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1 Introduction

Ubiquitous in the areas including artificiaj mtelligence, data structures, databage management,
fiie processing, and information retrieval is the need to access items based on the value of a key.
Classification systems use descriptors of various types, identifiers of myriad forms are assigned
to items, and names for objects are commonplace. While various approaches to finding items
through use of such keys have been explored, the promise of “instant’ access promised by hashing
sC

dictionaries,

Static collections are rapidly becoming more common as non-erasahble optical disc publishing
activities increase [FOX88]. CD-ROM production is increasing, and the use of WORM (write-
once, read-many) units for archival storage or as part of 5 muiti-leve] hierarchical memory system
Is growing. In addition to situationg where the storage media enforces use of static files, there
are natural cases where fileg rarely require revision. Dictionaries are published infrequently,
and lexical databases generally expand rather slowly. Classification systems like the Computing
Beviews Category System or the Library of Congress system for cataloging are slow to change.
Our work with Producing the first ip the Virginia Disc series of CD-ROMs [FOX89] and in
constructing a large lexicon from machine readable dictionaries [FWSCFSG], [FNAEMSS] thus
naturally led us to tommence an exploration of improved approaches to hashing.

1.1 Hashing

We begin with » collection of objects each of which hag a (unique) associated key, say k, selected
from U, a {usually finite) universe of keys. 'The cardinality of {7 js ¥ = [U|. While some
researchers assume that {7 is the set of integers

strings having some finite maximum length. Clearly this is appropriate for keys that are words or
hames in any natural or artificial language, or that are elements of some descriptor or identifier
set, possibly involving phrages as well,

The actual set of keys used in g particular database at a fixed point in time is § ¢ [7
where typically IS| < |U]. The cardinality of § is p — [S1. Records are stored in (objects are
accessible throogh) a hash faple T having m 2 n locations (or slots), indexed by elements of
Im={0,1,... M —1}. We measure the utilization of space in Thy considering the logd factor,



®=n/m. Depending on the application, T may be in primary memory, magnetic disk, optical
disc, or recorded on some other device; in al] cases it is desirable for 7° to be as small ag possible
and for us to be able to quickly find the appropriate slot in T° for any given key k.

The retrieval problem is to locate the record corresponding to a key k€ U or to report that
o such record exists, We do this by hashing, i.e., applying a hash function h that is computable
in time proportional to the size of the key &, and examining the slot in 7' with address h(k).
If there are two keys ki, ky € § such that hiky) = h(ks), then there i8 a collision of k1 and
k2. Much effort is expended in traditiona] work on hashing in resolving collisions. Coliisions
force more than one probe (reading a slot) of T to aceess some keys. If b is a 1.1 function when
restricted to S, 4 ig called a perfect hash function (PHF) since there is no need to waste time
resolving collisions, A PHF b allows retrieval of records (objects) keyed from § in One access,
which is clearly optimal in terms of time, For any form of hashing, the optima] case regarding
space is when the hash table is fully loaded, i.c., when o = 1; we use the name minimal hash
Sfunetion for any function with thig pProperty. The besi, situation, then, is to have a minimal
perfect hash function (MPHF) where o — I and there are no collisions; i.e., for 4 to be a 1-1

1.2 Outline

In the Tollowing sections, we describe work involving perfect hash functions. In Section 2 we
discuss related work, including the approach of Sager which was the starting point for our in.
vestigations. We begin that discussion with an explanation of some of the theoretical issues
relating to perfect hash functions, and return to that perspective in Section 3 where we explain
the key concepts that underpin our approach. For those ]ess interested in the theory underlying
our work, Section 3 can be largely ignored. (To make it possible to skip Section 3, some terms
defined in Section 3 are defined again in Section 4.) Section 4 describes our fast (i.e., O(nlog n)
expected time) aigorithm for finding MPHF’s, and Section 5 illusirates the procedure using a
very small but realistic example that is worked out in a fair amount of detail. Section 6 reports
on some of our experimental results, giving a characterization of the internal representations
required during MPHF construction, timings on several types of computers for MPHF construe-
tion mvolving various size sets and various constraints on the process, and a description of g
CD-ROM we have created that uses a MPHPF to access a word Iist with more than 130,000
entries. Section 7 describes efforts to yse MPHFs in connection with our lexicon construction
effort, design of Large External Network Database (LEND) that involves MPIHF access at the
lowest level, and other applications.

2 Related Work

Hashing has been 2 topic of study for many years, hoth in regard to practical methods and
analytical investigations [KNU73]. Recently there has been renewed interest in hashing due
to the development of techniques suitable for dynamic collections [ED88]. A less extensive
literature hag grown up, mostly doring the lasi decade, dealing with perfect hash functions; it is
that subarea that we consider in this section. We consider this work in subsequent subsections,



as we unfoid the various dimensions of the problem.

2.1 Mapping to Integers

We focus here, however, on the more general case where keys are strings (since clearly integers
can be represented as strings of digits or strings of bytes, for example). The usual approach is
to associate integer values with all or some of the characters in the string, and then to combine
those values into a single number, Chang [CHA84] used four tables based on the first and second
letters of the key. Cichell] [CIC80] used the length of the key and tables based on the first and
last letters of the key. Note, however, that the length of a key, its first letter, and its last letger
are sometimes insufficient to avoid collisions; consider the case of the words ‘woman’ and ‘women’
in Cichelli’s method.

Cercone et al. [CKB83] enhance the discriminating power of transformations from strings to
integers by generating a number of jetter to number tables, one for each letter position. Clearly,
if the original keys are distinct, nnmbers formed by concatenating fixed length integers obtained
from these conversion tables will be unique. In practice, it often suffices to simply form the sum
or product of the sequence of integers.

While in some schemes (eg., [CIC80]) the resulting integer is actually the hash address
desired, in most algorithms, the § function must further map from the integer value produced
mto the hash table.

2.2 Existence Proof

One might ask if a MPHF 4 for a given key set exists. Jaeschke [JAES1) proves this and indeed
Presents a scheme guaranteed to find such a function (though his method requires exponential
time in the number of identiﬁers). Assuming that the task is to map a set of positive integers
k1, k2, ... kn)} bounded above by ¥ without collisions into the set of m indices of T, we can
similarly demonstrate that the answer is clearly yes. A constructive proof follows ip terms of a
sketch of a fast algorithm to define a suitable (though large!y MPHF:

Allocate an array A of length N with all values initialized to ERROR.
for i =1ton do
A[k,] =71—-1

other keys yield ERROR.
While this indeed gives us a proper h, since N > m, the array A is mostly empty (ERROR),

that perfect hash functions are rare in the set of all functions, Knuth [KNU73] observes that
ouly one in 10 million funetions is a perfect hash function for mapping the 31 most frequently
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used English words into 41 addresses. Our task then can be viewed as one of searching for rare
functions, and of specifying them in a reasonable amount of space.

