able in blocking and non-blocking variants which can halt execution when FIFOs are full or

empty. These options could be used to develop complex, long-running testing scenarios.

Use of the Xilinx EDK enables peripherals to be quickly added to a MicroBlaze. Known as

co-processors, a short series of configuration options can be set in the graphical user inter-

face which produces a co-processor stub connected to a MicroBlaze. The stub is generated

Yousef S. Iskander Chapter 5 Implementation 84

Table 5.1: Summary of HLV API.

Function Description

write fsl data Write data to the FSL data queue
write fsl ctrl Write control data to the FSL control queue
write fsl pair Write data and control data to the corre-

sponding FSL queue in unison
hold Hold control and data at a constant value for

the given number of clock cycles

with instructions on how to customize the HDL to produce the co-processor, as well as the

framework for software drivers to access the new peripheral through memory mapped reg-

isters or streaming instructions. The test harness was created as an FSL co-processor and

then customized with large-capacity FIFOs to store long streams of data and control signal

information for both input and output.

The HLV API enables the FSL queues to be populated with data and control streams

identical to those gathered from simulation and includes utility functions to hold individual

or groups of signals at constant values or transition after pre-defined intervals. A summary

of the API calls along with a brief description of their function is included in Table 5.1. The

API can be used to build custom signal interactions, such as reset sequences necessary to set

the hardware to a known initial state, before streaming input data from the queues. Once

populated with the control and data signals, the API is used to release the signal streams

to the DUT.

In addition to queuing data and control streams for the DUT, the test harness also imple-

ments its capture logic in hardware for the best performance. As noted in Chapter 3, capture

methodologies are common in embedded logic analyzers which are instantiated as part of the

design and internally record execution traces. A capture methodology is more appropriate

in a test environment where individual components will be individually tested rather than

Yousef S. Iskander Chapter 5 Implementation 85

as part of the entire design. The resource requirements for capture, most notably on-chip

memory, will not compete with the design for resources.

As part of the test configuration, the API is used to program the capture window logic which

defines the range of the output stream to store in the test harness’ queues. Until execution

is triggered, a counter is held at zero until the control register’s start bit is activated. Once

set, the data stored in the input queues is released and begins streaming to the DUT. As

the counter increments, the capture window is activated once the counter is between the

range of the start and stop registers. Only during that window is the module’s output

data stored into the test harness queues and ceases being captured once the counter exceeds

the stop register value. The capture window is illustrated in Figure 5.3. The test harness

can be monitored through the API by a status register, while a control register allows the

test harness to manipulated. Table 5.2 shows the memory map of the HLV peripheral’s

configuration registers.

c a p t u r e w i n d o w

s t o p c a p t u r es t a r t c a p t u r e

d i s c a r d d i s c a r d

Figure 5.3: HLV capture window parameters.

HLV is unique in that execution occurs at the frequency of the design and does not require

that execution be halted or occur at a slower frequency. The DUT is continuously sourced

from the system clock. Since HLV can stage data that is to be streamed at full-speed,

the DUT can continuously execute even without valid data at its inputs. Placing control

sequences, such as reset sequences, ahead of test data in the queues allows the the DUT

Yousef S. Iskander Chapter 5 Implementation 86

Table 5.2: Register map for the HLV peripheral.

Register Name Description

0 Control register Start, stop, and reset functionality for
test harness and queues

1 Start capture Capture window start boundary
2 Stop capture Capture window stop boundary
3 Status register Test harness and queues status register
4 Unused
5 Unused
6 Unused
7 Unused

to be placed into a known initial state and executed as if run in a full execution life-cycle.

Operational data extracted from simulation, such as the end-to-end latency of any pipelines,

is necessary to ensure that programming of the queues is done properly. This is particularly

important for properly resetting the device before execution.

The simplified example program given in Listing 5.1 shows how a software function that has

been mapped to a hardware module is executed and its data stored. The same data is then

paired with control signals extracted from simulation and placed into the data and control

queues. The start and stop registers defining the capture window are then set before the

hardware module is set to execute. The output data is then captured and automatically

compared to the software module’s results.

5.2 Low-Level Debug

The LLD framework aims to introduce the interactivity and abstraction found in software

debug environments to FPGAs. Similar to HLV, LLD consists of an on-chip processor

controlling a custom peripheral which interfaces to the design. The processor controls the

Yousef S. Iskander Chapter 5 Implementation 87

// execute reference model and store results

reference_model (& result [0]);

// stage data

reset ();

write_fsl_pair (0x00000012 , 0x0);

feed_message1 ();

hold(0x2 , 0x0 , 12);

// configure

HLV_DRIVER_mWriteReg1 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0, windowStart);

HLV_DRIVER_mWriteReg2 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0, windowStart+windowLength);

// go

HLV_DRIVER_mWriteReg0 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0, 1);

// retrieve and store hardware results

for (i = 0; i < windowLength; i++) {

// read output data

read_from_fsl (output_data[i], XPAR_FSL_HLV_FSL_DATA_OUTPUT_SLOT_ID);

// read output control

read_from_fsl (output_ctrl , XPAR_FSL_HLV_FSL_CTRL_OUTPUT_SLOT_ID);

}

Listing 5.1: Sample HLV program.

execution of the design and provides an interactive, scriptable command-line interface that

interacts with a second, workstation-based application. Whereas embedded software running

on an FPGA would be too slow and resource-limited to meaningfully interact with a running

design, LLD uses the on-chip processor as a resident delegate to provide more visibility and

insight from within the FPGA to the workstation application. The custom hardware periph-

eral provides rapidly interchangeable condition-based breakpoint and assertion capabilities

through the use of partial reconfiguration. The breakpoint logic is capable of halting and

holding the design at any arbitrary location for inspection. A state readback utility imple-

menting the ICAP interface is capable of reading any design register in the device, treating it

as a memory rather than requiring a shift chain. An overview of LLD is given in Figure 5.4.

Software models of both the FPGA device and the implemented design provide the informa-

tion necessary to interact with and interrogate the FPGA directly. However, the resource

and processing requirements of such models far exceed the available resources of any current

Yousef S. Iskander Chapter 5 Implementation 88

M i c r o p r o c e s s o r

B r e a k p o i n t
L o g i c

M o d u l e 0
M o d u l e 0

M o d u l e 0

F P G A

R e c o n f i g u r a b l e
r e g i o n s

P r o g r a m m a b l e D e b u g
C o n t r o l l e r (P D C)

C l o c k
M a n a g e m e n t

I C A P

B r e a k p o i n t
M a s k

S t e p
C o n t r o l

U A R T

L o g i c M o d e l

L o g i c A l l o c a t i o n
F i l e

C o m m a n d
D e l e g a t o r

V e n d o r
T o o l F l o w

H o s t W o r k s t a t i o n

Figure 5.4: Overview of LLD.

FPGA. Therefore, a workstation application is needed to construct the model of the design

and map hierarchical design names to individual bit locations in the FPGA. The applica-

tion then assembles and issues a stream of commands to the on-board processor to retrieve

and decode state information through the ICAP. The individual components of LLD are

discussed below.

5.2.1 Programmable Debug Controller

The Programmable Debug Controller (PDC) is the interface between the processor and the

design to be debugged. The PDC is a custom peripheral of the MicroBlaze that manages

clock logic, status signals from the reconfigurable breakpoint module, and the ICAP to read

state information. The Xilinx ISE EDK has facilities to customize and generate stubs for

processor peripherals. Peripherals can be connected directly to the data path through the

FSL interface or through a conventional bus such as PLB. The EDK automates the generation

of interfaces, drivers, and memory-mapped registers. An API was developed to drive this

peripheral using these stubs. Its register map is shown in Table 5.3 while a discussion of the

subcomponents follows.

Yousef S. Iskander Chapter 5 Implementation 89

Table 5.3: Register map for Programmable Debug Controller.

Register Number Description

0 Development and debug register
1 Development and debug register
2 Unused
3 Unused
4 Unused
5 Unused
6 Unused
7 Unused
8 Unused
9 Unused
10 Unused
11 Active breakpoint mask
12 Step counter target
13 Unused
14 Breakpoint enable mask
15 Control register

Clock Management

The PDC’s clock management unit enables fine grain control of the design’s execution. Clock

buffers, which were introduced in Section 4.2.2, enable glitch-free transitions between clock

sources including sources that are being held at a constant logic level. Using the PDC’s

software interface, the design can be run freely at its targeted design frequency or stepped

an arbitrary number of clock cycles, also at the target frequency and duty cycle. At startup,

the clock is disengaged and the design is halted until manually started from the command-

line either through a run or step command. It then executes until either a breakpoint or

assertion condition occurs, a user-issued command to stop is given, or if the programmable

step counter expires. Figure 5.5 shows an overview of the LLD’s clock control and control

unit. Hardware-controlled clock stepping, rather than a software-generated clock signal,

allows the design to be reliably stepped a predetermined number of cycles using the actual

Yousef S. Iskander Chapter 5 Implementation 90

Figure 5.5: LLD clock control.

system clock which eliminates the introduction of timing and transition glitches. The clock

management architecture can be extended to cross multiple clock domains by cascading clock

buffers.

The PDC halts the design by enabling the clock buffer, which then holds the output clock line

at a constant logic high level. Clock buffers differ from conventional buffers by taking into

account rising and falling edges of their sources and deferring transition from one source to the

other until the transition has completed on both sources, thereby avoiding the introduction

of glitches. The clock buffers used in the PDC have a single clock source, ensuring that the

reaction time is consistently one clock cycle which is sufficient to halt the design for debug

purposes.

Dynamic Breakpoint and Assertion Logic

An agile and interactive breakpoint management strategy is a novel contribution of this

work. Up to 32 software-addressable breakpoints sourced from top-level signals can be pro-

grammed into a dedicated, reconfigurable breakpoint region managed from the user console.

Support is provided for two types of breakpoints: conventional, conditional breakpoints that

suspend execution when a condition is met, and assertion-style breakpoints that suspend ex-

ecution once a condition fails to be met. Assertions for simulation-based development were

Yousef S. Iskander Chapter 5 Implementation 91

introduced in Section 2.3.4. Unlike conventional assertion-based verification, the assertions

found in DMD are written in conventional Verilog and respond like software assertions which

interrupt execution immediately. Breakpoints can be modified and quickly re-implemented

into hardware without re-implementing the entire design, achieving significant time savings

especially for large or high-utilization designs. Breakpoint statements can also be selectively

enabled or disabled from the command-line through a software-controlled breakpoint mask.

The 32 individual bits of the breakpoint mask register each correspond to single break-

point statement. The individual bit of the mask is logically AND’ed with the signal from

each breakpoint, allowing any breakpoint statement to be temporarily disabled and then

re-enabled as needed. Breakpoint logic is implemented as asynchronous logic which signals

its activation immediately and causes the clock buffer to suspend design execution at the

next rising clock edge. This ensures that the design is held in the precise state that caused

the breakpoint to trigger. Immediate suspension of execution improves the possibility of

finding the underlying cause of an assertion failure or inspecting the design in the state that

caused the breakpoint to occur. A detail of the breakpoint region is shown in Figure 5.6.

Breakpoint logic is maintained in a separate, top-level, partially reconfigurable region. Im-

plementing the debug region as a top-level module exposes the interface to the design’s

top-level signals and ports without necessitating changes to intermediate module interfaces.

A PR region allows the breakpoint logic module to be swapped out in a matter of seconds

without interrupting the execution of the design or needing to reset its state each time. Top-

level signals were chosen as the most versatile means of monitoring the design since these

are most likely to reflect the global state of the design.

Breakpoint tables consist of 32 asynchronous breakpoint logic conditions and reference top-

level signals or ports. The dependency on top-level signals does not limit the usability of the

framework since internal state is usually validated through simulation prior to implementa-

tion and the actual state of any arbitrary register can be inspected through the PDC’s ICAP

Yousef S. Iskander Chapter 5 Implementation 92

Figure 5.6: LLD breakpoint region detail.

interface once the design has been halted. An overview of the ICAP interface was given in

Section 5.2.1.

Breakpoints are implemented as asynchronous logic to allow fast, single-clock cycle response

times that suspend execution at the next rising clock edge. Breakpoint conditions are en-

tered from the workstation application console as valid Verilog and can be a combination

of any top-level signals or ports previously defined as the interface to the breakpoint re-

gion. If signals other than those previously selected are needed, a full re-implementation

of the design is necessary as discussed in Chapter 1 to reroute signals and re-establish the

Yousef S. Iskander Chapter 5 Implementation 93

breakpoint module interface. Breakpoints unconditionally suspend execution of the design

and must either be disabled through the breakpoint mask or have the activating condition

changed in order for execution to resume. Software-based breakpoints were considered and

would have eliminated the dedicated routing as required for this implementation. While

software-based breakpoints would have created a far more agile and sophisticated break-

point strategy, execution time would have suffered as the entire array of monitored signals

and their associated conditions would need to be repolled at each clock cycle, eliminating

the possibility of running the design at its target frequency.

The workstation application manages the breakpoint table that is later synthesized into the

breakpoint logic module. An array of breakpoint structures, given in the Listing 5.2, is held in

memory and regenerated as a Verilog module after every modification. The breakpointText

field contains the original breakpoint statement and must have signals which correspond with

the previously declared port names of the breakpoint logic module. Once entered, breakpoint

conditions are written out to a Verilog module and processed with the partial bitstream tool

flow.

The generated source of a sample breakpoint module is given in Listing 5.3. Empty break-

point table entries are assigned a constant logic 0 to prevent them from interfering with the

breakpoint logic even if the corresponding breakpoint mask is accidentally enabled. There

are no control signals into the breakpoint module, only design signal inputs. Likewise, there

are only two control outputs from the breakpoint region: an aggregate line to indicate an

active breakpoint, and a mask showing the index of active breakpoints. The aggregate line is

intended to signal an interrupt to the MicroBlaze when the status of any breakpoint changes

to cause an interrupt routine to automatically print information about the active breakpoint.

Given the small size of the breakpoint region, the resulting module is fast to implement into

hardware and requires a nearly insignificant number of resources.

Yousef S. Iskander Chapter 5 Implementation 94

enum breakpoint_t { BREAKPOINT , ASSERTION };

class Breakpoint {

public:

uint16_t idx; // Breakpoint index

std:: string breakpointText ; // Original breakpoint statement

bool isValid; // Enable the deletion of breakpoints

breakpoint_t breakpointType ; // Breakpoint type

// Convenience function to return text of the breakpoint type

std:: string getBreakpointType () const {

switch (breakpointType) {

case BREAKPOINT:

return "breakpoint";

case ASSERTION:

return "assertion";

}

}

};

Listing 5.2: Breakpoint data structure.

“Inverted” Bitstream

The increasing size and complexity of FPGAs warrants that extra precautions are taken with

the implementation flows. Design rule checks (DRC) are repeatedly enforced throughout the

implementation cycle ensuring that the device is not configured in a manner that would

somehow physically damage the device, for instance a logic high line tied directly to ground

or two different drivers on the same line. DRC is performed on the entire design, regardless

of how small the change is or if even just a partial region is re-implemented. The entire

design is processed for checks such as DRC, and the time required increases proportionally

with the design size. For large designs on large devices, the overhead of this DRC can be

significant.

To counter the lengthy runtimes that would result in regenerating a debug module, an

“inverted” bitstream was devised. Inverted bitstreams refer to the replacing the logic outside

the reconfigurable debug region with an empty design, while still preserving the boundaries

Yousef S. Iskander Chapter 5 Implementation 95

module dmd_debug_logic

(

// design input ports

cmd_i ,

cmd_o ,

cmd_w_i ,

text_i ,

text_o ,

// control lines

breakpoint_active ,

breakpoint_reg

);

input [0 : 2] cmd_i;

input [0 : 3] cmd_o;

input cmd_w_i;

input [0 : 31] text_i;

input [0 : 31] text_o;

output breakpoint_active;

output [0 : 31] breakpoint_reg;

wire [0 : 31] breakpoints;

// assign the internal breakpoint register array to the output

assign breakpoint_reg = breakpoints;

assign breakpoint_active = |breakpoints;

// generated breakpoints/ assertions below this line

assign breakpoints [0] = (text_i == 32’h62636465); // breakpoint

assign breakpoints [1] = (text_o == 32’h84983E44); // breakpoint

assign breakpoints [2] = (cmd_i == 3’b010); // breakpoint

assign breakpoints [3] = (cmd_o == 4’h4); // breakpoint

assign breakpoints [4] = 1’b0; // empty breakpoint

// additional breakpoints ...

assign breakpoints [31] = 1’b0; // empty breakpoint

endmodule

Listing 5.3: Generated Verilog breakpoint module for reconfigurable breakpoint region.

of the debug region. When implementing the debug region, overhead such as that with DRC

is almost entirely eliminated.

Stepping Logic

Clock stepping is an another function of the PDC and utilizes a dedicated step counter and

breakpoint logic as a separate control to the clock buffer. The PDC can be programmed

through the API to step the design an arbitrary number of clock cycles with an accuracy

of one to two clock cycles. This uncertainty is based on the operation of the clock buffer

which transitions the clock on the following rising clock edge after the select line has been

asserted [3]. Based on the timing of the triggering event, the actual transition may not

occur until the following rising edge, resulting in a two cycle latency. The stepping function

Yousef S. Iskander Chapter 5 Implementation 96

presented here is unique in that the design’s actual clock is used rather than an artificial

or synthesized clock, enabling stepping to be performed at the correct frequency and duty

cycle. To the best of our knowledge, this is the only debug implementation that enables

debug stepping at the design’s target frequency using the system clock.

A memory-mapped register in the PDC maintains the target number of clock cycles to be

stepped and is set through the API. The design is then set to execute by switching the PDC’s

clock buffer to the system clock. Once the counter expires, a suspend signal causes the clock

buffer to disconnect the clock once more and hold the clock line high, allowing inspection of

the design.

While a software-controlled clock would be easier to implement and enable a variety of

additional functionality, it would not guarantee glitch-free operation. Treating a clock line

as ordinary logic assumes the risk that the implementation tools would route clock signals

through ordinary logic lines, a condition known as gated logic. The logic fabric and its routing

are not designed to maintain clock signal integrity. Designs which utilize ordinary logic for

clocking signals do so at their own risk since the tools will no longer be able to properly

assess timing information.

ICAP Interface for State Readback

The ICAP is a user-accessible configuration port, allowing similar access as with JTAG to

register state. However unlike JTAG, the ICAP allows random access to arbitrary locations of

the device without the need to shift out the entire device state, enables internal access directly

from design logic rather than an external development tool, and allows access to configuration

data as well as design register state. The ICAP is most frequently used by designs that

employ partial reconfiguration, whereby a reserved region is reconfigured directly from the

design as the rest of the design continues normal, uninterrupted operation. Through the

Yousef S. Iskander Chapter 5 Implementation 97

ICAP, a design can reconfigure itself as part of its operation, reconfiguring a region to perform

different tasks, similar to memory overlays in software and thereby raising overall utilization

of a smaller, less expensive device. Otherwise, larger devices are required to accommodate all

possible logic configurations which might otherwise be left unused a majority of the time [36].

The ICAP is used to increase the visibility into a design since it has a full, unobstructed

view of the entire device as a random memory.

The smallest granularity of an ICAP access is the configuration logic frame, a vertical stack

of 1312 bits (or 41 32-bit words) that configure a column, while a horizontal series of columns

form a row. Each column is a collection of various FPGA resources with a HCLK clock tile at

the center, occupying the center 32-bit word of a configuration frame. The remaining 640 bits

above and below the center word configure the resources of those regions respectively [42]. A

diagram of a configuration frame is given in Figure 5.7. On generations through the Virtex-II,

the configuration architecture varied within the family and different devices each had different

configuration frame sizes making development and characterization difficult. Beginning with

the Virtex-4 family, the configuration architecture became standardized across devices and

continues to be consistent across families as described [40]. While the actual purpose of each

bit within the configuration frame is proprietary, Xilinx tools have the option to produce

a file that maps individual design bits to bitstream locations and configuration frame bit

addresses. Such a mapping would enable the construction of a symbol table for FPGAs. The

generation and parsing of such a file to produce this mapping is discussed in Section 5.2.3.

While both reading and writing to the ICAP are supported, it is not possible to directly

modify a design’s internal state through the ICAP. While both configuration and design

state can be read through the ICAP, it is only possible to write configuration data (such as

bitstreams when performing partial reconfiguration) that directly affect an entire configu-

ration frame. Initial values for registers and memories are found in the configuration data,

Yousef S. Iskander Chapter 5 Implementation 98

however these are transferred to the state bits during device initialization when the device’s

Global Set/Reset (GSR) signal is asserted. As the name implies, GSR is a device-global sig-

nal which causes all the bits in the configuration data frames to be shifted into the device’s

logic bits which function as bits of registers. While moving state in the opposite direction is

a non-destructive (read-only) operation that occurs when the ICAP’s CAPTURE command

is asserted, a GSR operation destructively writes all state bits of the entire device, causing

the device to lose its state. The MetaWire [71] project successfully reverse-engineered the

process of selectively writing configuration bits to reprogram BRAMs. This allowed a Net-

work on Chip (NoC) to be implemented using the preexisting configuration channels and

did not require the significant resources needed for an actual NoC on an FPGA. However

the method was highly device- and architecture-dependent and did not lend itself well to

integration within a design. An illustration of the relation of configuration frame bits to

device resources and the movement of data between the two is shown in Figure 5.7 [42].

5.2.2 Unified Software Interface

The debug component of DMD utilizes two tightly-coupled software platforms to provide

the access and visibility of a software debugging environment to FPGAs. One is a high-

level user interface on a conventional workstation that runs both the vendor and the DMD

tools allowing them to easily exchange data. The workstation application raises the abstrac-

tion of common low-level debugging tasks from an architectural-specific level to a symbolic

level consistent with the original design. Additionally, traditional workstations can handle

resource-intensive tasks such as building a model of the FPGA, physically mapping the de-

sign to this model, and providing an intuitive user interface similar to those found in software

environments. The other software platform executes on a MicroBlaze processor on the FPGA

alongside the design and provides a point-of-presence to control execution and perform state

Yousef S. Iskander Chapter 5 Implementation 99

Resources
Other

Resources
Other

HCLK

GSR

Capture

Configuration Frame/Bitstream

Word 1

Word 2

Word 20

Word 21

Word 22

Word 41

Figure 5.7: Relationship between device resources and configuration frames.

readback through the ICAP. The combined application’s interface was modeled after the

GNU gdb debugger [72] and provides an interface to FPGA design debugging familiar to

software debuggers. Delegation of commands and processing is used in the combined plat-

form to provide a single, unified interface. Commands are transparently processed either on

the workstation, the FPGA-based processor, or reformatted on one in order to be processed

on the other, and provide full visibility and control of a design from the single interface.

The limited resources of the onboard processor require its software to be primitive and

therefore difficult, if not impossible, to manually manipulate. A compilation directive can

either eliminate or include other interactive elements from the console application such as

Yousef S. Iskander Chapter 5 Implementation 100

Table 5.4: Summary of on-chip debugger commands.

Command Description

help Prints a help message with information on
each available command

clear Clears the console screen
run Run the design directly connected to the sys-

tem clock
step [cycles] Step the design a specified number of clock

cycles, one clock cycle if none are specified
stop Stop the design from executing
print

<frame><offset0>[offset1...]
Retrieve and print the value or values found
at the given frame and one or more offsets.

ping Respond with a message indicating that the
debug software is functional.

status Provide general diagnostic information about
the PDC’s internal registers.

enable <index> Enable the breakpoint identified by the index
number.

disable <index> Disable the breakpoint identified by the in-
dex number.

info mask Print the breakpoint mask indicating which
breakpoints are enabled.

info active Print the active breakpoint mask to show
which breakpoints are currently active.

command-prompts, user-friendly messages and formatting, and other non-essential elements

that improve the usability. These changes turn the FPGA-based processor into a debug server

that the workstation application communicates with using a special protocol. Commands

are encoded, replacing design names with frame and offset locations or translating intuitive

command names to the local processor’s more abbreviated versions. The user workstation

also reformats the FPGA-based processor’s responses to a more more readable format to

improve usability. Table 5.4 gives a summary of the commands available on the embedded

processor.

Yousef S. Iskander Chapter 5 Implementation 101

The two platforms are linked using a serial line. Communication between FPGAs and the

outside world is a challenging tasks. FPGAs are targeted towards low-level, high-speed ap-

plications and can have hundreds of high-speed pins. High-level, interface connectors such

as those for keyboards and monitors are available but are not standard on most development

platforms. To establish a reliable, portable communication medium, a conventional serial-

console was implemented. Serial links have been used reliably in computers for decades and

although they have been eclipsed many times by faster and more sophisticated communi-

cation mediums, they are still universally prevalent because of their simplicity. Although

mostly invisible on modern computers and even microprocessors, serial access is possible on

the smallest of devices, even such commodities such as USB memory drives. At least one

serial interface is found on almost all FPGA development platforms, regardless of cost and

inexpensive USB-to-serial converters are available for modern workstations where the serial

connector has all but vanished.

Despite relatively slow performance (the fastest transfer rates are at 100 kbps), serial links

continue to thrive because of protocol’s simplicity and low-cost of implementation. Serial

links do not require a complex processor, protocol, memory, or software stacks, as does

USB or Ethernet. Synthesizing the required cores in reconfigurable logic for serial interfaces

requires few resources and IP is readily and freely available from multiple sources. And unlike

both Ethernet and USB, serial implementations are easily portable across hardware vendors.

Serial interfaces were implemented and a simple communication protocol was developed

to leverage these benefits so that this work was portable across development boards with

minimum effort.

The workstation user application was written for the Linux platform in C++ as a command-

line application. Once the application is started, a command-prompt is presented. A connec-

tion to the FPGA processor is then established and validated over the serial line. Next, the

Yousef S. Iskander Chapter 5 Implementation 102

device and logic models are built in order to provide a navigable model for the mapping of

design elements to the physical resources of the FPGA. The GNU Readline [73] library was

used to provide the familiar command-prompt found on most Unix/Linux applications and

shells, including command-completion and command history. Table 5.5 gives a summary of

the workstation application commands.

5.2.3 Logic Model and Symbol Table Creation

In order to successfully retrieve and assemble the individual bits from the configuration logic

frames into register values, a symbol table is required. Logic allocation files are an optional

output file produced during bitstream file generation and map individual bits of the named

design registers to both their absolute location in a serial JTAG chain and the configuration

logic frame and an offset within the frame. The logic allocation file also includes additional

information, such as the physical device resource corresponding to each bit. A sample line

of a logic allocation file is shown in Figure 5.8. By parsing the logic allocation file, a map

can be generated defining where in the FPGA fabric each bit of a design register resides.

B i t 8 9 7 4 9 9 0 x 0 0 0 0 0 9 1 e 9 1 B l o c k = S L I C E _ X 3 1 Y 8 1 L a t c h = B Q N e t = m b l z / m b _ p l b _ r d B u s < 6 7 >

R e c o r d
T y p e

J T A G
C h a i n
O f f s e t

F r a m e
A d d r e s s

F r a m e
O f f s e t

R e s o u r c e
N a m e

L a t c h
L o c a t i o n

D e s i g n R e g i s t e r a n d B i t I n d e x

Figure 5.8: Logic allocation record format.

For a modestly-sized design, the logic allocation file can be tens of Megabytes. As there is

no practical way to process such a large file on the FPGA itself, a conventional workstation

is required. A parser (whose source can be found in the Appendix) was developed to read

in the logic allocation file and generate a lookup table whereby hierarchical design names

could be mapped to a list of configuration logic frame addresses and offsets.

Yousef S. Iskander Chapter 5 Implementation 103

Logic allocation files are space-delimited, fixed-width column ASCII text files. Two types of

records are found in logic allocation files: Info and Bit records. Info records define special

meanings for configuration bits while Bit records exist for each design bit and maps it a

physical location in the FPGA. There are very few Info records in a logic allocation file,

and they are unnecessary for this application. In the logic allocation file, the record type

(Bit or Info identifier) is found in the first column.

The second field of a Bit record is the absolute location of the bit in the JTAG chain.

The third and fourth fields are the frame and offset values, respectively. The frame field

identifies the configuration frame in which the bit resides, while the offset defines the offset

beyond the initial NULL frame where the actual bit can be found. Special care is required

when determining the offset once the frame has been retrieved since a NULL frame and

single word are also returned at the beginning of the frame, which must be discarded. It is

assumed that this initial NULL frame represents proprietary configuration data. Therefore,

space sufficient for two frames plus one additional word must be allocated in the application,

and all references must be offset by that amount when accessing data read from the ICAP.

Additionally, bits are inverted from their actual value and must be inverted before being

interpreted as a register value.

Next, the Block field indicates the unique name of the FPGA resource used. Design state

registers are located in Slice or Input/Output Buffer (IOB) resources. However, design

registers are rarely, if ever, allocated to IOBs. The Latch field following the Block identifies

which latch within the block the bit occupies. Finally, the Net field identifies the design’s

hierarchical name, its index if the register is a vector, or both the bit’s index and array

reference in the case of multi-dimensional vectors, such as in memories.

The construction of the symbol table only requires the use of Bit records and Net fields,

easily found using a token-based parser. A Ram record maps out the allocation of general-

purpose logic implemented as a ROM or RAM. The parser begins by discarding all comments,

Yousef S. Iskander Chapter 5 Implementation 104

class BitInfo {

public:

uint32_t bitStreamReadbackLocation ;

uint32_t frameAddress;

uint32_t frameOffset;

int16_t signalVectorIndex ;

std:: string block;

std:: string latch;

std:: string net;

};

Listing 5.4: BitInfo data structure.

delimited by a “%” and Info lines. Bit lines mapping blocks with Slice resources are read,

while RAM and ROM records are discarded.

The BitInfo data structure, shown in Listing 5.4, represents a single bit when mapped from

the logic allocation file to a location in the FPGA. Information contained in this structure

includes the absolute location of the bit if shifted out of the device, the frame and offset

addresses when accessed via the ICAP, as well as the index of the signal if it appears in a

signal vector, such as a bus. Additional information includes the block and latch where the

bit is located. Consecutive bits for vectored signals are stored sequentially in a list array in

a BitInfo data structure; the array is then mapped to the design register name in a lookup

table.

