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Abstract: This paper presents a novel model for estimating the number of vehicles along signalized
approaches. The proposed estimation algorithm utilizes the adaptive Kalman filter (AKF) to produce
reliable traffic vehicle count estimates, considering real-time estimates of the system noise characteristics.
The AKF utilizes only real-time probe vehicle data. The AKF is demonstrated to outperform the traditional
Kalman filter, reducing the prediction error by up to 29%. In addition, the paper introduces a novel
approach that combines the AKF with a neural network (AKFNN) to enhance the vehicle count estimates,
where the neural network is employed to estimate the probe vehicles’ market penetration rate. Results
indicate that the accuracy of vehicle count estimates is significantly improved using the AKFNN approach
(by up to 26%) over the AKF. Moreover, the paper investigates the sensitivity of the proposed AKF model
to the initial conditions, such as the initial estimate of vehicle counts, initial mean estimate of the state
system, and the initial covariance of the state estimate. The results demonstrate that the AKF is sensitive to
the initial conditions. More accurate estimates could be achieved if the initial conditions are appropriately
selected. In conclusion, the proposed AKF is more accurate than the traditional Kalman filter. Finally,
the AKFNN approach is more accurate than the AKF and the traditional Kalman filter since the AKFNN
uses more accurate values of the probe vehicle market penetration rate.

Keywords: real-time estimation; probe vehicle; traffic density; neural network; level of market
penetration rate

1. Introduction

Real-time traffic state estimates have been increasingly recognized following the introduction of
recent advanced technologies such as connected vehicle (CV) technologies. CVs aim to improve road safety
by potentially reducing human errors, mitigating traffic congestion levels by offering alternative routes,
and reducing on-road emissions and fuel consumption [1]. Nowadays, conducting research with limited
probe vehicle data (e.g., CVs) is a challenge, especially when no additional data sources are provided.
Hence, past research has utilized probe data in conjunction with existing detection systems to enhance
proposed traffic models, despite the limitation that fixed detection techniques (e.g., loop detectors) always
have some noise in their data [2–4].
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A probe vehicle is defined as a vehicle that provides real-time information, such as its instantaneous
position and speed. Several benefits of using probe vehicle data have been recognized; for example,
the high quality of data compared with existing data sources (e.g., cameras and loop detectors), and data
can be collected at any location inside the network, thus offering a clear picture about traffic behavior at
any time. Therefore, transportation agencies are putting effort into facilitating the use of probe vehicle data.

Limited studies have used only information from probe vehicle data (e.g., Global Positioning Systems
[GPSs]) to estimate the state of on-road traditional vehicles [5], such as traffic travel time, traffic density,
traffic speed, and traffic volume. The real-time estimation of traffic density is important to achieving better
traffic operations management in urban areas. This paper aims to estimate the total number of vehicles on
signalized link approaches using only probe vehicle data. The estimate outcomes can be provided to traffic
signal controllers to optimally determine the allocation of green time for each traffic signal phase [6,7],
leading to better intersection performance measures such as intersection delays and vehicle crashes [8,9].
One concern with using probe vehicles is measuring their level of market penetration (LMP). The LMP
is defined as the ratio of the total number of probe vehicles to the total number of vehicles. Providing
accurate LMP estimates improves the estimation accuracy of the vehicle counts [5]. Therefore, in this
paper, a machine-learning technique is developed to provide reliable LMP estimates.

2. Related Work

Different statistical tools have been used to estimate the total number of vehicles on arterial roads and
freeways, such as the Kalman filter (KF) [10], Bayesian statistics [11], and Particle filter [12] approaches.
The literature shows the benefits of using the KF technique in addressing different aspects of the traffic
estimation problem. The KF has been used to estimate the traffic travel time [13,14], traffic speed [15,16],
and traffic density [5,17]. Different detection techniques have been employed to estimate the number of
vehicles, such as loop detectors, camera systems, and probe data. Two loop detectors, one at the entrance
and the other at the exit of the link, are utilized to measure the total number of arrivals and departures, then
the number of vehicles are simply obtained by applying the flow continuity equation [18]. A robust KF
model with at least three loop detectors on the tested link was employed to estimate the number of vehicles
on the link in [17]. The study derived the KF state equation from the flow continuity equation, while
the measurement equation was derived from the relationship of the detector time occupancy and space
occupancy; however, the cost of implementing such an algorithm in the field is high given the number
of sensors needed. Another study employed the KF to estimate the number of vehicles on multi-section
freeways. The state equation was derived from the flow continuity equation, while the measurement
equation was derived from the hydrodynamic relationship between traffic speed and density [19]. Loop
detectors were used in addition to speed sensors in the middle of the tested section. However, the proposed
algorithm is hard to employ in the field due to the high cost of implementation. A video record, another
detection technique, was used to estimate the traffic density for signalized links [20]. In that study,
the authors used the space-mean speed rather than the traffic flow in the state equation due to high
errors accompanied with sensor failures. Their argument takes into account that the space-mean speed is
taken as an average quantity while the traffic flow is a cumulative quantity. They also demonstrated the
importance of having knowledge about the system noise characteristics to improve the performance of
the KF model. Consequently, the authors of this paper applied an adaptive Kalman filter (AKF) to enable
real-time estimates of statistical parameters of the system noise rather than using predefined values for the
entire simulation (as assumed in the traditional KF model).

