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METHODOLOGY

Virtual methylome dissection facilitated 
by single‑cell analyses
Liduo Yin1,2,3†, Yanting Luo4†, Xiguang Xu5,6, Shiyu Wen4, Xiaowei Wu7, Xuemei Lu1,3,9*   and Hehuang Xie5,6,8* 

Abstract 

Background:  Numerous cell types can be identified within plant tissues and animal organs, and the epigenetic 
modifications underlying such enormous cellular heterogeneity are just beginning to be understood. It remains a 
challenge to infer cellular composition using DNA methylomes generated for mixed cell populations. Here, we pro-
pose a semi-reference-free procedure to perform virtual methylome dissection using the nonnegative matrix factori-
zation (NMF) algorithm.

Results:  In the pipeline that we implemented to predict cell-subtype percentages, putative cell-type-specific 
methylated (pCSM) loci were first determined according to their DNA methylation patterns in bulk methylomes and 
clustered into groups based on their correlations in methylation profiles. A representative set of pCSM loci was then 
chosen to decompose target methylomes into multiple latent DNA methylation components (LMCs). To test the per-
formance of this pipeline, we made use of single-cell brain methylomes to create synthetic methylomes of known cell 
composition. Compared with highly variable CpG sites, pCSM loci achieved a higher prediction accuracy in the virtual 
methylome dissection of synthetic methylomes. In addition, pCSM loci were shown to be good predictors of the cell 
type of the sorted brain cells. The software package developed in this study is available in the GitHub repository (https​
://githu​b.com/Gavin​-Yinld​).

Conclusions:  We anticipate that the pipeline implemented in this study will be an innovative and valuable tool for 
the decoding of cellular heterogeneity.
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Introduction
DNA methylation plays a key role in tissue development 
and cell specification. As the gold standard for methyla-
tion detection, bisulfite sequencing has been widely used 
to generate genome-wide methylation data and com-
putational efforts have been made to meet the statisti-
cal challenges in mapping bisulfite-converted reads and 
determining differentially methylated sites [1–4]. Meth-
ylation data analysis has been extended from simple 

comparisons of methylation levels to more sophisticated 
interpretations of methylation patterns embedded in 
sequencing reads, which are referred to as the combina-
tory methylation statuses of multiple neighboring CpG 
sites [5].

Through multiple bisulfite sequencing reads mapped 
to a given genome locus, methylation entropy can be 
calculated as a measurement of the randomness, specifi-
cally the variations, of DNA methylation patterns in a cell 
population [6]. It was soon realized that such variations 
in methylation patterns could have resulted from meth-
ylation differences: (1) among different types of cells in 
a mixed cell population, (2) between the maternal and 
paternal alleles within a cell, or (3) between the CpG sites 
on the top and bottom DNA strands within a DNA mole-
cule [7–9]. The genome-wide hairpin bisulfite sequencing 
technique was developed to determine strand-specific 
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DNA methylation, i.e., methylation patterns resulting 
from (3). The methylation difference between two DNA 
strands is high in embryonic stem cell (ESC) but low in 
differentiated cells [8]. For instance, in human brain, the 
chances of four neighboring CpG sites having an asym-
metric DNA methylation pattern in a double-stranded 
DNA molecule are less than 0.02% [10]. Allelic DNA 
methylation, i.e., methylation patterns resulting from (2), 
was found to be limited in a small set of CpG sites. In the 
mouse genome, approximately two thousand CpG sites 
were found to be associated with allele-specific DNA 
methylation [11]. Thus, cellular heterogeneity could be 
a primary source of the variations in DNA methylation 
patterns. This often leads to bipolar methylation patterns, 
meaning that genome loci are covered both with com-
pletely methylated reads and completely unmethylated 
reads simultaneously in bulk methylomes. Such bipolar 
methylated loci can be detected using nonparametric 
Bayesian clustering followed by hypothesis testing and 
were found to be highly consistent with the differentially 
methylated regions identified among purified cell sub-
sets [12]. For this reason, these loci are called the puta-
tive cell-type-specific methylated (pCSM) loci. They were 
further demonstrated to exhibit methylation variation 
across single-cell methylomes [13].