The lookup table is implemented as a map, keyed by the signal name since the full hierarchical

name is globally unique in the design. This means that there is no risk of collisions, which

occur when duplicate keys are generated. Collisions can be managed either by detecting them

programmatically before inserting a new value and implementing the map’s value storage

container as a list or through the use of a multimap which allow duplicate key values by

Yousef S. Iskander Chapter 5 Implementation 105

design. Map complexity is logarithmic with the size of the map, denoted by O(log n). The

search for keys is logarithmic as the keys are stored in a binary tree.

Once the entire logic allocation file is processed, the information is available to the console

workstation application. The ample memory and disk resources of a conventional worksta-

tion make user interaction easier to enhance. The GNU Readline library is a standardized

tool for creating user-friendly command-line prompts and is found in many open-source

projects, including Linux shells such as bash and csh. Readline provides command-line

editing capabilities, such as history and tab-completion to applications, making command-

line applications more intuitive and easier to use. Using the tab-complete capabilities of

Readline, the design can be explored from a command-line using the names extracted from

the logic allocation file. Users can press the TAB key to list all available design names, or

enter a few characters of a name and view those that match without knowing or having

to memorize the design’s hierarchy. The design’s hierarchy can be navigated and its state

inspected.

The print function of the user console application uses the logic model built from the

logic allocation file to assemble a series of print commands targeted towards the embedded

processor. Where possible, consecutive bits found in the same frame are combined into a

single print command to accelerate processing. When entered, the register name is searched

for in the register name table of the logic model, and the corresponding list of BitInfo

structures is retrieved. The configuration frame of the first bit is read and stored, and

consecutive bits are checked for the same configuration frame. Reducing the number of

round-trips to the FPGA is key to reducing processing overhead, and consecutive bits in a

register have a high likelihood of existing in the same or neighboring frames. As the bits are

processed, the offsets are stored in a list until a non-matching frame is encountered. The set

of bits existing in the same frame are sent to the embedded processor, which then retrieves

Yousef S. Iskander Chapter 5 Implementation 106

the bit values, inverting them before serially shifting them into a register and returning the

result. The retrieved values are shifted into a register and then displayed once all the bits

have been collected. The algorithm for retrieving register values is given in Figure 5.9.

The list of BitInfo structures is sorted on its first access which prevents lists that are never

accessed from being unnecessarily sorted. The sort algorithm is implemented as a bubble

sort with complexity O(n log n). Bubble sorts are the simplest to implement, but are not the

most efficient. In a bubble sort, two adjacent elements are compared and swapped if they

are out of order before advancing to the next pair of elements. The list must be iteratively

traversed until all the elements are in order which is when the list can be traversed without

performing any swaps. Bubble sorts are not as time efficient as other sort algorithms, but

are the most space efficient. Bubble sort requires only n + 1 memory locations for sorting

a list of length n since only one additional location is needed for temporary storage during

the swap. Bubble sort is sufficient for this application since the longest list to be sorted will

be of length 32.

The calling program passes the name of the target register to the procedure which first

initializes variables for the resultant register value and intermediate fragments, variables

for determining when the configuration frame changes, and lists for the locations of bits

and offsets (lines 2–7). A list of bit locations is returned from the table which maps signal

names to physical locations as seen on line 8. To prime the first round of processing, the

first location in the returned list of bit locations is decomposed to a physical frame address

and offset. This frame offset is the first offset to be appended to a list of frame offsets

(lines 9–11). Consecutive bits have a high likelihood of being physically located close to one

another, therefore a simple optimization is to group all the bits located in the same frame

into a single frame access. A variable storing the previous frame is written with the current

frame’s address enabling the loop to distinguish when the frame address changes (line 12).

Yousef S. Iskander Chapter 5 Implementation 107

input : A text string identifying a SignalName1:

output: The value of the register denoted by SignalName2:

registerValue = 0;3:

previousFrame = 0;4:

currentFrame = 0;5:

frameOffsetList = [];6:

bitLocations = [];7:

registerFragment = 0;8:

/* Retrieve the mapping structures for the given signal */

bitLocations = lookupMappingInfo(SignalName);9:

/* The first bit must be handled outside the loop since successive frames will be

compared */

bit = pop(bitLocations);10:

{frameAddress, frameOffset} = getFrameInfo(bit);11:

append (frameOffsetList, frameOffset);12:

previousFrame = currentFrame;13:

/* Handle the remaining bits in order */

for bit ∈ bitLocations do14:

{frameAddress, frameOffset} = getFrameInfo(bit);15:

/* if the frame changes, send the command to FPGA software */

if currentFrame 6= previousFrame then16:

registerFragment = getFrame(previousFrame, frameOffsetList);17:

registerValue = (registerValue ≪ size(frameList)) ∨ registerFragment;18:

clear (frameList);19:

append (frameList, frameOffset);20:

previousFrame = currentFrame;21:

registerFragment = getFrame (previousFrame, frameOffsetList);22:

registerValue = (registerValue ≪ size(frameList)) ∨ registerFragment;23:

return registerValue;24:

Figure 5.9: Algorithm to retrieve register values.

The remaining bits are processed in a loop which first checks if the current frame is different

from the previous (line 15). If this is the case, the frame address and the list of the frame

offsets is sent to the processor on the FPGA which replies with a fragment of the requested

values (line 16). The returned fragment is OR’ed with the running result which must first

be shifted left the width of the fragment size (line 17). If the current frame is the same

as the previous frame, the offset is appended to the list of offsets and the loop is repeated

(lines 19–20). Once all the bit locations have been processed, one final iteration is required to

Yousef S. Iskander Chapter 5 Implementation 108

process the remaining bits into the result register which is returned to the calling application

(lines 21–23).

When printing values, the FPGA-resident processor first checks that the design is not run-

ning. A running design will cause inaccurate values to be printed. Then, a capture command

is issued to the ICAP to transfer register values to the configuration frame bit locations. The

selected configuration frame is read from the ICAP, first discarding the NULL frame and

NULL word which precede the requested frame. The integral part of the offset divided by

32 gives the index of the target word, while the offset modulo 32 gives the correct bit of the

target word. These equations are presented in Equations 5.1 and 5.2.

WordIndex = int(
offset

32
) + NullFrameOffset (5.1)

BitIndex = offset mod 32 (5.2)

5.3 Summary

This chapter presented the implementation of two development and debug methodologies.

Both employed an embedded processor and a custom peripheral to provide a general-purpose

interface to the module or design to be tested. HLV’s implementation requires considerable

memory resources as it is a capture methodology, first executing the original high-level

reference model, storing the results, then staging the same input data for the hardware

execution. HLV’s peripheral contains FIFOs for both input and output. The input data is

first stored in the input peripherals, then released to the inputs of the hardware device which

is continuously connected to the system clock. This implementation is unique in that the

hardware implementation is compared to a high-level reference model without significantly

Yousef S. Iskander Chapter 5 Implementation 109

altering either, and the comparison is done at the target frequency. The processor serves as

a platform for software-based hardware testbenches.

LLD likewise uses a microprocessor and the PDC as its custom peripheral, but for different

purposes. In this case, the processor is used as a debug server on the FPGA and as a point-

of-presence in what would ordinarily be an inaccessible location. A workstation application

is then the client, constructing series of commands that are sent to the FPGA processor

and reformatting the results. The workstation application is needed for hosting the large

models of the FPGA and the design which cannot be processed on the FPGA-side processor.

The two applications present a unified interface, delegating commands to the appropriate

platform as needed. The PDC hosts clock control logic for error-free transitions to stop the

design, controlled by a rapidly reconfigurable breakpoint module, a user-programmable step

counter, or the command console. Additionally, the PDC also hosts the logic required for

reading all the design’s registers, although this functionality is largely controlled from both

the software interfaces.

Yousef S. Iskander Chapter 5 Implementation 110

Table 5.5: Summary of workstation commands.

Command Description

run Begin execution of the design when stopped
stop Halt execution of the design when running
step [steps=1] Step the design steps clock cycles (default one)
source <filename> Read the commands listed in the file filename and

execute them as if they were entered at the com-
mand prompt

connect <port> Connect to the serial device given in port
disconnect Disconnect from the serial device
continue Continue execution
constrain <condition> Add the constraint/assertion given by condition
break <condition> Add the breakpoint given in condition
delete <index> Delete the breakpoint given by index from the

breakpoint table
info breakpoints Print the active breakpoint table, the status of the

breakpoint masks and enables
disable <index> Disable the breakpoint given by index by disabling

its corresponding bit in the breakpoint mask
enable <index> Enable the breakpoint given by index by disabling

its corresponding bit in the breakpoint mask
print <index> Print the value of the given register
loadlogic <file> Load the logic-allocation file and use its contents

as the logic model for the current design
addport <name><size> Add a port with the given name and size to the

breakpoint region for use as an input
delport <name> Delete the port as a an interface port for the break-

point region
clear Clear the console screen
ping Ping the remote device
help Print a help message with information about all

the commands
quit Disconnect the remote device and exit the appli-

cation

Chapter 6

Evaluation

Chapter 5 presented the implementation of both the HLV and LLD solutions that bridge the

model verification gap and increase the visibility, agility, and controllability of implemented

FPGA designs. In Chapter 6, both approaches are evaluated and the results compared

against similar products.

To evaluate these approaches, benchmark designs were developed and validated using the

HLV and LLD tools. All designs targeted a Xilinx XC5VLX110T-1 F1136 FPGA using the

Linux Xilinx ISE 12.4 design suite with the PR patch running on a 2.80 GHz Intel Core i7-930

processor with 24 GB of RAM. Both HLV and LLD employ a Xilinx MicroBlaze processor

with 64 kB of on-chip BRAM and built with a 115,200 Baud serial console interface for

communication.

6.1 High-Level Validation

HLV links the high-level reference model to an implemented design on an FPGA. The design

is tied to the processor hosting the testbench software through a custom peripheral that links

it to the DUT. The benchmark design was a SHA-1 message digest, a common cryptography

core in widespread use.

111

Yousef S. Iskander Chapter 6 Evaluation 112

6.1.1 Secure Hash Algorithm

The Secure Hash Algorithm (SHA-1) is a widely used iterated cryptographic hash algorithm

used to produce a 160-bit message digest from a input message block. The input message

must be padded to produce a 512-bit message block. Hashes are used to uniquely fingerprint

a block of data, such as a message or application, to detect if the data has been altered or

corrupted and are commonly known as checksums. SHA-1 operates by rotating five 32-bit

word segments of the data while applying bit shifts and predefined constants to the original

message. Eighty rounds of these rotations or compressions are repetitively applied. A hash

is considered unique for each message, with the probability of finding a message to produce

an identical hash computationally infeasible. While vulnerabilities have been found, SHA-1

continues to be widely implemented [74]. As a useful function in both hardware and software

applications, SHA-1 cores and software libraries are widely available. Many of the operations

can be performed in parallel, lending itself well to a hardware-based implementation. A block

diagram of the SHA-1 algorithm is shown in Figure 6.1 [75]. Each of the five input blocks

is a 32-bit word which is shifted right, with the fifth word being shifted around to the first

position. While some of the inputs are not modified at all, others such as the second and

fifth inputs (B and E) are shifted or transformed. The function f and constants Kn and Wn

are determined by the round number. An excellent discussion of the SHA-1 algorithm can

be found in [74].

6.1.2 Results

Evaluation for HLV was performed on a SHA-1 core obtained from the OpenCores archives

[76], a repository of open-source hardware IP. A high-level reference model of the SHA-1 al-

gorithm was obtained from a different source. After extracting the control signal interaction

Yousef S. Iskander Chapter 6 Evaluation 113

> > 2

< < 5 +

+

+

+

A B C D E

A B C D E

f K n

W n

Figure 6.1: SHA-1 block diagram.

from a simulation of the hardware core, the software testbench was programmed. Program-

ming of the testbench took approximately 20 minutes, including developing an appropriate

hardware reset routine and entering the correct sequence for data and control. The simu-

lation data provided the basis for correctly programming the framework to reproduce the

correct interaction of control signals and specify the output window for results. However,

once this information is incorporated into the testbench, any changes that affect latencies

or final results will be detected. The captured hardware results were used to validate the

hardware implementation against the simulation. It is possible to programatically expand

and move the capture window’s limits, enabling scanning of control or data output to detect

other expected results.

The MicroBlaze processor was configured for 125 MHz operation with 64 kB of RAM for data

and instruction memories, and a 115,200 Baud serial interface. The FSL input queues were

configured with 256-input words while the capture queues had 32 words. The FSL queues

were implemented using distributed logic to save BRAM resources for the processor or the

Yousef S. Iskander Chapter 6 Evaluation 114

Executing software model ... done.

Queuing input data for hardware model ... done.

Capture window set to 175:180.

Executing hardware model ... done.

Cycle Output Expected

175 84983 E44 [84983 E44] [OK]

176 1C3BD26E [1 C3BD26E] [OK]

177 BAAE4AA1 [BAAE4AA1] [OK]

178 F95129E5 [F95129E5] [OK]

179 E54670F1 [E54670F1] [OK]

Listing 6.1: Transcript of an HLV test session.

design itself. The HLV testbench occupied only 14% of the Slice resources and 20% of the

BRAMs. The entire application required only 13.6 kB of the total 64 kB BRAM available,

allowing for larger applications. The time required to rebuild the software testbench and

reintegrate with the bitstream is under 30 seconds, with compilation taking 13 seconds, and

the memory integration into the bitstream taking 14 seconds.

A transcript of an HLV test session is shown in Listing 6.1 demonstrating the execution of

the software reference model, the configuration of the hardware, and finally the comparison

confirming the match.

First, the software model of the SHA-1 is executed on the embedded processor, and the

results stored. HLV does not include any standard means of collecting the reference model

results as this is left to the testbench developer depending on the requirements. Then, the

data are loaded into the input queues of the DUT exactly as during simulation. Once the

input data is queued, the capture window is set as a function of the number of clock cycles

from the beginning of execution. The input queues are then released and a counter triggers

the capture of the output once it is in the range of the capture window. The data is then

compared to output of the reference model. Figure 5.1 outlines HLV’s data flow and results

comparison, while Figure 5.3 illustrates the capture window mechanism.

Yousef S. Iskander Chapter 6 Evaluation 115

Research at the University of Florida (UF) [66, 77] investigated an approach to validating

designs implemented with high-level synthesis and appears to be the only work devoted to

in-circuit validation against a high-level language specification. We were unable to iden-

tify any other product—research or commercial—that compared a high-level specification

directly with implemented hardware. While the UF approach relied entirely on HLS, as-

sertions written in the native design entry language were incorporated into the application.

HLS was discussed in Section 2.4. Designs implemented with HLS are typically validated

in simulation and prove difficult to validate or debug once committed to hardware. This

research implemented the ANSI-C assertions as asynchronous hardware logic in the design

and requires a communication medium between the design and the developer platform. As-

sertions written into the source code are synthesized into the design as asynchronous logic

that activates once the assertion becomes true.

The UF research’s target objectives are much different than that of HLV. The UF project

is not intended to address quick turnaround or even bridge the model verification gap as

the design entry medium is already a high-level language. Rather, the UF project aims to

boost developer confidence in the machine-generated RTL to catch translation errors and

transparently integrate with complex designs without affecting timing closure. For instance,

one concern is the overhead required to implement assertions in for loops. Unrolling the for

loops would create multiple instantiations of the same assertion logic which in turn might

affect timing.

6.1.3 Summary and Future Work

HLV is a unique approach to implementing software-based hardware validation. Designs were

validated at target frequencies of 125 MHz without the need to control the system clock or

halt the design. No other projects have been identified that bridge the model verification

gap in this manner.

Yousef S. Iskander Chapter 6 Evaluation 116

While not necessary for its operation, improvements could be made to HLV’s software.

Manually programing testbenches is laborious, requiring effort in transliterating simulation

results into the HLV testbench API. Most simulators either produce an open format such as

Value Change Dump (VCD) file format or have API access to the simulation engine. Au-

tomated testbench generation would greatly improve the experience and usability of HLV.

Additionally, HLV lacks hardware support for reacting to design signal interactions. Instead,

validation currently depends on all interactions occurring after fixed latencies. Software in-

teraction would require additional logic to halt the application while the queues are reloaded.

A more robust approach would be to enable software programmable data generators that

reacted to control signals, further reducing the required capacity for the input queues, and

thereby enabling more elaborate and less-scripted testbenches.

6.2 Low-Level Debug

LLD aims to raise the visibility, controllability, and agility of low-level FPGA debugging. The

effectiveness of these objectives are measured through the time required to accomplish routine

tasks that are normally cost- and time-prohibitive. As previously defined in Section 4.2,

visibility is the ability to view arbitrary state of the design, controllability is the ability to

define parameters to halt and control the design with fine-level granularity, and agility is the

ease at which these changes can be made to the debugging profile. The effectiveness of LLD

is evident in large or high-utilization designs where implementation times can be long, which

in turn limits the number of turns-per-day. Three large benchmark designs were created to

evaluate LLD’s effectiveness in improving visibility, controllability, and agility.

6.2.1 Benchmark Designs

To evaluate LLD, three designs with device utilizations of more 90% of the FPGA’s con-

figurable logic resources were created. The designs were implemented to fully meet timing

Yousef S. Iskander Chapter 6 Evaluation 117

(which is not the default objective of the tools), which extends the implementation times.

To meet timing, PAR must iteratively place a component, attempt to route nets connected

to that component, and evaluate the path based on the timing model for the device and

the design’s constraints. Timing analysis is complicated by the complex routing architec-

tures and various iterative strategies such as logic duplication that consume more resources,

further congest routing, but may make timing easier to achieve. The benchmark designs in-

clude the high-performance, server-class OpenSPARC, a mesh of Xilinx MicroBlaze soft-core

processors interconnected by FSL links, and a network of floating-point operators generated

by the FloPoCo compiler.

OpenSPARC T1 Processor

The OpenSPARC T1 processor [78] is an open-source implementation of Sun Microsystem’s

(now Oracle) high-performance server processor architecture based on the UltraSPARC T1

processor. The OpenSPARC is a 64-bit, 32-thread, fully pipelined processor. Unlike most

soft-processors, the OpenSPARC has a virtual memory management unit capable of running

a full, standard Linux distribution. Most soft-processors lack the complex logic required for

virtual memory and are therefore limited to running real-time OSes which typically target

small, embedded platforms. The OpenSPARC includes an embedded Xilinx MicroBlaze

to handle network and other auxiliary functions. The OpenSPARC utilizes 99% of the

evaluation platform’s Virtex-5 LX110T’s Slice resources, 17% of the DSPs, and 15% of

BRAMs.

FloPoCo Floating-Point Compiler

Floating-point cores are cumbersome to implement in FPGAs due to their complexity and

space requirements. Floating-point operations require multiple pipeline stages for even the

Yousef S. Iskander Chapter 6 Evaluation 118

simplest operations such as addition, which takes approximately six cycles to the most com-

plex, such as a square-root operator which can take more than 20 cycles. No generalized,

standard library exists and no FPGA vendors currently implement physical floating-point

cores on their devices. The FloPoCo [79] project provides a tool that creates custom, pa-

rameterizable floating-point core targeted towards a specific device, leveraging architecture-

specific resources and allowing the width of the mantissa and exponent to be defined as

needed. Custom operators can be tuned for the target application and device and provide

control over the amount of resources consumed, rather than creating operators compliant

to standards such as the IEEE 754 Floating-Point Standard, which has stringent precision

requirements. The benchmark application was generated with FloPoCo 2.1.0 and occupied

98% of the Slice resources with a target frequency of 250 MHz. All operators were generated

with 8-bit wide exponents and 23-bit wide mantissas.

MicroBlaze Mesh

The final benchmark application developed was a cluster of Xilinx MicroBlaze soft-core

processors, such as those used throughout this research. The 10-unit FSL-interconnected

cluster included one master unit with a serial UART console for user I/O and nine co-

processor units. The MicroBlaze cluster consumed 92% of the target device’s Slice resources

and targeted an aggressive 200 MHz clock frequency.

6.2.2 Results

LLD was evaluated on the three benchmark designs by comparing the time required to

implement the base design, embed Xilinx ChipScope cores (the vendor’s ELA solution),

and to implement the same or comparable tasks using the LLD approach. For each of the

designs, real time was recorded for the implementation. Since turns-per-day are a general

Yousef S. Iskander Chapter 6 Evaluation 119

metric used to measure development efficiency, real time is preferred over CPU time. CPU

time is often used in conjunction with real time to determine how much time the processor

was idle, presumably waiting on I/O or memory accesses. Synthesis times for subsequent

builds are typically shorter since this stage is the only one in which each individual module

can be independently built.

Typical debug scenarios include altering the perspective of the debug framework when differ-

ent sets of signals need to be analyzed. With ELA frameworks, altering the monitored signals

occurs after synthesis by inserting ELA cores into the netlist and then re-implementing the

design. In contrast, LLD allows any arbitrary signal to be inspected without the need to

re-implement. Furthermore, ELA frameworks embed the conditions that trigger signal cap-

ture as part of the overall design logic while LLD separates breakpoint logic from the rest

of the design through the use of partial reconfiguration. While LLD does require a full

re-implementation, it is limited to a small fraction of the entire design and the overhead of

DRC, which takes proportionally longer with increasing design size, is eliminated by creating

a separate, smaller design just for breakpoint logic. This results in a debug framework that

requires a constant time to implement regardless of the overall design size or complexity.

Benchmark Designs

Base design implementation times are given in Table 6.1. For each design, timing closure was

required which lengthened place-and-route times. As discussed in Section 2.2.1, PAR is re-

sponsible for routing wires through the FPGA’s complex, programmable routing architecture

while attempting to find routes that meet the timing constraints. All the other implementa-

tion stages were described in detail in Section 2.2.1. For the OpenSPARC, a complete build

took over 3 hours, with initial synthesis accounting for approximately 55 minutes and PAR

requiring nearly two hours of the implementation time. The FloPoCo design required over

Yousef S. Iskander Chapter 6 Evaluation 120

Table 6.1: Benchmark design implementation times (hours:minutes:seconds).

Stage
OpenSPARC FloPoCo 10 MicroBlaze

Base ChipScope Base ChipScope Base ChipScope
Synthesis 0:56:23 - 0:05:56 - 0:02:04 -
Build 0:01:24 0:01:19 0:00:39 0:04:30 0:00:51 0:04:30
Map 0:23:57 0:23:15 1:37:00 3:17:00 0:19:00 0:18:36
PAR 1:48:43 0:30:00 8:45:00 2:56:00 8:19:00 9:36:00
Bitgen 0:05:59 0:05:07 0:02:44 0:02:58 0:03:02 0:03:14

Total 3:15:29 0:59:41 10:31:19 6:20:28 8:43:57 10:02:20

10 hours to implement, with nearly nine hours spent in place-and-route. The MicroBlaze

cluster took over nine hours of runtime, with eight hours devoted to place-and-route.

Table 6.1 also shows the implementation times for inserting the Xilinx ChipScope Pro ELA

tool into the benchmark designs. These times were often unpredictable, sometimes taking

less time to implement than the base design itself, while at other times longer which is to be

expected given the additional overhead of new resources and additional routing. Each case

was run multiple times and consistently gave similar results. ChipScope insertion occurs on

a synthesized netlist, therefore no time is reported for synthesis, while the rest of the flow

remains unchanged. In the OpenSPARC design, the durations of all the stages were con-

sistent with the exception of PAR which showed a significant and unexplainable speed-up.

Some implementation flows incorporate previous builds as a guide for future ones, such as

Xilinx’s SmartGuide. This can significantly improve implementation times for design itera-

tions where very small changes occur. However in this case, SmartGuide was not responsible

for these speedups, nor is guided implementation available for all designs. Similarly, the

FloPoCo design also experienced an overall decrease in implementation time, with the Map

process taking twice as long as the base implementation and the PAR stage taking less. This

is not uncommon with more recent versions of the tools which speculatively perform place-

ment during mapping when the mapping can be iterated to prevent PAR from failing. It was

Yousef S. Iskander Chapter 6 Evaluation 121

noted that for this design, the placement was indeed performed during the mapping, however

the overall decrease in execution time remains unaccounted for as no guided implementation

was used. In the MicroBlaze benchmark, the overall execution time increased. In all cases,

a complex design that takes hours to implement will also take hours to insert ChipScope.

The observed decrease in execution time is not guaranteed to occur in all situations and

as noted earlier, the presence or removal of ChipScope can unexpectedly alter the design

introducing new timing challenges. Even with the reduction of implementation times for

modifications to the ChipScope-enabled design, the overall time still presents a significant

obstacle to increasing the number of turns-per-day. The benchmark design results are shown

in Figure 6.2.

 0

 100

 200

 300

 400

 500

 600

OpenSPARC

OpenSPARC ChipScope

FloPoCo

FloPoCo ChipScope

M
icroBlaze M

esh

M
icroBlaze M

esh ChipScope

T
im

e
(m

in
ut

es
)

Synthesis
Build
Map
PAR
Bitgen

Figure 6.2: Benchmark design implementation times.

Yousef S. Iskander Chapter 6 Evaluation 122

Table 6.2: LLD implementation times (minutes:seconds).

Stage Real time
Synthesis 0:08
Build 0:04
Map 0:39
PAR 0:45
Bit 1:35

Total 3:11

LLD

The LLD framework is isolated from the actual design by a partially reconfigurable region

that partitions the debug logic into a region that can be implemented quickly. In comparison

to ChipScope, similar tasks take anywhere from a few seconds to a few minutes as opposed to

several hours. This speed-up is achieved through the “inverted bitstream” scenario outlined

in Section 5.2.1. This technique eliminates the processing overhead of partially reconfigurable

designs in which the entire design and not just the reconfigurable region are processed. As a

result, LLD implementation time is constant regardless of the number changes or the overall

design size. For the benchmark designs, the total implementation time of the debugging

region took slightly over three minutes until the changes were ready to be used.

Table 6.2 gives LLD implementation times for a breakpoint region comprised of 204 Slices.

The time required for synthesis and build were both under 10 seconds and consist of asyn-

chronous logic that makes up the conditional breakpoints and assertions. Map and PAR each

both take around 40 seconds each, considerably less time than the corresponding phases re-

quired for re-implementation when inserting or altering a ChipScope core. The minute and

a half time required for bitstream generation is mostly due to DRC. While DRC can be elim-

inated which will noticeably reduce implementation time, its primary purpose is to detect

configurations that might damage the device, making it a worthwhile investment. Figure 6.3

Yousef S. Iskander Chapter 6 Evaluation 123

shows a pie chart of data given in Table 6.2 showing the percentage of time spent at each

phase of the implementation process. Unlike large designs, PAR now consumes approxi-

mately one-quarter of the execution time.

Build
Synthesis

Map

PAR

Bit

Figure 6.3: Percentage of time required for LLD implementation.

The number of resources required for a breakpoint region varies depending on the number

of inputs, breakpoints, and the complexity of the logic implemented. However, this region

requires only Slices which does not noticeably compete with the target design as would other

resources. Even with high-utilization designs such as those implemented as benchmarks,

both Map and PAR can be configured to expend extra effort and attempt to more tightly

pack logic. In contrast, ELAs require a significant number of BRAM resources to record

signal activity. This requirement increases proportionally with the number of signals to

be monitored or the number of samples to be recorded. In one experiment, a simple set

of breakpoints occupied as few as 10 Slices. Oversizing the breakpoint region can avert

contention should the number or complexity of the breakpoints outsize the current region.

However should this happen, the PATIS framework is capable of resizing and adjusting the

floorplan as needed, likely with no additional time.

Yousef S. Iskander Chapter 6 Evaluation 124

$ connect /dev/ttyS1

$ load -logic top.ll

$ break (text_i == 32’ h62636465)

$ info breakpoints

Breakpoint mask: 0x00000001

Active breakpoints: 0x00000000

Num Type Enb Act What

0 break y n text_i ==32’ h62636465

$ run

$ info breakpoints

Breakpoint mask: 0x00000001

Active breakpoints: 0x00000001

Num Type Enb Act What

0 break y y text_i ==32’ h62636465

$ disable 0

$ info breakpoints

Breakpoint mask: 0x00000000

Active breakpoints: 0x00000001

Num Type Enb Act What

0 break n y text_i ==32’ h62636465

$ print cmd_i

cmd_i = 0x1

Listing 6.2: LLD debug transcript for a SHA-1 core.

Software

A transcript of a debug session is shown in Listing 6.2. The syntax and commands are similar

to those found in the GNU gdb debugger. A debugging session is initiated by connecting to

the on-chip processor through the serial line and then building the design and device model

from the logic-allocation file. Reading the logic-allocation file is the single most time- and

resource-intensive task and the primary reason for locating this operation to a conventional

workstation. Even for small designs, logic-allocation files can be around 25 MB and for a

large design such as the OpenSPARC, can exceed 255 MB.

Yousef S. Iskander Chapter 6 Evaluation 125

Listing 6.2 shows how conditional breakpoints are first defined using top-level ports and

signals defined in the breakpoint module. An information command is used to display

breakpoint status. The information output begins with two status masks: the breakpoint

mask shows which breakpoints are enabled, while the active breakpoint mask indicates which

of the 32 breakpoints are currently active. This is followed by a detailed listing, shortened

here for readability, which defines the index of the breakpoint, whether the breakpoint is a

conditional breakpoint or an assertion, whether or not the breakpoint is active or enabled,

and the original text of the breakpoint. As with conventional command-line debuggers,

breakpoints can be individually enabled or disabled through a software-controlled mask

without the need to rebuild or restart the design. The final print command in the listing

demonstrates the ability to print the value of an arbitrary design register from the command-

line.

Connections to the breakpoint logic region use FPGA routing resources out of necessity.

Although this approach would be considered a shortcoming, DMD’s restriction to top-level

signals and the ability to arbitrarily read any design register through the processor did not

present any of the expected problems such as routing issues. DMD is intended to be used

as a low-level analysis tool, focusing on the signal interactions between design modules and

the internal state that drives those signals. DMD’s core is instantiated as part of the static

region, meaning subsequent modifications of partitioned modules do not require lengthy re-

routing. While a connectionless approach would have allowed any arbitrary register of the

design to appear in a breakpoint condition and eliminated the need for an additional PR

region, this would require a costly polling scheme of the targeted signals, reducing execution

performance. LLD’s ability to execute at the target design speed is unique among approaches

that have full visibility of the design.

