
CONTINUAL TRAVELING WAVES IN FINITE STRUCTURES :

THEORY, SIMULATIONS, AND EXPERIMENTS

VIJAYA VENKATA NARASIMHA SRIRAM MALLADI

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

IN

MECHANICAL ENGINEERING

PABLO A. TARAZAGA, CHAIR

DANIEL J. INMAN

ANDREW J. KURDILA

MICHAEL K. PHILEN

MARK P. EMBREE

10th MAY, 2016
Blacksburg, Virginia

Keywords: Traveling Waves, Piezo-ceramics, Vibrations, Phase-selection, Dynamics, Actuation,
Plates, Beams

© 2016 by Vijaya Venkata Narasimha Sriram Malladi



CONTINUAL TRAVELING WAVES IN FINITE STRUCTURES :

THEORY, SIMULATIONS, AND EXPERIMENTS

VIJAYA VENKATA NARASIMHA SRIRAM MALLADI

Abstract

A mechanical wave is generated as a result of an external force interacting with the
well-defined medium and it propagates through that medium transferring energy from
one location to another. The ability to generate and control the motion of the mechan-
ical waves through the finite medium opens up the opportunities for creating novel
actuation mechanisms not possible before. However, any impedance to the path of
these waves, especially in the form of finite boundaries, disperses this energy in the
form of reflections. Therefore, it is impractical to achieve steady state traveling waves
in finite structures without any reflections. In-spite of all these conditions, is it possi-
ble to generate waveforms that travel despite reflections at the boundaries? The work
presented in this thesis develops a framework to answer this question by leveraging
the dynamics of the finite structures without any active control.

Therefore, this work investigates how mechanical waves are developed in finite
structures and identifies the factors that influence steady state wave characteristics.
Theoretical and experimental analysis is conducted on 1D and 2D structures to realize
different type of traveling waves. Owing to the robust characteristics of the piezo-
ceramics (PZTs) in vibrational studies, we developed piezo-coupled structures to de-
velop traveling waves through experiments.The results from this study provided the
fundamental physics behind the generation of mechanical waves and their propagation
through finite mediums. This research will consolidate the outcomes and develop a
structural framework that will aid with the design of adaptable structural systems built
for the purpose. The present work aims to generate and harness structural traveling
waves for various applications.



CONTINUAL TRAVELING WAVES IN FINITE STRUCTURES :

THEORY, SIMULATIONS, AND EXPERIMENTS

VIJAYA VENKATA NARASIMHA SRIRAM MALLADI

General Abstract

A mechanical wave is generated as a result of an oscillating force interacting with the
well-defined medium and it propagates through that medium transferring energy from
one location to another. The ability to generate and control the motion of the mechan-
ical waves through the finite medium opens up the opportunities for creating novel
actuation mechanisms. By manipulating the wave propagation in a solid medium,
the structure can interact with its surrounding in various ways: (a) materials in its
surroundings can be moved when inside its effective domain (i.e. conveyer like trans-
port, pumps, non-contact fluid mixing etc.), (b) the host structure can flip the previous
effect and it can propel itself through a medium (i.e. swimming and flapping with min-
imal parts count) and (c) the material can manipulate incoming external disturbances
(i.e. vibro-acoustic camouflage ). The highly controlled and multidimensional surface
wave resulting from this work will lead to very innovative ways of surface to medium
interaction that can have significant effects in multiple engineering domains. We aim
to study how mechanical waves are formed and propagate in solid system and what
are the determining factors in their behavior, as well as how they can be manipulated
for adaptable performance using integrated smart materials.



Meaning: You have a right to perform your prescribed duty, but you are not entitled
to the fruits of action. Never consider yourself to be the cause of the results of your

activities, and never be attached to not doing your duty.

iv



Acknowledgements

Finally... it is time for me to acknowledge and appreciate all the help and support I received over
last five years. First and foremost, I am so fortunate to work with such an understanding and
supportive advisor. Dr. Tarazaga, Thank you very much !!! I am deeply grateful to you for giving
me this opportunity to pursue my dreams in a very cheerful and conducive environment. You
have been more than patient with me in all those times I got distracted and changed my focus.
You have supported all my efforts and been very broad-minded to give me chance after chance
to correct all my mistakes. I appreciate all your guidance in channeling my energies in the right
directions through our long conversations (sometimes even after 5pm). I am grateful to you and
your family for helping me stay sane all those holidays away from home. I always know I can
share my problems and look up to you for advice, be it academics or life.

I would also like to thank my committee members, Dr. Dan Inman, Dr. Andrew Kurdila, Dr.
Mike Philen and Dr. Mark Embree. I always knew that I could turn to you for the insight and
advice I needed in the course of my research. All the discussions I had with my committee has
broadened my understanding of the subject and allowed me to focus my efforts in a more fruitful
manner. I would take this opportunity to recognize the efforts of all professors with whom I have
interacted over years, be it in Virginia Tech or Indian School of Mines. In this regard, I would
like to express my gratitude to Dr. Kurdila and Dr. Gugercin, who shaped my research endeavors
through in class and out of class interactions in a timely and effective manner. I greatly appreciate
the discussions I had on various issues with Dr. Kasarda and Dr. Jeff Borggaard. I would love to
thank AFOSR and CENTIRE are financially supporting me over last three years.

I immensely enjoyed my time at Virginia Tech and strongly believe it was only possible due to
the vibrant and friendly atmosphere of our lab. I acknowledge the help of all my colleagues namely
Dr. Bryan Joyce, Dr. Dragan Avirovik, Mohammad Albakri, Mico Woolard, Austin Pheonix,
Dustin Bales, Patrick Musgrave, Rodrigo Sarlo, Dr. Ipar Ferhat, Howard Chung, Jeff Poston,
Sa’ed Alajlouni, Malihe Ghadimi, Daniel Wu, Mark Hurtado and Joseph Hamilton. I also had a
lot of fun working with undergraduates in different projects, Carlos E Garcia, Mathieu Vandaele,
Tarek Alkhulaidy, Kevin Lefeave, Jeff Pope to name a few. The jolly banter and occasional pranks
in the lab have kept a smile on my face even in the most stressful situations over the last five years.
I have to specially thank Beth Howell for all the help and advice I got anytime and every time. She
has made my time in CIMSS/VAST/VT-SIL pleasant and hassle free. Other than all the help I got
from Dr. Tarazaga, I cannot forget to thank Dr. Bryan Joyce and Mohammad Albakri for helping

v



me bringing this thesis to a reality.
I would specially like to thank my roommates and friends: Dr. SaiDhiraj Amuru, Vireshwar

Kumar, Deepak Mane, Amiya Behera,KC, Prasad, Prashant Kumar for all the good and glories
days we had in Blacksburg. For last five years, I had a social life due to the high energies and fun
at our own Shawnee theater. I had fun in discussions, in movies, in gossip, in cooking, in traveling
etc. Thanks Dr. SaiDhiraj Amuru and Vireshwar Kumar for making my time in the USA pleasant
and enjoyable. I have to thank Usha for being a friend, more than a cousin and helping me in times
of need.

Sanata Dharma or ’eternal order’, says Matru Devo Bhava (revere your mother as God) and
Pitru Devo Bhava (revere your father as God). Many wonder why parents are given such great
respect. But, I have a mother who has an immense will-power to defeat all adversities and is every
ready to invent other’s futures; and I have a father who has extraordinary patience and discipline
to cruise through the most exhausting times in anyone’s life with a smile an his face. For me,
my parents are the nothing short of divine beings who shaped every good characteristic in me. I
humbly bow my head at the feet of my parents, Dr. Varalakshmi Malladi and B.V.L.N.Swamy
Malladi. Although, Anupama and I have know each other for just more than an year, I have to
thank her for all the emotional support I got from her. Especially for being so understanding and
soothing all throughout these last few stressful times. I wish the sweetness of our bond will pave
way to a bright and successful future. I would love to thank my sister, Satya Sarvani, for the
love and friendship we have developed as siblings. Sarvani, my brother-in-law, Phanisri Pradeep
Pratapa and I have had a lot of long unending discussions on various topics over last few years.
We have comforted each other and helped each other take smart decisions. Thanks for being there
every time I needed you. I am ever grateful to my aunt Dr. Padmavathi Garimella for motivating
me to pursue the path of research. You have given me the right thrust at the right time. I thank my
in-laws for their trust and their support over last few months. I will always have my grand parents
in my thoughts for they believed in me and granted me with their choicest blessings. But none of
this is possible with out the love of Almighty.

Meaning: I pay my obeisance to such God by whom this universe is created; in whom it is contained; into whom

it is dissolved; who is the supreme ruler; who is the root-cause of this universe; who neither has beginning nor end;

who takes the forms of all the animate and the inanimate, the visible and the invisible.

vi



Contents

Page

List of Figures xvi

List of Tables xvii

Nomenclature xix

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Swimming applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Cochlear phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Wave generation and vibration suppression . . . . . . . . . . . . . . . . . 4
1.2.4 Transportation or propulsion . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Wave introduction and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Wave identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Wave envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Hilbert’s approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Fourier’s approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Theoretical analysis of traveling waves 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Traveling waves in a 1-D beam due to point forces . . . . . . . . . . . . . . . . . . 15

2.2.1 Homogeneous equation-of-motion of a beam . . . . . . . . . . . . . . . . 16
2.2.2 Forced response of the beam to two inputs . . . . . . . . . . . . . . . . . . 19
2.2.3 Two mode approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Phase relationship based on frequency of excitation . . . . . . . . . . . . . 23
2.2.5 Phase relationship based on location of excitation . . . . . . . . . . . . . . 27

vii



2.2.6 Dominant mode contibution . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.7 Amplitude of traveling waves . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.8 Beam excitation at anti-symmetric locations . . . . . . . . . . . . . . . . . 33

2.3 Generalized theory of traveling waves . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Traveling waves in 1D beams 44
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Development of a PZT based beam model . . . . . . . . . . . . . . . . . . . . . . 44
3.3 PZT excitation - analytical approach . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Single-force results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Two-force results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.1 Fixed-phase case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.2 Variation of phase difference . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Effect of boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.8 Multi-tone traveling waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Traveling waves in 2D plates 83
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Part I: Modeling plate dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Part II: Modal testing of the plate . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.2 Operational deflection shapes (ODS) and eigenvectors . . . . . . . . . . . 91
4.3.3 Proportional viscous damping parameters . . . . . . . . . . . . . . . . . . 93
4.3.4 Complex eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Part III: Traveling Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.1 Traveling wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.2 Standing vs. Traveling waves . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.3 Effects of actuation locations . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Part IV: Reduction of FE plate model . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5.1 Projection-based model reduction . . . . . . . . . . . . . . . . . . . . . . 105
4.5.2 Ellipse fits to detect traveling waves in 2D plates . . . . . . . . . . . . . . 107
4.5.3 Rigid-body modes and instability . . . . . . . . . . . . . . . . . . . . . . 109
4.5.4 Model validation and error prediction . . . . . . . . . . . . . . . . . . . . 112
4.5.5 Reachability-based model reduction . . . . . . . . . . . . . . . . . . . . . 115

viii



4.5.6 Observability-based model reduction . . . . . . . . . . . . . . . . . . . . 117
4.5.7 Balanced truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.5.8 Iterative Rational Krylov Algorithm (IRKA) . . . . . . . . . . . . . . . . 124

4.6 Part V: Combination of 2D plate modes . . . . . . . . . . . . . . . . . . . . . . . 130
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Traveling waves in cylinders 144
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.2 Test description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3 Finite element model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4.1 Cylindrical standing waves . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.4.2 Cylindrical traveling waves . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.5 Effect of phase in cylindrical waves . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.6 Study of traveling waves using repeated modes . . . . . . . . . . . . . . . . . . . 152
5.7 Cylindrical mode combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 Conclusions and future work 159
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2.1 Propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.2.2 Fluid Structure Interaction (FSI) . . . . . . . . . . . . . . . . . . . . . . . 163
6.2.3 Structural design optimization . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2.4 Drag reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

References 166

ix



List of Figures

1.1 Conceptual description for the formation of the waves in finite medium. . . . . . . 6

1.2 Schematic representation of different wave envelopes. . . . . . . . . . . . . . . . . 8

1.3 Parameters of a wave envelope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Schematic Hilbert’s representations of different waves. . . . . . . . . . . . . . . . 10

1.5 Parameters of Hilbert’s approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Schematic of Fourier’s representations of different waves. . . . . . . . . . . . . . . 12

1.7 Parameters of Fourier’s approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Two point forces are applied to a free-free beam at two different locations. . . . . 16

2.2 Optimality of wave forms based on cost function of the wave. . . . . . . . . . . . . 23

2.3 Combination of W1, W2, W3 and W4 that results in standing waves for a free-free
beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Combination of W1, W2, W3 and W4 that results in traveling waves for a free-free
beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Phase relationship that results in traveling waves in free-free beams. . . . . . . . . 26

2.6 Variation of phase between two consecutive mode shapes using a cost function. . . 27

2.7 Variation of spatial factor (S) over space (x) is expressed as a combination of a low
wavelength mode shape (blue) and a high wavelength mode shape (orange). . . . . 28

2.8 Effect of location on the phase relationship over a frequency range. . . . . . . . . . 29

2.9 Amplitude of traveling waves in free-free beams. . . . . . . . . . . . . . . . . . . 31

2.10 Mode shapes of a free-free beam corresponding to the 7th and 8th natural frequencies. 33

2.11 Variation of the location of the point forces on the beam for a given frequency. . . . 34

2.12 Comparison of the cost function and the maximum amplitude of the traveling wave
with location of the point force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.13 Anti-symmetrical excitation with point forces applied in locations separated by λ7

in Cases 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.14 Anti-symmetrical excitation with point forces applied in locations separated by
3λ7 in Cases 4-5 and 5λ7 in Case 6. . . . . . . . . . . . . . . . . . . . . . . . . . 38

x



2.15 Anti-symmetrical excitation with point forces applied in locations separated by
2λ8 in Cases 7-9 and 4λ8 in Case 10. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.16 A representative example illustrating a cylindrical traveling wave generation. . . . 42

2.17 A representative example illustrating a planar traveling wave generation. . . . . . . 43

3.1 (a) PZT patches mounted on a beam and the corresponding beam elements (E1-
E5). (b) Cross-sectional view of the beam with PZT patches. . . . . . . . . . . . . 45

3.2 Schematic of the experimental setups of a free-free beam, a clamped-free beam
and a clamped-clamped beam excited with piezo-ceramic patches. . . . . . . . . . 54

3.3 Experimental setup used to measure the response of the beam structures with a
scanning laser vibrometer of various boundary conditions. . . . . . . . . . . . . . 55

3.4 (a) The value of the determinant of the characteristic equation of the free-free beam
at different frequencies, (b) MAC chart comparing simulated eigenvalues against
the experimental values of a free-free beam. . . . . . . . . . . . . . . . . . . . . . 56

3.5 (a) The value of the determinant of the characteristic equation of the clamped-free
beam at different frequencies, (b) MAC chart comparing simulated eigenvalues
against the experimental values of a clamped-free beam. . . . . . . . . . . . . . . 57

3.6 (a) The value of the determinant of the characteristic equation of the clamped-
clamped beam at different frequencies, (b) MAC chart comparing simulated eigen-
values against the experimental values of a clamped-clamped beam. . . . . . . . . 58

3.7 3D representation of traveling waves of a free-free beam obtained (a) theoretically
and (b) experimentally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 3D representation of traveling waves of a clamped-free beam obtained (a) theoret-
ically and (b) experimentally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.9 3D representation of traveling waves of a clamped-clamped beam obtained (a)
theoretically and (b) experimentally. . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.10 Complete analysis of the traveling waves through finite medium when the beam is
exited simultaneously by two PZTs with a phase difference of 90◦: a) free – free ,
b) clamped – free, c) clamped – clamped. . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Traveling wave envelope obtained experimentally and theoretically. Actuation was
conducted at a frequency between two mode shapes with phase difference of 90◦:a)
free-free boundary condition, 241Hz b) clamped-free boundary condition, 285Hz,
c) clamped-clamped boundary conditions, 258Hz. . . . . . . . . . . . . . . . . . . 62

xi



3.12 Comparison of mechanical waves of a free-free beam obtained experimentally and
theoretically at 243Hz and phase difference of 90◦ between the two excitation
signals: (a) traveling wave envelope, (b) response of the wave according to the
Hilbert’s approach, and (c) response of the wave according to the Fourier’s method. 63

3.13 Comparison of mechanical waves of a clamped-free beam obtained experimentally
and theoretically at 243Hz and phase difference of 90◦ between the two excitation
signals: (a) traveling wave envelope, (b) response of the wave according to the
Hilbert’s approach, and (c) response of the wave according to the Fourier’s method. 64

3.14 Comparison of mechanical waves of a clamped-free beam obtained experimentally
and theoretically at 243Hz and phase difference of 90◦ between the two excitation
signals: (a) traveling wave envelope, (b) response of the wave according to the
Hilbert’s approach, and (c) response of the wave according to the Fourier’s method. 65

3.15 Parametric study and cost function analysis of a free-free beam. Red color – wave
travels from right to left, blue color – wave travels from left to right. . . . . . . . . 66

3.16 Theoretical and experimental results of the cost function of the free-free beam
between the 2nd and 3rd mode shapes. (a) Cost Function window between two
mode shapes, (b) Theoretical and experimental results of the CF as a function of
frequency and phase angle 90◦, (c) Theoretical and experimental results of the
minimal CF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.17 Theoretical and experimental results of the cost function of the clamped-free beam
between the 4th and 5th mode shapes. (a) Cost Function window between two
mode shapes, (b) Theoretical and experimental results of the CF as a function of
frequency and phase angle 90◦, (c) Theoretical and experimental results of the
minimal CF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.18 Theoretical and experimental results of the cost function of the clamped-clamped
beam between the 2nd and 3rd mode shapes. (a) Cost Function window between
two mode shapes, (b) Theoretical and experimental results of the CF as a function
of frequency and phase angle 90◦, (c) Theoretical and experimental results of the
minimal CF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.19 Comparison between the Hilbert’s and Fourier’s approach at 243Hz (a,c,e) and
720Hz (b,d,f) : (a and b) Hybrid wave waveform, (c and d) CF as a function of
points taken across the structure. Points corresponding to the maxima, minima and
arbitrary in between the two are presented. Fourier’s approach, (e and f) CF as a
function of points taken across the structure, Hilbert’s approach . . . . . . . . . . . 71

3.20 Sinusoidal combination of the ordinary trigonometric part of mode shapes of free-
free beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xii



3.21 Sinusoidal combination of the ordinary trigonometric part of mode shapes of clamped-
free beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.22 Sinusoidal combination of the ordinary trigonometric part of mode shapes of clamped-
clamped beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.23 Contribution of the individual trigonometric and hyperbolic parts to generate trav-
eling waves in free-free (between 2nd and 3rd modes ), clamped-free (between 3rd

and 4th modes ) and clamped-clamped (between 2nd and 3rd modes ) boundary
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.24 Comparison of the phase relationship of a free-free beam between 3rd and 4th

modes using, (a) the combination of the trigonometric part of mode shapes i.e.
X trig.

a cos
(
ω f t− π

4

)
+X trig.

b cos
(
ω f t + π

4

)
(no piezoelectric), (b) the complete mode

shapes of the beam including the boundary effects (no piezoelectric), (c) the full
model of the beam including piezoelectric effects. . . . . . . . . . . . . . . . . . . 77

3.25 Comparison of the phase relationship of a clamped-clamped beam between 3rd

and 4th modes using, (a) the combination of the trigonometric part of mode shapes
i.e. X trig.

a cos
(
ω f t− π

4

)
+X trig.

b cos
(
ω f t + π

4

)
(no piezoelectric), (b) the complete

mode shapes of the beam including the boundary effects (no piezoelectric), (c) the
full model of the beam including piezoelectric effects. . . . . . . . . . . . . . . . . 78

3.26 Comparison of the phase relationship of a clamped-free beam between 3rd and
4th modes using, (a) the combination of the trigonometric part of mode shapes i.e.
X trig.

a cos
(
ω f t− π

4

)
+X trig.

b cos
(
ω f t + π

4

)
(no piezoelectric), (b) the complete mode

shapes of the beam including the boundary effects (no piezoelectric), (c) the full
model of the beam including piezoelectric effects. . . . . . . . . . . . . . . . . . . 79

3.27 Theoretical summation of individual traveling waves at two different tones. (Click
on the picture for the video to start). . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.28 Experimental summation of individual traveling waves at two different tones (130Hz

and 2584Hz). (Click on the picture for the video to start). . . . . . . . . . . . . . . 82

4.1 Experimental Setup: (a) rectangular plate with MFCs, (b) forces and moments
acting on a plate element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Experimental Setup: (a) a rectangular plate is suspended in air to simulate a free
boundary condition, (b) locations of four MFCs bounded on to this plate are shown
with respect to the plate dimensions, (c) a scanning laser vibrometer measures the
response of the plate as it is excited by these MFCs. . . . . . . . . . . . . . . . . 91

4.3 Experimental Frequency Response Functions (FRFs) are compared against the
LMS polymax fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiii



4.4 Experimental operational deflection shapes as measured by the Polytec SLDV. . . 93

4.5 Experimental damping estimates based on H1 formulation . . . . . . . . . . . . . . 95

4.6 Simulated eigenvalues and eigenvectors of the damped plate model are compared
against corresponding experimental values through the % error in eigenvalue pre-
diction (purple) and MAC (red) respectively . . . . . . . . . . . . . . . . . . . . . 96

4.7 RMS contour plot and wave envelope plot for standing and traveling waves. . . . . 99

4.8 Comparing experimental and simulated RMS velocity contours of the plate at
546Hz and 555Hz respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.9 Experimental results of plate when excited at with MFCs A and D. . . . . . . . . 100

4.10 Time frames of wave progression along length of the plate at times ={0,T/4,T/2,3T/4}
for 448Hz, 546Hz, 635Hz, and 708Hz based on experimental data obtained when
the plate is excited by MFC A and D. (T is the time period of the wave at each
respective frequencies.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.11 Experimental traveling wave phenomenon in the plate when excited by MFC A
and B at 635Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.12 FE nodes of the plate and the location of the piezo-patches. . . . . . . . . . . . . . 108

4.13 Contour plot represents the RMS velocity profile of the plate at 546Hz when actu-
ated by two MFCs. Multiple ellipses are generated from the velocity of different
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.14 A schematic representation of generation of an ellipse from the complex magnitude
of the points along a line on the plate. . . . . . . . . . . . . . . . . . . . . . . . . 110

4.15 Bode plot comparison between the full FE mode, the stable and the unstable parts. 115

4.16 Comparison between the bode plot and frequency response of the plate due to chirp
voltage input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.17 Comparison of experimental and simulated operational deflection shapes due to
chirp input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.18 Comparison between the ellipse fits generated experimentally and simulations. . . 118

4.19 Singular values of Reachability and Observability gramians, and Hankel singular
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.20 Ranking of the reachability energy of the first 40 states among the whole spectrum. 120

4.21 Ranking of the observability energy of the first 40 states among the whole spec-
trum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.22 Ranking of the reachability and observability energies of the first 40 states on a
balanced basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.23 Effect of in-range and out-of-range eigen-solutions in a ROM of size 132 in the
frequency range up to 3200Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xiv



4.24 Relative errors in eigenvalues models reduced through Balanced truncation and
IRKA against the stable model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.25 Comparison between the ellipse fits generated through full stable model and mod-
els reduced through Balanced truncation and IRKA. . . . . . . . . . . . . . . . . 127

4.26 Comparison of FRFs generated by the full stable model (size:4946), Balanced trun-
cation based ROM (size:132) and IRKA based ROM (size:132). . . . . . . . . . . 129

4.27 Change in iterative error over iterations of differently initialized IRKA plots of size
132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.28 Bode plots of differently initialized IRKA plots of size 132 in the frequency range
up to 3200Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.29 The modeshapes of the 9th and the 10th resonant frequencies of the plate. The
spatial assumptions that support the generalized theory of traveling waves is also
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.30 Plate response when excited at location A and B with a 635Hz signal (Click on the
picture for the video to start). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.31 Plate response when excited at location A and C with a 635Hz signal (Click on the
picture for the video to start). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.32 The modeshapes of the 10th and the 11th resonant frequencies of the plate. The
spatial assumptions that support the generalized theory of traveling waves is also
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.33 Plate response when excited at location A and B with a 708Hz signal (Click on the
picture for the video to start). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.34 Plate response when excited at location A and C with a 708Hz signal (Click on the
picture for the video to start) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.35 The modeshapes of the 8th and the 9th resonant frequencies of the plate. The spatial
assumptions that support the generalized theory of traveling waves is also shown. . 141

4.36 Plate response when excited at location A and B with a 546Hz signal (Click on the
picture for the video to start). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.37 Plate response when excited at location A and C with a 546Hz signal (Click on the
picture for the video to start). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1 Method for determining the nature of the traveling wave in the time and frequency
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 (A) Test hardware with PZT elements and Accelerometer placement is shown with
(B) a detailed view and (C) a view of the vertical test configuration. . . . . . . . . 147

xv



5.3 (a) (A) Finite Element Model of the Cylinder with (B) Mode one at 107 Hz and
(C) Mode two 300 Hz; (b) FEA loading applied at a frequency of (ω) with a phase
shift (φ ) of 0◦ in the cylindrical coordinate system. . . . . . . . . . . . . . . . . . 148

5.4 Time data response of the standing wave excitation at the first two breathing modes
at (a) 106Hz and, (b) 300Hz from FE model, Frequency Response spectrum at (c)
106Hz and, (d) 300Hz and the real and imaginary elliptical curves at the peak
response for every FE-node using the simulated time data at (e) 106Hz and, (f)
300Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5 (a) Simulated time data response of the traveling wave excitation at 200 Hz, (b)
Frequency Response for the traveling wave at 200 Hz as well as the magnitude and
phase of the peak response (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6 Simulated ellipses of the response at the peak excitation at 200Hz in the (a) cylin-
drical direction and (b) longitudinal direction. . . . . . . . . . . . . . . . . . . . . 152

5.7 Fe model based time history responses at 203Hz with a phase difference of (a) 0◦,
(b) 45◦, (c) 90◦, (d) 105◦, (e) 120◦, (f) 135◦, and (g) 180◦. . . . . . . . . . . . . . . 153

5.8 Normalized ellipse comparison between experiments and FE simulations at 203Hz

with a phase difference of (a) 0◦, (b) 45◦, (c) 90◦, (d) 105◦, (e) 120◦, (f) 135◦, and
(g) 180◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.9 Simulated ellipses of the response at the peak excitation at 105Hz in the (a) cylin-
drical direction and (b) longitudinal direction. . . . . . . . . . . . . . . . . . . . . 155

5.10 Simulated ellipses of the response at the peak excitation at 105Hz in the (a) cylin-
drical direction and (b) longitudinal direction. . . . . . . . . . . . . . . . . . . . . 156

5.11 Traveling waves expressed as a summation of pairs of mode shapes. (Click on the
picture for the video to start). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1 Propulsion based on traveling waves in structures. (Click on the picture for the
video to start). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Cylindrical traveling wave generate vortices in the fluid surrounding it. (Click on
the picture for the video to start). . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 Traveling waves generated in a helmet viser using a single MFC (Click on the
picture for the video to start). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

xvi



List of Tables

1.1 Broad review of applications of waves over the years. . . . . . . . . . . . . . . . . 2

2.1 Mode shapes of beam under various boundary conditions [1]. . . . . . . . . . . . . 18
2.2 Phase relationships and the resulting coefficient values. . . . . . . . . . . . . . . . 25
2.3 Effect of location on the amplitude of the traveling waves. . . . . . . . . . . . . . 34

3.1 Structural properties of the beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Comparison of eigenvalues of a free-free beam. . . . . . . . . . . . . . . . . . . . 56
3.3 Comparison of eigenvalues of a clamped-free beam . . . . . . . . . . . . . . . . . 57
3.4 Comparison of eigenvalues of a clamped-clamped beam. . . . . . . . . . . . . . . 58

4.1 Material properties for the augmented PZT-adhesive-beam system [2]. . . . . . . . 90
4.2 Error between the full FE model- G(s) and the stable model- Gs(s). . . . . . . . . 114
4.3 Error between the stable model- Gs(s) and the reachability based ROM- Gr(s)

(r=900). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4 Error between the stable model- Gs(s) and the observability based ROM- Gr(s)

(r=2300). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.5 Error between the stable model- Gs(s) and the balanced truncation based ROM-

Gr(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.6 Error between the stable model- Gs(s) and the IRKA based ROM- Gr(s) after 20

iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.7 Error of IRKA based ROMs of size 132, initiated by different approaches and after

50 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xvii



Nomenclature

Acronyms

CF Cost Function

FRF Frequency Response Function

FFT Fast Fourier Transform

MAC Modal Assurance Criterion

MFC Macro-Fiber-Composite

PZT Piezo-ceramics

PDE Partial Differential Equation

SLDV Scanning Laser Doppler Vibrometer

IRKA Iterative Rational Krylov Algorithm

FEM Finite Element Model

SV D Singular Value Decomposition

FSI Fluid Structure Interaction

Symbolic Notation

w(x, t) Response of the structure at a location ’x’ and time ’t’

ω f Forcing frequency in rad/s

ω Frequency in rad/s

ζ Damping coefficient

xviii



Φ(x) or X(x) Spatial solution or analytical mode shape

Φ̃(x) Normalized analytical mode shape

Y,E Young’s modulus

H(x) Heaviside function

δ (x) Dirac-delta function

φ Phase difference between two forces in radians

X trig. The ordinary trigonometric part of the mode shape X(x)

Xhype. The hyperbolic trigonometric part of the mode shape X(x)

W1,W2,W3,W4 The four traveling wave components

H1,H2 Types of transfer functions

α,β Proportional damping coefficients

βn and λn Wave-number and wave-length of modeshapes of the beam

xix



Chapter 1

Introduction

1.1 Introduction

Waves in a finite media has been an area of research for several decades [3–9]; in some cases
researchers have tried to subdue the presence of waves in a structure [10], while in others waves
are intentionally generated and harnessed [11]. Research since as late as 1950’s [12–14] has tried to
analyze and understand the occurrence of waves in nature and these studies have been instrumental
in the conceptual development of the present work. The goal of this research is to understand
waves to determine, generate and design 1D and 2D solid structures for traveling waves. Therefore
this work aims to study how mechanical waves are developed in finite structures and identify the
factors that influence wave characteristics. The proposed research will consolidate the outcomes
and develop a structural framework that will aid with the design of adaptable structural systems
built for the purpose. The present work aims to generate and harness structural traveling waves
for various applications. As a first step, the occurrence of such waves in nature and some of the
potential areas of application where traveling waves can contribute is researched and presented in
the next section.

1.2 Motivation

Nature has been the inspiration and guide for a number of inventions, thus an attempt is made
to look at those commonplace phenomena that employ traveling waves. A representative review
investigating the widespread scope and application of the proposed research is emphasized in Table
1.1. The areas represented here have been loosely categorized into sections, but many of them share
multiple categories and the generalized concept of waves is clearly shared by all. What has taken
place in these categories and what they have to offer for our research is further explained in the
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Micro Mixing Cochlear Material Aquatic Wave Piezo
organisms applications phenomenon transport animals manipulation devices
[13, 15–26] [27–31] [32–40] [41–46] [47–55] [56–66] [67–70]

Table 1.1: Broad review of applications of waves over the years.

following subsections.

1.2.1 Swimming applications

One of the most easily visualized areas where waves occur in nature is the undulatory motion of
aquatic animals and micro-organisms. In these bio-mechanisms there is a oscillatory locomotion
which results in propulsion as the motion is accompanied by energy transfer from one point to
another [12, 13, 15, 16, 18–20, 23, 71]. Previous studies have shown that many microorganisms in-
cluding spermatozoa and forms of bacteria/ protozoa, vibrate and twist hair-like structures known
as flagella or cilia to swim [13, 15, 16]. In these microorganisms a net translational thrust is devel-
oped as a wave is transmitted from its head towards its tail [17]. It is shown that in these organisms
the direction of the motion of the organism depends on the ratio of tangential viscous force to the
normal viscous force. This results in organisms which swim in the same direction as that of the
wave, and in contrast, there are others which have opposing directions of the overall motion and
the wave [18,19,22]. Some sphere-shaped-micro-organisms such as the cyano-bacteria do not have
additional propulsion units like the flagella. It is a type of bacterium, which is driven by the surface
flow created by the tangential waves that travel along the outer cell membrane. Researchers have
tried to numerically and experimentally simulate the fluidic behavior due to the normal or tangen-
tial waves to the surface or the combination of the two [20, 24, 25, 71–75]. These are some of the
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most simplistic phenomena in terms of wave generation in symmetric structures.

