
7

CHAPTER 2

LITERATURE REVIEW

In this Chapter, we review several variations of shortest path problems and

algorithms that vary by complexity and constraints. Mainly, we classify the shortest

problems according to three different scenario-based types: (i) Time-Independent Shortest

Path Problem, (ii) Label-Constrained Shortest Path Problem, and (iii) Time-Dependent

Shortest Path Problem. For the first scenario involving the Time-Independent Shortest Path

Problem, often referred to simply as the Shortest Path Problem, we provide a linear

programming formulation and show how the dual problem solves this problem more

efficiently. The concepts of label setting and label correcting algorithms are also

introduced. Moreover, we discuss Dijkstra’s algorithm and its variants used to solve

problems when networks have nonnegative, and mixed-sign costs. For the second variant,

the Label-Constrained Shortest Path Problem, we refer to a study of Barrett, Jacob, and

Marathe [1998] where edges/arcs in the network are not only weighted but also labeled.

The problem then becomes one of finding a shortest path in the network complying with

the additional constraint that the unique word/string of labels given by concatenating the

labels in the network along the path is an admissible word/string. Finally, for the third

type, the Time-Dependent Shortest Path Problem, we show that the problem under

consideration can be formulated in terms of as an equivalent linear program defined over

an expanded time-space network. Accordingly, we present an extension of Dijkstra’s

algorithm that can be used to solve this problem. This Chapter ends with a basic

description of TRANSIMS.

8

2.1 Time-Independent Shortest Path Problem (TISP)

Consider a network G = (N, A) defined by a set N of N nodes and a set A of A

arcs. Arc (i, j) provides a connection from node i to node j in the network G. Each arc (i, j)

∈ A has an associated cost dij. These costs can be negative, but the network is assumed to

contain no negative circuits. Given this data, we wish to find a path of minimum cost from

a specified source or origin node O to another specified sink or destination node D.

Alternatively, we might view the problem as sending a unit of flow as inexpensively as

possible from node O to node D. This conceptualization results in the following (integer)

programming formulation of the basic shortest path problem.

Minimize ∑
∈Aji

ijijxd
),(

(2.1a)

subject to ∑
∈ }),(:{ Ajij

ijx - ∑
∈ }),(:{ Aijj

jix =








=−
≠

=

Di
DOi

Oi

if1
orif0

if1

(2.1b)

xij = 0 or 1 ∀ (i, j) ∈A. (2.1c)

The binary restrictions on the variables xij indicate that each corresponding arc is

either selected to be in the path or not. Constraint (2.1b) ensures the conservation of flow

at each node, as the unit of flow traverses a path from node O to node D. Note that the

column associated with each variable xij in the constraint matrix corresponding to (2.1b)

contains a “+1” in row i, a “-1” in row j, and zeros elsewhere. Due to this feature, the

constraint matrix enjoys the total unimodularity property (see Bazaraa, Jarvis, and Sherali

[1990]), which implies that at any extreme point optimal solution to the continuous

relaxation to the problem in which (2.1c) is replaced simply by xij ≥ 0 ∀ (i, j) ∈ A, the

variable xij would automatically take only integer values. Hence, the “xij = 0 or 1”

requirement can be equivalently replaced by the constraint xij ≥ 0. Thus, we may solve the

integer program as the following linear program.

9

Minimize ∑
∈Aji

ijijxd
),(

(2.2a)

subject to ∑
∈ }),(:{ Ajij

ijx - ∑
∈ }),(:{ Aijj

jix =








=−
≠

=

Di
DOi

Oi

if1
orif0

if1

(2.2b)

xij ≥ 0 ∀ (i, j) ∈A. (2.2c)

Let us write the dual problem for (2.2), which as we discuss below, provides a

mechanism for developing a more efficient solution method. Denoting the dual variable

corresponding to the constraint for node i in (2.2b) by wi, the dual formulation can be

written as shown below.