LLD breakpoints are implemented as asynchronous logic, signaling to the PDC to interrupt

execution and allow software identification of active breakpoints. Each statement represents

Yousef S. Iskander Chapter 6 Evaluation 126

a breakpoint as entered at the command-line. Activated rules signal to the PDC which

of the 32 breakpoints triggered and suspended execution. Clock buffers respond to control

signals at the next rising edge, provided that setup and hold time requirements are met.

If not, transition is deferred until the following rising edge, providing at most a two-cycle

latency. Consistent one-cycle response times were observed when the design was halted

by breakpoints which was validated by checking register values against the programmed

breakpoint. A diagnostic clock cycle counter was also implemented to determine reaction

time latencies.

Often, synthesis can optimize away logic, even when instructed not to using synthesis prag-

mas. This can be problematic if specifically trying to observe one of these signals. These

optimizations are noted in the synthesis log files. However, it is still possible to use these

signals as breakpoint conditions since these are top-level ports to the debug module and this

prevents them from disappearing entirely.

Tool run times, particularly Map and PAR, were highly variable. The insertion of additional

complex logic is expected to extend implementation times, but was sometimes observed to

reduce it in unpredictable ways. For example, in large designs the addition of a ChipScope

core is expected to lengthen the implementation time. However, as shown in Table 6.1, some

implementation times were reduced, but still were several hours long. Even for a design

partitioned through partial reconfiguration, the tools process (but do not implement) the

entire design. While only the reconfigurable region is actually re-implemented in subsequent

runs, the tools perform DRC on the entire design, lengthening run times particularly on

large or complex designs. For instance, this proportionally lengthens bitfile generation time

even though a smaller, partial bitstream is the only portion being generated anew.

To evaluate the efficiency of this approach, several common debugging tasks were performed.

In many cases ChipScope may require a post-synthesis re-implementation of the design to

Yousef S. Iskander Chapter 6 Evaluation 127

accommodate a new task, dominated largely by Map and PAR runtime. However, once

implemented with the LLD flow, different breakpoint scenarios were possible by only re-

implementing the altered breakpoint region. With ChipScope it is not possible to arbitrarily

halt the design and read a randomly selected register. The embedded logic analyzer and

control cores must be reconfigured and re-implemented for a specific event. Using LLD,

breakpoints were set to suspend execution so that registers could be inspected and then

later the design was stepped by a small number of clock cycles to advance execution and

continue inspection. LLD allows register values to be randomly read from the command-line

using their full hierarchical design name in two to eight seconds depending on the width of the

signal and distribution of the bits across the FPGA’s configuration frames. While individual

bits of a register are frequently placed as close as possible, it is usually not possible to find an

entire register placed in a single configuration frame, thus resulting in fragmentation across

several frames. One improvement was to group reads from the same frame into a single

transaction by batching offsets from the same frame. This reduced read times by an average

of 50%. While additional improvements are possible, the two to eight seconds required for

an arbitrary register represent a significant improvement over having to re-implement and

reroute a design to change which registers should be targeted.

The console application was similarly evaluated for its performance. The most time-consuming

recurring process was the on-chip portion of reading an FPGA register. Individually, each bit

requires 0.5 seconds to process a read operation, however the locality of reference of adjacent

bits in the same frame prevents this from being linearly proportional. A 32-bit register takes

only 7.5 seconds due to the packing of the bits. Despite utilizing a serial console—one of the

slowest communications mediums still being used in modern computing systems—the entire

round-trip cost is only 0.5 seconds. The most time consuming non-recurring operation is

that of reading the logic-allocation file. Approximately 50% of the CPU-time, accounting

for 1.6 seconds of the application’s startup time, is spent parsing the logic-allocation file to

Yousef S. Iskander Chapter 6 Evaluation 128

build the logic and device model. Figure 6.4, produced from the Google Perf Tools profiler

suite, shows the relative time spent in a typical execution scenario. It is noteworthy that

none of the blocking operations delegated to the FPGA are long enough to appear in the

profiler’s output as a significant source of execution time.

6.2.3 Summary and Future Work

LLD provides a software-based approach to both controlling and observing FPGA execution.

An onboard processor provides an interactive user interface to the FPGA, which is in stark

contrast to the post-execution, forensic-style approaches of vendor embedded logic analyzers.

LLD provides an interface that is transparently distributed across a conventional workstation

and the onboard processor of the FPGA to provide an all encompassing view of the device.

This view is cross-referenced with design-time reports, such as the logic-allocation file, which

can be leveraged to build symbol tables useful for debugging. No other debugging frameworks

were identified that provide such an approach and allow the design to execute at its full speed.

Enhancements reserved for future work include extending the capabilities of the debug logic

and improving the performance of the software. Currently, LLD only supports the generation

of asynchronous debug logic which is a condition that can be active during a single clock

cycle. Assertion-Based Verification, introduced in Section 2.3.4, allows sequences of states

to be defined, equivalent to defining a state-machine that must be activated before the

condition fires. A state-based approach to debugging would expand the scope of LLD to far

more complex and complete scenarios.

Performance of the user application is another area reserved for future work. Although

responsive, response times could be further improved. While the communication channel

could be upgraded to a faster medium, such as USB or Ethernet, this would limit portability

across development boards. A half-second latency in communication is tolerable, although

Yousef S. Iskander Chapter 6 Evaluation 129

not optimum. The greatest latency is found in process of gathering bits from the FPGA,

which if not optimized, compounds the round-trip latency over the serial line. The current

implementation sequentially processes the register bits, grouping subsequent requests to the

same configuration frame before querying the FPGA-based processor and proceeding to the

next frame. Separate and repeated requests are made to the same configuration frame if

intermediate bits reside in other frames. A more efficient approach is to globally group all

the requests to the same frame. A preliminary analysis shows that this approach could

reduce the time required to read a 32-bit register by nearly half.

Yousef S. Iskander Chapter 6 Evaluation 130

./dmd
Total samples: 91
Focusing on: 83
Dropped nodes with <= 0 abs(samples)
Dropped edges with <= 0 samples

__libc_start_main
0 (0.0%)

of 83 (100.0%)

main
0 (0.0%)

of 83 (100.0%)

83

_start
0 (0.0%)

of 83 (100.0%)

83

com_loadlogic
0 (0.0%)

of 83 (100.0%)

parseLogicAllocFile
0 (0.0%)

of 83 (100.0%)

83

com_source
0 (0.0%)

of 83 (100.0%)

execute_line
0 (0.0%)

of 83 (100.0%)

83 8383

83

logicallocparse
11 (13.3%)

of 82 (98.8%)

82

logicalloclex
55 (66.3%)

of 70 (84.3%)

111

69

free
1 (1.2%)

1

printf
0 (0.0%)

of 1 (1.2%)

1

55

__strdup
0 (0.0%)

of 8 (9.6%)

8

__strtoull_internal
5 (6.0%)

2
atoi

0 (0.0%)
of 3 (3.6%)

3

memcpy
1 (1.2%)

1

yy_get_next_buffer
0 (0.0%)

of 1 (1.2%)

1

malloc
1 (1.2%)

of 8 (9.6%)

8

1

malloc_trim
7 (8.4%)

7

7

5

3

_IO_file_seek
0 (0.0%)

of 1 (1.2%)

__read
1 (1.2%)

1

_IO_fread
0 (0.0%)

of 1 (1.2%)

1

1

1

1
vfprintf

1 (1.2%)

1

1

1

Figure 6.4: Execution call graph of console application.

Chapter 7

Conclusions and Future Work

The lack of a structured development and debug lifecycle for FPGAs causes two issues. First,

initial high-level language reference models become isolated from the implemented hardware

resulting in the model verification gap. This makes validating hardware against the reference

model a manual task. The second issue arises once the hardware has been implemented and

is inaccessible to inspection and debug. This is in stark contrast to the flexible and open

development environments found in software. The thesis of this dissertation is that the same

high level of design visibility and control found in software development environments could

be ported to FPGAs by incorporating software control directly into the FPGA. This was

achieved by first identifying the primary difficulties in the conventional FPGA design flow,

and developing embedded software-based solutions to improve accessibility and raise the

abstraction level of these tasks.

7.1 Review of Contributions

The contributions of this research are as follows:

131

Yousef S. Iskander Chapter 7 Conclusions and Future Work 132

• Development of a tool that addresses the model verification gap by raising the abstrac-

tion level for FPGA validation and debug.

FPGA debug has traditionally required a detailed knowledge not only of the design

being developed, but also of the target hardware. The original RTL source is often too

primitive to validate against high-level functionality. The HLV framework introduced

in Section 4.1 allows synthesized hardware to be directly linked to a high-level lan-

guage reference model without invasively modifying either one. The reference model

and hardware are concurrently executed on the FPGA with the hardware design run-

ning at the target frequency. HLV serves as a software-based unit-testing framework

for FPGA designs, capable of being automated to progressively test increasing levels

of the design hierarchy with software-generated test vectors with the results being im-

mediately validated. HLV is unique in that not only does it link hardware to software

reference models, but also that the validation can be performed at the hardware’s tar-

get execution frequency. Debugging against high-level models is not common even in

HLS flows.

HLV is useful in that it removes the burden of manually validating reference models

against the implemented hardware, even for design flows not destined for FPGAs. In

most cases, hardware development and validation is repeated anew first for simulation

development and then again for actual hardware which may draw from sources not used

during simulation. This can open the door to unexpected and expensive design flaws.

In the case of some ASIC design strategies and unlike FPGA development, none of the

application HDL used in simulation can be applied. In most ASIC flows, FPGAs are

used to logically and functionally validate the design before being sent to production or

“taped-out”. The Pentium FDIV bug [80,81] is one such example of the consequences

of the gap between reference model and implementation validation that HLV aspires to

Yousef S. Iskander Chapter 7 Conclusions and Future Work 133

address. HLV can also be applied to HLS flows which still have not eclipsed traditional

HDL development. HLV can be used to validate HLS-generated designs since the

machine-generated RTL does not lend itself well to traditional debugging or formal

verification.

• Development of a tool that improves visibility, control, and agility for FPGA debug by

introducing software development environment facilities.

Unlike software development, FPGAs have few means to inspect or debug a running

design such as the console messages or comprehensive debuggers that exist in software

to provide detailed analysis of the design or halt execution. The internal state elements

of the design have limited or no visibility, and execution occurs at millions of clock

cycles per second. An error may occur and by the time it manifests itself, the state of

the device may have changed so much that its diagnosis is impossible. An approach to

improve visibility, control, and the agility of an FPGA development environment was

introduced in Section 4.2 and implemented in Section 5.2. The developed framework

brings some of the useful facilities found in software development environments to FP-

GAs. The system presented here allows a running, implemented design to be controlled

and inspected at its target speed with the interface and agility of software development

tools. While most FPGA development tools place the debugger’s viewpoint outside the

design, the developed framework places it within the FPGA, transforming the storage

elements of the reconfigurable fabric to a conventional memory. Symbolic access to de-

sign elements is enabled by the construction of a symbol table not unlike those found

in software debuggers. The agility of software breakpoints is recreated in a partially

reconfigurable region that can be quickly implemented without affecting the rest of the

design.

Yousef S. Iskander 134

7.2 Future Work

The research presented here shows that software is a viable means to both validating and

debugging FPGA designs despite the wide disparity in performance. Several enhancements

and optimizations were reserved for future work, such as functional and performance-related

improvements.

The HLV framework is currently programmed through manual transcription from simula-

tion models. This is both time-consuming and error-prone and ultimately unnecessary with

additional means to directly generate testbenches from simulations. HLV can also be ex-

tended to handle more complex scenarios beyond fixed-latency transactions by incorporating

programmable hardware that can interact with the design without the need to buffer sig-

nal traces. Other approaches could enable complex, software-controlled interactions capable

of scripting large volumes of data, but might eliminate the sustained, full-speed execution

demonstrated here.

LLD demonstrated fine-grain and interactive control over an implemented design through

embedded software. Given the extensive use of multiple clock domains, there remains some

research to be done in implementing cascading clock control logic to reliably synchronize all

clock domains. The LLD software could be further improved in the areas of performance

and efficiency. Operations requiring round-trip transactions cumulatively add to the total

time needed, however methods have been identified that could reduce this time by as much

as 50%. This can be achieved by further optimizing the algorithms used to schedule read-

ing and assembling design registers. Assertion-Based Verification techniques, such as those

introduced in Section 2.3.4, which can define multi-state transitions for a single assertion,

could be introduced to realize complex scenarios such as state-machine validation.

Bibliography

[1] M. Wirthlin, B. Nelson, B. Hutchings, P. Athanas, and S. Bohner, “A Research

Agenda for Improving Configurable Computing Design Productivity,” NSF Center for

High-Performance Reconfigurable Computing (CHREC), Salt Lake City, UT, Tech.

Rep., June 2008. [Online]. Available: http://www.chrec.org/ftsw/BYU VT Report.pdf

[2] B. Nelson, M. Wirthlin, B. Hutchings, P. Athanas, and S. Bohner, “Design Productivity

for Configurable Computing.” CSREA Press, 2008, pp. 57–66.

[3] Xilinx, Inc., “UG190: Virtex-5 FPGA User Guide.”

[4] ——, “XC4000E and XC4000X Series Field Programmable Gate Arrays (Product Spec-

ification).”

[5] ——, “XC5200 Series Field Programmable Gate Arrays (Product Specification).”

[6] ——, “DS003: Virtex 2.5 V Field Programmable Gate Arrays (Product Specification).”

[7] ——, “DS031: Virtex-II Platform FPGAs: Complete Data Sheet.”

[8] ——, “DS083: Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data

Sheet.”

[9] ——, “DS100: Virtex-5 Family Overview.”

[10] ——, “DS112: Virtex-4 Family Overview.”

135

http://www.chrec.org/ftsw/BYU_VT_Report.pdf

Yousef S. Iskander 136

[11] ——, “DS150: Virtex-6 Family Overview.”

[12] ——, “DS180: 7 Series FPGAs Overview.”

[13] C. Metz, “Dennis Ritchie: The Shoulders Steve Jobs

Stood On,” Wired, October 2011. [Online]. Available:

http://www.wired.com/wiredenterprise/2011/10/thedennisritchieeffect/

[14] M. Santarini, “Driver assistance revs up on xilinx fpga platforms,” Xcell Journal, vol. 66,

2008.

[15] J. Wilcox and M. Kanellos, “Amd makes move to 1-ghz chip,” CNET News, March

2000. [Online]. Available: http://news.cnet.com/2100-1040-237615.html

[16] C. Schalick, “Debugging FPGA designs may be harder than you expect,” EDN, vol. 54,

no. 21, p. 23, 2009.

[17] Free Software Foundation, “GNU Make.” [Online]. Available:

http://www.gnu.org/software/make

[18] Altera Corporation. Quartus II Incremental Compilation for Hierarchical and Team-

Based Design. [Online]. Available: http://www.altera.com/literature/hb/qts/qts

qii51015.pdf

[19] Development System Reference Guide, v10.1 ed., Xilinx, Inc., 2008. [Online]. Available:

http://www.xilinx.com/itp/xilinx4/pdf/docs/dev/dev.pdf

[20] T. Frangieh, A. Chandrasekharan, S. Rajagopalan, Y. Iskander, S. Craven, and C. Pat-

terson, “PATIS: using partial configuration to improve static FPGA design productiv-

ity,” in 17th Reconfigurable Architectures Workshop (RAW), 2010.

[21] XST User Guide, v11.3 ed., Xilinx, Inc., September 2009.

http://www.wired.com/wiredenterprise/2011/10/thedennisritchieeffect/
http://news.cnet.com/2100-1040-237615.html
http://www.gnu.org/software/make
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.xilinx.com/itp/xilinx4/pdf/docs/dev/dev.pdf

Yousef S. Iskander 137

[22] Xilinx, Inc. Memory Recommendations. [Online]. Available:

http://www.xilinx.com/ise/products/memory.htm

[23] N. Steiner. ChipScope scripting for batch data collection? [Online]. Available:

usenet://comp.arch.fpga

[24] Xilinx, Inc., “MicroBlaze Processor Reference Guide.”

[25] L. Wirbel, “FPGA survey sees sunset for gate arrays, continued dom-

inance by Xilinx, Altera,” EE Times, October 2008. [Online]. Available:

http://www.eetimes.com/showArticle.jhtml?articleID=211200184

[26] “IEEE Standard for Verilog Hardware Description Language,” IEEE Std 1364-2005

(Revision of IEEE Std 1364-2001), pp. 1 –560, 2006.

[27] “IEEE Standard VHDL Language Reference Manual,” IEEE Std 1076-2008 (Revision

of IEEE Std 1076-2002), pp. c1 –626, 26 2009.

[28] “IEEE Standard System C Language Reference Manual,” IEEE Std 1666-2005, pp. 1

–423, 2006.

[29] “IEEE Standard for System Verilog-Unified Hardware Design, Specification, and Veri-

fication Language,” IEEE STD 1800-2009, pp. C1 –1285, 2009.

[30] Cadence Design Systems, Inc. Cadence e Verification Language. [Online]. Available:

http://www.cadence.com/Alliances/languages/Pages/e page.aspx

[31] “IEEE Standard for the Functional Verification Language e,” IEEE Std 1647-2011 (Re-

vision of IEEE Std 1647-2008), pp. 1 –495, 26 2011.

[32] BlueSpec, Inc. BlueSpec Language. [Online]. Available: http://www.bluespec.com/

http://www.xilinx.com/ise/products/memory.htm
usenet://comp.arch.fpga
http://www.eetimes.com/showArticle.jhtml?articleID=211200184
http://www.cadence.com/Alliances/languages/Pages/e_page.aspx
http://www.bluespec.com/

Yousef S. Iskander 138

[33] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An Introduction to High-Level

Synthesis,” Design & Test of Computers, IEEE, vol. 26, no. 4, pp. 8–17, 2009.

[34] S. Sarkar, S. Dabral, P. K. Tiwari, and R. S. Mitra, “Lessons and Experiences with

High-Level Synthesis,” Design & Test of Computers, IEEE, vol. 26, no. 4, pp. 34–45,

2009.

[35] E. Eto, Xilinx Application Note 290: Difference-Based Partial Re-

configuration, v2.0 ed., Xilinx, December 2007. [Online]. Available:

http://www.xilinx.com/support/documentation/application notes/xapp290.pdf

[36] S. D. Craven, “Structured approach to dynamic computing application development,”

Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA,

USA, 2008.

[37] G. Subbarayan, “Automatic instantiation and timing-aware placement of bus macros for

partially reconfigurable FPGA designs.” Master’s thesis, Virginia Polytechnic Institute

and State University, Blacksburg, VA, USA, 2010.

[38] A. Chandrasekharan, “Accelerating incremental floorplanning of partially reconfigurable

designs to improve FPGA productivity.” Master’s thesis, Virginia Polytechnic Institute

and State University, Blacksburg, VA, USA, 2010.

[39] “IEEE Standard for Reduced-Pin and Enhanced-Functionality Test Access Port and

Boundary-Scan Architecture,” IEEE Std 1149.7-2009, pp. c1 –985, 10 2010.

[40] Xilinx, Inc., UG012: Virtex-II Pro and Virtex-II Pro X FPGA

User Guide, v4.2 ed., Xilinx, Inc., November. [Online]. Available:

http://www.xilinx.com/support/documentation/user guides/ug012.pdf

http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
http://www.xilinx.com/support/documentation/user_guides/ug012.pdf

Yousef S. Iskander 139

[41] UG071: Virtex-4 FPGA Configuration User Guide, v1.11 ed., Xilinx, Inc.,

June 2009. [Online]. Available: http://www.xilinx.com/support/documentation/user

guides/ug071.pdf

[42] UG191: Virtex-5 FPGA Configuration User Guide, v9.0 ed., Xilinx, Inc., Jan-

uary 2008. [Online]. Available: http://www.xilinx.com/support/documentation/user

guides/ug191.pdf

[43] UG360: Virtex-6 FPGA Configuration User Guide, v3.4 ed., Xilinx, Inc., Novem-

ber 2011. [Online]. Available: http://www.xilinx.com/support/documentation/user

guides/ug360.pdf

[44] UG470: 7 Series FPGAs Configuration User Guide, v1.3 ed., Xilinx, Inc., Febru-

ary 2012. [Online]. Available: http://www.xilinx.com/support/documentation/user

guides/ug470 7Series Config.pdf

[45] Xilinx, Inc., “Xilinx ChipScope Pro.” [Online]. Available:

http://www.xilinx.com/tools/cspro.htm

[46] Altera Corporation, “Design Debugging Using the SignalTap II Embedded Logic Ana-

lyzer.”

[47] GateRocket, Inc., “GateRocket Product Overview,” 2008.

[48] “FPGA tool vendor gaterocket folds,” EE Times, August 2011. [Online]. Available:

http://www.eetimes.com/electronics-news/4218492/FPGA-tool-vendor-GateRocket-folds

[49] Sandbyte Technologies. FPGAXpose Data Sheet. [Online]. Available:

http://www.sandbyte.com/FPGAXposeDataSheet.pdf

[50] Synopsys, Inc., “Fast, Efficient RTL Debug for Programmable Logic Designs.”

http://www.xilinx.com/support/documentation/user_guides/ug071.pdf
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
http://www.xilinx.com/tools/cspro.htm
http://www.eetimes.com/electronics-news/4218492/FPGA-tool-vendor-GateRocket-folds
http://www.sandbyte.com/FPGAXposeDataSheet.pdf

Yousef S. Iskander 140

[51] Cadence Design Systems, Inc., “Cadence Palladium.”

[52] W. Danghui, G. Deyuan, and L. Tao, “Breakpoint debugging mechanism for micropro-

cessor design,” 2003, pp. 456–458.

[53] A. Penttinen, R. Jastrzebski, R. Pollanen, and O. Pyrhonen, “Run-Time Debugging

and Monitoring of FPGA Circuits Using Embedded Microprocessor,” Design and Di-

agnostics of Electronic Circuits and systems, IEEE, pp. 147–148, 2006.

[54] Z. Baker and J. Monson, “In-situ FPGA debug driven by on-board microcontroller,”

in Field Programmable Custom Computing Machines, 2009. FCCM ’09. 17th IEEE

Symposium on, April 2009, pp. 219 –222.

[55] R. Kuramoto, “Application Note 058: Xilinx In-System Pro-

gramming Using an Embedded Microcontroller.” [Online]. Available:

http://www.xilinx.com/support/documentation/application notes/xapp058.pdf

[56] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, and M. Rytting, “A

cad suite for high-performance fpga design,” in Field-Programmable Custom Computing

Machines, 1999. FCCM ’99. Proceedings. Seventh Annual IEEE Symposium on, 1999,

pp. 12 –24.

[57] “JHDL: FPGA CAD Tools.” [Online]. Available: http://www.jhdl.org

[58] C. Patterson and S. Guccione, “Jbits design abstractions,” in Field-Programmable Cus-

tom Computing Machines, 2001. FCCM ’01. The 9th Annual IEEE Symposium on, 29

2001-april 2 2001, pp. 251 –252.

[59] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting Bitstreams for

Debugging FPGA Circuits,” in Proceedings of the the 9th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines. Washington,

http://www.xilinx.com/support/documentation/application_notes/xapp058.pdf
http://www.jhdl.org

Yousef S. Iskander 141

DC, USA: IEEE Computer Society, 2001, pp. 41–50. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1058426.1058867

[60] D. Levi and S. A. Guccione, “BoardScope: A debug tool for reconfigurable systems,” in

Configurable Computing: Technology and Applications, Proc. SPIE 3526, J. Schewel,

Ed. Bellingham, WA: SPIE – The International Society for Optical Engineering,

November 1998, pp. 239–246.

[61] T. Price, D. Levi, and S. A. Guccione, “Debug of reconfigurable systems,” Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4212, pp.

181–187, 2000.

[62] Impulse Accelerated Technologies, “Impulse CoDeveloper C-to-FPGA Tools.” [Online].

Available: http://www.impulseaccelerated.com/products universal.htm

[63] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski, “Stream-oriented FPGA comput-

ing in the Streams-C high level language,” in Field-Programmable Custom Computing

Machines, 2000 IEEE Symposium on, 2000, pp. 49 –56.

[64] “The Stanford SUIF Compiler Group.” [Online]. Available: http://suif.stanford.edu

[65] D. Pellerin and S. Thibault, Practical FPGA programming in C. Upper Saddle River,

NJ: Prentice Hall Professional Technical Reference, 2005.

[66] J. Curreri, G. Stitt, and A. George, “High-level synthesis techniques for in-circuit

assertion-based verification,” in Parallel Distributed Processing, Workshops and Phd

Forum (IPDPSW), 2010 IEEE International Symposium on, april 2010, pp. 1 –8.

[67] Xilinx, Inc., “Partial Reconfiguration User Guide.” [Online]. Available:

http://www.xilinx.com/support/documentation/sw manuals/xilinx12 1/ug702.pdf

http://portal.acm.org/citation.cfm?id=1058426.1058867
http://www.impulseaccelerated.com/products_universal.htm
http://suif.stanford.edu
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/ug702.pdf

Yousef S. Iskander 142

[68] A. Chandrasekharan, S. Rajagopalan, G. Subbarayan, T. Frangieh, Y. Iskander,

S. Craven, and C. Patterson, “Accelerating FPGA development through the automatic

parallel application of standard implementation tools,” in Field-Programmable Technol-

ogy (FPT), 2010 International Conference on, December 2010, pp. 53–60.

[69] S. Raja Gopalan, “Timing-aware automatic floorplanning of partially reconfigurable

designs for accelerating FPGA productivity.” Master’s thesis, Virginia Polytechnic In-

stitute and State University, Blacksburg, VA, USA, 2010.

[70] Xilinx, Inc., “DS449: LogiCORE IP Fast Simplex Link (FSL) V20 Bus.”

[71] M. Shelburne, C. Patterson, P. Athanas, M. Jones, B. Martin, and R. Fong, “Metawire:

Using FPGA configuration circuitry to emulate a network-on-chip,” in Field Pro-

grammable Logic and Applications, 2008. FPL 2008. International Conference on, Sept.

2008, pp. 257 –262.

[72] “GDB: The GNU Project Debugger.” [Online]. Available:

http://www.gnu.org/software/gdb/gdb.html

[73] “GNU Readline Library.” [Online]. Available: http://www.gnu.org/software/readline

[74] D. R. Stinson, Cryptography Theory and Practice, 3rd ed. Chapman & Hall/CRC,

2006.

[75] “SHA-1 Collision Search Graz.” [Online]. Available: http://boinc.iaik.tugraz.at/

[76] “OpenCores.” [Online]. Available: http://www.opencores.org

[77] J. Curreri, G. Stitt, and A. George, “High-level synthesis of in-circuit assertions for

verification, debugging, and timing analysis,” International Journal of Reconfigurable

Computing, vol. 2011, 2011.

http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/readline
http://boinc.iaik.tugraz.at/
http://www.opencores.org

Yousef S. Iskander 143

[78] Oracle Corporation, “OpenSPARC.” [Online]. Available: http://www.opensparc.net/

[79] “FloPoCo.” [Online]. Available: http://flopoco.gforge.inria.fr/

[80] R. P. Colwell, The Pentium chronicles: the people, passion, and politics behind Intel’s

landmark chips. Hoboken, N.J.: John Wiley & Sons, Inc., 2006.

[81] D. Price, “Pentium FDIV flaw-lessons learned,” Micro, IEEE, vol. 15, no. 2, pp. 86 –88,

Apr 1995.

http://www.opensparc.net/
http://flopoco.gforge.inria.fr/

Appendix A

Open-Source and Free Software
Acknowledgement

The following open-source or free software packages were instrumental in this research. Links

to software homepages and/or source are included for reference.

• Ubuntu GNU/Linux. http://www.ubuntu.com.

• Flex lexer, an open-source successor to the lex lexer generator.

http://flex.sourceforge.net.

• Bison parser generator, an open-source successor to the yacc parser generator.

http://www.gnu.org/software/bison.

• Vim Editor. http://www.vim.org.

• Oracle VirtualBox virtualization software. http://www.virtualbox.org.

• GNU Readline Library. http://www.gnu.org/software/readline.

• Apache Xerces XML Library. http://xerces.apache.org.

144

http://www.ubuntu.com
http://flex.sourceforge.net
http://www.gnu.org/software/bison
http://www.vim.org
http://www.virtualbox.org
http://www.gnu.org/software/readline
http://xerces.apache.org

Appendix B

Source Code

B.1 High-Level Validation

Listing B.1: HLV User Logic.
1 // --

2 // user_logic.vhd - module

3 // --

4 //

5 // ***

6 // ** Copyright (c) 1995 -2008 Xilinx , Inc. All rights reserved. **

7 // ** **

8 // ** Xilinx , Inc. **

9 // ** XILINX IS PROVIDING THIS DESIGN , CODE , OR INFORMATION "AS IS" **

10 // ** AS A COURTESY TO YOU , SOLELY FOR USE IN DEVELOPING PROGRAMS AND **

11 // ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN , CODE , **

12 // ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE , **

13 // ** APPLICATION OR STANDARD , XILINX IS MAKING NO REPRESENTATION **

14 // ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT , **

15 // ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE **

16 // ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY **

17 // ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE **

18 // ** IMPLEMENTATION , INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR **

19 // ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF **

20 // ** INFRINGEMENT , IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS **

21 // ** FOR A PARTICULAR PURPOSE. **

22 // ** **

23 // ***

24 //

25 // --

26 // Filename: user_logic.vhd

27 // Version: 1.00.a

28 // Description: User logic module.

