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(ABSTRACT) 

To study the influence of the time-dependent behavior of various materials being con- 

sidered for use in orbiting precision segmented reflectors, simple sandwich beam models are 

developed. The beam models included layers representing face sheets, core and adhesive. 

The issue of time-dependency is essential because the expected life of a reflector is on the 

order of 20 years. Using the principle of stationary potential energy, the elastic response of 

three-layer and five-layer symmetric sandwich beams to mechanical and thermally-induced 

loads is studied. The sensitivity of the three-layer and five-layer sandwich beams to re- 

ductions of the material properties is studied. Using the correspondence principle of 

viscoelasticity, these elastic models are transformed to time-dependent models. Represen- 

tative cases of time-dependent material properties are used to demonstrate the application 

of the correspondence principle and evaluate the time-dependent response of the reflector. 

To verify the viscoelastic models, and to obtain a better idea of the amount of time- 

dependency to expect from the materials, simple time-dependent experiments on candidate 

materials were performed. Candidate materials include a quartz-epoxy face sheet material 

and a glass-imide honeycomb core material. The percent increase in strain for a constant 

stress for the quartz-epoxy in tension and the honeycomb in shear were measured. For both, 

a four-parameter fluid model captured the essential characteristics of their behavior. These 

four-parameter fluid models were then used in the three-layer sandwich beam model to pre- 

dict the time-dependent response of the beam to three-point bending. This predicted re- 

sponse was compared to experimental results of a sandwich beam subjected to three-point 

bending.
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Chapter 1 - Introduction and Background 

Fiber-reinforced polymer-matrix composite materials are currently used in a variety of 

space applications, including communication and weather satellites, antennas and reflectors. 

The use of composite materials not only provides structures lighter than possible with more 

traditional engineering materials, but also provides the option of tailoring the material to meet 

design requirements. This tailoring is accomplished by changing the composition and orien- 

tation of fibers in the materials used. 

One space application of composite materials currently under consideration is the preci- 

sion segmented reflector, or PSR. The PSR is designed to be deployed in space for the pur- 

pose of deep space observation. The overall diameter of such a reflector is expected to be 

on the order of thirty meters. The tasks of manufacturing the reflector and of transporting it 

into space are simplified by its segmented construction. Currently, each segment is expected 

to be on the order of one meter in diameter and is hexagonal in planform. Once in space the 

segments can be assembled to form the surface of the reflector. An artist’s rendition of a 

deployed precision segmented reflector can be seen in Figure 1. The surface of the reflector 

is to be protected from direct solar radiation by a sunshield, which in Figure 1 is being in- 

stalled by two astronauts. As envisioned, the segments are to be constructed as symmetric 

sandwiches of composite face sheets and honeycomb core joined by adhesive layers. A detail 
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Figure 1. Artist’s Rendition of Precision Segmented Reflector (as traced from NASA picture 
L-87-9643) 
  

of the reflector construction is illustrated in Figure 2. Because of its intended use for deep 

space observation, the PSR has strict requirements on reflector surface smoothness and 

overall structural shape. Because the PSR will be protected from direct solar radiation and 

the associated high temperatures and high temperature gradients that spacecraft normally 

experience, the expected operating life is at least twenty years. During this time, despite the 

low operating temperatures, the polymer-based composite materials in the reflector segments 

may exhibit time-dependent material behavior. Because the stringent requirements on sur- 

face smoothness and overall shape must be maintained throughout the entire life of the re- 
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Figure 2. Detail of the Construction of a Single Segment 

flector, the time-dependent behavior of its constituent materials may adversely affect its 

performance. Thus, the ability to quantify the amount of time-dependent behavior that a par- 

ticular material exhibits, and to quantify the influence of that behavior on the reflector’s per- 

formance, is a necessary design requirement. To meet this demand requires an analytical 

tool which properly models the important material properties, dimensions and construction 

features of a reflector segment. This tool, which can be used to predict the reflector’s re- 

sponse to variances in the properties of all its constituent materials, can also be used to 

screen candidate materials for potential use in the reflector. To be used as design tools, these 

models should be simple and preferably would be found in closed-form rather than by nu- 

merical techniques. 

Presented in this thesis is the development of analytical models which can be used to 

evaluate the influence of time-dependent material behavior on the performance of precision 

segmented reflectors. Empirical data on the time-dependent behavior of materials represen- 
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tative of reflector construction is also presented. Verification of the models is accomplished 

by using this empirical data. Because surface smoothness is influenced more by microme- 

chanic material issues than by the macromechanic behavior of the materials, it will not be 

addressed within this thesis. The analysis and gathering of empirical data are directed more 

toward understanding the factors that influence changes in the overall dimensions and the 

shape of the segments. Although the analytical models do not represent the reflector seg- 

ments as plates, they do incorporate the basic features of the symmetric sandwich con- 

struction. Thus, the models are able to predict the effect of time-dependent material behavior 

on the overall response of the reflector segment. 

Specifically, the analytical models are three-layer and five-layer symmetric sandwich 

beam models. These beams represent strips of the hexagonal reflector segments. The five- 

layer sandwich beam model takes into account not only the face sheets and honeycomb core, 

but also the two layers of adhesive that bond them together. Although the five-layer model, 

by including all three constituent materials individually, is a more accurate and complete 

representation of the sandwich structure, the three-layer model is also important. The de- 

velopment of the three-layer model provides insight into the solution techniques necessary to 

develop the computationally more complicated five-layer model. Additionally, because of the 

difficulty in isolating the time-dependent behavior, and for that matter, the static behavior, of 

the honeycomb core from the adjacent adhesive layer, the three-layer model is a fair repre- 

sentation of the sandwich construction when the combined properties of honeycomb and ad- 

hesive are used as the core properties. Although in theory the reflector segments will 

experience very little mechanical loads, slight loads resulting from manufacturing processes 

and assembly may occur. Additionally, despite the relatively controlled thermal environment 

of the reflector structure, there may be small temperature gradients both in the plane of the 

reflector and through the thickness of the segment panels. Even though in practice the ex- 

ternally applied mechanical loads and thermally-induced loads may be small, the models will 

use these loads for the purpose of screening candidate materials for potential PSR use. A 

simple mechanical loading case, three-point bending, is used to compare the predictions of 
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the analytical models to the actual empirical data. Three-point bending of a beam is easily 

performed in a laboratory and also has relatively simple boundary conditions; thus, it is an 

ideal test case for the models and is potentially a good screening experiment for candidate 

construction materials. To simulate any thermal joadings, a linear temperature gradient 

through the thickness of the sandwich is considered. 

The chapters that follow develop the tools necessary to study the time-dependent be- 

havior of sandwich beams. As with any beam analysis, many of the stresses are zero; this 

simplifies the development of the models. The stresses which are zero are discussed in 

Chapter 2. Additionally, the nomenclature and conventions used for both the three-layer and 

five-layer beam models are introduced in Chapter 2. The steps used in developing the ana- 

lytical models are also outlined in that chapter. The principle of stationary potential energy 

is used for both models rather than an equilibrium approach; thus, the governing equations 

and the associated boundary conditions are found for each model. The development begins 

with kinematic assumptions, specifically the assumed displacement field. Because 

honeycomb cores are quite soft in shear, and because the through-the-thickness shear 

modulus of fiber-reinforced composites is much lower than the in-plane extensional modulus, 

shear deformations are included in the displacement formulation. Once the displacement field 

has been introduced, the principle of stationary potential energy is used to obtain the gov- 

erning differential equations, or Euler equations, and the boundary conditions. The Euler 

equations are then solved to yield the forms of the assumed displacements. The unknown 

constants in the displacement functions are next found by applying the boundary conditions. 

This, finally, is the static (elastic, as opposed to viscoelastic) solution. The next step in the 

development of the model is to incorporate the time-dependent behavior of the materials. 

This is done by using the correspondence principle of viscoelasticity. This principle is ex- 

plained in greater detail later. Simple, representative cases of time-dependent behavior are 

used for demonstrative purposes. 

The third and fourth chapters both deal with the three-layer beam model. The develop- 

ment of the three-layer model is outlined, step by step, in Chapter 3. Interesting numerical 
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studies based on this model are presented in Chapter 4. For example, the effects on the 

overall response of the beam due to varying material properties is shown. Comparisons of 

the effects due to different material properties changing by an order of magnitude are used 

to show to which material properties the model is most sensitive. This is important when 

screening candidate materials. For example, if a particular candidate material has an elastic 

property which is lower than in other candidate materials, or exhibits a high degree of time- 

dependent behavior, but the response of the beam model is not very sensitive to that material 

property, then the material may still be acceptable for use in the reflector structure. However, 

if a candidate material has a material property that is only moderately time-dependent, but the 

response of the beam its highly sensitive to that material property, then that material may not 

meet the design requirements. In Chapter 4, the properties which are most important for 

screening candidate materials, according to the three-layer model, are identified. 

The purpose of Chapters 5 and & is similar to that of Chapters 3 and 4. In Chapters 5 and 

6, the development of and some numerical results from the five-layer beam model are pre- 

sented. The steps in the development are the same as for the three layer-model. However, 

for the three-layer model the results could be found in closed-form. The five-layer model, 

which is computationally more difficult, relies on a few intuitive steps to bring it to a form 

which is useful. These steps are based on the work of the three-layer model and are sup- 

ported by computational evidence which is presented in Appendix C. Once again, the nu- 

merical results follow the development and are presented in Chapter 6. These numerical 

results identify the material properties that are most important when screening candidate 

materials according to the five-layer model. 

Following the development of the models and their numerical results is an explanation 

of the experimental procedures in Chapter 7. Here the special apparatus that were designed 

for the tests are discussed. Not only were time-dependent three-point bending tests performed 

on the sandwich beams, but also time-dependent tests were performed to determine the 

time-dependent behavior of the independent constituent’s material properties. 

Chapter 1 - Introduction and Background 6



The results of the experimental work are discussed in Chapter 8. Simple time-dependent 

models are fit to the experimental data acquired from testing the separate materials, and 

these models are subsequently used with the three-layer analytical model to predict the 

overall response of a sandwich beam subjected to three-point bending. These predictions are 

compared to the experimental results of the sandwich beam in three-point bending. Finally, 

observations, conclusions and recommendations for further work are discussed in Chapter 9. 
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Chapter 2 - Nomenclature and Procedure for the 

Development of the Models 

The purpose of this chapter is two-fold. First, the nomenclature and geometry for the 

three-layer and the five-layer sandwich beam models are introduced. Second, the analytical 

approach used to study the time-dependent behavior of the models is outlined. 

Nomenclature and Geometry of the Models 

Schematics of both the three-layer and the five-layer sandwich beam models are depicted 

in Figure 3. In both models, x is the coordinate coincident with the length of the beam. Also, 

the coordinate through the thickness of both beams is z; in particular, the mid-thickness po- 

sition of both beams is denoted by z=0. The width, or dimension in the y direction, for both 

models is unity. As with all beam theories, the primary stress is the extensional stress in the 

lengthwise direction, or o,. If shear deformations are considered important, as they are here, 

the through-the-thickness shear stress, 7.2, must be included in the analysis. The other four 
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Figure 3. Three-Layer and Five-Layer Models 
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stress components, oy, o:, ty and ty, are considered negligible and are set to zero. In sum- 

mary, 

a, #0 Ty7 #0 Oy = O07 = Ty = tyz = 0. (2.1) 

As a result, Hooke’s law reduces to 

o, = Ee, Ty, = Gy (2.2) 

where e, is the extensional strain in the x direction and y,, is the shear strain in the x-z plane, 

or the through-the-thickness shear strain. Also, E represents Young’s modulus in the x di- 

rection and G is the shear modulus in the x-z plane. Although not explicitly shown in Equation 

2.2, these material properties actually depend on z because they vary from layer to layer. If 

thermal expansion effects are important, Hooke’s law becomes 

r 
o, = Er, — oy (2.3) 

Ty = Gy, 

where 

o, = Ea,AT . (2.4) 

In the previous equation, a, is the coefficient of thermal expansion of the material in the x di- 

rection and AT is the temperature rise relative to some arbitrary reference temperature. As 

before, these quantities depend on 2; a, varies from layer to layer, and AT could be any func- 

tion of z. For this work, a linear function of z is considered. 

In both the three-layer and the five-layer beam models, the outermost layers are the face 

sheets. These are, as currently envisioned, quasi-isotropic fiber-reinforced composite lami- 

nates. The face sheets are modelled as single layers, rather than modelling the eight or more 

layers that actually compose the face sheets. 
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Three-Layer Sandwich Beam Model 

As shown in Figure 3, the three-layer beam model includes only the face sheets and core, not 

the adhesive layers which bond them together. The thickness of the adhesive layers can be 

included in the three-layer model, but only as part of the core or face sheets. Material prop- 

erties which are actually the combined properties of the adhesive and the core, or the adhe- 

sive and the face sheets, can be used if the additional thickness of the adhesive layers is 

added to the thickness of the core, or face sheets. For the three-layer beam model, the sub- 

script “1” is used to denote material properties of the face sheets. The modulus of elasticity 

in the x direction for the face sheets is E;, the shear modulus of the face sheets is G;, and the 

coefficient of thermal expansion is «,. (Unlike standard notation associated with mechanics 

of materials or mechanics of composite materials practice, the subscript ”1” does not refer to 

principal direction or fiber direction, but rather that the material property is of the face sheet.) 

The thickness of each face sheet is represented by t,. The core properties are denoted by the 

subscript “2”; thus, the modulus of elasticity, shear modulus and the coefficient of thermal 

expansion of the core are, respectively, E,, Gz and a). The total thickness of the core is 2h, 

and the total thickness of the beam is 2(h + t,), or 2H. The material properties and geometries 

are identified in Figure 3. 

