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ABSTRACT 

 

In the context of interest, a method of cluster analysis is used to classify a set of units into 

a fixed number of classes. Simulation procedures with various conceptual foundations 

may be used to evaluate uncertainty, stability, or sampling error of such a classification.  

However simulation approaches may be subject to a label-switching problem, when a 

likelihood function, posterior density, or some objective function is invariant under 

permutation of class labels. We suggest a relabeling algorithm that maximizes a simple 

measure of agreement among classifications. However, it is known that effective 

summaries and visualization tools can be based on sample concurrence fractions, which 

we define as sample fractions with given pairs of units falling in the same cluster, and 

which are invariant under permutation of class labels.  We expand the study of 

concurrence fractions by presenting a matrix theory, which is employed in relabeling, as 

well as in elaboration of visualization tools.  We explore an ordination approach treating 

concurrence fractions as similarities between pairs of units.  A matrix result supports 

straightforward application of the method of principal coordinates, leading to ordination 

plots in which Euclidean distances between pairs of units have a simple relationship to 

concurrence fractions.  The use of concurrence fractions complements relabeling, by 

providing an efficient initial labeling. 

 

Keywords.  Consensus matrix, label-switching, model-based clustering, Monte Carlo 

simulation, principal coordinates analysis, similarity and dissimilarity 
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INTRODUCTION 
 

An important type of non-hierarchical cluster analysis divides a set of n objects into k 

disjoint subsets (Mardia et al., 1977; Seber et al., 1984).  Various Monte Carlo methods 

may be useful in these situations, which have different conceptual foundations, but which 

have in common the generation of a sample of classifications, of size MCn say. In model-

based clustering, Markov chain Monte Carlo (MCMC) procedures may be used to 

explore a likelihood surface, or to a sample a posterior, allowing assessment of 

uncertainty in a classification jointly with uncertainty for other model unknowns (Celeux, 

Hurn, and Robert, 2000; Denison et al., 2002; Diebolt and Robert, 1994; Farrar et al., 

2006a; Lipkovich, 2002; Viele and Tong, 2002).  Non-Bayesian simulation approaches 

include re-sampling, sub-sampling, and parametric bootstrap sampling, used to evaluate 

stability or sampling error (Dudoit and Fridlyand, 2002; MacLachlan and Peel, 2000; 

Monti et al., 2003; Qin and Self, 2005; Rocke and Dai, 2003).  

 

Simulation procedures with various foundations may be subject to the label-switching 

problem, as the problem has been termed in the literature of finite mixture models 

(Celeux et al., 2000; Stephens 2000; Früwirth-Schnatter, 2001; see also Lipkovich, 2002). 

The term reflects the possibility that the same classification may recur in a sample, with 

the classes indexed differently.  In the context of statistical modeling, the problem may be 

viewed as a form of model non-identification. The wider problem is that a function used 

to represent the quality of a classification is invariant under a permutation of class labels.  

Label-switching is expected to be particularly a problem if, as in our applications, a 

posterior sample is formed by pooling multiple chains generated using Markov chain 

Monte Carlo.   

 

One type of remedy involves adjustments of the class labels in the sample.  The term 

relabeling is used in the literature of finite mixture models (Celeux et al., 2000; Qin and 

Self, 2006; Stephens, 2000).  A term suggested by Lipkovich (2002) is alignment, based 

on analogy to the alignment problem of factor analysis (Clarkson, 1979; Ichikawa and 
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Konishi, 1995).  Relabeling (or alignment) may be desirable in computation of class-

specific summaries or estimates.   

 

Various relabeling procedures may be plausible in a given situation, associated with 

different model unknowns.  Much of model-based clustering is based on finite mixture 

models (e.g., Fraley and Raftery, 1998, 2002), for which one standard computational 

approach is a Gibbs sampler (e.g., Bensmail et al., 1997; Diebolt and Robert, 1994; Viele 

and Tong, 2002; Wasserman, 2002).  In this context, Stephens (2000) suggests relabeling 

based on comparison of membership probabilities, as computed for a Gibbs sampler.  

Alternatively, relabeling may be based on class-specific parameter estimates (Celeux et 

al., 2000).  Lipkovich (2002) suggests adjusting class labels to maximize some 

correlation among classifications in MCMC output.  We follow Lipkovich in 

emphasizing manipulations of classifications, for reasons that include possible utility in 

connection with diverse Monte Carlo procedures.   

