VIRGINIA
TECH.

Blacksburg, VA 24061
CS 4624 — Multimedia, Hypertext, and Information Access

FreeSpeech4VT
Instructor: Dr. Edward A. Fox
Client: Matthew Newton
Authors:

Andy Cho

Chaitanya Gupta
Samuel Oh

May 8, 2022

Table of Contents

Table of Figures
1. Abstract

2. Introduction
2.1 Background
2.2 Objective

3. Requirements
3.1 Minimum Requirements
3.2 Supplementary Features

4. Design
4.1 Existing Application and Wireframe
4.2 Design of FreeSpeech4VT

5. Implementation
5.1 1PadOS Application

6. Users’ Manual
6.1 iPadOS Application
6.2 Tiles Page
6.3 Settings Page
6.3.1 Add Tile
6.3.2 Edit Tile
6.4 References Page

7. Developer’s Manual
7.1 1PadOS Application
7.2 Environment
7.4 Implementation Details

8. Lessons Learned
9. Future Work
10. Acknowledgements

11. References

O o0 L N 9 A& n A

—_
o <@

[T e S S S S S W
O 00 K~ W N — e

NN NN
S o o @

NN
o L 3 &

Table of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Figure 18
Figure 19
Figure 20

Existing Application
Wireframe of Home Page
Microphone Permissions at First Launch
Tiles Page

Settings Page

Add Tile Options

Add Tile Options Populated
Additional Tile Options
Tile Addition Success

New Tile Page

Edit Tile Page

Edit Tile List

Edit Tile View

Delete Tiles Alert
References Page

Git Repository
ContentView.swift

: SpeechGrid.swift

: AddTile.swift

: EditTile.swift

1. Abstract

Over the course of his career, Mr. Matthew Newton, the coordinator of Assistive and Education
Technology at Virginia Tech, has been working with applications and assistive technology in
order to aid those who require non-verbal communication, to receive the means to do so. The
FreeSpeech4VT project was launched under the direction of Mr. Newton to provide a
free-of-cost tablet application that would allow users to easily communicate using type-to-speech
functionality. Our goal as a team was to create an application that could provide basic and
advanced implementations of features that paid-applications offer, while also promoting user
customization of the application itself.

The project consists of one mobile application that pulls from the device’s local data and is able
to store data into the device’s memory based on user input of words/tiles. Although
cross-platform applications could provide more flexibility and accessibility for users depending
on what operating system their devices run on, our team found it best to implement a thorough
1PadOS application due to the high frequency of iPad usage for communicative purposes.

This application is designed for anyone who may struggle to communicate verbally, both
temporarily or more long-term. There were some design choices to be more friendly towards
those who may have difficulty with motor function as well. The range of people that can use this
application is immense; it can be anywhere from someone who is unable to speak at all and may
have some motor function issues to someone who has laryngitis and is able to type out sentences
just not speak or speak loudly for some time.

We began by meeting with Mr. Newton to discuss his vision. Because ergonomics with the target
user-group in mind was so important, we spent a lot of time on iterative design and wireframing,
getting feedback and making improvements, and finally getting approval. We then began
implementing the design as well as basic Text-To-Speech (TTS) functionality. After that, we
implemented more customizability-centric functionality to allow both ease-of-setup for
caretakers and ease-of-use for users. We obtained feedback via bi-weekly client meetings.

We have delivered an iPadOS application, this report, a final slide presentation, and a video
walkthrough of the application in use.

2. Introduction

2.1 Background

The Americans with Disabilities Act defines a disability as “...a person who has a physical or
mental impairment that substantially limits one or more major life activities...”. [1] Some
disabilities include difficulty with mobility, cognition, independent living, hearing, vision, and
even self—care. [2] Speech and communication disabilities are among these; according to the
National Institute of Deafness and Other Communication Disorders in 2016, nearly 8% of
children of age 3-17 in the U.S. had a disorder related to voice, speech, or swallowing. [3]
Considering the importance of language exposure to a child’s development, these disabilities
pose a serious threat to these children. Allowing those with speech impairments to practice
language is not only critical to their everyday wellbeing but also critical to their development.