Five-Layer Sandwich Beam Model 

The five-layer beam model, unlike the three-layer model, includes all three materials. Similar 

to the three-layer beam model, the subscript “1” is used to represent the material properties 

of the face sheets. Thus, E,, G; and o, are the modulus of elasticity, shear modulus and co- 

efficient of thermal expansion of the face sheets, respectively. The thickness of each face 

sheets is t;. The properties of the adhesive layers are denoted by the subscript ”2”; therefore, 

Chapter 2 - Nomenclature and Procedure for the Development of the Models 11



the modulus of elasticity is E,, the shear modulus is G2 and a, is the coefficient of thermal ex- 

pansion of the adhesive layers. The thickness of one adhesive layer is tz. The honeycomb 

core has the properties E;, G; and a3, which are the modulus of elasticity, shear modulus and 

coefficient of thermal expansion, respectively. The total thickness of the core is 2h, same as 

for the three-layer beam model, and the total thickness of the beam is 2(h + t, + te), or 2H. 

These material properties and geometries can be seen in Figure 3. To make any meaningful 

comparison between the two models, the quantity 2H must be the same for both models. 

Thus, the thickness of the adhesive layers, which is modelled separately in the five-layer 

model, should be included in the thickness of the face sheets (t;) or in the thickness of the core 

(2h) in the three-layer model. 

Procedure for Development of Models 

Now that the nomenclature and geometry for the two models have been introduced, the 

procedure for the development of the models is outlined. The procedure for both models is 

the same; only certain details vary. These details are covered in depth in Chapters 3 and 5. 

Generally, the Euler equations and boundary conditions that govern the beam’s response to 

mechanical and thermal loads are found by using the principle of stationary potential energy. 

Then, these equations are solved and the boundary conditions applied to find the elastic sol- 

ution. Finally, the correspondence principle of viscoelasticity is used to find the time- 

dependent response of the beam. Because the correspondence principle of viscoelasticity is 

so vital to the analytical models, it is discussed before the developmental procedure is out- 

lined. 
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The Correspondence Principle of Viscoelasticity 

Concisely stated, the correspondence principle of viscoelasticity is: 

To find the stresses in and the deformation of a viscoelastic structure, replace E by 

Q(s) 
P(s) ’ 
viscoelastic function.[1] 

  and the ensuing functions are the Laplace transforms of the solution of the 

  The function is the time-dependent modulus in Laplace domain. Although this state- 
Ss 

P(s) 

ment considers only the case where the modulus of elasticity is time dependent, any of the 

elastic material properties can be time dependent. For example, the shear modulus may vary 

with time; the behavior of a fiber-reinforced polymer material in shear is polymer-dominated 

and therefore more expected to exhibit time-dependence than the fiber-dominated extensional 

behavior. 

In general, to apply the correspondence principle, the solution to the elastic problem 

must first be known. Next, any time-dependent material properties in the elastic solution must 

  

Q(s) 
be replaced by P(s) 

domain. {A load that is applied initially and kept constant, or even eventually removed, is 

and any time-dependent loads must be replaced by the load in Laplace 

considered to be time-dependent and has the form of a step function.) The result is the sol- 

ution to the viscoelastic problem in the Laplace domain. Performing the inverse transform 

function will yield the viscoelastic solution in the time domain. Because inversion must be 

performed, it is important to have the material properties appear explicitly in the elastic sol- 

ution. If the material properties do not appear explicitly, or appear in a complicated fashion, 

performing the inverse transform may be prohibitively difficult. For example, consider the 

case where a displacement is given by the function 

— Pl AE (2.5) 

where P is a load applied at time zero, L is a characteristic length, A is a characteristic area 

and E is the modulus of the material. For simplicity, assume that the load P is applied at time 
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zero and remains constant at magnitude P,; thus, its Laplace transform is P,/s.[2] If E is a 

time-dependent quantity, then the time-dependent form of 6 is 

é(t) = 2 Pot (2.6 
sA —— 

P(s) 

which may in fact be relatively simple to find. However, if E is embedded deeply, as in the 

function 

F=c——- _ | (2.7) 
3 

(JE + k)? 

where c and k are constants pertaining to the particular problem, then finding an explicit ex- 

pression for the time dependent form F(t), 

F(t) = oy cPo ; (2.8) 

Q(s) 
( P(s) + 7 

can be difficult, if not impossible, even if 

  

ry
|w
 

  

  PS) is a very simple function. In the formulation 

of the models, the elastic solution was developed with an eye towards the application of the 

correspondence principle without having to resort to numerical inversion techniques or nu- 

merically integrating time-dependent equations. 

A common method of modelling the time dependent behavior of a material is to use dif- 

ferent combinations of springs and dashpots to represent that behavior. Four simple 

viscoelastic models are shown in Figure 4. A spring alone, shown in part a of Figure 4, re- 

presents a perfectly elastic material. The strain of this spring is directly proportional to the 

stress applied, and a perfect spring returns to its original undeformed position when the load 

is removed. The behavior of a material symbolized by a spring can be written as 

o=Ee . (2.9) 
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Figure 4. Simple Viscoelastic Models 
  

where o is the stress, ¢ is the strain and E is the extensional modulus of the material. If the 

stress and strain in question are shear stress and strain, 

t = Gy (2.10) 

where + is the shear stress, y is the shear strain and G is the shear modulus of the material. 

For the remainder of the discussion of basic viscoelasticity, o will represent either normal or 

shear stress and ec will represent the corresponding Strain. 

A dashpot alone, shown in part b of Figure 4, represents a viscous liquid. For a dashpot 

alone, the time derivative of the strain is directly proportional to the stress applied. The 

constitutive behavior of a material symbolized by a dashpot is 
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o= ye. (2.11) 

However, a dashpot by itself is a poor representation of a solid; a dashpot can not respond 

instantaneously to an applied load. A more realistic model of a solid material is shown in part 

c of Figure 4. The spring and dashpot in series shown is sometimes called a Maxwell element 

or a Maxwell fluid. In this case, the word “fluid” refers to its viscoelastic behavior and not its 

elastic behavior. A Maxwell fluid is used to represent a material which responds instantane- 

ously to an applied stress, like a solid, but then behaves like a liquid over time if the stress 

is not removed because it is unable to resist deformation caused by that stress. The 

constitutive equation for a material that behaves as a Maxwell fluid is 

n. . 
o + Eo=ne . (2.12) 

The Maxwell fluid is one of the simplest time-dependent models that can be used to represent 

a material. The spring in the Maxwell fluid model responds instantaneously to an applied 

stress, and the dashpot allows the strain of a Maxwell fluid to increase indefinitely as long as 

the stress is present. This is characteristic of any viscoelastic fluid; the strain continues to 

increase in the presence of a load. By contrast, the strain of a viscoelastic solid will, for a 

stress which is applied for a sufficient length of time, eventually stop increasing and reach 

some upper limit. 

A spring and dashpot in parallel with each other is often referred to as a Kelvin element 

or a Kelvin solid; however, because it does not respond instantaneously to an applied stress, 

it is an unrealistic model of the behavior of a real solid material. The simplest realistic 

viscoelastic solid (except for a free spring, which has no time-dependent behavior) is the 

three-parameter solid. A three-parameter solid consists of a spring and dashpot in parallel, 

i.e. a Kelvin solid, in series with another spring. This model is shown in part d of Figure 4. 

The constitutive behavior of a three-parameter solid is governed by the following differential 

equation: 
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o+ aes ae oe: | (2.13) 

where E, is the modulus of the free spring, E, is the modulus of the spring in the Kelvin ele- 

ment and , is the dashpot, or viscous, constant. 

For the four models shown in Figure 4, the creep and recovery of each model is shown 

in Figure 5. To each model a stress is applied at time zero. The stress is held constant for 

a period of time and then removed. The time history of this stress is illustrated at the top right 

of Figure 5. Below that, the resulting strains as a function of time are shown for each of the 

four viscoelastic models represented. The free spring, shown in part a, has only a constant 

strain in response to the constant stress. This strain is completely recovered when the stress 

is removed. The free dashpot is shown in part b of Figure 5. It has no initial elastic response 

to the stress and no recovery when the stress is removed. The Maxwell fluid of part c com- 

bines the instantaneous elastic response of the spring with the linear creep of a dashpot. 

Additionally, the amount of recovery is only the initial elastic strain of the spring, «.. The creep 

and recovery behavior of a three-parameter solid, as shown in part d of Figure 5, is even more 

complicated. Once again, there is an initial elastic response to the applied stress, but now the 

transient, or time-dependent, strain is not linear with time. Once the load is removed, the in- 

itial elastic strain, c,, is recovered immediately, followed by a recovery period during which the 

model recovers completely. 

The constitutive behavior of a general viscoelastic model is governed by an equation of 

the following form: 

(m) o + Pye + Pod + + Pol” = oe + Gye + qoé t+ .. + ane”, (2.14) 

where o™ and e® represent the m-th and n-th time-derivatives of o and «, respectively. There 

are certain physical limitations which restrict this equation. For example, the highest time- 

derivative of strain must always be of either the same order or one higher than time-derivative 

of the stress, that is, 
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Figure 5. Creep and Recovery of Four Simple Viscoelastic Models 
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n=m or n=m+i1. (2.15) 

Also, information about the model can be gained by inspection of the constitutive equation. 

As an example, for the viscoelastic model to have instantaneous response to an applied 

stress, the highest derivatives of stress and strain must be of the same order, or 

n=m — _ instantaneous response . (2.16) 

If the coefficient of the strain, q,., is zero, the model is a viscoelastic fluid; if q, is nonzero, the 

model is a viscoelastic solid: 

I=9 - fluid 

Q,#0 — — solid (2.17) 

The general constitutive equation of a viscoelastic model, Equation 2.14, can be trans- 

formed to the Laplace domain. In Laplace form, Equation 2.14 is 

(1+ p48 + pos? +... + PmS)S(S) = (Go +448 +... + AnS”)E(S) (2.18) 

where a(s) is the Laplace transformation of the stress as a function of time and é(s) is the 

Laplace transformation of the strain as a function of time. The polynomials which are the 

coefficients of these terms can be replaced by the notation Q(s) and P(s), respectively. These 

quantities are defined by the following: 

P(s) = ) Fs , (2.19) 

where p, is 1, and 
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n 

Q(s) = > as (2.20) 

1=0 

The ratio of these polynomials appeared in the quotation of the correspondence principle of 

Q(s 
a , is the viscoelastic modulus of a material in Laplace domain. Similarly, 

is the viscoelastic compliance of a material in the Laplace domain. 

viscoelasticity: 

  

s 
the ratio rati Qs) 

The Development of the Models 

The first step in the development of the three-layer and five-layer beam models is to as- 

sume an allowable displacement field for each model. The displacement fields must properly 

account for the deformation of each layer. Here each layer is assumed to have both exten- 

sional and shear deformations, and to shear independently of the other layers. To account for 

these deformations, lines in each layer that, when unloaded, are straight and normal to the 

midsurface of each layer remain straight within the layer upon loading. However, for the dif- 

ferent layers these lines rotate through different angles. The nomenclature for the angles is 

different for the two models; thus, this is discussed in greater detail in the appropriate chap- 

ters. Also, each layer displaces uniformly downward in the z direction by the same amount, 

w. Specification of the displacement in the y direction, v, is not needed. 

The second step in the development of the models is obtaining the strain fields. Once the 

important components of the displacement fields are known, finding the strain fields is a 

simple task. The pertinent strain-displacement relations are 

Gu 

x "Ox. 
_ ou , dw ee" 

Yaz “Gz Ox 
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Inspection of the previous equations reveals that, indeed, it was not necessary to make any 

assumptions about the y direction displacement v as it does not appear in any of the needed 

strains. Again, because the strain field for the three-layer model is different than that of the 

five-layer model, each is presented in its appropriate chapter. 

Third in the developmental procedure is to write the total potential energy, II, of the beam 

for each model. For these models the total potential energy can be divided into two portions: 

I],, the internal strain energy; and I", the potential energy caused by a load P* which is ap- 

plied at a point x* along the length of the beam. Because of the interest in the three-point 

bending response, only point loads will be considered. The first of these, the internal strain 

energy, can be written as 

1 T T T 
q=> JI) [cs — Ox) + (ay — oy)ey + (42 ~ Oz)ez + TeaVxz + TxyVxy + Tyz?yz] IV 

(2.22) 

where V is the total volume of the beam.[2] This expression is simplified by the stress state, 

given in Equation 2.1, which exists in the beam. Also, because the width of the beam is as- 

sumed to be unity, the expression becomes 

+H 
4 T N= > I. | , [Cox — oy)ex + tez¥xz \dz dx (2.23) 

where L” refers to the total length of the beam, 2H is the total thickness of the beam and o} 

is given in Equation 2.4. If Hooke’s law, Equation 2.3, is used and it is recognized that the 

material properties depend on z due to the layered nature of the beam, then Equation 2.23 

becomes 

4 +H 
ml, = +f [. [E(zye% + Glz)yeg — E(z)a(z)AT(z)e, ldzdx . (2.24) 

Chapter 2 - Nomenclature and Procedure for the Development of the Models 21



The second portion of the total potential energy of the beam is that caused by an ex- 

ternally applied point load P*,or simply 

n= —Pwl (2.25) x’ 

where x’ is the point of application of P* and w is the z-direction displacement at x". 

Finally, the total potential energy of the beam, II, can be written as the sum of its com- 

ponents, or 

m=",+. (2.26) 

The final form for the total potential energy in the beam, as employed in Chapters 3 and 5, is 

ll = 1] [teas + G(z)y2, - E(z)a(z)AT(z)e, |dzdx — Pew| _ ye (2.27) 

‘The next step in the development of the models is to apply the principle of stationary 

potential energy. Because the final forms for the potential energy for the two models are quite 

different, a general statement about the principle is made here and the details of application 

are left to the appropriate chapters. In general, if the first variation of the total potential en- 

ergy, OIT, exists, then setting 6I] equal to zero is sufficient to ensure equilibrium. This step 

yields the Euler equations and boundary conditions which govern static equilibrium of the 

system. 