Such studies have been carried out even in macro-scale; wherein the swimming patterns of
aquatic animals have been of much interest in the research community [47, 52–54]. There are
many research papers identifying the type of waves in aquatic animals [50, 51, 76–78] and then
predicting their propulsive phenomena [26, 79–84]. Lighthill in his 1960 research paper [76] has
shown that, theoretically, standing waves in cylindrical structures are highly inefficient to generate
propulsive thrust. Additionally, this work has also shown that traveling waves in cylindrical struc-
tures can result in a maximum Froude efficient of 90% compared to a maximum efficiency of 50%
in cylindrical structures with standing waves.

Recent years have also seen a rise in the replication of the propulsive capabilities of these
animals in aquatic robots. The use of smart materials to actuate and mimic the fin and tail char-
acteristics of a fish has been attempted in recent times [48–50, 85–93]. In most of these studies,
the undulatory motion of these aquatic robots is achieved by integrating the fin of the robot into
multiple segments and syncing the oscillatory motion of individual segments to replicate traveling
waves [94]. Although substantial of research is taking place in these areas, most of these attempts
do not create pure traveling waves in the structure or develop a framework to generate waves.
The present work would pave way for development of solid state structures with higher propulsive
characteristics.

1.2.2 Cochlear phenomenon

Another bio-mechanism which uses waves can be see in the ear, where acoustic pressure waves
that reach any mammalian ear, actuates the eardrum, which is then transmitted via the middle
ear to the inner ear (or the cochlea) [32, 33, 95–97]. The cochlea’s sensory unit, also known as
the organ of Corti, propagates this sound pressure signal through the basilar membrane (within
the Cochlea) as a traveling wave. The propagation of the displacement wave through the basilar
membrane is facilitated by the biological fluid-structural coupling [34–36]. The oto-acoustic emis-
sions within the mammalian ear display complex physics that harness the potential of the fluidic
coupling mechanism in order to propagate displacement waves. Researchers have shown that the
cochlear mechanism to engage multiple frequency traveling waves in the cochlear fluid can be
replicated as a system with variable structural stiffness [37–39, 98–101]. The non-linear traveling
wave generation and transmission in a cochlea sheds light on the importance of structural design
in the propulsive characteristics of a structure. The use of adaptive design to indirectly affect the
mechanical impedance distribution and thereby the wave propagation in the structure is a control
variable to be studied in this work.

There are many other nature-derived mechanisms for inspiration, such as birds, acoustics,
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oceans, etc. that have waves with different functions or applications. But, none of the advance-
ment of research in these topics is focused on generation of structural waves, but rather concentrate
on mimicking their biological function. There are some other research areas which are not bio-
inspired but analyze and manipulate structural waves. Some of these topics which are significant
to the present work in the areas of vibration suppression, propulsion etc. are discussed below.

1.2.3 Wave generation and vibration suppression

It is well know that a wave, when generated in a finite medium, reflects at its boundaries due to
the impedance change and thus results in stationary waves [1, 102–105]. Researchers have been
able to develop an extensive theoretical background on the role of structural impedance plays in
wave propagation [7, 106–108]. Such studies have led to two major fields: vibration suppression
and traveling wave generation. Vibration suppression application studies have made use of piezo-
electric actuators to dampen the wave propagation by having shunt electrical circuits control the
vibration of the structure [10, 109–111]. Such studies highlight the advantages and disadvantages
of the active, passive and hybrid theories to suppress vibrations [112–114]. In some cases re-
searchers have considered the use arrays of piezoelectric actuators to study the spatial damping
of waves [115–117]. In the generation of traveling waves the concept is to partially suppress the
vibrations such that the reflection due to impedance changes is dampened and traveling waves are
generated [63, 64, 118]. Researchers have studied experimental methodologies to quantify trav-
eling waves and improve the same [119–121]. Such studies actuate finite media such as beams
and plates with high stroke point actuators to develop waves in the structures. An active tuning
method has also been employed to sense the wave quality and develop pure traveling waves in
structures [62, 120, 122–133]. But most of the studies are not aimed at tapping the potential of
smart actuators and intelligent design.

1.2.4 Transportation or propulsion

The propulsive force developed by the wave also facilitates the transport of materials in various
trajectories and speeds. As the direction, speed and strength of progressing waves can be ma-
nipulated, this can also be used to transport material. Distributed manipulation systems employ
multiple actuators that coordinate to produce complex motion in order to transport an object [134].
Researchers have studied many forms of distributed manipulation based on in-plane vibration of
plates to an array of multiple robots etc. [135, 136]. Such manipulation generally involves re-
dundant actuators that waste tremendous amount of power [137]. The present technique, which
harnesses the use of solid-state waves on the structure, can address some of the concerns of a dis-
tributed manipulation system. Our method takes advantage of the host structure and its continuous
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nature to develop in essence an inherent distributed actuation system. In the proposed approach
the number of actuators employed is an order of magnitude less than the system presently used.
The proposed research is not confined by the medium of material i.e. this system can be used to
transport both solids and fluids alike.

On the mechanical side, the development of traveling waves has been investigated in order
to answer the age-old question, “Can carpets fly ?” [44, 138–140]. There are many attempts to
use the standing wave behavior of simple structures such as beams to generate motion that results
in propulsion of the structure in various media [45, 88, 141–143]. Such behavior can potentially
be used to mix fluids and transport particles in fluids [42, 43, 46]. However, the understanding
of the physics behind the generation and propagation of traveling waves in a controlled manner
is still lacking, and in the great majority of cases has ensued as result of trial and error or PID
controllers [69,144–146]. Without comprehensive understanding of the parameters that govern the
wave dynamics, it will be difficulty to adequately take advantage of the phenomenon.

Similar research is also very popular in acoustics to develop techniques that result in levitation
of objects [147–150]. With advances of the present technology in this field, acoustic standing
waves are generated by using multiple sources so that objects can levitate in air. But any maneuver
of these objects levitating in space requires propulsive forces generated by controlled acoustic
traveling waves. This is one of the ongoing research topics in this area.

Similarly, another research area where traveling waves have been very popular is in the develop-
ment of ultrasonic motors that are used in position stages [151–160]. In these applications traveling
waves are generated along the circumference of cylinders and this is used to generate rotary motion.
In many cases a phased actuation technique is used to generate such traveling waves [161–164].
In some cases a single phase between in actuators is used to generate waves [165–171]; but few
attempts have been made to understand the physics behind the generation of waves and optimizing
them.

Through this review, covering a wide range of applications that harness traveling waves, it
is easy to see the potential of traveling wave generating technology to contribute to each and
every field discussed earlier. In the next section a brief overview of traveling wave generation is
discussed.

1.3 Wave introduction and outline

The categories of waves can also be associated with energy transfer as in (a) traveling waves, which
carry energy across a distance of the medium and b) standing waves, in which energy remains asso-
ciated with a particular location. The schematic diagram, shown in Fig. 1.1, illustrates the concepts
of pure traveling waves, pure standing waves and a combination of the two. When a structure is ex-
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cited with a single force, waves are generated and are then reflected due to an impedance change at
its boundaries. For example, in the case of a clamped boundary condition and in the absence of any
dissipative forces, these reflected waves have the same magnitude as the incident wave, and they
travel in the direction opposite to the incident wave. The combination of both these waves generate
standing waves, w(x, t) = Asin(ωt− kx)±Bsin(ωt + kx), where amplitude A and B are equal in
magnitude. When a structure is excited at two points at the same frequency, but with a phase dif-
ference between them, part of the reflected wave is negated (as A 6= B) and correspondingly results
in a combination of a stationary wave and a traveling wave. The dominance of the traveling wave
over the standing wave behavior depends on two factors: the frequency of the excitation, which is
related to the structural response shape, and the fixed phase difference between the two inputs. In
order to fully understand the effect of the parameters (mainly frequency and phase) that contribute
towards wave propagation through solids, a theoretical framework is established and presented in
this work. Theoretical models for prediction and simulation of the dynamical response of a beams,
plates and cylinders are presented. These models provide a framework for actuation in order to
accomplish the generation of traveling waves. This study encompasses a theoretical and exper-

Figure 1.1: Conceptual description for the formation of the waves in finite medium.

imental analysis for the generation of mechanical waves through different boundary conditions:
free – free, clamped – free and clamped – clamped. In doing so, it illustrates the simple platform
for implementation and the role of control variables. Structures oscillate as a result of an exter-
nal energy input sources that influences their dynamic response. Thus, by tailoring the excitation
methodology it is possible to excite the structure in such a way that will result in the generation
of customized net mechanical waves. The work herein utilizes piezoelectric (PZT) elements as the
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excitation source for the structure of choice in order to maximize controllability and ease of use.

Generation of pure traveling waves in finite structure is a challenging task. Pure vibrational
waves are theoretically observed in infinite structures that do not have any boundaries. Introduction
of boundary conditions results in a change of mechanical impedance of the structure. This results in
the reflection of waves. Thus, it is not practical to generate such pure traveling waves in structures.
However, there have some some attempts to replicate the idea of a traveling or propagating wave.
Simply put, these studies try to generate steady state vibrational waves in structures that result in
net transfer of energy in one direction. So the critical part of such endeavors is the choice of forces
and boundary conditions on the finite structure.

The first attempts in this direction is derived from impedance matching concept in acoustics.
In these studies, the actuator excites a structure on one of its ends, inducing a wave traveling along
the structure and the energy of the wave is absorbed at the other end. The concept is similar
to a passive vibration isolator where the actuator’s mechanical impedance is matched with the
characteristic impedance of the structure. However, this approach is found to be inefficient and
impractical due to high energy losses. In another work [41], it was observed that when a beam was
excited by two sinusoidal forces acting at two different locations, but at a phase difference of 90◦,
a traveling wave was created. This is a result of the partial impedance matching at the excitation
points and partial cancellation of wave reflections from its boundaries. Other works [63,128] have
also focused on point forces provided by external systems such as shakers and piezo-based stack
actuators. More details on these methods are provided as a part of the discussion throughout the
thesis.

1.4 Wave identification

Mechanical waves, based on their behavior, can be classified as standing, traveling or hybrid (com-
bination of standing and traveling). A pure standing wave is associated with nodal points and only
transverse harmonic deflection, while the pure traveling wave does not contain any nodal points
and propagates with non-varying amplitude. In between is the special case of the hybrid wave,
which is a combined response of standing and traveling waves where the amplitude of the wave
propagates while oscillating transversely. Visually, when a wave is seen in motion, it is easy to
observe it’s dynamics and classify if its behavior resembles a standing wave or a traveling wave.
Still, it is very difficult to figure out the proportion of standing wave to that of traveling wave. Fur-
thermore, a better quantification which is more dependable and repeatable is required for accurate
classification of waves. There are two approaches in literature [63–65, 118, 172] that have been
used to classify waves: (1) wave envelope, (2) Fourier’s method. Fourier’s ellipses have also been
used to determine the wavelength of a traveling wave. In addition to these approaches, an intuitive
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wave identification method based on the Hilbert transform is developed as a part of the present
work. This details of three methods that are used to classify waves are discussed in this section. A
cost function (CF) is also developed based on each of these methods, which is later used to carry
out parametric studies. Additionally, recently another wave identification approach was developed
based on the 2D Fast Fourier Transform (FFT) approach [173]. However, as the present work does
not use this method for analysis, the details of this approach are not studied in this section.

1.4.1 Wave envelope

The differences between the types of waves can be observed by the wave envelope, which plots
the area swept by the wave over time (it can also be thought of as a displacement trace of all
movement over time). In the wave envelope, a sharp nodal point (no displacement) in the wave
envelope indicates a pure standing wave while no change in the maximum displacement of the
points along the length of the specimen suggests a pure traveling wave. In hybrid waves, there is
no clear nodal point and maximum displacements of the points along the length of the specimen are
varied. This is illustrated in Fig.1.2. In this figure, the different waves are obtained by simulating
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Figure 1.2: Schematic representation of different wave envelopes.

a single wavelength wave on a 1 m normalized structure in one physical structure. The equations
used to simulate these representative figures are given by,

Traveling wave : Sin(2πx−200πt),

Standing wave : 0.5Sin(2πx−200πt)+0.5Sin(2πx+200πt), (1.1)

Hybrid wave : 0.3Sin(2πx−200πt)+0.7Sin(2πx+200πt).
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Figure 1.3: Parameters of a wave envelope.

In standing waves, for this case, there are two nodal points as seen in this figure and the distance
between them is 0.5 m. The distance between two consecutive nodes is half of the wavelength. In
real applications the wavelength is frequency dependent, as most of the structures we are interested
in are dispersive in nature. This results in an inter-dependance between the frequency of excitation
(ω), the wave-length of the wave (λ ) and the speed of the wave (c). The exact relationship between
these parameters is dependent on various parameters of the structure such as geometry, material
properties, boundary conditions, etc.

In order to classify different waves, consider a general case of a hybrid wave and its wave
envelope, as shown in Fig 1.3. In general this plot consists of two curves representing the top
and bottom envelopes of the time histories of the wave, and these curves are symmetric over the
base line. The maxima and the minima of one of the curves are measured and are denoted as Ymax

and Ymin respectively. While, for a pure standing wave Ymin = 0 and for a pure traveling wave
Ymin = Ymax, for a hybrid wave Ymin 6= Ymin 6= 0. These conditions can be used to represent a cost
function (CF) as

CF =
Ymax−Ymin

Ymax +Ymin
. (1.2)

This cost function will be 0 for a pure traveling wave and 1 for a pure standing wave and a fraction
in between for a hybrid wave. For example, a value of 0.3 can be read as a hybrid wave which
has 70% traveling wave behavior and 30% standing wave characteristics. In other words, the wave
can be represented as the summation of the terms cos(kx∓ωt) whose coefficients are in the ratio
of 3:7. The resultant wave moves in the direction of the term dominated by the higher coefficient
value. This approach is the simplest of all the methods available for wave detection. However, this
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technique requires time data for a lot of spatial points, and it is not feasible to have such a large data
set in practical situations. Alternate approaches are discussed in the succeeding sections, where
ideally the time data of two points is sufficient to evaluate the cost function.

1.4.2 Hilbert’s approach

Hilbert’s approach is achieved in the time domain, where the response of any structure, such as
the free-free beam in this study, is represented in the complex plane. Through experiments, using
a laser scanning vibrometer or accelerometers, the response of the system is measured as a real
quantity. In order to obtain its orthogonal counterpart, i.e. the imaginary component, the signal
goes through a Hilbert’s transform described as,

wh(x, t) = w(x, t)+ iH(w(x, t)), (1.3)

where wh is the analytical response or analytic signal. This analytical response is the same as
the theoretical response of the system when the the PDE of the structure is derived using the
exponential form (e j(kx±ωt)) for the assumed solution.
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Figure 1.4: Schematic Hilbert’s representations of different waves.

Following this approach, the response of an individual point on the structure as a function
of time will result in a circle in the complex plane. This is achieved as follows. In Hilbert’s
transform, the trajectory of each point can be represented by a sinusoidal signal (w(x, t)) and its
Hilbert transformed signal iH(w(x, t)) can also be represented as a sinusoidal wave, but with a
phase difference of 90◦. When the analytical signal is plotted in the complex plane the response
is represented as a circle with radius equal to the amplitude of vibration. Therefore, in a scenario
where a pure traveling wave exists, the amplitude of all the points across the structure are the same,
hence the result is shown with multiple circles characterized with equal radii (all lying on top of
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Figure 1.5: Parameters of Hilbert’s approach.

each other). Unlike pure traveling waves, pure standing waves have points with zero displacements
(nodal points), maximum displacements, and points with amplitudes in between. The results for
pure standing wave appear as a filled-in circle when presented in the complex plane. In the case
of hybrid waves, the minimum amplitude is never zero since nodal points do not exist,resulting in
torus shape. This phenomena can be seen in Fig. 1.4.

Similar to the previous wave envelope approach, a cost function can be developed for the
Hilbert’s approach. In this case the CF is related to the maximum and the minimum radii of the
curves shown in Fig. 1.5. The cost function can be written as

CF =
Rmax−Rmin

Rmax +Rmin
. (1.4)

This approach just gives the information on the type of wave but does not give any extra informa-
tion, such as the direction of the wave or the wave number of the structure. This approach also
requires a large number of spatial points to detect wave type.

1.4.3 Fourier’s approach

Contrary to a Hilbert’s approach, the Fourier’s approach also represents the response of the system
in the complex plane, but in the frequency domain. Since all the points are excited at one frequency,
the phase and the magnitude of the Fast Fourier Transform (FFT) peak at individual points is of
interest. Unlike the Hilbert approach, where a single point traces a circle as a function of time,
here, the phase and magnitude of vibration of a point is measured and plotted as a single value in
the complex plane. Accordingly, when a pure traveling wave occurs, the amplitudes and phase
differences between the consecutive points along the structure form a circle. This is due to the fact
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Figure 1.6: Schematic of Fourier’s representations of different waves.
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Figure 1.7: Parameters of Fourier’s approach.

that there exists phase differences between the consecutive points, hence there is a propagating
wave, and since their amplitudes are identical the points lie on a circle. When a standing wave
is generated, the phase is either 0◦ or 180◦, and the FFT magnitudes are different, resulting in a
straight line, in the complex plane. Lastly, for the hybrid wave case, the existent phase difference
and different magnitudes of the FFT will result in a response that is represented by an ellipse. Due
to the phase change, the points in the complex plane will not lie along a straight line but rather
on an ellipse. If the effect of traveling wave is dominating, the ellipse foci will move closer and
approach a circle; conversely, if the standing wave is dominating the response, the ellipse flattens
and moves towards the shape of a straight line. These scenarios can be observed in Fig 1.6.

In this case the CF is related to the major and the minor radii of the elliptical curve shown in
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Fig. 1.7. The cost function can be written as

CF =
Rma jor−Rminor

Rma jor +Rminor
. (1.5)

The ellipse can be fit using regression techniques based on a comparatively smaller number of
spatial points, and the major and minor radii are found. This is the advantage of this approach.
When there is more than one wavelength in the portion of the structure measured, multiple ellipses
will emerge.

1.5 Thesis Outline

The research discussed in the present thesis is divided into six major chapters. A brief literature
survey and an introduction to steady state waves is discussed in the present chapter. The next
chapter lays an analytical foundation to traveling wave generation in finite structures. The question,
can perpetual traveling waves exist in finite structures? is explored in this section. A theoretical
background is initially developed to study the various parameters that influence the dynamics of
one dimensional (1D) beam structures. Later parts of this chapter also extend the results of 1D
systems to more complex structures.

In chapter 3, these findings are used to explore in more detail the wave generation in the case
of spatially distributed excitation through piezo-ceramic wafers. In this chapter piezo-ceramics are
bonded to finite structures with various boundary conditions, such as clamped-clamped, clamped-
free and free-free. The use of piezo-ceramics to generate these waves will provide a mechanism
that is more versatile, less intrusive, easier to install, controllable over a larger frequency range and
an application-friendly way of generating wave propagation in structural components. The work in
this chapter will provide the basis required for understanding the fundamentals of executing wave
propagation, as the models can be easily extended towards maturing variety of applications.

Chapter 4 is the basis for investigating 2D bending waves in plates. A finite element model is
formulated to simulate the dynamics of the plate when actuated by multiple piezo-ceramics. The
FE model is used to generate traveling waves by exciting the plate at multiple locations and at
multiple frequencies of excitation. These results are validated through experiments. Projection
based reduced models are developed in the later sections of this chapter. The plate dynamics are
simulated in the state-space domain, and reduced models are tested for steady state frequency and
time responses.

In chapter 5, cylindrical traveling waves are investigated. Cylinders provide insight into unique
dynamics (i.e.,symmetric and non-symmetric modes) that have yet to be fully defined for two and
three dimensional systems. This chapter extends the research findings of 1D beam structures and
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applies it to 2D traveling waves in a symmetric cylindrical structure. The work herein will focus
on the generation and characterization of traveling waves that propagate along the circumferential
direction. The coupled system, given by a free-free cylinder with multiple piezoelectric actuator
(PZT) patches, is used to evaluate several traveling wave modes in the cylinder. Finite Element
Modeling (FEM), in conjunction with experiments, is conducted to provide a comprehensive un-
derstanding of the generation and propagation behavior of the traveling wave modes in a thin
walled cylinder. The last chapter discusses the potential application of the present work and some
of the future directions of the research discussed in this thesis.
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Chapter 2

Theoretical analysis of traveling waves

2.1 Introduction

In the previous chapter the characteristics of pure traveling waves, pure standing waves and hybrid
waves have been discussed. In this chapter, we develop a theoretical basis that leverages structural
vibrations to generate steady state traveling waves. Initially, an analytical framework to study the
response in 1D structures is developed on a simplified, yet representative model of a 1D beam
with free-free boundary conditions. The 1D beam is simultaneously excited with two point forces
with a phase difference between them. The forcing parameters are varied to investigate (a) the
conditions that result in steady state traveling waves in beams, and (b) the physical limits on the
optimal quality of the traveling waves. In the later parts of this chapter, a generalized theory that
explores traveling wave generation in higher dimensional structures is developed.

2.2 Traveling waves in a 1-D beam due to point forces

In literature [132, 133], there are some studies that discuss the physics behind traveling waves in
strings. However, strings have practical problems that limit experimental study of their dynamics
to multiple inputs. So, in this present study, we have focused our attention to analytically study
traveling waves in beams. There have been some attempts in literature [66, 68] to experimentally
generate traveling waves in beams. However, there have been no theoretical investigations that
analyze steady state traveling waves in 1D structures excited with multiple forces. This is partially
due to the complexity in coupling the beam responses due to multiple inputs in order to study the
influence of different parameters. There have been efforts to describe waves in 1D beams as a
combination of two dominant modes [41]. However, most of these studies are phenomenological
in nature and do not have a concrete theoretical basis. In the present study, we initially start with
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a simplified model and analyze traveling wave generation. Later, some of the assumptions are
relaxed and a broader framework to understand traveling waves in structures is developed.

2.2.1 Homogeneous equation-of-motion of a beam

Consider a beam of length L having a uniform cross-sectional area A with bilateral symmetry as
shown in Figure 2.1. The beam has a density of ρ and a flexural stiffness of EI, where E is the
Young’s elastic modulus for the beam and I is the cross-sectional area moment-of-inertia. Based on
Euler-Bernoulli beam assumptions, the forces and moments acting on this beam in the non-forcing
condition are computed, and the homogeneous equation of motion describing the deflection of the
beam w(x, t) is given by, [1],

∂ 2w(x, t)
∂ t2 +

(
EI
ρA

)
∂ 4w(x, t)

∂x4 = 0. (2.1)

l2

l1

L

𝐹1𝑐𝑜𝑠(𝜔𝑓𝑡) 𝐹2𝑐𝑜𝑠(𝜔𝑓𝑡 + ϕ)

Figure 2.1: Two point forces are applied to a free-free beam at two different locations.

This equation is solved based on the separation-of-variables approach, where the spatial and
the temporal part of the out-of-plane deformation w(x, t) are decoupled from each other. Thus, this
new form of the transverse displacement, w(x, t) = X(x)T (t), is substituted into the Eq. 2.1 and
further simplified to,

d4X(x)
dx4 −

(
ω2

c2

)
= 0,

d2T (t)
dt2 +ω

2T (t) = 0,

(2.2)

where ω2 is the choice of the separation constant, c=
√

EI
ρA

and β 4 =
ω2

c2 . Physically, β represents

the circular wave number or spatial frequency of the wave and is proportional to reciprocal of the
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wave length λ

(
i.e. β =

2π

λ

)
.

The spatial solution of the Eq. 2.2 is assumed to be in the form,

X(
x
L
) = a1sinβ

x
L
+a2cosβ

x
L
+a3sinhβ

x
L
+a4coshβ

x
L
, (2.3)

where the coefficients ai are determined by the boundary conditions of the beam. Further, for
the sake of simplicity the length of the beam, L, is assumed to be of unit length throughout this
analysis. These spatial solutions are also called the mode shapes of the beam. Each of the mode
shapes have a constant factor σn that is dependent on the boundary conditions of the beam [1].
However, for higher mode shapes, this constants can be approximated to 1, i.e., σn ≈ 1. Standard
mode shapes for various boundary conditions are tabulated in Table 2.1. Mathematically, all modes
shapes of the beam are a combination of two type of functions: an ordinary trigonometric part -
X trig. and a hyperbolic trigonometric part - Xhype.. These two parts have two distinct functions
pertaining to the dynamics of the beam.

For instance, the hyperbolic part of the mode shape can be simplified as,

Xhype. = coshβnx−σnsinhβnx,

≈ coshβnx− sinhβnx,

= e−βnx.

(2.4)

As βn is a positive real number, if the value of x increases from 0 to 1 then the value of e−βnx

reduces from 1 to 0. Additionally, the value of βn increases with n and hence, the hyperbolic part
of the mode shape tends to zero at a much faster rate in higher mode shapes. In other words, the
part of the mode shape Xhype. is only significant at the left boundary of the beam, where x→ 0.

Similarly, the other part of the mode shape, X trig. can be further simplified as,

X trig. = cosβnx−σnsinβnx,

≈ cosβnx− sinβnx,

=
√

2cos
(

βnx+
π

4

)
.

(2.5)

The values of x where cos
(

βnx+
π

4

)
= 0 are called the strain nodes of the mode shape. This

part is a sinusoidal function of the wave number βn, and hence there is a specific location of the
beam where the trigonometric part can be neglected. In other words, the term X trig. is the major
contributor of the dynamics of the beam. This will be used in the following sections to derive a
systematic approach to wave generation.
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Table 2.1: Mode shapes of beam under various boundary conditions [1].

Boundary Spatial solution
condition X(x) σn value of σn

Free-free

coshβnx+ cosβnx

σn =
coshβnL− cosβnL
sinhβnL− sinβnL

0.9825
-σn(sinhβnx+ sinβnx) 1.0008

0.9999
X trig. = cosβnx−σnsinβnx 1.0000

Xhype. = coshβnx−σnsinhβnx 0.9999
X(x) = X trig.+Xhype. 1 for n>5

Clamped-free

coshβnx− cosβnx

σn =
sinhβnL− sinβnL
coshβnL+ cosβnL

0.7341
-σn(sinhβnx− sinβnx) 1.0185

0.9992
X trig. = cosβnx−σnsinβnx 1.0000

Xhype. = coshβnx−σnsinhβnx 1.0000
X(x) =−X trig.+Xhype. 1 for n>5

Clamped-
clamped

coshβnx− cosβnx

σn =
coshβnL− cosβnL
sinhβnL− sinβnL

0.9825
-σn(sinhβnx− sinβnx) 1.0008

0.9999
X trig. = cosβnx−σnsinβnx 1.0000

Xhype. = coshβnx−σnsinhβnx 1.0000
X(x) =−X trig.+Xhype. 1 for n>5

Clamped-
pinned

coshβnx− cosβnx

σn =
coshβnL− cosβnL
sinhβnL− sinβnL

1.0008
-σn(sinhβnx− sinβnx) 1 for n>1

X trig. = cosβnx−σnsinβnx
Xhype. = coshβnx−σnsinhβnx

X(x) =−X trig.+Xhype.

Clamped-
sliding

coshβnx− cosβnx

σn =
sinhβnL− sinβnL
coshβnL+ cosβnL

0.9825
-σn(sinhβnx− sinβnx) 1 for n>1

X trig. = cosβnx−σnsinβnx
Xhype. = coshβnx−σnsinhβnx

X(x) =−X trig.+Xhype.
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2.2.2 Forced response of the beam to two inputs

Let us now consider the scenario when two point forces F1cos(ω f t) and F2cos(ω f t +φ) are acting
on the beam at locations l1 and l2 respectively. The resulting forced equation of motion is given by

∂ 2w(x, t)
∂ t2 + c2 ∂ 4w(x, t)

∂x4 = F1cos(ω f t)δ (x− l1)+F2cos(ω f t +φ)δ (x− l2), (2.6)

where δ (x) is the Dirac-delta function. Using the separation of variables approach, this equation
can be further simplified into

(
T̈n(t)+ω

2
n Tn(t)

)
Xn(x) = F1cos(ω f t)δ (x− l1)+F2cos(ω f t +φ)δ (x− l2). (2.7)

Applying the orthogonality conditions of the mode shapes, we can further simplify this equation
into,

T̈n(t)+ω
2
n Tn(t) = F1cos(ω f t)Xn(l1)+F2cos(ω f t +φ)Xn(l2). (2.8)

Based on the superposition principle, the non-homogeneous solution of this ODE can be written
as summation of responses of the beam to two individual point forces,

Tn(t) =
F1cos(ω f t)Xn(l1)+F2cos(ω f t +φ)Xn(l2)

ω2
n −ω2

f
. (2.9)

The complete forced solution of the beam is the combination of the spatial and temporal solutions
and can be written as

w(x, t) =
∞

∑
n=1

Xn(x)Tn(t) =
∞

∑
n=1

Xn(x)
[
F1cos(ω f t)Xn(l1)+F2cos(ω f t +φ)Xn(l2)

]
ω2

n −ω2
f

. (2.10)

This equation describes the response of the beam as the summation of the individual modal con-
tributions. Each term of the modal contribution (Xn(x)) is dependent on two factors : (1) frequency

contribution
1

ω2
n −ω2

f
, (2) spatial contribution (Xn(l1) and Xn(l2)). Let us first study the frequency

contribution of the wave. If the beam is excited at a frequency ω f , then the frequency contribution
is the reciprocal of the term ω2

n −ω2
f . The relative distance between the natural frequencies and the

excitation frequency guides the individual modal contribution. The farther the natural frequencies
are from the frequency of excitation, the smaller the contribution. This principle is useful to further
simplify Eq. 2.10 in the next section.
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2.2.3 Two mode approximation

In this section, we analyze a part of the response of the beam as a summation of two modes. Let
us first evaluate the contribution of any two natural frequencies ωa and ωb. The only condition
is that ωa and ωb correspond to mode shapes that are symmetric and anti-symmetric respectively.
Let us also only incorporate the part of the mode shape that contributes to the whole dynamics
of the beam (X trig.) and neglect the hyperbolic part (Xhype.) of the mode shape. Based on these
approximations, the modal contribution (wab) of the modes a and b, part of the Eq. 2.10, is given
by,

wtrig.
ab (x, t) =

X trig.
a (x)(X trig.

a (l1)F1cos(ω f t)+X trig.
a (l2)F2cos(ω f t +φ))

ω2
a −ω2

f
(2.11)

+
X trig.

b (x)(X trig.
b (l1)F1cos(ω f t)+X trig.

b (l2)F2cos(ω f t +φ))

ω2
b −ω2

f
(2.12)

Now, let us first consider the case where the point forces on the beam are equal in magnitude and
are located at equal distances from each end of the beam. These two assumptions can be written
as,

Assumptions: (1) F1=F2=F , and (2) l2 = L− l1.

The assumption on the location of the point forces results in simplification of the spatial am-
plification factors as Xn(l2) = ±Xn(l1) (symmetric boundary conditions - free-free and clamped-
clamped). The sign of this amplification factor depends on the symmetry of the mode shapes. In
1-D systems, such as beams, the sign of this spatial amplification factors generally alternates after
every natural frequency. But in the present scenario, as we are considering the effect of two mode
shapes when one of them is symmetric and the other is anti-symmetric, without loss of generality,
we can write X trig.

a (l2) = X trig.
a (l1) and X trig.

b (l2) =−X trig.
b (l1). By substituting these assumptions,

Eq. 2.11 yields,

wtrig.
ab (x, t) =

X trig.
a (x)X trig.

a (l1)F(cos(ω f t)+ cos(ω f t +φ))

ω2
a −ω2

f

+
X trig.

b (x)X trig.
b (l1)F(cos(ω f t)− cos(ω f t +φ))

ω2
b −ω2

f

wtrig.
ab (x, t) =

FX trig.
a (l1)

ω2
a −ω2

f

(
X trig.

a (x)(cos(ω f t)+ cos(ω f t +φ))
)

+
FX trig.

a (l1)
ω2

a −ω2
f

(
X trig.

b (l1)(ω2
a −ω2

f )

X trig.
a (l1)(ω2

b −ω2
f )

X trig.
b (x)(cos(ω f t)− cos(ω f t +φ))

)
(2.13)
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At a constant frequency of excitation (ω f ), and a fixed location of excitation (l1 and l2), the
factors (ω2

a −ω2
f ), and (ω2

b −ω2
f ) are constants and independent of time t and space x. So, we

define two new constants P and C as,

P =
X trig.

b (l1)(ω2
a −ω2

f )

X trig.
a (l1)(ω2

b −ω2
f )
, C =

FX trig.
a (l1)√

2(ω2
a −ω2

f )
.