2.3 Space to Store PHF

In the algorithm given above, 4 is an array of N numbers, each representable in log, m bits.
This gives an upper bound of O(N logy m) bits to store the PHF. Mehlhorn shows a lower bound
on the number of functions needed to make a family of PHFs:

)
(N/m)n (’:’)

Under the reasonable assumption that N grows faster than n%, we can use the asymptotic
estimate (j:) ~ N /n! to obtain the asymptotic lower bound

mﬂ.
)

In the case of minimal perfect hashing, m = 7, 50 we have the asymptotic lower bound n” /!, Ap-
plying Stirling’s approximation for n! and taking the base 2 logarithm, we have an approximate,
asymptotic lower bound of

log,e”/voman = p log, e — log, v/2mn
& 1.4427n

bits to represent an arbitrary PHF.
In addition to the lower bound, Mehlhorn also gives a method of constructing MPHFs of size
O(n) bits. However, the construction requires exponential time and therefore is not practical.

each of log, n bits. Then Mehlhorn’s lower bound is Q(n/ log, n) computer words, and his
practical upper bound is O(nlog, n/ log, n) = O{n) computer words. Our algorithm achieves
MPHF size of less than O(n) computer words, that is, the storage required for a MPHF increases
slightly less than linearly with n.

2.4 Classes of Functions

There are several general strategies for finding perfect hash functions. The simplest one is to
select a class of functions that 1s likely to include a number of perfect hash functions, and then



[MAPPING = ORDERING = SEARCHING|

Figure 1: Method to Find Perfect Hash Functions

and Larson [RL89].

Sprugnoli [SPR?S] broposes two classes of functions, one with two and the other with four
parameters, that each may yield a MPHF; searching the parameter values of either class is feasible
only for very small key sets. Jaeschke [JAES1) suggests a reciprocal hashing scheme with three
parameters that is guaranteed to find a MPHF, but that is only practical when n < 20. Chang
[CHABG) proposes a method with only one parameter, though its vahe is likely to be very large,
and requires a function that assigns a distinet prime to each key; however, he gives no algorithm
for that function, so the method is only of theoretical interest,

parameter values are not to be virtually unbounded, then there must be a moderate number of
parameters to assign. Thus, in the algorithms of Clichelli [CIC80] and of Cercone ot al. [CKB83]
we see two important concepts: using tables of values ag the parameters, and using a mapping,
ordering, and searching {MOS) approach (see Figure 1). While their tables scem to be too small
to handle very large key sets, the MOS approach is an Important contribution to the field of
perfect hashing,

In the MOS approach, the construction of 2 MPHF is accomplished in three steps. First,
the Mapping step transforms the key set from the original universe to a new universe. Second,

the Ordering step places the keys in a sequential order that determines the order in which

accommodate, it backtracks to an earlier level, assigns new hash values to the keys of that level,
and tries again to assign hash values to later levels. Sager’s method is & good example of the

2.5 Sager’s Method

Sager [SAG84,SAG85] proposes a formalization and extension of Cichelli’s approach. Like Cj
chelli, he assumes that » key is a character string. In the Mapping step, three auxiliary hash
functions are defined on the original universe of keys U

hy : U——>{O,...,m—1}

hi: U——»{O,...,r—l}
hy U—>{r,...,2r—-1}



hi

r r+] +2 +3 - 2r-2 2r-1

Figure 2: Dependency Graph

where r is a Parameter (typically < m/2) that ultimately determines how much space it takes
to store the perfect hash function (i.e., {h] = 2r). These auxiliary functions compress each key

kinto a unique identifier
(ha(k), hy (), ha(k))

which is g triple of integers in a new universe of size mp?2. The class of functions searched is
(k) = (ho(k) +9(hy(k)) + g(hg(k))) (mod m)

where g is the function whose values are selected during the search.

Sager studies a graph that represents the constraints among keys. Indeed, the Mapping step
goes from keys to triples to a special bipartite graph, the dependency graph, whose vertices are
the £1(} and Ay() valnes and whose edges represent the words. The two parts of the dependency
- &raph are the vertex set {0,... r - 1} and the vertex set {r,... 2 _ 1}. For each key k, there ,
is an edge connecting k) (k) and A, (%); that edge carries the label k. See Figure 2. '

Sager chooses valyes for » that are Proportional to m. A typical value is r = m/2. In the case
of minimal perfect hashing (m = n), it requires 2r = 5 computer words of log, n bits each to



Improve Sager’s technique led to ap implementation, with some slight improvements and with
extensive Instrumentation added on, described by Datta [DATSS]. We determined that Sager’s
approach did indeed require O(m?*) time and also found that we could find MPHF’s with » <m/2.
We defined ratio — 2r/m to measure the relative size of the dependency graph to the size of the

described in [FCHDSQ]. In the Ordering step, mincycle is replaced by a faster two step process.
First, we build a maximum Spanning forest for the bipartite graph using Prim’s algorithm, where
the edge multiplicities serve ag edge weights. Second, we use several heuristics to obtain listg
ordered by edge madtiplicity, number of cycles, or number of edges between subgraphs.

With this algorithm we were able to find MPHF; for sets of over 4 thousand words, and to
brepare a beta copy of the Virginia Disc One CD-ROM [F: 0X89] with 273 MPHFs computed on
that many sets of 256 words each.

2.7 Summary of Related Work

As mentioned above, hashing has been used in many applications and, with recent development
of dynamic haghing techniques, hag witnessed a resurgence of interest (Enbody and Du [EDSS]).
However, most dynamic hashing involves low Ioad values, on the ordey of 0.60 to 0.90, and requires
resolution of collisions. In most dynarmmie hashing schetnes, hagh addresses identify buckets or

3 Key Concepts of New Algorithm

After careful analysis of Sager’s algorithm [SAGS5] and our enhanced version [FCHDS9], Heath
made three crucja) observations that Serve as the foundation of our new algorithm:
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tables) of random numbers are constructed, one for each of the functions ho, by, and .. Each
table contains one random number for each possible character at each Position ¢ in the word,
Let a key be the character string k = b1k .o ky (y, the length of k, is a function of k). Then,

the triple is computed using the following formulas:

hy (k) = i tabley, (kz)

i=1

hi(k) = (i table,; (k,)) mod r

i=1

hs (k)

i

Y
(Z table,; (fc,)) modr + p,

i=1

Assuming the triples (ho(k),hl(k),hg(k)),k € § are random, it is possible to derive the
probability that the triples are distinet, Certainly, that probability must be close to 1 if we are
to build a MPHF for a large key set. The derivation below demonstrates that the probability of
no collisions tends to one rapidly (the probability of collision tends to zero rapidly) as key set
size increases.

Let ¢ = npr? he the size of the universe of triples. The probability that n triples chogen
uniformly at randory from ¢ triples are distinct is

" = n/log,n)
t = nrzzﬂ(na/loggn).