An appropriate interpretation of methylome data 
derived from bulk tissues requires consideration of 
methylation variations contributed by diverse cellular 
compositions. With the existing reference methylomes 
for different types of cells, it is possible to estimate cell 
ratios in a heterogeneous population with known infor-
mation about the cell types. For instance, cell mixture 
distributions within peripheral blood can be assessed 
using constrained projection, which adopts least-squares 
multivariate regression to estimate regression coefficients 
as the ratios for cell types [14]. More recent studies sug-
gest that non-constrained reference-based methods are 
robust across a range of different tissue types [15] and 
Bayesian semi-supervised methods may construct cell-
type components in a way that each component cor-
responds to a single-cell type [16]. For reference-based 
algorithms, prior knowledge of cell composition and 
cell-specific methylation markers is critical [17]. To over-
come these issues, principal component analysis (PCA) 
was adopted by ReFACTor for the correction of cell-type 
heterogeneity [18], and nonnegative matrix factorization 
(NMF) was adopted by MeDeCom to recover cell-type-
specific latent methylation components [19]. However, 
the performance of such reference-free cell-type decon-
volution tools relies heavily on model assumptions [20]. 
Recently, the development of single-cell DNA methyla-
tion sequencing techniques generated a growing number 
of methylomes at unprecedented resolution, providing 

new opportunities to explore cellular diversity within cell 
populations [21–27]; yet, no attempt has been taken to 
make use of single-cell methylomes for cell-type decon-
volution analysis.

In this study, we propose a semi-reference-free, NMF-
based pipeline to dissect cell-type compositions for 
methylomes generated from bulk tissues. This pipeline 
takes advantage of pCSM segments that exhibit bipolar 
methylation patterns in methylomes generated from bulk 
tissues or among single-cell methylomes. To overcome 
the shallow depth of whole-genome bisulfite sequenc-
ing, weighted gene co-expression network analysis 
(WGCNA) was modified to cluster pCSM loci. PCA was 
performed to select eigen-pCSM loci, which are repre-
sentative loci for clusters of pCSM loci. To evaluate the 
performance of eigen-pCSM loci selected in cell-type 
deconvolution, over 3000 brain single-cell methylomes 
were mixed in random proportions in simulation stud-
ies to create synthetic methylomes. The pipeline imple-
mented in this study provides an accurate estimation of 
cell-type composition on both synthetic methylomes and 
bulk methylomes from five neuronal cell populations.

Results
Virtual methylome dissection based on eigen‑pCSM loci
To perform virtual methylome dissection, we introduced 
a three-step pipeline (Fig. 1). In the first step, pCSM loci 
were determined for target methylomes, which were 
generated from various sources including tissues, sorted 
cells, or single cells. The key issue in this step was to effi-
ciently distinguish cell-type-specific DNA methylation 
events from stochastic methylation events. Using the 
hairpin bisulfite sequencing approach, we observed that 
5% of CpG sites were asymmetrically methylated, but the 
frequencies of asymmetric methylation events decreased 
more than 200 times from approximately 5% for a single 
CpG to 0.02% for a sliding window of a 4-CpG genomic 
segment [10]. Therefore, in our proposed pipeline, the 
methylation patterns of 4-CpG genomic segments were 
determined from each bisulfite-converted sequenc-
ing read to minimize the influence of asymmetric DNA 
methylation. For all 4-CpG segments mapped to a given 
genomic loci, the variation in their methylation patterns 
was subjected to nonparametric Bayesian clustering fol-
lowed by hypothesis testing to infer bipolar methylated 
loci [12]. After the filtering of allelic-specific methylated 
regions and merging overlapping segments, pCSM loci 
were collected for co-methylation analysis. In the sec-
ond step, eigen-pCSM loci, representing pCSM clusters 
with distinct methylation profiles, were determined by 
WGCNA clustering and PCA analysis. In the third step, 
target methylomes were decomposed with eigen-pCSM 
loci using the NMF algorithm. The methylation matrix of 
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eigen-pCSM loci in all samples was decomposed into a 
product with two matrices: one for the methylation pro-
files of estimated cell types and the other for the cell-type 
proportions across all samples.