By substituting these constants, Eq. 2.13 can be further simplified as,

wtrig.
ab (x, t) =

√
2C
(

X trig.
a (x)(cos(ω f t)+ cos(ω f t +φ))+PX trig.

b (x)(cos(ω f t)− cos(ω f t +φ))
)
.

The trigonometric terms of this equation are expanded and like terms are rearranged as a combi-
nation of four mode shape excitations. This equation can be put in the form,

wtrig.
ab (x, t) =

√
2C (CAW1 +CBW2 +CCW3 +CDW4) ; (2.14)

where the beam response is a linear combination of four waves (Wi, i = 1, . . . ,4). The phase (φ)

information is present only in the coefficients (CA,CB,CC,CD) and the temporal part is only present
in the wave terms (Wi). Mathematically, these waves can be written as,

W1 = cos
(

βax+
π

4

)
cos
(

ω f t−
π

4

)
+ cos

(
βbx+

π

4

)
cos
(

ω f t +
π

4

)
,

=
1√
2

(
X trig.

a (x)cos
(

ω f t−
π

4

)
+X trig.

b (x)cos
(

ω f t +
π

4

))
,

(2.15)

W2 = cos
(

βax+
π

4

)
cos
(

ω f t +
π

4

)
+ cos

(
βbx+

π

4

)
cos
(

ω f t−
π

4

)
,

=
1√
2

(
X trig.

a (x)cos
(

ω f t +
π

4

)
+X trig.

b (x)cos
(

ω f t−
π

4

))
,

(2.16)

W3 = cos
(

βax+
π

4

)
cos
(

ω f t +
π

4

)
− cos

(
βbx+

π

4

)
cos
(

ω f t−
π

4

)
,

=
1√
2

(
X trig.

a (x)cos
(

ω f t +
π

4

)
−X trig.

b (x)cos
(

ω f t−
π

4

))
,

(2.17)

W4 = cos
(

βax+
π

4

)
cos
(

ω f t−
π

4

)
+ cos

(
βbx+

π

4

)
cos
(

ω f t +
π

4

)
,

=
1√
2

(
X trig.

a (x)cos
(

ω f t−
π

4

)
−X trig.

b (x)cos
(

ω f t +
π

4

))
.

(2.18)
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and the coefficients of these traveling waves are given by,

CA = (1+P)+(1−P)cosφ − (1+P)sinφ ,

CB = (1+P)+(1−P)cosφ +(1+P)sinφ ,

CC = (1−P)+(1+P)cosφ +(1−P)sinφ ,

CD = (1−P)+(1+P)cosφ − (1−P)sinφ .

(2.19)

As the phase information is limited to these coefficients; the linear combination of the waves can be
manipulated by changing the phase between the two point forces. Furthermore, these coefficients
also have the parameters corresponding to location and frequency. These are inherently present in
the parameters P and C. In other words, any change in the location or the frequency of excitation
is reflected as a change in the value of the non-dimensional factor P. Thus, this decomposition has
separated the variable factors such as locations, forcing frequency and forces in the coefficients
(C,CA,CB,CC,CD). Each of the wave terms is a linear combination of two different mode shapes
(X trig.

a (x) and X trig.
b (x)) oscillating at the same frequency (ω f ) but with a 90◦ phase difference (this

phase difference arises from the sin and the cos terms).

Furthermore, while the waves W1 and W3 are hybrid traveling waves that move in one direction
and waves W2 and W4 move in the opposite direction. Additionally, W1 and W3 have a phase
difference of 90◦,

W3(ω f t) =−
1√
2

(
X trig.

a (x)sin
(

ω f t−
π

4

)
+X trig.

b (x)sin
(

ω f t +
π

4

))
,

=W1

(
ω f t +

π

2

)
.

(2.20)

A similar relationship can be established between W2 and W4. Additionally, these waveforms (Wi)
are one of the many optimal combinations that result in traveling waves. Let us consider the
generalized waveform equation,

Wab = X trig.
a (x)sin

(
ω f t +α1

)
+X trig.

b (x)sin
(
ω f t +α2

)
(2.21)

where |α1−α2| is the phase difference between the two modes components. In Figure 2.2 the
range of these phase angles is varied from −180◦ to 180◦ and the cost function of the resulting
waves is evaluated. While the blue regions of this plot correspond to the combination that results
in traveling waves, the red regions in standing waves. To develop traveling waves, the phase angles
α1 and α2 are mutually related to each other. For example when α1 = 45◦, the waveform is a
traveling wave when α2 =−45◦ or 135◦. However, if α2 = 45◦ or −135◦, the resulting waveform
is a standing wave. Furthermore any phase angles which gives rise to |α1−α2|= 90◦ results in a
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Figure 2.2: Optimality of wave forms based on cost function of the wave.

traveling wave. Thus, the waveforms derived earlier (W1,W2,W3,W4) are one of many waveforms
that satisfy this phase relationship and therefore results in an optimal traveling wave.

This wave phenomena is further elucidated through an example. Let Xb and Xa be the sec-
ond and the third mode shapes of a free-free beam. Based on these mode shapes, there are eight
combinations of temporal solutions possible. Four of these solutions result in standing waves
and the rest result in traveling waves. These combinations are further explained through Fig-
ures 2.3 and 2.4. Based on the presence/absence of strain nodes in these figures, we can distin-
guish between a pure standing or hybrid traveling waves. In these figures, while a combination
of X trig.

a (x)cos
(
ω f t− π

4

)
−X trig.

b (x)cos
(
ω f t + π

4

)
resulted in a standing wave, the complementary

combination of X trig.
a (x)cos

(
ω f t− π

4

)
+X trig.

b (x)cos
(
ω f t + π

4

)
resulted in a hybrid traveling wave.

A similar trend is observed for all eight cases.

2.2.4 Phase relationship based on frequency of excitation

As we are interested in a net traveling wave generation, we further analyze Eq. 2.14, where the
beam response has a combination of the four-wave equations W1, W2, W3 and W4. If the coefficient
of all these equations are non-zero, then the net beam response is a component of traveling waves
in both directions. This results in a high standing wave content. However, if two of the four
coefficients ([CA and CC] or [CB and CD]) perish, then the net standing wave content is the same
as that of the individual waves (Wi). Thus, we can derive a phase relationship by equating each of
these coefficients to zero and solving the trigonometric equation. For example, when the coefficient
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Figure 2.3: Combination of W1, W2, W3 and W4 that results in standing waves for a free-free beam.
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Figure 2.4: Combination of W1, W2, W3 and W4 that results in traveling waves for a free-free beam.
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CA is equated to zero,

(1+P)+(1−P)cosφ − (1+P)sinφ = 0,

(1−P)cosφ = (1+P)(sinφ −1)
cosφ

sinφ −1
=

1+P
1−P

φ = tan−1
(

2P
P2−1

)
+2πn or − π

2
+2πn (2.22)

Similarly, other coefficients are equated to zero, and the corresponding phase conditions are
derived and are presented in Table 2.2. This phase relationship shows that for a given location
of forces and frequency of excitation, there is a phase relationship that makes two of the four
coefficients zero. The resulting response is a traveling wave amplified by the other two coefficients.
Based on this table, there are two phase relationships which result in traveling waves, and two
others which result in standing waves.

Table 2.2: Phase relationships and the resulting coefficient values.

φ CA CB CC CD Resulting wave

tan−1
(

2P
P2−1

)
+mπ 0

4P(P+1)
P2 +1

0
4P(P−1)

P2 +1
Traveling wave (⇐=)

−π

2
+2πn 2(1+P) 0 0 2(1−P) Standing wave

tan−1
(
− 2P

P2−1

)
+mπ

4P(P+1)
P2 +1

0
4P(P−1)

P2 +1
0 Traveling wave (=⇒)

π

2
+2πn 0 2(1+P) 2(1−P) 0 Standing wave

For example, a phase of φ = tan−1
(

2P
P2−1

)
+mπ results in CA =CC = 0, CB 6= 0 and CD 6= 0.

The variation of this phase is dependent on the location of the forces and frequency of excitation.
If X trig.

a (l1) = X trig.
b (l1), then the phase is only a function of frequency and this is plotted in Figure

2.5. This extinguishes the two wave components W1 and W3 and the resulting beam response is
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given by,

wtrig.
ab (x, t) =

√
2C (CBW2 +CDW4) ,

=
√

2C
4P

P2 +1
((P+1)W2 +(P−1)W4) ,

=C
4P

P2 +1

(
(P+1)Xa(x)cos

(
ω f t +

π

4

)
+(P+1)Xb(x)cos

(
ω f t−

π

4

))
+C

4P
P2 +1

(
(P−1)Xa(x)cos

(
ω f t−

π

4

)
− (P−1)Xb(x)cos

(
ω f t +

π

4

))
,

(2.23)
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Figure 2.5: Phase relationship that results in traveling waves in free-free beams.

The phase relation
(

tan−1
(
−2P

P2−1

))
that perishes the coefficients CB =CB = 0 is π radians

separated from the other phase relationship
(

tan−1
(

2P
P2−1

))
.

Special case : phase difference of
π

2
However, a phase relation of

π

2
results in CA =CD = 0 which in-turn results in the beam response

to be a linear combination of the waves W2 and W3. However, individually these waves move in
opposite directions. This results in a higher standing wave content in the wave. However, in the
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scenario when P→−1, CB→ 0 and when P→ 1, CC → 0. In these cases, only one of the four
coefficients is non zero and hence, the beam response is a traveling wave.

Special case : relating phase relationship with a cost function
For a special case, where X trig.

a (l1) = X trig.
b (l1) the phase relation is a function of the frequency of

excitation. The cost function is calculated by sweeping the frequency from ωa to ωb and the phase
from 0◦ to 180◦. The cost function contour is plotted in Figure 2.6. The phase trend that results
in a low cost function follows the phase trend shown in Figure 2.5. This shows that the phase
relationship established earlier results in an optimal traveling wave.

Figure 2.6: Variation of phase between two consecutive mode shapes using a cost function.

In this section, the effect of frequency of excitation on the phase relationship is studied. In the
next section, the effect of excitation location on the phase relationship will be discussed.

2.2.5 Phase relationship based on location of excitation

In the previous section, the spatial contribution based on the location of excitation is assumed

to be unity i.e. the ratio
X trig.

a (l1)

X trig.
b (l1)

= 1. In this section, we investigate the relation between the

phase angle and the location of excitation. The spatial part is defined as the ratio of the modal
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contributions at the location of excitation,

S =
X trig.

b (l1)

X trig.
a (l1)

. (2.24)

This factor is an integral part of the previously defined parameter P,

P =
X trig.

b (l1)(ω2
a −ω2

f )

X trig.
a (l1)(ω2

b −ω2
f )

= S
ω2

a −ω2
f

ω2
b −ω2

f
(2.25)

As the location of excitation is varied, the individual modal contributions Xa(l1) and Xb(l1) vary

x

Figure 2.7: Variation of spatial factor (S) over space (x) is expressed as a combination of a low
wavelength mode shape (blue) and a high wavelength mode shape (orange).

and the ratio S is also varied. When the location of excitation (l1) coincides with the strain nodes
of Xa(x), then the spatial factor S = 0. However, if location of excitation (l1) coincides with the

28



Figure 2.8: Effect of location on the phase relationship over a frequency range.

strain nodes of Xb(x), then the spatial factor |S| →∞. This is illustrated in Figure 2.7. In this figure
initially the modal contributions are equal and the ratio S is equal to 1. Then, both mode shapes
diverge from each other, and so does the factor S.

As the spatial factor S is varied from 0 to ∞, the value of P also changes from 0 to ∞. As a
result the phase relationship is also effected. This is shown in Figure 2.8. This figure plots the
phase relationship as the spatial factor S is varied from 10−2 to 102.

In this section, there is no condition on the choice on ‘a’ or ‘b’. In the next section, a special
case of mode combination where restrictions are applied on a and b is discussed.

2.2.6 Dominant mode contibution

In the literature [41], traveling waves are generated by considering the contribution of the two
nearest modes shapes. These modes generally correspond to the two natural frequencies, one larger
(ωb) and one smaller (ωa) than the frequency of excitation (ω f ). So, ωa < ω f < (ωb = ωa+1) and
the resulting beam response is given by,

wtrig.
ab (x, t) =C

4P
P2 +1

(
(P+1)Xa(x)cos

(
ω f t +

π

4

)
+(P+1)Xb(x)cos

(
ω f t−

π

4

))
+C

4P
P2 +1

(
(P−1)Xa(x)cos

(
ω f t−

π

4

)
− (P−1)Xb(x)cos

(
ω f t +

π

4

))
,

(2.26)
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wtrig.
ab (x, t) =C

4P
P2 +1

(
(P+1)cos

(
ω f t +

π

4

)
+(P−1)cos

(
ω f t−

π

4

))
Xa(x)

+C
4P

P2 +1

(
(P+1)cos

(
ω f t−

π

4

)
− (P−1)cos

(
ω f t +

π

4

))
Xb(x),

=C
2
√

2P
P2 +1

[
(
Pcos

(
ω f t
)
− sin

(
ω f t
))

Xa(x)+
(
Psin

(
ω f t
)
+ cos

(
ω f t
))

Xb(x)],

(2.27)

=
2FX trig.

a (l1)X
trig.
b (l1)(ω2

a −ω2
f )(ω

2
b −ω2

f )

(ω2
a −ω2

f )
2 +(ω2

b −ω2
f )

2

(
X trig.

b (l1)
(ω2

b −ω2
f )

cos
(
ω f t
)
− X trig.

a (l1)
(ω2

a −ω2
f )

sin
(
ω f t
))

Xa(x)

+
2FX trig.

a (l1)X
trig.
b (l1)(ω2

a −ω2
f )(ω

2
b −ω2

f )

(ω2
a −ω2

f )
2 +(ω2

b −ω2
f )

2

(
X trig.

b (l1)
(ω2

b −ω2
f )

sin
(
ω f t
)
+

X trig.
a (l1)

(ω2
a −ω2

f )
cos
(
ω f t
))

Xb(x).

(2.28)

For a given location of the forces, the two factors
1

(ω2
a −ω2

f )
and

1
(ω2

b −ω2
f )

determine the contri-

bution of the modes. The nearer the natural frequencies to the frequency of excitation, the higher
the mode contribution towards a traveling wave. Thus, if the natural frequencies are distributed
uniformly in the frequency spectrum, then the two nearest modes have the highest contribution
and can be approximated as a two-mode excitation. However, if multiple natural frequencies are
close to each other, then two-mode excitation approximation is an invalid approach. A multi-mode
excitation approach is needed to approximate the beam dynamics.

2.2.7 Amplitude of traveling waves

The other important factor of traveling waves is the amplitude of the traveling waves. To address
this question, for a given spatial location of the forces, the amplitude of the traveling waves have
to be compared with respect to the excitation frequency. Let

P1 =
X trig.

a (l1)
(ω2

a −ω2
f )
, and P2 =

X trig.
b (l1)

(ω2
b −ω2

f )

Then we can write, C =
FP1√

2
and PC =

FP2√
2

. this simplifies Eq. 2.23 into,

wtrig.
ab (x, t) =

√
2C

4P
P2 +1

((P+1)W2 +(P−1)W4) ,

=
4P1P2F
P2

1 +P2
2
((W2 +W4)P1 +(W2−W4)P2)

(2.29)
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This equation depends on the ratios

∣∣∣∣∣X trig.
a (l1)

X trig.
b (l1)

∣∣∣∣∣ and

∣∣∣∣∣ω2
a −ω2

f

ω2
b −ω2

f

∣∣∣∣∣. For a given spatial location

of the forces on the beam, the relative position of the frequency of excitation with respect to the
nearest natural frequencies have an influence on the amplitude of the traveling wave. For example,

in the case where X trig.
a (l1) = X trig.

b (l1) or

∣∣∣∣∣X trig.
a (l1)

X trig.
b (l1)

∣∣∣∣∣ = 1, the beam response further simplifies

into

wtrig.
ab (x, t) =

2F(X trig.
a (l1))3(ω2

a −ω2
f )(ω

2
b −ω2

f )

(ω2
a −ω2

f )
2 +(ω2

b −ω2
f )

2

×

[
cosω f t

(
Xa(x)

(ω2
b −ω2

f )
+

Xb(x)
(ω2

a −ω2
f )

)
+ sinω f t

(
Xb(x)

(ω2
b −ω2

f )
− Xa(x)

(ω2
a −ω2

f )

)] (2.30)

In this equation, the amplitude of the traveling wave is only dependent on the frequency of exci-
tation ω f . The factor 2F(X trig.

a (l1))3 is a constant for a given spatial location of excitation i.e. for
a given l1. Neglecting this factor, the dependence of the amplitude of the traveling wave on the
frequency of excitation is shown in Figure 2.9.
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Figure 2.9: Amplitude of traveling waves in free-free beams.

The frequency where the amplitude is maximum is equivalent to minimizing the function
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[(ω2
a −ω2

f )
2 +(ω2

b −ω2
f )

2] . Then, the optimal frequency is given by,

ω =

√
ω2

a +ω2
b

2
.

So in this scenario, we have

∣∣∣∣∣ω2
a −ω2

f

ω2
b −ω2

f

∣∣∣∣∣= 1 and

∣∣∣∣∣X trig.
a (l1)

X trig.
b (l1)

∣∣∣∣∣= 1 , which yields P =±1

wtrig.
ab =

8FXa(l1)
ω2

a +ω2
b

W2 or
8FXa(l1)
ω2

a +ω2
b

W4. (2.31)

As W2 and W4 are trigonometric functions with a phase difference, the amplitude of these functions
is equal to each other. Furthermore, a similar argument is also valid for the case when CB =CD = 0
where wab is a linear combination of W1 and W4.

It is interesting to note that although

∣∣∣∣∣X trig.
a (l1)

X trig.
b (l1)

∣∣∣∣∣ = 1, the amplitude of the traveling wave is

dependent on the value of X trig.
a (l1). To further elucidate the effect of location on the magnitude of

the traveling wave, consider the scenario when a = 7 and b = 8. The corresponding mode shapes
of are plotted in Figure 2.10. First step is to find the locations where X trig.

a (x) = X trig.
b (x),

X trig.
a (x) = X trig.

b (x),
√

2cos
(

βax+
π

4

)
=
√

2cos
(

βbx+
π

4

)
,

βax+
π

4
= 2mπ±

(
βbx+

π

4

)
,

(2.32)

where m is any non-negative integer. But for the free-free boundary condition, when n > 5 we can

approximate βn =
(2n+1)π

2
.

βax+
π

4
= 2mπ±

(
βbx+

π

4

)
,

(2a+1)π
2

x+
π

4
= 2mπ± (2a+3)π

2
x± π

4

(2.33)

Consider the positive sign,

(2a+1)π
2

x = 2mπ +
(2a+3)π

2
x

x =−2m
(2.34)
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The only allowed case is when m = 0, which yields x = 0. Similarly,

(2a+1)π
2

x+
π

4
= 2mπ± (2a+3)π

2
x± π

4
, (2.35)

Consider the negative sign,

(2a+1)π
2

x+
π

2
= 2mπ− (2a+3)π

2
x,

(2a+2)πx+
π

2
= 2mπ,

x =
4m−1
4a+4

.

(2.36)

Position along length of the beam
0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 d
is

pl
ac

em
en

t

-1.5

-1

-0.5

0

0.5

1

1.5

Modeshape 7 Modeshape 8

Figure 2.10: Mode shapes of a free-free beam corresponding to the 7th and 8th natural frequencies.

So, in the present case (a = 7) there are nine locations where X trig.
a (x) = X trig.

b (x). These values
are tabulated in Table 2.3. The next step is to compute the amplitude of the traveling wave using
Eq. 2.31. The amplitudes will be proportional to X trig.

a (l1). For example, in the present case

location 2 (x =
3

32
) has the higher amplitude of the traveling wave. This shows that the amplitude

of the traveling wave depends on the location of excitation.

2.2.8 Beam excitation at anti-symmetric locations

In the previous discussions, the locations of the forces applied are symmetric i.e. l2 = L− l1.
However, the discussion carried out is also valid for those locations which satisfy the following
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Table 2.3: Effect of location on the amplitude of the traveling waves.

loc 1 loc 2 loc 3 loc 4 loc 5 loc 6 loc 7 loc 8 loc 9

l1 0
3

32
7

32
11
32

15
32

19
32

23
32

27
32

31
32

l2 = L− l1 1
29
32

25
32

21
32

17
32

13
32

9
32

5
32

1
32

X trig.
a (l1) 1 -1.4 1.33 -1.21 1.05 -0.84 0.61 -0.34 0.07

Locations corresponds to the strain 
nodes of 7th or 8th mode shapes

Locations (l1) where 𝑋𝑎
𝑡𝑟𝑖𝑔.

𝑥 = 𝑋𝑏
𝑡𝑟𝑖𝑔.

𝑥

Corresponding locations of second force l2=L-l1

Figure 2.11: Variation of the location of the point forces on the beam for a given frequency.

relationships,

X trig.
a (l1) = X trig.

a (l2),

X trig.
b (l1) =−X trig.

b (l2).
(2.37)
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Figure 2.12: Comparison of the cost function and the maximum amplitude of the traveling wave
with location of the point force.

If X trig.
a is a symmetric mode shape and X trig.

b is a anti-symmetric mode shape, then all the loca-
tions l1 and l2 = L− l1 satisfy these relationships. These are the symmetrical excitation locations.
However, there are other locations which are anti-symmetric that also satisfy these relationships:

X trig.
a (l1) = X trig.

a (l2),

cos
(

βal1 +
π

4

)
= cos

(
βal2 +

π

4

)
,

(2.38)

βal1 +
π

4
= 2n1π±

(
βal2 +

π

4

)
,

l1− l2 =
2n1π

βa
, or l1 + l2 =

(4n1−1)π
2βa

.
(2.39)

Similarly,

X trig.
b (l1) =−X trig.

b (l2),

cos
(

βbl1 +
π

4

)
= cos

(
π−βbl2−

π

4

)
,

(2.40)

βbl1 +
π

4
= 2n2π±

(
π−βbl2−

π

4

)
,

l1− l2 =
(2n2−1)π

βb
, or l1 + l2 =

(4n2 +1)π
2βa

.
(2.41)

The wave lengths of the mode shapes are defined by the relation λi =
2π

βi
. Based on this equation,

the distance between the two point forces can be written as an integer multiple of the wavelengths

35



λa and λb: l2− l1 = 2n1λa or l2− l1 = (2n2− 1)λb. For free-free mode shapes, the locations of

the forces can be simplified by assuming b = a+ 1, which results in βa =
(2a+1)π

2
and βb =

(2a+3)π
2

. This yields,

l1 =
1
2

(
4n1−1
2a+1

+
4n2−2
2a+3

)
l2 =

1
2

(
4n1−1
2a+1

− 4n2−2
2a+3

)
,

or

l1 =
1
2

(
4n2 +1
2a+3

+
4n1

2a+1

)
l2 =

1
2

(
4n2 +1
2a+3

− 4n1

2a+1

)
,

(2.42)

where n1 and n2 can be any non-negative integers. The only limitation on the location of the
forces is that their values should lie in the range of [0,1]. For example, when a = 7, there are 10
asymmetrical locations which satisfy the above Eq.2.42. At these locations, the traveling waves are

generated using the phase relation φ = cos−1
(

P2−1
P2 +1

)
at the frequency ω =

√
ω2

a +ω2
b

2
. These

traveling waves are summarized and plotted in Figure 2.13, Figure 2.14 and Figure 2.15.

Cases 1-3 plotted in Figure 2.13 correspond to the locations separated by the wavelength of the
7th mode shape (λ7). In these cases, although the location of excitation is confined to one end of the
beam, there are waves traveling along the whole length of the beam. Furthermore, the amplitude
of the traveling wave is higher if these locations are closer to the center of the beam. This is much
easier to observe in Figure 2.14, which corresponds to the traveling waves due to point forces
at locations separated by 3λ7 in Cases 4-5 and 5λ7 in Case 6. The amplitudes of the traveling
waves increase from Cases 1-3 to Cases 6 by almost 10 times. Similarly, Figure 2.15 displays
traveling waves generated when forces are separated by even integer multiples of the wavelength
corresponding to the 8th mode shape. A similar trend is also observed in the amplitudes of the
traveling waves.

This theory can also be expanded to a more general case where forces are unequal. Force
contributions due to the forces F1 and F2 applied at l1 and l2 are included in Eq.2.37. This results
in,

F1X trig.
a (l1) = F2X trig.

a (l2), and F1X trig.
b (l1) =−F2X trig.

b (l2). (2.43)

This equation illustrates the modal amplification due to the point forces F1 and F2, and the spatial
amplification due to the selection of the locations l1 and l2.
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Figure 2.13: Anti-symmetrical excitation with point forces applied in locations separated by λ7 in
Cases 1-3.
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Figure 2.14: Anti-symmetrical excitation with point forces applied in locations separated by 3λ7
in Cases 4-5 and 5λ7 in Case 6.
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Figure 2.15: Anti-symmetrical excitation with point forces applied in locations separated by 2λ8
in Cases 7-9 and 4λ8 in Case 10.
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2.3 Generalized theory of traveling waves

In this section, the analysis developed in the previous sections can be extended to a multi-dimensional
framework. The response of any dimensional system when excited by two point inputs can be writ-
ten in the form of Eq.2.10. For example for a 2D system, this equation can be written as,

w(x,y, t) =
∞

∑
n=1

Φn(x,y)Tn(t) =
∞

∑
n=1

Φn(x,y)
[
F1cos(ω f t)Φn(l1)+F2cos(ω f t +φ)Φn(l2)

]
ω2

n −ω2
f

. (2.44)

Similar assumptions can also be made on the magnitude and locations of the point forces.

Sample assumptions: (1) F1=F2=F , and (2) Symmetric excitation so that Φa(l1) = Φa(l2) and
Φb(l1) =−Φb(l2). In most scenarios, the second assumption is valid, however, a similar procedure
is also applicable when Φb(l1) = Φb(l2).

Based on these assumptions, the response of the structure can be written as a summation of two
dominant mode shapes.

w(x,y, t) = ∑
n=a,b

Φn(x,y)F
[
cos(ω f t)Φn(l1)+ cos(ω f t +φ)Φn(l2)

]
ω2

n −ω2
f

,

=
Φa(x,y)F

[
cos(ω f t)Φa(l1)+ cos(ω f t +φ)Φa(l2)

]
ω2

a −ω2
f

,

+
Φb(x,y)F

[
cos(ω f t)Φb(l1)+ cos(ω f t +φ)Φb(l2)

]
ω2

b −ω2
f

(2.45)

w(x,y, t) =
Φa(x,y)Φa(l1)F

[
cos(ω f t)+ cos(ω f t +φ)

]
ω2

a −ω2
f

,

=
Φb(x,y)Φb(l1)F

[
cos(ω f t)− cos(ω f t +φ)

]
ω2

b −ω2
f

(2.46)

Let,

Q1 =
Φa(l1)F
ω2

a −ω2
f

and Q2 =
Φb(l1)F
ω2

b −ω2
f

These definitions reduce Eq. 2.46 to,

w(x,y, t) = Φa(x,y)Q1
[
cos(ω f t)+ cos(ω f t +φ)

]
+Φb(x,y)Q2

[
cos(ω f t)− cos(ω f t +φ)

]
(2.47)
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Q1(cos(ω f t)+ cos(ω f t +φ)) =
1

2
√

2
cos(ω f t +

π

4
) [(Q1 +Q2)+(Q1−Q2)cos(φ)+(Q1 +Q2)sin(φ)]

+
1

2
√

2
cos(ω f t +

π

4
) [(Q1−Q2)+(Q1 +Q2)cos(φ)+(Q1−Q2)sin(φ)]

+
1

2
√

2
cos(ω f t−

π

4
) [(Q1 +Q2)+(Q1−Q2)cos(φ)− (Q1 +Q2)sin(φ)]

+
1

2
√

2
cos(ω f t−

π

4
) [(Q1−Q2)+(Q1 +Q2)cos(φ)− (Q1−Q2)sin(φ)]

(2.48)

This can be written in a simplified form given by,

Q1(cos(ω f t)+ cos(ω f t +φ)) =
1

2
√

2
cos(ω f t +

π

4
)
(
C̃B +C̃C

)
+

1
2
√

2
cos(ω f t−

π

4
)
(
C̃A +C̃D

)
(2.49)

Similarly,

Q2(cos(ω f t)− cos(ω f t +φ)) =
1

2
√

2
cos(ω f t +

π

4
)
(
C̃A−C̃D

)
+

1
2
√

2
cos(ω f t−

π

4
)
(
C̃B−C̃C

)
(2.50)

Substituting Eq.2.49 and Eq. 2.50 in Eq.2.47 yields,

w(x,y, t) = C̃AW̃1 +C̃BW̃2 +C̃CW̃3 +C̃DW̃4. (2.51)

These equations of the waves (W̃i) are,

W̃1 =
1

2
√

2

(
Φa(x,y)cos

(
ω f t−

π

4

)
+Φb(x,y)cos

(
ω f t +

π

4

))
, (2.52)

W̃2 =
1

2
√

2

(
Φa(x,y)cos

(
ω f t +

π

4

)
+Φb(x,y)cos

(
ω f t−

π

4

))
, (2.53)

W̃3 =
1

2
√

2

(
Φa(x,y)cos

(
ω f t +

π

4

)
−Φb(x,y)cos

(
ω f t−

π

4

))
, (2.54)

W̃4 =
1

2
√

2

(
Φa(x,y)cos

(
ω f t−

π

4

)
−Φb(x,y)cos

(
ω f t +

π

4

))
, (2.55)
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and the coefficients of these traveling waves are given by,

C̃A = (Q1 +Q2)+(Q1−Q2)cosφ − (Q1 +Q2)sinφ ,

C̃B = (Q1 +Q2)+(Q1−Q2)cosφ +(Q1 +Q2)sinφ ,

C̃C = (Q1−Q2)+(Q1 +Q2)cosφ +(Q1−Q2)sinφ ,

C̃D = (Q1−Q2)+(Q1 +Q2)cosφ − (Q1−Q2)sinφ .

(2.56)

Based on these equations, phase relationships and amplitude relationships can be developed. As
these equations are derived for a generalized case, they can be used to study traveling waves for
any boundary condition and any dimensional structure. To illustrate the scope of this theory, a
representative traveling wave in a cylindrical system and a 2D plate are shown in Figure 2.16 and
Figure 2.17 respectively. This concept is experimentally validated in later sections.

Φ𝑎 𝑟, 𝜃 cos ω𝑡 +
𝜋

4

Φ𝑏 𝑟, 𝜃 cos ω𝑡 −
𝜋

4

+ =

Standing wave

Standing wave

Traveling wave

Figure 2.16: A representative example illustrating a cylindrical traveling wave generation.

2.4 Conclusion

In this chapter, theoretical analysis of traveling waves is discussed. As the start of the chapter, a
simplified model of a free-free beam is used to study the response of a beam when excited by two
point forces. Based on the spatial restrictions on the point force, a phase relationship is developed.
The rest of the chapter discusses the effect of other parameters on this phase relationship. Through
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+ =

Φ𝑎 𝑥, 𝑦 cos ω𝑡 +
𝜋

4
Φ𝑏 𝑥, 𝑦 cos ω𝑡 −

𝜋

4

Standing wave Standing wave Traveling wave

Figure 2.17: A representative example illustrating a planar traveling wave generation.

multiple examples, the influence of location of the point forces and the frequency of excitation on
the amplitude and quality of traveling wave is discussed. This theoretical framework developed in
this chapter is verified through experiments and simulations in rest of the thesis.
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Chapter 3

Traveling waves in 1D beams

3.1 Introduction

The first step in understanding the dynamics of different structures is to be able to simulate the
response of the system to any given input. In this chapter, a theoretical model replicating the
dynamics of a composite beam with multiple piezo-ceramic patches is developed. This chapter
models this beam using the distributed-parameter approach which is later validated through ex-
perimental data. The later part of this chapter discusses the two-point excitation methodology to
generate traveling waves in a finite media. At first, this work shows that a phase of 90◦ gives rise
to a traveling waves when the frequency of operation is halfway between any two natural frequen-
cies. Then, the effect of the 90◦ phase difference on the quality of the waves generated at other
frequencies is evaluated. This study gives rise to a parametric study that varies the phase difference
along with the frequency of excitation. Then, the quality of the response is evaluated under these
conditions using cost functions and the results are discussed. Additionally, the effect of boundary
conditions on the shape and quality of traveling wave is explored.