Maximize wO – wD (2.3a)

subject to wi - wj ≤ dij for all (i, j) ∈ A (2.3b)

wi unrestricted ∀ i. (2.3c)

For convenience, denote vi ≡ -wi. As shown in Bazaraa et al. [1990], for example,

we can set vO = 0, and then solve the dual, where at optimality, vi would represent the

shortest path value from the origin node O to node i. Hence, this formulation (2.3) yields

the shortest path from node O to all the nodes in the network. While the shortest path

problem can be solved as a min-cost network flow problem, specialized labeling

algorithms have been developed to solve the problem more efficiently. These algorithms

utilize a label for each node that corresponds to the tentative shortest path length vi to that

node. The algorithm proceeds in a way such that these labels are improved until the

shortest path to a destination node is found. There are two types of labeling algorithms:

label setting and label correcting (see Bazaraa et al. [1990]). The label-setting algorithm

designates one label as permanent (optimal) at each iteration, thus determining the shortest

path to some new node at each step. On the other hand, the label-correcting algorithm

considers all labels as temporary, correcting the labels to revise the shortest path value

estimates, until at the final step, all labels become permanent. The label-correcting

10

algorithms are more general and apply to all classes of problems, including those having

negative arc costs.

Dial, Glover, Karney, and Klingman [1979] describe the salient features of these

two labeling algorithms as follows:

The problem of finding the shortest paths from a given node O to all other nodes in

a network G = (N, A) may be stated as that of finding a minimum tree T(NT, AT) of G

rooted at node O, when NT and AT respectively represent the nodes and arcs of T. Both

label setting and label correcting algorithms typically start with a tree T(NT, AT) such that

NT = {O} and AT = ∅.

A label setting algorithm then augments NT and AT respectively, by one node q ∈

N and one arc (p, q) ∈ A at each iteration in such a manner that p ∈ NT, q ∉ NT, and the

unique path from O to any node in T is a shortest path. A label setting algorithm terminates

when all arcs in A which have their starting endpoints in NT also have their ending

endpoints in NT.

A label correcting algorithm, on the other hand, always exchanges, augments, or

updates arcs in AT in a manner that replaces or shortens the unique path from O to q in T,

but does not guarantee that the new path is a shortest path (until termination occurs).

2.1.1 Shortest Path Algorithm for a Network having Nonnegative Costs

Dijkstra’s algorithm is a label-setting algorithm, which is a very simple and

efficient procedure to determine the shortest paths when all dij ≥ 0. Moreover, this

algorithm also yields shortest paths from node O to all of the other nodes in a network (see

Bazaraa et al. [1990]).

11

Mathematical Terminology and Definition

O is the origin node.

i is any node in the network.

vi is a shortest path value (estimate) corresponding to node i.

dij is a cost associated with arc (i, j) ∈ A.

DOWN (⋅) label: if (i, j) is an arc included in the current estimate of the shortest path, we

set DOWN (j) = i. Correspondingly, we say that the predecessor of node j is node i.

X is a set that contains “node O (the origin node)” and “any other nodes in the network G

for which the shortest path has currently been determined, but not node D (the destination

node)”.

N is a set of all nodes in the network G.

X = N – X, is a set that contains the nodes in N, but not in X.

(i, j) is an arc between node i and node j.

(X, X) = {(i, j): XjXi ∈∈ , }, is the set of possible arcs from the nodes in X to the nodes

in X . (This is called a cut-set.) Note that there exists only a single arc between any pair of

nodes i and j.

DOWN () label: if (i, j) is an arc included in the current estimate of the shortest path, we

set DOWN (j) = i.

12

Figure 2: An example of a simple network.

From Figure 2, there are four nodes in the network. Node 1 is the starting node. Node 4 is

the destination node. Each arc has a time-independent nonnegative cost. The set of all

nodes is N = {1, 2, 3, 4}. There are four possible sets X that contain “node 1” and “any

other nodes in the network (nodes 2 and 3) but not node 4”. The four possible sets of this

type are “X = {1}, X = {1, 2}, X = {1, 3}, and X = {1, 2, 3}”. The following table shows

the possible sets X, their corresponding complement sets X , and the cut-sets (X, X).