As illustrated in the literature, stationary sensors, such as loop detectors and camera systems, suffer
from poor detection accuracy and have high installation and maintenance costs. Advanced detection
techniques such as GPS data have proven to be more accurate without the need to install additional
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hardware. Consequently, recent studies have developed several traffic estimation models using fusion data
(combination of two different data sources) to estimate the number of vehicles with the aim of achieving
better accuracy than using only one source of data. In many of the works using fusion data, the KF
technique was employed for estimating traffic density. One study achieved accurate estimated traffic
density results using the traffic flow values measured from a video detection system and the travel time
obtained from vehicles equipped with GPS devices [2]. The proposed estimation approach in this study
differs in two significant ways from the proposed AKF model, namely only probe vehicle data are used
with a variable time interval rather than a fixed value (the updating time interval was 1 min in [2]), and the
proposed estimation approach uses the AKF to allow for real-time estimates of statistical parameters of the
state and measurement noise.

Reviewing the literature, the KF model has proven its ability to address estimation research problems
for different traffic applications. However, it is hard to implement in real-world applications due to
hard estimates of statistical characteristics of the system noise (mean and variance). Consequently,
researchers have developed the AKF to solve this issue and make field implementation possible. Chu et al.
proposed an AKF model to estimate freeway travel time using both loop detectors and probe data [21].
They presented the estimation method for noise statistic parameters that was proposed in [22]. This
estimation method of statistical parameters is known for its simplicity in handling errors and its fast
processing time. Hence, in this study, the estimation of the statistical parameters uses the same estimation
procedure as in Chu et al.’s study. It should be noted that the main difference between the proposed
estimation approach and Chu et al.’s approach is that our model uses only probe vehicle data.

In a recent study, the KF model was proposed to estimate the number of vehicles on signalized
link approaches using only probe vehicle data [5]. The KF state equation was based on the traffic flow
continuity equation and thus one value of probe vehicle LMP (ρ), for the entire link, is used to scale up
the probe measurements to reflect the total flow in the second term of the flow continuity equation as
presented in Equation (1). It was found that using two LMP values (at the entrance and the exit of the link)
produce more accurate vehicle count estimates, especially when dealing with low LMPs, as described
later in Section 4.3. In Equation (1), N(t) is the number of vehicles traversing the link at time (t), ∆t is the
variable duration of the updating time interval, N(t − ∆t) is the number of vehicles traversing the link in
the previous interval, qin and qout are the probe flows entering and exiting the link between (t − ∆t) and (t),
respectively, and ρ is the LMP of probe vehicles.

N(t) = N(t − ∆t) +
∆t
ρ
[qin(t)− qout(t)] (1)

Machine learning has proven its ability to provide accurate estimates for different traffic
characteristics [23–28]. Traffic speed and density have been estimated using an artificial neural network
(ANN) model [23]. Video and Bluetooth data were used to build the ANN model. The traffic flow data
were manually extracted from the video records, while the speed data were constructed from the collected
Bluetooth travel time data. The neural network model (NN) is able to address the research problem if a good
quantity of training data is accessible. Another study conducted several machine learning techniques such
as k-means clustering, k-nearest neighbor classification, and locally weighted regression to estimate traffic
speed [24] using archived data of speeds, counts, and densities. They found that machine learning models
can improve the accuracy of speed estimation. Khan et al. [25] used artificial intelligence to classify the level
of service in a freeway segment based on traffic density values. They used loop detectors and CV data to
develop support vector machine and k-nearest neighbor classification. Results indicated higher accuracy
from the support vector machine algorithm than the k-nearest neighbor classification algorithm. Estimating
hourly traffic volumes between sensors was addressed using an NN model in the Maryland highway
network [27], deploying both probe vehicles and automatic traffic recording station data to construct the
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NN model. A comparison was also made between linear regression, k-nearest neighbor, support vector
machine with linear kernel, random forest, and NN models, concluding that the NN model performed the
best. The proposed approach produced 24% more accurate estimates than current volume profiles.

In this research study, an AKF technique was applied to estimate real-time vehicle counts along
signalized link approaches using only probe vehicle data. The study then considers the recommendation of
Aljamal et al’s study [5] by using two LMP values at the entrance and the exit of the tested link. To achieve
this task, an NN model was developed to provide real-time estimates of the LMP values to improve the
accuracy of the proposed AKF model. After that, the paper develops the new AKFNN approach after
combining the AKF with the developed NN models. The proposed study extends the state-of-the-art in
vehicle count estimates by making four major contributions:

• The study tests the proposed AKF model using only probe vehicle data. The approach was evaluated
considering different probe vehicle LMPs ranging from 10% to 90% at increments of 10%.

• The study develops an NN model to estimate the LMP of probe vehicles at the exit of the link to
reflect the total vehicle departures.

• The study tests the developed AKFNN approach by using a fusion of probe and single-loop detector
data. A comparison between the traditional KF, AKF, and AKFNN models is presented.