3.2 Development of a PZT based beam model

In the previous chapter, theoretically it was shown that when two forces with a phase difference
simultaneously actuate a beam structure, traveling waves are generated. In this chapter, this theory
is validated through experiments on beam structures with three boundary conditions: free-free,
clamped-free, clamped-clamped. We used piezo-ceramic based excitation to vibrate the 1D struc-
tures. First, a beam model is developed to replicate the experimental conditions, which is later
validated through experiments. A model is developed in which two piezo-ceramic wafers excite a
brass beam to generate traveling waves in beams of different boundary conditions.
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a b 

 Figure 3.1: (a) PZT patches mounted on a beam and the corresponding beam elements (E1-E5).
(b) Cross-sectional view of the beam with PZT patches.

The analytical model was derived by calculating the net forces and moments generated by the
piezoelectric wafers, both bonded to the same side of the beam. The coupled electromechanical
model takes into account the shift in the neutral axis due to these piezoelectric elements and uses
voltage as a forcing function. A schematic diagram of the beam with the PZT wafers is presented
in Figure 3.1(a). The nomenclature used throughout this paper to describe the relative lengths and
positions of the elements present in the beam is displayed in this figure. The beam is modeled as
five distinct beam parts (Ei, i = 1−5 ) and each part is referred to as a ’beam element’ throughout
this chapter. Three parts of the beam are substrate elements (E1, E3 and E5) while the other two
parts are composites composed of substrate and PZT wafers (E2 and E4).

The first step in modeling this complex system is to determine the shift of the neutral axis due
to the presence of PZT wafers on one side of the beam. The cross-sectional view of the beam
depicting the shift of the neutral axis by a distance(zn)is shown in Figure 3.1(b).

The new neutral axis is calculated by setting the sum of all the forces in the 1-direction (or
along x-axis) over the entire cross-section to be zero,

ts/2∫
−ts/2

wsσs11dz+

ts/2+tp∫
ts/2

wpσp11dz = 0, (3.1)

where the normal stresses of the substrate (σs11) and the piezo-ceramic (σp11) are expressed
as a function of the beam displacement (w). This is accomplished by using the elastic strain-
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displacement relationships and the piezoelectric equations as,S11

D3

=

 1
Y E

1
d13

d13 εT
33


T11

E3

 , (3.2)

σ11s = Y1sS11s =−Y1s(z− zn)
∂ 2w(x, t)

∂x2 , (3.3)

σ11p = Y1pS11p−Y1pd13E3 =−Y1p(z− zn)
∂ 2w(x, t)

∂x2 −Y1pd13E3, (3.4)

where the subscripts ’s’ and ’p’ denote the properties of the substrate and the piezo-ceramic, re-
spectively. As per standard notation, ’Y ’ denotes the Young’s modulus of the system, d13 represents
the piezoelectric strain coefficient (in this case they are symmetric d13 = d31) [174] and the nor-
mal strain in the 1-direction is represented by S11. The 31-actuation mode of the piezo-ceramic
that generates strain in the 1-direction due to the electric field (E3) in the 3-direction (or z-axis) is
considered for actuating the beam.

The shift in the neutral axis is calculated in the non-actuation case i.e. when the electric field
E3 = 0. Upon simplification, the new location of the neutral axis at znis described by

zn =
Y1pwptp(tp + ts)

2(Y1swsts +Y1pwptp)
. (3.5)

Euler Bernoulli beam equations were used to develop the electro-mechanical model of the brass
beam with different boundary conditions. The position of the piezo-ceramic elements on the beam
are represented in the equation with the help of two terms: Heaviside function H(x) and identifier
function χp(x). These terms have been used interchangeably depending on the situation. These
terms are related by,

χp(x) = [H(x− l2)−H(x− l1)]+ [H(x− l4)−H(x− l3)]. (3.6)

Using the nomenclature defined previously, the net sum of the forces acting on the composite
beam is determined to be,

∂S(x, t)
∂x

= ρsAs
∂ 2w(x, t)

∂ t2︸ ︷︷ ︸
Substrate

+



ρpAp[H(x− l2)−H(x− l1)]
∂ 2w(x, t)

∂ t2︸ ︷︷ ︸
Left Piezo

ρpAp[H(x− l4)−H(x− l3)]
∂ 2w(x, t)

∂ t2︸ ︷︷ ︸
Right Piezo

,
(3.7)
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where S(x, t) is the shear force acting on the beam element and the density and area of substrate
and the PZT element are denoted by subscripts ’s’ and ’p’ respectively. Next the moments acting
on the beam element were summed and this results in a relationship between the shear force and
the bending moment given as,

S(x) =−∂M(x)
∂x

. (3.8)

Substitution of this expression into Eq. 3.7 and simplifying, results in the relationship,

−∂ 2M(x)
∂x2 = [ρsAs +ρpAp ·χp(x)]

∂ 2w(x, t)
∂ t2 . (3.9)

The stress developed in this composite beam element is the result of both mechanical properties
of the composite beam and the electrical properties of the piezo-ceramic material. The stress can
be expressed as,

σ11 =−(z− zn)
∂ 2w(x, t)

∂x2 (Y1s +Y1p ·χp(x))︸ ︷︷ ︸
Mechanical

−Y1pd13E3 ·χp(x)︸ ︷︷ ︸
Electrical

. (3.10)

This relationship between the stress induced in the beam and the deflection of the beam was
used to determine the mechanical and electrical components of the moments generated in the beam
element. Thus,

M = Mmech.+Melec.,

= [YsIs +(YspIsp−YsIs) ·χp(x)]
∂ 2w(x, t)

∂x2 +
Y1pd13

tp
QV (x, t) ·χp(x), (3.11)

where,

YsIs =
Y1swst3

s
12

,

YspIsp =
Y1sws

3

[(ts
2
− zn

)3
+
(ts

2
+ zn

)3
]
+

Y1pwp

3

[(ts
2
+ tp− zn

)3
+
(ts

2
+ tp + zn

)3
]
, (3.12)

Q =
wp
2 (ts + tp) E = V (x,t)

tp
.

When Eq. 3.11 is substituted into equation (3.9), a partial differential equation (PDE) that repre-
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sents the electromechanical model of the composite beam is obtained as,

[ρsAs +ρpAp ·χp(x)]
∂ 2w(x, t)

∂ t2 +
∂ 2

∂x2

{
[YsIs +(YspIsp−YsIs) ·χp(x)]

∂ 2w(x, t)
∂x2

}
=−

Y1pd13

tp
Q · ∂ 2

∂x2 (V (x, t)χp(x)). (3.13)

This PDE for the piezoelectric composite beam is solved by using the separation of variables
approach. A detailed discussion is provided in the next section.

3.3 PZT excitation - analytical approach

The distributed parameter equations describing the dynamics of the composite beam are solved
using a separation of variable approach [175] with the assumption that w(x, t) = Φ(x)T (t). This
solution is substituted into the equation of motion, Eq. 3.13, to yield,

− T̈ (t)
T (t)

=

∂ 2

∂x2 [B(x)Φ(x)′′]

A(x)Φ(x)
= ω

2, (3.14)

where,

A(x) =

 ρsAs χp = 0

ρsAs +ρpAp χp = 1,
(3.15)

and

B(x) =

 YsIs χp = 0

YspIsp χp = 1,
(3.16)

The spatial equation comes from rearrangement of equation (3.14), which results in,

∂ 2

∂x2 [B(x)Φ(x)′′]−ω
2A(x)Φ(x) = 0. (3.17)

The beam was modeled as five distinct beam parts, where the relationship between the parts was
obtained through the displacement, slope, moment and shear force at their respective boundaries
(boundary and continuity conditions). The solution of the PDE for each of the five beam elements
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was assumed to be of the form,

Φm(x) = a1,msinβx+a2,mcosβx+a3,msinhβx+a4,mcoshβx, m ∈ 1,2,3,4,5 (3.18)

where

β
4(x) =

A(x)ω2

B(x)
(3.19)

In the Eq. 3.18 the index m is used to denote the mode shape corresponding to the different
elements of the beam.

The bending moment and shear force vanish at the free end of the beam and the displacement
and slope at the fixed end. The continuity at the boundary between the substrate element and
the composite element was achieved by equating displacement, slope, bending moment and shear
forces at l1, l2, l3 and l4. The various boundary and continuity conditions are shown in the equations
below.

Free Boundary

Φ′′i (x = l j) = 0, i ∈ 1,5

Φ′′′i (x = l j) = 0, j ∈ 0,5

(3.20)

Fixed Boundary

Φi(x = l j) = 0, i ∈ 1,5

Φ′i(x = l j) = 0, j ∈ 0,5

(3.21)

Continuity Boundary

Φi(x = l j) = Φi+1(x = l j), i ∈ 1,2,3,4

Φ′i(x = l j) = Φ′i+1(x = l j), j ∈ 1,2,3,4

YiIiΦ
′′
i (x = l j)Φ

′
i(x = l j) = Yi+1Ii+1Φ′′i+1(x = l j)Φ

′
i(x = l j),

YiIiΦ
′′′
i (x = l j)Φ

′
i(x = l j) = Yi+1Ii+1Φ′′′i+1(x = l j)Φ

′
i(x = l j),

(3.22)

These 20 boundary conditions yield 20 equations and 20 unknown constants of integration that
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can be written in matrix form as,


C1,1 · · · · · · C1,20

... . . . ...
...

... · · · C19,19
...

C20,1 · · · · · · C20,20


20×20



a1,1

a2,1

a3,1

a4,1
...

a1,5

a2,5

a3,5

a4,5


20×1

= {0}20×1 (3.23)

The matrix in equation (3.23) will have a nonzero solution for the constants of integration, only
if the determinant of the matrix C is singular. The elements of this equation are only a function
of one variable, the natural frequency ω , as the other variables are either material constants or
geometrical constants. By setting the determinant of the matrix C as zero, the natural frequencies
were obtained from

∆[C]20×20 =

∣∣∣∣∣∣∣∣∣
C1,1 · · ·

... . . . ...

· · · C20,20

∣∣∣∣∣∣∣∣∣= 0 (3.24)

Numerically the value of the determinant is computed at different values of ω and the frequency
at which the determinant approaches zero was obtained. The next step is to determine the eigen-
vectors corresponding to these eigenvalues. There can be infinite solutions for the coefficients a,
however a unique solution is obtained by arbitrarily setting one of the coefficients to 1. In this
analysis a1,1 is set to 1 and the remaining coefficients are calculated numerically as,

C1,1 · · · · · · C1,20
... C2,2

... C2,20
... · · · . . . ...

C20,1 C20,2 · · · C20,20


20×20



a1,1
...

a3,5

a4,5


20×1

= {0}20×1 , (3.25)
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where

[
C′
]

19×19



a2,1
...

a3,5

a4,5


19×1

+a1,1



C2,1
...
...

C20,1


19×1

= {0}19×1 , (3.26)

This results in 

a2,1
...

a3,5

a4,5


19×1

=−
[
C′
]−1

19×19 ·a1,1



C2,1
...
...

C20,1


19×1

. (3.27)

In-order to normalize the mode shapes obtained from the coefficients derived in the previous step, a
mass term (Nmass) is calculated by using the principle of orthogonality of the mode shapes through-
out the length of the beam as,

Nmass = ρsAs

l1∫
l0

Φ
2
1(x)dx+(ρsAs +ρpAp)

l2∫
l1

Φ
2
2(x)dx

+ρsAs

l3∫
l2

Φ
2
3(x)dx+(ρsAs +ρpAp)

l4∫
l3

Φ
2
4(x)dx+ρsAs

l5∫
l4

Φ
2
5(x)dx. (3.28)

The normalized mode shape is the spatial solution of the composite beam and it is defined as,

Φ̃i =
Φi√
Nmass

i = 1, . . . ,5. (3.29)

The next modeling step is to find the solution of the temporal part of the composite beam equation.
It can be seen from equation (3.13) that the forcing term is presented as the voltage applied to
the piezoelectric material. This shows that the temporal solution needs to be derived for those
beam elements that include the piezo properties. Applying equation (3.13) for various sections of
the beam, the temporal PDE corresponding to the substrate-only part of the beam and the PZT-
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substrate part of the beam can be written as

ρsAs
∂ 2w(x,t)

∂ t2 + ∂ 2

∂x2

{
YsIs

∂ 2w(x,t)
∂x2

}
= 0 x ∈ [l0, l1)∪ [l2, l3)∪ [l4, l5]

(ρsAs +ρpAp)
∂ 2w(x,t)

∂ t2 + ∂ 2

∂x2

{
YspIsp

∂ 2w(x,t)
∂x2

}

=−Y1pd13
tp

Q · ∂ 2

∂x2 (V (x, t)χp(x)) x ∈ [l1, l2)∪ [l3, l4)

. (3.30)

The particular solution of the PDE is derived for the portions of the beam that lie in the regions
[l1l2) and (l3l4]. Multiplying equation (3.30) by Φ̃i and integrating over the length of the beam
yields, ρsAs

l1∫
l0

Φ̃1 · Φ̃1dx+(ρsAs +ρpAp)

l2∫
l1

Φ̃2 · Φ̃2dx+ρsAs

l3∫
l2

Φ̃3 · Φ̃3dx

+(ρsAs +ρpAp)

l4∫
l3

Φ̃4 · Φ̃4dx+ρsAs

l5∫
l4

Φ̃5 · Φ̃5dx

(T̈ (t)+ω
2T (t)

)
(3.31)

=−
Y1pd13

tp
Q

 l5∫
l0

∂ 2

∂x2 (V (x, t)χp(x)) · Φ̃(x)dx

 . (3.32)

Upon simplifying, with the aid of the orthogonality principle and the Dirac delta identities, the
equation is reduced to

−
Y1pd13

tp
Q
[
Ve jωt (

Φ̃
′
3(l2)− Φ̃

′
2(l1)

)
+Ve jωt+φ

(
Φ̃
′
5(l4)− Φ̃

′
4(l3)

)]
=
(
T̈ (t)+ω

2
n T (t)

)
, (3.33)

where both the piezo-ceramics are seperated by a phase difference φ . The damping term is then
introduced into this equation which yields,

(
T̈ (t)+2ζ ωnṪ +ω

2
n T (t)

)
=−

Y1pd13

tp
Q
[
Ve jωt (

Φ̃
′
3(l2)− Φ̃

′
2(l1)

)
+Ve jωt+φ

(
Φ̃
′
5(l4)− Φ̃

′
4(l3)

)]
.

(3.34)

Finally the transfer function for a single piezo-ceramic was derived and is shown below as

T (ω)

V (ω)
=
−Y1pd13Q

(
Φ̃′3(l2)− Φ̃′2(l1)

)
tp (ω2

n −ω2 +2 jζ ωωn)
(3.35)
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A damping ratio of ζ = 0.1% is used to simulate the responses of the different beam cases in the
following sections. In view of the generalized dynamics discussed above, mathematical models
for different boundary conditions (free-free, clamped-free and clamped-clamped) were developed
to simulate the traveling wave behavior on a rectangular cross-section beam. Validation of the
theoretical model was initially conducted by comparing the eigenvalues and eigen-vectors against
the experimental ones before any analysis is carried on the traveling wave behavior. This discussion
is presented in the experimental section of this thesis. The physical properties of the composite
beam are tabulated in Table 3.1.

Table 3.1: Structural properties of the beam.

PARAMETER DATA

Length of the beam 0.305 m
Material of the beam Brass

Young’s modulus of the substrate 100 GPa
Density of the substrate 8430 kg/m3

Thickness of the substrate 0.832 mm
Width of the substrate 19.5 mm
Type of piezo-ceramic PZT-5A

Density of the piezo-ceramic 7800 kg/m3

Young’s modulus of the piezo-ceramic 62 GPa
Thickness of the piezo-ceramic 0.191 mm

[l0, l1, l2, l3, l4, l5] [0,0.02,0.04,0.265,0.285,0.305] m

3.4 Experimental setup

In order to validate the previously developed electro-mechanical finite element model and dis-
tributed parameter model of a piezoelectric driven beam, an experimental setup was designed and
tested. A sinusoidal voltage sweep is applied to actuate the beam using one of the PZTs and the
vibratory response is measured using a Laser Scanning Vibrometer (Polytec PSV 400). In the
case of a free-free boundary condition, the experiment is conducted by suspending the composite
beam on two strings so that the weight of the beam is supported by the string and the reactionary
forces are not distributed [70]. The schematic of the free-free beam seen in Figure 3.2 displays two
piezo-ceramic patches attached to a brass substrate at the two ends of the beam. Initially tests were
performed by actuating a single piezo-patch and the experimental eigenvalues and eigen-vectors
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(a)

(b) (c)

Figure 3.2: Schematic of the experimental setups of a free-free beam, a clamped-free beam and a
clamped-clamped beam excited with piezo-ceramic patches.

are used to validate the previously developed models of the beam. The actual test setup displaying
the Laser Scanning Vibrometer measuring the response of the beam is shown in Figure 3.3.

Similarly, the clamped boundary condition is realized by placing the end of the beam between
two plates and fastening the plates with a bolt. As the bolt mechanism forces the plates together, the
end of the beam is pressed in between them and the experimental clamped mechanism is achieved.
While, for the clamped-free condition only one end of the beam is fixed, both ends were fixed to
realize the clamped-clamped condition.

As explained earlier, the models are validated by comparing the theoretical and experimental
responses of beam when excited with a single piezo-ceramic patch. The discussion of these results
are presented in the next section. Further, the same setup is also used to measure the dynamics of
the beam when both the piezo-ceramics patches are excited. This is also referred to as the two-force
excitation. In the succeeding sections the experimental results of various beam configurations are
presented and discussed.
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Figure 3.3: Experimental setup used to measure the response of the beam structures with a scanning
laser vibrometer of various boundary conditions.

3.5 Single-force results

In this section the simulated responses of the beam are compared against the corresponding ex-
perimental values for different beam configurations. The theoretical eigenvalues of the composite
beams are obtained by evaluating the determinant of the characteristic equation derived in equation
(3.24). The numerical values of the determinant are plotted in Figure 3.4a, Figure 3.5a and Figure
3.6a for all three cases. These theoretical eigenvalues are tabulated along with the experimental
values in Table 3.2,Table 3.3 and Table 3.4 corresponding to the free-free, clamped-free and the
clamped-clamped case respectively. The errors percentages corresponding to the first three eigen-
values are 13.09%, 5.22% and 0.3% for the clamped-clamped case, 7.248%, 0.55% and 0.05%
for the clamped-free case and 4.67%, 0.57% and 0.9% for the free-free case. The corresponding
eigen-vectors are obtained by evaluating the equation (3.27) and then normalized using equation
(3.29). The corresponding eigen-vectors are validated with the help of the Modal Assurance Cri-
terion (MAC) [176], which represents the orthogonality between the two vectors being compared.
In this case, a higher MAC value (closer to 1) shows a better correlation between the experimental
and the theoretical results. The results shown in Figure 3.4b, Figure 3.5b and Figure 3.6b have a
very good correlation between the experimental and modeling results. Similarly the MAC values
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(a) (b)

Figure 3.4: (a) The value of the determinant of the characteristic equation of the free-free beam
at different frequencies, (b) MAC chart comparing simulated eigenvalues against the experimental
values of a free-free beam.

Table 3.2: Comparison of eigenvalues of a free-free beam.
Eigenvalues

Exp.(Hz) 32.8 88.28 176.6 295.7 446.7
Theory(Hz) 31.27 87.78 175 295 449.2

Error(%) 4.67 0.57 0.9 0.23 0.56

stay above 0.9 for most cases with a few as low as 0.8 for the clamped-free case and 0.75 for the
clamped-clamped case.

There is extremely good correlation of the eigen-vectors corresponding to the lower eigenval-
ues, as expected and seen in the MAC chart. Moreover, there is no cross-correlation between other
modes demonstrating the high quality of the experimental results. The errors between the experi-
mental and the theoretical values of the eigenvalues and the eigen-vectors can be attributed to the
inaccuracies in testing conditions including the ambient noise, pre-stress in the material, clamping
effects, etc.

3.6 Two-force results

In this section the response of the beam when both the piezo-ceramics are excited simultaneously
is presented. Initially, the case when a fixed phase difference of 90◦ is between the two forces is
discussed. In the later sub-section, the effect of phase on the quality of wave is fully discussed.

56



(a) (b)

Figure 3.5: (a) The value of the determinant of the characteristic equation of the clamped-free beam
at different frequencies, (b) MAC chart comparing simulated eigenvalues against the experimental
values of a clamped-free beam.

Table 3.3: Comparison of eigenvalues of a clamped-free beam
Eigenvalues

Exp.(Hz) 6.25 34.38 96.6 188.4 312.8
Theory(Hz) 5.797 34.58 96.05 187.5 310.1

Error(%) 7.248 0.55 0.05 0.47 0.86

3.6.1 Fixed-phase case

The dynamics of the beam when actuated with two forces with a phase difference of 90◦ [41] is
studied in this section. First, the response of each individual piezo-ceramic is numerically com-
puted and then the overall response is obtained by the principle of superposition. Furthermore,
a comparison of the traveling wave behavior was conducted at a frequency which was half-way
(average of the two resonant frequencies) between the third and fourth mode shape, and the phase
difference was kept at 90◦ between the two excitation signals. This comparison for the free-free
case and the clamped-clamped case is presented in Figure 3.7, Figure 3.8 and Figure 3.9. Here
Figure 3.7a displays the results from the simulated model while the respective experimental results
are shown in Figure 3.7b. The figure shows the response of the vibrating beam as a function of
time with both the x-y and y-z planes projected. These projections were used to illustrate the ex-
istence of the traveling wave and its profile respectively. The blue area on the x-z plane represents
the total space covered by the beam during its motion in time (wave envelope). Similarly, the pro-
jection on the x-y plane represents the beam amplitude as it changes with time. This can also aid
in understanding the travel duration and trajectory from one side to the other.
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(a) (b)

Figure 3.6: (a) The value of the determinant of the characteristic equation of the clamped-clamped
beam at different frequencies, (b) MAC chart comparing simulated eigenvalues against the experi-
mental values of a clamped-clamped beam.

Table 3.4: Comparison of eigenvalues of a clamped-clamped beam.
Eigenvalues

Exp.(Hz) 34.06 96.56 193.8 320 484.1
Theory(Hz) 38.48 101.6 193.2 314.8 469.9

Error(%) 13.09 5.22 0.3 1.625 2.93

(a) (b)

Figure 3.7: 3D representation of traveling waves of a free-free beam obtained (a) theoretically and
(b) experimentally.

Once the simulated models are verified for single phase excitation case, additional analysis
are conducted in order to better understand the behavior of the structure as it deforms. The re-

58



(a) (b)

Figure 3.8: 3D representation of traveling waves of a clamped-free beam obtained (a) theoretically
and (b) experimentally.

(a) (b)

Figure 3.9: 3D representation of traveling waves of a clamped-clamped beam obtained (a) theoret-
ically and (b) experimentally.

sults of this analysis are presented in plots where the response of the beam is calculated and then
simulated for different boundary conditions: free-free (Figure 3.10a), clamped-free (Figure 3.10b)
and clamped-clamped (Figure 3.10c). Correspondingly, the frequency response function (FRF)
for each structure is obtained and the resonance frequencies are identified. The smaller figure
insets above the FRF curve corresponds to the profile of the waves generated at the resonance fre-
quency, and the insets below the FRF curve to the ones generated at a frequency that is between
two resonant frequencies. A clear distinction between the traveling waves and standing waves can
be identified from the insets. The profiles (x-z plane projection envelopes) allure to the fact that
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standing waves (above the FRF curve) are associated with nodal points and traveling waves (below
the FRF curve) are not, which is expected from the nature of the two waves. In addition, the con-
tour plots associated with each profile compliment the analysis and describe the behavior in further
details.

As presented, the contours for standing and the traveling waves are clearly distinct from each
other for any frequency or boundary condition. The standing wave contours are discontinuous
and the ones for traveling waves are continuous, which suggests the presence or absence of nodal
points, respectively. In addition, for the traveling waves, the figures can be used to identify not
only the presence of the wave, but also the traveling direction and the corresponding speed. If the
slopes are positive, the wave moves from left to right and conversely if the slopes are negative, the
direction is then from right to left. The reason why the direction of travel alternates as the excitation
frequency moves from ω ∈ (ω1,ω2) to ω ∈ (ω2,ω3) to ω ∈ (ω3,ω4) is due to the existence of even
and odd mode shapes, which are coupled with the phase difference between the excitation signals
due to intricacies of recreating two clamped boundary conditions in experiments.

These results demonstrate a partial validation of the dynamical model presented in Figure 3.10
((a),(b) and (c)). However, in order to understand how well the theoretical model predicts the wave
profile of a traveling wave, a direct comparison of all previously discussed boundary conditions
was conducted. The results are presented in Figure 3.11 ((a),(b) and (c)) at specific frequencies,
which resulted in the generation of traveling waves. As shown in this figure, the theoretical model
showed a close match with the experimental data. The profile of the traveling wave corresponds
with the projection of the x-z plane in Figure 3.7, Figure 3.8 and Figure 3.9. It can be observed
that the best match happens in the free-free boundary conditions, which are the easiest to recreate
experimentally and is expected.

3.6.2 Variation of phase difference

In the previous section, it was observed that when a beam is excited with two input signals with
a specific phase difference of 90◦ between them, a traveling wave is generated. In this section,
first we study the effect of phase variation on the quality of traveling waves in hopes to relax this
condition. The cost function formulation, discussed in earlier chapters, is used to determine the
quality of traveling waves generated at various frequencies. A full study has been conducted herein
for different frequency and phase inputs in order to determine a relationship between frequency
and phase. A particular example of these results is presented for a free-free beam at a frequency of
243Hz (equal to the arithmetic mean of the 3rd and 4th natural frequencies) and phase difference
of 90◦. Figure 3.12 presents the results obtained theoretically and experimentally for the previous
parameters. Since a hybrid wave was observed, it was intuitive that the waveform would not
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(a) (b)

(c)

Figure 3.10: Complete analysis of the traveling waves through finite medium when the beam is
exited simultaneously by two PZTs with a phase difference of 90◦: a) free – free , b) clamped –
free, c) clamped – clamped.

indicate any nodal points, as seen in Figure 3.12a. As a result of the previous discussion, two
results were expected, a torus shape circle representing the Hilbert’s approach shown in Figure
3.12b and an ellipse, obtained using the Fourier’s approach, Figure 3.12c.

Similarly, when the boundary conditions of the beam are changed into clamped-free or clamped-
clamped cases, traveling waves are also generated by the two-mode excitation. Although a compre-
hensive analysis on the effect of boundary conditions is discussed in the next section, this section
compares the experimental and simulated results of the distributed parameter models developed in
earlier section. The enforcement of the boundary conditions on the beam structure is visible at the
ends of the beam’s response in the wave envelope plot shown in Figure 3.13a and Figure 3.14a.
In Figure 3.13a the left boundary is clamped and the right boundary is free; both the boundaries
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Figure 3.11: Traveling wave envelope obtained experimentally and theoretically. Actuation was
conducted at a frequency between two mode shapes with phase difference of 90◦:a) free-free
boundary condition, 241Hz b) clamped-free boundary condition, 285Hz, c) clamped-clamped
boundary conditions, 258Hz.

are clamped in Figure 3.14a. Similar to the free-free case hybrid waves are observed in these two
cases. The experimental and theoretical Hilbert’s torus and Fourier’s ellipse follow similar trend
in both these cases. However, when we compare the tori based on Hilbert’s approach, for all three
boundary conditions, we can observe that the standing wave content is the highest in the clamped-
free case. This is evident from the thickness of the rings in Figure 3.12b , Figure 3.13b and Figure
3.14b.

The comparison between the experimental and theoretical results for each case revealed very
close correlation, showing the accuracy of the model in predicting the wave response. It is impor-
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(a) (b)

(c)

Figure 3.12: Comparison of mechanical waves of a free-free beam obtained experimentally and
theoretically at 243Hz and phase difference of 90◦ between the two excitation signals: (a) traveling
wave envelope, (b) response of the wave according to the Hilbert’s approach, and (c) response of
the wave according to the Fourier’s method.

tant to note that in Figure 3.12b, Figure 3.13b and Figure 3.14b two experimental points (obtained
from the smaller window shown along the length of the beam) were selected (the maxima and
minima point on the waveform) in order to better present the approach. This was done for a more
convenient visual representation of the results. As shown in Figure 3.12b, the responses for the two
points trace a circle (dashed red line) where the inner radius and outer radius equal the values of
their vibration amplitudes. On the other side, using Fourier’s approach, the phase and magnitude
of the FFT response for multiple points across the length of the beam for the specified window, was
first calculated and then plotted in complex domain. Accordingly, due to the nature of the waves,
the points lie close to an ellipse.
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Figure 3.13: Comparison of mechanical waves of a clamped-free beam obtained experimentally
and theoretically at 243Hz and phase difference of 90◦ between the two excitation signals: (a)
traveling wave envelope, (b) response of the wave according to the Hilbert’s approach, and (c)
response of the wave according to the Fourier’s method.

In the parametric study where the phase difference between the two piezo-ceramics is varied,
the CF is defined with the help of Hilbert’s approach, but this study can also be carried out using
the Fourier approach. Figure 3.15 shows the CF obtained by sweeping the phase angle ( −180◦ to
180◦) over the frequency range of [0Hz-650Hz] through free-free beam simulations. The results
clearly indicate that a phase angle of 90◦ is not the only possible phase required to obtain the
traveling waves. More so, it can be observed that each frequency has a corresponding phase that
affects the cost of the wave being formed. In this figure, CF = 1 corresponds to a pure standing
wave, CF = 0 to a pure traveling wave, and 0 <CF < 1 to hybrid waves. Accordingly, the lighter
color region that resembles a straight line and connects two corners diagonally for each frequency
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Figure 3.14: Comparison of mechanical waves of a clamped-free beam obtained experimentally
and theoretically at 243Hz and phase difference of 90◦ between the two excitation signals: (a)
traveling wave envelope, (b) response of the wave according to the Hilbert’s approach, and (c)
response of the wave according to the Fourier’s method.

range (ω ∈ (ω1,ω2) , ω ∈ (ω2,ω3) , ω ∈ (ω3,ω4)) corresponds to the lowest CF , i.e. region at
which highest quality traveling waves are formed. It is also important to notice that this allows a
traveling wave to be generated at any frequency desired if the correct phase is used.

Besides the CF calculation, this demonstrates the ability of the theoretical model to predict
the direction in which the waves travel. The blue color (negative CF) indicates the direction of the
waves traveling from right to left, and conversely the red color (positive CF) shows the direction of
the waves traveling from left to right. As a consequence, it can be observed that when passing from
ω ∈ (ω1,ω2) to ω ∈ (ω2,ω3) to ω ∈ (ωn,ωn+1)), the direction of the traveling waves alternate.
More specifically in the ω ∈ (ω1,ω2) region the wave travels from right to left and in the ω ∈
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Figure 3.15: Parametric study and cost function analysis of a free-free beam. Red color – wave
travels from right to left, blue color – wave travels from left to right.

(ω2,ω3) region, the wave moves left to right.

Although, in this figure the phase vs. frequency surface plot is generated for the free-free
boundary condition, a similar trend is also observed for the clamped-free and clamped-clamped
cases. On the whole some of the observations based on the simulated experiments are, (1) there is
a phase that results in traveling wave over a wide spectrum of frequency range, (2) the quality of
the traveling wave and its sensitivity to the phase input is dependent on many factors; one of which
is the frequency of excitation, (3) if a phase φ results in a traveling wave in one direction, a phase of
−φ reverses the direction, (4) in the frequency range between two consecutive resonant frequencies
the phase and frequency are related by an monotonically increasing or decreasing function, (5) the
direction of the waves and phase relationship alternates after each resonant frequency.