2.2 Objective

While there are some solutions and alternatives to assisting non-verbal communication, many
necessary features such as text-to-speech and user customization are locked behind premium
versions. With the direction of our client Mr. Newton, our primary objective was to create an
application that provided quality text-to-speech functionality and user customization for free.
This objective was supplemented by specific features that Mr. Newton requested from personal
experiences with existing applications. Our primary target audience were children with
communication disabilities, but we remained aware of accessibility features that could benefit (or
hinder) older users.

3. Requirements

In terms of requirements, we were given a loose structure of what was expected and so
conversed with Mr. Newton to specify the exact requirements of our deliverables. After
consideration and design discussion, we narrowed down the minimum requirements and
supplementary features to what is below.

3.1 Minimum Requirements

The minimum requirements are as listed:
Text-To-Speech functionality with tiles
Tile grid with each tile containing a word and an image
Static access bar of commonly used tiles
User customization options for
o Tile addition
o Tile deletion
o Edit tiles
m Color
m Custom sound
m Where it appears
e Main grid
e Static tile dock

Minimum requirements are what we would be responsible for in terms of solution
delivery at the end of the Spring 2022 semester.

3.2 Supplementary Features

The supplementary features are as listed:

e Predictive tile display

o When one tile is clicked, a specific subset of potentially relevant existing tiles is
shown/highlighted compared to other tiles.

e Tiles split into pages
o Reorderable

e Alternative voice options
o Younger, older voices
o Different accents

Supplementary features are those that either the client wanted to see implemented or
things that we as a team wanted to attempt, but after some research and discussion they
were either lower priority and/or didn’t fit the project scope of the semester.

4. Design
4.1 Existing Application and Wireframe

We first began our design process by studying the existing application given to us as a reference.
[4] The design consisted of multiple tiles with a word and an image. Upon clicking a tile, the
respective word is added to the sentence bar which can then be spoken with the action buttons at
the top right. Each tile is organized in a structured grid, and may or may not be colored to signify
belonging to a set (user determined).

Freespeech A /7 0 %

X
Sentence CLEAR
Add tiles to this sentence by tapping on them below.
N & + N\ @ & £ ! & B
IGNORE LITTLE OFF GOOD SOME FINISHED BAD out MINE DOWN upP KEYBOARD
Y
o < EEHEE © @ » ® e B
FEEL WORK NEW PLAY HAVE STOP READ FAST You LIKE MORE THEY
o A fif g L = 4 & f 99 ©
TIME BIG GO WANT HELP IT DO COME ALL HE GET COLOR
1— ik
£ 2 3% i) | ® 2 = E £ ®
MY ME AND WEAR THAT AM PLEASE WHAT +S THERE IN A
2
“k + < ® T § RR 2 T / O
WERE ON WAS 1 END 1S TO WE NUMBERS ARE THE AN

Figure 1: Freespeech Website - adapted from [4]

We drew heavily upon the existing application’s design as seen in Figure 1, and transformed it to
fit onto a mobile screen. At this point we had not solidified the minimum or supplementary
feature set, but we still wanted to create a wireframe to present our initial ideas to Mr. Newton
and receive feedback.

Editing 2/5

Icon to add
customized tiles.
il =

Undo button:

undos most
recent change. -""bq..-

\
|

0952 AM

7

T
®
(]
o
(1]
(1]
(2]
-

Icons will have a
graphic to
indicate the user
is in editing mode.

Color shader. The
user can select 3
customizable
colors to paint
each tile a

XX XXX X
MXIXIXI XXX

DA X XXX

color

for visual
differentiation and
categorization.

Two buttons to /
switch between

"move’ mode and
"edit" mede. Move

a| DX DX X IXIIXIX

\g’

mode allows the
user ta move

i Done button to
around the tiles, _

while edit mode Ea Peagn pridar Done save chonges
allows the user to \ and exit editing
edit the data of o 7 mode.

S

tile. The app is
default in move
made.

Button to allow
user to quickly
edit the order of
the pages.

Figure 2: Wireframe of Home Page

The wireframe in Figure 2 is for the home page of our application. It maintained very similar
qualities to the existing application; there was a grid of tiles that were able to be queued and then
spoken using action buttons at the bottom. After presenting our initial wireframing to Mr.
Newton, we received feedback on the placement of features and sizing. We also narrowed our
scope to only the iPad due to relevancy.