• The study examines the impact of the initial conditions on the AKF estimation model. Three initial
condition parameters are tested: the initial vehicle count estimate, the initial mean estimate of the
state noise errors, and the a priori initial covariance of the state system.

This paper is organized as follows. The first section describes the development of the simulation
data. The second section describes the estimation models and the problem formulation for the KF, AKF,
and AKFNN models. The third section discusses the results of the new proposed models. The fourth
section provides the conclusions of the study and recommended future work.

3. Development of Simulation Data

This paper relies on the INTEGRATION traffic simulation model [29] to validate and test the accuracy
of the proposed models. The INTEGRATION software has been extensively validated and demonstrated
to replicate empirical observations [30–35]. Specifically, INTEGRATION was used to create synthetic data
for conditions not observed in the field to quantify the sensitivity of the proposed method to the link
length and traffic demand level. The selected tested link is located in downtown Blacksburg, Virginia,
with an approximate length of 102 m based on ArcGis software, and connects two signalized intersections.
The link characteristics were calibrated to local conditions using typical values, which included a free-flow
speed of 40 (km/h), a speed-at-capacity of 32 (km/h), a jam density of 160 (veh/km/lane), and a base
saturation flow rate of 2100 (veh/h/lane), which resulted in a roadway capacity of 700 (veh/h) given
the cycle length and green times of the traffic signal. The traffic signal cycle length is 75 s and it has four
phases with the following displayed green times: 5, 25, 5, and 28 s. The tested link here is assigned with a
displayed green time of 25 s. These values were consistent with what was coded in the field.

The INTEGRATION simulation model was used to ease the generation of probe vehicle data as real
probe data are not easy to access. For each LMP, a total of 50 scenarios were generated with different
random seeds as conducted in [25]. Forty-nine scenarios were used to train and validate the proposed NN
model, and scenario number 50 was considered the testing data set. The INTEGRATION model generates
a “time-space” file which provides some information about the probe vehicles during their trips for every
second. The time-space file records the instantaneous position, speed, and spacing for each probe vehicle.
In addition to that, a loop detector is installed at the entrance of the tested link to create a detector output
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file which provides some data about the simulation behavior such as speed, traffic volume, and occupancy
at the detection location.

4. Estimation Models

This section first summarizes some crucial points regarding estimating the vehicle count as discussed
in the authors’ last research study [5]. In addition, this section describes the proposed AKF estimation
model for estimating the vehicle count along signalized link approaches, and demonstrates the difference of
the state-of-the-art KF model in [5] and the new proposed AKF model. Finally, an NN model is developed
to provide estimates of the probe vehicle LMPs to be used in the proposed AKF model equations to attain
higher accuracy. Two vehicle count estimation models are described in this section: (1) the AKF model,
which uses only probe vehicle data; and (2) the AKFNN model, which fuses probe and single-loop detector
data. The single-loop detector data were mainly used to develop the NN model.

4.1. Summary of the Developed KF Model

In a previous study [5], the authors developed a KF model to produce reliable vehicle count estimates
using only probe vehicle data. In that study, the authors introduced a novel variable estimation time
interval as opposed to the traditional fixed time interval. The estimation time interval was defined as the
time when exactly n probe vehicles traversed the tested link. It was proven that the variable time interval,
compared to a fixed time interval (e.g., 20 s), led to improved estimation accuracy. An illustrative example
to show the benefits of using the variable time interval. if the approach’s LMP is 10%, the number of
probe vehicles will obviously be low. If we treat the problem using a fixed estimation interval, then the
probability of observing zero probe vehicles within an interval will be high for short estimation time
intervals, making the estimation inefficient and inaccurate. Accordingly, low LMPs require long intervals
(e.g., 300 s) to ensure that at least one probe vehicle is on the approach. In contrast, approaches with high
LMPs can use short estimation intervals (e.g., 20 s). Consequently, treating the estimation time interval as
a variable produces an efficient and convenient way of determining the duration of the estimation period.
For more details, readers may refer to [5].

One concern about the KF model is the use of predefined fixed values of the statistical parameters,
mean and variance, of the KF state and measurement errors. Applying the KF model in real-world
problems is limited since the statistical parameters are assumed to be known [21]. The mean and variance
entities are known as variable rather than fixed values. To produce a flexible model, this study employs the
AKF model to provide real-time estimates of the statistical parameters of the KF state and measurement
errors as described in the following section.