29 // Date: Tue Jun 22 23:17:44 2010 (by Create and Import Peripheral Wizard)

30 // Verilog Standard: Verilog -2001

31 // --

32 // Naming Conventions:

33 // active low signals: "*_n"

34 // clock signals: "clk", "clk_div #", "clk_#x"

35 // reset signals: "rst", "rst_n"

36 // generics: "C_*"

37 // user defined types: "* _TYPE"

38 // state machine next state: "* _ns"

39 // state machine current state: "* _cs"

40 // combinatorial signals: "* _com"

41 // pipelined or register delay signals: "*_d#"

42 // counter signals: "* cnt *"

43 // clock enable signals: "* _ce"

44 // internal version of output port: "*_i"

45 // device pins: "* _pin"

46 // ports: "- Names begin with Uppercase"

47 // processes: "* _PROCESS"

48 // component instantiations: "<ENTITY_ >I_ <#| FUNC >"

145

Yousef S. Iskander 146

49 // --

50

51 module user_logic

52 (

53 // -- ADD USER PORTS BELOW THIS LINE ---------------

54 // --USER ports added here

55 DMD_Fifo_Wr_En ,

56 DMD_Fifo_Rd_En ,

57 DMD_Fifo_Exists ,

58 DMD_Fifo_Full ,

59 DMD_Design_Clk ,

60 // -- ADD USER PORTS ABOVE THIS LINE ---------------

61

62 // -- DO NOT EDIT BELOW THIS LINE ------------------

63 // -- Bus protocol ports , do not add to or delete

64 Bus2IP_Clk , // Bus to IP clock

65 Bus2IP_Reset , // Bus to IP reset

66 Bus2IP_Data , // Bus to IP data bus

67 Bus2IP_BE , // Bus to IP byte enables

68 Bus2IP_RdCE , // Bus to IP read chip enable

69 Bus2IP_WrCE , // Bus to IP write chip enable

70 IP2Bus_Data , // IP to Bus data bus

71 IP2Bus_RdAck , // IP to Bus read transfer acknowledgement

72 IP2Bus_WrAck , // IP to Bus write transfer acknowledgement

73 IP2Bus_Error // IP to Bus error response

74 // -- DO NOT EDIT ABOVE THIS LINE ------------------

75); // user_logic

76

77 // -- ADD USER PARAMETERS BELOW THIS LINE ------------

78 // --USER parameters added here

79 // -- ADD USER PARAMETERS ABOVE THIS LINE ------------

80

81 // -- DO NOT EDIT BELOW THIS LINE --------------------

82 // -- Bus protocol parameters , do not add to or delete

83 parameter C_SLV_DWIDTH = 32;

84 parameter C_NUM_REG = 8;

85 // -- DO NOT EDIT ABOVE THIS LINE --------------------

86

87 // -- ADD USER PORTS BELOW THIS LINE -----------------

88 // --USER ports added here

89 output DMD_Fifo_Wr_En;

90 output DMD_Fifo_Rd_En;

91 input DMD_Fifo_Exists;

92 input DMD_Fifo_Full;

93 input DMD_Design_Clk;

94 // -- ADD USER PORTS ABOVE THIS LINE -----------------

95

96 // -- DO NOT EDIT BELOW THIS LINE --------------------

97 // -- Bus protocol ports , do not add to or delete

98 input Bus2IP_Clk;

99 input Bus2IP_Reset;

100 input [0 : C_SLV_DWIDTH -1] Bus2IP_Data;

101 input [0 : C_SLV_DWIDTH /8-1] Bus2IP_BE;

102 input [0 : C_NUM_REG -1] Bus2IP_RdCE;

103 input [0 : C_NUM_REG -1] Bus2IP_WrCE;

104 output [0 : C_SLV_DWIDTH -1] IP2Bus_Data;

105 output IP2Bus_RdAck;

106 output IP2Bus_WrAck;

107 output IP2Bus_Error;

108 // -- DO NOT EDIT ABOVE THIS LINE --------------------

109

110 // --

111 // Implementation

112 // --

113

114 // --USER nets declarations added here , as needed for user logic

115 wire go;

116 wire [0 : C_SLV_DWIDTH -1] start_capture_at ;

117 wire [0 : C_SLV_DWIDTH -1] stop_capture_at;

118

119

120 // counter held in reset until driver is activated

121 reg [0 : 31] counter;

122 reg capture_complete;

123

124 // Nets for user logic slave model s/w accessible register example

125 reg [0 : C_SLV_DWIDTH -1] slv_reg0; // control

126 reg [0 : C_SLV_DWIDTH -1] slv_reg1; // start_capture_at

127 reg [0 : C_SLV_DWIDTH -1] slv_reg2; // stop_capture_at

128 // reg [0 : C_SLV_DWIDTH -1] slv_reg3; // status

129 reg [0 : C_SLV_DWIDTH -1] slv_reg4;

130 reg [0 : C_SLV_DWIDTH -1] slv_reg5;

131 reg [0 : C_SLV_DWIDTH -1] slv_reg6;

132 reg [0 : C_SLV_DWIDTH -1] slv_reg7;

133 wire [0 : 7] slv_reg_write_sel;

134 wire [0 : 7] slv_reg_read_sel ;

135 reg [0 : C_SLV_DWIDTH -1] slv_ip2bus_data;

Yousef S. Iskander 147

136 wire slv_read_ack;

137 wire slv_write_ack;

138 integer byte_index , bit_index;

139

140 // --USER logic implementation added here

141

142 assign go = slv_reg0 [31];

143 assign start_capture_at = slv_reg1;

144 assign stop_capture_at = slv_reg2;

145

146 // Write to capture fifos when the counters are in range

147 assign DMD_Fifo_Wr_En = ((counter >= start_capture_at) && (counter < stop_capture_at) && (DMD_Fifo_Full == 1’b0));

148

149 // Read from the fifos when the driver is activated and there is still data in there

150 assign DMD_Fifo_Rd_En = (go & DMD_Fifo_Exists);

151

152

153

154 always @(posedge DMD_Design_Clk)

155 begin

156 if (go == 1’b0)

157 begin

158 // our version of reset

159 counter <= 32’b0;

160 capture_complete <= 1’b0;

161 end

162 else

163 begin

164 counter <= counter + 1;

165

166 // track when the capture is complete

167 if (counter >= stop_capture_at)

168 capture_complete <= 1’b1;

169 end

170 end

171

172 // --

173 // Example code to read/write user logic slave model s/w accessible registers

174 //

175 // Note:

176 // The example code presented here is to show you one way of reading/writing

177 // software accessible registers implemented in the user logic slave model.

178 // Each bit of the Bus2IP_WrCE/ Bus2IP_RdCE signals is configured to correspond

179 // to one software accessible register by the top level template. For example ,

180 // if you have four 32 bit software accessible registers in the user logic ,

181 // you are basically operating on the following memory mapped registers:

182 //

183 // Bus2IP_WrCE/ Bus2IP_RdCE Memory Mapped Register

184 // "1000" C_BASEADDR + 0x0

185 // "0100" C_BASEADDR + 0x4

186 // "0010" C_BASEADDR + 0x8

187 // "0001" C_BASEADDR + 0xC

188 //

189 // --

190

191 assign

192 slv_reg_write_sel = Bus2IP_WrCE [0:7] ,

193 slv_reg_read_sel = Bus2IP_RdCE [0:7] ,

194 slv_write_ack = Bus2IP_WrCE [0] || Bus2IP_WrCE [1] || Bus2IP_WrCE [2] || Bus2IP_WrCE [3] || Bus2IP_WrCE [4] || \

195 Bus2IP_WrCE [5] || Bus2IP_WrCE [6] || Bus2IP_WrCE [7],

196 slv_read_ack = Bus2IP_RdCE [0] || Bus2IP_RdCE [1] || Bus2IP_RdCE [2] || Bus2IP_RdCE [3] || Bus2IP_RdCE [4] || \

197 Bus2IP_RdCE [5] || Bus2IP_RdCE [6] || Bus2IP_RdCE [7];

198

199 // implement slave model register(s)

200 always @(posedge Bus2IP_Clk)

201 begin: SLAVE_REG_WRITE_PROC

202

203 if (Bus2IP_Reset == 1)

204 begin

205 slv_reg0 <= 0;

206 slv_reg1 <= 0;

207 slv_reg2 <= 0;

208 // slv_reg3 <= 0;

209 slv_reg4 <= 0;

210 slv_reg5 <= 0;

211 slv_reg6 <= 0;

212 slv_reg7 <= 0;

213 end

214 else

215 case (slv_reg_write_sel)

216 8’b10000000 :

217 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

218 if (Bus2IP_BE[byte_index] == 1)

219 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

220 slv_reg0[bit_index] <= Bus2IP_Data[bit_index];

221 8’b01000000 :

222 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

Yousef S. Iskander 148

223 if (Bus2IP_BE[byte_index] == 1)

224 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

225 slv_reg1[bit_index] <= Bus2IP_Data[bit_index];

226 8’b00100000 :

227 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

228 if (Bus2IP_BE[byte_index] == 1)

229 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

230 slv_reg2[bit_index] <= Bus2IP_Data[bit_index];

231 /* READ ONLY STATUS

232 8’b00010000 :

233 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

234 if (Bus2IP_BE[byte_index] == 1)

235 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index +1)

236 slv_reg3[bit_index] <= Bus2IP_Data[bit_index];

237 */

238 8’b00001000 :

239 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

240 if (Bus2IP_BE[byte_index] == 1)

241 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

242 slv_reg4[bit_index] <= Bus2IP_Data[bit_index];

243 8’b00000100 :

244 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

245 if (Bus2IP_BE[byte_index] == 1)

246 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

247 slv_reg5[bit_index] <= Bus2IP_Data[bit_index];

248 8’b00000010 :

249 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

250 if (Bus2IP_BE[byte_index] == 1)

251 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

252 slv_reg6[bit_index] <= Bus2IP_Data[bit_index];

253 8’b00000001 :

254 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

255 if (Bus2IP_BE[byte_index] == 1)

256 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

257 slv_reg7[bit_index] <= Bus2IP_Data[bit_index];

258 default : ;

259 endcase

260

261 end // SLAVE_REG_WRITE_PROC

262

263 // implement slave model register read mux

264 // or slv_reg3

265 always @(slv_reg_read_sel or slv_reg0 or slv_reg1 or slv_reg2 or slv_reg4 or slv_reg5 or slv_reg6 or slv_reg7)

266 begin: SLAVE_REG_READ_PROC

267

268 case (slv_reg_read_sel)

269 8’b10000000 : slv_ip2bus_data <= slv_reg0;

270 8’b01000000 : slv_ip2bus_data <= slv_reg1;

271 8’b00100000 : slv_ip2bus_data <= slv_reg2;

272 8’b00010000 : slv_ip2bus_data <= {4’hCAFE , 24’b0 , DMD_Fifo_Wr_En , DMD_Fifo_Rd_En , go , capture_complete };

273 8’b00001000 : slv_ip2bus_data <= slv_reg4;

274 8’b00000100 : slv_ip2bus_data <= slv_reg5;

275 8’b00000010 : slv_ip2bus_data <= slv_reg6;

276 8’b00000001 : slv_ip2bus_data <= slv_reg7;

277 default : slv_ip2bus_data <= 0;

278 endcase

279

280 end // SLAVE_REG_READ_PROC

281

282 // --

283 // Example code to drive IP to Bus signals

284 // --

285

286 assign IP2Bus_Data = slv_ip2bus_data;

287 assign IP2Bus_WrAck = slv_write_ack;

288 assign IP2Bus_RdAck = slv_read_ack;

289 assign IP2Bus_Error = 0;

290

291 endmodule

Yousef S. Iskander 149

Listing B.2: SHA Test Code.
1

2 #include <string.h>

3 #include <stdio.h>

4

5 #include "hlv_fsl.h"

6 #include "hlv_driver.h"

7 #include "xparameters.h"

8

9 #define printf xil_printf

10

11 int sha1_test(const char* message , u32 *result_array);

12 unsigned int clock_cycle;

13 // unsigned int clock_cycle;

14 u32 message [32];

15 u32 result [5];

16 unsigned int reset_sequence [] = {

17 0x00000000 ,

18 0x00000100 ,

19 0x00000100 ,

20 0x00000000 ,

21 0x00000000

22 };

23

24

25 const int SHIFT[] = {24 ,16 ,8 ,0};

26

27 const unsigned int MESSAGE_ARRAY_SIZE = 32;

28

29 char *testarray [4] = {

30 "A man cannot be too careful in the choice of his enemies.",

31 "Nothing that is worth knowing can be taught. ",

32 "Punctuality is the thief of time. ",

33 "To most of us the real life is the life we do not lead. "

34 // "Nothing that is worth knowing can be taught. " //,

35 // " Punctuality is the thief of time.",

36 // "To most of us the real life is the life we do not lead ."

37 //"Anybody can be good in the country. There are no temptations ."

38 };

39 /*, " abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq "

40 "A man cannot be too careful in the choice of his enemies. - Oscar Wilde",

41 "Anybody can be good in the country. There are no temptations there. - Oscar Wilde",

42 // "The only thing to do with good advice is to pass it on. It is never of any use to oneself. - Oscar Wilde",

43 "A true gentlemen is one who is never unintentionally rude. - Oscar Wilde"

44 };

45 */

46

47 void write_fsl_data(unsigned int data) {

48 write_into_fsl(data , XPAR_FSL_HLV_FSL_DATA_INPUT_SLOT_ID);

49 }

50

51 /*

52 void read_fsl_data (unsigned int data) {

53 read_from_fsl (data , XPAR_FSL_HLV_FSL_DATA_OUTPUT_SLOT_ID);

54 }

55 */

56 void write_fsl_ctrl(unsigned int ctrl) {

57 write_into_fsl(ctrl , XPAR_FSL_HLV_FSL_CTRL_INPUT_SLOT_ID);

58 }

59 /*

60 void read_fsl_ctrl (unsigned int &ctrl) {

61 read_from_fsl (ctrl , XPAR_FSL_HLV_FSL_CTRL_OUTPUT_SLOT_ID);

62 }

63 */

64 void write_fsl_pair(unsigned int ctrl , unsigned int data) {

65 // xil_printf ("%3d: 0x%08x\t0x %08x\r\n", clock_cycle ++, ctrl , data);

66 write_into_fsl(ctrl , XPAR_FSL_HLV_FSL_CTRL_INPUT_SLOT_ID);

67 write_into_fsl(data , XPAR_FSL_HLV_FSL_DATA_INPUT_SLOT_ID);

68 }

69

70 void convertToMessageBlock (const char* messageText , u32 *message) {

71

72 const u32 messageTextLength = strlen(messageText);

73 int i = 0;

74 int j = 0;

75

76 // clear array

77 for (i = 0; i < MESSAGE_ARRAY_SIZE; i++) {

78 message[i] = 0;

79 // printf (" message [%2d] = 0x%08x\r\n", i, message[i]);

80 }

81

82 // walk the message

83 j = 0;

84 for (i = 0; i<messageTextLength; i++) {

85 j = i/4;

Yousef S. Iskander 150

86 message[j] = (message[j]) | (messageText[i] << SHIFT[i%4]);

87 // printf (" message [%2d] = 0x%08x i = %d\r\n", j, message[j], i);

88 }

89

90 j = i/4;

91 // place the leading 1 bit of the pad

92 message[j] = message[j] | (1 << (SHIFT[i%4]+7));

93 // printf (" message [%2d] = 0x%08x i = %d\r\n", j, message[j], i);

94

95 // place the length in bits at the end

96 message [31] = messageTextLength *8;

97

98 printf("message:");

99 for (i = 0; i < MESSAGE_ARRAY_SIZE; i++) {

100 if (!(i%4)) printf("\r\n");

101 printf(" 0x%08x ", message[i]);

102 }

103

104 printf("\r\n");

105 }

106

107

108 void hold(const unsigned int control , const unsigned int data , const unsigned int count) {

109 int i;

110 for (i = 0; i < count; i++) {

111 write_fsl_pair(control , data);

112 }

113 }

114

115 void reset() {

116 const int cycles = 5;

117 int i = 0;

118

119 for (i = 0; i < cycles; i++) {

120 write_fsl_pair(reset_sequence[i], 0x0);

121 }

122 }

123

124 void feed_message1() {

125 const int cycles = 15;

126 int i = 0;

127

128 for (i = 0; i < cycles; i++) {

129 write_fsl_pair (0x2 , message[i]);

130 }

131

132 }

133

134 void feed_message2() {

135 // const int cycles = 15;

136 int i = 0;

137 write_fsl_pair (0x16 , 0);

138

139 for (i = 16; i < 32; i++)

140 write_fsl_pair (0x06 , message[i]);

141 }

142

143 void send_read() {

144 int i = 0;

145 write_fsl_pair (0x11 , 0);

146

147 hold(0x1 , 0x0 , 20);

148

149 }

150

151 int main(int argc , char **argv)

152 {

153

154 /*

155 * Disable cache and reinitialize it so that other

156 * applications can be run with no problems

157 */

158 #if XPAR_MICROBLAZE_0_USE_DCACHE

159 microblaze_disable_dcache ();

160 microblaze_init_dcache_range (0, XPAR_MICROBLAZE_0_DCACHE_BYTE_SIZE);

161 #endif

162

163 #if XPAR_MICROBLAZE_0_USE_ICACHE

164 microblaze_disable_icache ();

165 microblaze_init_icache_range (0, XPAR_MICROBLAZE_0_CACHE_BYTE_SIZE);

166 #endif

167

168

169 Xuint32 testIdx = 0;

170 Xuint32 counter = 0;

171 Xuint32 Reg32Value;

172 int i;

Yousef S. Iskander 151

173

174 print("\r\n\n-- Entering main() --\r\n");

175

176 int g;

177 for (counter = 0; counter <4; counter ++) {

178

179 // loop over 0 - 3

180 testIdx = counter; // %4;

181

182 printf("\r\n\n\n--- Test %d: ’%s ’\r\n", testIdx+1, testarray[testIdx]);

183 sha1_test(testarray[testIdx], &result [0]);

184

185 convertToMessageBlock (testarray[testIdx], &message [0]);

186

187 printf("\r\n Queueing data for hardware test.\r\n");

188

189 Reg32Value = HLV_DRIVER_mReadSlaveReg3 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0);

190 // xil_printf (" Status register : %x\n\r", Reg32Value);

191 clock_cycle = 0;

192

193 // only put in a single reset at startup

194 reset ();

195 // indicate you ’ll be writing

196 write_fsl_pair (0x00000012 , 0x0);

197

198 feed_message1 ();

199

200 hold(0x2 , 0x0 , 69);

201

202 feed_message2 ();

203

204 hold(0x6 , 0x0 , 67);

205

206 send_read ();

207

208 // status reg

209 Reg32Value = HLV_DRIVER_mReadSlaveReg3 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0);

210 // xil_printf (" Status register set to %x\n\r", Reg32Value);

211

212 // write window start 175

213 int windowStart; //= 177;

214 int windowLength; //= 5;

215

216 if (counter == 0) {

217 windowStart = 177;

218 windowLength = 5;

219 } else {

220 windowStart = 177;

221 windowLength = 5;

222 }

223 HLV_DRIVER_mWriteSlaveReg1 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0, windowStart);

224 Reg32Value = HLV_DRIVER_mReadSlaveReg1 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0);

225 xil_printf(" Window start register: %d\n\r", Reg32Value);

226

227 // write window stop offset from windowStart

228 HLV_DRIVER_mWriteSlaveReg2 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0, windowStart+windowLength);

229 Reg32Value = HLV_DRIVER_mReadSlaveReg2 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0);

230 xil_printf(" Window stop register: %d\n\r", Reg32Value);

231

232 // write go

233 HLV_DRIVER_mWriteSlaveReg0 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0, 1);

234 Reg32Value = HLV_DRIVER_mReadSlaveReg0 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0);

235 xil_printf(" Control register: %d\n\r", Reg32Value);

236

237 // status reg

238 Reg32Value = HLV_DRIVER_mReadSlaveReg3 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0);

239 xil_printf(" Status register: %x\n\r", Reg32Value);

240

241 // write stop

242 HLV_DRIVER_mWriteSlaveReg0 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0, 0);

243 Reg32Value = HLV_DRIVER_mReadSlaveReg0 ((Xuint32)XPAR_HLV_DRIVER_0_BASEADDR , 0);

244 xil_printf(" Control register set to %d\n\r", Reg32Value);

245

246 // read data from output fifos

247 const unsigned int OUTBUFFER_SIZE = 32;

248 unsigned int output_data[OUTBUFFER_SIZE];

249 unsigned int output_ctrl;

250

251 for (i = 0; i < windowLength; i++) {

252 // read output data

253 read_from_fsl(output_data[i], XPAR_FSL_HLV_FSL_DATA_OUTPUT_SLOT_ID);

254

255 // read output control

256 read_from_fsl(output_ctrl , XPAR_FSL_HLV_FSL_CTRL_OUTPUT_SLOT_ID);

257

258 xil_printf("[%2d] control = 0x%03x data = 0x%08x expected = 0x%08x [%s]\r\n",

259 i+windowStart , output_ctrl , output_data[i], result[i],

Yousef S. Iskander 152

260 (output_data[i] == result[i]?"OK":"FAIL"));

261

262 }

263

264

265 // delay , delay , delay

266 u32 x;

267 for (x = 0; x <80000000; x++) ;

268

269 } // end while

270 /*

271 * Enable and initialize cache

272 */

273 #if XPAR_MICROBLAZE_0_USE_ICACHE

274 microblaze_init_icache_range (0, XPAR_MICROBLAZE_0_CACHE_BYTE_SIZE);

275 microblaze_enable_icache ();

276 #endif

277

278 #if XPAR_MICROBLAZE_0_USE_DCACHE

279 microblaze_init_dcache_range (0, XPAR_MICROBLAZE_0_DCACHE_BYTE_SIZE);

280 microblaze_enable_dcache ();

281 #endif

282

283 print("-- Exiting main() --\r\n");

284 return 0;

285 }

Yousef S. Iskander 153

Listing B.3: SHA Test Code.
1

2 /*

3 * sha1_hlv.c

4 * References SHA -1 implementation found in RFC -3174.

5 */

6

7

8 #include <stdlib.h>

9 #include <xparameters.h>

10 #include <string.h>

11

12 #include "sha1.h"

13

14 #define printf xil_printf

15

16 int sha1_test(const char *message , unsigned int *result_array)

17 {

18 SHA1Context sha;

19 int i, j, err;

20 uint8_t Message_Digest [20];

21

22 /*

23 * Perform SHA -1 tests

24 */

25

26 // printf("\r\nTest %d: %d, ’%s ’\r\n", 2, repeatcount , testarray [0]);

27

28 err = SHA1Reset (&sha);

29 /*

30 if (err)

31 {

32 fprintf(stderr , "SHA1Reset Error %d.\n", err);

33 break; /* out of for j loop * /

34 }

35 */

36

37 err = SHA1Input(&sha ,

38 (const unsigned char *) message ,

39 strlen(message));

40 /*

41 if (err)

42 {

43 fprintf(stderr , "SHA1Input Error %d.\n", err);

44 break; /* out of for i loop * /

45 }

46 */

47 /*

48

49 */

50 err = SHA1Result (&sha , Message_Digest);

51

52 /*

53 if (err)

54 {

55 fprintf(stderr ,

56 " SHA1Result Error %d, could not compute message digest .\n",

57 err);

58 }

59 else */

60 printf("\t");

61 for(i = 0; i < 20 ; ++i)

62 {

63 printf("%02X ", Message_Digest[i]);

64 result_array[i/4] = (result_array[i/4] << 8) | Message_Digest[i];

65 }

66 printf("\r\n");

67

68 // printf (" Should match :\r\n");

69 // printf ("\t%s\r\n", resultarray [0]);

70

71 /* Test some error returns * /

72 err = SHA1Input (&sha ,(const unsigned char *) testarray [1], 1);

73 printf ("\ nError %d. Should be %d.\n", err , shaStateError);

74 err = SHA1Reset (0);

75 printf ("\ nError %d. Should be %d.\n", err , shaNull);

76 */

77 return 0;

78 }

Yousef S. Iskander 154

B.2 Low-Level Debug

Listing B.4: Logic Allocation Data Structure Definition Header.
1

2 #ifndef BITINFO_H

3 #define BITINFO_H

4

5 #include <string >

6 #include <stdint.h> // this is required for int#_t types

7 #include <list >

8

9

10 class BitInfo {

11 public:

12 uint32_t bitStreamReadbackLocation;

13 uint32_t frameAddress;

14 uint32_t frameOffset;

15

16 int16_t signalVectorIndex;

17

18 std:: string block;

19 std:: string latch;

20 std:: string net;

21

22 BitInfo () : bitStreamReadbackLocation (0), frameAddress (0), frameOffset (0), signalVectorIndex (-1) {

23 }

24 };

25

26 typedef std::list <BitInfo > BitInfoList;

27 typedef std::map <std::string , BitInfoList > BitMap;

28

29 extern "C" int parseLogicAllocFile(const std:: string &llFile , BitMap &bMap);

30

31

32 #endif

Yousef S. Iskander 155

Listing B.5: Breakpoint Data Structure Header.
1

2 #ifndef _BREAKPOINT_H

3 #define _BREAKPOINT_H

4

5 #include <string >

6

7 enum breakpoint_t { BREAKPOINT , ASSERTION , CONSTRAINT };

8

9 class Breakpoint {

10 public:

11 uint16_t idx; ///< The index of the breakpoint , matches hardware

12 std:: string breakpointText; ///< Original breakpoint specification

13 // bool isEnabled; ///< Whether or not this breakpoint is enabled or not

14 bool isValid; ///< To enable the deletion of breakpoints

15 breakpoint_t breakpointType; ///< What type of breakpoint this is

16

17 std:: string getBreakpointType() const {

18 switch (breakpointType) {

19 case BREAKPOINT:

20 return "breakpoint";

21 case ASSERTION:

22 return "assertion";

23 case CONSTRAINT:

24 return "constraint";

25 }

26 }

27 };

28

29 #endif // _BREAKPOINT_H

Yousef S. Iskander 156

Listing B.6: Serial Communications Source.
1 // Taken from and adapted from http :// tldp.org/HOWTO/Serial -Programming -HOWTO/x115.html

2

3 #include <sys/types.h>

4 #include <sys/stat.h>

5 #include <fcntl.h>

6 #include <termios.h>

7 #include <stdio.h>

8

9 // these headers are not required for C/gcc

10 #include <unistd.h>

11 #include <stdlib.h>

12 #include <string.h>

13

14 // ysi made this work by getting a working minicom session and then

15 // using stty -F /dev/ttyS0 -a and using those settings

16 // http :// www.easysw.com /~ mike/serial/serial.html #2_3

17

18 /* baudrate settings are defined in <asm/termbits.h>, which is

19 included by <termios.h> */

20 // #define BAUDRATE B19200

21 #define BAUDRATE B115200

22 /* change this definition for the correct port */

23 //#define MODEMDEVICE "/ dev/ttyS3"

24 #define _POSIX_SOURCE 1 /* POSIX compliant source */

25

26 #define FALSE 0

27 #define TRUE 1

28

29 volatile int STOP=FALSE;

30 using namespace std;

31

32 int close_serial(int fd) {

33 close(fd);

34 }

35

36 int setup_serial(char *device)

37 {

38 int fd ,c, res;

39 struct termios oldtio ,newtio;

40 char buf [255];

41 /*

42 Open modem device for reading and writing and not as controlling tty

43 because we don ’t want to get killed if linenoise sends CTRL -C.

44 */

45 fd = open(device , O_RDWR | O_NOCTTY);

46 if (fd <0) {perror(device); exit (-1); }

47

48 tcgetattr(fd ,& oldtio); /* save current serial port settings */

49 bzero(&newtio , sizeof(newtio)); /* clear struct for new port settings */

50

51 /*

52 BAUDRATE : Set bps rate. You could also use cfsetispeed and cfsetospeed.

53 CRTSCTS : output hardware flow control (only used if the cable has

54 all necessary lines. See sect. 7 of Serial -HOWTO)

55 CS8 : 8n1 (8bit ,no parity ,1 stopbit)

56 CLOCAL : local connection , no modem contol

57 CREAD : enable receiving characters

58 */

59 // newtio.c_cflag = BAUDRATE | CRTSCTS | CS8 | CLOCAL | CREAD;

60 newtio.c_cflag |= BAUDRATE | CS8 | HUPCL | CREAD | CLOCAL;

61 newtio.c_cflag &= ~(CRTSCTS);

62 /*

63 IGNPAR : ignore bytes with parity errors

64 ICRNL : map CR to NL (otherwise a CR input on the other computer

65 will not terminate input)

66 otherwise make device raw (no other input processing)

67 */

68 newtio.c_iflag = IGNBRK;

69 newtio.c_iflag &= ~(IXON | IXOFF | IXANY | IGNPAR); // turn off sw flow control

70

71 /*

72 Raw output.

73 */

74 newtio.c_oflag = 0;

75

76 /*

77 ICANON : enable canonical input

78 disable all echo functionality , and don ’t send signals to calling program

79 */

80 // newtio.c_lflag = ICANON;

81

82 /*

83 initialize all control characters

84 default values can be found in /usr/include/termios.h, and are given

85 in the comments , but we don ’t need them here

Yousef S. Iskander 157

86 */

87 newtio.c_cc[VINTR] = 0; /* Ctrl -c */

88 newtio.c_cc[VQUIT] = 0; /* Ctrl -\ */

89 newtio.c_cc[VERASE] = 0; /* del */

90 newtio.c_cc[VKILL] = 0; /* @ */

91 newtio.c_cc[VEOF] = 4; /* Ctrl -d */

92 newtio.c_cc[VTIME] = 3; /* was 0; inter - character timer unused */

93 newtio.c_cc[VMIN] = 0; /* blocking read until 1 character arrives */

94 newtio.c_cc[VSWTC] = 0; /* ’\0’ */

95 newtio.c_cc[VSTART] = 0; /* Ctrl -q */

96 newtio.c_cc[VSTOP] = 0; /* Ctrl -s */

97 newtio.c_cc[VSUSP] = 0; /* Ctrl -z */

98 newtio.c_cc[VEOL] = 0; /* ’\0’ */

99 newtio.c_cc[VREPRINT] = 0; /* Ctrl -r */

100 newtio.c_cc[VDISCARD] = 0; /* Ctrl -u */

101 newtio.c_cc[VWERASE] = 0; /* Ctrl -w */

102 newtio.c_cc[VLNEXT] = 0; /* Ctrl -v */

103 newtio.c_cc[VEOL2] = 0; /* ’\0’ */

104

105 /*

106 now clean the modem line and activate the settings for the port

107 */

108 tcflush(fd , TCIFLUSH);

109 tcsetattr(fd ,TCSANOW ,& newtio);

110

111 return fd;

112

113 /*

114 terminal settings done , now handle input

115 In this example , inputting a ’z’ at the beginning of a line will

116 exit the program.