By an asymptotic estimate from Palmer [PALS5),

Therefore,



Set Size Probability of Probability of

{n) Coliision, ratio=1.0 Collision, ratio=0.4
16 0111111 0.530777
32 0.058824 0.317154
64 (.030303 0.175229
128 0.015385 0.092392
256 0.007752 0.047479
512 6.003891 (0.024073
1024 0.001949 0.012121
2048 0.000976 (.006082
4096 0.000488 0.003046
8192 0.000244 0.001525
16384 0.000122 0.000763
32768 : C.000061 0.000381
65536 0.000031 0.000191
130198 0.000015 0.000096

Table 2: Probability of Collision for hg, by, hy Triples
For typical values of 7 — cn, where ¢ is 3 constant,

fl
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so that p{n,t) goes to 1 quite rapidly with n.
We can illusirate how rapidly the probability of collision, 1 — p(n,t), decreases by considering

we will have collisions in triples for large key sets, even when & small graph (e.g., ratio = 0.4) is
involved. Note too that if by some chance an assignment of triples leads to a collision, then it
is extremely unlikely that with new random tables there would be another collision. Thus, our
method for finding a suitable set of kg, hy, hy functions is linear in ap expected sense.

Later we will see that randomness plays a key role in other parts of the algorithm. In the
next section, we discuss the distribution of vertex degrees induced by these random functions,

i1



In the following section, we show that randommess is important in the Searching step.

3.2 Vertex Degree Distribution

obtain small levels in the tower.

Concentrate on a barticular vertex v and the edges incident on it, The probability that a
particular edge is incident on vis p=1/r. Let X be the random variable tha equals the degree
of v. Then (Feller [FEL68)), X is binomially distributed with parameters n and p. Therefore,
the mean is

E(X)=mnp
and the variance is

Var(X) = np(1 - p)
& np

since 1~ p a 1. Since the case of large n is the case of interest, the Poisson approximation to
the binomial distribution applies:

—-A)d
PﬂX:dﬁviﬁi

From the Poisson approximation, a good approximation to the distribution of vertex degrees
can be obtained. The expected number of vertices of degree d is

2ro~n/r(2)d
dl

For ratio = 1.0, the expected number of vertices of degree 0, 1, 2, 3, and 4 are approximately
0.27r, 0.54r, 0.54r, 0.36r, and 0.18r, respectively. From the Poisson approximation, we see
that there will be few vertices of high degree. These predictions are actually born out by
experimentation; see Section 6 for more details.

The skewed distribution of vertex degrees provides the nspiration for a new Ordering heuris-
tic. Instead of ordering the edges (keys) of the dependency graph as mincycle does, the new
heuristic orders the vertices. From an ordering of vertices, it is a simple matter to obtain an
ordering of the keys into levels. Let Y1,Y2;. .., V2, be any ordering of the vertices of the depen-
dency graph. For each v;, there is a set of edges K(v;) that go from v; to vertices earlier in the
ordering

2rPr(X = d) r

K(vi) = {(vi,0) € Blj < 4},

12



may be empty, but cannot be larger than the degree of v (it is often smaller). The ordering
of the set of keys into levels is Just the ordering of the nonempty K(v;), where each nonempty

ion mvolves Placement mod 5. At each iteration of the Searching step, one level
of the tower is to be Placed in the hash table. Each level is the key set K () corresponding to
a vertex v;. For burposes of Mustration, assume that v»; € {p . 20 — 1}, that 1s, v; is on the
hy side of the dependency graph. Bach key £ € K(v;) has the samme Aq value ha(k) = v, and,
therefore, will have the same ¢ o b2 value ¢ (ha(k)) = 9(v:). By assumption, the g o hy value of

b(k) = ho(k) + 9(ha (k).

h(R) = b(E) + g(v,).

The b(k) values for al keys ke K (v} yield offsets from ¢(v;) (mod n) to the hash values of the
keys,

The set of b(k) values constitutes 3 pattern (mod n). Since the Pattern is (mod n), it may
be viewed ag circular and subject to rotation by the amount 9(v;). To successfully assign hagh
values to the keys in x (v;), the Searching step must determine an offset valje g(v;) that puts
all the d(k) + 9(vi) values in empty slots of the hash table simultaneously, This Process we refer
to as fitting a pattern into a disk,

Finding hash values for a set of 7 related words corresponds to finding suitable g values so
that the pattern of size 7 can be placed into the disk, with each of the 7 words fitting into ap
empty slot. Clearly, when J =1 this ig possible ag long as there ig an empty slot. Further,
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Figure 3: Typical Layout of Partially Filled Hash, Table

regardless of the size of J 1t is possible to fit 4 patiern into an empty table. We would expect,
therefore, to be able to find a hash fanction if vertices of large degree are handied when the
disk is mostly empty, and if when the table is starting to get full, remaining vertices are of low
degree, Preferably degree 1,



Pcégsita[l(a): Pa%e):ms Skip Distance Good Patterns Bad Patterns
P=0,..,
0,1), (1,2), (2,3),
{@, (i+1) mod 8)} 1 {(6,7)} {(8,4)), (2,5)? ((5,5)),
(7,00
(@, (i+2) mod 8)} 2 {24, 46) ((0,2), (1,3}, 3,5),
5.7, (6.0), (7,1)}
{(t, (1+3) mod 8)) 3 (@D, (7.23) 1.3, (1,4), 2,5),
(3,6), (5,0), (6,1)}
{@, (i+4) mod 8)) 4 {2.6) {(0.4), (1.5),3,7))

Note: A pattern in this case is defined as an integer pair {x.y). Fitting into the hash table
Tequires hoth slots x and ¥ lo be empty. If they are not, the next slot pair {(x+1) mod 8, (y+1)
mod 8) is tried. If eventually both are empty, slots x and y are filled,

Table 3: Pattern Classification for Filling Disk

15



We wish to estimate the probability, as Af _, oc, that the pattern of size j fails to fit. There
are M rotations of the pattern. Let X; 0 Si< M —1, be the random variable that js 1 if the
th rotation of the pattern fits and ¢ otherwise. Define the random variable

M1

to be the number of rotations for which the pattern fits. The probability that the pattern does
not fit under any rotation s Pr(X = 0). Following Feller [FEL6S], Chapter 4, define the Rth
binomjal moment, 0 < R< M, as

Sp = > B(X: Xy, - Xy
0L <ing. <ip<M—1

where the sum is over all (‘g) subsets {il,ig,...,i}g} of size R of the set {01,... M- 1}.
E(X;, X3, "+ Xip) is the same as the probability that the pattern fits under alf the R rotations
i,%2,...,ig. Fix R and i1,82,...,ip for the moment, Suppose the R rotations of the pattern
hit Rj distinet slots (that is, no two rotations hit the same slot). Then

- (78 /)

As M — o0, the probability that the R rotations of the pattern collide (that is, hit fewer than
Rj slots) goes to 0. Therefore,

== )0

MM — Ri)ipim — gy
BA(M — R)\FIM = 7 = fyiami

2 M N f 1) - g p oy
Rl (M—R)(M—R-1)---(M—Rj+1)

Rj-R-1 .\ RBji-1
1 (M—-—f—z) )
= — ll - ” (M—-—f—z)
Rl i=0 M~R—i i=Rj_R
Bj—R-1 B~1
1 ( f—-R) . .
= - 1- - (M—f-z-—RJ+R)
w0 (-5 T
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1 G-DR
= m(t=2) gy

when M — co and M — f — 0o, By the Principle of Inclusion and Exclusion,

M
PrX =0) = Y (-1)ks,
R=0

M (~DR
- LNt (l - ﬁ) (M~ f)R
R=0

where

u=((1_§)j_l(M—f)).