4.2. Adaptive Kalman Filter (AKF)

The traditional KF technique is utilized with predefined error values of the state and measurement
noise; these error values remain constant for the entire simulation. However, these values are hard to
obtain in the field and they are always changing with time. Hence, an AKF is developed to overcome
this issue and to dynamically estimate the error values in the state and measurement estimates. The AKF
is comprised of two equations: (a) state equation and (b) measurement equation. The state equation is
derived from the traffic flow continuity equation as defined in Equation (2). The state equation computes
the number of vehicles by continuously adding the difference in the number of vehicles entering and
exiting the section to the previously computed cumulative number of vehicles traveling along the section.
This integral results in an accumulation error which requires fixing, and thus the measurement equation is
needed. In Equation (2), the ρ value can be observed from historical data.
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N(t) = N(t − ∆t) +
∆t
ρ
[qin(t)− qout(t)] (2)

The state equation produces accurate results if the scaled traffic flows (qin/ρin and qout/ρout) are
accurate [5], as shown in Section 4.3. The total counts can be extracted from traditional loop detectors
or video detection systems. We should note here that the ρ value in Equation (2) plays a major role in
delivering accurate outcomes. ρ is defined as the ratio of the number of probe vehicles (Nprobe) to the total
number of vehicles (Ntotal), as shown in Equation (3). For instance, if ρ is equal 0.1, and the number of
probe vehicles is 5, then the expected total number of vehicles is 50.

ρ = Nprobe/Ntotal (3)

Equation (4) describes the hydrodynamic relationship between the macroscopic traffic stream
parameters (flow, density, and space-mean speed),

q = kus (4)

where q is the traffic flow (vehicles per unit time), k is the traffic stream density (vehicles per unit distance),
and us is the space-mean speed (distance per unit time). The us can be represented as shown in Equation (5),

us = D/TT (5)

where D is the link length and TT is the average vehicle travel time. Since probe vehicles can share their
instantaneous locations every ∆t, the travel time of each probe vehicle can be computed for any road
section. Thus, the probe vehicle travel time is used in the measurement equation, using Equations (4)
and (5). The measurement equation can be written as shown in Equation (8):

TT(t) = D × k(t)
q̄(t)

(6)

TT(t) =
1
q̄
[k(t)× D] =

1
q̄(t)

N(t) (7)

TT(t) = H (t)× N (t) (8)

where q̄ is the average traffic flow entering and exiting the link, and H(t) is a transition vector that converts
the vehicle counts to travel times, and is the inverse of the average flow (i.e., the first term of Equation (7)),
as shown in Equation (9).

H(t) =
1

q̄(t)
=

2 × ρ

qin(t) + qout(t)
(9)

The system state and measurement equations can be written as in Equations (10) and (11), considering
the errors (noise). The term u(t) is the given inputs for the system. The vector H(t) is used to convert the
vehicle counts to travel times. The vector w(t − ∆t) is the state noise and is assumed to be Gaussian noise
with the mean of m(t) and variance of M(t). The measurement noise v(t) is assumed to be Gaussian noise
with the mean of r(t) and variance of R(t).

State Equation : N(t) = N(t − ∆t) + u(t) + w(t − ∆t) (10)
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u(t) =
∆t
ρ
[qin(t)− qout(t)]

Measurement Equation : TT(t) = H (t)× N (t) + v(t) (11)

H(t) =
1

q̄(t)
=

2 × ρ

qin(t) + qout(t)

The proposed AKF estimation model can be solved using the following equations:

N̂− (t) = N̂+ (t − ∆t) + u(t) + m(t − ∆t) (12)

P̂− (t) = P̂+(t − ∆t) + M(t − ∆t) (13)

G(t) = P̂−(t)H(t)T [H(t)P̂−(t) H(t)T + R(t)]−1 (14)

N̂+ (t) = N̂− (t) + G (t) [TT(t)− H(t)N̂−(t)− r(t)] (15)

P̂+ (t) = P̂− (t)× [1 − H (t) G (t)] (16)

where N̂− is the a priori estimate of the vehicle counts calculated using the measurement prior to instant t,
and P̂− is the a priori estimate of the covariance error at instant t. The Kalman gain (G) is demonstrated
in Equation (14). The posterior state estimate (N̂+) and the posterior error covariance estimate (P̂+) are
updated as shown in Equations (15) and (16), considering the probe vehicle travel time measurements.
In the next section, the estimation steps of the noise statistical parameters (m, M, r, R) are described.

4.2.1. Online Estimation of Noise Statistics

An online estimate is conducted to optimally find the errors in the state and the measurement
variables, to make the KF more efficient and applicable in real-world applications. As pointed out in
the literature, the traditional KF assumes predefined errors in the system, which is not the case in real
applications. A set of unknown noise statistical parameters, (m, M, r, R), needs to be estimated at every
estimation step. The online estimate procedure follows the same procedure presented in [21].

The mean (m) and variance (M) of the state noise are shown in Equations (17) and (18), respectively.

m =
1
n

n

∑
t=1

m(t), where m(t) = N̂+(t)− N̂+(t − ∆t)− u(t) (17)

M =
1

n − 1

n

∑
t=1

[(m(t)− m).(m(t)− m)T − (
n − 1

n
)P̂+(t − ∆t)− P̂+(t)] (18)

where m(t) is the state noise at time t, the first term of Equation (18) is the covariance of w at time t, n is
the number of state noise samples.

The mean (r) and variance (R) of the measurement noise are shown in Equations (19) and (20), respectively.

r =
1
n

n

∑
t=1

r(t), where r(t) = TT(t)− H(t) N̂−(t) (19)
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R =
1

n − 1

n

∑
t=1

[(r(t)− r).(r(t)− r)T − (
n − 1

n
)H(t)P̂−(t)HT(t)] (20)

where R(t) is the observation noise at time t. The first term of Equation (20) is the covariance of v at time t,
and n is the number of measurement noise samples. As a summary, the KF and AKF models use the same
equations except for the fact that the AKF model estimates the statistical parameters of the noise for every
estimation step using Equations (17) to (20).