Once the Euler equations have been found, the fifth step in the development of the models 

is to solve the Euler equations. Solution of the equations for the unknown displacement 

functions is covered in greater detail in Chapters 3 and 5. As an overview, the displacement 

functions are assumed to have the form e**; the eigenvalues 1, are determined; and certain 

relations between the displacement functions are found which reduce the number of unknown 

constants to the number of available boundary conditions. 
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Figure 6. Equivalence of Simply Supported Beam in Three-Point Bending and Tip-Loaded 
Cantilever Beam 
  

The sixth step is to apply the boundary conditions. As mentioned previously, a three- 

point bend test is considered a good candidate for a screening tool. It is simple to understand 

and can be performed in a laboratory. However, actually using the boundary conditions for 

three-point bending for the analytical model complicates the solution more than necessary. 

To represent three-point bending of a beam of length L which is loaded in the center by a point 

load P and simply supported at both ends, the boundary conditions used are actually those 

of a tip-loaded cantilever of length L/2 with load P/2. The equivalence of these two conditions 

are shown in Figure 6. The similarities between the two situations are evident upon inspection 

and henceforth, discussion wil! focus on the cantilever beam representation. 
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Once the boundary conditions are applied, all of the unknown constants in the displace- 

ment functions can be_ found. Some intuitive steps that are not needed in the 

computationally-simpler three-layer model are necessary in the five-layer model to make the 

form of the solution useful; these steps are supported by numerical evidence, and the need 

for the simpler form, to effect the inversion of the Laplace transform, was previously explained 

in the discussion of the correspondence principle of viscoelasticity. At this point, the elastic 

problem is completely solved. The next and final step is to incorporate the time-dependent 

material behavior into the response of the beam as predicted by the models. This final step 

is accomplished by applying the correspondence principle of viscoelasticity. Recall the earlier 

discussion of this principle; it was Stated that the material properties must appear explicitly 

in the elastic solution to apply the correspondence principle in a simple fashion. As a result, 

simple functions for the time-dependence of the material properties are chosen in Chapters 

4 and 6 to demonstrate the use of the correspondence principle and to provide information 

regarding the time-dependent behavior of the reflector segments. In Chapter 8, an attempt is 

made to select time functions which closely match the material behavior as found by the ex- 

periments. 

In review, the steps for developing the three-layer and five-layer models are the same. 

First, a displacement field is assumed. Next, the strain field is found by applying the strain- 

displacement relations. Third, the total potential energy is written using these strains. Ap- 

plication of the principle of stationary potential energy is the fourth step; it yields the Euler 

equations and boundary conditions which govern the problem. Then, the fifth and sixth steps 

are to solve the Euler equations for the form of the displacement functions and to find the 

unknown constants in these functions by applying the boundary conditions. Finally, the cor- 

respondence principle of viscoelasticity is used to reveal the time-dependent solution. 

The next chapter focuses on these steps for the three-layer beam model. 
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Chapter 3 - Development of the Three-Layer 

Sandwich Beam Model 

Before the more complicated five-layer beam model was attempted, a three-layer beam 

model was studied. The computationally simpler three-layer model yielded insight into the 

solution and the solution techniques for the five-layer model. Also, because the adhesive 

layers on the actual structure are quite thin, the three layer model can be considered some- 

what representative of the sandwich reflector segments. Additionally, because of the difficulty 

of measuring the materia! properties of only the honeycomb core, an argument can be made 

for using the effective or combined material properties of the honeycomb material and the 

adhesive as the material properties of the core. 

Displacement Field 

The displacement field for the three-layer model must properly account for the contrib- 

ution that the face sheets and the honeycomb core make toward the overall response of the 

Chapter 3 - Development of the Three-Layer Sandwich Beam Model 25



! 
E; Giow ti vp 

E. Go» i o x 

1 uw 
E:Garti J y 

+ 

z Y 

  

  

  

      
  

  

Figure 7. Displacement Field of the Three-Layer Sandwich Beam Model 

sandwich beam. As explained in Chapter 2, each layer is assumed to have both extensional 

and shear deformations, and to shear independently of the other layers. Thus, each point in 

each layer displaces an amount u%(x) in the x direction due to the midsurface displacement 

u°(x) and an amount which depends on the rotation angle, either ¢(x) for the core or W(x) for 

the face sheets. Also, each layer displaces uniformly downward in the z direction an amount 

w°(x}. Because the model is a beam, the displacements in the x and z directions are not de- 

pendent ony. The x-direction displacements, along with the geometry and material properties 

for each layer, are shown in Figure 7. Thus, the displacement field in the x-z plane is 

u(x) + h(x) — (2+ hyo) (—H<z<—h) 
u(Xx,z) = u(x) — 2(x) (—nh<z< th) 

u(x) — h(x) — (2—h)y(x) (+h <z< +H) (3.1) 

w(X,Z) = W(x) , all 2. 
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Because the z displacement, w, is only a function of x, the notation w®(x) will be replaced by 

w(x) hereafter. Additionally, u(x) will replace u°(x). 

Strain Field 

Applying the strain-displacement relations as given in Equation 2.21 to the assumed dis- 

placement field to find the strain components c, and yy. yields 

du dp dy dw 
dx + Oy 7 +N GY ~yto (-H <z<-h) 

x= \ ax 2 ax ye = ( — $+ Se (-hsz<th) (3.2) 

du, d¢ dy dw 
dx ~ gx 2 MY —yv+p (+h<z<+H). 

These strains are needed in the total potential energy expression. 

Principle of Stationary Potential Energy 

In general, to apply the principle of stationary potential energy, the first variation of the 

total potential energy is set equal to zero. The resulting equation or equations, called the 

Euler equations, and boundary conditions ensure equilibrium and govern the response of the 

system. For the three-layer beam model, there are four degrees of freedom: the displace- 

ments u, w, @ and wy. Therefore, four equations and four sets of boundary conditions result 

from applying the principle. Specifically, for the three-layer beam model, the total potential 

energy must first be written as a functional of the functions u(x), (x), (x) and w(x). The first 
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variation of the total potential energy is taken and integration by parts is used. The governing 

conditions then follow. 

The expression for the total potential energy of the beam is given by Equation 2.27, and 

is repeated here for convenience: 

+H 
1 2 2 . n= > J. i- [E(z)ex + G(z)vxg — E(z)a(z)AT(z)e,|dzdx — Prwl, _ .. (3.3) 

The integral over the limits z = -H to z = +H, through the thickness of the beam, can be 

logically separated into three integrals, one for each layer. Doing this, the material properties 

E, G and « become constant within each integral. Also, a thermal gradient which is linear in 

z will be considered: the gradient is assumed to have the form 

AT =a+ bz, (3.4) 

where a and b are constants. With this formulation, the temperature of the geometric 

midplane of the beam is denoted by the constant a. The total potential energy can be rewrit- 

ten, and is 

—h 

Il = | | [E,% + Gy, - E,a,(a + bz)e, |dz 

2 L’ H 

+h 
+ | [Enex + Goveg — Eag(a + bz)e, jaz (3.5) 

x* * 

+H 

+ i] [Exex + Giyeg — Eyay(at vate — Prwl 
+h 

By substituting the appropriate expressions for the strains e, and y.. from Equation 3.2 and 

performing the z integration, the following expression for the total potential energy is obtained: 
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2 2 
d d d 

+ (=) (ser) + (Sr) (Gity + Gah) + ( )(E ent) 

$ v : *(Gyh) + WUGit)) + ¥ (SY )(-29,4) + 6(-S* )(-2erm) 

2 

G 

du dy 1 1 43 + —a( SE )E,ayt + Egagh) + (Ge) | eraa( Fmt + +8) 

dd 2 1 42 1 3 . + 0( SE )[esi(nty + nt) + eano( $ n°) Jl - Pl, 

(3.6) 

This expression for the total potential energy is in the functional form necessary for applying 

the principle of stationary potential energy. 

To simplify the previous expression for potential energy, allow u’ to represent the first 

du derivative of u with respect to x, or dx" ¢’ to represent the first derivative of ¢ with respect 

to x and so on. The expression for the total potential energy can be rewritten as 

1 = J [eo + c(h’) + col'Y') + cov’? + J (C7 + egw’? 

+ Le? + Leap? — epy(w’) — cgdtw’) 
+ Nu(u’) + My(¥’) + Myo’) | ax 

(3.7) 

—Prwl, oy ’ 

where the constants c,, i=0,1,3,6,7,9, and NI, M} and M} are as follows: 
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Co = E,t, + Eh 

C, = n?( Ent + > Eph) 

C3 = E,ht? 

Jd 3 
C5 = By Eat 

C7 = 2G,t, 

(3.8) 
Cg = 2Goh 

Ni = —a(E,a,t, + E5x9h) 

Mi, = o| Eraats( $n + +9) 

The first variation of the total potential energy I is of the form 

._ om,., , en ,, of ,, en ,, of orn ell 
él = Bu" Ou + ag" od + Gy" bw + ay" ow +g bd + ay éw +a OW . 

(3.9) 

Applying this form to the last expression for the total potential energy yields 

or =| { [ 2eq(u’) + Ny jou’ 
L* 

+ [e,(w’ — yp) + cg(w’ — $)]éw’ 
’ ’ T , + [2c,(o') + c3(¥’) + My ]o¢d (3.10) 

+ [e3(¢’) + 2ce(¥’) + My ]éy’ 

+ [e7(y — w’)]dy + [egid — w’)]6¢}dx 
_ P*dw| x 

Portions of the integrand in this expression can be integrated by parts. Integration by parts 

has the general form 
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B B B 

| Udv = UV|, - | VdU (3.11) 
A A 

As an example of the application of integration by parts, consider a portion of the previous 

integral, 

[| 20( $2) + Ni 5-2 dx . (3.12) 

Applying Equation 3.11 to this integral, where 

  

- Gu T U= 2c9( ax ) + Ny 

2 
dU = 2eo{ £2 

dx (3.13) 

V = du 

and 

du 
dV =6 ax dx 

yields 

d tl. d d x= u u _ du T 
J | 20( ax ) + Ni [6 ax dx = [2 dx ) + ni out = 

(3.14) 
2 

- [ aeo{ £2 ut . 
. dx 

The first term on the right side of the previous equation reflects the fact that a cantilever beam 

with its root at x=0 and its free end at x = L/2 is being considered. This procedure can be 

repeated on the portions of the integrand that are products involving 6¢’, dy’ and dw’. Doing 

this, the previous expression for the first variation of potential energy becomes 
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Because the variation of each kinematic variable is independent of the others, for the entire 

expression 6Il to be zero, the individual coefficients of du, 6¢, dy and dw within the integral 

must each be equal to zero. These individual coefficients are the Euler equations for the 

three-layer beam model. They are: 
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(3.16) 
    

  

Also, each of the other expressions must be zero on an individual basis. These expressions 

are the boundary conditions for the three-layer beam model. Because of the interest in the 
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cantilever beam boundary conditions, the load P* will be assumed to be applied at the free 

end of the beam. Thus P* appears in the boundary conditions. For this situation, x* is L/2. 

From this, the boundary conditions are 

(3.17) 
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— Crp — Cop — P| = 0 

at both ends of the beam, except that in the last equation, it is understood that P* is applied 

at the appropriate end of the beam and not both. 

Notice that each boundary condition can be satisfied when either the first variation of the 

kinematic variables is zero (in other words, the value of the kinematic variable at the end in 

consideration is known or given), or the coefficient of the first variation of the kinematic 

variable (the bracketed term) is zero. Therefore, another way of expressing the boundary 

conditions is to say that at both ends of the beam, 

either 

du T . 
2cq( SL) + Nj = 0 or u=U 

and either 

d d 
20,( + oa( Se J + My =0 or ¢=¢" 

and either 

ca( Ge) + 2ee(-Ge) + My = 0 o y=" 

and either 

(67 + c9)( S¢) - ey — Cop = P* or WwW = WwW" 

(3.18) 

The quantities u*, ¢*, y* and w* are the known values of the displacement variables. 
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Solution of Euler Equations for Displacement Functions 

To review briefly before proceeding, an assumed displacement field was used to find the 

strain field for the three-layer model. These strains, along with an externally applied load and 

linear thermal gradient, were used to find the total potential energy, II, of the beam. The 

principle of stationary potential energy, when applied to FI, yielded four Euler equations and 

four boundary conditions for the model. Now, the four Euler equations, which are simply four 

coupled ordinary differential equations, will be solved for the displacement functions. These 

functions will still contain unknown constants which will later be determined by applying spe- 

cific boundary conditions to the problem. First, the solution of the Euler equations will be 

presented. 