 

However, useful summaries are available that are unaffected by any indexing of 

classifications in the sample.  Particularly helpful are summaries that depend on 

recording, for particular pairs of units, whether both members of the pair fall in the same 

or different classes. Monti et al. (2003, hereafter MTMG) used the term consensus matrix 

to describe an n n×  matrix that gives, for each pair of units, the sample fraction with 

both members of the pair falling in the same cluster. The primary interest of MTMG 

related to the use of subsampling to evaluate stability of classifications. They discuss 

applications for evaluating the degree of support for clusters, for ranking units according 

to their value for representing particular clusters, and for estimating the number of 

clusters.  MTMG did not relate their approach to the label-switching problem, and did not 

actually mention the very important property of label-invariance.  For Tibsharini et al. 

(2001) develop a concept of prediction strength based on the concurrence fractions – 

termed by those authors co-membership probabilities – to be used in cross-validation.   

 

We expand in several ways on the work of MTMG.  A simple matrix theory is 

introduced, and used in the contexts of relabeling and visualization.  In applications to 
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Bayes posterior sampling, we have used the term estimated co-clustering probability 

(ECCP) in place of the consensus matrix of MTMG (Farrar et al., 2006a).  However, a 

term that will be apparent from out matrix approach, and that may be appropriate for 

more general applications, is sample concurrence fractions.  

 

We find that an effective visualization of information in the ECCP matrix can be based 

on multidimensional scaling (MDS).  We provide a justification for applying a 

particularly straightforward MDS procedure, the method of principal coordinates (Gower, 

1966).  Indeed, we observe that when the ECCP matrix is transformed as customary for 

principal coordinates analysis, the result is a non-negative definite matrix, as assumed by 

the procedure.  Euclidean distances among units, computed using the approach, have a 

simple relationship to the ECCP.   

 

We present a relabeling approach, approximately maximizing a particularly transparent 

criterion of similarity among partitions. In case of exhaustive evaluation of !k  

permutations of labels for a classification, only limited special computations are required 

for each label permutation.   We introduce an effective initialization based on 

concurrence fractions.  For the initial labeling we select k units that with high probability 

belong to distinct clusters.  These are treated in effect as a training sample, requiring each 

to belong to a distinct cluster where possible. Some information is given on computing 

time.  

 

The study is organized as follows.  In Section 1 we present some terminology and matrix 

theory.  Label-invariant summarization based on concurrence fractions is the topic of  

Section 2, while Section 3 presents our approach to relabeling.  In Section 4 we attempt 

an integration of the procedures with other post-processing tasks in processing MCMC 

output with multiple independent chains.  Section 5 illustrates the procedures based on 

work in progress involving model-based clustering.  Some technical results are presented 

in appendices.   
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Any computational procedure for manipulating classifications will require some approach 

for representing a classification in computer code. An appendix gives some remarks on 

representing classifications in R, which we have used to implement the methods. 

We report large differences in computational performance associated with alternative 

representations, in an R implementation.  

 

Our applied interest is in use of model-based clustering to evaluate regional variation in 

ecological stressor-response relationships, where the units for clustering are 

environmental monitoring stations or groups of nearby stations (Lamon and Stow 2004; 

Lipkovich, 2002).  We have applied the methods considered here routinely, in that 

context.   

1. PARTITIONS AND CLASSIFICATIONS, WITH MATRIX 
REPRESENTATIONS 

 

We will find it convenient to distinguish between a partition and a classification or 

labeled partition.  A representation of a partition is to state whether or not, for each pair 

of units, both members of the pair fall in the same group.  The groups of units that define 

a partition will be termed clusters.  A classification is obtained by associating some label 

or index with each cluster in a partition.  Thus for any partition comprising k clusters, 

there are !k  classifications associated with permutations of k labels.  The groups with 

associated labels will be termed classes.  In our context, the “labels” will be 1, ... , k , so 

that labeling is effectively an ordering or indexing.  However, references to labels are 

conventional, particularly in finite mixture literature.  