As found in our previous study [5], providing the system equations real-time estimates of ρin and ρout

should improve the estimation accuracy. In this study, a single-loop detector was installed at the entrance
of the tested link to produce real-time estimates of ρin. In contrast, in the next section, an NN model is
developed to obtain real-time estimates for the ρout values.

4.3. Neural Network

NN is a machine learning technique that aims to recognize relationships between vast amounts of
data by employing a certain number of neurons in every single hidden layer to achieve better accuracy [36].
The network consists of three main layers: the input layer, the hidden layer, and the output layer. This
section takes into account the recommendation of using two market penetration rates (at the entrance
and exit of the link) rather than one market penetration rate along the tested link in the KF equations [5].
Accordingly, the state equation and the H vector in the measurement equation are revised as presented in
Equations (21) and (22). ρin and ρout are the probe LMP at the entrance and the exit of the link, respectively.

N(t) = N(t − ∆t) + ∆t[
qin(t)
ρin(t)

− qout(t)
ρout(t)

] (21)

H(t) =
1

q̄(t)
=

2
qin(t)
ρin(t)

+ qout(t)
ρout(t)

(22)

A single-loop detector was installed at the entrance of the link to measure ρin and also to use as an
input to the NN model. Accordingly, this study develops an NN model to estimate ρout. The tested link is
shown in Figure 1. The next section describes the selected inputs (features) and the output variables of the
NN model.

Figure 1. Tested link.

Characteristics of the NN: Input and Output Variables

Previous research has used different features to build machine learning models [23–26]. Fusing video
and Bluetooth data was used to estimate traffic density and speed. The traffic flow was manually extracted
from the video records, while the speed data were constructed from the collected Bluetooth travel time
data [23]. Another study relied on archived data of traffic speeds, counts, and density to estimate traffic
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speed [24]. Distance headway, number of stops, and speed data were identified as useful features to
achieve accurate density estimates [25]. They employed loop detectors and CV data. In a recent study,
Sekula et al. used probe and automatic traffic recording station data to extract the features of the NN
model [27]. The selected features were the (1) speed of probe vehicles, (2) weather data such as temperature,
visibility, precipitation, and weather status, (3) infrastructure data (speed limits, number of lanes, class of
the road, and type of the road), (4) temporal data such as the day of the week, and (5) volume profiles
based on historical data. The literature showed that the traffic speed is always used as a model feature,
especially when probe vehicle data are used. In contrast, the traffic flow is always used when stationary
sensors (e.g., loop detector) are used.

In this paper, a fusion of probe and single-loop detector data is utilized to produce the model
features. The single-loop detector was installed at the entrance of the link and thus ρin can be computed
directly using Equation (3). The ρout variable is calculated from the NN (the NN output). Seven possible
inputs (features) were considered in the NN model, as defined in Table 1. Conducting a feature selection
technique to validate the importance of each feature for the NN model, the number of the model features
was dropped to five features. It should be noted that the selected model inputs can be easily extracted
when probe vehicles are on the link. ρout can be expressed as a function of the selected inputs, as presented
in Equation (23).

ρout = f (At, Ap, us, S1, S2) (23)

The ρout values vary between 0 and 1, the 0 value means that no probe vehicles were observed at the
exit of the link, while the value of 1 means that the Dp value is the same as the Dt. The selected inputs must
be relevant to the model output ρout to allow the NN model to build a strong relationship between the model
inputs and outputs, and therefore produce high estimation accuracy. For instance, in our case, the ρout value
decreases as At and Ap increase. For instance, a high value of At means that the link is more congested and
thus the number of departures (Dt) is expected to be high. The ρout value also decreases with increasing
speed (S1, S2, and us). The speed is an indicator of the congestion level of the link; for instance, if the speed
is low, then more vehicles are expected to be on the link, leading to higher values of Dt.

Table 1. Definition of the NN model inputs.

Input Symbol Definition Unit

At Total number of arrivals obtained from the single-loop detector veh
Ap Total number of probe arrivals veh
Dp Total number of probe departures veh
S1 Average speed for probe vehicles at link entrance km/h
S2 Average speed for probe vehicles at link exit km/h
us Space-mean speed for probe vehicles km/h
ut Time-mean speed for probe vehicles km/h

A single hidden layer with one neuron, with a transfer function of hyperbolic tansgent sigmoid,
was used to build the NN model as shown in Figure 2. The Levenberg–Marquardt (LM) optimization
has been proven in the literature to outperform the gradient decent and conjugate gradient methods for
medium-sized problems [37]. Furthermore, the LM is considered the fastest back-propagation algorithm
and thus was implemented in the proposed approach. The weights and biases of the developed NN
model are described below. w1 depicts the weights between the input layer and the hidden layer, while w2

represents the weight between the hidden layer and the output layer. b1 and b2 represent the biases at the
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hidden and output layers, respectively. Figure 2 describes the proposed AKFNN approach, combining the
AKF model with the NN model.

w1 = [0.43 0.19 − 47.28 0.36 − 0.43], w2 = [1.70], b1 = [−46.62], b2 = [0.95]

Figure 2. Flowchart for adaptive Kalman filter with a neural network (AKFNN) approach.