In order to describe in detail the CF and its outcome as a result of the two parameters, frequency
and phase, as an example, attention is focused on one frequency range for each boundary condition.
In the free-free case, the phase difference of φ ∈ (0,180◦) is varied in the frequencies ranging
from [ω2,ω3]. Figure 3.16a shows the magnified version of Figure 3.15 in the frequency range
of interest. In this figure the range of the color bar ranges form [0,1], where 0 corresponds to a
pure traveling wave and 1 to a pure standing wave. These results are validated experimentally as
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(a) (b)

(c)

Figure 3.16: Theoretical and experimental results of the cost function of the free-free beam be-
tween the 2nd and 3rd mode shapes. (a) Cost Function window between two mode shapes, (b)
Theoretical and experimental results of the CF as a function of frequency and phase angle 90◦, (c)
Theoretical and experimental results of the minimal CF .

shown in Figure 3.16b, where the phase was kept constant at 90◦ and the frequency is varied. As
expected, a constant phase over a frequency rage does not result in the optimal quality of traveling
wave and hence, a 90◦ phase difference establishes a V-shaped relationship with frequency. This
implies that this phase gives the lowest CF at approximately half way between two the modes,
but at any other region before or after, the CF increases proportionally. This can also be seen by
the insets representing the responses of the waves for each point along the curve using Hilbert’s
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Figure 3.17: Theoretical and experimental results of the cost function of the clamped-free beam
between the 4th and 5th mode shapes. (a) Cost Function window between two mode shapes, (b)
Theoretical and experimental results of the CF as a function of frequency and phase angle 90◦, (c)
Theoretical and experimental results of the minimal CF .

approach. For the free-free case at a frequency of 130Hz, the ratio between the outer and inner
radius is minimal, alluring to the fact that the CF is lowest hence the highest quality traveling wave
is obtained. As the excitation frequency approaches any of the natural frequencies nearby (ω2 or
ω3), the ratio between the radii increases and correspondingly the quality of the traveling wave
is reduced. Besides the 90◦ case, another validation presented in Figure 3.16c was conducted in
order to demonstrate that the most effective traveling wave in terms of the CF will occur on the
line shown in dark blue. This illustrates the proportionality between the frequency and phase and
the color bar indicates how closely the experimental results compare with the theoretical prediction
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Figure 3.18: Theoretical and experimental results of the cost function of the clamped-clamped
beam between the 2nd and 3rd mode shapes. (a) Cost Function window between two mode shapes,
(b) Theoretical and experimental results of the CF as a function of frequency and phase angle 90◦,
(c) Theoretical and experimental results of the minimal CF .

along this line.

Similar to the free-free case, the phase is varied in the frequency range of ω ∈ (ω2,ω3) and
ω ∈ (ω4,ω5) region of the clamped-clamped and clamped-free cases, as seen in Figure 3.17a and
Figure 3.18a, respectively. The results clearly reflect the effect that phase has over the quality of
the traveling wave and shows a trend that is analogous to Figure 3.16a. As before, these results
are validated experimentally for the constant phase scenario and are compared in Figure 3.17b
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and Figure 3.18b for the clamped-free and clamped-clamped cases respectively. Near the halfway
between the natural frequencies Figure 3.16b and Figure 3.18b have a CF which is close to 0.
However, for the clamped-free case, the curve plotted in Figure 3.17b has a minimum at a value
around 0.3, higher than the other two cases. This is expected to be a result of the anti-symmetric
nature of the boundary conditions of the clamped-free case. Such change in trend is also seen in the
surface plots that shows the optimal phases for different frequencies. For example, the cost function
is close to 1 at higher frequency ranges in Figure 3.17c. However, experimental results also show
degradation of the cost function at frequencies near the 5th resonant frequency. Nevertheless, the
results shown in this study support the hypothesis that both frequency and phase play a crucial role
in the quality of traveling waves.

Once the relationship between the phase and frequency is established through the calculation
of the CF , the final investigation conducted was to compare the Hilbert approach to the Fourier
approach in order to show the effectiveness of the two methods. The comparison is shown for the
free-free case in Figure 3.19 for two different frequencies, 243Hz (ω ∈ (ω3,ω4)) in Fig 3.19((a),(c)
and (e)) and 720Hz ((ω6 or ω7)) in Fig 3.19((b),(d) and (f)). Points corresponding to the maxima,
minima and arbitrary location in between the two extremes are presented on the wave envelope in
Fig 3.19 ((a) and (b)). In Fig 3.19 ((c) and (d)) the amplitude and phase of these points are shown
in the complex plane, while in Fig 3.19 ((e) and (f)), the amplitude of these points as a function
of time is illustrated by their rotation around a circle with radius equal to their amplitudes. These
plots show that, at low spatial points the Fourier approach overestimates the cost function while
the Hilbert approach underestimates the cost function. As the number of spatial points increases,
the cost-functions evaluated using both these methods converge to the same value.

3.7 Effect of boundary conditions

Previously, the effect of phase on the quality of traveling wave was discussed for a beam struc-
ture. In this section, the influence of boundary condition on this phase relationship is further
investigated. In the earlier chapter, a theoretical framework was developed to explore the origin
of traveling waves. It was shown that traveling waves are generated by simultaneously exciting
a structure by two point forces. The response of a beam to two point forces is expressed as a
combination of four wave components in Eq. 2.14,

wtrig.
ab (x, t) =

√
2C (CAW1 +CBW2 +CCW3 +CDW4) , (3.36)

70



(a) (b)

(c) (d)

(e) (f)

Figure 3.19: Comparison between the Hilbert’s and Fourier’s approach at 243Hz (a,c,e) and 720Hz
(b,d,f) : (a and b) Hybrid wave waveform, (c and d) CF as a function of points taken across
the structure. Points corresponding to the maxima, minima and arbitrary in between the two are
presented. Fourier’s approach, (e and f) CF as a function of points taken across the structure,
Hilbert’s approach
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where the wave components are shown in Eq. 2.15 and the coefficients in Eq. 2.19. All the wave
components can be represented by,

W1 = X trig.
a (x)cos

(
ω f t−

π

4

)
+X trig.

b (x)cos
(

ω f t +
π

4

)
. (3.37)

In these equations, the wave components (Wi) are a linear combination of the ordinary trigonomet-
ric parts (X trig.) of the two mode shapes. Through out this study, it is assumed that the effect of
boundary conditions is reflected in the hyperbolic part (Xhype.) of the mode shapes. In the gen-
eralized theory of traveling waves section, a relationship is developed as a combination of mode
shapes in Eq. 2.51. This equation is of the form,

w(x,y, t) = C̃AW̃1 +C̃BW̃2 +C̃CW̃3 +C̃DW̃4. (3.38)

This relationship simulates a traveling wave that “represents” the response of the beam when
simultaneously excited by two actuators. In other words, the response of the beam is simulated as
the summation of the the two most dominant modes. For example, in Figure 3.20 the first five mode
shapes of a free-free beam are combined to generate traveling waves. In this figure, complete mode
shapes of the beam including the hyperbolic parts are used to generate one of the four wave forms
(W1). Similar wave forms are generated for the clamped-free and clamped-clamped boundary
conditions. These are plotted in Figure 3.21 and Figure 3.22 respectively. These figures display
the robustness of the Eq. 2.51 to simulate traveling waves for any type of boundary condition.
This relationship is useful to simulate the type of the traveling wave produced in between two
modes of interest. Based on this information, a design procedure that determines the frequency of
excitation, the location of forces and the phase difference between forces can be developed. The
waveforms in this figure represent the best traveling wave that a beam can generate by exciting the
beam with two point forces with optimal phase. The amplitudes of these waves are normalized,
as the amplitudes of the traveling waves are dependent on the location of forces, the position of
strain-nodes of the modes of interest and the frequency of excitation. Furthermore, the influence
of other modes is neglected as it is assumed these modes are sufficiently farther away from the
frequency of excitation and have little effect.

Through this analysis, it is shown that based on the mode combination procedure, the shape of
the traveling waves between any two modes can be simulated. However, the trigonometric term
cos(βnx)−σncos(βnx), is present irrespective of the type of boundary condition. This oscillatory
part is responsible for the traveling wave part of interest. Thus, to study the effect of boundary con-
ditions on these traveling waves, the trigonometric part and the hyperbolic parts of the mode shapes
are separated and the effect of individual parts is simulated. Figure 3.23 shows the contribution of

72



Free-free boundary condition

Figure 3.20: Sinusoidal combination of the ordinary trigonometric part of mode shapes of free-free
beam.
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Clamped-free boundary condition

Figure 3.21: Sinusoidal combination of the ordinary trigonometric part of mode shapes of clamped-
free beam.
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Clamped-clamped boundary condition

Figure 3.22: Sinusoidal combination of the ordinary trigonometric part of mode shapes of clamped-
clamped beam.
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Figure 3.23: Contribution of the individual trigonometric and hyperbolic parts to generate traveling
waves in free-free (between 2nd and 3rd modes ), clamped-free (between 3rd and 4th modes ) and
clamped-clamped (between 2nd and 3rd modes ) boundary conditions.
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(a) (b)

(c)

Figure 3.24: Comparison of the phase relationship of a free-free beam between 3rd and 4th modes
using, (a) the combination of the trigonometric part of mode shapes i.e. X trig.

a cos
(
ω f t− π

4

)
+

X trig.
b cos

(
ω f t + π

4

)
(no piezoelectric), (b) the complete mode shapes of the beam including the

boundary effects (no piezoelectric), (c) the full model of the beam including piezoelectric effects.

X trig. and Xhype. in the combined wave form for all three boundary conditions: (i) free-free case,
(ii) clamped-free case, (iii) clamped-clamped case. To compare modes of similar wavelengths,
the combination of 2nd and 3rd modes of the free-free and the clamped-clamped cases are com-
pared against the result of 3rd and 4th mode shapes of the clamped-free case. In these plots, the
trigonometric part and the hyperbolic parts of all three cases are identical to each other in shape.
However, there is a relative phase difference between these parts. Thus, in the clamped-free and
clamped-clamped cases, the hyperbolic part is able to enforce the required boundary fixed condi-
tions. Additionally, the hyperbolic part is only significant at the boundary conditions as compared
to the trigonometric part. This is much more evident in higher modes shapes than in lower ones
and this trend preserves the traveling wave behavior generated by the trigonometric part. These
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Figure 3.25: Comparison of the phase relationship of a clamped-clamped beam between
3rd and 4th modes using, (a) the combination of the trigonometric part of mode shapes i.e.
X trig.

a cos
(
ω f t− π

4

)
+X trig.

b cos
(
ω f t + π

4

)
(no piezoelectric), (b) the complete mode shapes of the

beam including the boundary effects (no piezoelectric), (c) the full model of the beam including
piezoelectric effects.

plots show that the hyperbolic part has little effect on the amplitude of the traveling waves in the
central part of the beam. However, there is also a phase contribution by the hyperbolic part.

To investigate this effect, surface plots between the phase, frequency and cost function are
simulated for three cases, (a) phase angle and frequencies are varied to compute the cost function
from the combination of the four wave components (Wi) with just the trigonometric parts; (b)
phase angle and frequencies are varied to compute the cost function from the combination of the
four wave components (Wi) with both the trigonometric and hyperbolic parts; (c) phase angle and
frequencies are varied in the beam model with piezoelectric patches, developed in the previous
sections. In all these simulations, the location of the forces are not varied and are equidistant from
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(a) (b)

(c)

Figure 3.26: Comparison of the phase relationship of a clamped-free beam between 3rd

and 4th modes using, (a) the combination of the trigonometric part of mode shapes i.e.
X trig.

a cos
(
ω f t− π

4

)
+X trig.

b cos
(
ω f t + π

4

)
(no piezoelectric), (b) the complete mode shapes of the

beam including the boundary effects (no piezoelectric), (c) the full model of the beam including
piezoelectric effects.

the edges of the beam. Figure 3.24, Figure 3.25 and Figure 3.26 display the phase relations for the
free-free, clamped-clamped and clamped-free boundary conditions respectively.

For the free-free case, the overall trend between the phase vs. frequency is similar in all three
cases. Near the 3rd resonant frequency, the phase that results in optimal traveling wave is 180◦

and as the frequency increases this phase value reduces. Near the 4th resonant frequency, the
optimal phase value is 0◦. However, by adding the boundary conditions to the free-free case,
Figure 3.24a changes to Figure 3.24b. In 3.24b, at any frequency, the phase required to generate
optimal traveling waves is higher than the corresponding value from 3.24a. A similar trend is
also observed in the other boundary conditions, by comparing Figure 3.25a with Figure 3.25b,
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and comparing Figure 3.26a with Figure 3.26b. However, if the beam structure is excited using
moments, as in piezoelectric patches, instead of point forces and including all dominant modes (up
to 6 modes in these cases) the phase value reduces and is similar to the trigonometric phase plot. In
other words, Figure 3.24a is similar to Figure 3.24c in the free-free case, Figure 3.26a is similar to
Figure 3.26c in the clamped-free case and Figure 3.25a is similar to Figure 3.25c in the clamped-
clamped case. In the clamped-free scenario, the system is antisymmetric and this results in higher
values for the cost function than the other two cases. Furthermore, near the natural frequencies of
the clamped-free case (with piezo effects), the cost function is almost equal to 1. This is different
from all other cases.

These results show that approximating the traveling wave contents as a combination of trigono-
metric parts is valid and is very close to the full model. The approximate shape of the traveling
wave can be simulated by considering the mode shapes of the structure and then the approximate
phase relationship is achieved by approximating the location of the point forces.

3.8 Multi-tone traveling waves

In earlier sections, traveling waves are generated by exciting a 1D beam structure simultaneously
by two forces at a single tone. However if the structure is simultaneously actuated at two tones, two
traveling waves are generated. The net response of the beam is the summation of the two traveling
waves. A schematic representation of the multiple traveling wave summation is shown in Figure
3.27. In this video (digital version only), the beam response shown in blue is a summation of the
low wavelength traveling wave (in red) and the high wavelength traveling wave (in green). In this
example, the direction of travel of the individual traveling waves is opposite to each other and the
amplitudes are significantly different. As the frequencies of the two traveling waves are different,
the wave dispersion relationship results in two different wave-speeds of the traveling waves. Such
differences in the individual traveling waves results in a hybrid cyclic response of the beam.

Based on this schematic, traveling wave summation is experimentally tested. The multi-tone
traveling wave is generated by exiting the free-free beam at two different frequencies. One of
the frequency of excitation (130Hz) lies between the second and third natural frequencies of the
beam and the other frequency of excitation (2584Hz) lies between the 16th and the 17th natural
frequency of the beam. To generate traveling waves, piezo-ceramics are exited with sinusoidal
signals with a phase difference of ±90◦. Voltage signals of amplitudes 120 Volts and 20 Volts

correspond to the frequencies of 130Hz and 2584Hz respectively. Figure 3.28a and Figure 3.28b
are the experimental traveling waves at frequencies of 130Hz and 2584Hz respectively. Figure
3.28c and Figure 3.28d correspond to the summation of the individual traveling waves. While
Figure 3.28d is a combination of the two traveling waves progressing in the same direction, Figure
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Figure 3.27: Theoretical summation of individual traveling waves at two different tones. (Click on
the picture for the video to start).

3.28c is the result of the traveling wave in opposite directions. this combination is a sample case
which demonstrates the possibility of multiple traveling wave summation. The fourth and fifth
modeshapes (trigonometric parts) of a free-free beam are used to generated this surface plot.

3.9 Conclusion

The focus of this thesis is to generate traveling waves on simple structures such as beams based on
the two-point excitation method. To achieve this a theoretical continuous model of the composite
beam is developed in this chapter. The model consists of two piezo-ceramic wafers attached to
a beam, which accurately predict the response of the beam upon one point excitation and two
point excitation. A comparative analysis between the theory and experiment was conducted for
three different boundary conditions: clamped-clamped, clamped-free and free-free. The results
demonstrated the accuracy of the theoretical model to predict the dynamics of the traveling waves.
The work herein also demonstrates through experiments that net traveling waves can be generated
on a beam structure by exciting it with two forces. The theoretical models have been corroborated
through experimental results and then these models are further used to study the effect of phase on
the quality of the traveling wave. The work also extends the concept of 90◦ to all frequencies for
the generation of a traveling wave.
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Figure 3.28: Experimental summation of individual traveling waves at two different tones (130Hz
and 2584Hz). (Click on the picture for the video to start).
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Chapter 4

Traveling waves in 2D plates

4.1 Introduction

The work in this chapter explores the generation of 2D flexural waves which are non-reflective on a
thin rectangular plate with free boundary conditions when excited by two Macro Fiber Composites
(MFCs). The voltage signals to the MFCs use a frequency lying halfway between two adjacent
resonant frequencies with a phase difference of 90◦. Locations of the MFCs and frequencies of
actuation are varied to study the response of the plate due to these forces. A Finite Element (FE)
plate model is developed and updated based on the data from an experimental modal analysis of
the plate. This model is able to predict up to the 40th damped eigenvalue with a maximum error
of 2.5% and match mode shapes accurately, with a lowest MAC (Modal Assurance Criterion)
value of 0.92. Numerical simulations of traveling waves are compared with experimental results.
Preliminary results show that the location of the MFCs and the frequency of excitation have an
effect on the type and the quality of the traveling waves. The work in this chapter is broadly divided
into five parts. The first part discusses the modeling approach taken to simulate plate dynamics
with piezoelectric patches bonded to the plate. The second part focuses on the model updating
and model validation through data obtained from an experimental modal analysis. In this section,
the eigenvalues and eigenvectors of the damped plate FE model are compared with experimental
results. Once the plate model is validated for a single input response, traveling waves generation is
addressed in the third part. Experimental and numerical responses of the plate are compared with
each other when the plate is simultaneously excited with two piezo ceramic patches. Additionally,
multiple approaches are developed to differentiate and categorize the plate behavior into standing
or traveling waves and the effects of frequency and location on the quality of the traveling waves
are discussed. The fourth part discusses the different projection based model reduction approaches
used to simulate plate dynamics. The last part analyzes the experimental results with those of mode
combination results.

83



A C

B D

24”

6”

1.5”

2”

5”

(a)

(b)
Figure 4.1: Experimental Setup: (a) rectangular plate with MFCs, (b) forces and moments acting
on a plate element.

4.2 Part I: Modeling plate dynamics

Consider a homogeneous, isotropic, linear elastic plate, with four piezoelectric actuators perfectly
bonded to it, as shown in Figure 4.1(a). The length, the width and the thickness of the plate are
denoted by Lb, Wb, and hb, respectively. Piezoelectric actuators dimensions are denoted by Lpi,
Wpi, and hpi, where i = 1, · · · ,4. The mid-plane of the plate is considered as the reference plane,
with the origin of the reference coordinate system (xyz) being located on this middle plane, as
shown in 4.1(b).

The focus of this section is to investigate traveling waves at relatively low frequencies (up to
3000Hz). At such frequencies the effects of the adhesive bonding layer between the plate and
the piezo patches are negligible [177], and hence, those sections of the plate covered with piezo
patches are considered as a composite structure. With this assumption, the classical lamination
theory is adopted to obtain the equivalent material characteristics for these composite sections.
Furthermore, since traveling waves are, in general, generated in thin plates, the first order shear
deformation theory (FSDT) has been adopted to define the displacements in the structure. Based
on the aforementioned assumptions, the displacement field in the plate is defined as,

u(x,y,z, t) = u0(x,y, t)+ zθy(x,y, t),

v(x,y,z, t) = v0(x,y, t)+ zθx(x,y, t),

w(x,y,z, t) = w0(x,y, t),

(4.1)

where u0, v0 and w0 are the displacements of the point (x,y) on the reference plane along the
x−, y− and z− directions, respectively. θx and θy are the rotations of the normal to the reference
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plane in the yz− and the xz−planes, respectively. Translational and rotational degrees of freedom
are split throughout the derivation of the governing equations and the formulation of the finite
elements as follows,

d = dt + z

dr

0

 , (4.2)

where d =
[
u v w

]T
, dt =

[
u0 v0 w0

]T
, and dr =

[
θx θy

]T
. The superscript T denotes the

transpose operation.

To avoid the issue of shear-lock associated with shear deformations, a reduced integration rule
is used to evaluate the transverse shear strains (εs), while a full integration rule is utilized for
in-plane strains (εb). Assuming small strains and deformations, εb and εs are defined as follows,

εb =


ε11

ε22

2ε12

=


∂

∂x 0 0

0 ∂

∂y 0

∂

∂y
∂

∂x 0




u0

v0

w0

+ z


∂

∂x 0

∂

∂y 0

∂

∂x
∂

∂y


θx

θy

 ,
= Lbtdt + zLbrdr,

(4.3)

εs =

2ε13

2ε23

=

0 0 ∂

∂x

0 0 ∂

∂y




u0

v0

w0

+
1 0

0 1


θx

θy

 ,
= Lstdt +Lsrdr.

(4.4)

Following the same notation, the state of the stress at any point in the plate is described by the
in-plane stresses (σb) and transverse shear stresses (σs) as follows,

σb =

[
σ11 σ22 σ13

]T

, σs =

[
σ13 σ23

]T

. (4.5)

The plate is assumed to be made of homogeneous, isotropic, linear-elastic material with the fol-
lowing constitutive relations,

σb =Cbεb, σs =Csεs. (4.6)

where Ci j is the element of the reduced stiffness matrix obtained with plane-stress assumption. The
relationships between these constants and the commonly used Young’s modulus of elasticity and
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Poisson’s ratio are summarized below,

C11 =C22 =
E

(1−ν2)
,

C12 =C21 =
νE

(1−ν2)
,

C44 =C55 =C66 =
E

2(1+ν)
.

For a piezoelectric actuator operating in 1-3 mode:
σ11

σ22

σ12


=


C11 C12 0

C12 C22 0

0 0 C66


D

ε11

ε22

2ε12


−


h13

h23

0


D3,


σ13

σ23

=

C44 0

0 C55


D

2ε13

2ε23

 ,

E3 =−
{

h13 h23 0

}


ε13

ε22

2ε12


+β

ε
33D3.

Assuming linear piezo-electricity, the constitutive equations for the piezoelectric actuators are
[174],

σb =C
D
b εb−hbD, (4.7)

σs =C
D
s εs−hsD.

E =−hT
b εb−hT

s εs +β
εD.

where D is the electric displacement, E is the electric field, hb and hs are the piezoelectric cou-
pling matrices related to bending and shear strains, CD

b and CD
s are the mechanical stiffness ma-

trices of the material measured at zero electric displacement, βε is the inverse permittivity matrix
measured at zero strain. In this study, the piezoelectric actuators are operating in 1-3 mode. Thus,
electric displacement and electric field vectors reduces to their D3 and E3 components, respectively.
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Based on the aforementioned assumptions, the kinetic energy of the piezoelectric-plate system
can be written as follows,

T =
1
2

(∫∫∫
Vplt

ρplt(ḋt+ zḋr)T (ḋt+ zḋr)dV+
∫∫∫

Vpzt

ρpzt(ḋt+ zḋr)T (ḋt+ zḋr)dV

)
, (4.8)

where ρplt and ρpzt are the mass density of the plate and the piezoelectric actuators, respectively,
V is the volume of the corresponding layer, and (˙) denotes the first partial derivative with respect
to time.

Following Helmholtz free energy definition for piezoelectric materials, the potential energy
functional of the system, including the strain energy and the work done by external forces, can be
expressed as,

U =
1
2

(∫∫∫
Vplt

(εT
bσb + zεT

s σs)dV+
∫∫∫

Vpzt

(εT
bσb + zεT

s σs−2εT
bhbD+DTβεD)dV

)
−
∫∫

Aplt

dTf dA−
∫∫

Apzt

V (t)DdA,

(4.9)

where f is the externally applied surface traction vector acting over the plate’s surface area Aplt ,
and V is the electric potential vector acting on the piezoelectric actuator, such that V =Ehpzt .

Using eight-noded isoparametric quadrilateral elements to discretize the plate, the displacement
vectors, associated with the ith(i = 1,2, . . . ,8) node of an element are expressed as,

de
ti =

[
u0i v0i woi

]T

,de
ri =

[
θxi θyi

]T

. (4.10)

On the element level, the displacement field at any point within the element can be defined in
terms of the nodal displacement vectors, de

t and de
r , and shape functions matrices, Nt and Nr, as

follows,

dt =Ntd
e
t , dr =Nrd

e
r, D =NtD

e, (4.11)

where

de
t =

[
de

t1
T de

t2
T · · · de

t8
T

]T

, de
r =

[
de

r1
T de

r2
T · · · de

r8
T

]T

,
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Nt =


N1 0 0 N2 0 0

0 N1 0 0 N2
. . . 0

0 0 N1 0 0 N8

 , Nr =

N1 0 N2 0 0

0 N1 0 N2 · · · N8

 ,

with Ni being the second order shape function associated with the ith node. Upon substitution into
Eq. 4.8 and 4.9, energy functionals can be written as,

T =
1
2
(ḋe

t
TM e

tt ḋ
e
t + ḋ

e
t

TM e
trḋ

e
r + ḋ

e
r
TM e

rt ḋ
e
t + ḋ

e
r
TM e

rrḋ
e
r), (4.12)

U =
1
2
(de

t
TKe

ttd
e
t +d

e
t

TKe
trd

e
r +d

e
r
TKe

rtd
e
t +d

e
r
TKe

rrd
e
r +D

eTKe
ddD

e) (4.13)

−de
t

TKe
tdD

e−ApztV D
e−de

t
TF e

t −de
r
TF e

r ,

where all element matrices are defined as,

M e
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2
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Ak

(∫
hk
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)
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∑
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ρk

∫∫
Ak

(∫
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z(NT
t Nt)dz
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dxdy,
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)
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Ke
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BT
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A
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Bbt =LbtNt , Bst =LstNt , Bbr =LbrNr, Bsr =LsrNr.

Applying Hamilton’s principle, the equations of motion for the plate with the piezoelectric
actuators is obtained as follows,

M e
tt d̈

e
t +M

e
trd̈

e
r +K

e
ttd

e
t +K

e
trd

e
r = F

e
t +Ke

tdD
e,

M e
rt d̈

e
t +M

e
rrd̈

e
r +K

e
rt d̈

e
t +K

e
rrd̈

e
r = F

e
r . (4.14)

An additional equation can also be obtained for the elemental electric displacement degrees of
freedom,De, as follows,

De =Ke
dd
−1(ApztV +Kttd

e
t ). (4.15)

Substituting Eq. 4.15 into Eq. 4.14 and assembling the elemental matrices yields,

Mtt d̈
G
t +Mtrd̈

G
r +(I+KtdK

−1
dd )Kttd

G
t +Ktrd

G
r = Ft +ApztKtdK

−1
dd V ,

Mtrd̈
G
t +Mrrd̈

G
r +Krtd

G
t +Krrd

G
r = Fr,

where Mtt , Mtr, Mrr, Ktt , Ktr, Krt and Krr are the global mass and stiffness matrices. The
vectors dG

t and dG
r are the global nodal translational and rotational degrees of freedom, respec-

tively. Ft and Fr are respectively the global force and moment vectors. In general, the thickness
of the piezoelectric actuators is very small compared to the base plate thickness, thus, Mtr and
Mtr can be ignored. Furthermore, for thin plates undergoing relatively low frequency excitations,
the effects of rotary inertia, represented by the matrixMrr, are negligible. This allows solving for
rotational degrees of freedom in terms of translational ones, and hence, reducing the computational
cost of the model.

The steady state dynamics of this model are then validated and the FE model is updated based
on experimental modal testing of a rectangular plate. The details of the experimental analysis are
presented in the next section.

4.3 Part II: Modal testing of the plate

In the previous section, the dynamics of the plate are modeled through a finite element approach
and this section validates the results of this model experimentally. A single-input-multi-output
(SIMO) modal testing procedure is followed to extract eigenvalues and eigenvectors of the plate.
Furthermore, the damping characteristics of the plate are experimentally acquired and the FE
model is then updated to include damping. The various steps followed in this modal testing and
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Table 4.1: Material properties for the augmented PZT-adhesive-beam system [2].

Base Plate (Al 6061)

E=69 GPa ν=0.33 ρ=2700 kg/m3

PZT wafer (PZT-5A)

E=62 GPa ν=0.33 ρ=7800 kg/m3

h13=-8.869×108 V/m h23=-8.869×108 V/m β33=1.481×108 m/F

validation phases are discussed in the following sections.

4.3.1 Experimental setup

The experimental work herein uses an aluminum plate of dimensions 24”×6”×1/16” (l×w× t)
to study 2D traveling waves. One surface of the plate is bonded with four M2814-P1 model MFCs
using 3M DP460 epoxy. Material properties for the base plate and the piezoelectric actuator are
summarized in Table 4.1. The MFCs (labeled A-D) are of size 1.102”×0.551” and are symmetri-
cally placed at each corner of the plate as shown in Figure 4.2 (b).

The plate is suspended in the air on two tensioned fishing lines to replicate an overall-free
boundary condition (Figure 4.2 (a)). The forces on the plate on account of the support fishing lines
are hence neglected in the current analysis. The strings are placed to balance the plate horizontally
and at the same time not to interfere with the MFCs bonded to the bottom surface of the plate.
When one or more of the MFCs are actuated, the plate is excited, and the resulting vibrations
are measured by scanning the top surface of the plate using a Polytec Scanning Laser Doppler
Vibrometer (SLDV). To facilitate model validation, 493 scan points are imported into Polytec
SLDV software from the finite element mesh; this enables an easier and more accurate comparison
of experimental and numerical results.

Firstly, a SISO modal analysis of the plate is performed through multiple frequency-sweep
tests to generate Frequency Response Functions (FRFs) and experimental Operational Deflection
Shapes (ODSs) [178]. In these tests, MFC A is excited with a sine-sweep signal of frequency
ranging from 10 to 3000 Hz and a constant amplitude of 14 volts. The SLDV measures the out-
of-plane velocity of the plate at each of these 493 scan points and computes the corresponding
FRFs with respect to the input voltage supplied to the MFCs. To reduce noise effects, 20 FRFs
are generated and averaged at each point. This data is further analyzed to extract experimental
eigenvalues, eigenvectors, and damping parameters. These results are discussed in the next section

90



(a)

(b) (c)

A C

B D

24”

6”

1.5”

2”

5”

Figure 4.2: Experimental Setup: (a) a rectangular plate is suspended in air to simulate a free
boundary condition, (b) locations of four MFCs bounded on to this plate are shown with respect
to the plate dimensions, (c) a scanning laser vibrometer measures the response of the plate as it is
excited by these MFCs.

and later this setup is used to generate traveling waves in the plate.

4.3.2 Operational deflection shapes (ODS) and eigenvectors

Polytec software processes the time-based vibration signal into the frequency domain in two ways.
These are H1 [179, 180] based FRF, which is the ratio of cross-power spectrum between input and
output signals (Gxy) to input auto-power spectrum (Gxx) and the H2 [179, 180] based FRF, defined
as the ratio of output power-spectrum (Gyy) to cross-power spectrum (Gxy).

H1(ω) =
Gxy

Gxx
and H2(ω) =

Gyy

Gxy
. (4.16)

The input and output noise effects are seen in these signals; while the H2 based FRF performs
better in capturing resonant frequencies, H1 better predicts anti-resonant frequencies. This can
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Figure 4.3: Experimental Frequency Response Functions (FRFs) are compared against the LMS
polymax fit.

be seen in the Figure 4.3. The red curve (H2-formulation) captures the peak values with a better
accuracy than the blue curve (H1-formulation). Based on these peak values, the Polytec software
generates the vibratory pattern of the plate at these frequencies. These ODSs are tabulated and
segregated according to the number of nodal lines in Figure 4.4. ODS(a,b) denotes the number
of partitions made by a− 1 and b− 1 nodal lines along length and width directions respectively.
Figure 4.4 also shows how closely multiple ODSs occur in small frequency intervals. This renders
it difficult to validate simulated undamped eigenvectors with experimental ODSs without filtering
the effects of adjacent resonant frequencies, damping, noise, etc. When very close eigenvalues
exist in plates, experimentally it is very difficult to isolate the dynamics of the plate at one of these
frequencies from the other. The net resulting ODS has a major contribution of mode shapes from
both frequencies and sometimes this results in complex ODSs.