Solution for u(x) 

First, notice that the function u(x) is decoupled from the rest of the problem because it - 

appears alone in only one Euler equation and one boundary condition. The solution for u(x) 

from its equation, 

d*u 2, 24% \)=0 . (3.19) 
( “| 

must necessarily be a linear function of x, specifically, 

u(x) = UyX + Ug , (3.20) 

where u, and up are constants of integration. Because the interest here will focus on studying 

the time-dependent out-of-plane response of the sandwich beams, w(x), the solution to u(x) 

will not be discussed further. 
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Solution for w(x), w(x) and (x) 

Referring to Equation 3.16, the solution for the remaining functions w(x), ¢(x) and w(x) can 

be seen to involve only the last three equations, which are coupled. To find this portion of the 

beam’s response, assume a solution of the form 

w(x) = we* 

$(x) = fe (3.21) 

v(x) = se” 

where / is unknown and f, s and w are constants which are yet to be determined. These as- 

sumed functions can be substituted into the three remaining Euler equations. Doing so yields 

(2c, 2 - Cg) (c32”) (CgA) fe2* 0 

(c3°) (2cg4?—c,) (67) sex > = 10} . (3.22) 

(Cg/) (c7A) — 1(c7 + €9)| | we** 0 

This set of equations has a non-trivial solution only when the determinant of the matrix has 

been forced to be zero, or 

(2c, 2? - Cg) (c3A°) (Cg) 

(c32”) (2cga?—c7) (€74) = 0 (3.23) 
(cod) (c7A) — 1°(c7 + Cg) 

Finding the conditions under which the determinant is zero can be accomplished by finding 

the roots of the sixth order polynomial 

A°(4cyeg — €§3)(C7 + Cg) — A*(2c7Cg)(ey + Cz + Ce) = 0. (3.24) 

Equation 3.24 is satisfied when four of the roots are zero, or 4; = 4,2 = J; = 44 = 0, and the 

remaining roots are 
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As = —Ag = 
  

| 2c7C9(C4 + Cy + Cg) (3.28) 
2 

(C7 + Cg)(4C,Cg — C3) 

Henceforth, the symbol 4 will represent 

2C7Cg(C,y + Cg t+ i=} 7Cg{Cy + Cz + Cg) | (3.26) 

(C7 + Cg)(4C4Cg — C3) 

  

  

With six roots to Equation 3.24, the solution, previously shown in Equation 3.21, can be written 

as 

W(X) == Wax? + Wax? + Wax + Wo + wse™ + wee ™ 

b(x) = fx? + fx? + fx + fy + fge’% + fe” (3.27) 

W(x) = Sx? + Sox? + 5,x + Sg + S5e~ + sge™ . 

Because the determinant of Equation 3.23 is zero, a relationship exists among the eighteen 

constants wi, Ss, and f. In particular, any two of the last three equations in Equation 3.16 can 

be used to find fs; and fs, and ss and Sz, in terms of ws and ws. Using the second and third 

portions of Equation 3.16, and defining 

fs = AsWs Ss = BsWs 

  

fs = AgWe Ss = BeWs , (3.28) 

the constants As, As, Bs and Bg can be found. They are 

A(C4 + 2C—)(C7 + Cy) 
As = — Ag = 

[c7(2c, + Cy) — Cg(cz + 2Cg)] (3.29) 
— A(2c, + Cy)(C7 + Cg) 

Bs = ll Bs =   

[c7(2c, + C3) — Co(Cg + 2C,)] 

For each repeated zero root, 4, = 4, =4;=/,=0, a different approach must be used to find 

relationships between the f,, s; and w, terms. That approach is detailed next. 

Consider the portion of the solution which contains only the four repeated roots of zero. 

This portion of the solution can be expressed as 
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W(X) = W3x° + Wax" + W4xX + Wo 

(x) = fx? + fx? + fx + fy (3.30) 

W(x) = S4Xx° + Sox" + S4X + Sp . 

When these functions are substituted into the three Euler equations under consideration, given 

in Equation 3.16, the relationships between w,, f, and s, can be found. Substitution leads to 

2c, (64x + 2f.) + C3(6S3x + 285) + Cq(3w3x" + 2WoxX + Wy — fx? - px? ~—f}x— fo) = 0 

C3(6f5x + 2fp) + 2cg(6BS4x + 289) + C7(3w3x” + 2W2x + Wy) 
(3.31) 

- ¢7(s3x° + SX" +S4xX + So) = 0 

C7(383x" + 2sox + 81) + Cq(3fx° + 29x + fy) — (C7 + Cg)(BW3x + 22) = 0 

The first of these equations can be rewritten as 

x°( — fg) + x7co(3wa — fp) + x"[12c4f, + 66383 + Co(2W2 — fy)] 03.39) 

+ x"[4c, f, + 20382 + Co(W, _ fo) J = 0 1 

the second as 

x7 —_ $3) + x*¢7(3W4 _ S>) + x’ [6c3f, + 12CgS4 + C7(2Wo _ S,)] (3 33) 

+ x" [2caf, + 4CgSp + C7(W, _ So)] = 0 

and the third as 

2 4 
x"[3(C7S3 + Cofs)] + x {2[c7Sq + Cofy — 3(C7 + Cg)W3]} (3.34) 

+ x[e7s, + Col, — 2Wo(C7 + Co)] = 0 | 

Because these three equations must be satisfied anywhere along the length of the beam, the 

choice of x is arbitrary. Thus, to ensure that each equation is identically equal to zero ev- 

erywhere, the coefficient of each power of x in each equation must be zero. Inspection of the 

coefficients of the cubic terms in Equations 3.32 and 3.33 reveals that 
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fy=sy=0 . (3.35) 

Inspection of the coefficients of the x? terms in the same equations reveals that 

1 1 
W3 = 3 2 = 3 82 : (3.36) 

Substitution of these relationships into the coefficient of the linear x term in Equation 3.34 is 

sufficient to verify these relationships; this coefficient is identically equal to zero when these 

relationships are true. The same is true for the coefficient of x? in Equation 3.34: it is identically 

zero if both f; and s3 are zero. Inspection of the coefficients of the linear x terms in Equations 

3.32 and 3.33 reveal relationships similar to those given by Equation 3.35, namely 

f, = +51 . (3.37) 
4 

W2= > 

Once again, these can be verified by substituting the relationships of Equation 3.37 into the 

constant (x°) term in Equation 3.34; the result is simply zero. By substituting the relationships 

of Equation 3.36 for the terms in Equations 3.32 and 3.33 and by algebraically manipulating the 

results, the following relations can be found: 

6(2 + (2¢) + C3) fo = Wy cs 3 (3.38) 

and 

6(Cz + 2c 
Sp = W, + eee we . (3.39) 

Using the results given by Equations 3.35-39, the portion of the solution from the four repeated 

eigenvalues of zero, originally shown in Equation 3.30, can be rewritten as 
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w(x) = WX" + Wax? + WX + Wo 

6(2c, + C3) 
—_————w 2 

(x) = SWax" + 2Wox + [Wy + ——E 3] (3.40) 
6(C34 + 2c 

w(x) = 3w4x° + 2Wox + [W, + ae wy 

Thus, the entire solution for w(x), ¢(x) and w(x) can be written as a function of six unknown 

constants and is 

w(x) = Wax" + wax" + W4X + Wo + wee + wee 

6(2c, + C3) . 2 1 3 AX —AX 
(x) = 3W3X + 2WoX + [W, + nr Ww] + WwsAse + WeAge (3.41) 

B(C3 + 2Cg) AX W(x) = 3w3Xx" + 2wox + [W, + C7 W3] + wsBse% + w,Bge 

Notice that the e** and e-** terms in this solution can be combined to form hyperbolic sine and 

hyperbolic cosine terms using the following identities: 

AX ~AX 
e e 

sinh(Ax) = 

(3.42) 
e’® —AX 

2 

cosh(Jx) = = e 

Thus, the solution as shown in Equation 3.41 can be rewritten as 

W(X) = Wax + wox? + WX + Wo + Ws sinh(Ax) + We cosh(/x) 

6(2c, + C3) 

Cg 
6(C3 + 2Cg) 

C7 

$(x) = 3w x2 + 2Wox + [w, + W3] + WsAg cosh(2x) + WeAg sinh(2x) 3 2 1 56 66 

W(x) = 3w3x? + 2wox + [wy + W3] + WsBg cosh(4x) + WeBg sinh(Ax) 

(3.43) 

where Ws and we now represent different unknown quantities than they did in Equation 3.41. 
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Application of Boundary Conditions 

All that remains is to find these six unknown constants by applying the boundary condi- 

tions. As previously discussed, a cantilever beam with its root at x=0 and its free end tip- 

loaded at x=L/2 is being considered. The load on the free end, previously denoted by P’, is 

P/2. Thus, the boundary conditions for this beam are 

atx = 0: atx = +: 

w= 0 20,( Se) + x( Gr) + my = 0 

dd dy (3.44) 

¢=0 ca( Ge) + 20e( SE) M, = 0 

y =0 (67 +6) S#) — yy — coh = + 

When the solution shown in Equation 3.43 is substituted into these boundary conditions, 

the result is a system of six equations and six unknowns. By examining the first and last 

boundary conditions independently, these can be reduced to a system of four equations and 

four unknowns. First, examine the fast of the boundary conditions, or 

L dw P 
atx = > : (C7 + co)( 3 ) — CrP — Cof = 2° (3.45) 

After substitution of Equation 3.43, this becomes 

[A(c7 + Cg) — Agcg — Becr]( ws cosh = + We sinh a ) — 12(c, + C3 + Cg)w3 = P 7 

(3.46) 

When the expressions for Ag and Bs as given in Equation 3.29 are substituted into Equation 

3.46, it reduces to 
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- 12(c, + Cy + Cg) W3 = + 

The constant w; is therefore given by 

—P Ww, = 
3 24(c, + Cy + Cg) 

By examining the first boundary condition, or 

atx =0: we=0. 

and substituting the expression for w(x) from Equation 3.43, the identity 

Wo = — We 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

becomes apparent. These results can be used in the remaining four boundary conditions to 

reduce the number of unknowns to four. Once the appropriate substitutions are made, those 

boundary conditions result in these four equations: 

7 A P(2c, + 3) 
1 + Wg = 4c9(c, + C3 + Cg) 

P(C3 + 2C¢) 
WwW, + WsBg = ( 3 8 

4c7(c, + Cy + Cg) 

2wo(2cy + Ca) + A(Ws sinh 4 + We cosh-4= )(2cyAg + CgBg) = — 

2W2(C3 + 2Cg) + A(Ws sinh a + We, cosh “h )(CaAg + 2CgBg) = — 

PL(2c, + C3) 

8(c, + C3 + Cg) 

PL(c3 + 2c¢) 
¥ " 8(c, + C3 + Cg) 

(3.51) 

These four equations can then be solved simultaneously to find the solutions to Ww, We, Ws and 

Ws. At this point, two more expressions are introduced to simplify the solution. They are 

R, = 2c, + Cy 

R2 = Cz + Cg 
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Using these expressions, once the four equations in Equation 3.51 are solved, the constants 

Wo, W1, We, W3, Ws and We Can be written as 

  

—p 
W3 = FQ(R, + Rp) 

T T 

— PL _ Mg + My) 
2" 8(R, + Ro) a(R, + Ro) 

2 2 
P Ry Ro 

w= 2\ to * © 2(R, + Ro) 9 7 

  

  

(3.53) 
wy —P(c,R, — CgRo) 

5 = 
WcrCgd(Cr + CgM(Ry + Ro)* 

T T 
(MR, — M3Ro}(c7Ry — coRy) 

We = ~ Ws ~ AL 2 
C7Cg sinh —~ (Ry + R>) 

Wo = —We 

Thus, the response of a three-layer shear-deformable sandwich beam to a mechanical load 

and through-the-thickness thermal gradient can be written as a third-order polynomial with 

additional hyperbolic sinusoidal terms. 

A comparison of this model to the strength of materials solution for a tip-loaded cantilever 

is enlightening. Examine only the portion of the solution to the mechanical load P/2: in other 

words, let the thermal gradient be zero, or 

T T Ms =M, =0 . (3.54) 

Of particular interest are the cubic and quadratic terms in the model’s expression for w(x) as 

given by Equation 3.41. The strength of materials solution, Wsom(x), for a tip-loaded cantilever 

beam of length L/2 and load P/2 is 

  

_— -P /3 3.2 
Wsom(X) = 126] (x 7 ux’) (3.55) 

In strength of materials model for a sandwich beam, the quantity El that appears in the pre- 

vious equation is replaced by the effective El for a sandwich beam. Using the same material 
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property and geometry nomenclature being used in the three-layer sandwich beam model, the 

effective El for the sandwich beam is 

2 
2t) 2 2h? 

Elere = E,t, “3, + 2ht, + 2h + Eoh 3. . (3.56) 

Thus, the strength of materials solution for the deflection becomes 

—Px? 

th 2 h? 

PLx? 

3 
ty 2 h? 

Now examine the cubic and quadratic terms of the three-layer model developed in this chap- 

Wsom(X) = 

(3.57) 

ter. The cubic and quadratic portion of the solution is 

—Px3 ‘ PLx? 
12(R, + Ro) 8(R, + Ro) 
  Woart(X) = (3.58) 

By substituting the expressions that R, and R, represent in terms of the material properties 

{see Equations 3.8 and 3.52 for details), this partial solution becomes 

—Px? 

ty 2 h? 

PLx? 
3 t 2 

1] e0( 4 + ht, + ) + an()| 

This is identical to the strength of materials solution. Recall from Equation 3.8 that the shear 

Wpart(X) = 

(3.59) 
+ 

moduli G, and G, only appear in the constants c; and cs. Notice that these constants do not 

appear in the cubic or quadratic terms, but do appear in all of the remaining terms, or 
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Wo, Wi, Ws and Ws. Thus, the model developed in this chapter is the same as the strength of 

materials solution with additional terms which account for the shear deformations of the indi- 

vidual layers. Thus defining 

Wshear(X) = W4X + Wo + Ws sinh 4x + wecoshdx , (3.60) 

the three-layer sandwich beam model can be written as 

Wmodel(X) = Wsom(X) + Wshear(X) - (3.61) 

Although the application of the correspondence principle of viscoelasticity was included 

in Chapter 2 as one of the steps in the development of the model, and should therefore be 

addressed here in Chapter 3, it is not be addressed until Chapter 4. In Chapter 4, values 

representative of actual candidate materials properties and geometries are used in the 

three-layer beam model. It is shown later that some terms in the solution (as given by 

Equations 3.43 and 3.53) are small enough in comparison to the other terms in the solution that 

they can be excluded. This makes the application of the correspondence principle more 

straightforward, which is a stated goal of this work. 