5. Results

This section evaluates the performance of the proposed models. The first subsection evaluates the
performance of the AKF model and then compares the AKF with the KF model (Section 5.1). The second
subsection presents the performance of the NN model used for estimating the LMP of probe vehicles at
the exit of the link (ρout) (Section 5.2). The third subsection compares the performance of AKF with the
AKFNN approach (Section 5.3). The fourth subsection investigates the sensitivity of the AKF estimation
model to the initial conditions (Section 5.4). The accuracy of the proposed models was evaluated based on
the root mean square error (RMSE) as shown in Equation (24). The RMSE has been frequently used in the
literature to measure the difference between the model estimates and the actual values.

RMSE (veh) =

√
n

∑
t=1

[
N̂+(t)− N(t)

]2/
n (24)

where N̂+(t) represents the estimated vehicle count values, N(t) represents the actual vehicle count
values, and n is the total number of estimations. All simulation scenarios start with the following initial
conditions: an initial vehicle count estimate of zero (N̂+(0) = 0 veh), which is the same value of the actual
vehicle count, and initial mean and the prior covariance estimates of the state system (m(0) = 2 veh and
P̂−(0)= 75 veh2) if the LMP scenario is less than or equal 60%, and (m(0) = 9 veh P̂−(0)= 120 veh2) if the
LMP scenario is greater than 60%. The proposed models were evaluated using different probe vehicle
LMPs, including 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. For each scenario, a Monte Carlo
simulation was conducted to create 300 random samples of probe vehicles from the full data set.

5.1. Comparison of the KF and the AKF Models

This section evaluates the proposed AKF model with real-time estimates of the error statistical
parameters for the state and the measurement. This section also compares the proposed AKF model with
the developed KF model in [5], as shown in Table 2. Results show that the AKF outperforms the KF
model in most scenarios except for the scenarios with high LMPs (i.e., LMP of 80% and 90%). Results
demonstrate the need to provide real-time estimates for the mean and variance error values in the state
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and measurement when dealing with low/medium LMPs. This happened due to high error in the fixed ρ

value that was used, which then produced high error in the vehicle count estimate. The AKF improved the
traditional KF vehicle-count estimation accuracy by up to 29%. In contrast, for high LMPs, the user may
proceed with predefined statistical values for the state and measurement (mean and variance error values),
due to low errors in the vehicle count estimates (low error in the ρ value). In conclusion, a simple KF can
be used with high LMPs without the need to change statistical noise parameters at every estimation step.

Table 2. Root mean square error (RMSE) values using the Kalman filter (KF) and the adaptive Kalman filter
(AKF) models.

LMP (%) RMSE (veh)

KF AKF Improvement (%)

10 6.0 4.3 29
20 5.6 4.0 28
30 5.0 3.8 23
40 4.6 3.6 22
50 4.1 3.6 11
60 3.6 3.2 11
70 3.0 3.0 0
80 2.3 2.6 −13
90 1.6 2.0 −25

5.2. Developed NN Model

The NN model was employed to predict the (ρout) value, which is used to reflect the total number of
vehicle departures from the given number of probe vehicle departures. The data set was divided into 70%
for training, 15% for validation, and 15% for testing. The validation data set is used to measure network
generalization and to avoid any over fitting problems [38]. The developed NN performance is shown
in Table 3. The mean square error (MSE) is 0.01 and the R value is close to 1.0. The R value measures
the correlation between model outputs and desired outputs. A value close to 1.0 means that the model
outputs are very close to desired outputs. Figure 3 shows the error histogram for the training, validation,
and testing data and their deviations from the zero error bar. Most of the errors lie around the zero error
bar, which means that the developed NN model appropriately addressed the research goal (i.e., estimating
ρout). Figure 4 presents the predicted and actual values for the ρout at different LMPs.

Table 3. Developed neural network (NN) model performance measures for the training, validation, and
testing data set.

Data Set Samples MSE R

Training 346,881 0.0171 0.872
Validation 74,331 0.0170 0.872

Testing 74,331 0.0173 0.871
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Figure 3. Error histogram for the training, validation, and testing data set.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Actual and estimated values of ρout for different level of market penetration (LMP) scenarios:
(a) 10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, and (i) 90% LMP.
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5.3. Comparison of the AKF and the AKFNN Models

This section demonstrates the impact of using two ρ values rather than using one predefined ρ

value. The average predefined ρ value is defined as the value for the entire tested link. The average ρ

value remains constant for the entire simulation for each LMP scenario. For instance, if the scenario of
10% LMP is tested, the ρ value in both the state and measurement is treated as a value of 0.1. In this
study, the authors proposed the use of two ρ values; one at the entrance and one at the exit of the link
to reflect the total number of arrivals and departures from the given total number of probe arrivals and
departures, respectively.