Mammalian brain consists of many functionally dis-
tinct cell subsets that can contribute to diverse DNA 
methylation patterns on loci with cell subset-specific 
methylation. In particular, diverse subpopulations of neu-
rons and glial cells can often be found even within a given 
brain region [28]. To demonstrate the effectiveness of 
our procedure, we performed two distinct analyses using 
synthetic methylomes derived from brain single cells and 
methylomes from brain-sorted cells.

pCSM loci predicted with brain single‑cell methylomes
Our first case study took advantage of recent brain sin-
gle-cell methylomes generated for 3377 neurons derived 
from mouse frontal cortex tissue [21] (Additional file 1: 
Table  S1). Following our previous procedure for single-
cell methylome analysis [13], we determined the pCSM 
loci from each single-cell methylome. Briefly, for each 
methylome, we scanned the sequence reads one by one 
to identify genomic segments with methylation data for 
four neighboring CpG sites. To facilitate pCSM identifi-
cation from the 4,326,935 4-CG segments identified, we 
first selected 1,070,952 pCSM candidates that were com-
pletely methylated in at least one neuron but also com-
pletely unmethylated in another. We next applied the 

beta mixture model to the methylation patterns in sin-
gle neurons for these candidates segments [13]. 921,565 
segments were determined to be pCSM segments with 
bipolar distributed methylation profiles, while the rest 
(149,387 segments) had heterogeneous methylation pat-
terns among neurons.

To gain a better understanding of pCSM, we analyzed 
several features of these 921,565 pCSM segments using 
the leftover 3,405,370 non-CSM segments from the start-
ing 4,326,935 segments as controls. According to the 
methylation status of each 4-CG segment, we assigned 
the neurons into two subsets, hypermethylated and 
hypomethylated, and calculated the methylation differ-
ence of each 4-CG segment between the two cell sub-
sets. For non-CSM segments with all methylated reads 
or unmethylated reads, only one cell subset could be 
identified, and thus, the methylation difference was set as 
zero. As expected, pCSM segments showed large meth-
ylation differences between the two cell subsets with an 
average of 0.70, while the average methylation difference 
for non-CSM segments was only 0.11 (Fig. 2a). The aver-
age methylation levels of pCSM segments among cells 
were broadly distributed, while the non-CSM segments 
tended to be either hypermethylated or hypomethylated 
(Fig. 2b). Some pCSM segments had average methylation 
levels approaching 1 or 0, but their bipolar methylation 
patterns allowed the splitting of cells into two groups 
with a methylation difference close to 1 (Fig.  2c). In 

Fig. 1  A three-step process to perform methylome dissection using eigen-pCSM loci. a In the first step, bipolar 4-CG segments are identified and a 
nonparametric Bayesian clustering algorithm is used for the determination of pCSM loci. b In the second step, co-methylation analysis is performed 
by k-means clustering coupled with WGCNA analysis. In each co-methylation module, PCA analysis is performed to pick the eigen-pCSM loci as 
a representative for the whole module. c In the third step, methylome dissection is performed by nonnegative matrix factorization (NMF), where 
matrix N stands for the raw methylation profile and is decomposed into two matrices, W and H. Matrix W represents the methylation profile of cell 
components, and matrix H represents the proportion of cell components
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Fig. 2  pCSM segments reflected methylation heterogeneity. a Distribution of methylation differences between cell subsets classified with pCSM 
and non-CSM segments. b Average methylation levels of pCSM segments and non-CSM segments across single cells. c, d Relationship between 
methylation level and methylation difference of pCSM segments (c) and non-CSM segments (d). The color indicates the densities of pCSM 
segments or non-CSM segments from low (blue) to high (red). e The distribution of pCSM loci across various genomic features compared to those 
of control regions
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contrast, the majority of either hypermethylated or hypo-
methylated non-CSM segment cells split into two groups 
with a methylation difference less than 0.2 (Fig. 2d).