4.2 Design of FreeSpeech4VT

The design of our iPadOS application was the biggest factor in our process, even above
functionality, as the entire purpose of our application is to be ergonomic for our users. Once
design principles are determined and followed, adding functionality can always be done, whereas
changing design would be more difficult.

We met many times with our client during our design process to ensure an iterative design that
would both satisfy the client as well as be easy to understand and use for the users and
potentially their caretakers. [7] We also were able to interact with a device preloaded with
several implementations from other manufacturers of what we are trying to build. But our
solution had to be in a free, open-source manner rather than charging money or requiring
subscriptions. Based on all the feedback and time spent interacting with existing solutions, we
were able to build a general layout with some design principles we could follow and reflect
throughout our application.

There is a notable lack in terms of formative evaluation (especially from a member of our target
user demographic); however, we met with our client Mr. Matthew Newton on a bi-weekly basis.
Since Mr. Newton works with people in our target demographic on a daily basis, we were able to
ask questions, take criticism, and focus our design. Therefore, despite our lack of formal testing,
his input and feedback served as relevant evaluation.

5. Implementation

5.1 iPadOS Application

The goal of FreeSpeech4 VT is to create a royalty-free application that would allow the user
greater access to a software system that assists in communication in the every-day life. First, we
created a reference page to display acknowledgements of our client and our resources for this
application. This area will display information on who data was collected from, as well as the
visionary aspect of the client.

We then implemented a grid display that would first pull information of basic and frequently
used words from a JSON file structure. The file contents would then be placed into core data of
tile structures, which would be used to then display all the words and their given pictures onto
the grid.

The grid itself was implemented through 3 different splits into the display. The first split, from
top-bottom, is our sentence display. Here, the user can place the tile’s word content into the
sentence box, and we would use Apple’s voice synthesizer in order to speak the sentence
variable, where words were added into. The grid itself was implemented through the use of
Swift’s VGrid and HGrid structures, which line the tiles up in grids. Users can then click on each
tile to trigger an event that would input the word into a sentence variable. The very bottom is for
a static tile display, which allows users to scroll through a list of words that are more frequently
used than others.

Finally, we implemented a settings page to place customizable options for the sake of
accessibility and the freedom to choose certain details for the tile grid. In order to save user
inputs into storage, we use a core data model that allows for the direct storing of tile data into
device memory. This allows the user to save unique words to the device’s memory so that they
can be retrieved at a later time when the app is reopened. In the next couple of sections, we will
delve into the features of what each section includes and looks like.

10

6. Users’ Manual

6.1 iPadOS Application

The goal of this application is to provide a robust and customizable text-to-speech
implementation to aid non-verbal disablees in communication. This application comes with
initial words and pictures, and has the option to add custom words with personalized voice
memos. Additionally, we included graphical notations to help users identify and group words
into categories (ex., commonly used words).

After downloading the application, the application will appear on the device’s home screen titled
“FreeSpeechVT”. At first launch, the loading page will show. Afterwards, the app will request
permission to access the microphone as seen in Figure 3. This is to allow custom voice
recordings for tile additions.

4:11 PM Mon Apr 25 = 100% .

“FreespeechVT” Would Like
to Access the Microphone

FreeSpeechVT is requesting access to
your microphone so you can record
custom tile sounds

Don't Allow OK

=== Tiles i References

Figure 3: Microphone Permissions at First Launch
The initial tile data will then be loaded. Any changes made thereafter will be saved after exiting

the application. This can be manually reset by uninstalling the app completely and then
reinstalling.

11

6.2 Tiles Page

The tiles page is the default page upon application opening, and is also the main function of the
application as shown in Figure 4. The page is divided into a vertically scrollable 10 x 5 grid of
tiles, with each tile containing a word and an associated picture. The “Speak” and “Clear”
buttons are on the left and right of the top bar respectively, with the sentence preview being in
the middle. At initial launch, the sentence preview is empty. However, some input words are
shown in Figure 4, for clarity.