 

Our distinction is clarified somewhat in the following matrix representation.  Borrowing 

terminology from experimental design, a classification in our terminology may be 

represented by an n k×  incidence matrix Z .  The value in the ith row and jth column of 

the matrix equals 1 if the ith unit belongs to the kth cluster, according to a specific choice 

of class labels, and otherwise equals zero.  A partition may be represented by a 

concurrence matrix M , a symmetric n n×  matrix where the value in the ith row and jth 

column is 1 if units i and j belong to the same cluster, and otherwise zero.   M  is termed 
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a connectivity matrix by MTMG.  By the definition of a partition, M  can be arranged 

into a block-diagonal form by some permutation of the order of units.  However, in our 

applications the order of units is fixed.   

 

Associated with a concurrence matrix M, representing some partition, there are !k  

incidence matrices associated with the possible classifications, identical up to a 

permutation of the order of columns.  Indeed, for a concurrence matrix M,  suppose *Z is 

an incidence matrix derived by permuting columns of another incidence matrix Z, so that 

both represent the same partition. Then * =Z ZB  where B is a permutation matrix.  

Properties of permutation matrices are discussed in sources such as Harville (1997). 

Using the orthonormal property of B, we have  

 

( )T* *T T T T= = = =Z Z ZB ZB ZBB Z ZZ M . 

 

The final inequality appears as Lemma 1 in the appendix.  

 

Our interest in concurrence matrices is based on their relationship to the ECCP (or 

consensus matrix of MTMG), as described in the next section.   

2. A LABEL-INVARIANT APPROACH TO POST-PROCESSING 

2.1 The ECCP matrix 
 

We suppose that some Monte Carlo scheme such as resampling or Bayes posterior 

sampling generates a random sample of classifications, and let 
MC1 , ... , * *

nM M  denote the 

corresponding concurrence matrices.  The matrix ECCP (or consensus matrix of MTMG) 

gives the sample fractions where pairs of units occur in the same cluster, 
MC

1MC

1 *
n

s
sn =

= ∑ECCP M . (1) 

We will let ECCPij  denote the value in the ith row and jth column, equal to the sample 

fraction with the ith and jth units falling in the same cluster. The matrix is symmetric 

with diagonal values equal to unity.  Like the concurrence matrices, the ECCP do not 
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depend on the labeling of particular classifications in the sample.  In the remainder of this 

section we outline several applications.   

 

Our term ECCP reflects an emphasis on Bayes posterior sampling, where the ECCP are 

estimates of posterior probabilities.  For a more general term, we suggest concurrence 

fractions.   

2.2 Graphical Procedures for General Dissimilarity Information 
 

Some effective graphical tools for evaluation of the simulation sample can be based on 

the ECCP, and thus do not require relabeling.  MTMG rely for graphical display 

primarily on direct display of the matrix, with relative magnitudes conveyed using 

different colors or intensities, and with matrix rows and columns sorted following the 

approach of Bar-Joseph (2001).  (In R, the contributed package cba of Buchta and 

Hahsler, 2005, includes an implementation of that sorting approach.)   

 

We find that useful graphical displays can be based on statistical procedures, such as 

cluster analysis and multidimensional scaling, for evaluation of general similarity or 

dissimilarity information (Mardia et al., 1977; Seber et al., 1984).  We currently rely 

primarily on two graphs, an average-linkage dendrogram, and a plot of principal 

coordinates.  In any case the quantities  

 1  ECCP-ij ijd = ,  (2) 
interpreted as sample fractions with particular units falling in different clusters, and 

treated as measures of dissimilarity, are found to play an important role.   

 

Principal coordinates represents a straightforward solution of the problem of ordination 

or multidimensional scaling (MDS).  This is the problem of finding a correspondence 

between our n units and coordinates in an n-dimensional Euclidean space, such that 

distances between the coordinates have a definite, ideally simple relationship to a matrix 

of similarities.  Issues in MDS then are properties to require for the similarities, and the 

computation of coordinates for plotting.  The method of principal coordinates, 

encapsulated essentially in Theorem 1 (appendix), is applicable when a particular 
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transformation of the matrix of similarities is non-negative definite, and then provides a 

useful set of coordinates.  We observe (Corollary 1) that we do obtain a non-negative 

definite matrix, when the transformation is applied to ECCP.  Moreover, squared 

Euclidean distances generated by the method are proportional to dissimilarities of the 

form (2).  

2.3 Label-Invariant Identification of Clusters from Simulation Output, with 
Evaluation of Classification Uncertainty  

 
An obvious approach for assigning units to clusters depends on relabeling the simulation 

sample.  After relabeling, we may compute the sample frequency with a given unit 

belonging to each class, and assign the unit to the class that includes it with highest 

frequency.  To quantify uncertainty, it is natural to subtract the maximum membership 

probability from one (Fraley and Raftery, 2005; Lipkovich, 2002). 