(Note that Dijkstra’s algorithm does not require this enumeration, and we only display this

here for the sake of illustration.)

Finally, in the (shortest) path from node 1 to 4, we have DOWN (4) =2,

and DOWN (2) =1.

The possible sets X, their corresponding complements X and the cut-sets (X, X).

X X (X, X)
X = {1} {2, 3, 4} {(1, 2), (1, 3)}

Note that arc (1, 4) is not included
because a direct-single arc between
node 1 and node 4 does not exist in
this network.

X = {1, 2} {3, 4} {(1, 3), (2, 3), (2, 4)}
X = {1, 3} {2, 4} {(1, 2), (3, 4)}
X = {1, 2, 3} {4} {(2, 4), (3, 4)}

2

3

41
Starting
node with a
starting
cost v1

Destination
node

1
cost

3

4

2

2

1 2 4

13

INITIALIZATION STEP

1. Let the set N contain all nodes in the network.

2. Set a starting cost vO for the origin node (node O) as desired. Note that generally, vO = 0.

3. Let X initially contain only the origin node, X = {O}.

MAIN STEP

1. Let X = N – X, the set that contains nodes in N but not in X.

2. Find the arcs in the cut-set (X, X) = {(i, j): XjXi ∈∈ , }, the set of possible arcs that

connect between nodes in X and nodes in X .

3. Select the arc (i, j) in the cut-set (X, X) that has a minimum starting cost plus the cost

associated with the arc, (vi + dij), and let (p, q) be such an arc (i, j). Hence, vp + dpq =

),(),(
minimum

XXji ∈
{vi + dij}.

4. Set vq = vp + dpq and let DOWN (q) = p.

5. If q equals the destination node D, then stop; the shortest path to node D is of total cost

vD, and can be traced by following the DOWN (⋅) labels backwards. Else, place node q

in X and repeat the Main Step.

2.1.2 Shortest Path Algorithm for a Network having Mixed Sign Costs

Dijkstra’s algorithm described earlier does not generalize to the case when the

network includes negative cost arcs. In a more efficient actual implementation in general,

that can be adopted even for the case of nonnegative costs, we introduce the concept of a

scan-eligible set SE, which is the cornerstone of label-correcting algorithms.

14

Mathematical Terminology and Definition

SE is a scan-eligible set that contains nodes adjacent to the nodes in X. Note that there

exists at most a single arc between any pair of nodes in X and SE.

Forward star of node p is the set of nodes that are adjacent to the node p and for which

there exists an arc from p to each of the nodes in this set. For example, as shown in the

network below, nodes Q and R belong to the forward star of the node p but the node Z is

not in the forward star of the node p.

The following is a description of a basic label-correcting algorithm.

INITIALIZATION STEP

1. Set a starting cost vO for the origin node (node O) as desired. Note that generally, vO = 0.

2. Let SE initially contain only the origin node, SE = {O}.

3. Label node O with its starting cost vO, and label all the other nodes as infinity (∞).

MAIN STEP

1. If SE is empty, then stop; the destination node is unreachable from the starting node.

Otherwise, pick the node p from SE that has the smallest label vp (break ties arbitrarily,

but in favor of the destination node).

Q

R

Zp

15

2. If p equals the destination node D, then stop; the shortest path to node D is of total cost

vD, and can be traced by following the DOWN () labels backwards.

3. Else, scan the forward star of p. For each node q in this forward star of p, if vp + dpq is

less than the current label vq of node q, then reset vq = vp + dpq, let DOWN (q) = p, and

let SE = SE ∪ {q}.