ρin is measured directly using the installed loop detector at the entrance of the link. The developed
NN model is used to predict the ρout values (Section 5.2). Then, the ρin and ρout values are utilized in the
AKF equations. Recall that the AKF model relies only on probe vehicle data, while the AKFNN model
uses a fusion of probe vehicle and single-loop detector data.

In Table 4, the RMSE values using the AKF and the AKFNN models are presented. The results
demonstrate the benefits of using the AKFNN approach rather than the AKF approach, where the
estimation accuracy is improved by up to 26%. This finding proves what was recommended by
Aljamal et al.’s previous study [5] to consider two ρ values rather than one value. As a result, the proposed
AKFNN approach is robust and produces reasonable errors even with low LMPs. For instance, the
estimated vehicle count values are off by 3.7 veh when the LMP is equal to 10%. Figure 5 presents the
vehicle count estimation for different LMPs using the proposed AKFNN Approach.

Table 4. RMSE values using the AKF and the AKFNN models.

LMP (%) RMSE (veh)

AKF AKFNN Improvement (%)

10 4.3 3.7 13
20 4.0 3.6 11
30 3.8 3.5 9
40 3.6 3.3 8
50 3.6 2.7 26
60 3.2 2.4 25
70 3.0 2.4 20
80 2.6 2.3 12
90 2.0 1.8 10

(a) (b) (c)

Figure 5. Cont.
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(d) (e) (f)

(g) (h) (i)

Figure 5. Actual and estimated vehicle counts over estimation intervals for different LMP scenarios: (a)
10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%, (f) 60%, (g) 70%, (h) 80%, and (i) 90% LMP.

5.4. Impact of the Initial Conditions on the AKF Model

The KF model, traditional and adaptive, is sensitive to the initial condition parameters, such as the
posterior state estimate (Ni = N̂+(0)), the mean of state noise (mi = m(0)), and the prior error covariance
estimate (Pi = P̂−(0)). These parameters are tuned by a trial-and-error technique to find the best initial
condition values for seeking better KF estimation outcomes. However, in real applications, trial-and-error
is not realistic and not easy to achieve. Hence, this section investigates the impact of initial conditions on
the accuracy of the vehicle count estimation.

5.4.1. Impact of Initial Estimate of the Vehicle Count (Ni)

For the initial estimate value of the vehicle count (Ni), different values were evaluated (ranges from
0 to 10 at increments of 1). In this study, remember that all simulation scenarios start with an initial
estimate of zero (Ni = 0 veh), which is the same value as the actual vehicle count. Figure 6a presents the
RMSE values for different Ni values for the scenario of 10% LMP. As shown in the figure, the values of
8 and 10 produce the lowest RMSE. The RMSE value is equal to 4.3 veh when Ni is equal to 0. In contrast,
theRMSE value is equal to 3.9 veh when Ni is equal to 8. As a result, starting the AKF model with the best
initial estimate (e.g., Ni = 8 veh) would reduce the errors and therefore improve the estimation accuracy.

5.4.2. Impact of Initial Mean Estimate of the State System (mi)

Another critical initial parameter in the AKF model is mi. This parameter represents the mean value
of the noise in the state equation. This paper tests 16 different mi values (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, and 15). Figure 6b presents the vehicle count estimation RMSE values for different mi values.
The RMSE value is equal to 4.7 veh when the simulation starts with a 0 value of mi. In contrast, the RMSE
value is 3.9 veh when the value of mi is equal to 11.
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5.4.3. Impact of Initial Prior Covariance Estimate of the State System (Pi)

The last parameter tested in this study is the initial prior estimate of error covariance Pi. The error
covariance parameter describes the accuracy of the state system. For instance, if the covariance value is
low, then the state outcome is accurate and close to the actual value. As stated in the literature, the initial
parameters should always be tuned to achieve accurate estimation accuracy. Thirteen different Pi values
were tested (i.e., 5, 10, 15, 20, 25, 50, 75, 100, 120, 150, 200, and 250). Figure 6c presents the RMSE values
using different Pi values. The Pi value of 150 veh2 produces the lowest RMSE values.
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The research presented in this study evaluates the proposed approaches as they should be in
real-world applications. Therefore, the trial-and-error technique was avoided since it is not a valid
solution in the field. However, it was noticed that previous research always tunes the initial parameters to
determine the best initial conditions when testing their estimation approaches [2,3,17]. If that is the case,
let us assume that the proposed AKFNN approach always starts with the best initial value of Pi, which
would produce less errors. Table 5 presents the RMSE when considering the trial-and-error technique
(Tuned AKFNN). The AKFNN and the Tuned AKFNN approaches used the same values of Ni and mi,
but they used different Pi values. Ni is assumed to be zero, while mi has two values based on the tested
scenario: a value of 2 veh when low LMP scenarios are tested (LMP<=60%), and a value of 9 veh with high
LMP scenarios (LMP > 60%). From the table, tuning the Pi value significantly improves the estimation
accuracy for all scenarios (by up to 27%). For instance, at 10% LMP, the estimation error dropped from 3.7
to 3.3 vehicles. On the other hand, the estimated vehicle count values are off by 2.8 vehicles instead of 3.6
vehicles for the scenario of 20% LMP.