 

A label-invariant approach can be derived from the dendrogram described in the previous 

section.  From the dendrogram we may extract k clusters by “cutting” the dendrogram at 

an appropriate plotting height.  Using R library functions, a dendrogram object may be 

generated using the function hclust, and clusters extracted from the object using 

function cutree.  When the units are classified according to this procedure, a plausible 

index of uncertainty for co-clustering of units i and j is  

 ( ) ECCP  1  ECCP-ij ij ijU =  (3) 

2.4 Conditional Estimation of Class-Specific Parameters 
 

It addition to inference of a classification, we may be interested in inference of class-

specific parameters. A naive approach is to estimate the classification, then estimate 

class-specific parameters with the classification fixed, treated as if known to be the true 

classification.  Based on cluster analysis literature, we expect such a conditional approach 

to be biased, overestimating the differences among groups (Gordon, 1966). A more 

sophisticated approach may involve an evaluation of joint uncertainty for the partition 

and other model unknowns.  Relabeling may be needed for estimation of class-specific 

quantities.  
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The naive, conditional procedure may be termed greedy, a term that can be used when a 

set of unknowns are estimated in a specified order, treating the unknowns estimated at a 

given point in the series as known, for purposes of estimating the next unknown. We 

suggest that the greedy approach may be relatively easy to implement, and may be 

convenient for a qualitative description of differences among classes.  

3. RELABELING AND RELATED COMPUTATIONS  
 
Relabeling of the sample may be considered desirable in the context of class-specific 

summaries, for example if we compute the sample fraction with a particular unit assigned 

to a particular class. In this section we first develop the alignment criterion, to be 

maximized by adjustment of class labels, before presenting our relabeling algorithm.  In 

developing the alignment criterion, we first consider in Section 3.1 the comparison of two 

classifications, before considering the general case of a sample with two or more 

classifications. 

3.1 The Alignment Matrix  
 

As a preliminary, it is helpful to review the following tabular approach for comparing 

classifications. We illustrate the approach with two classifications of the same 5 units into 

2 groups, represented by P = (1,1,1,2,2) and Q = (2,2,2,1,2).  Here, each classification is 

represented by a vector with the ith coordinate giving the class index for the ith unit. It is 

useful to cross-classify the units according to their classes under P and Q: 

  
Table 1  Example of an alignment matrix 

Cluster Index in Q Cluster Index in P 
1 2 

1 0 3 
2 1 1 

 

The cell count in the ith row and jth column, say ijn , is the number of units that fall in the 

ith class under P and in the jth class under Q. We suggest calling such a table an 

alignment matrix.   
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The alignment matrix is apparently useful for multiple computations.  We suggest that the 

matrix trace, which gives the count of units with the same label under each classification, 

can be taken as a quantity to be maximized in a relabeling algorithm. Also, certain 

indices used to express the agreement between (unlabeled) partitions are computed from 

the matrix (Rand, 1971; Hubert and Arabie, 1985).  

3.2 Matrix Representation of a Criterion for Aligning Two Classifications 
 
For mutual alignment of two classifications, our suggested approach is to maximize the 

trace of the alignment matrix described in the previous section.  The suggested criterion 

is related to the index of Cohen (1960), used for quantifying inter-observer reliability in 

recording a categorical variable.   

 

Let two classifications of the same units be represented using incidence matrices 1Z  and 

2Z .  We first observe that the alignment matrix can be can be expressed as T
1 2Z Z . 

Therefore the proposed alignment value, is the trace  

 

 ( )T
1 2trΑ = Z Z   

 

In maximizing this quantity, we will adopt a convention of holding the labels fixed for 

the first classification and varying the labels for the second. For a matrix representation, 

the optimal alignment can be represented as choosing a permutation matrix B maximizing  

 ( ) ( )T
1 2A tr=B Z Z B . (4) 

For our example, if we fix the labels for P and swap the class labels for Q, the 

recomputed alignment matrix is 3 0
1 1
⎛ ⎞
⎜ ⎟
⎝ ⎠

.  The trace increases from 1 to 4, which we take to 

suggest that the swap of class labels is appropriate.   