4. Remove node p from SE and repeat the Main Step.

2.2 Label-Constrained Shortest Path Problem

In this type of shortest path problems, edges/arcs/links in the network are not only

weighted but also labeled. The problem then becomes one of finding a shortest path in the

network complying with the additional constraint that the unique word/string of labels

given by concatenating the labels in the network along the path is an admissible

word/string. Barrett, Jacob, and Marathe [1998] introduce this class of problems in the

context of formal language constrained path problems, where certain patterns of traversing

edge or vertex labels in the labeled graph are permitted, while others are disallowed. Thus,

the feasibility of a path is determined by its connection pattern as well as its associated

label sequence. The acceptable label patterns can be specified as a formal language. For

illustration, in transportation systems with travel mode options for a traveler to go from an

origin to a destination, the sequence of permitted travel modes constitutes the admissible

sequence of labels, and this can be specified by a formal language. Such the problems of

finding label constrained paths arise in other application areas as well, such as in

production distribution networks and database queries.

The following example illustrates a prototypical problem arising in this context.

We are given a directed labeled, weighted graph G. The graph here represents a

transportation network with the labels on edges/arcs representing various modal attributes,

e.g. a label c might represent a car mode. Suppose, we wish to find a shortest route from O

to D for a traveler. This is the practical shortest path problem we regularly find in every

16

day life. But now, we are also told that the traveler wants to go from O to D using the

following modal choices: either he goes all the way from O to D in his car, or would like to

drive his car to a transit station, and then take the transit transportation to D. Furthermore,

these different modal choices are linked to each other by a walk mode, including the start

from the origin and the final link toward the destination. Using w to represent walking, c to

represent car, and t to represent transit transportation, the travelers mode choice can be

specified as wcw or wcwtw.

2.2.1 Problem Formulation

Let G(V, E) be a directed graph comprised of a set of vertices, V and edges, E. Each

edge/arc e ∈ E has two attributes: l(e) and w(e). The attribute l(e) denotes the label of edge

e. In this context, the label is drawn from an fixed/finite alphabet Σ . The attribute w(e)

denotes the weight of an edge. Here, we assume that the weights are nonnegative values.

(Note that the next scheme, Section 2.3, will consider the case when the weights are time-

dependent functions.) A path p having k edges from u to v in G is a sequence of edges (e1,

e2, …, ek), such that e1 = (u, v1), ek = (vk-1, v) and ei = (vi-1, v i) for 1 < i < k. Given a path p =

(e1, e2, …, ek), the weight of the path is given by ∑
≤≤ ki

iew
1

)(and the label of p is defined as

l(e1)⋅l(e2)⋅ ⋅ ⋅l(ek). In other words the label of a path is obtained by concatenating the labels

of the edges on the path in their natural order. Let l(p) and w(p) denote the label and the

weight of the path p respectively. We wish to find a shortest path p in G such that l(p) ∈ L,

where L denotes a formal language.

In general we consider the input for this problem to consist of a description of the

graph, including labels and weights, together with the description of the formal language as

a grammar. By restricting the topology of the graph and/or syntactic structure of the

grammar, Barrett et al. [1998] derive various modifications of the problems.

17

Note that in unlabeled networks with nonnegative edge weights, a shortest path

between O and D is necessarily simple. This need not be true in the case of label-

constrained shortest paths. As a simple example, consider the graph G(V, E) that is a

simple cycle on two nodes x and y. Let each edge has weight 1 and label a. The shortest

path from x to y consists of a single edge between them; in contrast a shortest path with

label aaa consists of a cycle from x back to x plus an additional edge (x, y).

2.2.2 Algorithm

The algorithm proposed by Barrett et al. [1998] applies to any regular label-

constrained shortest path problem. The basic idea behind finding the shortest paths is to

construct an auxiliary graph (the product graph, G*) by combining the nondeterministic

finite automata (NFA) denoting the regular expression and the underlying graph. The

following are notation and terminology pertaining to this algorithm.