4:56 PM Mon Apr 25 ?100%-’
| am fast
Speak Clear
N 1AM ~
SUINLE2 Y
| a am and are bad bad black bright dark
rﬁa: % é
g “a 3 __/\
down dry fast feet finished good great green have in
s O [& .1
¢ o2 200 $3 i
P S g dn 4
is little me me mine moon more morning
= L 4 —-w n i e e -
night no off out play please read sleep smell some
p P LY e I
s m— TEL|). ﬂ :T W
- ;i- ﬁ ul ﬁ), 451, -
=== Tiles

Figure 4: Tiles Page

Upon clicking on a tile, the word will be spoken and will be added to the sentence preview. The
sentence will be spoken upon pressing “Speak”, and the sentence can be cleared with the “Clear”
button. Additionally, the sentence preview bar is accessible by touch and words can be manually
typed into the bar.

12

6.3 Settings Page

The second tab bar view page is the Settings page as shown in Figure 5. This page contains
options for the application. These options include the add tile and edit tile functionality.

2:56 PM Tue May 3

Settings

(7] addTie

@ Edit Tiles

Figure 5: Settings Page

13

6.3.1 Add Tile

Upon clicking the “Add Tile” option in the Settings page, the view in Figure 6 is shown. This
form allows the user to add a custom tile. Within the form, there are various options detailing
different customizations the user can make. The user can input their word in the “WORD” text
box (and clear their word with the X symbol on the right), and select the associated photo by
either taking a picture with their camera or selecting a picture in their Photo Library. The
associated photo is displayed in the “TILE PHOTO” section; if no picture is selected, the default
“Image Unavailable” photo will be used. The user may then record a custom voice memo for the
word; if this action is not performed, the word will be spoken using the default text-to-speech

voice. After these fields are filled in, the values will be respectively displayed as seen in Figure
7.

' 5:32 PM Mon Apr 25 = 100% (=) l
< Settings Add Tile Save
D
Camera Photo Library
Get Photo
E ES E
&
Start Recording!
@ Settings

Figure 6: Add Tile Options

14

' 5:33 PM Mon Apr 25 = 100% (@) l

€ Settings Add Tile Save

F\oweri

Camera Photo Library

Get Photo

Start Recording!

@ Settings =0

Figure 7: Add Tile Options Populated

There are additional customizations that the user can make in the “Add Tile” form as seen in
Figure 8. One of these customizations is the ability to change the tile’s color. A custom added tile
will have a default selection of yellow, but this can of course be changed. Another customization
is the “FREQUENCY” flag; selecting this option will place the tile in a custom area in the Tiles
page. After the form is completed, an alert is displayed to notify a successful addition. See
Figure 9.

15

'4:14 PM Mon Apr 256

< Settings Add Tile

Start Recording!

Yellow

Place in frequent words

{B Settings

Figure 8: Additional Add Tile Options

= 100% . ‘

—

'5:35 PM Mon Apr 25

Add Tile
Flower
Camera Photo Library
TILE PHOTO .
Tile Added!
New tile is added to your tile grid!
OK
o

TAKE NOTES BY RECORDING YOUR VOICE

R

TILE COLOR

Z 100% (@) .

Figure 9: Tile Addition Success

16

After a tile is added, the Tiles page is updated with the new tiles as seen in Figure 10. The 10 x 5
grid becomes a 10 x 4 grid to accommodate for the frequently used tiles section. If there are no
frequently used tiles, the grid reverts back to a 10 x 5 formation.

Note the frequently used tile section. Unlike the main tiles section, the frequently used tiles

section scrolls horizontally.

6:18 PM Mon Apr 25

= 100% (@)

Speak Clear
@2 A= m |-
g % A0 LN)
Flower | a am and are bad bad black bright
3 i g JE &
dark down dry fast feet finished good great green have
0 = . -~
d :) 4 44]
in is little me me mine moon more morning my
=k & i g
= <l 5 @ a
QL S sl TN

aEe e
sae 'les

Figure 10: New Tile Page

17

6.3.2 Edit Tile

Upon clicking the “Edit Tiles” button on the Settings page, the view in Figure 11 appears. There
are three options from this point; edit tiles in the regular speech grid, edit tiles in the word dock,
or delete all existing tiles.