 

While we use permutation matrices to complete our matrix representation, use of such 

matrices in computer code would be inefficient.     
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3.3 A Criterion for Alignment of a Sample of Classifications 
 
The suggested criterion for alignment of two classifications can be generalized for 

relabeling a sample with two or more classifications. In our approach, each classification 

is relabeled based on comparison to a summary of other classifications in the sample, 

treating the latter as mutually aligned.   

 

Suppose we align MCn classifications which, prior to relabeling, have incidence 

matrices 1Z , ... , 
MCnZ .  Without loss of generality, consider alignment of the first 

classification. It seems that a useful generalization of the alignment matrix is 

( )MC

T

2 1n+ + +Z Z ZL . We again maximize the trace over column permutations, i.e., 

choose a permutation matrix B maximizing 

 

 ( )
MC

T

1
2

A tr
n

j
j =

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑B Z Z B . (5) 

 

The approach can be iterated, on each iteration maximizing (5) with incidence matrices 

carried forward from the previous iteration.   

 

An objective function that may be optimized by such a procedure, neglecting local 

optima, is  

( )Ttr i j
i j≠
∑ Z Z , 

the sum of values given by Expression (4), over pairs of classifications. An iteration of 

our approach will not lead to a decrease in value of this objective function.  Indeed, after 

a single iteration the objective function will increase by a value equal to the increase in 

( )A B . 
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3.4 A Relabeling Algorithm 
 

Our relabeling algorithm follows Stephens (2000), in relabeling individual items in a 

sample (in our case, individual classifications) based on comparison to summaries of 

other items in the sample.  However, whereas in Stephens’ algorithm the comparisons are 

based on membership probabilities, as generated by a Gibbs sampling implementation of 

a finite mixture model, for our algorithm the comparisons are between classifications.  

Also, our approach incorporates an initial relabeling based on concurrence fractions. The 

steps of the suggested algorithm are as follows: 

  

(1) Use a label-invariant procedure to select k cluster representative units (CRU), one 

for each class.    

(2)  Use the CRU from (1) in a preliminary relabeling of each classification in the 

sample, where possible defining class j in a classification as the class that 

includes CRU j . 

(3)  Adjust the labels for each classification so as to maximize (5).   

 

For the selection of CRU in Step (1), note that for an ideal set, there would be zero 

probability that any two belong to the same cluster.  Accordingly, we select k units that 

minimize the sum of cells in the corresponding k k× submatrix of ECCP.   

 

For the preliminary relabeling of Step (2), it can happen that a cluster contains more than 

one CRU, so that other clusters will contain no CRU.  In that case, considering our 

objective of generating a preliminary relabeling in Step (2), the problematic 

classifications in the sample are simply ignored. 

 

Although Step (3) may be iterated, currently execute a single iteration, based on the 

apparent effectiveness of the initial labeling.  We rely in Step (3) on exhaustive 

evaluation of the !k  label permutations, a manageable number given that we currently 

consider 2-4 classes. We note that the alignment table does not need to be recomputed for 

each label permutation.  For the particular case of 2 classes, Step (4) amounts to noting 
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whether or not the trace of the alignment matrix is larger than the sum of values in non-

diagonal positions.   

4. IMPLEMENTATION WITH MULTIPLE MCMC CHAINS 
 
 
In our MCMC applications to model-based clustering, we rely on multiple chains, which 

are initiated randomly and independently.  Independent chains may be useful for 

detecting local optima and assessing convergence (Gelman et al., 2003).  Particularly, 

with multiple chains, the methods discussed may need to be integrated with other 

operations.  For some calculations we may delete a leading burn-in sequence form each 

chain, so that the remainder of each chain is approximately at steady state.  We suggest 

that is helpful to distinguish between computations that (1) do not require relabeling or 

deletion of a burn-in (e.g., plotting the likelihood); (2) require deletion of the burn-in but 

do not require relabeling (e.g., methods based on ECCP); or (3) require both burn-in 

deletion and relabeling (e.g., class-specific summaries).   

 

For our current work we generate 10 independent chains of equal length and plot log-

likelihoods end-to-end on one graph, to detect local optima.  We then delete a burn-in 

from each chain.  We evaluate convergence based on comparison of the chains using a 

method of Gelman and Rubin (1992), as implemented in coda (Plummer et al., 2005), 

with the burn-in deleted from each chain.  We currently diagnose convergence only for 

the log-likelihood, which does not depend on cluster labels.  Criteria of convergence of a 

classification have not been developed.   