Definition 1. A nondeterministic finite automata (NFA), M is a five tuple

(S,Σ , δ , s0, F), where

1. G(V, E) is the directed graph comprised of a set of vertices, V and edges, E,

2. Σ is the input alphabet (a finite nonempty set of letters),

3. ∑* is a collection of all possible finite strings of alphabets,

4. e is an edge/arc, each edge/arc e∈E has two attributes: l(e) and w(e),

5. l(e) denotes the label of edge e (in this context, the label is drawn from

an fixed/finite alphabet Σ),

6. w(e) denotes the weight of an edge,

7. L denotes a formal language, which is a collection of “words” or strings

from ∑* that are acceptable according to some criteria or rules,

8. Q is a set of finite states for the system,

9. S is a finite nonempty set of states,

18

10. δ : Q × ∑ → Q is the state transition function that takes a (state,

alphabet) combination, and accordingly, transforms to some other

(perhaps the same) state,

11. s0 ∈ S is the initial state, and

12. F ⊆ S is the set of accepting states.

Definition 2. Given a labeled directed graph G, an origin O and a destination D,

define the NFA M(G) = (S, Σ , δ , s0, F) as follows:

1. S = V, s0 = O, F = {D},

2. Σ is the set of all labels that are used to label the edges in G, and

3. j ∈δ (i, a) if and only if there is an edge (i, j) with label a.

Note that this definition can as well be used to interpret an NFA as a label-graph.

Definition 3. Let M1 = (S1,Σ , 1δ , p0, F1), and M2 = (S2,Σ , 2δ , q0, F2), be two NFAs.

The product NFA is defined as M1× M2 = (S1× S2,Σ , δ , (p0, q0), F1× F2), where

∀ a∈ Σ , (p2, q2)∈δ ((p1, q2), a) if and only if p2∈ 1δ (p1, a) and q2∈ 2δ (q1, a).

The algorithm can be described as follows:

Input: A regular expression R, a directed-labeled-weighted graph G, an origin O, and

a destination D.

1. Construct an NFA M(R) = (S, Σ , δ , s0, F) from R.

2. Construct the NFA M(G) of G.

3. Construct M(G)× M(R). The length of the edges in the product graph are

equal to the corresponding edges in G.

19

4. Starting from the state (s0, O), find shortest paths to all of the vertices (f,

D), where f∈F. Denote these paths by pi, 1 ≤ i ≤ w. Also denote the cost of

pi by w(pi).

5. Let C*: =
ip

min w(pi) = w(p*), say.

(If p* is not uniquely determined, choose an arbitrary one.)

Output: The path p* in G from O to D of minimum length subject to the constraint

that l(p) ∈ L(R).

Barrett et al. [1998] show that the algorithm has a polynomial-time complexity. The

basic techniques extend quite easily (with appropriate time performance bounds) to solve

other regular expression constrained variants of shortest path problems. Two notable

examples that frequently arise in transportation science and can be solved are multiple cost

shortest paths and time-dependent shortest paths, which will be described in more detail in

the next section.

2.3 Time-Dependent Shortest Path Problem

In this type of shortest path problems, the delays/weights/costs of the

links/arcs/edges in the network possibly change with time according to arbitrary functions.

Bellman [1957] was the first to define a principle of optimality for dynamic programming

as applied to solve such time-independent shortest path problems. Then, Cook and Halsey

[1966] extended Bellman’s work to refine the application of dynamic programming.

Specifically, let dij(t) denote the time-dependent delay function on link (i, j) between nodes

i and j at time t. We wish to find a shortest path from node O to node D starting at a time t

= t0. Cook and Halsey let dij(t) be any positive integer function, and considered a discrete

time set S = {t0, t0+1, t0+2, …, t0+T}, where T is an upper bound determined via some path

from O to D. They defined Ei
(k)(t) for t ∈ S, to be the set of all paths having at most k links

20

leaving i at time t and reaching D at or before t0 + T, and iteratively determined fi
(k)(t) as

the shortest path value from node i to node D, starting at time t, and involving at most k

links.

Dreyfus [1969] was the first who suggested to solve the time-dependent shortest

path problems using Dijkstra’s labeling algorithm. Instead of using discrete time intervals

in the traditional Dijkstra’s algorithm, he suggested that Dijkstra’s algorithm could be

directly applied to an expanded static time-space network in which the link travel times are

effectively time-invariant.