The development of the three-layer model is now complete. The next chapter focuses 

on numerical results based on the model. 
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Chapter 4 - The Three-Layer Sandwich Beam 

Model: Numerical Results 

Before using the three-layer beam model with the correspondence principle to obtain a 

time-dependent beam model, the elastic beam model can be used to determine the sensitivity 

of the beam response to the different material properties. These sensitivity studies are used 

to determine how the reduction of the elastic moduli (both extensional and shear) of the face 

sheet and core influence increases in beam deflection. These results can be used then to 

estimate how sensitive the time-dependent behavior of the beam is to the time-dependent 

behavior of the constituents. Reducing the elastic moduli in the static elastic model should 

give a reasonable estimate of the magnitude of the effect of the time-dependent moduli re- 

duction in the viscoelastic model. Substituting reduced material properties into the elastic 

model and claiming the result represents the viscoelastic response is wrong; however, the 

sensitivity of the response of the beam to various material properties is expected to be similar 

for the viscoelastic case and the elastic case. Material properties and geometries represen- 

tative of candidate materials will be substituted into the model and the elastic sensitivity 

studies performed. First, an introduction to the candidate materials is in order. 
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Materials and Material Properties 

Two different material systems are used for the representative material properties. First, 

a composite material system is considered. This consists of fiber-reinforced quasi-isotropic 

face sheets and composite honeycomb material for the core. Specifically, the face sheets are 

Astroquartz-155 (a fiber-reinforced polymer composite made by Hexcel) unidirectional laminae 

-in a quasi-isotropic stacking sequence and the core is a glass-imide honeycomb produced by 

Hexcel, specifically HRH 327. The second system under consideration is an aluminum beam 

with the same thicknesses as the composite. The face sheets are aluminum and the core is 

an aluminum honeycomb. The purpose of using an aluminum beam is to give “baseline” 

values for comparison; aluminum is a fairly common engineering material and thus the nu- 

merical results may have greater intuitive meaning. The thickness of the aluminum face 

sheets and the honeycomb core are restricted to be the same thicknesses as the composite 

face sheets and the honeycomb core respectively. The material properties for both systems 

are presented in Table 1. The material properties of aluminum are widely available in 

standard engineering references. The extensional moduli of the aluminum and composite 

honeycomb cores is estimated based on the behavior of unreinforced honeycomb. The shear 

modulus of the aluminum honeycomb core is taken from published values, as is the shear 

modulus of the composite honeycomb.[3] The determination of the coefficient of thermal ex- 

pansion of the aluminum honeycomb core is shown in Appendix A. The extensional modulus 

of the composite face sheet material is an average of experimentally determined and pub- 

lished values; the shear modulus is estimated by using the formula for calculating shear 

modulus of an isotropic material using 0.3 as Poisson’s ratio. The coefficient of thermal ex- 

pansion of the quasi-isotropic quartz-epoxy face sheets is determined experimentally and the 

coefficient of thermal expansion of the composite honeycomb is an estimate. The thickness 

t, of both models is the thickness of the composite face sheet, and the thickness h for both 

models is the half-thickness of the glass-imide honeycomb plus one layer of film adhesive. 
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(This allows direct comparison of the three-layer beam model to the five-layer beam model, 

which is to be developed in Chapter 5 and studied in Chapter 6.) 

  

Table 1. Nominal Material Properties and Geometries for Three-Layer Model 

  

Aluminum Beam 
  

Face Sheets Honeycomb Core 

  

    

E, = 10€6 psi E, = 1E3 psi 

G, = 3.85E6 psi G, = 68E3 psi 

t = 0.04 in h = 0.255 in 
a = 136-6 a = 196-6 = 
  

Composite Beam 
  

Face Sheets Honeycomb Core 

  

        

E, = 2.5E6 psi E, = 1E3 psi 

G, = 0.96E6 psi G, = 29E3 psi 

t = 0.04 in h = 0.255 in 
a = 5E-6 a = 156-6 
  

  

Sensitivity Studies 

  
In order to more completely understand which material properties have the greatest ef- 

fect on the response of the three-layer beam model, the response to the mechanical load and 

the response to the thermal gradient are studied individually. The responses of both the alu- 

minum material system and the composite material system beams are studied for both cases. 
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To study the sensitivity, a particular material property is decreased by a factor of ten relative 

to its nominal value. Thus, to study the sensitivity of the aluminum beam to the shear modulus 

of its face sheet, the value 3.85E5 (psi) is used for G, rather than the nominal value 3.85E6 (psi) 

as given in Table 1. Also, the sensitivity to reduced layer thicknesses is studied. Like the 

material property, the thickness of a given material is reduced by a factor of ten to determine 

the sensitivity of the response to that thickness. 

The sensitivity of the response of the beam model to a particular material property being 

changed is normalized with respect to the response of a beam with the nominal material 

properties as givenin Table 1. Specifically, tip-deflection is used to study the response of the 

beam. Thus, the sensitivity is 

Sensitivity = (4.1) 

For example, a number “two” reported for the sensitivity of the beam to a reduction in a given 

material property would signify that the tip deflection of a beam with the reduced material 

property is twice that of the tip deflection of a beam with the nominal material properties. 

Mechanical Load 

The response of the three-layer beam model to a mechanical load only can be extracted 

from Equations 3.43 and 3.53, and is 

W(X) = Wax” + Wax? + WyX + Wo + Ws sinh Ax + we cosh Ax , (4.2) 

where 
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—P 

  

W3 = F2(R,; + Rp) 
PL 

Ww = = 
2" 8(R, + Ro) 

2 2 

w= mar Ri =) ,= 

7 ~P(c,R, — CgRz)* 
5 = 

2C7CgA(C7 + Cg)(Ry + R,)* 

We = — Ws 

Wo = Ws 

The constants R, and c; are defined in Equation 3.52 and 3.8 respectively. To find the tip de- 

flection, x = > can be substituted into Equation 4.2. The tip deflection is 

2 2 

~ywit\. ——Pe PL Ri Re 
Wup = w( 2 ) ~ 48(R, + Ro) + 4(R, + Ry)? ( Cg t C7 ) 

P(c7R, _ CgRo)* (1 =) 

- —e 
2C7CoA(C7 + Cg)(Ry + R,)° 

  

(4.4) 
  

The numerical results of the sensitivity studies for the mechanical load are reported in 

Table 2 and Table 3 for the aluminum beam and the composite beam respectively. The left 

column of each two-column table indicates which material property or thickness value is re- 

duced by a factor of ten. The right column is the value of Equation 4.1 for that particular case. 

The greatest sensitivity to a single reduction is, for both cases, when h, the half-thickness 

of the core, is reduced. This could be expected because of the nature of a sandwich beam; 

when the face sheets are close to each other, the sandwich beam is not as stiff as it would 

be were the face sheets further apart. Thus, there is a great sensitivity to the thickness h. 

The next two greatest sensitivities to individual reductions for both cases are to the 

thickness of the face sheets, t, and the modulus of elasticity, E,, of the face sheets. This also 

is expected due to the nature of a sandwich beam; the face sheets provide the greatest re- 

sistance to bending. Reduce the stiffness or thickness of the face sheets and consequently 

the resistance to bending is reduced. 
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Table 2. Sensitivity of Three-Layer Aluminum Beam - Mechanical Load 

  

  

Reduced Variable Sensitivity 

NONE 1.000 

E; 8.033 

G; 4.003 

ty. 9.213 

E2 1.000 

G2 2.892 

h 27.614 

ALL 7848.78         
  

The response of the beam is also sensitive to a reduction in the shear modulus of the 

core, Gz. Like the web of an |-beam, the core of a sandwich beam should provide the primary 

resistance to shear loads. Thus, a reduction in the shear modulus would be expected to cause 

a substantial increase in deflection. 

The response of the three-layer beam model seems virtually unaffected by reductions of 

the shear modulus of the face sheets, G,, and the modulus of elasticity of the core, E,. Thus, 

when the viscoelastic response of the beam is developed, the emphasis is on the response 

of the beam to the time-dependency of E, and Gy. 

Thermal Gradient 

The response of the three-layer beam model to the thermal gradient in the absence of 

an applied mechanica! load, i.e. P=0, can be extracted from Equations 3.43 and 3.53 and is 
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Table 3. Sensitivity of Three-Layer Composite Beam - Mechanical Load 

  

  

        
  

Reduced Variable Sensitivity 

NONE 1.000 

E, 8.680 

G, 1.002 

t 9.946 

E2 1.001 

Gz 2.232 

h 30.027 

ALL 8609.04 

w(x) = Wax? + Wo + We cosh /x , (4.5) 

where 

T T 
(Mz + M,) 

W2 = ~ “QR, + Rp) 
T T (M,R; — MgR2)(c7Ry — cgRe) (4.8) 

We = -   

C7Cg sinh (Ry + Ro) 

Wo = — We 

The effective thermal moments Mj and MJ are defined in Equation 3.8. The tip deflection is 

found by substituting > for x in Equation 4.5, and is 

AL 
1 — cosh 9   

. 
(My + My)L? (MyR, — MyRo)(c7R, — ¢gRp) ( 

= wk) ea 
Wip = Wa) = B(R, + Rp) 

C7Cg sinh 4 (R + R,)* 

(4.7) 
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Although Equation 4.7 is an explicit expression for the tip deflection, substituting the values 

of the material properties, thicknesses and length into it may now present a problem. For both 

the aluminum and the composite beams, the value of the expression ‘= is large enough that 

AL AL may exceed the ability of some computer systems. How- the value of cosh a and sinh 9 

ever, when the hyperbolic cosine and sine functions have large enough arguments, they can 

be replaced by the approximately equivalent exponential function, or 

  

  

aX 
coshxX~ sinhx~ i (4.8) 

Thus, the tip deflection as given in Equation 4.7 can be rewritten as 

T T,, 2 T T (My + My)L (M,Ri — MgRo)(c7Ry — CgRy) / 9 
Win = —————__—— —1]. (49) 

Np 8(Ry + Ro) 2 AL 1 2 C7Cg(R, + Ro) eo 

However, because er is very large for both cases, the approximation 

1 nwo (4.10) a ; 

e 2 

can be applied to further simplify the expression for the tip deflection. Therefore, a simpler 

expression for the tip deflection is 

T T\,2 T T (My + M,)L (M,Ri — MjRo)(c7Ry — cgRo) 

B(Ry + Ro) C7C(Ry + Ry)” 
  

Wtip = (4.11) 

The second term on the right hand side of Equation 4.11 is shown in Appendix B to be nu- 

merically much smaller than the first term, and so, to keep the expression for the tip deflection 

as simple as possible, the approximation 

(Mj + My)L? 
aR, + Rp (4.12) Wp = 
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is used to calculate the tip deflection for the thermal sensitivity study. When this approxi- 

mation is used, the shear moduli G; and G2 are no longer included in the expression for tip 

deflection. Therefore, the response of the beam should be insensitive to reductions in these 

material properties, as indeed it is. The numerical results of the sensitivity studies for the 

thermal gradients for the aluminum beam and the composite beam are reported in Table 4 

and Table 5, respectively. Once again, the left column of these tables indicates which mate- 

rial property of thickness variable is reduced by an order of magnitude; the right column 

shows the value of Equation 4.1 for the case under consideration. 

For both material systems, the response of the beam is almost totally insensitive to re- 

ductions of all the material properties with the single exception of the coefficient of thermal 

expansion of the face sheets, a; When a, is reduced by a factor of ten, the deflection of the 

beam (for both material systems) is also reduced by approximately a factor of ten. Thus, the 

coefficient of thermal expansion of the face sheets controls the response of the three-layer 

sandwich beam to thermal gradients. However, this material property is not expected to be- | 

have viscoelastically. Therefore, as it is relatively insensitive to changes in material proper- 

ties which may be viscoelastic, the response of the beam to thermal gradients will not be 

considered in the discussion of the influence of viscoelastic effects. 

The Time-Dependent Three-Layer Tip-Loaded Cantilever 

Beam Model! 

Because the three-layer beam model is sensitive to reductions in the extensional 

modulus of the face sheets E, and the shear modulus of the core G2, these properties will now 

be allowed to vary with time, and the time-dependent response of the beam studied. Addi- 

tionally, to verify that if the beam response is insensitive elastically to large reductions in a 
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Table 4. Sensitivity of Three-Layer Aluminum Beam - Thermal Gradient 

  

  

Reduced Variable Sensitivity 

NONE 1.0000 

E; 0.9988 

G, 1.0000 

ty 0.9986 

ay 0.1000 

E, 1.0001 

G2 1.0000 

h 1.0001 

ae 1.0000 

ALL 0.1000         

  

particular material property, then the response of the beam to time-dependent behavior of that 

material property is also small, another material property will be allowed to be time- 

dependent. Therefore, the shear modulus of the face sheets, G;, will be allowed to vary with 

time. 