2:57 PM Tue May 3 = 100% =)

< Settings

() Edit Speech Grid Tiles

FLOATIN DRD DOC

() Edit Word Dock Tiles

DELETE ALL TILES

Delete Tiles

@ Settings
Figure 11: Edit Tile Page

Clicking the “Edit Speech Grid Tiles” will display the list of tiles in the speech grid. See Figure
12. The user can then select a tile to edit, which will display the tile’s information in an editable
view as seen in Figure 13. The user can then edit the values of the tile similarly to adding a new
tile and save the tile using the “Save” button on the top right. The user may also delete the tile
with the “Delete” button on the top left. After either option is selected, the list of tiles of the
speech grid will be returned to view.

18

3:03PM Tue May 3

< Back

time

too

want

water

wet

write

yes

= 100% (@=m

Figure 12: Edit Tile List

3:04PM Tue May 3

< Back Delete

R\

Start Recording!

Camera

Edit Tile

Photo Library

Get Photo

@ Settings

= 100% @

Save

Figure 13: Edit Tile View

19

The “Edit Word Dock Tiles" option will bring the same views for the respective tiles. By default,
there are no tiles in the word dock; therefore this list will be empty.

If the “Delete Tiles” option is pressed, an alert will appear requesting for confirmation as shown
in Figure 14. If “Delete” is selected, then all tiles will be removed from the database and the user
will have to manually add tiles one by one.

Delete Tiles!
Are you sure you want to delete

all tiles?

Figure 14: Delete Tiles Alert

20

6.4 References Page

The last tab bar view page is the References page. This view details a short explanation of the

application and acknowledgements to our client and mentors. This page is view only. See Figure
15.

r4114 PM Mon Apr 26 = 100% (=

Welcome to the Freespeech App!

This application was developed by Virginia Tech Computer Science
students under the guidance of Mr. Matthew Newton and Dr. Edward
A. Fox to allow non-verbal communicators a better, more ergonomic,
free-to-use version of more premium applications.

Figure 15: References Page

21

7. Developer’s Manual

7.1 iPadOS Application

This application was developed from scratch using Xcode in the SwiftUI framework. There are
elements of UIKit across the application, but most of the pages utilize SwiftUI for
future-proofing.

7.2 Environment

Our application is iPadOS only, which means a developer must have access to Xcode and in
consequence MacOS. Xcode is downloadable from the MacOS App Store. Our team developed
and maintained the application using the latest version of MacOS Monterey (12.3.1) and Xcode
(Version 13.3.1).

For this application our team utilized Git for source control. To access the source code, clone the
project detailed in the Git repository. [5] The project will contain the following files shown in
Figure 16.

¥ main ~ ¥ 1branch O1tag Go to file Add file ~

andycho8293 delete all tiles 94F4436 2 days ago O 34 commits
FreespeechVT.xcodeproj delete all tiles 2 days ago
FreespeechVT delete all tiles 2 days ago

Figure 16: Git Repository

To clone the project, click on the green “Code” button on the top right. A view will appear
detailing how to clone the project. Refer to this report’s references for further details on Git and
Git cloning. [6]

7.4 Implementation Details

We detail the larger implementation modules of this project in this section. Please refer to the
source code in the Git repository for fuller documentation, as the source code is more thoroughly
documented with comments. [5]

22

The project contains the following files and folders (bolded), with a short description of each
file:
e FreespeechVT
o AppDelegate.swift
m Performs initial launch actions
o FreeSpeechVTApp.swift
m Performs data saves after view switches using Persistence.swift
o ContentView.swift
m Creates tab view for app
o Take or Pick Photo
m ImagePicker.swift
e Ultility file to allow picture to be selected from photo library
m PhotoCaptureView.swift
e Utility file to allow picture to be taken from user’s camera
o Core Data Model
m Persistence.swift
e Contains function to save CoreData changes
m Photo.swift
e Photo object file with relevant data fields
m Tile.swift
e Tile object file with relevant data fields
o Data Models
m WordsData.json
e Initial word data in JSON format
m WordsData.swift
e Parses JSON file and populates database with Word objects
m WordStruct.swift
e Word object file that holds information parsed from
WordsData.json
o Supporting Files
m UtilityFunctions.swift
e Miscellaneous helper functions (decode JSON, transform image
data)
m VoiceRecording.swift
e Ultility file to record custom voice memos
m AudioPlayer.swift
e Ultility file to play audio (custom voice memos)
o Tab Bar Views
m Home
e References.swift