5. EXAMPLE 
 

We illustrate the procedures using selected results from an analysis in preparation (Farrar, 

2006b), relating a measure of ecological quality to two land-use predictor variables, for 

monitoring stations on streams in Maryland, USA (Mercurio et al., 1999).  For cluster 

analysis, the stations were grouped into 17 combinations of 2 physiographic regions and 

12 river basins, which served as the units clustered.  We applied a form of model-based 

clustering, with class regression models relating our response variable to two predictors.  
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The regression model was additive in B-splines for the two predictors.  We assumed flat 

priors for regression model parameters. Our prior for the partition assumes that each 

partition is equally probable a priori, subject to a minimum count of 20 stations per 

cluster.  The posterior distribution was sampled using a Metropolis algorithm. We 

implemented the approach with the number of classes fixed at 2-5.   

 

For each model, we generated 10 chains of length 20,000, thinned each chain by 

removing odd-numbered iterates to reduce memory demand, and deleted the first half of 

each chain to allow for equilibration. Analysis of convergence suggested that fewer than 

1000 iterations are required, beyond our burn-in. 

 

For the sake of illustration, our Figure 1 shows some results based on a model with 3 

classes. From a plot of the log-likelihood, it appears that our sampling procedure is prone 

to become trapped in regions of the model space associated with relatively low 

likelihood.  Subsequent analyses are based on chains 1, 2, 3, 5, and 9, chosen by 

inspection of the log-likelihood plot.  In a histogram of the ECCP, it is seen that many 

values are close to either 1 or 0, suggesting that there is often high confidence that, 

respectively, a pair of units belongs to the same cluster or to separate clusters.  The two 

additional graphs are a single linkage dendrogram based on the ECCP, and an ordination 

plot.  These graphs are in good qualitative agreement with regard to the units with the 

greatest uncertainty in assignment to classes.  In addition, we have computed class 

membership probabilities based on pooled chains, relabeled according to our suggested 

procedure.  The results are in good agreement with those shown in Figure 1.    

  

We have carried out a preliminary evaluation of the relabeling algorithm with 2-4 class 

models, in Windows XP on a 1.6 Gigahertz Pentium processor.  Generally the 

computational expense was larger with increasing k.  For 2-4 classes, the initial labeling 

required 0.6-1 second per thousand sample size, while the refinement in the final step 

required 1-2 seconds per thousand.  Such computing times are negligible relative to the 

hours of computing required for generating the samples, but can still represent a nuisance 

in some situations.  Relabeling may have been relatively rapid in our applications because 
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of the small number of units and classes.  Also, in our implementation results of 

relabeling were stored without rearranging output matrices or other objects used to 

represent the unlabeled sample.  The latter approach would require additional time.  

 

An indication of the effectiveness of the initial labeling is the fraction of classifications 

revised in the final step of the algorithm.  We find that the result of the initial labeling is 

often close to our final result.  There is some indication that the initial labeling is more 

effective for a small number of classes.  The fraction of classifications revised was 0 for 2 

classes, fewer than 1 per thousand for 3 classes, and 1% for 4 classes.  
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Figure 1  Illustration of Application to MCMC results.  Clockwise 

from upper right:  Plot of log-likelihood for 10 chains, histogram of 

ECCP, ordination plot, and average-linkage dendrogram.   
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6. DISCUSSION 
 
Our relabeling procedure can be said to operate in “partition space,” one of three spaces 

where proposed relabeling algorithms operate.  Alternatives are relabeling in the space of 

class distribution parameters (Celeux et al., 2000; Qin and Self, 2005) and in a space of 

estimated class probabilities (Stephens, 2000).  Also, following Stephens, we perform 

relabeling by maximizing a measure of agreement between a single classification and a 

summary of classifications in the sample.  An alternative is to assign labels based on 

comparisons to a single classification in the sample, perhaps representing a maximum 

likelihood estimate (Lipkovich, 2002; Qin and Self, 2005).  From our viewpoint, the 

multiplicity of reasonable relabeling approaches adds somewhat to the appeal of label-

invariant procedures.   

 

In view of our principal emphasis on data analysis, quantitative comparisons of labeling 

procedures have not been undertaken.  However, some comparisons among relabeling 

approaches may be of interest.  Criteria for comparisons may relate to computational 

efficiency or effects on inference.  