117 * /

118 while (STOP == FALSE) { // loop until we have a terminating condition * /

119 /* read blocks program execution until a line terminating character is

120 input , even if more than 255 chars are input. If the number

121 of characters read is smaller than the number of chars available ,

122 subsequent reads will return the remaining chars. res will be set

123 to the actual number of characters actually read * /

124 res = read(fd ,buf ,255);

125 buf[res]=0; // set end of string , so we can printf * /

126 // printf (":%s:%d\n", buf , res);

127 printf ("%s", buf);

128 if (buf [0]== ’z ’) STOP=TRUE;

129

130 write(fd , "help\r\n", 6);

131 }

132 // restore the old port settings * /

133 tcsetattr(fd ,TCSANOW ,& oldtio);

134 */

135 }

Yousef S. Iskander 158

Listing B.7: Debugger Commands Header.
1

2 #ifndef _CMD_DBG_H

3 #define _CMD_DBG_H

4

5 /* **************************** Include Files ******************************* */

6

7 #include "xparameters.h"

8 #include "stdio.h"

9 #include "xstatus.h"

10 #include "pdc.h"

11 #include "icap.h"

12

13 /* ************************* Constant Definitions *************************** */

14 //#define LED_DELAY 1000000

15

16 #define CTRL_STEP_STOP_CLK (1 << 1)

17 #define CTRL_RUN (1 << 0)

18

19 #define ENABLE_STEP_CLK (1 << 31)

20 #define ENABLE_BP_DUT0 (1 << 0)

21

22 //#define XPAR_PDC_0_BASEADDR XPAR_PDC_0_BASEADDR

23

24 void setStepCounter(const Xuint32 stepCounter);

25 Xuint32 readStepCounter ();

26 void setEnableStepCounterBit(const int enable);

27 void toggleStopClock ();

28 void step(const int steps);

29

30 void setRunBit(const int run);

31 void stop ();

32

33 u32 readBreakpointMask ();

34 void setBreakpointMask(u32 mask);

35 void enableBreakpoint(const Xuint32 signal);

36 void disableBreakpoint(const Xuint32 signal);

37

38 // toggle the debug clock once - remember that the hardware produces a pulse but you

39 // the software register must be returned regardless

40 void toggleStopClock () {

41 Xuint32 status;

42

43 status = PDC_mReadSlaveReg15(XPAR_PDC_0_BASEADDR , 0);

44

45 xil_printf("[tsc] status: %d\t", status);

46

47 // intentionally set the clock advance bit and write back in

48 status |= CTRL_STEP_STOP_CLK;

49 PDC_mWriteSlaveReg15(XPAR_PDC_0_BASEADDR , 0, status);

50

51 // read it

52 status = PDC_mReadSlaveReg15(XPAR_PDC_0_BASEADDR , 0);

53 xil_printf("[tsc] status: %d\t", status);

54

55 // toggle the bit to 0 - we know it will go to 0 because we just set it to 1

56 status ^= CTRL_STEP_STOP_CLK;

57 PDC_mWriteSlaveReg15(XPAR_PDC_0_BASEADDR , 0, status);

58 xil_printf("[tsc] status: %d\t\n\r", status);

59 }

60

61

62 // a software toggle is required even though the hardware will toggle the clock once

63 void step(const int steps) {

64 Xuint32 status;

65

66 setStepCounter(steps);

67

68 // verify that we’ve properly set the number of steps

69 xil_printf("steps: %d\r\n", readStepCounter ());

70

71 // set the counter to run

72 // setEnableStepCounterBit (1);

73

74 // run ();

75

76 /*

77 // software implementation for stepping clock

78 int i;

79 for (i = 0; i < steps; i++)

80 toggleStopClock ();

81

82 // status = PDC_mReadSlaveReg0(XPAR_PDC_0_BASEADDR , 0);

83 */

84

85 }

Yousef S. Iskander 159

86

87 // set/unset the run bit

88 // setting the run bit ENABLES the run bit , but the design won ’t run if there are breakpoints

89 // read the status registers to figure out why

90 // IMPORTANT: anytime you want to switch back to running , you must pulse the stop clock AT LEAST once in order for the BUFGMUX

91 // to toggle

92 void setRunBit(const int run) {

93 Xuint32 status;

94

95 // read the register

96 status = PDC_mReadSlaveReg15(XPAR_PDC_0_BASEADDR , 0);

97

98 if (run) {

99 // set the run bit

100 status |= CTRL_RUN;

101 PDC_mWriteSlaveReg15(XPAR_PDC_0_BASEADDR , 0, status);

102 // in order for the BUFGMUX to switch inputs , the previous clock must toggle AT LEAST once more

103 toggleStopClock ();

104 } else {

105 // check if it’s set , then flip

106 if (status & CTRL_RUN) {

107 status ^= CTRL_RUN;

108 PDC_mWriteSlaveReg15(XPAR_PDC_0_BASEADDR , 0, status);

109 }

110 // else do nothing , it’s already not set

111 }

112

113 }

114

115

116 void stop() {

117 setRunBit (0);

118 }

119

120

121 u32 readBreakpointMask () {

122 return PDC_mReadSlaveReg14(XPAR_PDC_0_BASEADDR , 0);

123 }

124

125 u32 readActiveBreakpointMask () {

126 return PDC_mReadSlaveReg11(XPAR_PDC_0_BASEADDR , 0);

127 }

128

129 void setBreakpointMask(u32 mask) {

130 PDC_mWriteSlaveReg14(XPAR_PDC_0_BASEADDR , 0, mask);

131 }

132

133 void enableBreakpoint(const Xuint32 idx) {

134 Xuint32 status = readBreakpointMask ();

135 xil_printf("idx: %d status: %d\r\n", idx , status);

136

137 status |= (1 << idx);

138 xil_printf("new status: %d\r\n", status);

139 setBreakpointMask(status);

140 }

141

142 void disableBreakpoint(const Xuint32 idx) {

143 Xuint32 status = readBreakpointMask ();

144

145 if (status & (1 << idx)) {

146 // the breakpoint is set , toggle that bit

147 status ^= (1 << idx);

148 setBreakpointMask(status);

149 }

150 }

151 /*

152 void createBreakpoint0(const Xuint32 breakValue) {

153 // this next line should use the signal value to determine which register to write to

154 PDC_mWriteSlaveReg1(XPAR_PDC_0_BASEADDR , 0, breakValue);

155

156 // new breakpoints are always enabled by default

157 // enableBreakpoint (signal);

158 enableBreakpoint (0);

159 }

160 */

161

162 // write a value into the step counter

163 void setStepCounter(const Xuint32 stepCounter) {

164 PDC_mWriteSlaveReg12(XPAR_PDC_0_BASEADDR , 0, stepCounter);

165 }

166

167 Xuint32 readStepCounter () {

168 return PDC_mReadSlaveReg12(XPAR_PDC_0_BASEADDR , 0);

169 }

170

171 // enable the step counter to run

172 void setEnableStepCounterBit(const int enable) {

Yousef S. Iskander 160

173 Xuint32 status;

174

175 // read the register

176 status = PDC_mReadSlaveReg14(XPAR_PDC_0_BASEADDR , 0);

177

178 if (enable) {

179 // set the run bit

180 status |= ENABLE_STEP_CLK;

181 } else {

182 // check if it’s set , then flip

183 if (status & ENABLE_STEP_CLK) {

184 status ^= ENABLE_STEP_CLK;

185 }

186 // else do nothing , it’s already not set

187 }

188 PDC_mWriteSlaveReg14(XPAR_PDC_0_BASEADDR , 0, status);

189 }

190

191

192 Xuint32 readBreakpointStatus () {

193 return PDC_mReadSlaveReg13(XPAR_PDC_0_BASEADDR , 0);

194 }

195 /*

196 void disableBreakPoint(const Xuint32 signal) {

197

198 }

199

200 Xuint32 readBreakpoint0 () {

201 return PDC_mReadSlaveReg1(XPAR_PDC_0_BASEADDR , 0);

202 }

203

204 Xuint32 readBreakpointEnables () {

205 return PDC_mReadSlaveReg14(XPAR_PDC_0_BASEADDR , 0);

206 }

207 */

208

209 Xuint32 readDut0 () {

210 Xuint32 value;

211

212 value = PDC_mReadSlaveReg0(XPAR_PDC_0_BASEADDR , 0);

213 xil_printf("DUT0: %d\r\n", value);

214 value = PDC_mReadSlaveReg1(XPAR_PDC_0_BASEADDR , 0);

215 xil_printf("DUT1: %d\r\n", value);

216

217 return value;

218 }

219

220

221 int run() {

222

223 /*

224 // check if there are any active breakpoints

225 const Xuint32 breakStatus = readBreakpointStatus ();

226

227 if (breakStatus) {

228 // there ’s an active breakpoint

229 // tell the user and quit

230 #ifndef DMD_SERVER

231 xil_printf (" There are active breakpoints. Breakpoint status mask: %x\r\n", breakStatus);

232 print (" You must step beyond the breakpoints or disable them to continue .\r\n");

233 #endif

234 return -1;

235 }

236 */

237 setRunBit (1);

238 return 0;

239 }

240

241

242 // continue the execution

243 // Hardware: a system clock switch is issued and then hardware breakpoints take effect

244 void cont() {

245 run();

246 }

247

248

249 #endif //#define _CMD_DBG_H

Yousef S. Iskander 161

Listing B.8: ICAP Access Routines Header.
1 #ifndef _ICAP_H

2 #define _ICAP_H

3

4 #include "xparameters.h"

5 #include "xhwicap.h" /* HWICAP device driver */

6 #include "xhwicap_i.h"

7

8 #define HWICAP_DEVICE_ID XPAR_HWICAP_0_DEVICE_ID

9 #define READ_FRAME_SIZE 20

10

11 #define printf xil_printf

12

13 /*

14 * These are the parameters for reading a frame of data in

15 * the slice SLICE_X0Y0

16 */

17 #define HWICAP_EXAMPLE_TOP 1

18 #define HWICAP_EXAMPLE_BLOCK 0

19 #define HWICAP_EXAMPLE_HCLK 1

20 #define HWICAP_EXAMPLE_MAJOR 1

21 #define HWICAP_EXAMPLE_MINOR 20

22

23

24 /* ************************* Variable Definitions **************************** */

25 static XHwIcap HwIcap; /* The instance of the HWICAP device */

26 static u32 isHwIcapInit;

27 u32 FrameData[XHI_NUM_WORDS_FRAME_INCL_NULL_FRAME];

28

29 void convertFrameAddressToParts(u32 frameAddress ,

30 u32 *block , u32 *top , u32 *rowAddress , u32 *majorAddress , u32 *minorAddress);

31

32 u32 readFrameOffset (const u32 frame , const u32 offset);

33

34 u32 initIcap(void);

35

36 int lld_icap_test (void);

37

38 #endif // _ICAP_H

Yousef S. Iskander 162

Listing B.9: ICAP Access Routines Source.
1 #include "icap.h"

2

3 int lld_icap_test (void) {

4

5 print("\n\n\n -- Hola mundo. Zapatos. --\r\n");

6

7

8 int Status;

9 u32 Index;

10 XHwIcap_Config *CfgPtr;

11 u32 block , top , rowAddress , majorAddress , minorAddress;

12

13 {

14 // u32 FrameData[XHI_NUM_WORDS_FRAME_INCL_NULL_FRAME];

15

16 /*

17 * Initialize the HwIcap instance.

18 */

19 CfgPtr = XHwIcap_LookupConfig(HWICAP_DEVICE_ID);

20 if (CfgPtr == NULL) {

21 print("Failure to LC.\r\n");

22 return XST_FAILURE;

23 }

24

25 Status = XHwIcap_CfgInitialize (&HwIcap , CfgPtr , CfgPtr ->BaseAddress);

26 if (Status != XST_SUCCESS) {

27 print("Failure to init.\r\n");

28 return XST_FAILURE;

29 }

30

31 /*

32 * Perform a self -test to ensure that the hardware was built correctly.

33 */

34 Status = XHwIcap_SelfTest (& HwIcap);

35 if (Status != XST_SUCCESS) {

36 print("Failure to self -test.\r\n");

37 return XST_FAILURE;

38 }

39

40 /*

41 * Read the Frame

42 */

43 print("Reading frame.\r\n");

44 #if ((XHI_FAMILY == XHI_DEV_FAMILY_V4) || (XHI_FAMILY == XHI_DEV_FAMILY_V5))

45 /* Status = XHwIcap_DeviceReadFrame (& HwIcap ,

46 HWICAP_EXAMPLE_TOP ,

47 HWICAP_EXAMPLE_BLOCK ,

48 HWICAP_EXAMPLE_HCLK ,

49 HWICAP_EXAMPLE_MAJOR ,

50 HWICAP_EXAMPLE_MINOR ,

51 (u32 *) & FrameData [0]);

52 */

53

54 convertFrameAddressToParts (0x000088a3 , &block , &top , &rowAddress , &majorAddress , &minorAddress);

55

56 Status = XHwIcap_DeviceReadFrame(&HwIcap ,

57 top ,

58 block ,

59 rowAddress ,

60 majorAddress ,

61 minorAddress ,

62 (u32 *) &FrameData [0]);

63

64 #endif

65 if (Status != XST_SUCCESS) {

66 printf("Failed to Read Frame: %d \n\r", Status);

67 return XST_FAILURE;

68 }

69

70 /*

71 * Print Frame contents

72 */

73 for (Index = XHI_NUM_FRAME_WORDS + 1;

74 Index <= (XHI_NUM_FRAME_WORDS << 1) ; Index ++) {

75

76 printf("Frame Word %d -> \t %x \n\r",

77 (Index - XHI_NUM_FRAME_WORDS), FrameData[Index]);

78 }

79

80

81 print("ICAP things: \r\n");

82 printf("\tDeviceCode :\t%d\r\n", HwIcap.HwIcapConfig. DeviceId);

83 printf("\tBaseAddress :\t0x%x\r\n", HwIcap.HwIcapConfig.BaseAddress);

84 printf("\tIsReady :\t%d\r\n", HwIcap.IsReady);

85 printf("\tIsPolled:\t%d\r\n", HwIcap.IsPolled);

Yousef S. Iskander 163

86 printf("\tRows:\t%d\r\n", HwIcap.Rows);

87 printf("\tCols:\t%d\r\n", HwIcap.Cols);

88 printf("\tBramCols:\t%d\r\n", HwIcap.BramCols);

89 printf("\tBytesPerFrame :\t%d\r\n", HwIcap.BytesPerFrame);

90 printf("\tWordsPerFrame :\t%d\r\n", HwIcap.WordsPerFrame);

91 printf("\tClbBlockFrames :\t%d\r\n", HwIcap.ClbBlockFrames);

92 printf("\tBramBlockFrames :\t%d\r\n", HwIcap.BramBlockFrames);

93 printf("\tHClkRows:\t%d\r\n", HwIcap.HClkRows);

94 printf("\tDSPCols :\t%d\r\n", HwIcap.DSPCols);

95

96 print("Capturing ICAP.\r\n");

97 Status = XHwIcap_CommandCapture(& HwIcap);

98

99

100 u32 Packet;

101 u32 Data;

102 u32 TotalWords;

103 // int Status;

104 u32 WriteBuffer[READ_FRAME_SIZE];

105 u32 FrameBuffer[XHI_NUM_WORDS_FRAME_INCL_NULL_FRAME];

106 // u32 Index = 0;

107 Index = 0;

108 /*

109 XASSERT_NONVOID(InstancePtr != NULL);

110 XASSERT_NONVOID(InstancePtr ->IsReady == XCOMPONENT_IS_READY);

111 XASSERT_NONVOID(FrameBuffer != NULL);

112 */

113 /*

114 * DUMMY and SYNC

115 */

116 WriteBuffer[Index ++] = XHI_DUMMY_PACKET ;

117 WriteBuffer[Index ++] = XHI_SYNC_PACKET;

118 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

119 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

120

121 /*

122 * Reset CRC

123 */

124 Packet = XHwIcap_Type1Write(XHI_CMD) | 1;

125 WriteBuffer[Index ++] = Packet;

126 WriteBuffer[Index ++] = XHI_CMD_RCRC;

127 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

128 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

129

130 /*

131 * Setup CMD register to read configuration

132 */

133 Packet = XHwIcap_Type1Write(XHI_CMD) | 1;

134 WriteBuffer[Index ++] = Packet;

135 WriteBuffer[Index ++] = XHI_CMD_RCFG;

136 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

137 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

138 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

139

140 /*

141 * Setup FAR register.

142 */

143 Packet = XHwIcap_Type1Write(XHI_FAR) | 1;

144

145 /*

146 #if XHI_FAMILY == XHI_DEV_FAMILY_V4 /* Virtex 4 * /

147 Data = XHwIcap_SetupFarV4(Top , Block , HClkRow , MajorFrame , MinorFrame);

148 #elif XHI_FAMILY == XHI_DEV_FAMILY_V5 /* Virtex 5 * /

149 Data = XHwIcap_SetupFarV5(Top , Block , HClkRow , MajorFrame , MinorFrame);

150 #endif

151 */

152 Data = 0x000088a3;

153 WriteBuffer[Index ++] = Packet;

154 WriteBuffer[Index ++] = Data;

155

156 /*

157 * Setup read data packet header.

158 * The frame will be preceeded by a dummy frame , and we need to read one

159 * extra word - see Configuration Guide Chapter 8

160 */

161 TotalWords = (HwIcap.WordsPerFrame << 1) + 1;

162

163 /*

164 * Create Type one packet

165 */

166 Packet = XHwIcap_Type1Read(XHI_FDRO) | TotalWords;

167 WriteBuffer[Index ++] = Packet;

168 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

169 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

170

171 /*

172 * Write the data to the FIFO and initiate the transfer of data

Yousef S. Iskander 164

173 * present in the FIFO to the ICAP device

174 */

175 Status = XHwIcap_DeviceWrite (&HwIcap , (u32 *)& WriteBuffer [0], Index);

176 if (Status != XST_SUCCESS) {

177 print("Device write failure .\r\n");

178 return XST_FAILURE;

179 }

180

181 /*

182 * Wait till the write is done.

183 */

184 print("Waiting ...\r\n");

185 while (XHwIcap_IsDeviceBusy (& HwIcap) != FALSE);

186

187

188 /*

189 * Read the frame of the data including the NULL frame.

190 */

191 Status = XHwIcap_DeviceRead (&HwIcap , FrameBuffer , TotalWords);

192 if (Status != XST_SUCCESS) {

193 return XST_FAILURE;

194 }

195

196 /*

197 * Send DESYNC command

198 */

199 Status = XHwIcap_CommandDesync (& HwIcap);

200 if (Status != XST_SUCCESS) {

201 return XST_FAILURE;

202 }

203

204

205 for (Index = XHI_NUM_FRAME_WORDS + 1;

206 Index <= (XHI_NUM_FRAME_WORDS << 1) ; Index ++) {

207

208 printf("Frame Word %d -> \t %x \n\r",

209 (Index - XHI_NUM_FRAME_WORDS), FrameBuffer[Index]);

210 }

211

212 }

213

214

215 printf("\n\rHwIcapReadFramePolledExample Passed Successfully .\n\r\n\r");

216

217 }

218

219

220 u32 readFrameOffset (const u32 frame , const u32 offset) {

221

222 #ifdef DMD_DEBUG

223 print("\n\n\n -- Entering readFrameOffset , zapatos --\r\n");

224 #endif

225

226 int Status;

227 u32 Index;

228 XHwIcap_Config *CfgPtr;

229 u32 block , top , rowAddress , majorAddress , minorAddress;

230

231 // u32 FrameData[XHI_NUM_WORDS_FRAME_INCL_NULL_FRAME];

232

233 /*

234 * Initialize the HwIcap instance.

235 */

236 CfgPtr = XHwIcap_LookupConfig(HWICAP_DEVICE_ID);

237 if (CfgPtr == NULL) {

238 print("Failure to LC.\r\n");

239 return XST_FAILURE;

240 }

241

242 Status = XHwIcap_CfgInitialize (&HwIcap , CfgPtr , CfgPtr ->BaseAddress);

243 if (Status != XST_SUCCESS) {

244 print("Failure to init.\r\n");

245 return XST_FAILURE;

246 }

247

248 /*

249 * Perform a self -test to ensure that the hardware was built correctly.

250 */

251 Status = XHwIcap_SelfTest (& HwIcap);

252 if (Status != XST_SUCCESS) {

253 print("Failure to self -test.\r\n");

254 return XST_FAILURE;

255 }

256

257 /*

258 * Read the Frame

259 */

Yousef S. Iskander 165

260 #ifdef DMD_DEBUG

261 print("Reading frame.\r\n");

262 #endif

263

264 //#ifndef DMD_SERVER

265 #if ((XHI_FAMILY == XHI_DEV_FAMILY_V4) || (XHI_FAMILY == XHI_DEV_FAMILY_V5))

266 Status = XHwIcap_DeviceReadFrame(&HwIcap ,

267 HWICAP_EXAMPLE_TOP ,

268 HWICAP_EXAMPLE_BLOCK ,

269 HWICAP_EXAMPLE_HCLK ,

270 HWICAP_EXAMPLE_MAJOR ,

271 HWICAP_EXAMPLE_MINOR ,

272 (u32 *) &FrameData [0]);

273

274

275 convertFrameAddressToParts(frame , &block , &top , &rowAddress , &majorAddress , &minorAddress);

276

277 /* Status = XHwIcap_DeviceReadFrame (& HwIcap ,

278 top ,

279 block ,

280 rowAddress ,

281 majorAddress ,

282 minorAddress ,

283 (u32 *) & FrameData [0]);

284 */

285 #endif

286 //#endif

287

288 if (Status != XST_SUCCESS) {

289 printf("Failed to Read Frame: %d \n\r", Status);

290 return XST_FAILURE;

291 }

292

293 /*

294 * Print Frame contents

295 */

296 for (Index = XHI_NUM_FRAME_WORDS + 1;

297 Index <= (XHI_NUM_FRAME_WORDS << 1) ; Index ++) {

298

299 printf("Frame Word %d -> \t %x \n\r",

300 (Index - XHI_NUM_FRAME_WORDS), FrameData[Index]);

301 }

302

303 #ifndef DMD_SERVER

304 print("ICAP things: \r\n");

305 printf("\tDeviceCode :\t%d\r\n", HwIcap.HwIcapConfig. DeviceId);

306 printf("\tBaseAddress :\t0x%x\r\n", HwIcap.HwIcapConfig.BaseAddress);

307 printf("\tIsReady :\t%d\r\n", HwIcap.IsReady);

308 printf("\tIsPolled:\t%d\r\n", HwIcap.IsPolled);

309 printf("\tRows:\t%d\r\n", HwIcap.Rows);

310 printf("\tCols:\t%d\r\n", HwIcap.Cols);

311 printf("\tBramCols:\t%d\r\n", HwIcap.BramCols);

312 printf("\tBytesPerFrame :\t%d\r\n", HwIcap.BytesPerFrame);

313 printf("\tWordsPerFrame :\t%d\r\n", HwIcap.WordsPerFrame);

314 printf("\tClbBlockFrames :\t%d\r\n", HwIcap.ClbBlockFrames);

315 printf("\tBramBlockFrames :\t%d\r\n", HwIcap.BramBlockFrames);

316 printf("\tHClkRows:\t%d\r\n", HwIcap.HClkRows);

317 printf("\tDSPCols :\t%d\r\n", HwIcap.DSPCols);

318

319 print("Capturing ICAP.\r\n");

320 #endif

321 Status = XHwIcap_CommandCapture(& HwIcap);

322

323

324 u32 Packet;

325 u32 Data;

326 u32 TotalWords;

327 // int Status;

328 u32 WriteBuffer[READ_FRAME_SIZE];

329 u32 FrameBuffer[XHI_NUM_WORDS_FRAME_INCL_NULL_FRAME];

330 // u32 Index = 0;

331 Index = 0;

332 /*

333 XASSERT_NONVOID(InstancePtr != NULL);

334 XASSERT_NONVOID(InstancePtr ->IsReady == XCOMPONENT_IS_READY);

335 XASSERT_NONVOID(FrameBuffer != NULL);

336 */

337 /*

338 * DUMMY and SYNC

339 */

340 WriteBuffer[Index ++] = XHI_DUMMY_PACKET ;

341 WriteBuffer[Index ++] = XHI_SYNC_PACKET;

342 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

343 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

344

345 /*

346 * Reset CRC

Yousef S. Iskander 166

347 */

348 Packet = XHwIcap_Type1Write(XHI_CMD) | 1;

349 WriteBuffer[Index ++] = Packet;

350 WriteBuffer[Index ++] = XHI_CMD_RCRC;

351 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

352 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

353

354 /*

355 * Setup CMD register to read configuration

356 */

357 Packet = XHwIcap_Type1Write(XHI_CMD) | 1;

358 WriteBuffer[Index ++] = Packet;

359 WriteBuffer[Index ++] = XHI_CMD_RCFG;

360 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

361 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

362 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

363

364 /*

365 * Setup FAR register.

366 */

367 Packet = XHwIcap_Type1Write(XHI_FAR) | 1;

368

369 /*

370 #if XHI_FAMILY == XHI_DEV_FAMILY_V4 /* Virtex 4 * /

371 Data = XHwIcap_SetupFarV4(Top , Block , HClkRow , MajorFrame , MinorFrame);

372 #elif XHI_FAMILY == XHI_DEV_FAMILY_V5 /* Virtex 5 * /

373 Data = XHwIcap_SetupFarV5(Top , Block , HClkRow , MajorFrame , MinorFrame);

374 #endif

375 */

376 Data = frame;

377 WriteBuffer[Index ++] = Packet;

378 WriteBuffer[Index ++] = Data;

379

380 /*

381 * Setup read data packet header.

382 * The frame will be preceeded by a dummy frame , and we need to read one

383 * extra word - see Configuration Guide Chapter 8

384 */

385 TotalWords = (HwIcap.WordsPerFrame << 1) + 1;

386

387 /*

388 * Create Type one packet

389 */

390 Packet = XHwIcap_Type1Read(XHI_FDRO) | TotalWords;

391 WriteBuffer[Index ++] = Packet;

392 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

393 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

394

395 /*

396 * Write the data to the FIFO and initiate the transfer of data

397 * present in the FIFO to the ICAP device

398 */

399 Status = XHwIcap_DeviceWrite (&HwIcap , (u32 *)& WriteBuffer [0], Index);

400 if (Status != XST_SUCCESS) {

401 print("Device write failure .\r\n");

402 return XST_FAILURE;

403 }

404

405 /*

406 * Wait till the write is done.

407 */

408 #ifdef DMD_DEBUG

409 print("Waiting ...\r\n");

410 #endif

411 while (XHwIcap_IsDeviceBusy (& HwIcap) != FALSE);

412

413

414 /*

415 * Read the frame of the data including the NULL frame.

416 */

417 Status = XHwIcap_DeviceRead (&HwIcap , FrameBuffer , TotalWords);

418 if (Status != XST_SUCCESS) {

419 return XST_FAILURE;

420 }

421

422 /*

423 * Send DESYNC command

424 */

425 Status = XHwIcap_CommandDesync (& HwIcap);

426 if (Status != XST_SUCCESS) {

427 return XST_FAILURE;

428 }

429

430

431 for (Index = XHI_NUM_FRAME_WORDS + 1;

432 Index <= (XHI_NUM_FRAME_WORDS << 1) ; Index ++) {

433 #ifndef DMD_SERVER

Yousef S. Iskander 167

434 printf("Frame Word %d -> \t 0x%08x \n\r" ,(Index - XHI_NUM_FRAME_WORDS), FrameBuffer[Index]);

435 #endif

436

437 }

438

439 u32 targetWordIdx = (int)(offset / 32) + (XHI_NUM_FRAME_WORDS + 1);

440 u32 targetBitIdx = offset % 32;

441

442 u32 result = (FrameBuffer[targetWordIdx] >> targetBitIdx) & 0x1;

443 #ifndef DMD_SERVER

444 printf("FrameBuffer [%d]: 0x%08x >> %d = 0x%x",

445 targetWordIdx - (XHI_NUM_FRAME_WORDS + 1), FrameBuffer[targetWordIdx], targetBitIdx , result);

446 printf("\n\rHwIcapReadFramePolledExample Passed Successfully .\n\r\n\r");

447 #else

448 printf("%x\n\r", result);

449 #endif

450

451

452 return result;

453

454 }

455

456 u32 initIcap(void) {

457 #ifdef DMD_DEBUG

458 print("\r\n\n\n -- Entering initIcap --\r\n");

459 #endif

460

461

462 XHwIcap_Config *CfgPtr;

463 int Status;

464

465 /*

466 * Lookup HwIcap handle and initialize it.

467 */

468 CfgPtr = XHwIcap_LookupConfig(HWICAP_DEVICE_ID);

469 if (CfgPtr == NULL) {

470 print("Failure to LC.\r\n");

471 return XST_FAILURE;

472 }

473

474 Status = XHwIcap_CfgInitialize (&HwIcap , CfgPtr , CfgPtr ->BaseAddress);

475 if (Status != XST_SUCCESS) {

476 print("Failure to init.\r\n");

477 return XST_FAILURE;

478 }

479

480 /*

481 * Perform a self -test to ensure that the hardware was built correctly.

482 */

483 Status = XHwIcap_SelfTest (& HwIcap);

484 if (Status != XST_SUCCESS) {

485 print("Failure to self -test.\r\n");

486 return XST_FAILURE;

487 }

488

489

490 #ifdef DMD_DEBUG

491 print("\r\n\n\n -- Leaving initIcap --\r\n");

492 #endif

493

494 }

495

496 u32 readFrame (const u32 frame , u32 *FrameBuffer) {

497 #ifdef DMD_DEBUG

498 print("\r\n\n\n -- Entering readFrame , zapatos --\r\n");

499 #endif

500

501 int Status;

502 u32 Index;

503

504 /*

505 XHwIcap_Config *CfgPtr;

506 // u32 block , top , rowAddress , majorAddress , minorAddress;

507

508 /*

509 * Lookup HwIcap handle and initialize it.

510 * /

511 CfgPtr = XHwIcap_LookupConfig (HWICAP_DEVICE_ID);

512 if (CfgPtr == NULL) {

513 print (" Failure to LC.\r\n");

514 return XST_FAILURE;

515 }

516

517 Status = XHwIcap_CfgInitialize (& HwIcap , CfgPtr , CfgPtr -> BaseAddress);

518 if (Status != XST_SUCCESS) {

519 print (" Failure to init .\r\n");

520 return XST_FAILURE;

Yousef S. Iskander 168

521 }

522

523 /*

524 * Perform a self -test to ensure that the hardware was built correctly.