Hence, to extract mode shapes (or eigenvectors) from these FRFs, we make use of the PolyMax
algorithm in LMS TestLabs software [181] to fit frequency data. This polyreference least-squares

approach (or PolyMax algorithm) computes a stabilization diagram based on complex frequencies,
damping and participation factors obtained from the FRFs. Complex eigenvectors and eigenvalues
are extracted by least-square fits of smaller frequency intervals using both H1 and H2 formulations.
The best eigenvector at a frequency is chosen manually by identification of stable poles and the
complexity of the fit. The average Polymax fit (green curves shown in Figure 4.3) is a product of
the data in both H1 and H2 formulations.

Additionally, the experimental damping coefficients (ζ ) are also estimated at all the peaks. In
the next section, these estimates are used to derive a damping matrix.
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Figure 4.4: Experimental operational deflection shapes as measured by the Polytec SLDV.

4.3.3 Proportional viscous damping parameters

The earlier sections on the modeling efforts of the plate dynamics with the piezoelectric patches
discussed the derivation of mass [M] and stiffness [K] matrices from the geometric and material
properties of the structure. The model discussed in this section includes damping forces based on
the approach previously developed in the literature [182]. For completeness, a brief explanation of
this approach is presented.

The dynamic FE model of the plate including the effect of viscous based damping can be
represented by

[
s2M + sC+K

]
X(s) = 0. (4.17)

The non-trivial complex solution of this equation is of the form of s = −σ + jωd where σ =

ζ ω̄ , ωd = ω̄
√

1−ζ 2, ωd and ω̄ are the damped and undamped natural frequencies, and ζ is
the damping coefficient. In the present work, viscous based damping matrix C is assumed to be
proportional to both mass (M) and stiffness (K) matrices,

C = αM +βK. (4.18)

The unknown parameters α and β are estimated from the experimental data. Eq 4.18 is substituted
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into Eq 4.17 and when simplified results in

(
(σ2−ωd−ασ)+ i(−2σωd +αωd)

)
M

+
(
(−σβ +1)+ iβωd

)
K


X(s) = 0. (4.19)

As the mode shapes of this system are real-valued, the real and imaginary components of this
equation are uncoupled and can be rewritten as(

σ2−ω2
d −ασ

−σβ +1
M +K

)
X(s) = 0,(

−2σ +α

β
M +K

)
X(s) = 0.

(4.20)

Both of these equations, which are in the form of a generalized undamped eigenvalue problem,
should be satisfied simultaneously; the coefficients of the mass matrices are simultaneously equal
to the undamped natural frequency,

σ2−ω2
d −ασ

−σβ +1
=
−2σ +α

β
=−ω̄

2

(
=−

ω2
d

1−ζ 2

)
. (4.21)

With the help of these two relationships, the undamped natural frequencies (ω̄) and the experimen-
tal damping coefficients (ζ ), the two unknown parameters α and β can be estimated using a least
square approach;

2



σ1

σ2

...

σN


=



1 ω̄1
2

1 ω̄2
2

...
...

1 ω̄N
2




α

β

 . (4.22)

This equation has two known quantities ζi and ω̄i, while the damping coefficients (ζi) are
determined through experiments (half-power method). The undamped natural frequency can be
determined in two ways: (Case 1) through experimental data (ωd

/√
1−ζ 2 ), (Case 2) through

the theoretical eigenvalue problem (|K−M ω̄2|= 0). When both approaches are considered, there
are two estimates of (α,β ): Case 1 results in (1.0793, 7.317×10−8) and Case 2 results in (1.1074,
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Figure 4.5: Experimental damping estimates based on H1 formulation .

7.1687×10−8). Each of these least-square coefficients predict ζ with an RMS error of 2.09×10−4

and 2.101×10−4, respectively. Figure 4.5 shows the experimental damping coefficient values for
the first 40 plate modes along with the least square predictions. The high damping values near
lower modes are due to the mass matrix (M ) and the gradual increase in damping values with
higher modes are due to the stiffness matrix (K) as seen in this figure.

As the proportional damping coefficients estimated through both cases are very close to each
other, the coefficients estimated in case 1 are used in the rest of the chapter. Based on these values
the complex eigenvalue problem is solved in the next section.

4.3.4 Complex eigenvalue problem

The previously developed finite element formulation of the plate is updated with the proportional
damping values computed in the previous section and this results in:

M ẍ(t)+
(

αM +βK
)

ẋ(t)+Kx(t) = 0.
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The eigenvalue problem arising from these set of equations is a complex equation and can be
observed when x(t) is assumed to be in the form of Xe jλ t :(

K+ i
(

αM +βK
)

λ −λ
2M

)
x(t) = 0.

This equation results in complex eigenvalues and complex eigenvectors which are solved in Matlab
using the polyeig command. The damped natural frequency and complex mode shapes are then
compared with the experimental natural frequencies and mode shapes extracted using the PolyMax
algorithm and are plotted in Figure 4.6.

The updated FE model is able to predict eigenvalues with a maximum error of 2.5% for the
entire bandwidth. Other than the first two eigenvalues, the FE model eigenvalues are in general
larger than that of the experimental, and the error gradually increases with modes. Such a trend
is expected, as the FE model has a higher stiffness as compared to the actual setup. Experimental
(1Ψi) and theoretical (2Ψ j) mode shapes are compared by using the Modal Assurance Criterion
(MAC) [176, 180] values which is given by

MAC(1Ψi,
2 Ψ j) =

(
1ΨT

i ·2 Ψ j

‖1Ψi‖
∥∥2Ψ j

∥∥
)2

. (4.23)
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Higher MAC values (close to 1) imply a higher correlation in the mode shapes. In the present
scenario, all mac values are greater than 0.92, which shows a very good correlation between the
experiment and finite element model. Thus, in this part of the thesis, the FE plate model is validated
through SISO modal analysis and it predicts the steady state dynamic response with very high
accuracy. In the next part, the steady state time response of the plate under multiple inputs is
studied.

4.4 Part III: Traveling Waves

The traveling wave generation approach in this chapter is an extension of the two-mode excitation
technique [59, 118, 118] or the impedance matching efforts [41, 172] previously carried out in 1-D
systems. In these previous studies, a string or a beam is excited simultaneously by two actuators at
a frequency halfway between two adjacent natural frequencies with a phase difference of 90◦. In
impedance matching literature, this phase difference is achieved by leading or lagging the voltage
signal through electronic circuits. Further, our previous work in [70, 183, 184] and also described
in previous chapter, has shown experimentally that traveling waves are achievable at any frequency
in beams by varying the phase difference between the input voltage signals to an optimal value.
However, it is easier to generate 1D waves as the number of parameters influencing the dynamics
of symmetrically actuated systems are limited to the frequency of actuation and phase change. In
2D systems, such as plates [185, 186] and cylinders [187] it is much more complex to generate
traveling waves.

4.4.1 Traveling wave generation

In this section the theoretical plate model, previously validated for steady state response, is used
to study the behavior of the plate when excited by two MFCs in order to induce traveling waves.
Earlier research [184] on 1-D traveling wave generation in beams suggests that the phase difference
between the two actuators is dependent on the placement of the actuators and the driving frequency.
This concept is extended and applied in the present work for 2D plates. For example, the model
predicts the 9th and 10th natural frequencies of the plate to be at 504Hz and 606Hz respectively;
the two-mode excitation theory suggests that if the plate is excited at the halfway frequency, i.e. at
555Hz, with a phase difference of 90◦ between the two MFCs, this will result in a traveling wave
response. This concept is tested in this section by choosing three MFC configurations to actuate
the plate at eight such ”halfway” frequencies. If the halfway frequency is ωh rad/s, the response of
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the plate is given by solving the forced system of equations given by

M ẍ(t)+C ẋ(t)+Kx(t) = F1(x1,y1, t)+F2(x2,y2, t),

where F1(x1,y1, t) and F2(x2,y2, t) are the forces due to the two MFCs at two different loca-
tions. These forces are estimated by using the piezo control influence matrices {[KtdKdd]1}
and {[KtdKdd]2} and the voltage signal (V (t)) for both piezos, respectively. The plate veloc-
ity response (V̄) due to these two forces (F = F1(x1,y1, t)+F2(x2,y2, t)) is computed using the
superposition theorem as

V̄=
[
K+ j.ωhC−ω

2
hM

]−1
F , (4.24)

where

F =
(
[KtdKdd]1 +[KtdKdd]2e j.π/2

)
Ve j.ωht . (4.25)

Experimentally, this halfway frequency is chosen based on experimental resonant frequencies,
i.e. in the previous case this halfway experimental frequency is at 546Hz, as the nearest two
resonant frequencies are at 496Hz and 596Hz respectively. At this frequency, the plate is excited
simultaneously by two of the four MFCs attached to the plate. Three combinations of MFC pairs
are used to actuate the plate (refer to Figure 4.1): (1) MFC A and B, (2) MFC A and C, and
(3) MFC A and D. In each of these actuation scenarios, the phase is maintained at 90◦ and input
voltage amplitude at 14 Volts. As the plate is excited, the top face of the plate is scanned in the
time-domain at all 493 points by the Polytec SLDV. One of the tasks in analyzing these results is to
differentiate between 2D traveling and standing waves; this is further discussed in the next section.

4.4.2 Standing vs. Traveling waves

To distinguish between traveling waves and standing waves, the features of these waves have to
be revisited [184]. In 1-D or 2-D flexural waves, all material particles of the structure vibrate
sinusoidally with a constant phase difference between them. In standing waves, when there is no
damping, this phase difference is either 0◦ or 180◦ and the transition between these phases is due
to the presence of strain nodes i.e. points with no displacement. In traveling waves, although the
phase difference between any two points is fixed in time, this value changes spatially and gradually
increases from 0◦ to 180◦ over a given wavelength. Hence there are no strain nodes in traveling
waves. This is the striking feature of traveling waves that separate them from standing waves. The
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Figure 4.9: Experimental results of plate when excited at with MFCs A and D.

work presented in this chapter develops continuous traveling waves such that there are no effective
reflections at the plate boundaries.

In the rest of the chapter, the presence or absence of strain nodes is used as a primary indicator
to judge the quality of the traveling waves. The contour plots in this figure map the root-mean-
squared (RMS) velocity of the plate. Contour plots and envelope plots, shown in Figure 4.7, can
also used to study plate dynamics. This figure presents simulated data of the plate response when
actuated by a single piezo at 504Hz and 606Hz and also when excited by two piezo patches at
555Hz (bottom plot). While the darker regions of such plots correspond to the region with little or
no particle velocity (or nodal lines), the brighter regions correspond to the high particle velocity.
In the contours of standing waves, there are both dark and bright regions and these correspond to
the strain nodes and spatial anti-nodes. However, a contour of a pure traveling wave has uniform
contrast throughout the plot.

For example, either of the single input actuation scenarios shown in this figure have clear nodal
lines in the contour plots. Dark regions are parallel to both length and width of the plate in the
case corresponding to 9th resonant frequency (i.e ODS(5,2)) and only parallel to width when the
plate is excited at the 10th resonant frequency (i.e ODS(7,1)). Furthermore, the scenario where the
plate is excited by two forces which are separated by a phase difference of 90◦ results in a contour
which has an almost uniform contrast throughout.

Additionally, envelope plots along the length and the width of the plate are also provided for
all cases. Three locations along the length (Y = 0, Y = L/2 and Y = L) and three along the width
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frequencies.)
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(X = 0, X = W/2 and X = W ) are chosen to study these maximum and minimum envelopes.
Similar to the contour plots, these envelope plots provide information related to the maximum and
minimum velocity of points along discrete locations along the length and the width of the plate. In
the presence of strain nodes, the maximum and minimum displacement/velocity of the particles are
equal to zero and this is visible through these plots. Care should be taken in assuming the presence
of traveling waves based on just these envelope plots, as nodal lines may be present only in one
direction. For example, in the standing wave case of 606Hz, nodal lines occur parallel to the width
of the plate and hence can only be seen in the envelop plot which presents data along the length of
the plate.

4.4.3 Effects of actuation locations

This section discusses the role played by MFC placement in determining the type of resulting 2D
planar wave, by changing the actuator pair used to excite the plate. The RMS contour plots in
Figure 4.8 show plate responses when it is excited by three different MFC pairs: A-B, A-C, and
A-D. To compare similar plate effects at halfway frequencies, the experimental data at 546Hz is
compared with 555Hz in simulations for all three scenarios. Contour patterns in all three cases
are significantly different from each other, revealing that actuation location plays a significant role
when the driving frequency is kept constant. In all three cases, the MFC pairs that are actuated can
be easily located in the corners of the plate by identifying areas which are white in color; these
areas have particles which have much higher velocities as compared to the rest of the plate, as
expected. In cases where the plate is excited using A-B and A-C pairs, there are areas (dark or
black in color) where the velocities of the points on the plate are much smaller than the rest of the
plate. Although these two scenarios result in complex standing wave patterns, the third case where
the plate is excited by the A-D MFC pair, has a recognizable traveling wave pattern. In this case, it
is observed that there is a wave which starts at MFC A and travels along the longer side of the plate
to reach the other MFC (D). These patterns generated by the FE model closely follow the patterns
observed experimentally, which confirms that the excitation locations of the MFC’s bonded to the
plate play an important role in traveling waves generation. Although, only one of the eight halfway
frequencies (294Hz, 374Hz, 448Hz, 546Hz, 635Hz, 708Hz, 805Hz, 945Hz) experimentally tested
is presented here, a similar trend is observed in most of the cases wherein MFC pairs A-B and
A-C generate patterns that are not as good as the wave generated in the A-D pair. Furthermore,
in all cases where the plate is excited with the MFC A-D pair (except for the 805Hz), a traveling
wave with varying wavelengths is observed. At 805Hz, a complex standing wave is observed.
The experimental RMS contours and wave envelopes for all these cases are plotted along with the
averaged frequency response function in Figure 4.9.
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In the frequency range tested, traveling waves are always found to travel along the length of the
plate when the plate is excited using the MFC A-D pair. The direction and the wavelength of these
waves vary from case-to-case as shown in Figure 4.10. In this figure, the time trace contours of the
wave progression are presented at four time-stamps: 0, T/4, T/2, 3T/4; where T is the time-period
of the wave at the frequency of excitation. As these contours display the instantaneous velocity
profile of the plate at various time stamps, the scale of the contour ranges from a negative minimum
value to a positive maximum value as opposed to the RMS contours previously discussed. The blue
arrows shown in this figure follow the direction of wave propagation in the plate. Although, in all
of these cases the phase difference between the MFC pair A-D is 90◦, the direction of the wave
is not the same. While, in the 448Hz and 546Hz cases, the wave starts from A and ends at D,
the trend is opposite at the other two frequencies where the wave starts at D and ends at A. A
similar phenomenon is also observed in beams where the direction of the waves changes [184]
and Chapter 3. Although, there is a specific pattern in beams where the direction of the traveling
waves alternates after each resonant frequency, such a trend is not observed in plates. For example,
the frequency pairs (448Hz & 546Hz) and (635Hz & 708Hz) have only one resonant frequency
between them, there is no change in the direction of the traveling waves. However, there is a
reversal of direction when the frequency of excitation changes from 546Hz to 635Hz. A more
detailed study is required to understand this phenomenon, but it is presumed to be due to the
presence of nodes in both directions (width and length) which is not present in beams. Furthermore,
as the frequency increases, the wavelength decreases as predicted by the dispersion relation of the
plate, and this trend is also visible in the contour plot.

4.5 Part IV: Reduction of FE plate model

As analytical solutions to 2D plates are complex to analyze, a FE approach, supported by experi-
mental results. However, a comprehensive analysis requires simulating the FE model for various
cases: varying the locations of forces, the phase timing between forces, the amplitude of these
forces and the frequency of excitation. Such simulations on the plate model are computationally
intensive.

The present section attempts to scale-down these large FE models into reduced order models
(ROMs) that are still representative of the dynamics of the system under study. The importance
of model reduction of complex dynamical systems arises from the need for reducing the com-
putational cost of numerical simulations, which can put overwhelming burden on computational
resources. The need for model reduction becomes even more substantial when a large number
of full-system evaluations or real-time (or near real-time) responses are required. Computational
mechanics based optimization, statistical analysis, parametric studies and optimal control, analysis
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of nonlinear phenomena, such as turbulence, large deformations, plasticity and contact mechan-
ics are few examples where model reduction techniques are heavily used. We refer the reader to
the following monographs and survey papers [188–194] for a description and analysis of various
model reduction techniques in additions to examples of model reduction in action.

In this chapter, the limits and capabilities of some model reduction techniques to capture the
dynamics of an aluminum thin plate are studied. The next section, ‘Projection-based model reduc-

tion techniques’ features the concepts behind the various model reduction techniques to develop a
reduced-order model to approximate the full system. Furthermore, the issues of reducing an un-
constrained plate model especially due to the rigid-body modes are discussed. Various reduction
techniques based on the concepts of reachability, observability, balanced truncation and Iterative
Rational Krylov Algorithm are also presented. The theoretical background of these techniques
used in this chapter are well developed in the literature; [188, 189, 194–196] and have been pre-
sented here only briefly.

4.5.1 Projection-based model reduction

Simulations of complex engineering problems such as dynamic structures, fluid systems, and ma-
terial models make use of fine-scaled finite element models with huge dimensions. Computational
burden, conditioning and numerical stability, and data storage are challenging factors for such fi-
nite element formulations. To obviate the aforementioned challenges, the full scale finite element
model can be scaled down to an approximate reduced-order-model (ROM), preserving the needed
input-output characteristics. The present work considers four model reduction approaches based
on projections to scale-down the finite element model developed in the earlier section. The steady
state frequency and time response of the ROM is then compared with the full FE model. The plate
FE model can be represented in a generalized second-order differential equation as

M q̈(t)+Gq̇(t)+Kq(t) = Fu(t)

y = cq̇(t),

which can be rewritten in the state-space representation as

ẋ=

 0 I

−M−1K −M−1G

x+
 0

−M−1F

u,
y =

[
0 c

]
x,

(4.26)
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wherex=

q
q̇

. Note that except for the special cases such as when the mass matrixM is diagonal

and well-conditioned, one avoids invertingM , as this operation will be too costly and will destroy
the sparsity. In that case, a block diagonal matrix will multiply the state-vector x leading to a
generalized state-space system. In this chapter, to keep the notation simpler, we use the state-
space representation in (4.26). All the discussion that follows directly extends to the generalized
state-space case. We will denote the state-space representation in (4.26) by

ẋ(t) =Ax(t)+Bu(t),

y(t) =Cx(t)+Du(t),
(4.27)

where the first equation describes the internal dynamics, illustrating how the internal state variable
x(t) ∈ IRn changes in response to the input u(t) ∈ IRm applied to the system. The state variable
x(t) contains the plate displacements and velocities discretized at all finite element nodes, in all
three directions x, y and z. The input u(t) is a vector of voltage signals applied to the four piezo-
ceramics bonded to the plate. The output variable y(t) ∈ IRp is the desired out-of-plane velocities
(i.e., in the z-direction) of the plate meshed at 493 locations. Therefore the dimensions of the state
space matrices of the full-order system are A ∈ IRn×n, B ∈ IRn×m, C ∈ IRp×n, and D ∈ IRp×m.
For the full plate model we consider here, n = 2956, m = 4, and p = 493.

For linear dynamical systems such as the FE plate model considered here, the model reduction
framework and the error analysis is best understood in the frequency domain. Then, by taking the
Laplace transform of (4.27), we obtain the transfer function G(s) of the underlying model, given
by

G(s) :=
A B

C D

,

:=C(sI−A)−1B+D.

(4.28)

Note that the transfer function G(s) is a matrix-valued rational function of degree-n. Then, the
purpose of model reduction is to construct a reduced-order rational function (i.e., a reduced-order
transfer function ) Gr(s) of degree r� n such that Gr(s) is a good approximation to G(s) in an
appropriate norm. This is achieved by projecting the full state-space onto a lower dimensional
one using Petrov-Galerkin projection. To achieve this goal, we construct two model reduction
bases V ∈ IRn×r and W ∈ IRn×r where r is the desired reduced-order. Without loss of generality,
assume that V and W are bi-orthogonal, i.e., W TV = Ir. Then, we approximate the full-state
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as x ≈ V xr, where xr ∈ IRr is the reduced state, and enforce a Petrov-Galerkin condition on the
error

W T(V ẋr−AV xr−Bu(t)
)
= 0

to obtain the reduced-order model (ROM) given by

ẋr(t) =W T AV xr(t)+W TBu(t),

yr(t) =CV xr(t)+Du(t),
(4.29)

or, equivalently in the frequency domain,

Gr(s) :=
W TAV W TB

CV D

=
Ar Br

Cr dr

,

:=Cr(sI−Ar)
−1Br+D.

(4.30)

Note that in the projected space, the dimensions of the state space matrices are xr(t) ∈ IRr, Ar ∈
IRr×r,Br ∈ IRr×m,Cr ∈ IRp×r, andD ∈ IRp×m. In other words, while the internal state dimension
is reduced from n to r, the number of input and output dimensions are kept the same. Therefore,
while G(s) is a p×m matrix valued rational function of degree-n, G(s) is a p×m matrix valued
rational function of degree-r. There are many approaches to construct the model reduction bases V
andW ; the underlying concept of Petrov-Galerkin projection remains same. The later sections of
this chapter discuss various techniques to construct these bases. Before delving into these details,
the approach we take to compare reduced models with full order models is first discussed in the
next section.

4.5.2 Ellipse fits to detect traveling waves in 2D plates

Although, as previously stated, most of the experiments actuating MFC pair A-B have not resulted
in linear traveling waves, there is one frequency at which this pair exhibits traveling waves. The
experimental plate response at frequency 635Hz is shown in Figure 4.11. While this wave travels
along the length of the plate similar to the previously discussed results, it propagates near its
long edges and is a combination of waves in both directions. It is easier to visualize this as a
traveling wave which is rotating clockwise along the circumference of the plate. As the length
of the plate under consideration dominates over its width, this traveling wave appears to be two
separate traveling waves progressing in opposite directions. It is quite interesting to note that by
changing the location of the forces, at least two different types of traveling waves can exist at a
given frequency. This shows the potential to generate multiple traveling waves by changing the
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location, the frequency of operation and other parameters such as phase and amplitude.

In our previous research [69, 70, 183, 184], 1D traveling waves were generated in beams by
simultaneously exciting two MFCs with a phase difference. The present work extends the prior
excitation methodology to plates. So, two sinusoidal voltage signals, with a phase difference of
90◦, are applied to two MFCs at a time. Although, four MFCs are bonded to the present structure,
only two of these, namely MFC A and D are used to excite the plate. The frequency of excitation
is chosen to be a value halfway between the eight and the ninth natural frequency. In experiments,
this frequency is 546Hz and in simulations, this is 555Hz.

The time responses of the plate, i.e. the out-of-plane velocities are collected at all 493 points
as seen in Figure 4.12 and the root-mean-squared values are plotted as a contour in the Figure
4.13. Based on this figure, we can detect if the resulting wave is a standing or a traveling wave
by observing the presence or the absence of strain nodes. Although there are no strain nodes in
this figure, the amplitude changes along the longer side of the plate. However, in later sections,
it is difficult to compare such details in two contour plots from the full and the reduced models
and appraise the reduced model. Thus, a basic and visual detection technique is derived from the
1D Fourier analysis and adapted to the present 2D case. In the 1D beam case, the first step is to
compute the FFT of the velocity responses at all points. Then, the complex values of the Fourier
transformed signals at the excitation frequency are collected. Then the complex FFT values of
these points are plotted in the complex plane. If the resulting curve is a circle, then the beam
response is a pure traveling wave as the phase difference between adjacent points along the beam’s
length is constant and varies from 0◦ to 180◦ over a wavelength. However, if they form a straight
line, then the response is a pure standing wave as the phase difference between adjacent points
along the beam’s length is either 0◦ or 180◦. But, if they result in an elliptical curve, then the beam
has a mixture of both pure standing and pure traveling waves (as seen in Figure 4.14).

This concept is adapted to the 2D plate case by discretizing the plate into multiple 1D ‘beam’
sections. Each 1D beam results in one curve. To avoid confusion, only the relevant sections of
7 curves, at equally spaced locations along the width of the plate are plotted in Figure 4.13 and
Figure 4.14. In Figure 4.13 the 7 locations where the plate is discretized into 1D beams is also
plotted. In the present work, we deal with the plate response at 555Hz. We frequently refer back
to this ellipse and check if the reduced model is able to simulate similar elliptical curves.

A

B

C

D

Figure 4.12: FE nodes of the plate and the location of the piezo-patches.
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Figure 4.13: Contour plot represents the RMS velocity profile of the plate at 546Hz when actuated
by two MFCs. Multiple ellipses are generated from the velocity of different points.

4.5.3 Rigid-body modes and instability

The present work attempts to simulate the dynamics of a plate with unconstrained boundary con-
ditions. Such unconstrained model will allow the plate to respond freely to any force in all six
degrees-of-freedom as a rigid body [1]. In the modal analysis of unconstrained systems, such flex-
ible movements of the structures appear as rigid-body modes with zero valued resonant frequen-
cies [8]. As these modes have no vibratory deformations that contribute to the dynamic analysis,
several studies tend to ignore these rigid body modes. However, in system modeling applications,
these modes play an important role in component mode synthesis, as they contain inertia and stiff-
ness characteristics [197–200].

In the present finite-element model, the second-order matrix differential equation has dis-
cretized the plate with 493 nodes or 1479 DOF. In the rest of the model reduction sections, the col-
umn space spanned by the eigenvectors of this finite-element model are referred to as modal space.
This results in 1479 eigenvalues, out of which the first six eigenvalues correspond to the rigid-body
modes. The state-space formulation of this model has twice the number of degrees of freedom (i.e
2958 DOF) and twice the number of eigenvalues which appear as complex conjugate pairs. The ith

state-space eigenvalue (si) of a damped structure is of the form si = −ζ ωi± iωi

√
1−ζ 2

i ; where
ωi and ζi are the ith undamped natural frequency and modal damping coefficient, respectively. In
theory, as the undamped natural frequencies of rigid-body modes are of zero value [8], both the
real and imaginary parts of the state-space eigenvalues are also of a zero value. Such a system

109



Ellipse

Points along line on the plate

Real

Im
ag.

Figure 4.14: A schematic representation of generation of an ellipse from the complex magnitude
of the points along a line on the plate.

is critically stable. However, due to numerical issues of ill-conditioned state-space matrices, the
eigenvalue problem can result in rigid-body eigenvalues with very small positive real parts result-
ing in numerically unstable models. To avoid such issues, the 12 rigid-body modes present in the
state-space model are first decoupled from the full model and the remaining asymptotically stable
part is scaled-down in later sections using model reduction techniques.

We achieve this decoupling by employing the ordered real Schur decomposition algorithm; see,
e.g., [201,202] and the references therein. We briefly mention the details here to make the chapter
self-contained. The real Schur decomposition [203] transforms the state matrix A into a quasi
upper-triangular matrix T and an orthogonal matrix U such that A = UTUT and UTU = I

where the eigenvalues of the state matrix A appear along the diagonal blocks of the Schur matrix
T . This Schur matrix is then reordered to separate the rigid-body modes. The numerically unstable
rigid-body eigenvalues are placed in the lower right diagonal block of the quasi-triangular Schur
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matrix T . The corresponding state-space transformation to the full-order model is

G(s) :=
AT BT

CT D

=
UTAU UTB

CU D

,

=

AT 11 AT 12 BT 11

0 AT 22 BT 21

CT 11 CT 12 D

,

(4.31)

where AT 11 ∈ IRn−12×n−12, AT 12 ∈ IRn−12×12, AT 22 ∈ IR12×12 correspond to the stable part, the
coupled part and the numerically unstable part, respectively. Another state transformation is re-
quired to decouple stable and unstable parts completely. This is achieved by using

V :=

 In−12×n−12 Rn−12×12

0 I12×12

 ,

W :=

 In−12×n−12 −Rn−12×12

0 I12×12

 ,
(4.32)

where the matrix I is an identity matix and R is a rectangular matrix that will be selected below
to decouple the state space equations. By using these bases transformation matrices, we obtain

W TATV :=

 AT 11 AT 11R−RAT 22 +AT 12

0 AT 22

 .
Then, the decoupling is completed by choosing the matrix R such that the off-diagonal term is
zero. This results in the Sylvester equation [201], AT 11R−RAT 22 +AT 12 = 0 for R. These
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bases completely separate the full model (G(s)) into stable (Gs(s)) and the unstable part (Gu(s)),

G(s) :=
W TUTAUV W TUTB

CT 1 D

,

=
AT 11 BT 11

CT 11 D

+
AT 22 BT 21−RBT 11

CT 12 +RCT 1 D

,

=
As Bs

Cs Ds

+
Au Bu

Cu Du

.

G(s) = Gs(s)+Gu(s).

(4.33)

The dimensions of the state matrices of the stable and unstable components are As ∈ IR2946×2946

and Au ∈ IR12×12 respectively.

4.5.4 Model validation and error prediction

When we project the full-model (Gs(s)) onto a lower dimensional space, we need appropriate error
measures to evaluate the performance of the reduced model (Gr(s)). It is convenient to define error
measures relH2 and relH∞ norms to show how close Gs(s) and Gr(s) are over the entire frequency
spectrum [188]:

relH2 =
‖Gs−Gr‖H2

‖Gs‖H2

,

relH∞ =
‖Gs−Gr‖H∞

‖Gs‖H∞

.

(4.34)

where the H2 and H∞ norms of a stable transfer function H(s) are defined as

‖H‖H2
=

(
1

2π

∫
∞

−∞

‖H(ıω)‖2
Fdω

)1/2

, (4.35)

and

‖H‖H∞
= sup

w∈IR
‖H(ıω)‖2 (4.36)

where ‖N‖F and ‖N‖2 denote, respectively, the Frobenius norm and 2-norm of the matrixN .
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In addition, one sometimes is interested in comparing the two models only over a specific
frequency range. One can achieve this by using the corresponding weighted-H2 and weighted-
H∞ norms. However, these measures still require that both systems be asymptotically stable.
In our case, we would like to be able to measure, or at least approximate, the distance of the
reduced model from the original model G(s), which theoretically has poles on the imaginary axis.
Therefore, we will approximate the distance from G(s) using a sampling approach, leading to
two error measures relEF and relE2. These measures compare the input-output mapping between
one of the inputs (u1) and the outputs (yi) for the two models. In this study, it is defined as the
error between the frequency response functions (FRFs) generated between the out-of-plane plate
velocities at all 493 points (yi) and the input voltage signal supplied to the MFC A (refer to Figure
4.12). This transfer function is similar to the mobility FRF (Yk1) of a point (yk) on the plate due to
the input signal u1 at a frequency ωi, which is,

Yk1(ωi) =C[( jωi)I−A]−1B+D. (4.37)

A transfer function matrix (Y1) is generated by evaluating the above equation at various frequen-
cies, {ω1, . . . ,ωN}, and locations. Define

Y1(Ω) = [ Y1(ω1), Y1(ω2), . . . ,Y1(ωN) ].

Then, the approximate error measures relEF and relE2, are calculated by

relEF =
‖Y1(Ω)−Y1,r(Ω)‖F

‖Y1(Ω)‖F
, (4.38)

and

relE2 =
maxωi‖Y1(ωi)−Y1,r(ωi)‖2

maxωi‖Y1(ωi)‖2
. (4.39)

Based on these definitions, the approximate distance between the stable model (Gs(s)) and the full
FE model (G(s)) is given in Table 4.2. The error measures relEF and relE2 are estimated at 1000
equally spaced frequency points between 1Hz and 3200Hz. Figure 4.15 shows the mobility Bode
plots for different cases: the full model-G(s), the stable model - Gs(s), the antistable model - Gu(s)

and Gs(s)+Gu(s). The ‘green’ curve shows the effect of the rigid-body modes on the dynamics of
the plate. As expected, there is only one peak in this bode plot (green) at the rigid-body eigenvalue
(0Hz). These rigid body modes influence the presence of anti-resonant peaks at lower frequency
ranges and also slightly change the magnitude of the resonant peaks.

Additionally, a chirp input signal is used to establish the frequency response functions of the
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Table 4.2: Error between the full FE model- G(s) and the stable model- Gs(s).

relEF = 2.60×10−1
relE2 = 3.614×10−1

plate. In the present work, experimental resonance frequencies and operational deflection shapes
are generated through chirp excitation. Therefore, we first simulate the plate response to the same
excitation and then establish the input-output relationship. The frequency response function of the
plate excited with a chirp input is the ratio of the cross-power spectrum (Pyu) between the chirp
input and the output signal to the auto-power spectrum of the input (Puu) [180], i.e.,

H1(ωi) =
Pyu(ωi)

Puu(ωi)
.