Note that if f ig a tunction of M such that f<(1~e)M, for some constant ¢ > 0, then B — oo
and Pr(X = 0) — 0. For our purposes, this means that the digk must be slightly less than full
(f<(1- €)m) when the [ast pattern of size j > 1 ig placed.

3.3.2  Simulations of Fitting into Disk

the program takes a random sample of 200 patterns to make the calculation. Two different
strategies, sequential and random probing, for placing a level in the disk were explored.

Table 4 gives the probabilities for sequential probing, the method that corresponds to Sager’s
Searching step. Table 9 gives the probabilities for random probing, the method used in our
Searching step. In all cases, random probing is superior. In fact, Table 5 indicates that random
probing is likely to be highly successful for moderately large to very large sets of keys.

4 Algorithm Outline

Our algorithm for finding MPHFs for large key sets is an extension of earlier work by Sager
[SAG85] and built on our new insights. To aid in subsequent, discussion, we therefore summarize
the terminology introduced by Sager and later extended by us as our method developed, Please



Ratip
1.0 0.7 0.5
n
32 0.635556 0.030341 0.038892
64 0.121471 0.004376 0.000037
128 0.064129 0.000192 = 0.0
256 0.001330 = (1.0 = (.0
512 0.007108 =0.0 = (0.0
1024 1.0 0.000193 = 0.0
2048 1.0 1.0 = 0.0
4006 1.0 1.0 0.002559
8192 1.0 1.0 1.0

Table 4: Simulation of Filling Disk - Estimates of Probability of Success -

Ratio
1.0 0.7 0.5
n

32 1.0 0.426667 0.396231
64 0.967742 0.784599 0.014669
128 1.0 (.984127 0.001169
256 1.0 0.945746 0.103897
512 1.0 1.0 0.058072
1024 1.0 1.0 0.413002
2048 1.0 1.0 0.950918
4096 1.0 1.0 0.932089

8192 1.0 1.0 1.0

Table 5: Simulation of Filling Disk - Estimates of Probability of Success -

18
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U universe of keys —[
N = cardinality of [/
k= key for data record
S = subset of I, set of keys in use
n = cardinality of §
T'=  hash table, with slots numbered 0, ... (m ~ 1)
m = mumber of slotg in T
h = function to map key k into hash table 7'
th] = space to store hash function
"= Darameter specifying the number of vertices in one part of the dependency graph
ratio=  2r/m, which specifies the relative size of the dependency graph
ho,hi,hs =  three separate random funetions easily computable over keys
g = function mapping 0,...,(2r=1)into 0,. .. y(m—~1)
t = mnumber of levels in the tower

Table 6: Suramary of Termjnologfy

refer to Table 6 for clarification in the discussion below. Because the algorithm that we describe
finds minimal perfect hash functions, m = n, and we only mention n.
Recall that the class of functions from which the perfect hash function is selected is

h(k) = (Ro(k) + g (ks (k) + 9(ha(k)) ) mod n
where
g:{0,....2r -1} = {0,...,n—1}

1 a function whose values are to be determined during the Searching step. ris a Parameter that
Is typically n/2 or less. The larger r is, the greater the probability of finding a MPHF, but the
greater the size of the resulting MPHF.

The algorithm for selecting A consists of the three steps: Mapping, Ordering, and Searching.
Each step is described in a separate section. Data structures are introduced as they are needed.

4.1 The Mapping Step

The Mapping step takes a set of n keys and produces the three auxiliary hash functions hg, by,
and hy (see Section 2.5). These three functions map each key k into a triple

(ho(k), b (k), ha(k)).

Because the ultimate MPHF must distinguish any two of the original keys, it is essentjal that
these n triples be distinct. As discussed in Section 3.1, if ho, by, and h are random functions,
it is very likely that the triples will be distinct. The ho, hy, and h, values are used to build a

19



bipartite graph called the dependency graph. In turn, the graph can be employed to verify that
triples are distinct.

corresponds to an edge labeled £ between the vertex labeled h1(k) and the vertex labeled ho(k).
Notice that there may be other edges between b, (k) and hy(k), but those edges are labeled with
keys other than k. If the value ho(k) is associated with the edge k, then all the information
that the Ordering and Searching steps need o construct a MPHF is present in the dependency

There are two data structures that constitute the dependency graph, one for the edges (keys)
and one for the vertices (h1 and h, values). Both are implemented as arrays. The vertex array
is

vertex: array [0..2r-1] of record
firstedge: integer;
degree: integer;
g: integer;
end

firstedge is the header for a singly-linked list of the edges incident to the vertex, degree is
the number of vertices incident on the vertex. g s the g value for the vert ex, which is assigned
in the Searching step. The edge array is

edge: array [1..n] of record
ho, hy, hy: integer;
nextedge;: integer;
nextedges: integer;
end

hg, hy, and hy contain the ho, A1, and hy values for the edge (key). Also, nextedge;, for side
i(=1,2) of the graph {corresponding to hy, hy, respectively), points to the next edge in the
linked list whose head is given by firstedge in the vertex array.

Figure 4 details the Mapping step. Let k1,ks,...,kp be the set of keys. The hy, hy, and
hp functions are selected (1) as the result of building tables of random numbers as described
in section 3.1. The construction of the dependency graph in {2) and (3) is straightforward.
Note in passing that in (3) when edges are added to the appropriate linked list, that values for
nextedge;j in the edge array are updated as needed. (4) examines sets of edges having the same
hy value to check for distinet (ho, hy, hy) triples; since vertex degrees are small (section 3.2),
(4) takes expected time that is linear in n. In the rare (recall section 3.1) circumstance that
distinct triples are not produced (5), new random tables are generated, defining new hg, hy,
and hy functions, The probability that random tables must be generated more than twice is
exceedingly small. Therefore, the expected time for the Mapping step is O(n).
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(1)
&)

(3)

(4)

()

build random tables for hg, hy, and hy
forcachvefo.. . 2r — 1] do
vertex[v].firstedge = (
vertex[v].degree = ¢
for each i € [1...n) do
edgelil.hy = hy(k;)
edge[il.hy = hy(k;)
edgelil.hy = ho(ky)
edgeli] -nextedges = 0
add edgeli] to linked list with header vertex[n (ki)).firstedge
increment vertex [hy(k;)].degree
edgeli] .nextedges = 0
add edgeli] to linked list with header vertex [ho(k4)] . first edge
Increment vertex [ho(k;)1.degree
foreachvefo.. .r— 1] do
check that all edges in linked list vertex [v].firstedge have
distinct (hg,hy, hy) triples.
if triples not distinct then
repeat from step (1).