In order to consider the worst possible case, the material properties which are allowed 

to vary with time are assumed to behave as viscoelastic fluids. To maintain simplicity, the 

Maxweil fluid model is used in the analysis. Also, bracketing the actual behavior of the ma- 

terial in question is attempted by using two models, one which exhibits more time-dependent 

behavior than expected, and one which exhibits less. Because a linear theory of 

viscoelasticity is being used, it is possible to consider only one time-dependent material 

property at a time and then combine the viscoelastic effects by superposition. The influence 

of time-dependent material behavior is evaluated by studying the tip deflection. Here the tip 
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Table 5. Sensitivity of Three-Layer Composite Beam - Thermal Gradient 

  

  

Reduced Variable Sensitivity 

NONE _ 1.0000 

E, 0.9940 

G, 1.0000 

ty 0.9930 

ay 0.1004 

E. 1.0006 

G2 1.0000 

h 1.0006 

Oe 0.9999 

ALL 0.1000       
  

  

deflection that exceeds the static elastic tip deflection ts considered a measure of the time- 

dependent response. Specifically, the percent increase in tip deflection is computed: 

Percent Increase in Wrip(t) — Wrp 3 
Tip Deflection = Wap 100 fo (4.13) 

In the previous equation, Wi, is the static elastic response. 
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Influence of Time-Dependent Face Sheet Shear Modulus (G, ) on Beam 

Response 

Recall that the operational life of the precision segmented reflector is expected to be 

approximately 20 years. The two Maxwell fluid models used to bracket the expected behavior 

of the real face sheet material are one that under a constant shear stress allows the shear 

strain to double in 20 years and one that allows the shear strain to increase ten-fold in 20 

years. The constitutive behavior of a Maxwell fluid is governed by Equation 2.12. This equation 

can be rewritten for shear and in its more genera! form (as in Equation 2.14) as 

tT + Pyt = Gy (4.14) 

where p, and q; are material constants given by 

" 
P= and q,; =n . (4.15) 

If the stress is applied at time zero, i.e. t=0, and remains constant, 

s(t) = TH(t) (4.16) 

where 7 is the amplitude of the stress and H(t) is a step function, which is 

Hit) = , SS (4.17) 

The stress time history of Equation 4.16 can be transformed to the Laplace domain and is 

t 
t(s) = s (4.18) 

Also, Equation 4.14 can be transformed to Laplace domain. That transformation leads to 
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(1 + pys)t(s) = qysy(s) , (4.19) 

which is in the form of Equation 2.18. From this it can be deduced that 

P(s) = 1 + p,s 
Qs) = 44s (4.20) 

These expressions are fundamental to the application of the correspondence principle. From 

Equation 4.19, y(s) can be found as 

1+ 
y(s) = xs) (4.21) 

After substituting the Laplace transform of the applied stress, Equation 4.18, into Equation 4.21, 

the time-dependent strain can be found by performing the inverse Lapiace transform; namely 

y(t) = “(at + x) . (4.22) 

From this expression for the material response, it is clear that the elastic shear modulus is 

  

, while q, is associated with the time-dependent behavior. That is 

an P4 t 
=t7- = ' 4.23 

(0) ° q4 G, ( ) 

so 

Ps 1 

To differentiate between the two Maxwell fluid models, a prime is now introduced for the 

model whose strain increases ten-fold in twenty years. However, both models have the same 

initial elastic response. This fact can be written as 
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y(0) = y'(0) , (4.25) 

Or, 

sr re (4.26) 

The first model, which exhibits less time-dependent behavior, allows the strain to double in 

  

20 years, or 

4 20 t 20) = t{ ——- << } = 2y(0) = 2 4.27 y(20) (i+ 2) y(0) G, (4.27) 

As a result, 

q, = 20G, and p, = 20 . (4.28) 

For the other model, which allows the strain to increase ten-fold in twenty years, 

  

1 20 t 20) = 2( + 2) = 10,10) = 10 , 4.29 y(20) & a y(0) G, (4.29) 

From this 

ay = 2a, and py, = 2 . (4.30) 

Once the constants for the models have been found (Equations 4.28 and 4.30), the shear 

  

modulus G, can be replaced by in the expression for the tip deflection, Equation 4.4. 
P(s) 

However, before that is done, the tip deflection can be further simplified by noting that one 

portion of the expression is always smaller than the others by several orders of magnitude, 

specifically, 
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P(c7R, — CgRo)* aA 
ers = Sala) r (1-22) << Wp (4.31) 

2C7CgA(C7 + Cg)(Ry + Ro) 

The numerical proof for this is presented in Appendix B. Thus, a simplified expression for the 

elastic tip deflection, 

3 2 2 
PL PL R; R3 

Win, = oOo OO Ht dt ee - t > 4.32 
tip 48(R, + Ro) 4(R, +R,)° ( “9 °7 

is used to find the time-dependent behavior of the beam. The expression for the tip deflection 

in Equation 4.32 is rewritten, using Equation 3.8, to reveal the dependence on G:. That re- 

written expression is 

  

3 Ro Ro PL PL 1 2 

tip 48(R, + Ro) 4(R, + R,)° ( Cg 2G,t, ( ) 

Assuming P is a step function of the form shown in Equation 4.17, the Laplace transform of the 

time-dependent behavior of the tip deflection is given by 

— Po L? L Ry R3 Wtip(S) = —Z 48(R, + Ry) + aR 4 Rap ( c+ Gis) ; (4.34) 

1 P(s) 

  

  

where P, is the magnitude of the load. By substituting the expressions for P(s) and Q(s) 

shown in Equation 4.20, the following expression is found: 

_ Py L3 L Ri Re 1 a . _ — — (| —— + — . (4.3 WuplS) = —s aga TAR, +R | Bt (a3 * a} “ 

This can be rearranged to yield 
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2 2 
— P, L3 L R; Ro 
Wtip(S) = $s 48(R, + Rp) + a(R, + Ra)? Ca + C7 

Po RZL 
2 

s* | (Ry + Ro) ait, | 

The inverse Laplace transform is used to convert the previous expression, which is in Laplace 

(4.36) 

domain, to a function in time domain: 

PLR? ' 
Wtip(t) = Wp + aR, Rye a (4.37) 

where the first term to the right of the equal sign is the static elastic tip deflection as given 

by Equation 4.32. Notice that there is a linear dependence of the tip deflection on time. 

For the case of less time-dependent behavior, q; is given in Equation 4.28. Using this, the 

time history of the tip deflection is. 

2 PL LR> a (4.38) 
BO(R, + Rp)°G, 

Wtip(t) = Wp + 

For the case of more time-dependent behavior as given in Equation 4.30, the time history is 

2 9P,LR3 
Wip(t) = Wrip + ———2—=— 

"P NP" B0(R, + Rp)°G, 
(4.39) 

After 20 years, for the case of less and more time-dependent behavior respectively, the tip 

deflection is 

2 

Wrip( )= tip A(R + Ry)? C7 (4. ) 

{ 2 

and 
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9PoL R? 
Wtip(20) = Wtip + aa (=) ; (4.41) 

4(R, + Ro) ? 

The percent increases of the tip deflection for the two cases of viscoelastic behavior are il- 

lustrated in Figure 8 as a function of time. The linear dependence of time is evident in this 

figure. After 20 years, due to the time-dependent behavior of the shear modulus of the face 

sheet, the tip deflection is predicted to increase by approximately 0.02% for the low level of 

time-dependent behavior and 0.16% for the higher level. These are smail increases in tip 

deflection considering the long period of time. As will be shown later, these increases are 

small in comparison to the increases caused by other time-dependent material properties. 

Influence of Time-Dependent Core Shear Modulus (G, ) on Beam 

Response 

Like the shear modulus of the face sheets, the time-dependent behavior of the core in 

shear will be bracketed by a two-fold and ten-fold increase in strain for a 20 year period. 

Maxwell fluid models are again used to represent these cases. Thus, the polynomials 

P(s) and Q(s) are the same as before, as shown in Equation 4.20. Like before, the time- 

dependent shear strain of the core material is 

ps t t) = “(4 +) . 4.41 VQ) = tg + | (4.41) 

Again, the elastic shear modulus G, can be found by examining Equation 4.41 at time zero, 

or 

10) = #4 = (4.42) 
A 

Tt 

Gy 
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Figure 8. Percent Increase in Tip Deflection of Three-Layer Beam Model for G, (t) 

The elastic shear modulus is 

Bat. (4.43) 

As before, a prime is used to indicate the Maxwell fluid model whose strain increases ten-fold 

in 20 years. For the other model, the strain in 20 years is 
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(20) = ( + 20 = 20) = 25 (4.44)   

so 

q, = 20G, and p, = 20 . (4.45) 

For the Maxwell model which exhibits more time-dependent behavior, the shear strain in 20 

  

years is 

1 20 t (20 = (+ 2) = so, = 10 ; 4.46 7(20) a + a, (0) = 10 (4.48) 

sO 

, 20 , 20 
W= > Gy and p’, = 9 (4.47) 

Now, the tip deflection as shown in Equation 4.32 can be rewritten using the definition of c, in 

Equation 3.8 to reveal the dependence on G;: 

  

pL? PL Ri Rp Wye = —— Peg +]. 4.48 
tip 48(R, + Ro) A(R, + R,) 2Gyh C7 ( ) 

Again, P is a step function with a magnitude of P,. In Equation 4.48, G, is replaced by the ratio 

  

    

of the polynomials See 

_ P, 3 L Ri R35 Wrip(S) S 48(R, + R>) A(R, + Ra)? \ 5 B09), C7 (4.49) 

P(s) 

Using the Maxwell fluid model form of Q(s) and P(s) given in Equation 4.20 and rearranging, 

the following expression is obtained: 
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| 3 R? R? | — fe) L L 1 2 
tip(S) s 48(R, + Ro) 4(R, 4 Ro) ( Cg C7 

Py |: RIL 
+7) ToT tee s* | 8(R,+R,)°qyh 

Performing the inverse Laplace transform of this expression yields the time-dependent tip 

(4.50) 

deflection: 

PLR? ' 
Wip(t) = Wtip + — 2 G4 . (4.51) 

4(R, + Ro) 1 

As before, the tip deflection is a linear function of time. Using the value of q, given in 

Equations 4.45 and 4.47, the tip deflection is, for the cases of less and more time-dependent 

behavior, respectively, 

_ PLR? 
Wrip(t) = Wup + a (4.52) 

80(R, + Ro)" Go 

and 

9P LR? 
Wp(t) = Wp + a (4.53) 

80(R, + Ro)" G, 

The tip deflections in 20 years are, respectively, 

2 

Wiip(20) = Wtip + Fob __ 5 (=) . (4.54) 
4(R, + Ro) 9 

and 

2 

Wtip(20) = Wtip + Fob 5 ( =| . (4.55) 
4(R, + Ro) 9 
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Figure 9. Percent Increase in Tip Deflection of Three-Layer Beam Model for Ga (t) 
T 

The percent increase of the tip deflection for these two cases of viscoelastic behavior is 

illustrated in Figure 9. In 20 years, the tip deflection increases approximately 14% for the 

case of less time-dependence and 127% for the case of more. Comparison of Figure 9 to 

Figure 8 reaffirms the sensitivity study of Table 3 on page 51. The static elastic response of 

the beam is much more sensitive to a reduction of the shear modulus of the core than to a 

reduction of the shear modulus of the face sheets; the viscoelastic response of the beam is 
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also much more sensitive to the time-dependent shear response of the core than the time- 

dependent shear response of the face sheets. In fact, the tip deflection of the beam more than 

doubles in twenty years when the shear response of the core is viscoelastic and corresponds 

to the higher of the two levels studied. This could lead to a serious problem in spacecraft, 

and should be considered in material selection. 

Influence of Time-Dependent Face Sheet Modulus of Elasticity (E, ) on 

Beam Response 

Elastically, the response of the beam is also quite sensitive to a reduction in the exten- 

sional modulus of the face sheets E,. Therefore, the time-dependent response of the beam to 

viscoelastic extensional behavior of the face sheets is expected to be important and is there- 

fore studied. Unlike the shear behavior previously considered, this behavior is fiber- 

dominated. Therefore, it might be more realistic to bracket the expected behavior of the real 

material with a one percent and ten percent increase in strain, rather than the two- and ten- 

fold increases used for the shear behavior. A Maxwell fluid is again used to represent the 

behavior. The general form for the time-dependent behavior of a Maxwell fluid model was 

shown, for shear, in Equation 4.22. This form is repeated here for convenience using normal 

stress and normal strain: 

A P4 t 
c(t) = é( qy + q; ) , (4.56) 

Therefore, for the same initial elastic response, 

A P4 A p’, 
e(0) = 3( P ) = ( a", ' (4.57) 

it is apparent that the elastic extensional modulus is given by o. or 

Chapter 4 - The Three-Layer Sandwich Beam Model: Numerical Results 66



saat (4.58) 

For the model which exhibits less viscoelastic behavior, the strain increases in 20 years by 

one percent, or 

(20) = 1.012(0) = ob + 2) (4.59) 
4 

from which p, and q; are found: 

Pp, = 2000 and q, = 2000E, . (4.60) 

The other model, which has a greater increase in strain, has a strain increase of ten percent 

in 20 years: 

e(20) = 1.10¢(0) = o( + 2) . (4.64) 

which leads to 

p’, = 200 and q’, = 2008, (4.62) 

Q(s) 
  As before, the next step in obtaining the time-dependent tip deflection is to substitute P(s) 

for E, into the transformed form of Equation 4.29. However, this poses a problem for the ex- 

tensional modulus which was not present for the shear moduli: the resulting expression is 

much more complicated and therefore it may be more difficult to perform the inverse Laplace 

transform in closed form. First, the tip deflection must be written to show the dependence on 

E;: 
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(4) 
[ Extach? +ht, + + 1?) + Eph( + ny | 

[ Exty(an? + ht,) + em Zn] E ne 2a] 

) 

  
Wtip = 

(4.63) 

  
Cg + 

  

PL +(4 
2 

[ Exty(n? + ht, +t) + an] 

As before, the Laplace transform of the tip deflection can be performed and E, replaced by 

Q(s) 

P(s) 

Pot? 
96 

Wa. = 
tip 

Es CS) (h? + ht, + +t) + enn) | 

  

  

  

P(s) 

Q(s) 2h? + ht,) + Eh Qs) ht a * (484 Bis) ht! + hty) + Egh( = h*) Bis (hh + 1) 
  

Cg + C7 
    
Pol 

+ ( 16 2 
Q(s) 2 1.2 1 2 

| P(s) t,(ho + ht, + 3 t;) + E,h( 3 h*) 

When E, is modelled as a Maxwell fluid, this is 

P.L? 
_ 96 

Wp = 

° 4S \. 
1+ p,s 

q,s ; q:s ; (4.65) { 4 . 