To further explore the functional characteristics of 
pCSM segments, we merged the overlapped pCSM seg-
ments into 347,889 loci (Additional file 2: Table S2) and 
integrated them with brain histone modification maps. 
We observed that these pCSM loci were enriched at 
H3K27ac, H3K4me, and H3K4me3 peaks and CpG 
islands with 1.63-, 1.93-, 1.28-, and 1.52-fold increases, 
respectively (Fig.  2e). In addition, pCSM loci were 
depleted from repeat regions including SINE, LINE, and 
LTR. This result suggested that pCSM loci might play 
important regulatory roles in the brain. For the pCSM 
loci that overlapped with histone marks for enhanc-
ers or promoters, we identified their adjacent genes for 
functional enrichment analysis using the GREAT analy-
sis tools [29]. As shown in Additional file  3: Figure S1, 
genes associated with these pCSM loci are significantly 
enriched in the functional categories for brain devel-
opment, such as “regulation of synaptic plasticity” and 
“metencephalon development.” Altogether, these results 
indicate that pCSM loci showing bipolar methylation 
among neurons may play important roles in the epige-
netic regulation of brain development.

Synthetic methylome: eigen‑pCSM loci determination 
and virtual methylome dissection by NMF
In the previous study [21], a total of 3377 neurons were 
clustered into 16 neuronal cell types including mL2.3, 
mL4, mL5.1, mL5.2, mL6.1, mL6.2, mDL.1, mDL.2, 
mDL.3, and mIn.1 for excitatory neurons and mVip, 
mPv, mSst.1, mSst.2, mNdnf.1, and mNdnf.2 for inhibi-
tory neurons. Such single-cell methylomes with assigned 
cell-type information provide ideal training and test sets 
to examine our approach. By merging single-cell methy-
lomes within each cluster, we first created 16 artificial 
methylomes as references for distinct cell types. These 16 
reference methylomes were then mixed in random pro-
portions to create synthetic methylomes. To overcome 
the low read depth at each genomic locus, we performed 
clustering analysis to extract eigen-pCSM loci from the 
synthetic methylomes (Fig.  1b). To identify co-methyl-
ated modules, we collected a total of 61 mouse methyl-
omes across all brain development stages and cell types 
(Additional file  1: Table  S1). Based on the methylation 
profiles of pCSM loci in these brain methylomes, co-
methylation analysis was performed through k-means 
clustering followed by weighted correlation network 
analysis [30] (Fig.  3a). For each co-methylation module, 
PCA analysis was performed to select a subset of pCSM 

Fig. 3  Co-methylation analysis to extract eigen-pCSM loci. a Heatmap of the methylation level of pCSM loci across brain methylomes. The 
methylation levels were represented by color gradient from blue (unmethylation) to red (full methylation). The color key in the right panel 
represents co-methylation modules. b Methylation profiles of the top five co-methylation modules. Each blue line represents the methylation level 
of pCSM loci across brain methylomes, the red lines represent the methylation level of eigen-pCSM loci picked by PCA analysis in each module, and 
10% eigen-pCSM loci with the maximal loadings in PC1 were shown
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loci as the eigen-pCSM loci representing the methylation 
trend (Fig. 3b).