]

Figure 4: The Mapping Step
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4.2 The Ordering Step

The Ordering step explores the dependency graph so as to partition the set of keys into a sequence
of levels. The step actually produces an ordering of the vertices of the dependency graph (at
least those that do not have degree zero). From the vertex ordering, the sequence of levels ig
casily derived. If the vertex ordering is vy, .., » U, then the level of keys K (¥:) corresponding
to a vertex v;, 1 < 4 < t, is the set of edges incideni both to v; and to a vertex earlier in the
ordering, More formally, if 0 < v <7 —1, then

K(vi) = {k; b1 (k) = 3, ha(ky) = v, 5 < i}
Similarly, if r S v £ 27 — 1, then
K(v:) = {kilha(k;) = vi, by(ki) = v, 5 < i}.

The rationale for the vertex ordering is discussed in section 3.2,

An analogy with Prim’s algorithm for constructing a minimum spanning trec will help il-

logarithmic time.

Our ordering heuristic initiates the ordering with a vertex 1 of maximum degree. At each
iteration of the Ordering step, a previously unselected vertex ¥; 1s added to the ordering. w; is
selected from among those unselected vertices that are adjacent to at least one of Vly e, Uy
from among these vertices, v; is selected to have maximum degree. If there are no such unse-
lected vertices and there remain unselected vertices of nonzero degree (i.e., another connected
component needs to he processed), then select any vertex of maximurn degree to be v;. The al-
gorithm maintains the unselected vertices that are adjacent to selected vertices in a heap VHEAP
ordered by degree. Figure 5 gives the Ordering step.

The heap operations are initialize (start an empty heap), insert (add a vertex to the
heap), and deletemax (select a vertex of maximum degree and remove it from the heap). Each
heap operation can be accomplished in O(logn) time (since r = O(n)). Because the vertex

There is one issue not addressed in Figure 5: the dependency graph may not be connected.
Typically, the dependency graph consists of one large connected tomponent and a number of
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initialize(VHEAP)
V1 = a vertex of maximum degree
mark vy SELECTED
for each w adjacent to vy do
insert(w, VHEAP)
i=2
while some vertex of flonzero degree is not SELECTED de
while VHEAP is not empty do v§ = deletemax (VHEAP)
mark v; SELECTED
for w adjacent to v; do
if w is not SELEC'TED and v is not in VHEAP then
insert(w, VHEAP)
i=3i41

Figure 5: The Ordering Step

smaller components, By choosing v; as a vertex of maxirm degree, the algorithm is almost
certainly choosing v; in the large component. Therefore, the algorithm selects the large com-
ponent first, After that, it must process the remaining components in the same fashion. The
algorithm maintains a Jist of those vertices that have not been selected and can easily find an
unselected vertex of maximum degree, Therefore, the Ordering step is able to order all vertices
of degree > (.

4.3 The Searching Step

to the keys a level at a time. Assigning hash values to K(v;) amounts to assigning a value to
g(v;), as is indicated in section 3.3. To this end, we define a hash-table data structure

hash-table: array [0..n; — 1] of record
key: integer
assigned: boolean
end

where key is the index to the key that has hash value {, and assigned is a flag as to whether
the hash value ¢ has been assigned to any key yet,

When a value is to be assigned to vertex[i].g, there are usually several choices for vertex{il.g
that place all the keys in K( v;) into unassigned slots in hash-tab]e. The analysis and the entpirical
results from section 3.3 indicate that an acceptable value for vertex[i]l.g should be picked gz
random rather than, for example, picking the smallest acceptable value for vertex[il.g, In
looking for a value for vertex[il.g, the Searching step uses a random probe sequence o access
the slots 0, . . . 0 — 1 of hash-table.
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Word ho-value | k;-value ha-value |
Asgard 2 0 5
Ash 3 0 5
Ashanti 0 2 3
Asheroft 3 1 5
Ashe 5 1 3
Asher 1 1 3

Table 7: Example: Set of Words with Associated he, ki, e Values

Figure 6 gives the algorithm for the Searching step. A random probe sequence of length n
15 chosen in step (3). The probe sequence actually used in our implementation has only a weak
claim to randomness; that is, just a small amount of randomness is sufficient to make a good
Searching step. At the beginning of the Searching step, the current implementation chooses 2 set
of 20 small primes (or fewer if n is quite small) that do not divide n. Bach time (3) is executed,
one of the primes g is chosen at random to be s; and is used as an increment to obtain the
remaining s;, j > 2. Thus, the random probe sequence is

0: 9, 29; 3@', .- .,(?1 - qu

A more robust random probe sequence would choose the increment ¢ at random from0,... ,n—1
such that the greatest common division of g and nis 1. Ag just mentioned, such a robust sequence
does not appear to be necessary. _

A detail that is omitted from Figure 6 15 the action taken when the Searching step is unable
to insert 2 level into the hash table (fail in (7)). This is such a rare occurrence that for a large
enough value of n and ap appropriate choice of ratio, it is very unlikely to occur even once
I the execution of the algorithin. Therefore, one reasonable response to this rare event is to
restart the aigorithm from the beginning with new random tables for ho, ki, and hy. Our current
implementation actually uses a simple backtracking scheme. It assigns new g values to earlier
vertices and then tries to complete the ¢ function for the entire graph. More sophisticated
backtracking schemes are possible, but, as mentioned above, it is unclear whether the added
effort justifies the small gain in success.

5 Example

We illustrate our algorithm using a key sct of 6 words that hag actuaily been processed to yield
a MPHF. While this small example illustrates how the algorithm works, it does not explain (as
was done in Section 3) why the algorithm works well for a large set of keys. The set of words
was drawn from the initia] portion of the Collins English Dictionary [HAN79]. The 6 words with
their kg, hy, and hy values are given in Table 7. The hy, by, and hy functions are the auxiliary
hash functions found in the Mapping step.

24



(1)

(2)
(3)

(4)
(3)

(6)

(7)

foricfo...n—1]do
hash-table[il.assigned = falge
for i=1 to t do

establish a random probe sequence S0+815...,8y_ ¢ for [0. ..

i=o0
do
collision = false
ifvjefo.. . r— 1] then
for each k¢ K(v;) do
hik) = edge[k].hg -+ vertex[edgefk].hy] + s 3
if hash-table[h(k)] -assigned then
collision = true
else
for each k €K(vi) do
h(k) = edge[k] hg o+ vertexfedge[k].h ] + 55
if hash-table (h{k)].assigned then
collision = trye
i not collision then
for each k € X(v4) do
hash-table[h(k)] -assigned = true
hash-tablefh(k)].key =k
else
J=3+1
if j>n—1 then
fail
while collision

Figure 6: The Searching Step
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Figure 7: Example: Dependency Graph

From this assignment of hy and hy values, the bipartite dependency graph shown in Figure
7 is produced. Note that some vertices {1, 3, and 5) are quite “popular” while vertex 4 is left
out. Each word is associated with edges; there are two pairs of words, (Asgard, Ash) and (Ashe,
Asher), that each have the same endpoints. This is allowed here, since the hy values will allow
separation between words when the final hash value is computed.

After initialization, the vertex and edge data structures for this example have contents as
shown in Figure §. We see 2 symbolic representation of the linked lists involved, and all of the
ho, b1, and hy values. Of course, the g values (left blank here) are to be determined in the
Searching step.