In conclusion, the AKF model was proven to be very sensitive to the initial conditions (Ni, mi, Pi).
Hence, starting the simulation with good assumptions of the initial conditions can significantly improve
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The research presented in this study evaluates the proposed approaches as they should be in
real-world applications. Therefore, the trial-and-error technique was avoided since it is not a valid
solution in the field. However, it was noticed that previous research always tunes the initial parameters to
determine the best initial conditions when testing their estimation approaches [2,3,17]. If that is the case,
let us assume that the proposed AKFNN approach always starts with the best initial value of Pi, which
would produce less errors. Table 5 presents the RMSE when considering the trial-and-error technique
(Tuned AKFNN). The AKFNN and the Tuned AKFNN approaches used the same values of Ni and mi,
but they used different Pi values. Ni is assumed to be zero, while mi has two values based on the tested
scenario: a value of 2 veh when low LMP scenarios are tested (LMP <= 60%), and a value of 9 veh with
high LMP scenarios (LMP > 60%). From the table, tuning the Pi value significantly improves the estimation
accuracy for all scenarios (by up to 27%). For instance, at 10% LMP, the estimation error dropped from
3.7 to 3.3 vehicles. On the other hand, the estimated vehicle count values are off by 2.8 vehicles instead of
3.6 vehicles for the scenario of 20% LMP.

Table 5. Impact of applying the trial-and-error technique for the initial value of covariance Pi.

LMP (%) RMSE (veh)

AKFNN Tuned AKFNN Improvement (%)

10 3.7 3.3 11
20 3.6 2.8 22
30 3.5 2.7 23
40 3.3 2.4 27
50 2.7 2.1 22
60 2.4 2.1 13
70 2.4 2.1 13
80 2.3 1.8 22
90 1.8 1.5 17
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In conclusion, the AKF model was proven to be very sensitive to the initial conditions (Ni, mi, Pi).
Hence, starting the simulation with good assumptions of the initial conditions can significantly improve
the estimation accuracy, as shown in Table 5. Finally, Table 6 presents the performance of the models
discussed in the paper.

Table 6. RMSE values for the KF, the AKF, the AKFNN, and the tuned AKFNN models.

LMP (%) RMSE (veh)

KF AKF AKFNN Tuned AKFNN

10 6.0 4.3 3.7 3.3
20 5.6 4.0 3.6 2.8
30 5.0 3.8 3.5 2.7
40 4.6 3.6 3.3 2.4
50 4.1 3.6 2.7 2.1
60 3.6 3.2 2.4 2.1
70 3.0 3.0 2.4 2.1
80 2.3 2.6 2.3 1.8
90 1.6 2.0 1.8 1.5

6. Conclusions

The research proposed a novel AKF model for estimating the number of vehicles on signalized
approaches using only probe vehicle data. An AKF model was developed to provide real-time estimates of
the statistical properties (mean and variance) for the state and measurement errors. The state equation is
derived from the traffic flow continuity equation, while the measurement equation is constructed using the
traffic hydrodynamic equation. Results show that the proposed AKF model outperforms the traditional KF
model (improves the estimation accuracy by up to 29%), demonstrating the need to use real-time values of
the statistical noise parameters in the KF model.

Two estimation models were presented, namely (a) the AKF and (b) the AKFNN. The AKF model
uses only probe vehicle data assuming a fixed LMP value that is obtained from historical data, while the
AKFNN uses a fusion of probe and single-loop detector data with real-time estimates of the LMP values
(ρin and ρout). In this paper, a robust NN model was developed to provide accurate real-time estimates of
the ρout values. The selected features of the NN model are At (observed from the single-loop detector), Ap,
us, S1, and S2 (observed from probe vehicles).

The AKF and the NN models were combined to develop the novel AKFNN approach. Results
demonstrate that the AKFNN approach significantly improves the vehicle count estimation accuracy since
the ρin and ρout values are estimated better. Subsequently, the paper compared the AKF with the AKFNN
models, showing that the AKFNN model outperforms the AKF model, enhancing the estimation accuracy
by up to 26%.

Finally, the study investigated the impact of the initial conditions (Ni, mi, and Pi) on the AKF
performance. Results show that the AKF model is very sensitive to the initial conditions. For instance,
starting the simulation with an Ni value of 8 instead of 0 improves the estimation accuracy by 10%.
In addition, starting the simulation with an mi value of 11 instead of 2 enhances the estimation accuracy
by up to 10%. For the Pi parameter, an improvement of 7% could occur if the simulation starts with an
initial value of 150 instead of 75 veh2. The study also tested the accuracy of the AKFNN estimation by
allowing the Pi parameter to be tuned (Tuned AKFNN approach), showing that more improvement could
be achieved. Specifically, the Tuned AKFNN improves the accuracy by up to 27%.
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In conclusion, both models (AKF and AKFNN) produce high estimation accuracy when compared
with the state-of-the-art KF model. Proposed future work entails testing traffic signal performance using
the estimates of the total number of vehicles as inputs to the traffic signal controller.
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