We simulated 100 synthetic methylomes composed 
of 16 reference methylomes in various ratios. The num-
ber of LMCs (k = 16) was determined according to 
prior knowledge, and the regularizer shifts’ parameter 
(λ = 1e−04) was selected via cross-validation provided 
in the MeDeCom package (Additional file 3: Figure S2A). 
Each synthetic methylome was dissected into multi-
ple latent DNA methylation components representing 
the hypothetic origins of the 16 reference methylomes 
(Fig.  4a, b) with their proportions determined (Fig.  4c). 
We further assigned the cell types predicted by NMF to 
the aforementioned 16 reference methylomes via clus-
tering analysis (Fig.  4d). Corresponding to the decom-
posed cell types, the proportions of cell types predicted 
with NMF were also accurately reproduced (Fig. 4e) with 
a mean absolute error (MAE) of 0.037, which serves as 
a measure for the precision of the proportions of LMCs 
predicted by NMF. A high level of Pearson’s correlations 
with a range from 0.82 to 1.00 was observed between 
the 12 immediately grouped reference neuronal types 
(i.e., mL5.1, mL4, mDL.1, mL2.3, mDL.2, mL6.1, mL6.2, 
mL5.2, mVip, mNdnf.2, mPv, and mSst.1) and the pre-
dicted cell types (Additional file 3: Figure S2B). The other 
four types of neuronal cells, including mDL.3, mIn.1, 
mNdnf.1, and mSst.2, were not decomposed from syn-
thetic methylomes. The percentages of these four types of 
neurons only account for a small fraction (< 1.7%) of the 
3377 neurons sequenced (Additional file 3: Figure S2C). 
The mapped reads for these four types were very limited 
(Additional file  3: Figure S2D). Thus, the methylation 
features of these four types may not be fully represented 
by the small number of pCSM loci identified (Additional 
file  3: Figure S2E). Since the proportions of the 16 cell 
types followed a uniform distribution in the simulation 
study (Additional file  3: Figure S2F), the failure in cell 
component decomposition is likely due to insufficient 
information in the eigen-pCSM loci to distinguish these 
four types of neurons from the others. This indicates 
that our procedure could have a detection limit for the 
rare cells. Another possibility is that some of the compo-
nents had the unidentified cell types as their second-best 
matches. Therefore, missing just a few population-spe-
cific loci, e.g., due to poor coverage, could be the reason 
behind this loss of identifiability.

In a previous study [19], highly variable CpG (hVar-
CpG) sites, i.e., CpG sites with high sample-to-sample 
methylation variance, were proposed for the dissection 
of bulk methylomes. We next performed simulations 
100 times with 2000 to 24,000 hVar-CpG sites or with 
pCSM loci to compare the classification accuracy using 
hVar-CpG sites vs pCSM loci. For the 16 cell types, the 

eigen-pCSM-loci-based method accurately assigned ten 
on average, while the hVar-CpG-sites-based method only 
predicted nine on average (Fig.  5a). Compared to the 
hVar-CpG-sites-based method, the eigen-pCSM-loci-
based method exhibited a higher correlation and lower 
root-mean-square error (RMSE) between LMCs and 
their corresponding reference methylomes (Fig. 5b, c). In 
addition, a lower MAE was achieved with the increasing 
number of eigen-pCSM loci from each module. However, 
such an improvement could not be achieved by using 
additional hVar-CpG sites (Fig. 5d).

Brain methylome: virtual methylome dissection 
for neuronal cells
To examine whether the proposed virtual methylome 
dissection approach can be applied to the methylomes 
generated from tissue samples, we re-analyzed five brain 
methylomes derived from sorted nuclei including excita-
tory (EXC) neurons, parvalbumin (PV) expressing fast-
spiking interneurons, vasoactive intestinal peptide (VIP) 
expressing interneurons [31], and mixed neurons from 
the cortex’s of 7-week (7wk NeuN+) and 12-month 
(12mo NeuN+) mice [32]. These five methylomes were 
analyzed separately and together as a mixed pool (Addi-
tional file  3: Figure S3A). 19,091 to 212,218 pCSM seg-
ments were identified in the six methylomes, accordingly. 
Among the 212,218 pCSM segments identified in the 
mixed pool, 118,409 segments showed differential DNA 
methylation states across the five neuronal samples; the 
other 93,809 pCSM segments were found to be pCSM 
segments within the five methylomes (Additional file  3: 
Figure S3B). Since a significant number of pCSM seg-
ments can be identified from pooled samples to capture 
differences among sorted cells (Additional file  3: Figure 
S3B), it is a better strategy to pool methylomes from 
sorted cells for pCSM loci identification, particularly 
when methylomes have a low read depth.

Next, we asked whether the pCSM segments identified 
from the pooled methylome could reflect the cell-type-
specific methylation pattern derived from single-cell 
methylomes. Interestingly, we found that the pCSM seg-
ments identified from the pooled methylome were signif-
icantly overlapped with those identified using single-cell 
methylomes (Additional file 3: Figure S3C). This indicates 
that the cell-type-specific methylated loci determined 
with single-cell methylomes could also be detected using 
a bulk methylome. In addition, pCSM loci identified from 
the pooled methylome (Additional file 4: Table S3) were 
enriched at enhancer histone markers and CpG islands, 
but were depleted from promoter, 5′UTR, and repeat ele-
ments (Additional file 3: Figure S3D).