The Ordering step finds an order for the vertices 0, 1, 2, 3, and 5 (those of degree > ). The
process of selecting the order is shown in Figure 9. In 9(a), an arbitrary vertex, 1, of maxirmum
degree, 3, is selected to be v;; the result is v; = 1. Next, in 9(b), the vertices 3 and 5 adjacent to
vertex 1 are examined to find one of maximum degree; the arbitrary selection of vy = 5 has been
made. In 9(c), the vertices § and 3 (each adjacent to one of the vertices 1 and 5) are examined;
the selection vz = 3 is made because vertex 3 has higher degree than vertex 0. In 9(d), vertices 0
and 2 are examined; the selection va = 0 is made because vertex () has higher degree than vertex
2. Finally, in 9(e), the selection ¥s = 2 Is made,

The result of the Ordering step is the vertex order

15302

In an order containing 5 vertices, we obtain a tower of 4 levels. The resulting tower is shown in
Tabie 8. Level 4 corresponds to the set of keys K (wis1) for vertex %i41. Thus, level 2 corresponds
to the set of keys

K({vs) = {Ashe, Asher).
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Edge
Data
Structu_re

h, , nextedge,

nextedge, h, jl¥ hy 4/
=15
=

|

1 I 3 ,I 0 r 3
] Vertex

Data
o | o] 5 ] pa

Figure §&; Example: Vertex ang Edge Data Structures

2

m Size of Level

 Keys in This Leve}

1 Asheroft

2 Ashe, Asher
2 Asgard, Ash
!

Ashanti

Table 8: Example: Levels in the Tower
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0 1 2 0 1 2
3 4 5 3 4 5
(@) Vertex selected: 1

(b) Vertex selected: 5
Inimalizatjon Level: (1’5)

(c) Vertex selected: 3 (d} Vertex selected:
Level: (1,3), (1,3 Level: (0,5), (0.5)

(€) Vertex selected: 2
Level: (2,3)

Figure 9: Example: Ordering Step
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The level sizes are bounded above by the degree of the corresponding vertex and are typically
smaller. For example, the degree of v3 is 3 but [K(vs)] = 2.

The Searching step assigns ¢ values to the vertices 1, 5, 3, 0, and 2, in that order. The
assignment process is Hlustrated in Figure 10. The g value for v1 = 1 Is arbitrary; in 10(a), the
assignment g(v;) = 2 has been made. Vertex v, = 5 ig next; K(vy) = {Asheroft}. We know

ho(Asheroft) = 3
g(hy (Asheroft)) = g(1)
= 2.

In 10(b), slot 1 has been selected for Asheroft, Therefore,
g(v2) = h{Ashcroft) — ho(Asheroft) — g(h, (Ashcroft))  (mod 6)
= 1-83-2 (meod 6)
= 2.

The next vertex is vy = 3; K(vs) = {Ashe, Asher}. We caleulate

b(Ashe) = ho{Ashe) + g(h1(Ashe)} (mod 6)
9+2 (mod 6)
= 1

and

b(Asher) = ho(Asher) +g(h1(Asher)) (mod 6)
= 142 (mod 6)

Therefore, this level gives a pattern {1, 3} to fit into the hash table. There are, of course, many
values of g(va) that make the pattern fit. In 10(c), the random value selected is 9(v3) = 3, which

fi(Ashe) = 143 {mod 6)
= 4

and

h(Asher) = 343 (mod 6)
= 0.

The next vertex is v, = 0; K (vq) = {Ash, Asgard}. The pattern for this level is {4,5}. There is
only one vaiue for 9(v4) that fits this pattern into the hash table. Ip 10(d), the value g(vq) = 4
is selected, which fits the pattern in slots 2 and 3,

The last vertex is v5 = 2 K(vs) = {Ashanti}. Slot 5 is the only one remaining in the hash
table. The selection g(vs) = 2 is necessary to place Ashanti in slot 5.
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1) 1 2 E 0
| 1
L] 2
- | 3
3 4 5 - 4
_J 5
(@) Vertex assigred: | (b) Vertex assigned: 5
Initialization- &v)=2 Stot filled: { 1 ]
0
1
2
3
4
s
() Vertex assigned: 3 (d) Vertex assigned: 0
Slots filleg: { 0, 4 } Slots filled: { 2, 3 }
0
1
2
3
4
5

{e) Vertex assigned: 2
Slot filled: [ 5 }

Note:
- D stands for a slot open for fill;

stands for a slot filleg in at current level;

stands for a slot that already has been filled,

Figure 10: Example: Searching Step
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Vertex | ¢ Value

Table 9: Example: Vertices with Computed g Valyes

Keys
Asgard
Ash
Ashantij
Asheroft
Ashe

| Hash Address

Table 10; Example: Keys with Computed Hash Addresses

so that g (and, hence, h} is a total funetion. No keys in the set § will actually access the g value
of a vertex of degree 0.

The ultimate hash values for the six keys are given in Table 10. As required, the six hash
values are distinet (we have perfect hash function h), and the hash values are all less thag 6
(% is a minimal Perfect hash function).

6 Experimental Results
To support our claims regarding the theory and practice relating to our approach to MPHP

determjnation, WE present a series of results based on some of our experimental studies. We
begin by considering the dependency graph and the associated tower.

6.1 Dependency Graph and Tower




collected data from several PHF runs, Tn Table 12 we see the behavior for a key set of size
32, where a ratio of 0.6 was used. The number of occurrences for each level size, shown in
the last column, seems quite reasonable. We have also recorded the absolute position in the
processing, and the relative measure of % Full, for the situation when a leve) of a given size is
first encountered, and when it is lagt encountered. This data gives a rough indication of when
levels of various sizes are actually processed.

size 4 still must fit when the table is 74% full, and that Ppatterns of size 2 must sl fit when the
table is 97% full. Clearly, our probabilistic approach has led to rapid solutions in rather difficult
situations.

6.2 Timing Statistics

As can be deduced from the preceding tables, we have computed MPHF's for 5 large number of
key sets of various sizes. Table 15 illustrates these results. We compare the algorithm due to
Sager as re~-implemented mitially by Datta and discussed in [DATSS), the improved algorithm
presented at the 1989 ACM Computer Science Conference (CSC) [FCHDS89], and a recent version
of out algorithm. All of these runs were made using an Apple Macintosh I system running A /UX
(Apple’s version of UNIX) with 2 megabytes of standard memory and 8 megabytes of N U-bus