o View-only page that describes client and project vision
m Speech
e SpeechGrid.swift
o Contains structure of tile grid and main functionality of
application
m Settings
o Settings.swift
o Tab view page to display “Add Tile” and “Edit Tile”
options
e AddTile.swift
o Creates new tile and adds to tile grid and database
e EditTile.swift
o Edits existing tile and data values and updates tile grid

Our implementation utilizes CoreData to locally store and hold changes in our application. The
Persistence.swift file contains code that loads and saves CoreData on application start and exit.
Tile.swift and Photo.swift serve as objects for the CoreData. Each object contains public fields
that are accessible within the page views to be displayed.

The files ImagePicker.swift, PhotoCaptureView.swift, VoiceRecording.swift, and
AudioPlayer.swift are supporting files that perform the picture and audio functions.
ImagePicker allows a picture to be selected from the user’s photo gallery; PhotoCaptureView
allows a picture to be taken for a tile; VoiceRecording allows a custom voice memo to be
recorded; and AudioPlayer creates instances where audio can be played from the device (this is
for outputting the text-to-speech and custom voice memos). The UtilityFunctions.swift file
contains supplementary functions which decode JSON files, copy files from the main bundle to
the document directory, and get the image from the URL (detailed in the imageUrl field from the
JSON).

ContentView.swift details the page structure of the application. See Figure 17. The app has 3

different pages: tiles, settings, and references. Each page’s code is detailed in their respective
folders in Tab Bar Views (Speech, Settings, Home).

24

import SwiftUI
import CoreData

struct ContentView: View {
var body: some View {
TabView {
SpeechGrid()
.tabItem {
Image(systemName: "square.grid.3x2.fill")
Text("Tiles")
H
Settings()
.tabItem {
Image(systemName: "gear")
Text("Settings")
H
References()
.tabItem {
Image(systemName: "menucard.fill")
Text("References")

Figure 17: ContentView.swift

The WordsData.json file contains the initial tile data. For each tile, the JSON file contains the
fields id, name, imageUrl, color, and inGrid. The id is an identifier for each tile; the name field
denotes the tile’s word; the imageUrl denotes the filename for the tile’s photo; the color denotes
the tile color; the inGrid field denotes whether the tile is in the main grid or if it is in the
frequented tile section. WordsData.swift parses the JSON and stores each tile’s data into a word
object detailed in WordStruct.swift.

The SpeechGrid.swift file contains the main functionality of our application. As seen in Figure
18, this file utilizes multiple fields for the view.

25

struct SpeechGrid: View {

!/ 63 CoreData managedObjectContext reference
@Environment(\.managedObjectContext) var managedObjectContext

I/ E} CoreData FetchRequest returning all tiles in the database
PFetchRequest(fetchRequest: Tile.allTilesFetchRequest()) var allTiles: FetchedResults<Tile>

//Q@EnvironmentObject var userData: UserData
let columns = [GridItem(.adaptive(minimum: 100), spacing: 20) 1]

@State private var sentence = ""
@State private var isEdit = false
@EnvironmentObject var audioPlayer: AudioPlayer

// Create an utterance.
let utterance = AVSpeechUtterance(string: "")

// Create a speech synthesizer.
let synthesizer = AVSpeechSynthesizer()

func speak(_ utterance: AVSpeechUtterance) {
let utterance = AVSpeechUtterance(string: sentence)
self.synthesizer.speak(utterance)

}

Figure 18: SpeechGrid.swift

The variable allTiles fetches all the tiles in the database and loads the grid with those tiles. The
@State qualifier establishes that the field is subject to change in the view. The sentence field
keeps track of the words being clicked, and will hold its value until the “Clear” button is pressed.
The isEdit field keeps track of whether the user is currently editing a tile or not. The variables
utterance and synthesizer are used for the function speak which is used with the “Speak”
button. The sentence field is passed into utterance, which is spoken through synthesizer.