To further explore the composition of the five neu-
ronal cell populations, we performed methylome virtual 
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Fig. 4  Virtual methylome dissection based on eigen-pCSM loci. a Methylation profiles of eigen-pCSM loci, with each row representing an 
eigen-pCSM locus and each column representing one synthetic methylome. b Methylation profiles of NMF predicted cell types, with each row 
representing an eigen-pCSM loci and each column representing an NMF predicted cell type. c Heatmap of cell proportions predicted with 
NMF across all samples, with each row representing an NMF predicted cell type and each column representing a sample. The proportions were 
represented by color gradient from blue (low) to red (high). d Clustering analysis of cell types predicted by NMF and 16 reference methylomes. 
e Recovery of the mixing ratios for 16 neuronal cell types. The reference cell types that could not be unambiguously assigned to an LMC were 
considered as failures in prediction with a ratio of zero. In each line plot, the synthetic samples are sorted by ascending true mixing proportion
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dissection based on pCSM loci identified from the pooled 
methylome. Following the aforementioned procedure, 
we performed co-methylation analysis and extracted 
eigen-pCSM loci from each module. An NMF model 
was performed with 20,000 eigen-pCSM loci selected to 
decompose the five methylomes. The cross-validation 
error showed a substantial change at k ≥ 3 (Fig. 6a), which 
indicated the existence of at least three major epigeneti-
cally distinct cell components, i.e., LMCs. We then exam-
ined the factorization results and compared the three 
main LMCs at k = 3 and λ = 10−5 to the single-cell refer-
ence profiles. Clustering analysis showed that the refer-
ence profiles of EXC, PV, and VIP neurons are related 
to LMC1, LMC3, and LMC2, respectively (Fig.  6b). In 
addition, we found that the samples of EXC, PV, and VIP 
neurons have high purity (Fig. 6c). Although the cellular 
composition of NeuN+ cells is unknown and depends 
highly on the cell sorting procedure, about 70–85% of 
mouse cortical neurons are excitatory with 6–12% PV 

neurons and 1.8–3.6% VIP neurons [31, 33]. In our study, 
the 7-week NeuN+ sample was predicted to have a mix-
ture of 94.73% excitatory neurons, 4.35% PV neurons, 
and 0.92% VIP neurons. The 12-month NeuN+ sample 
was predicted to consist of 88.98% excitatory neurons, 
7.6% PV neurons, and 3.42% VIP neurons. Considering 
the fact that inhibitory neurons have been reported as 
more likely to be depleted during the NeuN sorting pro-
cedure [34], our predictions were largely consistent with 
the known composition of mouse cortical neurons. Alto-
gether, these results indicate that pCSM loci may serve as 
excellent predictors to decompose bulk methylomes.

Discussion
In this study, we implemented an analysis pipeline to 
predict the composition of cell subtypes in bulk meth-
ylomes. To our knowledge, this is the first endeavor 
to systematically analyze the variation in DNA 

Fig. 5  Performance of virtual methylome dissection based on eigen-pCSM loci and hVar-CpG sites. a Number of correctly predicted cell types in 
each simulation. b Pearson correlation coefficient between LMCs and their corresponding reference methylome. c The root-mean-square error 
(RMSE) between LMCs and their corresponding reference methylome. d Mean absolute error (MAE) between NMF predicted proportions and real 
proportions, with the dot showing the mean MAE and the shade showing the standard deviation of the MAE in 100 simulations
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methylation patterns to infer pCSM loci as inputs for 
the NMF model. Application of synthetic methylomes 
that are simulated based on single-cell methylomes and 
methylomes derived from sorted cells demonstrated 
that our approach is efficient and has high predic-
tion accuracy. Our procedure is semi-reference free. 
The clustering of pCSM loci to identify representa-
tive eigen-pCSM loci depends on the methylomes col-
lected. With rapidly accumulating methylome data, 
such a method will gain power and can be widely used 

to explore cell heterogeneity during tissue development 
and disease progression.