525 * /

526 Status = XHwIcap_SelfTest (& HwIcap);

527 if (Status != XST_SUCCESS) {

528 print (" Failure to self -test .\r\n");

529 return XST_FAILURE;

530 }

531 */

532 // initialize it the first time throught

533 if (! isHwIcapInit) initIcap ();

534

535 /*

536 * Read the Frame

537 */

538 #ifdef DMD_DEBUG

539 print("Reading frame.\r\n");

540 #endif

541

542 // issue a capture command to capture ff

543 Status = XHwIcap_CommandCapture(& HwIcap);

544

545 u32 Packet;

546 u32 Data;

547 u32 TotalWords;

548

549 u32 WriteBuffer[READ_FRAME_SIZE];

550 Index = 0;

551 /*

552 * DUMMY and SYNC

553 */

554 WriteBuffer[Index ++] = XHI_DUMMY_PACKET ;

555 WriteBuffer[Index ++] = XHI_SYNC_PACKET;

556 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

557 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

558

559 /*

560 * Reset CRC

561 */

562 Packet = XHwIcap_Type1Write(XHI_CMD) | 1;

563 WriteBuffer[Index ++] = Packet;

564 WriteBuffer[Index ++] = XHI_CMD_RCRC;

565 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

566 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

567

568 /*

569 * Setup CMD register to read configuration

570 */

571 Packet = XHwIcap_Type1Write(XHI_CMD) | 1;

572 WriteBuffer[Index ++] = Packet;

573 WriteBuffer[Index ++] = XHI_CMD_RCFG;

574 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

575 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

576 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

577

578 /*

579 * Setup FAR register.

580 */

581 Packet = XHwIcap_Type1Write(XHI_FAR) | 1;

582

583 // this is not necessary because we have the real frame address

584 /*

585 #if XHI_FAMILY == XHI_DEV_FAMILY_V4 /* Virtex 4 * /

586 Data = XHwIcap_SetupFarV4(Top , Block , HClkRow , MajorFrame , MinorFrame);

587 #elif XHI_FAMILY == XHI_DEV_FAMILY_V5 /* Virtex 5 * /

588 Data = XHwIcap_SetupFarV5(Top , Block , HClkRow , MajorFrame , MinorFrame);

589 #endif

590 */

591 Data = frame;

592 WriteBuffer[Index ++] = Packet;

593 WriteBuffer[Index ++] = Data;

594

595 /*

596 * Setup read data packet header.

597 * The frame will be preceeded by a dummy frame , and we need to read one

598 * extra word - see Configuration Guide Chapter 8

599 */

600 TotalWords = (HwIcap.WordsPerFrame << 1) + 1;

601

602 /*

603 * Create Type one packet

604 */

605 Packet = XHwIcap_Type1Read(XHI_FDRO) | TotalWords;

606 WriteBuffer[Index ++] = Packet;

607 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

Yousef S. Iskander 169

608 WriteBuffer[Index ++] = XHI_NOOP_PACKET;

609

610 /*

611 * Write the data to the FIFO and initiate the transfer of data

612 * present in the FIFO to the ICAP device

613 */

614 Status = XHwIcap_DeviceWrite (&HwIcap , (u32 *)& WriteBuffer [0], Index);

615 if (Status != XST_SUCCESS) {

616 print("Device write failure .\r\n");

617 return XST_FAILURE;

618 }

619

620 /*

621 * Wait till the write is done.

622 */

623 #ifdef DMD_DEBUG

624 print("Waiting ...\r\n");

625 #endif

626 while (XHwIcap_IsDeviceBusy (& HwIcap) != FALSE);

627

628

629 /*

630 * Read the frame of the data including the NULL frame.

631 */

632 Status = XHwIcap_DeviceRead (&HwIcap , FrameBuffer , TotalWords);

633 if (Status != XST_SUCCESS) {

634 return XST_FAILURE;

635 }

636

637 /*

638 * Send DESYNC command

639 */

640 Status = XHwIcap_CommandDesync (& HwIcap);

641 if (Status != XST_SUCCESS) {

642 return XST_FAILURE;

643 }

644

645 #ifndef DMD_SERVER

646 for (Index = XHI_NUM_FRAME_WORDS + 1;

647 Index <= (XHI_NUM_FRAME_WORDS << 1) ; Index ++) {

648 printf("Frame Word %d -> \t 0x%08x \n\r" ,(Index - XHI_NUM_FRAME_WORDS), FrameBuffer[Index]);

649 }

650

651 #endif

652

653 return XST_SUCCESS;

654 }

655

656

657 // Convert the given frame address to individual components.

658 void convertFrameAddressToParts(u32 frameAddress ,

659 u32 *block , u32 *top , u32 *rowAddress , u32 *majorAddress , u32 *minorAddress) {

660

661 *block = (frameAddress >> XHI_FAR_BLOCK_SHIFT) && XHI_FAR_BLOCK_MASK;

662 *top = (frameAddress >> XHI_FAR_TOP_BOTTOM_SHIFT) && XHI_FAR_TOP_BOTTOM_MASK;

663 *rowAddress = (frameAddress >> XHI_FAR_ROW_ADDR_SHIFT) && XHI_FAR_ROW_ADDR_MASK ;

664 *majorAddress= (frameAddress >> XHI_FAR_COLUMN_ADDR_SHIFT)&& XHI_FAR_COLUMN_ADDR_MASK;

665 *minorAddress= (frameAddress >> XHI_FAR_MINOR_ADDR_SHIFT) && XHI_FAR_MINOR_ADDR_MASK;

666

667 xil_printf("\r\nblock: 0x%x\r\n", *block);

668 xil_printf("top: 0x%x\r\n", *top);

669 xil_printf("rowAddress: 0x%x\r\n", *rowAddress);

670 xil_printf("majorAddress: 0x%x\r\n", *majorAddress);

671 xil_printf("minorAddress: 0x%x\r\n", *minorAddress);

672 }

Yousef S. Iskander 170

Listing B.10: LLD Workstation Console Source.
1 /*

2 Yousef S. Iskander

3 Shamelessly "adapted" from

4 the GNU Readline library example "fileman.c"

5

6 GNU Copyright from original file.

7 Copyright (C) 1987 -2009 Free Software Foundation , Inc.

8

9 This file is part of the GNU Readline Library (Readline), a library for

10 reading lines of text with interactive input and history editing.

11

12 Readline is free software : you can redistribute it and/or modify

13 it under the terms of the GNU General Public License as published by

14 the Free Software Foundation , either version 3 of the License , or

15 (at your option) any later version.

16

17 Readline is distributed in the hope that it will be useful ,

18 but WITHOUT ANY WARRANTY; without even the implied warranty of

19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

20 GNU General Public License for more details.

21

22 You should have received a copy of the GNU General Public License

23 along with Readline. If not , see <http :// www.gnu.org/licenses />.

24 */

25

26 #include "Breakpoint.h"

27

28 #ifdef HAVE_CONFIG_H

29 # include <config.h>

30 #endif

31

32 #include <sys/types.h>

33 #ifdef HAVE_SYS_FILE_H

34 # include <sys/file.h>

35 #endif

36 #include <sys/stat.h>

37

38 #ifdef HAVE_UNISTD_H

39 # include <unistd.h>

40 #endif

41

42 #include <fstream >

43 #include <fcntl.h>

44 #include <cstdio >

45 #include <iostream >

46 #include <sstream >

47 #include <string >

48 #include <vector >

49 #include <errno.h>

50

51 #if defined (HAVE_STRING_H)

52 # include <string.h>

53 #else /* ! HAVE_STRING_H */

54 # include <strings.h>

55 #endif /* ! HAVE_STRING_H */

56

57 //#ifdef HAVE_STDLIB_H

58 # include <stdlib.h>

59 //#endif

60

61 #include <readline/readline.h>

62 #include <readline/history.h>

63 #include <vector >

64 #include <map >

65 #include "BitInfo.h"

66 #include "serial.h"

67

68 using namespace std;

69

70 void initialize_readline ();

71 char *command_generator PARAMS ((const char *, int));

72 char ** fileman_completion PARAMS ((const char *, int , int));

73 char *stripwhite (char *string);

74 int execute_line (char *line);

75

76 bool bitInfoSignalIndexReverseSort (const BitInfo& a, const BitInfo& b);

77 std:: string convertIntToStr(const uint32_t num);

78

79 void tokenize(const std:: string& str , std::vector <string >& tokens , const std:: string& delimiters = " ");

80

81 /* The names of functions that actually do the manipulation. */

82 int com_run PARAMS ((char *));

83 int com_stop PARAMS ((char *));

84 int com_step PARAMS ((char *));

85 int com_reset PARAMS ((char *));

Yousef S. Iskander 171

86 int com_walk PARAMS ((char *));

87 int com_source PARAMS ((char *));

88 int com_connect PARAMS ((char *));

89 int com_disconnect PARAMS ((char *));

90 int com_continue PARAMS ((char *));

91 int com_constrain PARAMS ((char *));

92 int com_break PARAMS ((char *));

93 int com_delete PARAMS ((char *));

94 int com_info PARAMS ((char *));

95 int com_disable PARAMS ((char *));

96 int com_enable PARAMS ((char *));

97 int com_print PARAMS ((char *));

98 int com_loadlogic PARAMS ((char *));

99 int com_addport PARAMS ((char *));

100 int com_delport PARAMS ((char *));

101 int com_display PARAMS ((char *));

102 int com_undisplay PARAMS ((char *));

103 int com_clear PARAMS ((char *));

104 int com_ping PARAMS ((char *));

105 int com_help PARAMS ((char *));

106 int com_quit PARAMS ((char *));

107

108 void enableBreakpoint(const uint32_t idx);

109 void disableBreakpoint(const uint32_t idx);

110 bool isBreakpointEnabled(const uint32_t idx);

111 uint32_t getBreakpointMask ();

112 uint32_t getActiveBreakpointMask ();

113 void breakpointCommand(const std:: string &command , const uint32_t idx);

114 void makeBreakpoint(char *arg , const breakpoint_t breakpointType);

115 void createDebugLogic ();

116 std:: string sendRemoteCommand(const std:: string &command);

117 char *signalname_generator(const char *text , int state);

118 void createPrintList(std::list <std::string > &frameList , std:: string &printArgs) ;

119

120 // Globals

121 int fd; // serial port handle , -1 is not connected

122 BitMap bitInfoMap; // BitMap for logic allocations

123

124 /* Breakpoint storage */

125 std::vector <Breakpoint > breakpoints;

126

127 /* Port storage */

128 std::map <std::string , uint8_t > ports;

129

130 /* A structure which contains information on the commands this program

131 can understand. */

132

133 typedef struct {

134 char *name; /* User printable name of the function. */

135 rl_icpfunc_t *func; /* Function to call to do the job. */

136 char *doc; /* Documentation for this function. */

137 } COMMAND;

138

139 COMMAND commands [] = {

140 { (char*)"run", com_run , (char*)"Run the design with the primary system clock" },

141 { (char*)"stop", com_stop , (char*)"Stop execution" },

142 { (char*)"step", com_step , (char*)"Step the design a given number of clock cycles" },

143 { (char*)"reset", com_reset , (char*)"Inititate a design reset" },

144 { (char*)"walk", com_walk , (char*)"Automatically issue time single step commands" },

145 { (char*)"connect", com_connect , (char*)"Connect to the development board using the given device" },

146 { (char*)"disconnect", com_disconnect , (char*)"Disconnect from the development board." },

147 { (char*)"continue", com_continue , (char*)"Continue executing the design from the current state" },

148 { (char*)"constrain", com_constrain , (char*)"Build logic to monitor signals not to violate the given constraints" },

149 { (char*)"break", com_break , (char*)"Specify hardware breakpoints with the given conditions" },

150 { (char*)"delete", com_delete , (char*)"Delete a breakpoint" },

151 { (char*)"info", com_info , (char*)"Print information regarding breakpoints , display statements , etc." },

152 { (char*)"source", com_source , (char*)"Read commands from a file." },

153 { (char*)"disable", com_disable , (char*)"Disable the specified breakpoint" },

154 { (char*)"enable", com_enable , (char*)"Enable the specified breakpoint" },

155 { (char*)"print", com_print , (char*)"\n\t\tprint [-v | --verbose] <net > Print the current value of the register" },

156 { (char*)"display", com_display , (char*)"Specify registers to automatically print after each step" },

157 { (char*)"undisplay", com_undisplay , (char*)"Remove registers from the queue that automatically print" },

158 { (char*)"addport", com_addport , (char*)"Add a port with the given name and size" },

159 { (char*)"delport", com_delport , (char*)"Remove a port with the given name" },

160 { (char*)"load -logic", com_loadlogic , (char*)"Load the named logic allocation file and create a register model" },

161 { (char*)"clear", com_clear , (char*)"Clear the screen" },

162 { (char*)"ping", com_ping , (char*)"Ping the remote system" },

163 { (char*)"help", com_help , (char*)"Display this text" },

164 { (char*)"?", com_help , (char*)"Synonym for ‘help’" },

165 { (char*)"quit", com_quit , (char*)"Quit the application and exit" },

166 { (char*)"q", com_quit , (char*)"Synonym for quit" },

167 { (char *)NULL , (rl_icpfunc_t *)NULL , (char *)NULL }

168 };

169

170 /* Forward declarations. */

171 COMMAND *find_command (char *name);

172

Yousef S. Iskander 172

173 /* The name of this program , as taken from argv [0]. */

174 char *progname;

175

176 /* When non -zero , this global means the user is done using this program. */

177 int done;

178

179 /* Copy a string into heap and return a pointer */

180 char *dupstr (char *s)

181 {

182 char *r;

183

184 r = (char*) malloc (strlen (s) + 1);

185 strcpy (r, s);

186 return (r);

187 }

188

189 int main (int argc , char **argv)

190 {

191 char *line , *s;

192

193 fd = -1; // we are not yet connected

194

195 progname = argv [0];

196

197 initialize_readline (); /* Bind our completer. */

198

199 /* Loop reading and executing lines until the user quits. */

200 for (; done == 0;)

201 {

202 line = readline ("dmd > ");

203

204 if (!line)

205 break;

206

207 /* Remove leading and trailing whitespace from the line.

208 Then , if there is anything left , add it to the history list

209 and execute it. */

210 s = stripwhite (line);

211

212 if (*s)

213 {

214 add_history (s);

215 execute_line (s);

216 }

217

218 free (line);

219 }

220 exit (0);

221 }

222

223 /* Execute a command line. */

224 int execute_line (char *line)

225 {

226 register int i;

227 COMMAND *command;

228 char *word;

229

230 /* Isolate the command word. */

231 i = 0;

232 while (line[i] && whitespace (line[i]))

233 i++;

234 word = line + i;

235

236 while (line[i] && !whitespace (line[i]))

237 i++;

238

239 if (line[i])

240 line[i++] = ’\0’;

241

242 command = find_command (word);

243

244 if (! command)

245 {

246 fprintf (stderr , "%s: No such command for DMD.\n", word);

247 return (-1);

248 }

249

250 /* Get argument to command , if any. */

251 while (whitespace (line[i]))

252 i++;

253

254 word = line + i;

255

256 /* Call the function. */

257 return ((*(command ->func)) (word));

258 }

259

Yousef S. Iskander 173

260 /* Look up NAME as the name of a command , and return a pointer to that

261 command. Return a NULL pointer if NAME isn ’t a command name. */

262 COMMAND *find_command (char *name)

263 {

264 register int i;

265

266 for (i = 0; commands[i].name; i++)

267 if (strcmp (name , commands[i].name) == 0)

268 return (& commands[i]);

269

270 return ((COMMAND *)NULL);

271 }

272

273 /* Strip whitespace from the start and end of STRING. Return a pointer

274 into STRING. */

275 char *stripwhite (char *string)

276 {

277 register char *s, *t;

278

279 for (s = string; whitespace (*s); s++)

280 ;

281

282 if (*s == 0)

283 return (s);

284

285 t = s + strlen (s) - 1;

286 while (t > s && whitespace (*t))

287 t--;

288 *++t = ’\0’;

289

290 return s;

291 }

292

293 /* ** */

294 /* */

295 /* Interface to Readline Completion */

296 /* */

297 /* ** */

298

299 /* Tell the GNU Readline library how to complete . We want to try to complete

300 on command names if this is the first word in the line , or on filenames

301 if not. */

302 void initialize_readline ()

303 {

304 /* Allow conditional parsing of the ~/. inputrc file. */

305 rl_readline_name = "dmd";

306

307 /* Tell the completer that we want a crack first. */

308 rl_attempted_completion_function = fileman_completion;

309 }

310

311 /* Attempt to complete on the contents of TEXT. START and END bound the

312 region of rl_line_buffer that contains the word to complete . TEXT is

313 the word to complete. We can use the entire contents of rl_line_buffer

314 in case we want to do some simple parsing. Return the array of matches ,

315 or NULL if there aren ’t any. */

316 char ** fileman_completion (const char *text , int start , int end)

317 {

318 char ** matches;

319

320 matches = (char **) NULL;

321

322 /* If this word is at the start of the line , then it is a command

323 to complete. Otherwise it is the name of a file in the current

324 directory.

325 It might also be the name of a signal.

326 */

327

328 if (start == 0)

329 matches = rl_completion_matches (text , command_generator);

330 else

331 matches = rl_completion_matches (text , signalname_generator);

332

333 return (matches);

334 }

335

336 /* Generator function for command completion. STATE lets us know whether

337 to start from scratch; without any state (i.e. STATE == 0), then we

338 start at the top of the list. */

339 char *command_generator (const char *text , int state)

340 {

341 static int list_index , len;

342 char *name;

343

344 /* If this is a new word to complete , initialize now. This includes

345 saving the length of TEXT for efficiency , and initializing the index

346 variable to 0. */

Yousef S. Iskander 174

347

348 if (! state)

349 {

350 list_index = 0;

351 len = strlen (text);

352 }

353

354 /* Return the next name which partially matches from the command list. */

355 while (name = commands[list_index].name)

356 {

357 list_index ++;

358

359 if (strncmp (name , text , len) == 0)

360 return (dupstr(name));

361 }

362

363 /* If no names matched , then return NULL. */

364 return ((char *)NULL);

365 }

366

367 char *signalname_generator(const char *text , int state)

368 {

369 static BitMap :: iterator bitMapIt;

370 static int len;

371 // list_index , len;

372 char *name;

373

374 /* If this is a new word to complete , initialize now. This includes

375 saving the length of TEXT for efficiency , and initializing the index

376 variable to 0. */

377 if (! state)

378 {

379 bitMapIt = bitInfoMap.begin ();

380 // list_index = 0;

381 len = strlen (text);

382 }

383

384 /* Return the next name which partially matches from the command list. */

385 // while (name = commands[list_index]. name)

386 while (bitMapIt != bitInfoMap.end ())

387 {

388 // list_index ++;

389 name = const_cast <char*>(bitMapIt ->first.c_str ());

390 bitMapIt ++;

391 if (strncmp (name , text , len) == 0)

392 return (dupstr(name));

393 }

394

395 /* If no names matched , then return NULL. */

396 return ((char *)NULL);

397 }

398 /* ** */

399 /* */

400 /* DMD Commands */

401 /* */

402 /* ** */

403

404 int com_run (char *arg) {

405 printf("Starting the design. Type ’stop’ to stop execution .\n");

406 std:: string result = sendRemoteCommand("run");

407 cout << result << endl;

408 }

409 int com_stop (char *arg) {

410 printf("Design stopped .\n");

411 std:: string result = sendRemoteCommand("stop");

412 cout << result << endl;

413 }

414

415 int com_step (char *arg) {

416

417 // const uint8_t steps = atoi(arg);

418 std:: string command;

419 command.append("step ");

420 command.append(arg);

421

422 cout << sendRemoteCommand(command);

423 }

424

425 int com_reset (char *arg) {

426 printf("toggle reset line\n");

427 }

428

429 int com_walk (char *arg) {

430

431 }

432

433 int com_source(char *arg) {

Yousef S. Iskander 175

434 char *s;

435 // get the file name and open a stream

436 FILE *sourceFile = fopen(arg , "r");

437

438 if (sourceFile != NULL) {

439 char *s;

440 char line [128];

441 uint32_t lineNumber = 1;

442

443 // read each line and submit to the command processor

444 while (fgets (line , sizeof line , sourceFile) != NULL)

445 {

446 // printf (" Got: %s", line);

447 s = stripwhite(line);

448 if (*s) {

449 // strip trailing \n

450 if (s[strlen(s) - 1] == ’\n’) {

451 s[strlen(s) - 1] = ’\0’;

452 }

453

454 // if there ’s still something left ..

455 if (strlen(s)) {

456 // if the command fails , just exit

457 if (execute_line(s) == -1) {

458 printf("Execution failed on line %d: %s\n", lineNumber , s);

459 break;

460 }

461 }

462 }

463 lineNumber ++;

464 }

465 fclose (sourceFile);

466

467 } else {

468 printf("There was a problem opening file: %s.\n", arg);

469 return -1;

470 }

471

472 }

473

474

475 int com_connect (char *arg) {

476 printf("Connecting on %s...", arg);

477

478 fd = setup_serial(arg);

479

480 if (fd != -1)

481 printf("done.\n");

482 else

483 printf("Problem connecting .\n");

484 }

485

486 int com_disconnect (char *arg) {

487 printf("Disconnecting from %s\n", arg);

488

489 close_serial(fd);

490 }

491

492 int com_continue (char *arg) {

493 printf("continue execution\n");

494

495 std:: string result = sendRemoteCommand("continue");

496 cout << result << endl;

497 }

498

499 int com_constrain (char *arg) {

500 makeBreakpoint(arg , CONSTRAINT);

501 createDebugLogic ();

502 }

503

504 int com_break (char *arg) {

505 makeBreakpoint(arg , BREAKPOINT);

506 createDebugLogic ();

507 }

508

509 int com_delete(char *arg) {

510 const uint8_t breakpointNumber = atoi(arg);

511

512 // rather than erase , just reset the breakpoint

513 // slot to 1’b0 and disable in hardware

514 Breakpoint *bp = &breakpoints[breakpointNumber];

515 bp ->breakpointText = "1’b0";

516

517 // breakpoints.erase(breakpoints.begin ()+ breakpointNumber);

518

519 // renumber the remaining breakpoints

520 /*

Yousef S. Iskander 176

521 for(int i=0; i< breakpoints.size (); i++) {

522 Breakpoint *bp = & breakpoints[i];

523 bp ->idx = i;

524 }*/

525

526 // disable this breakpoint

527 disableBreakpoint(breakpointNumber);

528 createDebugLogic ();

529 }

530

531 /*

532 int com_delete_old(char *arg) {

533 const uint8_t breakpointNumber = atoi(arg);

534

535 breakpoints.erase(breakpoints.begin ()+ breakpointNumber);

536

537 // renumber the remaining breakpoints

538 for(int i=0; i< breakpoints.size (); i++) {

539 Breakpoint *bp = & breakpoints[i];

540 bp ->idx = i;

541 }

542

543 createDebugLogic ();

544 }

545 */

546

547 int com_loadlogic(char *arg) {

548 const std:: string logicAllocFile = arg;

549

550 // parse the logic allocation model

551 parseLogicAllocFile(logicAllocFile , bitInfoMap);

552

553 cout << bitInfoMap.size() << " components available." << endl;

554 }

555

556

557 void makeBreakpoint(char *arg , const breakpoint_t breakpointType) {

558 // first scan the vector for the greatest index number (always at the end)

559 uint16_t nextIdx;

560 if (breakpoints.size ())

561 nextIdx = breakpoints[breakpoints.size () -1].idx + 1;

562 else

563 nextIdx = 0;

564

565 Breakpoint bp;

566 bp.idx = nextIdx;

567 //bp.isEnabled = true;

568 bp.breakpointText = arg;

569 bp.breakpointType = breakpointType;

570

571 // add this breakpoint to the vector

572 breakpoints.push_back(bp);

573

574 // enable this breakpoint

575 enableBreakpoint (nextIdx);

576

577 printf("Breakpoint %d: %s\n", nextIdx , arg);

578 }

579

580 void enableBreakpoint(const uint32_t idx) {

581 const std:: string command = "enable ";

582 breakpointCommand(command , idx);

583 }

584

585 void disableBreakpoint(const uint32_t idx) {

586 const std:: string command = "disable ";

587 breakpointCommand(command , idx);

588 }

589

590 void breakpointCommand(const std:: string &command , const uint32_t idx) {

591

592 if (idx >= 0 && idx < 32) {

593 std:: string resultStr = sendRemoteCommand(command + convertIntToStr(idx));

594 cout << resultStr << endl;

595 } else {

596 cout << "Breakpoint index out of range [0 -31]." << endl;

597 }

598 }

599

600

601 int com_info (char *arg) {

602

603 if (! strcmp(arg ,"breakpoints")) {

604 if (! breakpoints.size ()) {

605 printf("No breakpoints exist.\n");

606 return 0;

607 } else {

Yousef S. Iskander 177

608 // populate a mask of enabled breakpoints

609 uint32_t breakpointMask = getBreakpointMask ();

610 uint32_t activeBreakpointMask = getActiveBreakpointMask ();

611

612 // print a list of the breakpoints

613 printf("Num\tType\t\tEnb\tActive\tWhat\n");

614

615 for (int i = 0; i < breakpoints.size (); i++) {

616 const Breakpoint bp = breakpoints[i];

617

618 // get a breakpoint type

619 const std:: string breakpointType = bp.getBreakpointType ();

620 const std:: string isEnabled = ((breakpointMask >> i) & 0x1)?"y":"n"; // bp. isEnabled ?" true ":" false ";

621 const std:: string isActive = ((activeBreakpointMask >> i) & 0x1)?"y":"n"; // bp. isEnabled ?" true ":" false ";

622 printf("%d\t%s\t%s\t%s\t%s\n",

623 bp.idx , breakpointType.c_str(), isEnabled.c_str(), isActive.c_str(), bp.breakpointText.c_str ());

624 }

625 }

626 } else if (! strcmp(arg ,"ports")) {

627 if (!ports.size ()) {

628 printf("No ports exist.\n");

629 } else {

630 printf("Name\t\tSize\n");

631

632 // print a list of ports

633 std::map <std::string , uint8_t >:: iterator it;

634 for (it = ports.begin (); it != ports.end(); ++it) {

635 const std:: string portName = it ->first;

636 const uint8_t portSize = it->second;

637

638 printf("%s\t\t%d\n", portName.c_str(), portSize);

639 }

640 }

641 }

642 }

643 /*

644 int com_disable_old (char *arg) {

645 printf (" disable a breakpoint\n");

646

647 // change the argument into a int

648 const uint16_t idx = atoi(arg);

649 bool isFound = false;

650

651 // search the breakpoint vector for the specified idx

652 for (int i = 0; i < breakpoints.size (); i++) {

653 Breakpoint *bp = & breakpoints[i];

654 if (bp ->idx == idx) {

655 //bp ->isEnabled = false;

656 isFound = true;

657 break;

658 }

659 }

660

661 if (! isFound)

662 printf ("No breakpoint number %d.\n", idx);

663

664 createDebugLogic ();

665 }

666 */

667 int com_disable (char *arg) {

668 const std:: string command = "disable ";

669

670 uint32_t idx;

671 int result = sscanf(arg , "%u", &idx);

672

673 if (result) {

674 disableBreakpoint(idx);

675 } else {

676 cout << "Problem with input." << endl;

677 }

678 }

679

680 int com_enable (char *arg) {

681 const std:: string command = "enable ";

682

683 uint32_t idx;

684 int result = sscanf(arg , "%u", &idx);

685

686 if (result) {

687 enableBreakpoint (idx);

688 } else {

689 cout << "Problem with input." << endl;

690 }

691 }

692

693 /*

694 int com_enable_old (char *arg) {

Yousef S. Iskander 178

695 printf (" enable a breakpoint\n");

696

697 // change the argument into a int

698 const uint16_t idx = atoi(arg);

699 bool isFound = false;

700

701 // search the breakpoint vector for the specified idx

702 for (int i = 0; i < breakpoints.size (); i++) {

703 Breakpoint *bp = & breakpoints[i];

704 if (bp ->idx == idx) {

705 // bp ->isEnabled = true;

706 isFound = true;

707 break;

708 }

709 }

710

711 if (! isFound)

712 printf ("No breakpoint number %d.\n", idx);

713

714 createDebugLogic ();

715 }

716 */

717

718 int com_print (char *arg) {

719 const uint32_t MAX_FRAME_LIST = 16;

720 // get the target name

721 std:: string target;

722 std::vector <std::string > args;

723 bool verbose = false;

724

725 tokenize(std:: string(arg), args , " \t");

726

727 // if there are >=2 arguments , the first must be an option , the last the signal name

728 if (args.size() > 1) {

729 // we have options

730 const std:: string option = args [0];

731

732 verbose = (option == "-v" || option == "--verbose");

733 target = args [1];

734 } else {

735 target = args [0];

736 }

737

738

739

740 // look up the target

741 BitMap :: iterator it = bitInfoMap.find(target);

742 if (it == bitInfoMap.end ()) {

743 cout << "Signal \"" << target << "\" was not found." << endl;

744 return 0;

745 }

746

747

748 // we have a legitimate target

749 // get and sort the list and send the frame/index pairs to MicroBlaze

750 BitInfoList bil = it->second;

751 bil.sort(bitInfoSignalIndexReverseSort);

752

753 uint32_t registerValue = 0; // result to be returned

754 uint32_t previousFrame = 0; // keep track of frame from previous round

755 uint32_t currentFrame = 0;

756 const std:: string command("print "); // command to send

757 std::list <std::string > frameList; // the argument list to the print command

758

759 // start out the iterator and grab the first BitInfo

760 BitInfoList :: iterator bilIt = bil.begin ();

761 BitInfo *bi = &(* bilIt);

762

763 if (verbose)

764 cout << "Processing bit " << bi ->signalVectorIndex << endl;

765

766 currentFrame = bi ->frameAddress;

767

768 // append the current frame offset to the arg list

769 frameList.push_back(convertIntToStr(bi ->frameOffset));

770

771 // copy the current frame to be the previous

772 previousFrame = currentFrame;

773

774 // advance the iterator

775 bilIt ++;

776

777 // initializer intentionally left blank , previously advanced

778 for(; bilIt != bil.end(); ++ bilIt) {

779 bi = &(* bilIt);

780

781 if (verbose)

Yousef S. Iskander 179

782 cout << "Processing bit " << bi->signalVectorIndex << endl;

783

784 currentFrame = bi ->frameAddress;

785

786 if ((currentFrame != previousFrame) || frameList.size() == MAX_FRAME_LIST) {

787 // it’s a new frame or the list is getting too big and it’s time to empty

788 // send the pending command and add to the result ...