(Leese (= )F] 

Cg + C7 

q,s ; 1 (site )a+e 
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where 

> ll y(n? + ht, + 2H) 

B = Egh( nh’) 

C = t,(2h? + ht,) 
D = gah 2h?) (4.66) 

F = t,(ht, +2} 

G= Aq, + Bp, 

H = Cq, + Dp, 

Performing the inverse Laplace transform yields the time-dependent tip deflection, which is 

Pol? / Aq, Bt 
Wtip(t) = Wtip + 9 | BG (1 —ecG ) 

Pou | 4 fi. pH? \ 4 [ B°FPa} =Bt 
+] ell Aa) - (at yt ee) a 

Pol | 4 BH \? 4. [_B°F*as Bt 
+ 46BG  £(0- G ) + tr \ le 

For the two levels of time-dependence given by Equations 4.60 and 4.62, the percent increases 

    

  

in tip deflection are shown in Figure 10 as a function of time. Despite the exponential form 

of Equation 4.67, the function is approximately linear in shape. 

Although for a simple Maxwell fluid model it is possible to perform the inverse Laplace 

transform, the time-dependent tip deflection may be prohibitively difficult to find for more 

complicated functions. Thus, an approximate tip deflection will be used to find an approximate 

time-dependent tip deflection, and this will be compared to the exact time-dependent tip de- 

flection just developed. The expression for the tip deflection given in Equation 4.63 can be 

rearranged as 
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Figure 10. Percent Increase in Tip Deflection of Three-Layer Beam Model for E, (t) 
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pi? 
96E, 

2 Ay, Fey 1,2 Ec +hty +t) + E, nen | 

  

Wtip = 

  

  

    

2 
E 4.68 2 fo 212 2 (4.68) —£ ht & 2 2 2 ca +ht,) + E, h( 3 h } t2(ht, ++) 

Cc + Cc 9 7 

(4) + _— 

' E 1,2 ° 2 1,2 F271 
cc + ht, + 3 ty) + E, h( 3 h | 

This expression can be approximated by noting that E, is much smaller than E,, or 

E, — <<1. (4.69) E, 

Thus, an approximation can be used for the ratio Ez. 
1 

Ee 0 4.70 

Using this approximation, Equation 4.68 simplifies to 

3 2 2 (ht +24) 
_ PL + PL (2h° + ht,) , 3 

“up = 2 1 2 5 192 Cg C; 

(4.71) 

This expression is shown in Appendix B to be approximately equal to the expression for the 

Q(s) 
P(s) 

  

tip deflection in Equation 4.32. In Equation 4.71, E, is replaced by and the load P, a step 

, P, 
function, is replaced by its Laplace transform >= 
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dts PoL 

maple. QS) 2 1 42 965 Big a(n + ht + 3h) 

0 9? (4.72) 
PoL (2h? + nt)? (At, #3) 

+ + ; 
2 1,2," Cg °7 

16s(h° + ht, + 3h) 

Next, Q(s) and P(s) are replaced by the polynomials specific to a Maxwell fluid as shown in 

Equation 4.20: 

  

Wtip(S) = =e L 1 
s° | 96q,t,(h? + ht, +a th) 

2,2," 
Po pyL° . L (2h? + heyy (hs Fog ty) 

* L 96q,t,(h? + ht, + +1? 2 1 ,2,° Cg C7 
Qty (A + At +>) 416(h + hty +3 th) 

(4.73) 

      

The inverse Laplace transform of Equation 4.73 is the time history of the tip deflection, or 

Pp i3 t 

—— (4+). (4.74 96t,(h? + hty + 3th) 
  Wip(t) = Wtip + 

where Wz, is the approximate elastic tip deflection of Equation 4.71. Thus, by using an ap- 

proximation for the tip deflection which is based on the relatively small size of the extensional 

modulus of the core, a linear dependence on time is obtained for a Maxwell fluid represen- 

tation of the viscoelastic extensional behavior of the face sheets. Thus, for the model whose 

strain increases one percent in 20 years, the tip deflection of the beam in 20 years can be 

found by using Equations 4.60 and 4.74: 

P.L? 
  Wrip(20) = Wtip + (4.75) 

9600E,t,(h? + hty + th) 
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For the model with a ten percent increase in strain in 20 years, the tip deflection in 20 years 

is 

P.L° 
  Wtip(20) = Wtip + (4.76) 

960E,t,(h? + ht, + + th) 

The percent increases in tip deflection as a function of time for the two bracketing time- 

dependent behaviors are shown in Figure 11. Also, the percent increases in tip deflection for 

the two exact cases are shown in this figure for comparison. The approximation is close to 

the exact solution for both cases. Both the approximate and exact time-dependent responses 

of the beam caused by the viscoelastic extensional behavior of the face sheet material are 

much less than the response caused by the viscoelastic behavior of the core in shear. This 

is not entirely unexpected because the bracketing conditions for the extensional! behavior al- 

low much less time-dependent response than the bracketing conditions for the shear behavior 

(e.g., a ten percent increase in strain as compared to a ten-fold increase). However, the tip 

deflection has a time-dependent increase of nearly one percent and ten percent in twenty 

years for both the approximate and exact cases, nearly the same amount of strain increase 

in the face sheets themselves. Thus, there is an almost one-to-one relationship between the 

time-dependent tip deflection and the time-dependent strain of the face sheets. As seen in 

Table 2 and Table 3, the elastic sensitivity of the tip deflection is much greater for reductions 

of E; than for the same reductions of G,. Therefore, the elastic sensitivity studies provide good 

indications of how sensitive the beam is to viscoelastic behavior of its constituents. Actually, 

the elastic sensitivity studies are similar in nature to the so-called quasi-elastic approach to 

studying viscoelastic effects. 
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Figure 11. Percent Increase in Tip Deflection of Three-Layer Beam Model for E, (t) - Approximate 

Quasi-Elastic Approach 

A quasi-elastic approach can be used to estimate the viscoelastic response of a structure 

to the time-dependent behavior of its constituent materia! properties. With the quasi-elastic 
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approach, the compliance of a particular constituent is replaced by the compliance of the 

constituent evaluated at the time of interest, and an elastic analysis is performed. In partic- 

ular, for the problem being considered here, the tip deflection of the tip-loaded cantilever 

beam in 20 years is found by increasing a specific compliance by a given factor. For example, 

for the case where the shear modulus of the face sheets, Gi, is time-dependent, the compli- 

ance (4) is replaced by > . This has exactly the same effect as replacing G, by = as 

was done in the elastic sensitivity studies. To allow for direct comparison between the 

quasi-elastic and viscoelastic results, the compliances which correspond to the shear moduli 

(G, and G2) are increased by a factor of ten and the compliance which corresponds to the 

modulus of elasticity of the face sheets (E,) is increased by a factor of 1.1. Thus, the results 

of using the quasi-elastic approach which appear in Table 6 can be correlated with the results 

of the last three figures. In Table 6, the first column indicates the material property that is 

assumed to have a compliance increase and the second column presents the factor by which 

it is increased. The third column is the percent increase in tip deflection at twenty-years as 

computed by the quasi-elastic approach and normalized with respect to the elastic tip de- 

flection, or 

quasi-elastic 
tip ~ Wtip 

Wtp 

  x100% (4.77) 

The increase in tip deflection at 20 years as computed by the viscoelastic approach and nor- 

malized with respect to the elastic tip deflection, or 

viscoelastic 

Wtip (20) — Wtip 

Wtip 

  x100% , (4.78) 

is presented in the fourth column for comparison. The results from the quasi-elastic approach 

are nearly identical to the results from the viscoelastic approach for the three cases shown. 

There is only a minor difference in the two values for the case of the compliance corre- 
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sponding to G2, the shear modulus of the core. In this case, the quasi-elastic value is slightly 

less than the viscoelastic one. 

  

Table 6. Quasi-Elastic Tip Deflection of the Three-Layer Composite Tip-Loaded Cantilever Beam 

  

  

            

  

Material Quasi-Elastic Viscoelastic 
Property Factor Result Result 

Ey 1.1 8.6% 8.6 % 

G, 10.0 0.2 % 0.2% 

G2 10.0 123.2 % 126.8 % 

Summary 

This completes the numerical results based on the three-layer beam model. The results 

provide a glimpse of the effects of time-dependent behavior of various constituents on the 

overall response of the beam to both mechanical loads and a temperature gradient. The re- 

sults are based on what might be considered simple representations of time-dependent ma- 

terial behavior. Nonetheless, the results are quite valuable. Additionally, if more complicated 

time-dependent material behavior models are to be considered, the equations and steps 

necessary to include these models are available in this chapter. The focus now shifts to the 

five-layer beam model. With this model, the importance of the adhesive layer to the overall 

response of the beam can be evaluated. 
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Chapter 5 - Development of the Five-Layer 

Sandwich Beam Model 

Although the three-layer model is a valuable tool, the five-layer model accounts for sep- 

arate adhesive layers. Because adhesives are generally polymer-based materials, the time- 

dependent behavior of the adhesive layers could be important to the response of the reflector 

segments. Thus, the analysis is not complete without studying the five-layer sandwich beam 

model. However, the importance of the three-layer model as a tool for simplifying the five- 

layer beam model will be revealed in the development of the five-layer model. 

Displacement Field 

Like that of the three-layer model, the displacement field of the five-layer sandwich beam 

model must account for the contribution that each layer makes toward the overall response 

of the beam. As was done in the three-layer model, each layer is assumed to have both ex- 

tensional and shear deformations, and to shear independently of the other layers. The quan- 
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Figure 12. Displacement Field of the Five-Layer Sandwich Beam Mode! 

tity u° again represents the midsurface x-direction displacement. An additional x-direction 

displacement is caused by the rotations of the different layers; the core has a rotational angle 

a(x), the adhesive layers B(x) and the face sheets y(x). The displacement in the z direction is 

constant through the thickness. Because this is a beam model, the displacements are not 

dependent on the position through the width of the beam, y. Thus, the z-direction displace- 

ment is only a function of the position along the length of the beam, x. The y-direction dis- 

placement is not needed for the model; therefore, no assumptions are made about it. The 

displacement field for tne five-layer beam model is 
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u°(x) + ha(x) + toB(x) — (2 +h +ty)y(x) —H<z<s—H+t, 

u°(x) + ha(x) — (2 + h)B(x) —H+t,<z<—-h 

u(x,z) = ¢ u(x) — za(x) —h<z<h 

u°(x) — ha(x) — (z — h)B(x) h<z<H —t, (9.1) 

u°(x) — ha(x) — toB(x) — (Zz —h—te)y(x) = H-t);<z<H 

w(x,z) = w°(x) 

The displacement field in the x direction and the geometry and nomenciature for the five-layer 

model are shown in Figure 12. 

Strain Field 

The strain-displacement relationships given in Equation 2.21 are applied to the displace- 

ment field to yield the strain field, which is 
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du dx ap dy aa as —_ — ~H<e7< — me tM ge th gor t+h+t)o- -H<z<-H +t, 

du da dp 
ax th gx 7 (2 + ax —-H+t,<z<—-h 

du dx 
= — —= —h<z7< Ey dx z dx h<z<h 

du da dp ——— — h —— — (7 — h) — < — a ae ZN h<z<H —t, 

du da dp dy 
dx —h dx — ty dx —(z—h—tp) dx H —t,<z<H 

~y+O _Heze Hit 
dx == 1 

dw 
— B+ —-H+t,<z<—h | 

Yo = -a +e —h<z<h (5.2) 
dw — B+-y h<z<H —t, 

dw 
_ —~ —~t< yt dx H t,<z<H 

where the superscript ”“o” has been dropped from ux) and w°(x). 

Principle of Stationary Potential Energy 

For the five-layer beam model, five degrees of freedom have been assumed: the dis- 

placements u, w, a, 8 and y. Therefore, application of the principle of stationary potential 

energy results in five Euler equations and five sets of boundary conditions. 

First, the total potential energy of the beam must be written as a functional of the dis- 

placement functions. The total potential energy is given by Equation 2.27 and is 

H 

n= + I. [ [eee + G(z)y2, — E(z)a(z)AT(z)e,]dzdx — Prwle_ 4. . (5.3) 
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The thermal gradient considered is the same as for the three-layer case: a linear gradient 

through the thickness of the beam, 

AT=a+z+bz . (5.4) 

If the integral over the thickness of the beam in Equation 5.3 is separated into five integrals, 

one for each layer, within each integral the material properties are no longer functions of z. 

Thus, the total potential energy is 

-H+t, 

Nl = | | [E,e2 + Giy?, _ E,o,(a + bz)e,] dz 

L° ~H 

-h 

+ | [E02 + Goy?, — Enao(a + bz)e,] dz 
HH +t, 

h 

+ | [E,e2 + G3y2, _ E3a,(a + bz)e,] dz 

h (5.5) 
H —ty 

+ | [Ene2 + Goy2, — Enao(a + bz)e,] dz 
n 

H 

+ | [E,e2 + Gi, _ E,a,(a + bz)e,] | dx 

H—t, 

~— P*wl =x" ' 

where the nomenclature for the material properties and geometry are shown in Figure 12. 