Sherali, Ozbay, and Subramanian [1998] proved that the time-dependent shortest

path problem, and many variations of it, are NP-hard (even if only one link in a network

has a time-dependent delay). They also studied time-dependent shortest pair of path

problems, developing strong 0-1 linear programming models to solve this problem. The

model can accommodate various degrees of disjointedness of a pair of paths, from

complete to partial with respect to specific links.

Most of the algorithms proposed for the solution of the shortest path problem with

time-dependent delays are valid only under the assumption that parking/waiting at the

nodes is unlimited and any desirable delay in departure time from a given node is

permitted. Halpern [1977] considered the case where such as assumption is not acceptable,

and presented an efficient algorithm for the solution of the time-dependent and parking

regulation shortest path problem. Various situations may be described by this class of

problems:

§ Fluctuations in the time of travel between two intersections or regions. For

example, streets that are opened for traffic in one way only, say from a suburb

to downtown during morning rush hours, and in the opposite direction in the

late afternoon.

21

§ Parking regulations. Parking may be prohibited during certain times of the day

or restricted to a limited amount of time.

Halpern considered the case where parking or waiting at the nodes is limited by a

specified extent, so that any desirable delay in departure time from a given node is not

permitted. He presented an efficient algorithm for the solution of the shortest path problem

in networks having time-dependent delays on the edges and parking regulations at the

nodes. Orda and Rom [1990] studied the time-dependent shortest path problem with FIFO

and non-FIFO links.

Similarly to Halpern, Orda and Rom [1990] also proposed algorithms for various

waiting constraints. Their motivation was that Halpern’s algorithm cannot be bounded by

the network topology (i.e., the number of operations cannot be bounded as a function of

the number of nodes or edges), nor are the properties of the resulting path investigated, for

example, whether it is a simple path (a path having non-repeating nodes). Unlike Halpern’s

algorithm that avoided the treatment of functions by addressing the problem for a single

instant of time, and not for ranges of time, Orda and Rom presented algorithms for finding

time-dependent shortest paths for all instances of time, and investigated properties of the

derived paths. Moreover, they did not restrict their study to FIFO links only. For example,

the FIFO assumption is invalid for a traveler standing on a platform at a railway station

wondering whether to take the first regular train stopping in front of him or to wait for the

express one. Because of the possible non-FIFO characteristics of such a situation, a

traveler might prefer to wait for a certain amount of time before embarking on to further

links. However, all nodes may not permit such waiting. Orda and Rom considered three

different types of waiting constraints:

1) Unrestricted Waiting. Unlimited waiting is allowed for every node in a

network.

2) Forbidden Waiting. Waiting is disallowed for every node in the network.

22

3) Source Waiting. Unlimited waiting is allowed only at the source node; waiting

is disallowed for every node except the origin.

It is interesting to note that for the Forbidden Waiting case, it is possible that the

shortest path may neither be simple nor concatenate. An example is shown in Figure 3.

Figure 3: Nonsimple, nonconcatenated, and non-FIFO time-dependent network

Note that the travel delay on link (3, 4) is non-FIFO and monotonically decreases

for t3 ≤ 5. Here, the shortest path from node 1 to node 4 is {1, 3, 2, 3, 4} with a total delay

of 6. It is the only shortest path solution and contains a loop (it is non-simple). The shortest

path repeats node 3, while the shortest path from node 1 to node 2 is {1, 2}, and not {1, 3,

2}. Thus, the shortest path from node 1 to node 4 is neither simple nor concatenated, in the

foregoing respective cases.

The above example suggests that if the shortest paths are not concatenated, then

partial results cannot be used. The determination of a shortest path between two nodes

must consider all possible paths between them. This problem can be shown to be NP-hard.

Moreover, it is possible to have infinite links in a shortest path via infinite loops, and yet

have finite delay (i.e. the finite series of accumulated delays has a finite value). Orda and

2

431
1+(5-t)2

1

1

22

23

Rom concluded that Halpern’s algorithm cannot perform its task in all case unless the

restrictions on delay function are tightened (using FIFO and positive delay functions).