 

In particular, we do not know of any evaluation of sampling properties of cluster analysis 

procedures that incorporate relabeling.  Two conjectures are (1) that it is best to carry out 

relabeling in a space where the clusters are relatively distinct; and (2) when performing 

inference in one space, we may prefer to carry out relabeling in a different space.  The 

second conjecture is based on an expectation that relabeling will restrict overlap of 

clusters, particularly in the space where relabeling is carried out.   
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APPENDICES 

A.1 Representing Classifications and Samples of Classifications in R, with a Timing 
Comparison 

 
Any software library for generating and manipulating samples of classifications will 

require an approach for representing classifications, and samples of classifications, in 

computer code.  We discuss two representations in R, of which perhaps the less obvious 

seems actually to provide better performance.  R code demonstrates each approach, and 

provides a timing comparison.  We discuss this topic in part because it provides 

background for use of any of our programs.  Regarding notation, we consider a Monte 

Carlo sample of classifications of size MCn , each of which divides n objects into k groups.   

 

Perhaps the most obvious representation of a sample of classifications is a matrix that 

records a class index for each unit, in each classification. R functions that use a vector of 

cluster indices to represent a classification include the library function cutree, which 

extracts clusters from a dendrogram object generated using the hclust function.  We 

use this approach for functions that return a single classification.  Summarizing a matrix 

approach:  

 

 A single classification is represented by a vector of length n, with ith value the 

class index (in 1, ... , k), for the ith unit.   

 A sample of classifications is represented by an MCn n×  matrix where each row 

represents a single classification.   

 

However, for many operations involving a sample of classification we obtain much better 

performance using an approach based on the R list class:  

 

 A single cluster is represented by a vector giving the unit indices (each in 1,..., n) 

of units that belong to the cluster.   

 A single classification is represented by a list of clusters of length k.   

 A sample of classifications is represented by a list of classifications.   
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This list representation is elegant for retrieving subsets of the data associated with 

particular clusters, and for computing various useful cluster analytic results, such as the 

co-clustering frequencies (consensus values of Monti et al., 2003).  

 

The two approaches are demonstrated in the R program below.  The R library function 

system.time is used to time the operations based on each approach. For each 

approach we simulate three operations: generation of classifications, retrieval of data for 

each cluster (in each classification), and retrieval of classifications from the sample. We 

generate classifications of the unit square using a Voronoi approach as implemented in 

the function Tess.fn (S. Prins), assuming n = 100 units and a minimum cluster count 

of 10 units. To simulate retrieval of data, we generate (just once) a matrix of dimension 

100*5, simulating analysis of 5 variables observed for 100 units. A loop generating the 

sample of classifications is followed by a loop in which each classification is retrieved.   

 

An experiment involving generation and manipulation of 100,000 classifications ran in 

about a minute with the list representation, but required over an hour with the matrix 

representation.  
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# Timing comparison for alternative representation of a sample of classifications 

# * Classifications are generated using function 'Tess.fn' (S. Bates).  Assume loaded 
 
nMC   <- 1e+5 # num. simulated classifications 
n.obs <- 100  # num. simulated units 
K     <- 5    # num. classes per classification  
n.min <- 10   # min cluster size for Tess.fn 
n.vars<- 5    # num. variables in simulated data 
#-- Tesselation stuff: 
sim.x <- runif(n.obs)   # simulate grid variables just once 
sim.y <- runif(n.obs)  
myTessi <-function() Tess.fn(  
            k=K, gx=sim.x,gy=sim.y, 
            gxlim=c(0,1),gylim=c(0,1), 
            n.min=10,n.obs=n.obs)$z  
#-- simulated data matrix (non-grid vars) with all values equal. 
X <- matrix(rep(pi,n.obs*n.vars),n.obs,n.vars) 
#-- function for translating classification from vector to list representation: 
asClusterList <- function(class,N,K) { # reformat classification from vector to list 
  outlist <- vector(K,mode="list")     # init output list to NA 
  for (k in 1:K) outlist[[k]] <- (1:N)[class=k]  # indices for kth cluster 
  return(outlist)  
} 
#-- list representation (time simulated generation and access) 
cat("\nlist storage:")  
parttn.sample<- NULL   
t.list<-system.time( 
{ 
  parttn.sample <- vector(nMC,mode="list") 
  for(i in 1:nMC) { 
    if(!(i %% 5000)) cat("\n",i)  
    parttn.i <- asClusterList(myTessi(),n.obs,K)  
    for(k in 1:K) x.ik <- X[parttn.i[[k]],]   # retrieve data  
    parttn.sample[[i]]<- parttn.i             # store classification 
  };cat("\n"); #for 
  for(i in 1:nMC)   # simulate access of stored classifications 
    parttn.i <- parttn.sample[[i]];  # sim. access 
}#timed expression 
         ) #system.time(.. 
#-- simulate matrix representation  
parttn.sample<- NULL  # remove any large object from memory 
cat("\nmatrix storage:")  
t.mtrx <-system.time( 
{ 
  #-- generation and retrieval of data  
  parttn.sample <- matrix(NA,nMC,n.obs);  # init. tessln. sample. 
  for(i in 1:nMC) { 
    if(!(i %% 5000)) cat("\n",i);     # report progress to monitor  
    parttn.i <- myTessi()            # generate classification 
    for(k in 1:K) x.ik <- X[parttn.i==k,]; # retrieve data for each cluster 
    parttn.sample[i,]<- parttn.i     # store classification 
  }; cat("\n"); #for 
  for(i in 1:nMC) parttn.i <- parttn.sample[i,]; # simulate accessing 
} #timed expression 
  ); # system time(.. 
cat("\nmatrix");print(t.mtrx)  
cat("\nlist");print(t.list)  
rm(parttn.sample)  
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A.2  Technical Results Related to Concurrence Fractions 
 