Materials and methods
Analyses of single‑nucleus methylcytosine sequencing 
(snmC‑seq) datasets
Single-nucleus methylcytosine sequencing datasets of 
3377 neurons from 8-week-old mouse cortex (GSE97179) 
were downloaded from the Gene Expression Omni-
bus (GEO). These datasets were analyzed following the 
processing steps provided in a previous study [21]: (1) 
Sequencing adaptors were first removed using Cutadapt 

Fig. 6  Methylome virtual dissection of five neuronal sorted cell populations. a Selection of parameters k and λ by cross-validation provided by 
MeDeCom Package. b Clustering analysis of predicted cell types and reference cell types when k = 3, with the red nodes representing the predicted 
cell types and the blue nodes representing the reference cell types from single-cell methylomes. c Predicted proportions of each LMC in five 
datasets
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v2.1 [35], (2) trimmed reads were mapped to the mouse 
genome (GRCm38/mm10) in single-end mode using 
Bismark v0.16.3 [1], with the pbat option activated for 
mapping R1 reads [21], (3) duplicated reads were filtered 
using picard-tools v2.0.1, (4) non-clonal reads were fur-
ther filtered by minimal mapping quality (MAPQ ≥ 30) 
using samtools view [36] with option −q30, and (5) 
methylation calling was performed by Bismark v0.16.3.

Identification of pCSM loci from snmC‑seq datasets
pCSM loci were determined from single-cell methyl-
omes with a similar procedure to what was provided in 
a previous study [13]. Briefly, for each snmC-seq data-
set, all segments with four neighboring CpG sites in any 
sequence read were extracted from autosomes, and the 
corresponding methylation patterns were recorded. The 
4-CpG segments that overlapped with known imprinted 
regions [11] were excluded in subsequent steps. To 
ensure statistical power for the identification of pCSM 
loci, segments covered by at least ten single-cell methy-
lomes were retained for further analysis. The remain-
ing 4-CG segments covered by at least one completely 
methylated cell and one completely unmethylated cell 
in such genomic loci were identified as CSM loci candi-
dates. From these candidates, a beta mixture model [13] 
was used to infer pCSM loci, by which cells that covered 
the same segment could be grouped into hypomethyl-
ated and hypermethylated cell subsets. The segments 
with methylation differences between hypomethylated 
and hypermethylated cell subsets over 30% and adjusted 
p values less than 0.05 were then identified as the pCSM 
loci.

Analyses of whole‑genome bisulfite sequencing datasets
Sequencing adaptors and bases with low sequencing 
quality were first trimmed off using Trim Galore v0.4.4. 
The retained reads were then mapped to the mouse ref-
erence genome (GRCm38/mm10) using Bismark v0.16.3. 
Duplicated reads were removed using deduplicate_bis-
mark. Lastly, methylation calling was performed by Bis-
mark v0.16.3.

Identification of pCSM loci from WGBS datasets
pCSM loci were identified from WGBS datasets following 
a strategy described previously [10] with slight modifica-
tions. Genomic segments with four neighboring CpGs 
were determined within each sequence read. Such 4-CpG 
segments covered with at least ten reads were retained 
for further identification of bipolar methylated segments. 
A nonparametric Bayesian clustering algorithm [12] was 
performed to detect bipolar methylated segments that 
were covered by at least one completely methylated and 

one completely unmethylated read concurrently. Bipo-
lar segments in chromosome X, Y, and known imprinted 
regions [11] were excluded from further analysis.