Orda and Rom also stated two types of Source Waiting Constraints, given

respectively by a single starting time and multiple starting times. They proved that for the

case of a single starting time with continuous (and/or piecewise continuous) delay

functions and negative discontinuities, the shortest path of the Unrestricted Waiting

Constraint case is equivalent to the Source Waiting Constraint case. Hence, the procedure

used to obtain the equivalent Source Waiting Constrained path is to first find the shortest

path using the Unrestricted Waiting case, and then, starting from the destination node,

calculate the time of departure from the previous node and so on, back to the origin node.

For the case of multiple starting times, Orda and Rom again first use the

Unrestricted Waiting Constraint case to find a shortest path. Next, they compute the source

waiting time for any appropriate starting time. Unlike the previous algorithm, this

algorithm is not guaranteed to work for piecewise continuous functions. Orda and Rom

introduced a relaxation of the Source Waiting problem to allow limited waiting (in addition

to the unrestricted waiting at the source) at nodes whose incoming links have

discontinuous delay functions.

Generally, their work shows that the time-dependent shortest path problem can be

solved efficiently when no waiting constraints are imposed at the nodes. However, the

computational complexity for the general time-dependent shortest path problem (where

delays may be non-FIFO) is NP-Hard, almost surely cannot be solved in polynomial-time.

Furthermore, Sherali et al. [1998] show that this NP-Hard result holds true, even there is

only one link in the network that has a time-dependent delay.

24

2.4 Description of TRANSIMS

TRANSIMS (Transportation Analysis and Simulation System) is an integrated

system of travel forecasting models designed to provide transportation planners with

accurate, complete information on traffic impacts, congestion, and pollution. It is one part

of the multi-track Travel Model Improvement Program sponsored by the U.S. Department

of Transportation, the Environmental Protection Agency, and the Department of Energy.

The Los Alamos National Laboratory is developing new, integrated transportation and air

quality forecasting procedures necessary to satisfy the Intermodal Surface Transportation

Efficiency Act, and the Clean Air Act, and its amendments. This organization released the

first version of the TRANSIMS software (C++ on Linux base) in May 1999 (see Los

Alamos National Laboratory [1999]). Recently, they have released the latest version in

July 2000 (see Los Alamos National Laboratory [2000]).

TRANSIMS departs from the traditional four-step process that is commonly used

in transportation planning for demand forecasting and impact analysis. The new technical

approaches in TRANSIMS respond to issues derived from legislation such as the

Intermodal Surface Transportation Efficiency Act and the Clean Air Act. The various

transportation issues that require new technical approaches include (1) congestion pricing,

(2) alternative development patterns, (3) transportation control measures, and (4) motor

vehicle emissions. In addition, major initiatives such as the Intelligent Transportation

System program require new analytical approaches for conducting substantive evaluations

of their effectiveness. A major TRANSIMS technical feature is that the identity of

individual synthetic travelers is maintained throughout the entire simulation (over a 24-

hour day) and the architecture of the analysis.

25

2.4.1 Major Data Inputs

TRANSIMS requires the following major inputs:

§ Census Data. This is used as a source to create a base of synthetic population,

§ Traveler Activity Survey. This is used along with the census data to generate

activities for each individual population in the synthetic households

§ Land-Use Data. This is used to select an appropriate zone for each of the

synthetic household member’s activities.

§ Transportation Network. This is a very important input used to find specific

activity locations within a zone for each activity, to construct a network for

solving the shortest path for each trip, and to run a traffic simulation. It

provides information regarding streets, intersections, signals, parking, activity

locations, and transit modes.

2.4.2 TRANSIMS’ Modules

Currently, there are six different modules in TRANSIMS. Figure 1 details the

inputs and outputs of these modules, along with their interactions with the other relevant

modules. The six modules are generally described as follows (for more details, see

http://transims.tsasa.lanl.gov).

1) Population Synthesizer Module. This module generates synthetic households,

which represents every individual in the metropolitan region under study from the

census data at the block group level or the census tract level. It develops the

associated demographic characteristics (e.g., age, gender, income, etc.) for each

synthetic household. Each synthetic household is located on a link in the

transportation network via the land-use data. The assignment of vehicles to each

26

household, including information regarding the vehicle emission type and the initial

vehicle location are also generated in this module.