The grid is comprised of a VStack of 3 elements. Within the VStack, the first element is a
HStack of the “Speak”, sentence preview bar, and “Clear" buttons. The second element is a
vertical ScrollView of a LazyVGrid which contains the regular tiles ina 10 x 5 grid (10 x 4 if the
frequently used tiles section is active). The third element is a horizontal ScrollView that displays
the frequently used tiles if applicable. Within the second and third elements, the appropriate tiles
are populated, with each tile acting as a button. Upon click, the respective word will be spoken
through synthesizer and will be added to the sentence field.

The file AddTile.swift details the functionality of adding custom tiles. A snippet of the code is
shown in Figure 19. We utilize many @State fields to hold the new tile’s values. The
showTileAddedAlert and showInputDataMissingAlert are booleans that activate their

26

respective alerts when their conditions are met. The recordingVoice field is true if a custom
voice memo is recorded; if false, the word will use the default text-to-speech synthesizer to
output the word. photoTakeOrPickChoices details the two options for choosing a picture. The
fields showImagePicker, photolmageData, and photoTakeOrPickIndex are used to store
photo data and information about the photo selection process. The tile’s word is stored in word,
and if it is a frequently used tile the flag frequentWord will be true. colorIndex, colorChoices,
and colorStorage detail the different colors that a tile can be. By default, the colorIndex is 2
which selects yellow. To add more colors, add the color and its UIColor value to colorChoices
and colorStorage, respectively, and the option will appear in the picker.

struct AddTile: View {
@Environment(\.presentationMode) var presentationMode
@Environment(\.managedObjectContext) var managedObjectContext

@State private var showTileAddedAlert = false
@State private var showInputDataMissingAlert = false

@State private var recordingVoice = false

var photoTakeOrPickChoices = ["Camera", "Photo Library"]
@State private var showImagePicker = false

@State private var photoImageData: Data? = nil

(@State private var photoTakeOrPickIndex = 1

(@State private var word = "" //
@State private var frequentWord = false

@State private var colorIndex = 2
let colorChoices = ["Blue", "Green", "Yellow"]
let colorStorage = [UIColor.blue, UIColor.green, UIColor.yellow]

Figure 19: AddTile.swift
The file EditTile.swift has very similar code to that of AddTile.swift. See Figure 20 for a

snippet of the code. This snippet displays the navigationBarItems of the EditTile view, which
details the “Delete” and “Save” button.

27

.navigationBarTitle(Text("Edit Tile"), displayMode: .inline)
.navigationBarItems(

leading:
Button(action: {
// showTileDeleted = true
managedObjectContext.delete(currTile)
1A

Text("Delete")
Y
trailing:
Button(action: {
if inputDataValidated() {
saveTile()
showTileEditedAlert = true
} else {
showInputDataMissingAlert = true
b
3 {
Text("Save")
})
.alert(isPresented: $showTileDeleted, content: { tileDeleted })

Figure 20: EditTile.swift

For each button on press, an alert is displayed to the user to signify the action’s success. Deleting
the tile changes showTileDeleted value to true, which activates its respective alert. The tile is
then deleted from managedObjectContext which holds the CoreData objects. Attempting to
save the tile will check the inputDataValidated() function, which makes sure that the necessary
fields are filled (the word field). If it is, the saveTile() function is called, which updates the tile’s
fields based on the user inputs. Then the showTileEditedAlert is changed to true which
activates the respective alert. If inputDataValidated() does not pass, the
showlInputDataMissingAlert field changes to true which will activate an alert that notifies the
user that some necessary input data is missing.

28

8. Lessons Learned

Throughout the course of this semester, we faced many shortcomings, difficulties,
technical issues, etc. However, through it all, we learned many new features of the Swift
language that previous personal projects hadn’t shown us before, and most importantly, the need
for effective communication and vision. As many of our team members struggled with personal
matters through the semester, this need for compensating for where someone could not
accomplish a task at the moment was a valuable skill developed for each team member. Another
lesson learned was understanding the desires of a client, and delivering the exact specifications
they listed for us in the most optimal and concise manner. Through creating milestones for each
task and organized planning to complete them, we were able to bring prepared versions of our
application to each meeting with our client.