Lemma 1. Expansion and Factorization of a Concurrence Matrix.  For Z an 

incidence matrix representing some classification and M the concurrence matrix for the 

corresponding partition  

T T

1

k

l l
l =

= =∑M z z ZZ , 

where lz denotes the lth column in Z .   

 

Proof.  Regarding the first identity we observe that T
l lz z  is a symmetric n n×  matrix 

where the value in the ith row and jth column equals unity if units i and j both fall in 

cluster l, and otherwise equals zero. M  is evidently the sum indicated by the first 

identity, given that two units can co-occur in at most one cluster.  For the second identity 

we have  

( )TT T T T T T

1 1 1 1

T

k k k k

l l l l l l l l
l l l l= = = =

⎛ ⎞
= = = =⎜ ⎟

⎝ ⎠
=

∑ ∑ ∑ ∑z z Ze Ze Ze e Z Z e e Z ZIZ

ZZ

 

 where le  a vector of length k with all values 0, except for a 1 in the lth position. 

 

The following statement of the method of principal coordinates follows Seber (1984).   

 

Theorem 1.   Principal Coordinates Analysis of a Matrix of Similarities. Let C denote 

a matrix of similarities among n units, with typical element [ ]0, 1ijc ∈ , subject to 

1iic =  ( )1, ... , i n= .  Form the matrix ( ) ( )= − −F I J C I J  where I  is an 

identify matrix and J  is a square matrix with each value equal to 1/ n . Form the matrix 

( )1/ 2 1/ 2
1 1  ...  p pγ γ=G v vM M  where 1, ... , pγ γ  are positive eigenvalues and 1, ... , pv v are 

corresponding eigenvectors in the spectral representation of F. If F  is non-negative 

definite, the ith row of G gives coordinates for the ith unit ( )1, ... , i n=  in n dimensions, 



 23

with the squared Euclidean distance between coordinates for the ith and jth units equaling 

( )2 1 ijc− .   

 

Corollary 1. Principal Coordinates Analysis of ECCP.  When ECCP, the average of a 

sample average of concurrence matrices 
MC1 , ... , * *

nM M , is transformed for principal 

coordinates analysis as indicated in Theorem 1, the matrix that results is non-negative 

definite.  Rows of the matrix ( ) ( )− −I J ECCP I J  give coordinates of corresponding 

units, separated by squared Euclidean distances ( )2 1 ECCPij− .   

 

Proof.  The theorem is an application of Theorem 1 if ECCP is shown to be non-

negative definite.  This holds because ECCP  is the average of  non-negative definite 

concurrence matrices
MC1 , ... , * *

nM M  from a Monte Carlo sample of size MCn .  For any 

concurrence matrix M we have, for some incidence matrix Z , 

( ) ( ) ( ) ( ) T
⎡ ⎤− − = − −⎣ ⎦I J M I J I J Z I J Z  

A matrix of this form is non-negative definite (Harville, 1997, Corollary 14.2.14). 