Genome annotation and gene ontology analysis
Genomic features were downloaded from the UCSC 
Genome database [37], including annotation for gene 
structure, CpG islands (CGI), and repeat elements in 
mm10. Promoters were defined as 2 kb regions upstream 
of transcription starting sites (TSS). CGI shores were 
defined as 2 kb outside of the CGI, and CGI shelves were 
defined as 2  kb outside of the CGI shores. The broad 
peaks of histone modifications H3K4me1, H3k4me3, and 
H3K27ac for 8-week mouse cortex were obtained from 
the ENCODE Project [38] (with accession GSM769022, 
GSM769026, and GSM1000100, respectively) and lifted 
from mm9 to mm10 using UCSC LiftOver tools. GO 
enrichment analysis for pCSM loci enriched in histone 
peaks was performed by the GREAT tool V3.0.0 [29] 
using default settings.

Co‑methylation, eigen‑pCSM loci extraction, and NMF 
analyses for virtual methylome dissection
A two-step clustering approach was adopted for co-
methylation analysis. First, k-means clustering analy-
sis was performed to divide pCSM loci into hypo/mid/
hypermethylation groups. For each k-means cluster, the 
R package WGCNA v1.61 [30] was used to identify co-
methylation modules of highly correlated pCSM loci. 
Briefly, for a given DNA methylation profile, a topologi-
cal overlap measure (TOM) was used to cluster pCSM 
loci into network modules. The soft-thresholding power 
was determined with the scale-free topology. Network 
construction and module determination were performed 
using the “blockwiseModules” function in WGCNA, 
and the network type was set to “signed” during network 
construction to filter the negatively correlated pCSM 
loci within one module. PCA analysis was performed to 
select a subset of pCSM loci with the maximal loadings in 
PC1 as eigen-pCSM loci for the corresponding module.

The R package MeDeCom V0.2 [19] was used to dis-
sect the methylomes using NMF analysis. A matrix with 
eigen-pCSM loci in rows and samples in columns can be 
decomposed into the product of two matrices: one rep-
resenting the profile of predicted cell types with eigen-
pCSM loci in rows and cell types in columns and the 
other containing the proportion of predicted cell types in 
each sample with cell types in rows and samples in col-
umns. Two parameters need to be artificially set in NMF 
analysis, i.e., the number of cell types k, and the regular-
izer shifts’ parameter λ, by which the estimated matrix of 
methylation patterns toward biologically plausible binary 
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values close to zero (unmethylated) or one (methylated). 
k is dictated by prior knowledge on the input methyl-
omes. In the case that no prior knowledge of cell compo-
sition is available for the input methylomes, both k and λ 
may be selected via cross-validation as suggested in the 
MeDeCom package.

Cell mixture methylome synthesis and virtual methylome 
dissection simulation
First, 16 artificial methylomes were created as references 
by merging single-cell methylomes of each neuronal cell 
type identified in a previous study [21]. Then, the simu-
lated methylomes were generated by mixing the reference 
methylomes with random proportions. In each simula-
tion, 100 methylomes were synthesized, based on which 
virtual methylome dissection was performed using the 
profiles of the eigen-pCSM loci in these 100 methylomes. 
To identify cell components from the dissection results, 
clustering analysis was performed on the dissected LMCs 
and 16 reference neuronal cell types, and the LMCs 
unambiguously matched to one of the reference neuronal 
cell types were considered to be recognized. The RMSE 
between LMCs and their matched reference methyl-
omes was calculated to evaluate the recovery of reference 
methylomes by the following formula:

where each pair of m and m̂ denotes the true methylation 
level (m) of one genomic loci in the reference methylation 
and the estimated methylation level ( ̂m ) of that loci in the 
corresponding predicted cell component. N denotes the 
number of loci.

To evaluate the recovery of the mixing proportions, the 
MAE between true proportions of neuronal cell types 
and the estimated proportions of recognized cell compo-
nents was calculated by the following formula:

where each pair of p and p̂ denotes the true proportion 
(p) of one reference neuronal cell type and the estimated 
proportion ( ̂p ) of its corresponding predicted cell com-
ponent. The proportions of the estimated cell compo-
nents that cannot be mapped to the true cell types were 
set to zero. For comparison, a parallel analysis was also 
performed using 2000 to 24,000 hVar-CpG sites with the 
maximal sample-to-sample variation.

RMSE =

√∑N
i=1

(mi − m̂i)
2

N

MAE =

∑
16

i=1

∣∣pi − p̂i
∣∣

16
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