Overall, this project was eye opening to say the least. We were fortunate to have worked
on a project that allowed us to give back to a certain group of users who are in need of
non-verbal communicative assistance. The most important aspect of design that we came to learn
was usability. When developing this application, we kept in mind the different features that could
be implemented to allow for greater customizability, so that those who need to adjust certain
settings would be able to do so. It was more so the desire to make things as easy as possible to
handle for those who will be handling it that taught us that design is key in any given software.
Through effective communication, teamwork, vision, and drive, our team was able to effectively
create an application that our client should be pleased with.

29

9. Future Work

There is always room for improvement and refinement. Thus, there is more work that lies ahead.
Although we accomplished what we set out to achieve this semester, upon talking with our client
Mr. Newton, we saw that there was even more potential for this project. However, that work
involved implementing features that didn’t quite fit the scope of the semester after spending
more than half designing and building it up from scratch. We do hope that this project is
furthered by future teams which would enhance the target-user experience. Some of the
functionality discussed as future work is described below:

e Predictive tile suggestion
o A feature that can allow for the prediction of the next word based upon a user’s
input of tiles
o When one tile is clicked, a specific subset of potentially relevant existing tiles is
shown/highlighted compared to other tiles
o Potentially using Hidden Markov Model
e Alternate voices
o Younger/older
o Different accents
o Supporting different languages
e Testing
o Present a target user with an iPad loaded with the FreeSpeech4V T application
o Get feedback from
m The caretaker
e FEase ofuse
e Ease of setup
e Suggestions for improvement
m The non-verbal user
e Overall ergonomics
e Anything glaringly difficult to understand or use
e Suggestions for improvement
o This section would entail obtaining an iPad from Virginia Tech, loading our
application beta version, and giving it to a caretaker and non-verbal
communicator
e Release to the public
o Take the full and final product
o Push onto the Apple App Store for the public to use

30

10. Acknowledgements

We would like to acknowledge the expertise and drive of our client, Mr. Matthew
Newton. Mr. Matthew Newton provided our team with the equipment, information, and
vision to carry out this project. We would also like to thank Dr. Edward A. Fox, who
provided us with the connection to our client, as well as resources and connections to
potential research participants.

« Mr. Matthew Newton
Department of Assistive and Education Technology
Email: matthewn@vt.edu

 Dr. Edward A. Fox

Office: 2160G Torgersen Hall

Phone: (540) 231-5113

Email: fox@vt.edu

Address: Dept. of CS, 1160 Torgersen Hall, Mail Code 0106, Virginia Tech,
Blacksburg, VA 24061

31

11. References

[1]: U.S. Department of Justice. (2020, February). A Guide to Disability Rights Laws. ADA.gov.
Retrieved April 12, 2022, from https://www.ada.gov/cguide.htm#anchor62335

[2]: U.S. Department of Health and Human Services. (2016, May 19). Quick statistics about
voice, speech, language. National Institute of Deafness and Other Communication Disorders.
Retrieved April 12, 2022, from
https://www.nidcd.nih.gov/health/statistics/quick-statistics-voice-speech-language

[3]: Disability Impacts All of Us. Centers for Disease Control and Prevention. (2020, September
16). Retrieved April 12, 2022, from
https://www.cdc.gov/ncbddd/disabilityandhealth/infographic-disability-impacts-all.html

[4]: Calder, A., & Townsend, B. (2021, December 24). Freespeech. Retrieved April 25, 2022,
from https://app.freespeechaac.com/

[5]: Oh, S. (2022, February, 15). Samueljoh00/FreespeechVT. GitHub. Retrieved April 25, 2022,
from https://github.com/samueljoh00/FreespeechVT

[6]: 2.1 Git Basics - Getting a Git Repository. Git. (2021, November 11). Retrieved April 25,
2022, from https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository

[7]: Proloquo2Go - AAC app with symbols. AssistiveWare. (2022). Retrieved April 25, 2022,
from https://www.assistiveware.com/products/proloquo2go

32