The frequency response functions with both the approaches match along most of the frequency
range as observed in Figure 4.16. These plots differ at higher frequencies where there is a reduction
in the power of the input signal. Out of the 41 eigenvalues of the plate model, between 0Hz and
3200Hz, 40 eigenvalues are the out-of-plane eigenvalues and one is the in-plane eigenvalue. In the
present study, as we are only interested in the out-of-plane plate response, we compare the first
40 out-of-plane simulated natural frequencies with the corresponding experimental values. The
maximum error between these values is 2.2% at the 39th mode. Further, the operational deflection
shapes at these 40 peaks are extracted from the FRFs and are compared with the experimental
values using the Modal Assurance Criterion (MAC) [180, 204]. Figure 4.17 displays the MAC
values between the stable and the experimental ODSs. The high diagonal values of the MAC matrix
represent the similarity in the eigenspace of the experiments and the FE model. The presence of
some off-diagonal MAC values is due to the presence of cross-coupling between adjacent ODSs.
Usually, to avoid this problem, we extract and compare the mode shapes of the plate instead of
ODSs [178,180]. However, the present study does not consider the comprehensive modal analysis
of the plate .

Time domain is another area to test the quality of the state-space model. Specifically, the
response of the plate when excited by two inputs is of interest. Although there are four inputs to
the original model, two inputs (MFC A and D) are chosen to simultaneously excite the plate to
generate traveling waves. Two sinusoidal voltage signals of amplitude V = 10Volts and frequency
fs = 555Hz are applied to these MFCs. There is a 90◦ phase difference between these voltage
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Figure 4.15: Bode plot comparison between the full FE mode, the stable and the unstable parts.

signals. At a time instant t, the plate response (y f (t)) is given by

y f (t) =Cr[i2π fsI−Ar]
−1Br.Ve j.2π fs.t



1

0

0

e j.π/2


. (4.40)

The time domain response (y f (t)) is then converted to the frequency domain by applying the Fast
Fourier Transform. The complex response of all points on the plate at the excitation frequency
are collected and plotted in the complex plane, as shown in Figure 4.18. This results in multiple
elliptical curves as previously observed in Figure 4.14 of the section 4.5.2.

In the next few sections, model reduction techniques are applied on the stable part of the full
model, i.e., Gs(s). Similar steady-state frequency and time domain analysis are performed to test
the reduced models.

4.5.5 Reachability-based model reduction

Reachability quantifies the ‘ease’ of reaching a final stateXR from the zero initial state X0 = 0 in
finite time T by spending finite energy (ξ reach

XR
) [205]. States that correspond to small reachability

energy are easier to reach. The concept of reachability only depends on the state matrices (A,B).
Assuming that the system is completely reachable, the reachability energy can be computed as
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[188],

ξ
reach
XR

=XT
RP(T )

−1XR, (4.41)

where P is the finite-time reachability gramian and defined as

P(T ) =
∫ T

0
eAtBBT eA

T tdt. (4.42)

For asymptotically stable dynamical systems, we let T → ∞ in (4.42) to obtain the infinite reach-
ability gramian P, which we will simply call the reachability gramian. One does not evaluate the
integral (4.42) to compute P; instead P is computed by solving the reachability Lyapunov equation

AP+PAT +BBT = 0. (4.43)

In a physical sense, a state XR is easier to reach when the corresponding reachability energy in
(4.41) is small. From the definition of the reachability energy, such states are spanned by the left
singular vectors of P corresponding to the largest singular values, as plotted in Figure 4.19 in de-
creasing order. The hard-to-reach states, on the other hand, correspond to the smallest singular
values of P; thus, they can be truncated by choosing V =W in (4.29) as the leading dominant
left singular vectors of P. In this plate state space model, there are 493 outputs and four inputs;
therefore, the output space is dominant; however the reachability-based reduction approach com-
pletely ignores this. This is evident in the reachability energy plot shown in Figure 4.20. The
reachability energy of a particular state is calculated by substituting the eigenvector (Vi) of that
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Figure 4.17: Comparison of experimental and simulated operational deflection shapes due to chirp
input.

state into ξ reach
Vi

= VT
i P
−1Vi. The reachability energies of the first 40 out-of-plane eigenvectors are

highlighted in this plot. Based on this plot, at least 429 leading singular values are required to span
the reduced space with the 40 desired eigenvectors. Although a reduced model of this size has the
required eigenvectors spanning its column space, the eigenvalues do not match those of the full
model. A much higher order model (r = 900) is required for the first 40 eigenvalues to converge to
the desired values. Table 4.3 presents the errors corresponding to this reachability-based ROM. As
reachability-based truncation of high-energy states resulted in a relatively large state-space model,
further analysis in the time domain is not performed. The observability-based model reduction is
explored in the next section.

Table 4.3: Error between the stable model- Gs(s) and the reachability based ROM- Gr(s) (r=900).

relH2 1.551×10−1
relH∞ 1.361×10−1

relEF 1.353×10−1
relE2 1.209×10−1

4.5.6 Observability-based model reduction

Observability is the dual-concept of reachability. Here, the observability of an initial state XO

means that it can be distinguished from the zero state by observing the output signal y(t) over a
finite time interval in the case of zero input, i.e., u(t) = 0. Therefore, only the matrices A and C
play a role in the concept of observability. Similar to the case of reachability, here by observing the
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Figure 4.18: Comparison between the ellipse fits generated experimentally and simulations.

energy of the output signal y(t), over a finite time interval T with u(t) = 0, we can quantify the
‘ease’ of observing an initial state XO. The energy of the output signal is called the observability
energy (ξ obs

XO
) and is given by,

ξ
obs
XO

=XT
OQ(T )XO, (4.44)

where the finite-time observability gramian is defined as,

Q(T ) =
∫ T

0
eA

T tCTCeAtdt. (4.45)

For asymptotically dynamical systems, we let T →∞ in (4.45) to obtain the infinite observabil-
ity gramian Q, which we will simply call the observability gramian. As in the reachability case,
the observability gramian satisfies the following Lyapunov equation:

ATQ+QA+CTC = 0. (4.46)

In a physical sense, a state is unobservable when its energy is equal to that of the zero state.
A state is easier to observe if it leads to higher observability energy. From the definition in (4.44)
these are the states spanned by the dominant left singular vectors of Q. Figure 4.19 shows the
singular values of Q in descending order. The hard-to-observe states, i.e., those corresponding to
the smallest singular values of Q, can be truncated by choosing V =W in (4.29) as the leading
dominant left singular vectors of Q. Figure 4.21 shows the observability energies of all states in
the state-space. This figure also highlights the observability energies corresponding to the first 40
out-of-plane eigenvectors, which in-turn gives an estimate of the size of the reduced model with the
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required column space. The observability energy of a particular state is calculated by substituting
the eigenvector (Vi) into ξ obs

Vi
= V T

i Q(T )Vi. Based on this plot, a reduced model needs at least
2400 leading eigenvectors to span its column space; this suggests that there are many eigenvectors
in the first 40 modes which are difficult to observe. Hence, observability-based truncation cannot
drastically reduce the full system.

However, the concept of reachability and observability depend on the basis of the state space
matrices. To put it differently, a change of basis results in the change of reachability and observ-
ability energies and, thus different model reduction bases. The following section discusses the
choice of one such basis called the ‘balanced’ basis.

Table 4.4: Error between the stable model- Gs(s) and the observability based ROM- Gr(s)
(r=2300).

relH2 1.5633×10−1
relH∞ 3.1171×10−1

relEF 1.4735×10−1
relE2 1.2113×10−1

4.5.7 Balanced truncation

In the reachability and the observability based reduction approaches, the states which are easy-
to-reach need not match the states which are easy-to-observe. Balanced truncation ( [205, 206])
resolves this issue: It transforms the states into a new basis, called the balanced basis, so that in this
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new basis the new gramians are equal, and thus the states which are easy-to-reach are also easy-
to-observe . Let P = UUT be the Cholesky decomposition of P. Moreover, let UTQU =KΣ2KT

be the eigen decomposition of UTQU. Then the transformation that ‘balances’ the gramians is
given by T = Σ1/2KTU−1. The diagonal elements of the diagonal matrix Σ, which are also equal
to the square root of the eigenvalues of PQ, are called the Hankel singular values of the system
Gs(s). These singular values are input-output invariants i.e. they do not change with changing the
basis. This transformation results in new reachability and observability gramians P̃ and Q̃ which
are diagonal and satisfy P̃= Q̃= Σ. The corresponding observability and reachability energies for
the transformed state (x̃) can be computed using ξ reach

x̃ = x̃T Σ−1x̃ and ξ obs
x̃ = x̃T Σx̃.

We would like to emphasize that in practice one computes balanced truncation in a numerically
robust way using the square-root balancing approach. Let P=UUT and Q=LLT be factorizations
of P and Q, respectively. In practice, one never computes the full P and Q matrices; instead U and
L are computed directly without forming P and Q, see, e.g., [207, 208]. Compute the singular
value decomposition of UTL = ZΣYT where Σ = diag(σ1,σ2, . . . ,σn). The {σi} are the Hankel
singular values. Assume that σr > σr+1. Then, the degree-r reduced model by balanced truncation
is computed by a Petrov-Galerkin projection as in (4.29) with

V = UZrΣ
−1/2
r and W = LYrΣ

−1/2
r , (4.47)

where Zr and Yr denote the leading r columns of Z, and Y, respectively, and Σr = diag(σ1,σ2, . . . ,σr).
The reduced model Gr(s) of Gs(s) due to balanced truncation is asymptotically stable and the error
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satisfies ‖Gs−Gr‖H∞
≤ 2(σr+1 + · · ·+σn).

The balancing transformation also projects the eigenvectors into the balanced basis. First we
compute the corresponding reachability and observability energies in this new basis and plot them
in Figure 4.22. Earlier, in the reachability and observability sections, the energies of the first 40
eigenvectors spanned a wide range of values which resulted in a large size of the reduced model.
However, when the state-space is balanced, states which are easy-to-reach are also easy-to-observe.
This is evident from the change in rank of the reachability and observability energies of the desired
40 eigen solutions in the unbalanced basis, (Figure 4.20 and Figure 4.21) to the balanced basis
(Figure 4.22). All in all, a balanced and reduced model of order 132 has the same column space as
that of a full model, in the frequency range of interest. This is a 95.5% reduction in size.

Figure 4.24 plots the relative error in eigenvalues of this reduced model to that of the full model.
As expected, the relative error increases with frequency. Similarly, the eigenvectors of the reduced
model are compared with the experimental values in Figure 4.17 and the trend of MAC values of
the balanced model is similar to that of the full model.

In a similar fashion, the balanced truncation approach can reduce the full model if the first 10,
20 or 30 eigen solutions are more significant than the rest of the frequency spectrum. Observability
and reachability energies in the balanced space are useful to estimate the minimum sizes of the
balanced ROMs. Table 4.5 presents the sizes of these ROMs and useful frequency ranges for these
scenarios. Additionally, the error measures, relH2 and relH∞ errors, decrease with the increase
in the size of the ROM. This is expected as these error indicators consider the total frequency
spectrum. In contrast, the relEF and relE2 errors, which are defined over their specific frequency
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ranges and for one of the four inputs, do not have any specific trend.

It is also interesting to note that in the case of 10 eigensolutions, the size of the ROM is 20. This
reduced model has 10 pairs of complex conjugate eigenvectors, all of which are part of the desired
modal space (or eigenspace). In contrast, all other balanced ROMs have eigenspaces which are
larger than the corresponding desired modal space. This shows that there are some eigensolutions,
which are out of the desired frequency range, which have higher total ‘energy’ than those eigen-
solutions within the desired frequency range. The influence of the out-of-range eigensolutions in
the frequency range of interest is shown in the Figure 4.23. Although the out-of-range eigensolu-
tions have higher Hankel singular values than some in-range eigensolutions, the effect of all these
states is not the same in the frequency range of interest. For instance, an out-of-range state with an
eigenvalue of 4969Hz has a Hankel singular value of 2.04×10−2 might be less influential than a
much closer state of 3777Hz with a Hankel singular value of 1.95×10−2. Therefore, a frequency
weighted version of balanced truncation (see, e.g., [188,209,210] and the references therein) has a
potential to achieve a ROM with lower size. However, in this chapter we focus on the global error
measures. The frequency limited implementations are to be further investigated.

The steady state frequency responses of the balanced ROM and the full model are compared
previously. Now, the steady state time responses of the full model and balanced ROM (r = 132)
are compared. The plate is excited by two of the four inputs with a phase difference of 90◦. As
explained earlier, we generate and then compare the elliptical curves for both the full model and
the reduced model. The curves in Figure 4.25 show the ability of these models to generate 2D
traveling waves in the plate. The two elliptical curves lie on each other. This shows that the
reduction of the full model preserved the amplitude and the phase properties of all the points on
the plate. A quantitative comparison of the quality of the traveling waves requires a full-fledged
indicator, similar to the cost-function in 1D waves [184].

To summarize, the frequency and the time domain responses of the ROM are simulated and
compared to the full scale model. Nevertheless, the analysis so far does not include the rigid-body
modes of the original system. As stated earlier, the rigid-body dynamics are important in many
applications. Therefore, it is important to contain these dynamics in the reduced model. Recall that
we only have 12 modes corresponding to the rigid-body dynamics. The Hankel singular values
of the unstable part are the square root of the eigenvalues of PuQu. These values are also ranked
along with the Hankel singular values of the stable part, and the hybrid reduced model is computed.
However, theoretically, all rigid-body eigenvalues have a zero value. But due to numerical issues,
the real part of some of these eigenvalues tend to be positive, some negative and others zero. In
such cases, it is not possible to directly compute gramians for the unstable part. We also have a
similar situation where some of the real parts are positive and others are negative. Thus, it is not
straight forward to apply reduction techniques to the unstable part. To make sure that the rigid-
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body dynamics are matched, we have simply attached the 12-dimensional dynamics of the rigid
body modes to the reduced matrices. The new set of reduced state space matrices is the given by,

Gd(s) = Gr(s)+Gu(s),

=

Ar 0 Br

0 Au Bu

Cr Cu D

=
Ad Bd

Cd D

.
(4.48)

where Gd(s) is the reduced state space equations with the rigid body modes and Ad ∈ IR144×144,
Bd ∈ IR144×4 and Cd ∈ IR493×144. The relative errors relEF and relE2 between the full model G(s)

and the reduced model (Gd(s)) based on balanced truncation are

relEF = 9.3646×10−4 and relE2 = 6.0461×10−4;

once again clearly illustrating the accuracy of the reduced model.

Even though the balanced truncation technique is able to simulate the transient and steady-state
response of the full-plate model, for large-scale models, computing the exact gramians P and Q

is a computationally challenging task. For effective iterative approximate solutions of Lyapunov
equations in large-scale settings, see, e.g., [211–217], and the references therein. Next we dis-
cuss an interpolation-based model reduction technique which does not require solving large-scale
Lyapunov equations.

Table 4.5: Error between the stable model- Gs(s) and the balanced truncation based ROM- Gr(s) .

Number
of
eigenvalues

Freq.
range

Size
of
ROM

Balanced Truncation

relH2 relH∞ relEF relE2

10 ≤ 700Hz 20 2.4706×10−1 5.7055×10−1 6.7014×10−3 1.0157×10−3

20 ≤ 1450Hz 60 2.0979×10−1 1.8366×10−2 9.7321×10−4 8.6831×10−5

30 ≤ 2350Hz 102 1.6186×10−1 1.1487×10−2 2.3231×10−2 1.9096×10−2

40 ≤ 3200Hz 132 1.1968×10−1 5.9955×10−3 9.6981×10−4 6.0461×10−4
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4.5.8 Iterative Rational Krylov Algorithm (IRKA)

The Iterative Rational Krylov Algorithm [218] is an interpolation based model reduction technique
which yields a reduced model Gr(s) that minimizes the H2 model reduction error, i.e. ‖Gs−
Gr‖H2

, at least locally.

Interpolatory model reduction constructs a reduced model whose transfer function interpolates
that of the full-model at selected directions in the complex domain. Assume that one has chosen
the r interpolation points {si}r

k=1 ∈ C, the r right-tangential directions {b̃k}r
k=1 ∈ Cm and the r

left-tangential directions {c̃k}r
k=1 ∈ Cp. Then, the goal is to construct a reduced-model Gr(s) that

tangentially interpolates G(s) at these selected points along the selected directions, i.e, the goal is
to satisfy, for k = 1,2, . . . ,r,

G(sk)b̃k = Gr(sk)b̃k,

c̃T
k G(sk) = c̃

T
k Gr(sk),

c̃T
k G′(sk)b̃k = c̃

T
k G′r(sk)b̃k,

(4.49)

where G′(s) is the derivative of G(s). Then the question is, how to construct the model reduction
bases V and W so that the interpolation conditions (4.49) are met. To achieve this, one simply
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frequency range up to 3200Hz.

constructs V andW as

Vr = [(s1I−As)
−1Bb̃1 · · ·(srI−As)

−1Bb̃r],

Wr = [(s1I−As)
−TCT c̃1 · · ·(srI−As)

−TCT c̃r].
(4.50)

Then, the reduced model obtained by projection as (4.29) satisfies the interpolation conditions
(4.49). Here we focus only on the Hermite interpolation as this is what optimality requires. The
results can be easily extended to higher-order derivatives if needed. For details, we refer the reader
to [195, 219].

Even though this construction tells how to achieve interpolation, it does not reveal anything
about how to choose the interpolation points (optimally). This questions can, fortunately, be an-
swered in the case of the H2 norm. To be able to answer this questions, we write the reduced-model
Gr(s) in the pole-residue form:

Gr(s) =Cr(sI−Ar)
−1Br =

n

∑
j=1

ĉ jb̂
T
j

s− λ̂ j
, (4.51)

where λ̂ j are the eigenvalues of Ar, and b̂ ∈ Cm and ĉ ∈ Cp are called, respectively, the right and
left residue directions, and Φ j = ĉ jb̂

T
j is the residue of Gr(s) at the pole λ̂i. Here, for simplicity,

we assume that the reduced poles are distinct. Then, if Gr(s) is an H2-optimal approximation to
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G(s), then it satisfies the following interpolatory first-order necessary conditions:

G(−λ̂ j)b̂k = Gr(−λ̂ j)b̂k,

ĉT
k G(−λ̂ j) = ĉ

T
k Gr(−λ̂ j),

ĉT
k G′(−λ̂ j)b̂k = ĉ

T
k G′r(−λ̂ j)b̂k.

(4.52)

In other words, the H2-optimal approximation Gr(s) to G(s) is a tangential Hermite interpolant
to G(s), where the optimal interpolation points are the mirror images of the poles of Gr(s) and
the optimal tangential directions are determined by its corresponding residues. This result is the
link between H2-optimal model reduction and interpolation. For the single-input single-output
dynamical systems, these are called the Meier-Luenberger conditions; see [220]. For the general
case of multi-input/multi-output systems that we consider here, we refer the reader to [195, 218,
221–223] and the references therein.

The optimality conditions (4.52) reveal that the optimal interpolation points and tangential
directions depend on the reduced model Gr(s) to be constructed and thus cannot be computed a
priori. Thus, an iterative scheme is needed to satisfy these conditions. This is exactly what the
Iterative Rational Krylov Algorithm (IRKA) of [218] achieves. To start IRKA, the interpolation
points {s j}r

j=1, and the tangential directions {b̃ j}r
j=1 and {c̃ j}r

j=1 are assigned initial values. Then,
the model reduction bases V andW are constructed as in (Eq. 4.50) and the intermediate reduced
model, and thus the reduced state-spaces matrices are generated via Ar =W

TAV ,Br =W
TBs
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Figure 4.25: Comparison between the ellipse fits generated through full stable model and models
reduced through Balanced truncation and IRKA.

and Cr = CsV . A pole-residue decomposition of this intermediate reduced model Gr(s) as in
(4.51) is computed. Note that this computation is trivial since Gr(s) has only degree-r. Then,
using the pole-residue expansion of Gr(s), the interpolation points and tangential directions are
updated based on the optimality conditions as s j←−λ̂ j, b̃ j← b̂ j, and c̃ j← ĉ j, for j = 1, . . . ,r. The
procedure is repeated until convergence. Upon convergence, the reduced model Gr(s) satisfies the
optimal interpolation conditions (4.52) for H2 optimal model reduction. For details regarding the
implementation details of IRKA, including convergence speed, initialization, stopping criterion,
we refer the reader to the original resource [218].

Similar to the balanced truncation approach, ROMs of multiple sizes are developed and com-
pared. The error measures comparing the full model with the IRKA based ROMs are tabulated in
Table 4.6. Compared to the balanced truncation error measures, relH2 are slightly lower in IRKA
models. This reduction is expected as the IRKA algorithm optimizes the H2 error locally. The
ranges of the other error measures are of the same order of magnitude as that of the balanced-
truncation.

The errors in the eigenvalues are plotted in Figure 4.24. This figure also displays the results of
the balanced truncation based ROM of the same order. In general, both balanced truncation based
ROM and IRKA based ROM accurately predict the eigenvalues of the plate model. Furthermore,
the IRKA based ROM has slightly less error than the balanced truncation based ROM. The ODSs
of the ROM are compared with the experimental ones and are plotted in Figure 4.17. All three
MAC plots displayed in this figure have similar pattens. Similarly, the IRKA based ROM is able to
generate traveling waves; as suggested by the elliptical curves are plotted in Figure 4.25. These re-
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sults show that both the balanced truncation based ROM and IRKA based ROM accurately capture
the dynamics of the original stable part of the plate model. The elliptical curves in Figure 4.25 and
the bode plots in Figure 4.26 convey the agreement of these ROMs with the full model in steady
state time and frequency domains respectively. As we did earlier for balanced truncation, we attach
the 12-dimensional rigid-body dynamics to the IRKA-based ROM and compute the approximate
relative distance from the model G(s). The resulting model is of size 144 and have the relative
error measures

relEF = 7.5838×10−4 and relE2 = 9.8106×10−5;

illustrating a high-fidelity reduced model as in the balanced truncation case.

Table 4.6: Error between the stable model- Gs(s) and the IRKA based ROM- Gr(s) after 20 itera-
tions.

Number
of
eigenvalues

Freq.
range

Size
of
ROM

IRKA

relH2 relH∞ relEF relE2

10 ≤ 700Hz 20 5.7055×10−1 2.4706×10−1 6.6954×10−3 1.0157×10−3

20 ≤ 1450Hz 60 2.0711×10−1 1.8377×10−2 9.1982×10−4 8.3455×10−5

30 ≤ 2350Hz 102 1.5946×10−1 1.1608×10−2 2.3227×10−2 1.9098×10−2

40 ≤ 3200Hz 132 1.1765×10−1 6.0133×10−3 7.8539×10−4 9.8106×10−5

Table 4.7: Error of IRKA based ROMs of size 132, initiated by different approaches and after 50
iterations.

Freq. range Errors Reachability Observability Balanced truncation Eigenvectors

≤ 3200Hz relEF 6.4491×10−3 2.1722×10−2 7.8539×10−4 8.6683×10−4

≤ 3200Hz relE2 4.3910×10−4 1.3905×10−2 9.8106e×10−5 7.7280×10−5

The IRKA based ROM developed so far was initialized by the ROM developed through bal-
anced truncation. But, this is not practical as IRKA is developed to be an alternative to the need for
solving large-scale Lyapunov equations. IRKA can be initialized effectively and cheaply in many
ways using only a restricted amount of information on the full model. Moreover, as shown via nu-
merous examples, IRKA is not very sensitive to the initialization unless a very poor initialization
is made. Once again, we refer to the original resources [195, 218] for details. One can initialize
IRKA using ROMs based on other approaches, a coarser FE mesh or even some subset of the
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Figure 4.26: Comparison of FRFs generated by the full stable model (size:4946), Balanced trun-
cation based ROM (size:132) and IRKA based ROM (size:132).

eigenvalues of the full model. Even though, these different initializations might not result in the
same final ROM or might not converge after the same number of iterations, the experience shows
that the resulting ROMs mostly have the same level of accuracy [218]. To further study the effect
of these initializations for the FE plate model under investigation, four initial ROMs of size 132
are chosen. Three of the four ROMs are based on the previously discussed concepts of reachabil-
ity, observability and balanced truncation. The fourth ROM is based on the first 132 eigenvectors
of the full model. All the models are iterated 50 times and the iterative errors are plotted in Fig-
ure 4.27. As IRKA iterations proceeds, each of these initializations results in a different ROMs.
Among all these initial interpolation points and directions, the balanced truncation based ROM has
plateaued after just 12 iterations, followed by the observability and the eigenvectors based ROM.
However, the reachability based ROM did not converge after 50 iterations. This is expected since
the reachability-based ROM is a rather poor ROM making it a poor initialization. The errors of
the models after 50 iterations are presented in Table 4.7 and the corresponding FRFs are shown in
Figure 4.28. From these results it can be inferred that irrespective of the type of initialization, the
error measures in the frequency range of interest are in the same order of magnitude, confirming
the general behavior of IRKA observed in the literature. It is important to mention that, that while
the reachability based ROM has less than 50% of the desired eigen solutions, the observability
based ROM has just one desired eigen solution (Figure 4.20 and Figure 4.21). Despite this, all the
IRKA based ROMs have accurately captured the required dynamics. In conclusion, IRKA based
model reduction is able to successfully scale-down the full-scale FE plate model.
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Figure 4.27: Change in iterative error over iterations of differently initialized IRKA plots of size
132.

4.6 Part V: Combination of 2D plate modes

In this section, the 2D traveling waves of the plate are expressed as a combination of 2D mode
shapes of the plates. Based on the generalized theory of traveling waves, traveling waves are
simulated as a combination of the 2D plate modes. The governing equation that simulates the
response of a plate is given in Eq.2.51,

w(x,y, t) = C̃AW̃1 +C̃BW̃2 +C̃CW̃3 +C̃DW̃4. (4.53)

This equation is a summation of multiple 2D wave forms W̃i(x,y) which are of the form,

W̃1 =
1

2
√

2

(
Φa(x,y)cos

(
ω f t−

π

4

)
+Φb(x,y)cos

(
ω f t +

π

4

))
. (4.54)

This assumption is validated at three different frequencies of excitation 546Hz, 635Hz and 708Hz.
In each of these case, the location of excitation is chosen to be either the pair A and B or the pair
A and C. Consider the scenario where the frequency of excitation is 635Hz. This frequency is
half-way between the 9th and 10th resonant frequencies of the plate and the corresponding mode-
shapes are plotted in Figure 4.29. This figure clearly shows the locations of the mode shapes which
are in-phase with each other and locations that are out-of-phase which each other. Assuming that
the piezo-ceramics are bonded to the plate at all four corners, the symmetry of the excitation is
assumed throughout this section. Experimental results and FE results are based on the case where
the piezo-ceramics are slightly asymmetric as seen in Figure 4.1. However, the mode combination
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Figure 4.28: Bode plots of differently initialized IRKA plots of size 132 in the frequency range up
to 3200Hz.

results (which assume symmetry) are compared against the available experimental and FE results.
This assumption is validated at three different frequencies of excitation 546Hz, 635Hz and 708Hz.
In each of these case, the location of excitation is chosen to be either the pair A and B or the pair
A and C. Consider the scenario where the frequency of excitation is 635Hz. This frequency is
half-way between the 9th and 10th resonant frequencies of the plate and the corresponding mode-
shapes are plotted in Figure 4.29. This figure clearly shows the locations of the mode shapes which
are in-phase with each other and locations that are out-of-phase which each other. Assuming that
the piezo-ceramics are bonded to the plate at all four corners, the symmetry of the excitation is
assumed throughout this section. Experimental results and FE results are based on the case where
the piezo-ceramics are slightly asymmetric as seen in Figure 4.1. However, the mode combination
results (which assume symmetry) are compared against the available experimental and FE results.

Figure 4.29 shows that mode 9 is symmetric for both cases of excitation (pair [A B] and pair
[A C]). In contrast, the 10th mode is antisymmetric for both locations of excitation. As one mode
is symmetric and other is anti-symmetric, the wave combination approach is valid. A video which
compares experimental results with FE model and mode combination results are shown in Figure
4.30 for locations A and B and in Figure 4.30 for locations A and C. The amplitudes of all these
figures are normalized and all the responses are manually time-synced. For the ease of studying
these figures, only the positive amplitudes of the traveling waves are plotted in these videos. For
the mode combination videos, only the case (one of the four waveforms W̃i) that closely resembles
the experimental plate response is plotted. The other phase forms lag this result by a phase of 90◦.

Figure 4.30 (a) and Figure 4.31 (a) show this experimental velocity profile of the plate when ac-
tuated at 635Hz. The experimental noise in these profiles is filtered with the help of a Butterworth
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bandpass filter and the filtered experimental profiles are shown in Figure 4.30 (b) and Figure 4.31
(b). These plate responses are then compared with the corresponding FE model results in Figure
4.30 (c) and Figure 4.31 (c). The mode combination results are plotted in the last two part of these
videos. While the (d) part shows the surface videos which are a combination of FE modes, the (e)
combines the experimentally extracted mode shapes. The waveforms (W̃i) which are the combina-
tion of 2D plate modes are independent of the frequency of excitation and location of excitation.
Therefore, Figure 4.30 (d) and Figure 4.31 (d) are the same video and Figure 4.30 (e) and Figure
4.31 (e) are one and the same. By closely observing the wave forms in all these cases, we can infer
that the basic traveling wave in all these scenarios is the same. In other words, the traveling wave
which is a result of the mode combination of the two modes is matching the experimental plate
response and the FE simulation. Although, there are inherent differences between each of these
videos, the general wave trend is the same for all these cases. For both Figures 4.30 and 4.31, the
waveform travels along the circumference of the plate. One of the interesting results of these plots
is that the traveling waveform is similar when the plate is exited at different locations. This follows
the results of the generalized theory of traveling waves.

The plate response at another frequency of excitation, 708Hz, is also discussed in this sec-
tion. This frequency is halfway between the 10th and 11th resonant frequencies of the plate. The
mode shapes and their symmetry are shown in Figure 4.32. Similar to the previous frequency of
excitation, the conditions for the mode combination theory are satisfied for this case. The videos
comparing the experimental results, the FE simulations and the mode combinations are plotted in
Figure 4.33 and Figure 4.34 for both locations of excitation. The traveling wave is found in three
interconnected pockets where the waveform rotates in clockwise or counter-clockwise directions.
Such a behavior is also observed when the plate is actuated from both locations of excitations. Al-
though, there are much larger deviations between different models, the broader mode combination
approach is still valid for this frequency of excitation.

The last frequency studied for traveling waves is 546Hz. This frequency lies between the 8th

and the 9th resonant frequency. The corresponding modeshapes are plotted in Figure 4.35. As seen
in this figure, the ninth mode shape is symmetric in both directions i.e along the length and width of
the plate, and the eighth mode shape is only symmetric along the length of the plate. Therefore the
scenario where the plate is excited in the locations A and B satisfies the conditions for the theory of
mode combinations. As before, the experimental response of the plate is compared against the FE
model and the mode combination results for the location pair A and B in Figure 4.36. As expected,
the mode combination wave profile follows the experimental plate response. The traveling wave
is a combination of the rotational and translation motion. In this video, the experimental velocity
profile near the width of the plate (shorter edge) is more similar to the mode combination waveform
than the FE model.
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Additionally, in the scenario where the plate is excited at the location A and C, the conditions
for the theory of mode combination are not satisfied. Therefore the mode combination theory, do
not predict the plate response in this scenario. However, to test the limits of the proposed theory of
traveling waves, the experimental results are compared against the mode combination waveforms
(W̃i). The different traveling waves are shown in Figure 4.37. The mode combination videos in
this figure are similar to those from the previous location, shown in Figure 4.36. Although there
are many differences between the traveling waveforms between the experimental and theoretical
results, the overarching traveling waveform is of the same form as that of the mode combination
wave. One of the possible explanations is that the conditions stated in the generalized theory
section are sufficient conditions to generate traveling waves and not necessary conditions. At least,
this is true in the case of complex 2D structures such as plates. A further, in-depth analysis on 2D
waveforms is required to further understand these differences.