2) Activity Generator Module. This module takes as a major input the households in

the synthetic population, local area surveys, transportation networks, and land-use

data. The Activity Generator Module produces a list of activities for each traveler in

the system. Activity patterns and mode choice preferences are derived from surveys.

This derivation depends on demographic information contained in the synthetic

households. The Classification and Regression Tree (CART) method is used in this

module to produce an accurate classification of households based on an assumption

that households having the same demographic characteristics should have the same

travel/activity behavior. The locations of the activities for each traveler are currently

chosen by using a method derived from gravity models.

3) Route Planner Module. This module attempts to produce plans for every individual

traveler in the activity lists. The Route Planner Module computes a shortest or least-

cost path for each traveler. The methods used range from Dijkstra’s algorithm to

sophisticated time-dependent label-constrained shortest path methods (Nagal et al.

[1998]). If mode preferences are recorded for the traveler, the Route Planner Module

ensures that these are met and that the plan contains the required modal links. The

Route Planner estimates the time that it takes to make a trip based on link traversal

time estimates contained in the transportation networks or in the simulation output.

4) Traffic Microsimulator Module. This module simulates the travel of individual

vehicles and travelers in accordance with the plans provided by the Route Planner

Module. Each plan has a specified start-time, which begins the execution of

movement for that traveler. Plans that overlap in time are executed simultaneously by

the Traffic Microsimulator Module. The interactions of travelers and vehicles on the

network over time create traffic flow dynamics.

27

5) Emissions Estimator Module. This module uses results from the Traffic

Microsimulator Module to predict tailpipe emissions for light- and heavy-duty

vehicles. Any pollution accruing from spilled fuel evaporation is also estimated.

These emissions are aggregated to provide input to other systems that are specifically

designed to produce overall regional air quality estimates.

6) Selector Module. This module is the primary mechanism used to achieve internal

consistency (i.e., to achieve a reasonable agreement among the travel demands

expressed in the activities list, the travel plans to meet these demands, and the

execution of the plans in the simulation), among the various computational modules.

It selectively feeds back information from one module to another. In effect, this

information is used to modify some designated subset of activities and/or plans to

achieve realistic overall traffic results.

Nagel et al. [1999] indicate some disadvantages of TRANSIMS, including the

following. (i) Size of the problem : Metropolitan regions typically consist of several

millions of travelers. Executing a second-by-second traffic microsimulation on a problem

of this size within reasonable computing time is only possible with the use of advanced

statistical and computational techniques. (ii) Behavioral foundation: We are far from

understanding human behavior. For this reason alone, we are unable to predict the accurate

behavior of any individual traveler. However, there seems to be a realistic chance that the

macroscopic behavior that is generated by thousands or tens of thousands of interacting

individuals is considerably more robust than the behavior of an individual agent. This

would be similar to Statistical Physics, where the trajectory of a single particle is

unpredictable, yet, useful macroscopic properties of gases such as equations of state can

still be derived. (iii) Consistency problem : The approach outlined above is not as

straightforward as it sounds because the plans depend on expectations about traffic

conditions during execution. For example, if a person expects congestion, he or she may

make different plans than if no congestion is expected. Yet, congestion occurs only when

plans interact during their simultaneous execution. In short, plans depend on congestion,

28

but congestion also depends on plans. This logical deadlock is not unknown in economic

theory and is traditionally overcome by the assumption of rational agents. Both with and

without such an assumption of rationality, this problem of consistency between plans and

microsimulation makes the computational challenge even bigger. (iv) Robustness: Any

approach to a problem needs to have reproducibility of the results under a wide range of

changes, or otherwise the results are useless for practical purposes.

In conclusion, although it is now possible to run TRANSIMS, the agent-based

simulation approach to transportation on enormously large problems, the computing

aspects are still challenging and demand a knowledgeable use of the available technology.