Ratio Degree # hl Vertices # hz Vertices ffxvemcm#
04 1 882 823 877.12
2 2263 2152 2192.91
3 3566 3754 3655.01
4 4562 4535 4568.94 ] Expeced 3
5 4596 4562 4569.08 Ratlo Degree #h; Vertices #1h, Vertices rge", :
6 3821 3760 3807.66 — 9 vertice
7 2724 2741 271980 0.7 1 7531 7552 T477.40
8 1657 1706 1699.89 2 10598 1047 1068222
9 921 951 94438 3 10293 10360 10173.68
10 499 430 472.19 4 7299 7181 7266.95
11 232 219 214.62 5 4062 4186 415254
12 84 90 89.43 6 1940 1942 1977.38
13- s 40 34.39 7 843 531 807.08
14 13 9 12.28 8 293 315 28824
15 6 g 4.09 g 96 90 91.50
10 27 22 26.14
0.5 1 2407 2422 2384.44 11 3 7 6.79
2 4661 4773 4769.06 12 1 1 1.62
3 6344 6308 6358.95 13 @ 2 0.36
4 6460 6355 6359.09
5 5160 5014 5087.35 0.8 1 106354 10771 10587.15
6 3381 3456 3391.59 2 13364 13331 13359.14
7 1957 1922 1938.05 3 11071 11002 1113270
8 900 980 969.02 4 T122 7051 6957.54
9 434 418 430.67 5 3355 3508 347894
10 171 192 17296 6 1436 1458 144954
11 52 67 62.64 7 539 468 517.68
12 21 18 20.88 8 165 179 161.77
13 6 6 6.42 9 51 41 44.93
14 3 2 1.84 10 16 13 11.23
15 1 3 0.49 11 I 2 2.55
: 12 1 1 0.53
0.6 1 4609 4719 4644.44 13 ¢ 2 0.10
% g}gg ggg,f, ggg‘l’-gg 0.9 1 14079 14003 14109.22
W by ne 716728 2 15796 15790 15677.08
p prra e peadipt 3 11383 11468 11612.69
p paLy: ot 265175 4 6552 6538 645147
: 1ae a3 Taeiis 5 2844 2868 2867.29
: Soe o oy 6 1101 1063 106154
5 150 e Tos ol 7 332 331 337.11
10 7 62 65.02 8 3 4 5364
11 25 33 1970 19 p . EF]
12 10 s 547 1 ] 5 o4
13 1 ¢ 140 .
1.0 1 17570 17705 17620.38
2 17714 17334 17620.52
3 11884 11817 11747.01
4 5793 5959 5873.46
s 2321 2356 234935
6 772 742 783.10
7 230 249 22374
8 56 50 5593
9 g 12 12.43
10 0 4 2.49

Table 11: Degree Distribution for 130,198 Case
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1 First Oceurrence Last Oceurrence Total # of
Ishfz‘ée Position % Full Position - % Full Occurrences
1 1 6.0 12 67.0 6
2 4 22,0 18 100.0 10
3 3 17.0 8 44.0 2 -
Note:
n=Key Set Size = 32
m = Hash Table Size = 32 ratio=06
2r = # of nodes in the bipartite graph = 0.6 * ; = 20
Table 12: Distribution of Level Sizes for Set of Sige 32
L_evel First Occurrence Last Occurrence Total # of
Size Occurrences
Position % Full Position % Fuli
1 1 0.0 588 100.0 280
2 5 1.0 516 88.0 195
3 119 20.0 419 71.0 98
4 117 20.0 244 41.0 15
Note:;

n=Key Set Size = 1024
m = Hagh Table Size

2r = # of nodes in the

= 1024, ratio = 0.6

bipartite graph = 0.6 * n ~ 614

Table 13: Distribution of Level Sizes
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Level First Occurrence Last Occurrence Total # of
Size Position % Full Position % Full Occurrences
1 1 0.0 51718 100.0 12479
2 583 1.0 50018 97.0 12756
3 1244 2.0 45603 88.0 15830
4 1907 4.0 38282 74.0 8676
5 2553 5.0 28116 56.0 1850
6 8938 17.0 19840 38.0 126
7 11256 220 11256 22.0 1

Note:

n=Key Set Size = 130,198
m = Hash Table Size = 130,198, ratio=04
2r = # of nodes in the bipartite graph = 0.4 * g =~ 52,080

‘Table 14: Distribution of Leve] Sizes for Set of Size 130,198
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Ordering Step Searching Step
Set
Size New
Sager ose Algorithm Sager cse Algorithm
10 0.05 0.10 0.05 0.02 0.08 0.02 -
20 1.05 .27 0.05 0.07 032 0.20
30 3.40 0.43 0.07 0.17 0.38 0.33
40 16.55 6.72 0.07 042 0.50 0.08
50 28.20 1.05 0.08 0.68 0.43 0.52
60 54.23 1.40 0.10 1.10 1.00 0.15
70 120.26 2.00 0.12 1.47 0.85 - 0.17
80 241.72 2.57 0.12 233 1.37 0.22
90 323.32 3.43 0.15 3.68 1.30 0.20
100 519.85 4,23 0.17 6.88 2.15 0.25
110 385.80 597 0.17 9.40 2.62 0.27
120 861.42 6.47 0.18 11.34 2.63 (.30
500 $ 189.48 0.52 ) 26439 0.80
1000 § 2101.03 0.63 § 413.13 8.13
Notes:

Times are measured in seconds using the Mac T A/UX Systemroutine “fmes().”

§ Runs for the two largest sets using Sager's algorithm had not completed the Ordering
step after 5 hours.

Table 15: Timing Results, Sager vs. ACM CSC Paper Version vs. New Algorithm, Set Sizes 10
 to 1000
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Set Size Mapping Ordering Searching Checking Total
{seconds) {seconds) {seconds) (seconds) (seconds)
16 0.27 0.05 0.02 0.02 0.35
32 0.33 0.07 0.05 0.03 048
64 0.50 0.10 0.12 0.07 (.78
128 0.57 0.18 0.20 0.12 1.02
256 0.75 043 0.72 0.40 2.30
512 1.28 (.80 7.92 0.43 1043
1024 1.40 145 2,37 1.23 6.45
2048 - 355 247 4.85 1.38 12.25
4096 427 492 2097 2.12 32.27
8192 8.58 17.85 20.55 548 52.47
16384 20.18 72.23 142,50 13.67 248.58
32768 39.63 280.40 404 47 27.35 841.85
65536 85.03 1184.08 731,90 60.02 2061.03
130198 166.07 4802.75 1100.03 159.68 6228.53

Notes:

(1} Each £ value is stored in log n bits. Therefore, ifn < 32,768, each
& value fits in a short integer.