4.7 Conclusion

The work presented in this chapter is the basis for investigating 2D bending waves in plates. Ini-
tially, a finite element model is formulated to simulate the dynamics of the plate when actuated
by multiple piezo-ceramics. The model is validated through experimental modal tests wherein
a rectangular plate is actuated by an MFC and frequency response characteristics such as mode
shapes, natural-frequencies and damping coefficients are estimated. The FE model is updated by
evaluating the proportional damping constants through experimental results. This updated model
is able to predict up to the 40th damped eigenvalue with a maximum error of 2.5% and match mode
shapes accurately, with a lowest MAC value of 0.92. The FE model is used to generate traveling
waves by exciting the plate at multiple locations and at multiple frequencies of excitation. These
results are later validated through experiments.

Based on the FE model developed in the earlier sections of this chapter, projection based re-
duced models are developed in a later section of this chapter. The plate dynamics are simulated
in the state-space domain, and reduced models are tested for steady state frequency and time re-
sponses. The unconstrained boundary conditions of this plate resulted in 12 eigenvalues, corre-
sponding to the rigid-body modes of the plate. These 12-dimensional rigid-body dynamics are
decoupled from the full-order dynamics via Schur decomposition technique, and projection-based
reduced order models are developed by reducing the asymptotically stable 2946-dimensional state-
space. Once the ROMs are computed, the separated rigid-body dynamics are later attached to the
these scaled-down models to form the final reduced model. In the present work four ROMs are
developed based on the concepts of reachability, observability, balanced truncation and IRKA. In
the first three approaches, the criteria for determining the smallest order of the reduced models are
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presented. Among these, the balanced truncation based ROM has a size of 5% of the full model,
and it is able to accurately capture the frequency and time domain responses in the frequency range
of interest with a relative error in the order of 10−4. IRKA is also able to generate a ROM with the
same size and with similar error measures. IRKA has the computational advantage that the model
reduction process does not require solving large scale Lyapunov equations as required in balanced
truncation. However, for the model dimension we considered here, solving these Lyapunov equa-
tions does not incur too much computational burden.

The previous section discusses the capabilities of the mode combination approach to replicate
the traveling waves developed in plates. The experimental results are compared against the plate
response simulations of the finite element model and the mode combination waveforms. The effect
of variation of location is studied by varying the excitation location from the pair [A, B] to [A, C]
for three frequencies of excitation. Out of the six cases discussed in that section, five cases satisfy
the initial symmetry conditions of the mode shapes. However, in all cases, the mode combination
approach is able to replicate the response of the plate to multiple inputs. The results presented
show the need for further analysis of wave generation in complex 2D structures.
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Figure 4.29: The modeshapes of the 9th and the 10th resonant frequencies of the plate. The spatial
assumptions that support the generalized theory of traveling waves is also shown.
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Figure 4.30: Plate response when excited at location A and B with a 635Hz signal (Click on the
picture for the video to start).
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Figure 4.31: Plate response when excited at location A and C with a 635Hz signal (Click on the
picture for the video to start).
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Figure 4.32: The modeshapes of the 10th and the 11th resonant frequencies of the plate. The spatial
assumptions that support the generalized theory of traveling waves is also shown.
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Figure 4.33: Plate response when excited at location A and B with a 708Hz signal (Click on the
picture for the video to start).
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Figure 4.34: Plate response when excited at location A and C with a 708Hz signal (Click on the
picture for the video to start) .
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Figure 4.35: The modeshapes of the 8th and the 9th resonant frequencies of the plate. The spatial
assumptions that support the generalized theory of traveling waves is also shown.
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Figure 4.36: Plate response when excited at location A and B with a 546Hz signal (Click on the
picture for the video to start).
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Figure 4.37: Plate response when excited at location A and C with a 546Hz signal (Click on the
picture for the video to start).
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Chapter 5

Traveling waves in cylinders

5.1 Introduction

The previous work has demonstrated that piezo-ceramics are capable of generating net wave propa-
gation in one-dimensional structures such as beams and 2D structures such as plates. In this chapter
cylindrical traveling waves are investigated. Cylinders provide insight into unique dynamics (i.e.,
symmetric and non-symmetric modes) that have yet to be fully defined for two and three dimen-
sional systems. This chapter extends the research findings of 1D beam structures and applies it to
2D traveling waves in a symmetric cylindrical structure. The work herein will focus on the genera-
tion and characterization of traveling waves that propagate along the circumferential direction. The
coupled system, given by a free-free cylinder with multiple piezoelectric actuator (PZT) patches,
is used to evaluate several traveling wave modes in the cylinder. Finite Element Modeling (FEM),
in conjunction with experiments, were conducted to provide a comprehensive understanding of
the generation and propagation behavior of the traveling wave modes in a thin walled cylinder.
These waves provide interesting pumping and mixing applications beyond the 1D traveling wave
capability. The work provides an initial study that could lead to several fluid-structural interaction
applications.

For example, cylindrical traveling wave applications have the potential to increase propulsive
capability compared to prior work, by introducing additional control capability and system cou-
pling. The circumferential traveling wave provides unique mixing capability for static and dynamic
flows, active flow control, and other piping applications [27, 29, 65]. This methodology also has
the potential to provide efficient solid state pumping capability where pumping is impractical or
impossible before. In this work, two PZT patches are used to excite a cylinder between the first
and second breathing modes. The present work discusses the method used to verify the dynamics
of circumferential traveling waves through testing and modeling. The hardware and test setup plan
is discussed in later sections of this chapter, the FEM development and verification, as well as the
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results from the standing and traveling wave tests. The phase shifts effect on the type of generated
wave and a study into repeated modes traveling waves is also addressed.

5.2 Test description

One of the significant differences in analyzing cylindrical waves against planar waves is differen-
tiation of traveling waves with standing waves. The time-based data is evaluated in two ways as
demonstrated in Figure 5.1. The first method evaluates the quality of the traveling waves using
the Fourier’s approach [65]. This method evaluates the maximum real and imaginary displace-
ment values of the Fast Fourier Transform (FFT) for every location around the circumference of
the cylinder. Using this method, a purely traveling wave will result in a circle (or an ellipse) and
a standing wave will produce a linear plot, as seen in Figure 5.1. The second method uses the
time response data plotted on the original cylindrical geometry to generate a snapshot of the dis-
placement data. In the case of pure standing waves, there are locations along the circumference
of the tube where there is no displacement; such points are also called strain nodes. In contrast,
in the case of pure traveling waves, the displacement of all the points along the circumference of
the tube have equal and non-zero displacement. As seen in Figure 5.1, for a standing wave, there
are locations of no displacement, while in the pure traveling wave, the maximum and minimum
displacements on the plot are constant for every point along the circumference. In the succeeding
sections of this chapter, these methods are used to evaluate the quality of the wave and determine
if the response is traveling, stationary, or a combination of the two.

In the present work, a free-free boundary condition is experimentally simulated by hanging
the cylinder from the ceiling as seen in Figure 5.2. The tested hardware is extruded aluminum
measuring 50 3/8 inches long with an outer diameter of 10 inches and a wall thickness of 0.1
inches. The tube and PZT setup is used because of its well understood dynamics and the ease of
testing [224].

The cylindrical tube considered for experimentation is mounted with 36 piezo-ceramic wafers,
shown in Figure 5.2. Each of the three rows consists of 12 piezoelectric actuators that are posi-
tioned every 30◦ around the circumference. The rows are placed at heights of 4 inches, 25 3/16

inches, and finally 46 3/8 inches. The two PZTs used to excite the structure were located in the
first row, 4 inches from the bottom and 180◦ apart.

In the development of the test setup 12 single axis PCB 352C67 shear accelerometers were
placed around the circumference of the tube 3 inches above the active piezoelectric actuators as
seen in Figure 5.2 (B). They are oriented to measure the radial (R) response of the cylinder. The
accelerometers were placed at intervals of 30◦ for the first test configuration.

As this configuration allows the detection of traveling waves along the circumference of the
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Figure 5.1: Method for determining the nature of the traveling wave in the time and frequency
domain.

cylinder and neglects its longitudinal direction, additional test data is recorded by a linear sensor
pattern. For this test, the accelerometers were placed along the length of the tube at intervals of 3
inches as seen in Figure 5.2 (C). This data provided the necessary information in order to identify
if a wave is propagating along the length of the cylinder (Z direction).

First, the cylindrical structure is excited by a single PZT element by actuating it with a sinu-
soidal voltage sweep signal. The frequency is varied from 20Hz to 2000Hz and its response is
measured with several of the accelerometers. The frequency response and modes obtained where
used to validate the FEA model (described in the next section), and define the excitation frequency
required to generate a traveling wave. The measured response is compared against the FEM pre-
dicted FRF to ensure the modeled dynamics are accurate within the frequencies of interest.

The second set of experiments focus on the generation of traveling waves with the help of mul-
tiple PZT excitation. In the previous works [70] it is shown that 1D traveling waves are obtained
when two separate PZTs, with a phase shift of 90◦, are actuated at a frequency which is located
directly in between the two modes of interest. In this case, the two modes of interest are the first
(with one axial strain nodal line) and second breathing modes (with not axial nodal lines) at 107Hz

and 300Hz, respectively. For this system, the excitation is applied at 203Hz by PZTs located 180◦

apart. The traveling wave dynamics are a function of the chosen excitation points, but no further
investigation is done on alternative excitation locations.
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Figure 5.2: (A) Test hardware with PZT elements and Accelerometer placement is shown with (B)
a detailed view and (C) a view of the vertical test configuration.

5.3 Finite element model

A FEM of the cylinder is developed using the MSC Nastran software as shown in shown in Figure
5.3a. The cylinder is modeled with 48 linear CQUAD4 shell elements around the circumference
and 25 elements along the height of the cylinder. The FEM uses 1152 shell elements with 1200
fe nodes and a resulting 7200 total degrees of freedom. The first 50 modes are evaluated in this
model resulting in full modal content below 550 Hz. This ensures an accurate representation of
the dynamics up to at least 360 Hz. The first (with an axial strain node) and second breathing
modes were predicted to be at 107 Hz and 302 Hz as compared to measured frequencies of 104
Hz and 296 Hz with a respective 1.9% and 2% error. This yields a very satisfactory correlation
between the model and the test specimen for the dynamics of interest for this problem. Further,
the response of the cylinder at these frequencies is evaluated and the standing wave characteristics
using the Fourier and envelop approaches, discussed earlier, is studied.

The piezoelectric actuation is modeled in the FEM as an out of plane unit point load applied
at the center of the PZT patch. The nodal output coordinate system is defined in cylindrical coor-
dinates to ensure that the radial displacements and the phase differences match the 1D beam case.
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The phase relationship is defined with the load applied in the positive radial direction as seen in
Figure 5.3b. The MSC Nastran solution 112, the Modal Transient Response Analysis, is employed
to model the traveling wave with 501 time steps of 2×10−4 seconds to model the system from 0
to 0.1 seconds.

(a)

(b)

Figure 5.3: (a) (A) Finite Element Model of the Cylinder with (B) Mode one at 107 Hz and (C)
Mode two 300 Hz; (b) FEA loading applied at a frequency of (ω) with a phase shift (φ ) of 0◦ in
the cylindrical coordinate system.

5.4 Results and discussion

The model previously described is used to predict the wave response and identify the nature of the
wave. To develop a standing wave baseline, a single frequency sine wave is applied to the cylinder
at the resonant frequencies of 106Hz and 300Hz modes separately. This will yield a baseline to
compare the wave dynamics of future tests.
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5.4.1 Cylindrical standing waves

The standing wave time-history displacements in Figure 5.4 are plotted on the original geometry
and amplified to allow for easier viewing of the displaced pattern. The 100Hz standing mode time
history seen in Figure 5.4a replicates the first breathing mode of the cylindrical tube. The mode
shape has four FE-nodes as was expected from the first mode shape seen in Figure 5.3a(B). The
300Hz second breathing mode seen in Figure 5.4b, has six nodes as expected.

FFT is applied on the time-history data of the standing waves data at different locations and the
Fourier approach is tested. The FFTs of the simulated time data is plotted in Figure 5.4c and Figure
5.4d for 106Hz and 300Hz respectively and the corresponding Fourier curves are plotted in Figure
5.4e and Figure 5.4f for 106Hz and 300Hz respectively. As expected the standing wave has a linear
response, as every FE-node’s relative amplitude and phase are linearly correlated. Additionally, the
response is symmetric around the origin (0,0), corresponding to the nodes in the excited mode.
This response is a strong representation of the standing wave dynamics of the system.

5.4.2 Cylindrical traveling waves

In earlier section it was mentioned that the optimal case for a traveling wave is to excite the struc-
ture 90◦ out of phase at a frequency value between the first two modes (i.e., in this case 203Hz).
By doing this and following the same response analysis as before, the responses for a traveling
wave show significant variation from the standing wave case. The first thing to notice is that the
excitation at 203Hz excites both the first and second breathing mode. Secondly, it can be seen in
Figure 5.5c that there is a phase shift for each of the FE-nodes along the circumference. This is
indicative of a traveling wave that has a corresponding phase shift for the peak response for each
node in the circumferential direction.

A secondary check that provides insight into the nature of the traveling wave is an investigation
into the time history of the response. The time response in Figure 5.5a shows that the wave moves
around the circumference and no nodal points or zero excitation points exist (as seen in Figure
5.4). As is expected, the wave can also be seen to have a nearly constant maximum and minimum
displacement indicating that a constant amplitude wave is traveling along the circumference.

5.5 Effect of phase in cylindrical waves

To better understand the effect phase has on the quality of the traveling waves, the phase was swept
from 0◦ to 180◦ and the Fourier approach was applied for each of these cases. As stated before,
if the system has a pure traveling wave, the resulting plots in Figure 5.6a would be perfect circles.
The best case observed, in the modeling efforts, can be seen for the 90◦ case. These cases with the
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Figure 5.4: Time data response of the standing wave excitation at the first two breathing modes at
(a) 106Hz and, (b) 300Hz from FE model, Frequency Response spectrum at (c) 106Hz and, (d)
300Hz and the real and imaginary elliptical curves at the peak response for every FE-node using
the simulated time data at (e) 106Hz and, (f) 300Hz .
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Figure 5.5: (a) Simulated time data response of the traveling wave excitation at 200 Hz, (b) Fre-
quency Response for the traveling wave at 200 Hz as well as the magnitude and phase of the peak
response (c).

exception of 0◦ and 180◦ exhibit a traveling wave behavior as expected with diminishing level of
performance as the phase moves away from the ideal 90◦. On the contrary, Figure 5.6b demon-
strates that the longitudinal direction exhibits a strongly linear response, indicating no traveling
wave in this direction. Knowing the longitudinal direction shows no traveling waves along that
axis; it can be confidently stated that a purely circumferential traveling wave is achieved.

Figure 5.7 demonstrates how the response changes as the system is excited at 203Hz and the
phase is varied from 0◦ to 180◦. As the phase is swept from 0◦ to 90◦ the response shape slowly
transitions from a standing wave with 4 nodal points 5.7a to a fully traveling wave 5.7c. As the
phase is swept from 90◦ to 180◦ the response shape slowly transitions from a traveling wave to a
standing wave with 6 nodal points 5.7g. This plot shows that the phase shift at 0◦ fully excites the
106Hz standing mode dynamics and a phase shift at 180◦ fully excites the 300Hz mode. Between
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these values the traveling wave begins to develop.

To fully compare the FE system with the experimental data, the Fourier curves are plotted in
Figure 5.8, respectively. The resulting test data and FEM predictions accurately predict the wave
dynamics, but do not accurately predict the specific nodal responses. The arbitrary direction for the
FEM mode shapes complicates the phase comparison between the FEM and test results. Further
work will be done to investigate these phase relationships and how to better match the FEM results
with the test data.

The traveling waves generated show significant promise for pumping and mixing applications,
but no work has been done to evaluate this system’s pumping capability. To better understand the
capability of these systems future work is required to evaluate the fluid structural energy transfer
capability and the overall efficiency of the system.

Real 
-600 -400 -200 0 200 400

Im
ag

 

-600

-400

-200

0

200

400
Real - vs- Imag (Cylindrical)

Phase 0
Phase 45
Phase 90
Phase 105
Phase 120
Phase 135
Phase 180

(a)

Real 
-200 -100 0 100 200 300

Im
ag

 

-150

-100

-50

0

50

100
Real - vs- Imag (Longitudinal)

Phase 0
Phase 45
Phase 90
Phase 105
Phase 120
Phase 135
Phase 180

(b)

Figure 5.6: Simulated ellipses of the response at the peak excitation at 200Hz in the (a) cylindrical
direction and (b) longitudinal direction.

5.6 Study of traveling waves using repeated modes

Symmetrical systems exhibit repeated modes that are examined here as a possible candidate for
wave propagation. In the case of 1D systems, traveling waves have been observed when excited at
the natural frequencies with a phase of 0◦ or 180◦. To better evaluate the dynamics of symmetrical
systems, the cylindrical structure studied here was driven at the first and second natural frequency
with a variety of phase shifts. This was done to evaluate the ability to excite traveling waves

152



  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 0

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 45

(a)

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 0

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 45

(b)

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 90

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 105

(c)

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 90

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 105

(d)

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 120

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 135

(e)

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 120

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 135

(f)

  2

  4

  6

30

210

60

240

90

270

120

300

150

330

180 0

Cylindrical Dir

Phase 180

(g)

Figure 5.7: Fe model based time history responses at 203Hz with a phase difference of (a) 0◦, (b)
45◦, (c) 90◦, (d) 105◦, (e) 120◦, (f) 135◦, and (g) 180◦.
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Figure 5.8: Normalized ellipse comparison between experiments and FE simulations at 203Hz
with a phase difference of (a) 0◦, (b) 45◦, (c) 90◦, (d) 105◦, (e) 120◦, (f) 135◦, and (g) 180◦.
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using the repeated modes seen in Figure 16. As can be seen at the same frequency value there
are repeated eigenvalue roots for each of the breathing modes. This results in identical mode
shapes with a rotation about the longitudinal axis. These repeated modes were excited with the
intent of producing additional traveling modes using the same two PZT excitations and phase shift
convention used previously.

The 106Hz excitation results in pure standing waves in both the cylindrical and the circumfer-
ential directions as seen in Figure 5.9a and Figure 5.9b, respectively. The plots in Figure 5.10a
and Figure 5.10b exhibit the same behavior for the 300Hz case with no traveling waves observed.
The development of traveling waves at these frequencies was not successful for the given excita-
tion points. Further investigation is needed to evaluate if repeated roots could be used to generate
traveling waves given different conditions.
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Figure 5.9: Simulated ellipses of the response at the peak excitation at 105Hz in the (a) cylindrical
direction and (b) longitudinal direction.

5.7 Cylindrical mode combination

In earlier chapters, traveling waves are simulated as a combination of two mode shapes. In this
section a similar approach is taken to predict the response of the cylindrical structures when excited
at the optimal conditions. Figure 5.11 present the simulated cylindrical traveling waves. Each
traveling wave video is a result of the summation of two mode shapes. All the animations are
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Figure 5.10: Simulated ellipses of the response at the peak excitation at 105Hz in the (a) cylindrical
direction and (b) longitudinal direction.

generated based on the FE based mode shapes and the traveling wave forms are obtained by using,

WAB = XA(x,y,z)cos
(

ωt +
π

4

)
+XB(x,y,z)cos

(
ωt− π

4

)
. (5.1)

While the value of A varies from 1 to 7, B is the next higher mode shape i.e. B = A+ 1. As
in previous sections it was found that repeated modes do not result in traveling waves, only non-
repeated mode shapes are considered for this simulation (mode numbering in this video is based on
the total number of modes considered for this study). Furthermore, as the frequency of excitation
does not effect the animation, ω is kept constant at 100Hz.

Consider the case of mode 1 and mode 2. While in the radial direction both these modes have
the same first breathing mode, in the longitudinal direction they have different behaviors. Mode 2
has a axial strain nodal line. This difference in characteristics resulted in a longitudinal traveling
wave. However, when mode 2 is compared against mode 3, there are differences in both radial and
longitudinal directions. This resulted in a traveling wave along the circumferential direction and
also the longitudinal direction. Similarly, the combination of higher modes results in directions
which have differences between the mode shapes.

As cylindrical structures are experimentally difficult to test and study, such predictive wave
forms are highly useful in the planning stage. However, in such symmetric structures that have
multiple repeated modes, the resonant frequencies of some modes are very close to each other. For
example, there are two different eigenvalues between 106Hz and 108Hz and two between 300Hz
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and 303Hz. If we are trying to generate a traveling wave at 200Hz, four modes will have the
significant contribution. To simulate such scenarios is highly complex and can be a combination
of multiple traveling waves. In future studies a more detailed analysis will be carried out to further
study this phenomenon.

Figure 5.11: Traveling waves expressed as a summation of pairs of mode shapes. (Click on the
picture for the video to start).

5.8 Conclusion

This chapter details the work to date on circumferential traveling waves and an approach for mod-
eling and evaluating the resulting dynamics. The FEM developed has been shown capable of
predicting the onset and behavior of these traveling waves. This FEM was used to gain a more
complete understanding of the 2D circumferential traveling waves in cylindrical system.

This chapter evaluated the various frequencies of excitation and the phase shifts required to
generate a 2D cylindrical traveling wave. It was shown that with the given loading positions,
the traveling waves with the most energy were generated at 203Hz with a phase shift of 90◦.
Furthermore, the work herein attempted to generate traveling waves given symmetrical repeated
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roots present in the system. The current approach proved to be unsuccessful in generating traveling
waves at these repeated roots corresponding to symmetrical modes. Further analysis is needed in
order to fully evaluate this potential.

Using the technique detailed in this chapter, circumferential traveling waves were successfully
generated experimentally and modeled using a FEM. Circumferential traveling waves such as these
provide a novel method for mixing, fluid flow optimization, and propulsion. Further experimen-
tation and modeling is required to fully evaluate the potential of the proposed system. Using the
technique detailed in this paper, circumferential traveling waves were successfully generated ex-
perimentally and modeled using a FEM. Circumferential traveling waves such as these may provide
a novel method for mixing, fluid flow optimization, and propulsion. Further experimentation and
modeling is required to fully evaluate the potential of the proposed system. This work provides a
novel approach for this field of structure-fluid coupling.

158



Chapter 6

Conclusions and future work

6.1 Conclusions

The major contributions and results presented in this thesis are summarized below,

Theoretical analysis of traveling waves

(a) The feasibility of generating traveling waves in finite structures is investigated in this chapter.
A simplified model of a free-free beam is developed to study the response of a beam when
excited by two point forces. The contribution of the trigonometric and hyperbolic parts of
the mode shapes are separately investigated to understand the effect of boundary conditions
of the beam dynamics.

(b) Theoretically, a phase relationship is established that governs the quality of traveling wave.
The traveling wave is represented as the combination of trigonometric parts of the mode
shapes. The phase relationship manipulates the amplitudes of the individual waveforms and
thus resulting in an optimal traveling waves at any frequency.

(c) The role of the frequency of excitation and the location of forces on the amplitude of the
traveling wave is investigated. This study also establishes the conditions on the spatial loca-
tions where the forces are applied on the beam to generate traveling waves. Through multiple
examples, the influence of location of the point forces and the frequency of excitation on the
amplitude and quality of traveling wave is discussed.

(d) The 1D theory of traveling waves is extended to a generalized case which is independent of
the dimensionality or the boundary condition of the structure under study. This study paves
the way to predict the type of traveling wave as a combination of mode summation for any
structure. This theory is later validated through experiments and simulations.

159



Traveling waves in 1D beams

(e) Traveling wave generation is studied in 1D beams through simulations and experiments.
A theoretical model of the beam bonded with two piezo-ceramics is developed based on
the mode summation approach. The steady state frequency response of this beam model is
compared against experimental results.

(f) The study demonstrates through experiments that net traveling waves can be generated on a
beam structure by exciting it with multiple forces. The dynamics of the beam when simul-
taneously actuated with two inputs is the focus of the study in the initial part of this work.
It is shown that such an actuation results in a mixture of pure standing waves and travel-
ing waves. The relative ratio of these wave content is quantified by defining cost-functions.
The cost-functions presented in this study demonstrates the capabilities of two approaches,
Hilbert and Fourier, to accurately predict and represent the quality of the mechanical waves
being generated.

(g) A comparative analysis between the theory and experiment was conducted for three differ-
ent boundary conditions: clamped-clamped, clamped-free and free-free. The results demon-
strated the accuracy of the theoretical model to predict the dynamics of the traveling waves.

(h) The beam models are further used to study the effect of phase on the quality of the travel-
ing wave. The phase relationship obtained through these simulations match the theoretical
findings of the previous chapter. Experimental test results were also used to validate the
accuracy of these results. It has been further shown that by changing the sign of the phase
results in a wave changing its direction of travel.

(i) Based on the theoretical formulations developed in the earlier chapter, the two-mode com-
bination approach is also used to generate 1D traveling waves. These results are compared
against simulations and experiments. The effect of boundary conditions on the phase rela-
tionship is also discussed in this chapter.

Traveling waves in 2D plates

(j) The work presented in this chapter is the basis for investigating 2D bending waves in plates.
Initially, a finite element model is formulated to simulate the dynamics of the plate when ac-
tuated by multiple piezo-ceramics. The model is validated through experimental modal tests
wherein a rectangular plate is actuated by an MFC and frequency response characteristics
such as mode shapes, natural-frequencies and damping coefficients are estimated.
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(k) The FE model is updated by evaluating the proportional damping constants through experi-
mental results. This updated model is able to predict up to the 40th damped eigenvalue with
a maximum error of 2.5% and match mode shapes accurately, with a lowest MAC value of
0.92. The FE model is used to generate traveling waves by exciting the plate at multiple
locations and at multiple frequencies of excitation. These results are later validated through
experiments.

(l) Based on the FE model, projection based reduced models are developed in this chapter. The
plate dynamics are simulated in the state-space domain, and the reduced models are tested
for steady state frequency and time responses. The unconstrained boundary conditions of
this plate resulted in 12 eigenvalues, corresponding to the rigid-body modes of the plate.
These 12-dimensional rigid-body dynamics are decoupled from the full-order dynamics via
Schur decomposition technique, and projection-based reduced order models are developed
by reducing the asymptotically stable 2946-dimensional state-space.

(m) Once the ROMs are computed, the separated rigid-body dynamics are later attached to the
these scaled-down models to form the final reduced model. In the present work four ROMs
are developed based on the concepts of reachability, observability, balanced truncation and
IRKA. In the first three approaches, the criteria for determining the smallest order of the
reduced models are presented. Among these, the balanced truncation based ROM has a size
of 5% of the full model, and it is able to accurately capture the frequency and time domain
responses in the frequency range of interest with a relative error (H2) in the order of 10−4.
IRKA is also able to generate a ROM with the same size and with similar error measures.
IRKA has the computational advantage that the model reduction process does not require
solving large scale Lyapunov equations as required in balanced truncation. However, for the
model dimension we considered here, solving these Lyapunov equations does not incur in
significant computational burden.

(n) The last section of this chapter discusses the capabilities of the mode combination approach
to replicate the traveling waves developed in plates. The experimental results are compared
against the plate response simulations of the finite element model and the mode combination
waveforms. The effect of variation of location is studied by varying the excitation location
from the pair [A, B] to [A, C] for three frequencies of excitation. Out of the six cases dis-
cussed, five cases satisfy the initial symmetry conditions of the mode shapes. However, in
all cases, the mode combination approach is able to replicate the response of the plate to
multiple inputs. The results presented show the need for further analysis of wave generation
in complex 2D structures.
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Traveling waves in cylinders

(o) This chapter details the work to date on circumferential traveling waves and an approach
for modeling and evaluating the resulting dynamics. The FEM developed has been shown
capable of predicting the onset and behavior of these traveling waves. This FEM was used
to gain a more complete understanding of the 2D circumferential traveling waves in this
system.

(p) This chapter evaluated the various frequencies of excitation and the phase shifts required to
generate a 2D cylindrical traveling wave. It was shown that with the given loading positions,
the traveling waves with the most energy were generated at 203Hz with a phase shift of
90◦. Furthermore the work herein attempted to generate traveling waves given symmetrical
repeated roots present in the system. The current approach proved to be unsuccessful in gen-
erating traveling waves at these repeated roots corresponding to symmetrical modes. Further
analysis is needed in order to fully evaluate this potential.

(q) Using the technique detailed in this chapter, circumferential traveling waves were success-
fully generated experimentally and modeled using a FEA. Circumferential traveling waves
such as these provide a novel method for mixing, fluid flow optimization, and propulsion.
Further experimentation and modeling is required to fully evaluate the potential of the pro-
posed system. Using the technique detailed in this chapter, circumferential traveling waves
were successfully generated experimentally and modeled using a FEA.

6.2 Future work

6.2.1 Propulsion

In a 1D structure, when the traveling wave progresses the fluid enters the pocket created by the
waveform in the structure. As the wave progresses, the structure pumps the fluid along the direction
of the waves and this propels the structures in the opposite direction. Consider a sheet above the
ground; if a traveling wave is developed in the sheet, it begins to bend in the shape of a wave and
pockets enclosing fluid are generated throughout the sheet. As the traveling wave propagates, the
air pocket formed between the sheet and the ground also moves and thus acts as a pump. As the
sheet exerts force to move the fluid, the fluid applies an equal and opposite force on the sheet.
A preliminary experiment displaying the propulsion capabilities of the traveling waves are shown
in Figure 6.1. In this video, traveling waves are generated on aluminum and brass beams. If the
beam is unconstrained, the traveling waves result in propulsion of the 1D structure. However, if
the beam is bounded, the waves have the capacity to transport materials. Surface properties such
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as friction, weight of the structure etc have a major role in propulsion. A full study is required to
fully understand the dynamics of such a system.

Figure 6.1: Propulsion based on traveling waves in structures. (Click on the picture for the video
to start).

6.2.2 Fluid Structure Interaction (FSI)

The transformation of traveling waves into propulsive force is a complex phenomenon and is de-
pendent on multiple variables. Fluid-structure interaction is one such variable that influences the
strength of the traveling waves and thereby the propulsive thrust. For any fluid, the wave ampli-
tude depends on multiple factors such as the voltage signal supplied to the PZT, the pressure of
the medium, the carry-on load distribution, and the drag forces due the viscous/frictional elements
present at the boundaries. These parameters are further dependent on the shape of the system and
the buoyant force distribution on the structure. The study of these parameters will be crucial to
understand how the waves and structures can be tailored for different applications such as either
vehicle design or pumping mechanisms. An example of FSI is shown in Figure 6.2. In this video,
traveling waves are generated in a cylindrical structure immersed in water; as a result vortices are
generated in the fluid.

6.2.3 Structural design optimization

Leveraging carefully prescribed structural modes of monolithic structures allows vibration-based
motivity in different mediums. Activation of the needed modes is given by the coupling of piezo-
ceramics to the structural component. At resonance, smart materials (such as piezo-ceramics) have

163


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton9'){ocgs[i].state=false;}}


Converted with https://clipchamp.com - online video converter, video compressor, and webcam recorder. Fast, reliable, and total privacy.



Figure 6.2: Cylindrical traveling wave generate vortices in the fluid surrounding it. (Click on the
picture for the video to start).

the highest control authority levels and work as excellent sources of excitation. Manipulating struc-
tural rigidity increases or decreases the resonant frequencies in order to best suite the application
and operational condition. Depending on the application, manipulation of structural modes result
in desired dynamics. For example, a single piezo-ceramics bonded at the optimized location on a
helmet viser can result in traveling waves. Figure 6.3 shows the experimentally generated traveling
waves at a resonant frequency using a single MFC.

6.2.4 Drag reduction

Skin friction drag is a major source of energy loss in transportation, from cars to boats to airplanes.
As a result, a large amount of research has focused on reducing the amount of skin friction drag
experienced, with recent interest involving the use of span wise (perpendicular to flow) traveling
waves with out-of-plane wall deformation. Initial experiments in literature [225] have achieved
a 6% drag reduction by actuating a surface and disturbing the boundary layer. Other preliminary
studies have resulted in drag reductions of up to 13% [226–228]. However, the focus of these
studies has been driven mainly from a fluids standpoint and the traveling waves themselves are not
well-characterized, have frequency limitations, or require discrete highly intrusive actuators. Thus,
by leveraging our research on traveling wave generation, modeled and experimentally validated
traveling waves can be generated at varying frequencies to surpass the 13% drag reduction values
already achieved. Since this research takes advantage of low-profile piezoelectric actuators, drag
reduction using traveling waves can be achieved in a noninvasive and retro-fittable way and can be
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Figure 6.3: Traveling waves generated in a helmet viser using a single MFC (Click on the picture
for the video to start).

implemented in a varying degree of applications including airplanes, boats, and pipes.
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