789

790 // format the print command arguments , but first add the frame as the first argument

791 std:: string printArgs;

792 printArgs.append(convertIntToStr(previousFrame));

793 createPrintList(frameList , printArgs);

794

795 if (verbose) {

796 cout << "Sending remote command: " << command << " " << printArgs << endl;

797 }

798

799 // process the result

800 std:: string resultStr = sendRemoteCommand(command + printArgs);

801

802

803 // read using sscanf because it’s more tolerant of whitespace (atoi will error)

804 uint32_t resultNum;

805 sscanf(resultStr.c_str(), "%x", &resultNum);

806 registerValue = (registerValue << frameList.size ()) | resultNum;

807

808 if (verbose)

809 printf("Response: %5s %#08x Current value: %#08x\n", resultStr.c_str(), resultNum , registerValue);

810

811

812 // clear the frameList ...

813 frameList.clear ();

814 printArgs.clear ();

815

816 }

817

818 // append the frame offset as part of the current frame

819 frameList.push_back(convertIntToStr(bi ->frameOffset));

820

821

822 // issue the command and get the result , shift into register

823 // std :: string result = sendRemoteCommand(command);

824 // cout << command << " -> " << result << endl;

825

826 // cout << "Register = " << registerValue << endl;

827

828 // cout << bi -> frameAddress << " " << bi -> frameOffset << " [" << bi -> signalVectorIndex << "] " << bi ->latch << endl;

829 // cout << (* bilIt). signalVectorIndex << endl;

830

831 previousFrame = currentFrame;

832

833 }

834

835 // send the final command

836 // format the print command arguments

837 std:: string printArgs;

838 printArgs.append(convertIntToStr(previousFrame));

839 createPrintList(frameList , printArgs);

840

841 if (verbose) {

842 cout << "Sending remote command: " << command << " " << printArgs << endl;

843 }

844

845 // process the result

846 std:: string result = sendRemoteCommand(command + printArgs);

847

848 // cout << endl << command + printArgs << endl;

849 // cout << "regValue (before final) = " << hex << registerValue << " frameList.size () = " << dec << frameList.size () << endl;

850 // cout << "result (str)’" << result << "’ result (atoi) " << atoi(result.c_str ()) << endl;

851 // cout << "Result = ’" << result << "’ registerVal = " << registerValue << endl;

852

853 uint32_t resultNum;

854 sscanf(result.c_str(), "%x", &resultNum);

855 registerValue = (registerValue << frameList.size ()) | resultNum;

856

857 if (verbose)

858 printf("Response: %5s %#08x Current value: %#08x\n", result.c_str(), resultNum , registerValue);

859

860 // the result must be inverted first before being used

861 // however we did this on the MBlz because short vectors were being corrupted

862 // cout << "regValue (after final) = " << hex << registerValue << " frameList.size () = " << dec << frameList.size () << endl;

863

864 // registerValue = ~ registerValue ;

865 printf("%#8x (unsigned) %u\n", registerValue , registerValue);

866 // cout << hex << registerValue << endl;

867 }

868

Yousef S. Iskander 180

869 int com_display (char *arg) {

870

871 }

872

873 int com_undisplay (char *arg) {

874

875 }

876

877 int com_addport (char *arg) {

878

879 // convert to C++ string to make this work

880 std:: string argument = arg;

881 std:: size_t spaceIdx = argument.find_first_of(" ");

882 std:: string portName = argument.substr(0, spaceIdx);

883 uint8_t portSize = atoi(argument.substr(spaceIdx+1, argument.length()-spaceIdx).c_str ());

884

885 if (portSize == 0)

886 ports[portName] = 1;

887 else

888 ports[portName] = portSize;

889

890 printf("Added port %s with size %d\n", portName.c_str(), portSize);

891 createDebugLogic ();

892 }

893

894 int com_delport (char *arg) {

895 const std:: string portName = arg;

896 ports.erase(portName);

897 createDebugLogic ();

898 }

899

900

901 /* Print out help for ARG , or for all of the commands if ARG is

902 not present. */

903 int com_help (char *arg)

904 {

905 register int i;

906 int printed = 0;

907

908 for (i = 0; commands[i].name; i++)

909 {

910 if (!*arg || (strcmp (arg , commands[i].name) == 0))

911 {

912 printf ("%s -- %s.\n", commands[i].name , commands[i].doc);

913 printed ++;

914 }

915 }

916

917 if (! printed)

918 {

919 printf ("No commands match ‘%s ’. Possibilties are:\n", arg);

920

921 for (i = 0; commands[i].name; i++)

922 {

923 /* Print in six columns. */

924 if (printed == 6)

925 {

926 printed = 0;

927 printf ("\n");

928 }

929

930 printf ("%s\t", commands[i].name);

931 printed ++;

932 }

933

934 if (printed)

935 printf ("\n");

936 }

937

938 return (0);

939 }

940 /* The user wishes to quit using this program. Just set DONE non -zero. */

941 int com_quit (char *arg)

942 {

943 done = 1;

944

945 // if the serial port is still open , close it

946 if (fd != -1) close_serial(fd);

947

948 return (0);

949 }

950

951

952 /* Return non -zero if ARG is a valid argument for CALLER , else print

953 an error message and return zero. */

954 int valid_argument (char *caller , char *arg)

955 {

Yousef S. Iskander 181

956 if (!arg || !*arg)

957 {

958 fprintf (stderr , "%s: Argument required .\n", caller);

959 return (0);

960 }

961

962 return (1);

963 }

964

965 // to be fired after each breakpoint creation

966 // creates a module within a Verilog file that has the ports

967 // for the nets to be monitored and the debug logic

968 void createDebugLogic () {

969 std:: ofstream debugFile("dmd_debug_logic.v");

970

971 debugFile << "\n\nmodule dmd_debug_logic \n"

972 << "(\n\t// design input ports\n";

973

974 // print a list of ports

975 std::map <std::string , uint8_t >:: iterator it;

976 for (it = ports.begin (); it != ports.end(); ++it) {

977 debugFile << "\t" << it->first << " ,\n";

978 }

979

980 // static control lines

981 debugFile << "\n";

982 debugFile << "\t // control lines\n";

983 debugFile << "\tbreakpoint_active ,\n\tbreakpoint_reg\n);\n\n";

984

985 // port declarations with sizes

986 for (it = ports.begin (); it != ports.end(); ++it) {

987 const uint16_t portMax = it ->second -1;

988

989 if (portMax)

990 debugFile << "\tinput\t\t[0 : " << portMax << "]\t\t" << it ->first << ";\n";

991 else

992 debugFile << "\tinput\t\t\t\t\t\t" << it ->first << ";\n";

993 }

994 debugFile << "\toutput\t\t\t\t\t\tbreakpoint_active ;\n"

995 << "\toutput\t\t[0 : 31]\t\tbreakpoint_reg ;\n\n";

996

997 debugFile << "\twire\t\t[0 : 31]\t\tbreakpoints ;\n\n";

998

999 debugFile << "\t// assign the internal breakpoint register array to the output\n";

1000 debugFile << "\tassign breakpoint_reg = breakpoints ;\n\n";

1001

1002 // create the breakpoint active/interrupt signal

1003 debugFile << "\tassign breakpoint_active = |breakpoints ;\n\n";

1004

1005 // cycle through the breakpoint vector and generate breakpoints and constraints

1006 // * breakpoints are written verbatim

1007 // * constraints are written with an inverter (trigger if violated)

1008

1009 for (int i = 0; i < breakpoints.size (); i++) {

1010 const Breakpoint *bp = &breakpoints[i];

1011

1012 // if the breakpoint is a constraint , preceed the expression with an inversion

1013 // if the breakpoint is disabled , write it in , it’s still valid , but disabled in hardware

1014 debugFile << "\tassign breakpoints[" << bp->idx << "] = ";

1015

1016 //if (!bp ->isEnabled)

1017 // debugFile << " 1’b0; // disabled " << bp -> getBreakpointType () << ": " << bp -> breakpointText;

1018 // else

1019 debugFile << ((bp ->breakpointType == CONSTRAINT) ? "~" : " ")

1020 << bp ->breakpointText << ";" << " // " << bp ->getBreakpointType ();

1021

1022 debugFile << "\n";

1023 }

1024

1025 // we must pad the rest of the breakpoints register with constant 0 to make

1026 // a good simulation where there are defined values and to make sure that

1027 // the tools don ’t optimize out undriven lines

1028 for (int i = breakpoints.size (); i < 32; i++) {

1029

1030 debugFile << "\tassign breakpoints[" << i << "] = 1’b0;\n";

1031 }

1032

1033 debugFile << "\nendmodule\n\n" << std::endl;

1034 debugFile.close ();

1035 }

1036

1037 int com_clear (char *arg) {

1038 printf("\033[H\033[J");

1039 }

1040

1041

1042 int com_ping (char *arg) {

Yousef S. Iskander 182

1043

1044 std:: string result = sendRemoteCommand("ping");

1045 if (! result.size ()) {

1046 cout << "The remote system did not respond.";

1047 } else {

1048 cout << "Remote system responded: " << result;

1049 }

1050 cout << endl;

1051 }

1052

1053 std:: string sendRemoteCommand(const std:: string &command) {

1054

1055 int res;

1056 const int BUF_LEN = 255;

1057 char buf[BUF_LEN];

1058 std:: string revisedCommand;

1059 std:: string myResult = "";

1060 myResult.clear ();

1061

1062 // add EOL to trigger the command

1063 revisedCommand = command;

1064 revisedCommand.append("\r\n"); // terminate the command for the interpreter

1065 // printf ("’%s ’", revisedCommand.c_str ());

1066

1067 write(fd, revisedCommand.c_str(), revisedCommand.length ());

1068

1069 while ((res = read(fd ,buf ,BUF_LEN -1)) > 0) {

1070 // ordinarily doing pure C, read one less character and terminate: buf[res] = 0;

1071 buf[res] = 0;

1072 myResult.append(buf);

1073 // printf ("%s", buf);

1074 }

1075 // cout << "[" << myResult << "]" << endl;

1076

1077 // buf[res]=0; // set end of string , so we can printf * /

1078 return myResult;

1079 }

1080

1081

1082 void tokenize(const std:: string& str ,

1083 std::vector <string >& tokens ,

1084 const std:: string& delimiters)

1085 {

1086 // Skip delimiters at beginning.

1087 string :: size_type lastPos = str.find_first_not_of(delimiters , 0);

1088 // Find first "non -delimiter ".

1089 string :: size_type pos = str.find_first_of(delimiters , lastPos);

1090

1091 while (string ::npos != pos || string ::npos != lastPos)

1092 {

1093 // Found a token , add it to the vector.

1094 tokens.push_back(str.substr(lastPos , pos - lastPos));

1095 // Skip delimiters. Note the "not_of"

1096 lastPos = str.find_first_not_of(delimiters , pos);

1097 // Find next "non -delimiter"

1098 pos = str.find_first_of(delimiters , lastPos);

1099 }

1100 }

1101

1102 std:: string convertIntToStr(const uint32_t num) {

1103 std:: ostringstream numStringStream;

1104 numStringStream << num;

1105 std:: string numStr = numStringStream.str();

1106

1107 return numStr;

1108 }

1109

1110 void createPrintList(std::list <std::string > &frameList , std:: string &printArgs) {

1111

1112 std::list <std::string >:: iterator flIt;

1113 for (flIt = frameList.begin (); flIt != frameList.end (); ++ flIt) {

1114 // cout << "\t" << (* flIt) << "\n";

1115 printArgs.append(" ");

1116 printArgs.append ((* flIt));

1117 }

1118 // cout << endl;

1119 }

1120

1121 // read the breakpoint enable mask from the board

1122 uint32_t getBreakpointMask () {

1123 // send the command and parse the response

1124 std:: string response = sendRemoteCommand("info mask");

1125 cout << "Breakpoint mask: " << response << endl;

1126

1127 // populate a mask of enabled breakpoints

1128 uint32_t breakpointMask;

1129 sscanf(response.c_str(), "%x", &breakpointMask);

Yousef S. Iskander 183

1130

1131 return breakpointMask;

1132 }

1133

1134 uint32_t getActiveBreakpointMask() {

1135 // send the command and parse the response

1136 std:: string response = sendRemoteCommand("info active");

1137 cout << "Active breakpoints: " << response << endl;

1138

1139 // populate a mask of active breakpoints

1140 uint32_t breakpointMask;

1141 sscanf(response.c_str(), "%x", &breakpointMask);

1142

1143 return breakpointMask;

1144 }

1145

1146

1147 bool isBreakpointEnabled(const uint32_t idx) {

1148 uint32_t breakpointMask = getBreakpointMask ();

1149

1150 return (breakpointMask >> idx) & 0x1;

1151 }

Yousef S. Iskander 184

Listing B.11: Main FPGA LLD Console.
1 // ---

2 // ---

3 #include "tokenize.h"

4 #include "cmd_dbg.h"

5 #include <xuartlite_l.h>

6 #include <xparameters.h>

7 #include <stdlib.h>

8 #include "icap.h"

9

10 // this is almost useless since we must use Xilinx inbyte/outbyte

11 // when not using an OS because the stdio getc/getchar will not read

12 // from stdin

13 //#include <stdio.h>

14

15 // User headers

16

17 // --

18 // Local defines

19

20 // Xilinx print () function does not accept const char*, complains about discarding qualifier

21 #ifdef DMD_SERVER

22 char *prompt = "";

23 #else

24 char *prompt = "dmd$ ";

25 #endif

26

27 // Maximum number of argumnets to support , print is the largest of these

28 // I expanded print to allow 16 frame bits to be read

29 // Args

30 // 0 command name

31 // 1 frame address

32 // 2-18 frame bits

33 // 19 null to indicate end

34 #define MAX_ARGC 19

35

36 static void my_get_line(char * line , int maxlen);

37

38 // ==

39 static void cmd_clearscreen(int cargc , char ** cargv) {

40 print("\033[H\033[J");

41 }

42

43

44 // print a bit value from the given frame address/offset pair

45 static void cmd_printbit(int cargc , char ** cargv) {

46

47 // cargc: total number of valid args

48 // cargv [0]: print

49 // cargv [1]: frame

50 // cargv [2 -9]: bit indexes

51 const int bitCount = cargc - 2; // num of bits is minus ’print ’ and frame

52 Xuint32 bitIdx [16];

53

54 int i = 1; // skip arg 0 which is the command

55 Xuint32 frame = atoi(cargv[i++]);

56 // printf (" frame = %d cargc = %d bitCount = %d\r\n",frame ,cargc ,bitCount);

57 // populate the bit indices to be retrieved

58 for (; i<cargc; i++) {

59 bitIdx[i-2] = atoi(cargv[i]); // offset the index back to 0

60 #ifdef DMD_DEBUG

61 xil_printf("%d\t", bitIdx[i -2]);

62 #endif

63 }

64

65 u32 FrameBuffer[XHI_NUM_WORDS_FRAME_INCL_NULL_FRAME];

66 Xuint32 status = readFrame(frame , &FrameBuffer);

67

68 // final result

69 u32 result = 0;

70

71 for (i=0; i<bitCount; i++) {

72 u32 offset = bitIdx[i];

73

74 u32 targetWordIdx = (int)(offset / 32) + (XHI_NUM_FRAME_WORDS + 1);

75 u32 targetBitIdx = offset % 32;

76

77 // you must invert the sense of the bit

78 // this appears to be the best place to do it because

79 // otherwise you must remmeber the size and mask those bits

80 result = (result << 1) | (~(FrameBuffer[targetWordIdx] >> targetBitIdx) & 0x1);

81

82 #ifndef DMD_SERVER

83 printf("FrameBuffer [%d]: 0x%08x >> %d = 0x%x\r\n", targetWordIdx - (XHI_NUM_FRAME_WORDS + 1),

84 FrameBuffer[targetWordIdx], targetBitIdx , result);

85 #endif

Yousef S. Iskander 185

86 }

87

88 // NOTICE: printing in hex!

89 printf("%x\r\n", result);

90 /*

91 // there should be two arguments: address , offset

92 Xuint32 address = atoi(cargv [1]);

93 Xuint32 offset = atoi(cargv [2]);

94 #ifndef DMD_SERVER

95 xil_printf ("0x%08x : %d\r\n", address , offset);

96 #endif

97 readFrameOffset(address , offset);

98 */

99 }

100

101 // undocumented utility function for use from client to

102 // print alive message - do not include in help

103 static void cmd_ping(int cargc , char ** argv) {

104 print("DMD on -chip is alive.\r\n");

105 readDut0 ();

106 }

107

108 static void cmd_printhelp(int cargc , char ** cargv) {

109 print(

110 "\r\nHelp:\r\n"

111 "run - Begin the hardware ’s execution .\r\n"

112 "stop - Stop the hardware ’s execution .\r\n"

113 "step [number -of -steps =1] - Step the design by the given number of steps.\r\n"

114 "print <frame_address > <frame_offset > - Print the bit located at the given address/offset pair.\r\n"

115 "continue - Continue the hardware ’s execution following a breakpoint or stop.\r\n"

116 "clear - Clear screen .\r\n"

117 "enable | disable <breakpoint -number > - Enable/disable a breakpoint by index.\r\n"

118 "info {mask | active} - Print information about registers , status , etc.\r\n"

119 "status - Print status registers.\r\n"

120 "help - Show this help message\r\n\n"

121);

122 }

123

124 static void cmd_step(int cargc , char ** cargv) {

125

126 int numSteps = 1; // default to one step

127

128 // determine how this was invoked - alone or with an argument

129 // we only accept one argument , which is the step count

130 if (cargc >1) {

131 int temp = atoi(cargv [1]);

132

133 // discard any trash , like whitespace or characters which atoi returns as 0

134 if (temp == 0)

135 numSteps = 1;

136 else

137 numSteps = temp;

138 }

139

140 step(numSteps);

141

142 return;

143 }

144

145 static void cmd_status(int cargc , char **argv) {

146 xil_printf("Register status :\r\n");

147 // xil_printf ("\ tStatus: 0x%8x\r\n",);

148 xil_printf("\tStep counter: %d\r\n", readStepCounter ());

149 xil_printf("\tControl register: 0x%8x\r\n", PDC_mReadSlaveReg15(XPAR_PDC_0_BASEADDR , 0));

150 }

151

152

153 // --

154 // -- Main

155 // --

156 int main(void) {

157 int cargc;

158 char * cargv[MAX_ARGC];

159 int len;

160 char line [128];

161

162 // initialize this to null so that the print function knows when to initialize it

163 isHwIcapInit = 0;

164 #ifndef DMD_SERVER

165 print("\r\n\n\nDMD Command -line Low -Level Debugger (LLD)\r\n");

166 #endif

167 print(prompt);

168

169 for (;;) {

170 my_get_line(line , sizeof(line));

171

172 len = strlen(line);

Yousef S. Iskander 186

173 if (line[len -1] == ’\n’)

174 line[len -1] = 0;

175

176 tokenize(line , &cargc , cargv , MAX_ARGC);

177

178 if (cargc == 0) {

179 print(prompt);

180 continue;

181 }

182

183 if (strcmp(cargv[0], "help") == 0) {

184 cmd_printhelp(cargc , cargv);

185 }

186

187 else if (strcmp(cargv[0], "clear") == 0) {

188 cmd_clearscreen(cargc , cargv);

189 }

190

191 else if (strcmp(cargv[0], "run") == 0) {

192 #ifndef DMD_SERVER

193 print("Starting hardware execution. Type ’stop’ to halt.\r\n");

194 #endif

195 run ();

196 }

197

198 else if (strcmp(cargv[0], "step") ==0) {

199 cmd_step(cargc , cargv);

200 // step (1);

201 }

202

203 else if (strcmp(cargv[0], "stop") == 0) {

204 stop ();

205 }

206

207 else if (strcmp(cargv[0], "print") == 0) {

208 // readDut0 ();

209 cmd_printbit(cargc , cargv);

210 }

211

212 else if (strcmp(cargv[0], "ping") == 0) {

213 // readDut0 ();

214 cmd_ping(cargc , cargv);

215 }

216

217 else if (strcmp(cargv[0], "status") == 0) {

218 cmd_status(cargc , cargv);

219 }

220

221 else if (strcmp(cargv[0], "enable") == 0) {

222 u32 breakpoint = atoi(cargv [1]);

223 enableBreakpoint (breakpoint);

224 }

225

226 else if (strcmp(cargv[0], "disable") == 0) {

227 u32 breakpoint = atoi(cargv [1]);

228 disableBreakpoint(breakpoint);

229 }

230

231 else if (strcmp(cargv[0], "info") == 0) {

232 if (strcmp(cargv[1], "mask") == 0) {

233 xil_printf("0x%08x\r\n", readBreakpointMask ());

234 }

235

236 if (strcmp(cargv[1], "active") == 0) {

237 xil_printf("0x%08x\r\n", readActiveBreakpointMask ());

238 }

239 }

240

241 else {

242 print("Unrecognized command \"");

243 print(cargv [0]);

244 print("\".\r\n");

245 }

246

247 print(prompt);

248

249 }

250 return 0;

251 }

252

253

254 // --

255 static void my_get_line(

256 char * line ,

257 int maxlen)

258 {

259 char c = 0;

Yousef S. Iskander 187

260 char * p = line;

261 int n;

262

263 *p = 0;

264 for (n = 0; n < maxlen -1; n++) {

265 c = inbyte ();

266

267 // handle empty lines when the user just hits ENTER

268 if (c == ’\n’) {

269 // Ignore it.

270 ;

271 }

272

273 else if (c == ’\r’) {

274 #ifndef DMD_SERVER

275 outbyte(’\r’);

276 outbyte(’\n’);

277 #endif

278 break;

279 }

280 #ifndef DMD_SERVER

281 // Check for backspace or delete key.

282 else if ((c == ’\b’) || (c == 0x7F)) {

283 if (p > line) {

284 outbyte(’\b’); // Write backspace

285 outbyte(’ ’); // Write space

286 outbyte(’\b’); // Write backspace

287 p--;

288 *p = 0;

289 }

290 }

291

292 // Check for escape key or control -U.

293 else if ((c == 0x1b) || (c == 0x15)) {

294 while (p > line) {

295 outbyte(’\b’);

296 outbyte(’ ’);

297 outbyte(’\b’);

298 p--;

299 *p = 0;

300 }

301 }

302 #endif

303

304 else {

305 #ifndef DMD_SERVER

306 // turn off echoing when you are a server because it makes parsing responses harder

307 outbyte(c); // Echo character back to the user.

308 #endif

309 *p = c;

310 p++;

311 *p = 0;

312 }

313 }

314 *p = 0;

315 }

Yousef S. Iskander 188

Listing B.12: Logic Allocation Lexer.
1

2 %{

3 #include "logicalloc.tab.h"

4

5 #include <string.h>

6 %}

7

8 %option yylineno

9 %option noyywrap

10

11 DIGIT [0-9]

12 ID [a-zA -Z0 -9#_-]

13

14 %%

15

16 /* logic allocation report report keywords */

17 Revision {

18 // printf (" lrevision ");

19 return REVISION;

20 }

21 Info {

22 // printf (" linfo ");

23 return INFO;

24 }

25 Bit {

26 // printf (" lbit ");

27 return BIT;

28 }

29 Block {

30 // printf (" lblock ");

31 return BLOCK;

32 }

33 Latch {

34 // printf (" llatch ");

35 return LATCH;

36 }

37 Net {

38 // printf (" lnet ");

39 return NET;

40 }

41 COMPARE {

42 // printf (" lcompare ");

43 return COMPARE;

44 }

45 Ram {

46 // printf (" lram ");

47 return RAM;

48 }

49 Rom {

50 // printf (" lrom ");

51 return ROM;

52 }

53 Type {

54 // printf (" ltype ");

55 return TYPE;

56 }

57

58 YES {

59 // printf (" lyes ");

60 return YES;

61 }

62 NO {

63 // printf (" lno ");

64 return NO;

65 }

66 BIT |

67 PARBIT {

68 // printf (" lramidbitval ");

69 return RAMIDBITTYPE;

70 }

71 [A-D]Q |

72 [IO] {

73 // printf (" llatchid ");

74 logicalloclval.name_val = strdup(logicalloctext);

75 return LATCHID;

76 }

77 0x[0-9a-fA -F]{8} {

78 // printf (" lframe ");

79 // logicalloclval. frame_val = strtol(logicalloctext ,NULL ,0);

80 logicalloclval.frame_val = strtol(logicalloctext ,NULL ,16);

81 return FRAME;

82 }

83 [0 -9]+ {

84 // printf (" lnumber ");

85 logicalloclval.num_val = atoi(logicalloctext);

Yousef S. Iskander 189

86 return NUMBER;

87 }

88

89 /*

90 [A-Z0 -9]+ _X [0 -9]+Y[0 -9]+ |

91 [A-Z][0 -9]{2} { printf (" lblocklocation "); return BLOCKLOCATION ; }

92 */

93

94

95 [A-Za-z0 -9/\._]+ {

96 // printf (" ldesignname ");

97 logicalloclval.name_val = strdup(logicalloctext);

98 return ID;

99 }

100 /*

101 [A-D] {

102 // printf (" lramid ");

103 return RAMID;

104 }

105 */

106 ^;.* {

107 // printf (" lcomment_line ");

108 }

109 [\t\n]+ ;

110 . { return logicalloctext [0]; }

111

112 %%

113

114

115 /*

116 int main(int argc , char ** argv) {

117

118 return yylex ();

119

120 }

121 */

Yousef S. Iskander 190

Listing B.13: Logic Allocation Parser.
1 %{

2

3 #include <stdio.h>

4 #include <map >

5 #include <list >

6 #include <iostream >

7 #include <sstream >

8 #include <string >

9

10

11 #include "BitInfo.h"

12

13 // externs , prototypes , declarations , globals

14 extern char* logicalloctext;

15 void logicallocerror(const char *msg);

16 int logicalloclex ();

17 extern FILE *logicallocin; // input file

18

19 BitInfo *currentBit;

20 std:: string currentBitName;

21

22 BitMap *bitMap;

23

24 using namespace std;

25 %}

26

27 /* definition */

28 /* literal keyword tokens */

29

30 %debug

31 %error -verbose

32 %defines /* output header file for flex - also a command line opt */

33 %locations /* enable yylloc */

34

35 %union {

36 int num_val; /* For returning numbers , names. */

37 unsigned int frame_val;

38 char *name_val;

39 }

40

41 %token <num_val > NUMBER

42 %token <name_val > ID BLOCKLOCATION LATCHID

43 %token <frame_val > FRAME

44

45 %type <name_val > block

46

47 %token INFO BIT

48 %token REVISION

49 %token LATCH RAM ROM NET BLOCK

50 %token RAMID RAMIDBITTYPE

51 %token TYPE

52

53 %token COMPARE YES NO

54 %start logic_alloc_report

55

56 %%

57

58 logic_alloc_report: revision_header info_list bit_list

59 {

60 printf("\n");

61 }

62

63 revision_header: REVISION NUMBER

64 {

65 // printf (" revision header\n");

66

67 // this is a new file , clear out the map

68 bitMap ->clear ();

69 }

70 ;

71

72 info_list: info_line

73 | info_list info_line

74 {

75

76 }

77 ;

78

79 info_line: INFO ID ’=’ NUMBER

80 {

81 // printf (" infoline \n");

82 }

83 ;

84

85 bit_list: bit_line

Yousef S. Iskander 191

86 | bit_list bit_line

87 {

88

89 }

90 ;

91

92 bit_line: bit_preamble net

93 {

94 // this is the only situation we care about , nets

95 // push the net on the vector

96 if (currentBit ->latch != "I" && currentBit ->latch != "O") {

97 (* bitMap)[currentBitName]. push_back(* currentBit);

98 }

99

100 delete currentBit;

101 currentBit = 0;

102 // printf ("\r%s [%d]", currentBitName.c_str (), bitMap ->size ());

103 printf("\rLoading: %-120s ", currentBitName.c_str ());

104 }

105 | bit_preamble ram

106 {

107 // printf (" bitinfo_ramtype ");

108 delete currentBit;

109 currentBit = 0;

110 currentBitName = "";

111 }

112 | bit_preamble type

113 {

114 // printf (" bitinfo_ramtype ");

115 delete currentBit;

116 currentBit = 0;

117 currentBitName = "";

118 }

119 ;

120

121 bit_preamble: BIT NUMBER FRAME NUMBER block

122 {

123 // printf ("\ ncreatenewbit ");

124 currentBit = new BitInfo ();

125 currentBit ->bitStreamReadbackLocation = $2;

126 currentBit ->frameAddress = $3;

127 currentBit ->frameOffset = $4;

128 currentBit ->block = $5;

129 }

130 ;

131

132 block: BLOCK ’=’ ID

133 {

134 // printf (" blocklocation ");

135 // currentBit ->block = $3;

136 $$ = $3;

137 }

138 ;

139

140 net: latch NET ’=’ ID

141 {

142 std:: string netName = $4;

143 currentBitName = netName;

144

145 currentBit ->net = $4;

146 currentBit ->signalVectorIndex = 0;

147 // printf (" simplenet: %s", $4);

148 }

149 | latch NET ’=’ ID ’<’ NUMBER ’>’ /* 1-D array */

150 {

151 std:: string netName = $4;

152 // set the current bit name for this instance

153 currentBitName = netName;

154

155 // extract the index number for the internal name

156 std:: ostringstream numStream;

157 numStream << $6;

158 netName.append("<");

159 netName.append(numStream.str ());

160 netName.append(">");

161

162 currentBit ->net = netName;

163

164 currentBit ->signalVectorIndex = $6;

165 // printf ("1 Dnet: %s", netName.c_str ());

166 }

167 | latch NET ’=’ ID ’[’ NUMBER ’]’ /* 1-D array */

168 {

169 std:: string netName = $4;