(2) hash table size = set size, Le., load factor= 1.
(3) Mapping time is the time to compute (tig, hy, hy) for each key
Ordering time is the time to build the tower

Searching time is the time to search for a phf from the tower
Checking time is the time to verify that the phf is indeed perfect

Table 16: Timing Results, New Algorithm, Macll, ratio = 1, Set Sizes 16 to 130,198
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Mapping Ordering Searching Checking Total

Ratio}] Mac Seg. Mac Seq. Mac Seq. Mac Seq. Mac Seq.
i1 I I I II

04 15748 | 47.77 90.50 26.58 | 213395 | 561.57] 11392} 3637 | 2495.85 672.28
05 16537 | 4838 | 260.22 40.23 § 2021.00 | 512.92{ 98.20( 36.43 | 2544.78 637.97
06 ]162.85 | 48.83 | 548.83 99.55 { 331575 | 801.02] 115.45| 36.53 | 4142.88 085.93
0.7 1160.62 | 4943 | 812.28 217.78 | 927.62 | 183.15] 114.83 ) 36.40 | 201535 486,77
0.8 }161.12 { 50.43 | 1656.40 501.10 | 91558 | 18323} 11233 3653 2845.53 | 771.30
0.9 |164.98 | 50.65 { 2762.10 94648 | 2212.68 | 584.20| 12372} 37.15 5263.48 | 1618.48
1.0 1166.07 | 51.23 [ 4802.75 [ 1728.17 | 1100.03 252.27( 159.68 | 36.67 6228.53 | 2068.33

Table 17: Timing Results, New Algorithm, ratio = 04,...,1.0, Macll vs, Sequent, Set Size
130,198

Ordering step after 5 hours and was aborted. The extended algorithm reported at ACM CSsC
succeeded with sets of size 1000. However, it is clear that the new algorithm discussed in this
paper was significantly better in all cases.

Table 16 details the behavior of the new algorithm as set sizes vary from 16 to 130,198 words.
We fix ratio = 1.0 and work with a Mac II in al] cases. Our claim of an O(rlog n) algorithm is
supported. '

We further focus on the results of the algorithm described in this paper in Table 17. Here
we consider the times for the set with over 130,000 keys running both on the Mac II system
described above and on the Sequent Symmetry in our Computer Science Department, with 10
processors each rated at 4 MIPS. The Sequent has 32 megabytes of main memory. The code
run on the Sequent was not changed to exploit the parallel architecture; the speed-up shown is
simply due to faster processing (on the single processor involved),

We notice some fluctuation in times as ratio varies. With smaller ratio the graph is smaller
so Mapping is slightly faster, and Ordering is much faster. However, Searching is usually more
expensive, because more rotations are required due to having higher degree vertices to process
later on. Also, the sequential probing used by Sager is not as fast or as successful as the random
probing used in our Searching step {refer to Tables 4 and 5.} The Ordering tirne for larger graphs
is clearly so large for bigger ratio values that the total time seems to be almost linear with the
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ratio chosen. While it generally appears safe to use a ratio about 0.7, which gives reasonably
rapid processing and some space saving, a wise strategy for this size set might be to start looking
for a MPHF with ratio about 0.4 and then only increase the ratio if the graph that results is
too difficult to process.

In summary, our algorithm processes large key sets well, and while there is some variation in
processing time because of the probabilistic nature of the operations, it does seem that with an
appropriate value for ratio the algorithm finds 2 MPHF with high probability, in time O(nlogn).

6.3 A Very Large Key Set

The largest set of keys we have been able to handle directly with our algorithm is a collection of
over 420,878 French words, since our data structures have been tuned to require a maximum of
5n computer words. Qur Sequent has sufficient primary memory for this to work well, The run
used ratio = 0.5. The Mapping step was modified to use § stacks, one for each vertex degree

a MPHF for the 420,878 words was 1623.83 seconds.

For very large key sets, the primary limitation on the efficiency of our algorithm comes from
the size of the main memory. If little of the dependency graph can fit in the main memory of
a virtual memory machine, then swapping occurs with a large proportion of the references to
the dependency graph. This is because the graph is a random one and, therefore, violates the
Principle of Locality.

To accommodate very large key sets, we have modified the implementation of the Mapping
step to effectively partition the dependency graph into connected subgraphs of manageable size.
With the modified implementation, a MPHF for a key set consisting of 1.2 million words was
constructed on the Sequent Symmetry. The dependency graph was partitioned into 16 subgraphs
of approximately equal size. The ratio was 0.38. The total time to construct the MPHF was
6216.73 seconds. Tt is Interesting to note that this time is only roughly 3 times the corresponding
time on the Sequent Symmetry for the smaller set of 130,000 words. This is evidence that paging
significantly slows the algorithm for a set of as few as 130,000 keys.

6.4 CD-ROM Versions

As mentioned earlier, one application for our MPHF method is to improve access time on (-
ROMs where records addressed by single keys are sought. We have prepared a demonstration of
this for Virginia Disc One [FOX89]. In particular, we took the 130,198 word collection discussed
earlier and stored the ¢ function and other parameters, along with the word strings corresponding
to the hash table, on the CD-ROM. Users can ask for words in the Collins English Dictionary
[HAN79] or in files we have extracted from the ATList Digest (distributed over the Internet), the
two sources for this set, and be instantly told what hash value has been assigned.

Table 18 illustrates some of the results obtained. In particular we have given the string and
hash table address for the first, middle, and last ten entries in the file.
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Word Hash Address
X-rTays 0
Euclidean i
ethyl ether 2
Clouet 3
Bulwer-Lytton 4
dentifrice 5
Lagomorpha 6
Chungking 7
quibbles 8
Han Cities 9
reflexes 65095
encumbered 65096
kenaf 63097
Benedikt 65098
erythromycin 65099
endowing 65100
radically 65101
dictation 65102
soft-shelled turtle 65103
Theropoda 65104
Tiya 130188
Nez Perc 130189
Zieyler catalyst 130190
Georgia 130191
epic simile 130192
storybook 130193
postglacial 130194
cyanate 136195
wildfire 130196
unstated 130197
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1. Define tables of n-fields. Each field may be an integer, a string of maximum length less than
N, or a string of length without limit. MPHF indexing on several fields may be specified.

2. Load each table with data. MPHF indexing is performed on fields defined to be MPHF
indexed. Duplication on field values can be handled.

- Look up rows that have values for MPHF indexed fields that are equal to query terms.
Retrieve a field value given row number and field name,

Retrieve a whole row of 2 table,

> o s e

Delete/update a field value of a row.

Figure 11: Functions Supported by Dictionary Manager

7 Future Work

7.1 Improvements

The algorithm has undergone a small amount of tuning, and more is planned. Because the g
values are in the range ...n—1, each g value requires only log . bits. Qther ways to reduce the
storage required to specify a MPHT are under investigation, A parallel version of the algorithm is
likely to produce significant improvements in speed. Promising initial results have been obtained.

7.2  Applications

As mentioned at the beginning of this paper, the most exciting aspect of this work is the wide
range of applications expected for the MPHF scheme. There is utility for MPHFs in regard to
hypertext, hypermedia, semantic networks, file managers, database management systems, object
managers, information retrieval systems, compilers, etc.

We have begin to exploit this potential in a number of areas. One, related to our work of
building a large lexicon from machine readable dictionaries, is to construct a general dictionary
manager able to handle large keys set with associated fixed or variable length records. Our
MPHF system has been suitably embedded into a dictionary manager that can support a variety
of functions as can be seen in Figure 11,

We have integrated MPHF code with = trec manager so that large data collections that are
relatively static can be slowly updated or extended; when a sufficient number of changes (which

As work continues on our Large External Network Database (LEND), we expect to be able to
apply our MPHF scheme to support a variety of applications involving large semantic networks,
hypertext, hypermedia, and other large object bases. We believe that significant benefit will
result in connection with CD-ROM, optical disc, magnetic disk, and even primary memory
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based retrieval.
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