170 // set the current bit name for this instance

171 currentBitName = netName;

172

Yousef S. Iskander 192

173 // extract the index number for the internal name

174 std:: ostringstream numStream;

175 numStream << $6;

176 netName.append("<");

177 netName.append(numStream.str ());

178 netName.append(">");

179

180 currentBit ->net = netName;

181

182 currentBit ->signalVectorIndex = $6;

183 // printf ("1 Dnet: %s", netName.c_str ());

184 }

185 | latch NET ’=’ ID ’<’ NUMBER ’>’ ’<’ NUMBER ’>’ /* 2-D array */

186 {

187 std:: string netName = $4;

188

189 // extract the array number for the internal and external name

190 std:: ostringstream numStream1;

191 numStream1 << $6;

192 netName.append("[");

193 netName.append(numStream1.str ());

194 netName.append("]");

195

196 // set the current bit name for this instance

197 currentBitName = netName;

198

199 // continue building the bit index for internal name

200 std:: ostringstream numStream2;

201 numStream2 << $9;

202 netName.append("<");

203 netName.append(numStream2.str ());

204 netName.append(">");

205

206 currentBit ->net = netName;

207

208 currentBit ->signalVectorIndex = $9;

209 // printf ("2 Dnet: %s", netName.c_str ());

210 }

211 | latch NET ’=’ ID ’[’ NUMBER ’]’ ’[’ NUMBER ’]’ /* 2-D array */

212 {

213 std:: string netName = $4;

214

215 // extract the array number for the internal and external name

216 std:: ostringstream numStream1;

217 numStream1 << $6;

218 netName.append("[");

219 netName.append(numStream1.str ());

220 netName.append("]");

221

222 // set the current bit name for this instance

223 currentBitName = netName;

224

225 // continue building the bit index for internal name

226 std:: ostringstream numStream2;

227 numStream2 << $9;

228 netName.append("<");

229 netName.append(numStream2.str ());

230 netName.append(">");

231

232 currentBit ->net = netName;

233

234 currentBit ->signalVectorIndex = $9;

235 // printf ("2 Dnet: %s", netName.c_str ());

236 }

237 ;

238

239 latch: LATCH ’=’ LATCHID

240 {

241 // printf (" latch = %s ");

242 currentBit ->latch = $3;

243 // cout << "latch = " << currentBit ->latch;

244 }

245 ;

246

247 ram: RAM ’=’ ID ’:’ NUMBER

248 | RAM ’=’ ID ’:’ RAMIDBITTYPE NUMBER

249 | RAM ’=’ ID ’:’ ID

250 {

251 // printf (" ram ");

252 }

253 ;

254

255 type: TYPE ’=’ ID

256 {

257 // printf (" type ");

258 }

259 ;

Yousef S. Iskander 193

260

261

262 %%

263 /* code */

264 void logicallocerror(const char *msg) {

265 printf("error: %d,%d %s, %s\n",

266 logicalloclloc.first_line , logicalloclloc.first_column , msg , logicalloctext);

267 }

268

269

270 bool bitInfoSignalIndexReverseSort (const BitInfo& a, const BitInfo& b) {

271 return (b.signalVectorIndex < a.signalVectorIndex);

272 }

273

274 bool bitInfoSortByFrameAddress(const BitInfo& a, const BitInfo& b) {

275 return (a.frameAddress < b.frameAddress);

276 }

277

278 /*

279 int old_main(void) {

280 logicallocparse ();

281

282 // iterate through the collected signals

283 // std ::map <std :: string , std ::list <BitInfo > >:: iterator it;

284 /*

285 for (it = bitMap.begin (); it!= bitMap.end (); ++it) {

286 const std :: string netName = it ->first;

287

288 std ::list <BitInfo >:: iterator bIt;

289

290 for(bIt = it ->second.begin (); bIt !=it ->second.end (); ++ bIt) {

291 BitInfo *bitInfo = &* bIt;

292 cout << netName << "\ tsignalIndx: " << bitInfo -> signalVectorIndex

293 << "\ tframeOffset: " << bitInfo -> frameOffset << endl;

294 }

295 }

296 * /

297 BitInfoList myWord = bitMap [" counter "];

298 BitInfoList :: iterator it;

299

300 for(it = myWord.begin (); it!= myWord.end (); ++it) {

301 BitInfo *bitInfo = &*it;

302 cout << "\ tsignalIndx: " << bitInfo -> signalVectorIndex

303 << "\ tframeAddress : " << bitInfo -> frameAddress

304 << "\ tframeOffset: " << bitInfo -> frameOffset << endl;

305 }

306

307 cout << "Sorting ..." << endl;

308

309 myWord.sort(bitInfoSortByFrameAddress);

310

311 for(it = myWord.begin (); it!= myWord.end (); ++it) {

312 BitInfo *bitInfo = &*it;

313 cout << "\ tsignalIndx: " << bitInfo -> signalVectorIndex

314 << "\ tframeAddress : " << bitInfo -> frameAddress

315 << "\ tframeOffset: " << bitInfo -> frameOffset << endl;

316 }

317

318 return 0;

319 }

320 */

321

322 extern "C" int parseLogicAllocFile(const std:: string &llFile , BitMap &bMap) {

323

324 bitMap = &bMap;

325

326 // reassign yyin (renamed) to the file handle from the filename you passed in

327 logicallocin = fopen(llFile.c_str(), "r");

328

329 // call the main logicalloc parse routine

330 logicallocparse ();

331 }

Yousef S. Iskander 194

Listing B.14: Programmable Debug Controller.
1 // --

2 // user_logic.vhd - module

3 // --

4 //

5 // ***

6 // ** Copyright (c) 1995 -2008 Xilinx , Inc. All rights reserved. **

7 // ** **

8 // ** Xilinx , Inc. **

9 // ** XILINX IS PROVIDING THIS DESIGN , CODE , OR INFORMATION "AS IS" **

10 // ** AS A COURTESY TO YOU , SOLELY FOR USE IN DEVELOPING PROGRAMS AND **

11 // ** SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN , CODE , **

12 // ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE , **

13 // ** APPLICATION OR STANDARD , XILINX IS MAKING NO REPRESENTATION **

14 // ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT , **

15 // ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE **

16 // ** FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY **

17 // ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE **

18 // ** IMPLEMENTATION , INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR **

19 // ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF **

20 // ** INFRINGEMENT , IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS **

21 // ** FOR A PARTICULAR PURPOSE. **

22 // ** **

23 // ***

24 //

25 // --

26 // Filename: user_logic.vhd

27 // Version: 1.00.a

28 // Description: User logic module.

29 // Date: Tue Sep 14 11:34:52 2010 (by Create and Import Peripheral Wizard)

30 // Verilog Standard: Verilog -2001

31 // --

32 // Naming Conventions:

33 // active low signals: "*_n"

34 // clock signals: "clk", "clk_div #", "clk_#x"

35 // reset signals: "rst", "rst_n"

36 // generics: "C_*"

37 // user defined types: "* _TYPE"

38 // state machine next state: "* _ns"

39 // state machine current state: "* _cs"

40 // combinatorial signals: "* _com"

41 // pipelined or register delay signals: "*_d#"

42 // counter signals: "* cnt *"

43 // clock enable signals: "* _ce"

44 // internal version of output port: "*_i"

45 // device pins: "* _pin"

46 // ports: "- Names begin with Uppercase"

47 // processes: "* _PROCESS"

48 // component instantiations: "<ENTITY_ >I_ <#| FUNC >"

49 // --

50

51 module user_logic

52 (

53 // -- ADD USER PORTS BELOW THIS LINE ---------------

54 // --USER ports added here

55 DebugModeLed ,

56 Dut0 ,

57 Dut1 ,

58 SysClk ,

59 SysDbgClk ,

60 BreakpointInterrupt ,

61 BreakpointId ,

62 // -- ADD USER PORTS ABOVE THIS LINE ---------------

63

64 // -- DO NOT EDIT BELOW THIS LINE ------------------

65 // -- Bus protocol ports , do not add to or delete

66 Bus2IP_Clk , // Bus to IP clock

67 Bus2IP_Reset , // Bus to IP reset

68 Bus2IP_Data , // Bus to IP data bus

69 Bus2IP_BE , // Bus to IP byte enables

70 Bus2IP_RdCE , // Bus to IP read chip enable

71 Bus2IP_WrCE , // Bus to IP write chip enable

72 IP2Bus_Data , // IP to Bus data bus

73 IP2Bus_RdAck , // IP to Bus read transfer acknowledgement

74 IP2Bus_WrAck , // IP to Bus write transfer acknowledgement

75 IP2Bus_Error , // IP to Bus error response

76 IP2Bus_IntrEvent // IP to Bus interrupt event

77 // -- DO NOT EDIT ABOVE THIS LINE ------------------

78); // user_logic

79

80 // -- ADD USER PARAMETERS BELOW THIS LINE ------------

81 // --USER parameters added here

82 // -- ADD USER PARAMETERS ABOVE THIS LINE ------------

83

84 // -- DO NOT EDIT BELOW THIS LINE --------------------

85 // -- Bus protocol parameters , do not add to or delete

Yousef S. Iskander 195

86 parameter C_SLV_DWIDTH = 32;

87 parameter C_NUM_REG = 16;

88 parameter C_NUM_INTR = 1;

89 // -- DO NOT EDIT ABOVE THIS LINE --------------------

90

91 // -- ADD USER PORTS BELOW THIS LINE -----------------

92 // --USER ports added here

93 output DebugModeLed;

94 input [0 : 31] Dut0;

95 input [0 : 31] Dut1;

96 input SysClk;

97 output SysDbgClk;

98 output BreakpointInterrupt;

99 input [0 : 31] BreakpointId;

100 // -- ADD USER PORTS ABOVE THIS LINE -----------------

101

102 // -- DO NOT EDIT BELOW THIS LINE --------------------

103 // -- Bus protocol ports , do not add to or delete

104 input Bus2IP_Clk;

105 input Bus2IP_Reset;

106 input [0 : C_SLV_DWIDTH -1] Bus2IP_Data;

107 input [0 : C_SLV_DWIDTH /8-1] Bus2IP_BE;

108 input [0 : C_NUM_REG -1] Bus2IP_RdCE;

109 input [0 : C_NUM_REG -1] Bus2IP_WrCE;

110 output [0 : C_SLV_DWIDTH -1] IP2Bus_Data;

111 output IP2Bus_RdAck;

112 output IP2Bus_WrAck;

113 output IP2Bus_Error;

114 output [0 : C_NUM_INTR -1] IP2Bus_IntrEvent ;

115 // -- DO NOT EDIT ABOVE THIS LINE --------------------

116

117 // --

118 // Implementation

119 // --

120

121 // --USER nets declarations added here , as needed for user logic

122 wire sys_dbg_clk; // patis system debug clock which will pass the system clock or the debug step clock

123 wire sys_clk; // system clock

124 // reg stop_clk; // internal signal to abstract the clock advance register bit

125 // reg stop_clk_d1; // one delay cycle to find rising edge and steady state

126 reg ctrl_run; // control register clock select line to determine which clock to source

127 // wire bp_dut0_active; // is breakpoint for dut0 active?

128 wire clk_sel; // clock select control line

129 reg [0 : 31] step_counter;

130 reg step_counter_en;

131 // wire step_counter_en;

132 wire breakpoint_active;

133 wire [0 : 31] breakpoint_mask;

134

135 wire step_counter_expired; // high when the step clock has reached goal

136 wire [0 : 31] step_counter_target; // alias to slv_reg12

137 wire step_counter_activate ;

138 wire step_counter_target_write;

139 reg step_counter_target_write_d1; // delay to determine rising edge

140 wire dbg_stop_clk;

141

142 // Nets for user logic slave model s/w accessible register example

143 reg [0 : C_SLV_DWIDTH -1] slv_reg0; // Dut0

144 reg [0 : C_SLV_DWIDTH -1] slv_reg1; // Dut1 for development purposes only , don ’t use

145 reg [0 : C_SLV_DWIDTH -1] slv_reg2;

146 reg [0 : C_SLV_DWIDTH -1] slv_reg3;

147 reg [0 : C_SLV_DWIDTH -1] slv_reg4;

148 reg [0 : C_SLV_DWIDTH -1] slv_reg5;

149 reg [0 : C_SLV_DWIDTH -1] slv_reg6;

150 reg [0 : C_SLV_DWIDTH -1] slv_reg7;

151 reg [0 : C_SLV_DWIDTH -1] slv_reg8;

152 reg [0 : C_SLV_DWIDTH -1] slv_reg9;

153 reg [0 : C_SLV_DWIDTH -1] slv_reg10;

154 reg [0 : C_SLV_DWIDTH -1] slv_reg11;

155 reg [0 : C_SLV_DWIDTH -1] slv_reg12; // step counter goal

156 reg [0 : C_SLV_DWIDTH -1] slv_reg13;

157 reg [0 : C_SLV_DWIDTH -1] slv_reg14; // breakpoint mask

158 reg [0 : C_SLV_DWIDTH -1] slv_reg15; // control register

159 wire [0 : 15] slv_reg_write_sel;

160 wire [0 : 15] slv_reg_read_sel ;

161 reg [0 : C_SLV_DWIDTH -1] slv_ip2bus_data;

162 wire slv_read_ack;

163 wire slv_write_ack;

164 integer byte_index , bit_index;

165

166 // --USER logic implementation added here

167 // States for step counter

168 parameter IDLE = 2’d0, SETUP = 2’d1 , DELAY = 2’d2 , STEPPING = 2’d3;

169 reg [1 : 0] state;

170

171 initial

172 begin

Yousef S. Iskander 196

173 step_counter_target_write_d1 = 0;

174 state = IDLE;

175 ctrl_run = 0;

176 step_counter_en = 0;

177 end

178

179 // external assigns

180 assign DebugModeLed = ~clk_sel; // bp_dut0_active; // ~clk_sel; // clock select indicator from mux line

181 assign SysDbgClk = sys_dbg_clk;

182 assign sys_clk = SysClk;

183

184 assign BreakpointInterrupt = breakpoint_active; // step_counter_enabled ;

185 assign breakpoint_mask = slv_reg14;

186 // mask the breakpoint_mask with the breakpoints vector and or -reduce to determine if there is an active breakpoint

187 assign breakpoint_active = |(breakpoint_mask & BreakpointId);

188

189 // control registers assigns

190 // assign ctrl_run = slv_reg15 [31];

191 // assign stop_clk = slv_reg15 [30];

192 assign clk_sel = (~ breakpoint_active & (step_counter_en | ctrl_run));

193

194 // pulses unknown number of cycles when the register is written to

195 assign step_counter_target = slv_reg12; // alias step_counter_target register

196 assign step_counter_target_write = (slv_reg_write_sel == 16’ b0000000000001000);

197 assign step_counter_activate = (step_counter_target_write == 1 && step_counter_target_write_d1 == 0);

198 assign step_counter_expired = (step_counter_target -1 == step_counter);

199

200 // rising edge detection sync logic

201 // assign dbg_stop_clk = (stop_clk == 1 && stop_clk_d1 == 0);

202

203 // control logic

204 always @(posedge Bus2IP_Clk)

205 begin

206 // control register is being written to

207 if (slv_reg_write_sel == 16’ b0000000000000001)

208 ctrl_run <= Bus2IP_Data [31];

209

210 // stop the running if a breakpoint hits

211 if (breakpoint_active) ctrl_run <= 1’b0;

212 end

213

214

215 // step clock

216 always @(posedge sys_clk)

217 begin

218 case (state)

219 IDLE:

220 begin

221 step_counter_en <= 1’b0;

222 step_counter <= 32’b0;

223 state <= IDLE;

224

225 if (step_counter_activate && !ctrl_run)

226 state <= SETUP;

227 end

228

229 // start the step_counter_en one cycle to chnage the clock_sel

230 SETUP:

231 begin

232 step_counter_en <= 1’b1;

233 state <= DELAY;

234 end

235

236 DELAY:

237 begin

238 state <= STEPPING;

239 end

240

241 STEPPING:

242 begin

243 step_counter_en <= 1’b1;

244 step_counter <= step_counter + 1;

245 state <= STEPPING;

246

247 if (step_counter_expired)

248 begin

249 state <= IDLE;

250 step_counter_en <= 1’b0;

251 end

252 end

253

254 endcase

255

256

257 // feed the run bit through to pulse the stop_clk

258 // stop_clk <= ctrl_run | step_counter_en;

259 // stop_clk_d1 <= stop_clk ;

Yousef S. Iskander 197

260

261 step_counter_target_write_d1 <= step_counter_target_write;

262

263 end

264

265

266 // bufgmux instantiation

267 BUFGCE dbg_clk_mux (

268 .O(sys_dbg_clk), // Clock MUX output

269 .I(sys_clk), // Clock1 input

270 .CE(clk_sel) // Clock select input

271);

272

273

274 /*

275 BUFGMUX_CTRL BUFGMUX_CTRL_inst (

276 .O(sys_dbg_clk), // Clock MUX output

277 .I0(dbg_stop_clk), // Clock0 input

278 .I1(sys_clk), // Clock1 input

279 .S(clk_sel) // Clock select input

280);

281 */

282 // --

283 // Example code to read/write user logic slave model s/w accessible registers

284 //

285 // Note:

286 // The example code presented here is to show you one way of reading/writing

287 // software accessible registers implemented in the user logic slave model.

288 // Each bit of the Bus2IP_WrCE/ Bus2IP_RdCE signals is configured to correspond

289 // to one software accessible register by the top level template. For example ,

290 // if you have four 32 bit software accessible registers in the user logic ,

291 // you are basically operating on the following memory mapped registers:

292 //

293 // Bus2IP_WrCE/ Bus2IP_RdCE Memory Mapped Register

294 // "1000" C_BASEADDR + 0x0

295 // "0100" C_BASEADDR + 0x4

296 // "0010" C_BASEADDR + 0x8

297 // "0001" C_BASEADDR + 0xC

298 //

299 // --

300

301 assign

302 slv_reg_write_sel = Bus2IP_WrCE [0:15] ,

303 slv_reg_read_sel = Bus2IP_RdCE [0:15] ,

304 slv_write_ack = Bus2IP_WrCE [0] || Bus2IP_WrCE [1] || Bus2IP_WrCE [2] || Bus2IP_WrCE [3] || Bus2IP_WrCE [4] \

305 || Bus2IP_WrCE [5] || Bus2IP_WrCE [6] || Bus2IP_WrCE [7] || Bus2IP_WrCE [8] || Bus2IP_WrCE [9] || Bus2IP_WrCE [10] \

306 || Bus2IP_WrCE [11] || Bus2IP_WrCE [12] || Bus2IP_WrCE [13] || Bus2IP_WrCE [14] || Bus2IP_WrCE [15],

307 slv_read_ack = Bus2IP_RdCE [0] || Bus2IP_RdCE [1] || Bus2IP_RdCE [2] || Bus2IP_RdCE [3] || Bus2IP_RdCE [4] \

308 || Bus2IP_RdCE [5] || Bus2IP_RdCE [6] || Bus2IP_RdCE [7] || Bus2IP_RdCE [8] || Bus2IP_RdCE [9] || Bus2IP_RdCE [10] \

309 || Bus2IP_RdCE [11] || Bus2IP_RdCE [12] || Bus2IP_RdCE [13] || Bus2IP_RdCE [14] || Bus2IP_RdCE [15];

310

311 // implement slave model register(s)

312 always @(posedge Bus2IP_Clk)

313 begin: SLAVE_REG_WRITE_PROC

314

315 if (Bus2IP_Reset == 1)

316 begin

317 slv_reg0 <= 0;

318 slv_reg1 <= 0;

319 slv_reg2 <= 0;

320 slv_reg3 <= 0;

321 slv_reg4 <= 0;

322 slv_reg5 <= 0;

323 slv_reg6 <= 0;

324 slv_reg7 <= 0;

325 slv_reg8 <= 0;

326 slv_reg9 <= 0;

327 slv_reg10 <= 0;

328 slv_reg11 <= 0;

329 slv_reg12 <= 0;

330 // slv_reg13 <= 0;

331 slv_reg14 <= 0;

332 slv_reg15 <= 0;

333 end

334 else

335 case (slv_reg_write_sel)

336 /* 16’ b1000000000000000 :

337 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

338 if (Bus2IP_BE[byte_index] == 1)

339 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index +1)

340 slv_reg0[bit_index] <= Bus2IP_Data[bit_index]; */

341 16’ b0100000000000000 :

342 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

343 if (Bus2IP_BE[byte_index] == 1)

344 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

345 slv_reg1[bit_index] <= Bus2IP_Data[bit_index];

346 16’ b0010000000000000 :

Yousef S. Iskander 198

347 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

348 if (Bus2IP_BE[byte_index] == 1)

349 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

350 slv_reg2[bit_index] <= Bus2IP_Data[bit_index];

351 16’ b0001000000000000 :

352 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

353 if (Bus2IP_BE[byte_index] == 1)

354 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

355 slv_reg3[bit_index] <= Bus2IP_Data[bit_index];

356 16’ b0000100000000000 :

357 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

358 if (Bus2IP_BE[byte_index] == 1)

359 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

360 slv_reg4[bit_index] <= Bus2IP_Data[bit_index];

361 16’ b0000010000000000 :

362 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

363 if (Bus2IP_BE[byte_index] == 1)

364 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

365 slv_reg5[bit_index] <= Bus2IP_Data[bit_index];

366 16’ b0000001000000000 :

367 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

368 if (Bus2IP_BE[byte_index] == 1)

369 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

370 slv_reg6[bit_index] <= Bus2IP_Data[bit_index];

371 16’ b0000000100000000 :

372 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

373 if (Bus2IP_BE[byte_index] == 1)

374 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

375 slv_reg7[bit_index] <= Bus2IP_Data[bit_index];

376 16’ b0000000010000000 :

377 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

378 if (Bus2IP_BE[byte_index] == 1)

379 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

380 slv_reg8[bit_index] <= Bus2IP_Data[bit_index];

381 16’ b0000000001000000 :

382 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

383 if (Bus2IP_BE[byte_index] == 1)

384 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

385 slv_reg9[bit_index] <= Bus2IP_Data[bit_index];

386 16’ b0000000000100000 :

387 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

388 if (Bus2IP_BE[byte_index] == 1)

389 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

390 slv_reg10[bit_index] <= Bus2IP_Data[bit_index];

391 16’ b0000000000010000 :

392 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

393 if (Bus2IP_BE[byte_index] == 1)

394 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

395 slv_reg11[bit_index] <= Bus2IP_Data[bit_index];

396 16’ b0000000000001000 :

397 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

398 if (Bus2IP_BE[byte_index] == 1)

399 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

400 slv_reg12[bit_index] <= Bus2IP_Data[bit_index];

401 /* 16’ b0000000000000100 :

402 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

403 if (Bus2IP_BE[byte_index] == 1)

404 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index +1)

405 slv_reg13[bit_index] <= Bus2IP_Data[bit_index]; */

406 16’ b0000000000000010 :

407 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

408 if (Bus2IP_BE[byte_index] == 1)

409 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

410 slv_reg14[bit_index] <= Bus2IP_Data[bit_index];

411 16’ b0000000000000001 :

412 for (byte_index = 0; byte_index <= (C_SLV_DWIDTH /8) -1; byte_index = byte_index +1)

413 if (Bus2IP_BE[byte_index] == 1)

414 for (bit_index = byte_index *8; bit_index <= byte_index *8+7; bit_index = bit_index+1)

415 slv_reg15[bit_index] <= Bus2IP_Data[bit_index];

416 default : ;

417 endcase

418

419 end // SLAVE_REG_WRITE_PROC

420

421 // implement slave model register read mux

422 always @(slv_reg_read_sel or

423 // Dut0 or bp_dut0_active or

424 // step_clk_tripped or

425 slv_reg0 or slv_reg1 or slv_reg2 or slv_reg3 or slv_reg4 or slv_reg5 or slv_reg6 or slv_reg7 or slv_reg8 or

426 slv_reg9 or slv_reg10 or slv_reg11 or slv_reg12 or slv_reg13 or slv_reg14 or slv_reg15)

427

428 begin: SLAVE_REG_READ_PROC

429

430 case (slv_reg_read_sel)

431 16’ b1000000000000000 : slv_ip2bus_data <= Dut0; // slv_reg0 ;

432 16’ b0100000000000000 : slv_ip2bus_data <= Dut1;

433 16’ b0010000000000000 : slv_ip2bus_data <= slv_reg2;

Yousef S. Iskander 199

434 16’ b0001000000000000 : slv_ip2bus_data <= slv_reg3;

435 16’ b0000100000000000 : slv_ip2bus_data <= slv_reg4;

436 16’ b0000010000000000 : slv_ip2bus_data <= slv_reg5;

437 16’ b0000001000000000 : slv_ip2bus_data <= slv_reg6;

438 16’ b0000000100000000 : slv_ip2bus_data <= slv_reg7;

439 16’ b0000000010000000 : slv_ip2bus_data <= slv_reg8;

440 16’ b0000000001000000 : slv_ip2bus_data <= slv_reg9;

441 16’ b0000000000100000 : slv_ip2bus_data <= slv_reg10;

442 16’ b0000000000010000 : slv_ip2bus_data <= BreakpointId; // slv_reg11;

443 16’ b0000000000001000 : slv_ip2bus_data <= slv_reg12; // step counter target

444 16’ b0000000000000100 : slv_ip2bus_data <= slv_reg13; // step_clk_tripped , 31’b0

445 16’ b0000000000000010 : slv_ip2bus_data <= slv_reg14; // breakpoint mask

446 16’ b0000000000000001 : slv_ip2bus_data <= {31’b0 ,ctrl_run }; // slv_ip2bus_data <= slv_reg15; // ctrl

447 default : slv_ip2bus_data <= 0;

448 endcase

449

450 end // SLAVE_REG_READ_PROC

451

452 // --

453 // Example code to drive IP to Bus signals

454 // --

455

456 assign IP2Bus_Data = slv_ip2bus_data;

457 assign IP2Bus_WrAck = slv_write_ack;

458 assign IP2Bus_RdAck = slv_read_ack;

459 assign IP2Bus_Error = 0;

460

461 endmodule

Yousef S. Iskander 200

Listing B.15: Example of Generated Breakpoint Logic.
1

2

3 module dmd_debug_logic

4 (

5 // design input ports

6 cmd_i ,

7 cmd_o ,

8 cmd_w_i ,

9 text_i ,

10 text_o ,

11

12 // control lines

13 breakpoint_active ,

14 breakpoint_reg

15);

16

17 input [0 : 2] cmd_i;

18 input [0 : 3] cmd_o;

19 input cmd_w_i;

20 input [0 : 31] text_i;

21 input [0 : 31] text_o;

22 output breakpoint_active;

23 output [0 : 31] breakpoint_reg;

24

25 wire [0 : 31] breakpoints;

26

27 // assign the internal breakpoint register array to the output

28 assign breakpoint_reg = breakpoints;

29

30 assign breakpoint_active = |breakpoints;

31

32 assign breakpoints [0] = (text_i == 32’ h62636465); // breakpoint

33 assign breakpoints [1] = (text_o == 32’ h84983E44); // breakpoint

34 assign breakpoints [2] = (cmd_i == 3’b010); // breakpoint

35 assign breakpoints [3] = (cmd_o == 4’h4); // breakpoint

36 assign breakpoints [4] = 1’b0;

37 assign breakpoints [5] = 1’b0;

38 assign breakpoints [6] = 1’b0;

39 assign breakpoints [7] = 1’b0;

40 assign breakpoints [8] = 1’b0;

41 assign breakpoints [9] = 1’b0;

42 assign breakpoints [10] = 1’b0;

43 assign breakpoints [11] = 1’b0;

44 assign breakpoints [12] = 1’b0;

45 assign breakpoints [13] = 1’b0;

46 assign breakpoints [14] = 1’b0;

47 assign breakpoints [15] = 1’b0;

48 assign breakpoints [16] = 1’b0;

49 assign breakpoints [17] = 1’b0;

50 assign breakpoints [18] = 1’b0;

51 assign breakpoints [19] = 1’b0;

52 assign breakpoints [20] = 1’b0;

53 assign breakpoints [21] = 1’b0;

54 assign breakpoints [22] = 1’b0;

55 assign breakpoints [23] = 1’b0;

56 assign breakpoints [24] = 1’b0;

57 assign breakpoints [25] = 1’b0;

58 assign breakpoints [26] = 1’b0;

59 assign breakpoints [27] = 1’b0;

60 assign breakpoints [28] = 1’b0;

61 assign breakpoints [29] = 1’b0;

62 assign breakpoints [30] = 1’b0;

63 assign breakpoints [31] = 1’b0;

64

65 endmodule

	Improved Abstractions and Turnaround Time for FPGA DesignValidation and Debug
	Abstract
	Dedication
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	Motivation
	Problem Statement
	Contributions
	Organization

	Background
	An Overview of Programmable Logic
	FPGA Development
	Design Flow Overview

	Debug Methodologies
	Custom Methods
	Simulator-Based Development
	Commercial Debug Solutions
	Assertion-Based Verification

	High-Level Language Synthesis
	Dynamic Runtime Reconfiguration
	Summary

	Related Work
	Categorization of Debug Approaches
	Commercial Debug Products
	Vendor Products
	Third-Party Products

	Debug-Related Research
	High-Level Synthesis
	Deficiencies in Existing Approaches
	Summary

	Improving Abstraction and Turnaround Time
	High-Level Validation
	Mapping Software Procedures to Hardware Modules
	Mapping Data and Control Signals to the Software Model

	Low-Level Debug
	Improving Visibility
	Improving Controllability
	Improving Agility

	Dynamic Modular Design and Validation
	PATIS

	Summary

	Implementation
	High-Level Validation
	Reference Model Execution and Hardware Data Staging
	Test Harness and API

	Low-Level Debug
	Programmable Debug Controller
	Unified Software Interface
	Logic Model and Symbol Table Creation

	Summary

	Evaluation
	High-Level Validation
	Secure Hash Algorithm
	Results
	Summary and Future Work

	Low-Level Debug
	Benchmark Designs
	Results
	Summary and Future Work

	Conclusions and Future Work
	Review of Contributions
	Future Work

	Bibliography
	Open-Source and Free Software Acknowledgement
	Source Code
	High-Level Validation
	Low-Level Debug