A set of constants similar to those used in Chapter 3 to represent combinations of material 

properties and geometry constants is introduced to simplify the development. These con- 

stants are 

Chapter 5 - Development of the Five-Layer Sandwich Beam Model 81



Co = E,t, + Eoto + E,h 

1 c, = W°(E,t, + Ents + 3 Esh) 

Co = ht,(2E,t, + Ents) 

Cz = ht,(Eyty) 
2 1 

Cy = t2(Eyty + > Esta) 

C5 = tyto(Eyty) 
2, 1 

Ce = (Eat) 

C7 = 2G,t, (9.6) 

Co = 2Goty 

Cg = 2G4h 

N. = a(E,a,t, + Ex aot, + E423h) 

My = bh(Eya4t,(h +tp+5h) + Enanta(h +> ty) + Egagh( + h)] 

T 1 1 1 
Mg = bto[E,a,t,(h + to + 9 4) + Enaato( 2 h + 3 '2)] 

4 ‘ ‘ MT = bt [Eranty(ph+a tts) 

By substituting the appropriate expressions for the Strains, as given by Equation 5.2, into 

Equation 5.5 and performing the integrations through the thickness of the layers, the following 

expression for the total potential energy is obtained: 

ll = (C7 + Cg + Cg) , 

(Cou’ + Nu)u’ + (cya” + My)a’ + Coa’B’ + c3a”y’ + (C4B’ + Mg)’ + (Cey’ + M,)y" 

toe ¥ ’ B , a , 2 | 

L* + CsB'y" + Cry(— — W') + CgB( 5 — W’) + Cga( > — W) + ——— 5 —— (w’) 

_ Prw| = x* ? (5.7) 

where the prime indicates a differentiation with respect to x; for example, «’ represents a 

The next step in the application of the principle of stationary potential energy is to find the first 

variation of the total potential energy and equate it to zero. The previous expression for po- 
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tential energy is in the functional form necessary for this operation. The first variation of the 

total potential energy is found by using the following equation: 

on oll oll él 
én = Bur OU + 3g Ot + aah Ot + spe + 3p" op 5 

onl OIL oll all. , 
+ By oy + ay" dy’ + Bw dw + Sw Ow 

When Equation 5.8 is applied to the functional form of the potential energy in Equation 5.7, the 

result is 

él = | {[2cqu’ + Nu]ou’ + [cola —w’)}5a + [2eqa’ + cof” + egy’ + My]5a’ 
L* 

+ [cg(B — w’)JdB + [Coa’ + 2048" + Csy’ + M5156" + [er(y — w’)]dy 

+ [ega’ + cof’ + 2Cgy’ + M} 167’ + [c7(w’ - y) + Ca (w’ _ B) + Co(w’ - a) dw’ \ dx 

— Prowl ye. 

(5.9) 

As in the three-layer model, integration by parts (Equation 3.11) is used to change the this form 

of the first variation of total potential energy to a more useful one. That form is: 
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él] = [ {— [2cgu’"]du — [2c,0" + CoB" + Cay’ + Co(w’ — a) Joa 
L* 

— [ega’’ + 20,8" + Coy” + Cg(w’ — B)J6B 

— [ega!’ + csB"" + 2cgy”’ + c7(w' — y)]y 

— [e7(w” — y’) + cg(w”’ — B’) + Co(w” — «’)Jow} dx 

    

L 
T x= 2 

+ {[2cpu’ +N, Jou iL 0 ul |. 

T x5 
+ 3[2c,a’ + CoB’ + Czy’ +M, Jd iL 1 2B’ + C3y J He (5.10) 

L X= 
+ {[eya’ + 2¢,B’ + coy’ + My]d 2 {[caa’ + 2c4B" + csv +MgI5A}| | 

xa 

+ {Ecgu’ + c5B’ + 2cgy’ + My ]éy} |. 

xa tk 
t ‘ , 2 + (Ler(w! — 7) + cg(w’ — B) + co(w’ — a)}6w}| | 

p 
—- —déw : Pi 

The second set of terms in Equation 5.10 are the boundary conditions. Again they reflect a 

tip-loaded cantilever beam with its fixed end at x =O and its tip at x=L/2. The load on the tip 

is P/2. Because the variations dw, du, da, 6f and dy are independent of one another, each 

of their coefficients must be zero in order for the first variation of the total potential energy to 

be identically zero. Equating to zero the expressions inside the integral over the length of the 

beam leads to the Euler equations for the five-layer beam model. They are 
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Equating to zero the remaining portions of Equation 5.10 lead to the boundary conditions. On 

both ends of the beam, 

[2cgu’ + NyJou = 0 

[2cya’ + CoB’ + cay’ + Mi Joa ll oO 

’ , ’ T 

[cyx’ + cof’ + 2cgy’ + M)]oy = 0 

[(C7 + Cg + Co)W’ — Cry — CgBh — Cox — +. Jw =0, 

where in the last equation it is implied that the load P/2 applies only at x=L/2 and not x=0. 

The boundary conditions in Equation 5.12 are satisfied when, for each of the five expressions 

and on both ends of the beam, either the term in brackets is zero, or the kinematic variable 

is specified. The boundary conditions can be written as, at each end of the beam, 
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either 

2cq +N, =0 or u =u’ 

and either 

d d 
2c, 5% +e + 3 +Ml=0 or a= a" 

and either 

da df dy tT _ ps (5.13) 
C2 ax + 24a + 5a + Mg =0 or p= 8 

and either 

da dp dy T _ oe 
Cay (ot Cs (+ Ace Gy (Ut M, = 0 or yr=y 

and either 

dw P . 
(C7 + Cg + Cg) a - — C7y — Cgf — Cox = 7 of wW=w 

Therefore, for the tip-loaded cantilever beam under consideration which was shown in 

Figure 6 on page 23, the boundary conditions are 

at x = 0: atx = + 

u=0 2co( SL) + NJ = 0 

eno tr) +e (Gr) +(e) ME = 9 
B=0 ca( 3 ) + 2c4( Ge) + es( = J + My =0 (9.14) 

y =0 ca( SE) + cof ar ) + 26( Ge ) + M) 0 

w= 0 (67 + 5 +05) SY) = cp — 098 — cya = + 
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Solution of Euler Equations for Displacement Functions 

Solution for u(x) 

The displacement function u(x) is, as it was in the three-layer sandwich beam model, 

completely decoupled from the rest of the displacement functions in the Euler equations. The 

Euler equation that governs u(x) is. 

dx? 

2 

ae £2} =0. (5.45) 

This is identical to Equation 3.19, the corresponding Euler equation for the three-layer beam 

model, except that the definition of cy now includes the extensional modulus and thickness of 

the adhesive. Therefore, the displacement function u(x) must be the same as for the three- 

layer model, namely a linear function of x. Thus, 

U(X) = U4yX + Uy . (5.16) 

Again, the focus of this work is the out-of-plane response of sandwich beams. No further 

discussion of u(x) is necessary. 

Solution for w(x), «(x), B(x) and (x) 

The Euler equations for the remaining displacement functions are coupled ordinary dif- 

ferential equations. A solution of the form 
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w(x) = we’* 

a(x) = ae 
7 (5.17) 

B(x) = be” 

v(x) = me” 

is assumed, where 2 is unknown and w, a, b and m are unknown constants. This assumed 

solution can be substituted into the four remaining Euler equations in Equation 5.11 to yield 

(2c,47 — cg) 4? C44? CoA ae 0 

cod? (2c42? — Cg) cel? Cad be’* _~20 (5.18) 

cA" csi? (2cg4° — cz) C74 > me” 9 

CoA Cyd C7A ~ AN(C7 + Cg + Cg) we™ 

For the previous set of equations to have a non-trivial solution, the determinant of the matrix 

must be zero, or 

(2c, 7? - Cg) cd? C42? Cod 

cA? (20,2? — Cg) CsA? Ca 
> 5 9 ced = 0. (5.19) 

Cad cs} (2cgi° — cy) 7 > 

Cod Cad C7) — A°(C7 + Cg + Ca) 

The conditions under which the determinant is zero can be found by obtaining the roots of the 

eighth-order polynomial: 

- Vc, + Cg + Co)(8C,C4Cg + 2CgC4C5 — 2c,ce - 2¢5C, - 2¢5C,) 

Ahonen + C5 + Cg) — (Co + €3)°] + Ceol 4Cg(C, + Co + Cz) — (C2 + Cs)"] (5.20) 
9 . 

+ C7Co[4c4(C, + Cz + Cg) — (Cp + C5)" ] 

_ A*[2cregcq(cy +CotCg+Cy+Cgt+Cg)] = 0. 

As an interesting aside, the coefficient of 4" is actually a multiple of the determinant of 

another matrix, or 
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2c, S & 

BC4C4Cg + 2CyC4Cq — 2C,C4 — 2c5Cg — 2c5c, = | Co 2Cy C5] (5.21) 
Cz Cs 22g 

The analogous term in the three-layer beam model is the coefficient of 18 in Equation 3.24: 

2c, C4 2 
4 — = 

“4 C6 €3 Cy 2Cg 
(5.22) 

    

Thus, the coefficients of the highest power of 7 for both models are similar in form; both are 

determinants of a matrix whose entries are the constants c,, i=1-6, (which are functions of the 

extensional moduli) multiplied by the sum of the remaining c, (which are functions of the shear 

moduli). Also analogous are the coefficients of 24. For both models, that coefficient is minus 

‘twice the sum of the constants which contain the extensional moduli (c; through cs) multiplied 

by the constants which contain the shear moduli (c7 through cg), or for the three-layer model, 

that coefficient is 

2C7Cg(C, + Ca + Cg) (5.23) 

while the same coefficient in the five-layer model is 

2C7CgCo(Cy + Co + Co + Cy + Co + Cg) . (5.24) 

The c; of the three-layer model are defined in Equation 3.8 so that these similarities would be 

obvious under casual inspection. This explains why the constants C2, C,, Cs and Cc, are not de- 

fined for the three-layer beam model. 

Returning to the development of the five-layer beam model, the roots of Equation 5.20 are 
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5 6 (5.25) 

t= — Ag = im 2Fg 

where the constants F,, Fz and F, are the coefficients of 4%, A® and A®, respectively, in Equation 

9.20, or 

— (C7 + Cg + Cg)(8C,CyCg + 2CoC3C5 — 2c,c% _ 204C¢ - 2054) 

@
 I 

2 2 
Fe = C7Cg[ 4c, (C4 + Cs + Cg) _ (Cy + C3) ] + CgaCol4Cg(C, + Cy + C3) _ (C3 + Cs) ] (5 26) 

2 
+ C7Co[4c4(Cy + Cg + Cg) — (Co + C5)"] 

Fa = — 2C7CgCo(C, + Co + Cg +Cyt+Cs+Cg) . 

As was done in the development of the three-layer beam model, the terms which contain 

e4* and e~4" can be combined and replaced by cosh J,x and sinh A\x. Thus, the solution which 

was assumed in Equation 5.17 can be written as 

w(x) = w3Xx" + Wax" + WX + Wo + ws cosh 4sx + We Sinh Asx 

+ w7 cosh 77x + wg sinh 17x 

a(x) = a3x° + ayx? + a4X + ao + as sinh Asx + dg cosh A5X 

+ a7 sinh J7x + ag cosh 17x 6.27) 

B(x) = bgx° + box? + byx + bg + bs sinh Asx + bg cosh Agx | 
+ b7zsinh 47x + bg cosh dx 

y(x) = m3x° + mx? + myx + M + Mssinh Asx + Mg cosh Asx 

+ mz7sinh 47x + mg cosh 27x . 

Because the determinant in Equation 5.19 is zero, relationships exist between the 32 constants 

in Equation 5.27 that will reduce the number of unknowns to eight. 

For the terms which contain nonzero values of 4,, in other words wi, ai, b| and m, where 

i=5,6,7,8, these relationships can be expressed as 
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as = AsWs Ds = Bows Ms = Mcws 

ag = Agw be = Bew Me = Mew 6 66 6 66g 6 66 (5.28) 

a7=Azwr = by =BrywWz m7 = Mpw7 
ag = AgWeg Dg = BsgWea Mg = MgWeg 

The expressions A,, B; and M, where i=5,6,7,8 can be found by examining the second, third 

and fourth Euler equations from Equation 5.11. They are 

AsDs = ds( —4CyCgCg — CoCgC7 — CaC5Cg + 2C4C4C7 + c8cq + 2C5CgCg) 

+ 12[2¢4C7Cq + 2CgCgCg — (Cp + C3)C7Cg] — C7Cglg 

A7D;7 = Ax —4C4CgCg — CoCsC7 — C4C5Cg + 2C3C4C7 + c2Cq + 2CyCgCg) 

+ 12 [2c4c7Cq + 2CgCgCg — (Cz + C3)C7Cg]}] — C7CgCg 

BsD5 = As( —4C4CgCg — Ca4C5Cg — CoC3C7 + 2C4C5C7 + c3c, + 2CyCgCQ) 

+ AZ [2c4e7Cg + 2CgCgCg — (Co + C5)C7Cg] — C7CgCg 

B,D; = A+ —4C,CgCg — C4C5Cg — CoC 3C7 + 2C;C5C7 + c3cy + 2C5CgCQ) 

+ 22 [2c4C7Cg + 2CgCgCg — (Cp + C5)C7Cg] — C7CgCg 

MsDg = Js( —4c,C4C7 — Cy€qCg — Cols Cg + 2CzCqCq + CHC7 + 2C4C5CQ) (5.29) 

+ A2[2c4C7Cg + 2C4C7Cg — (C3 + C5)CgCg] — C7CgCg 

M7D7 = Ax —404C4C7 — Col4Cg — CoCsgCg + 203C4Cg + c8c, + 2¢,Cs5Cg) 

+ 12 [2c,c7C, + 204C7Cg — (Cz + C5)CgCg] — C7Cglg 

Ag = —As 

Ag = —A; 

Be = —Bs 

Ba = —B, 
Ms = —Ms 
Ms = —M; 

where 
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Ds = A8(8C4C4Cg + 2Cy03C5 — 2csc, _ 2c,cz _ 2c3c¢) 

+ Js — 4(CacgCg + CyCgCg + CyC4C7) + C5Cg + c8Cg + c3c7] 

+ J2[2(c4C7Cq + C4C7Cg + CgCgCg)] — C7CgCg (5.30) 

D7 = 1S (8c,C4Cg + 2C5€3C5 — 205C, - 2c,c% _ 2c3Cg) 

+ ASL — 4(CytgCg + CyCgCg + CyC4C7) + c3cg + céCq + c3c7] 

+ 12[2(c4c7Cg + CyC7Cg + CECgCg)] — C7CgCg 

For simplicity, the Ai, B; and M; where i=5,6,7,8, will be replaced by the following: 

B, = Bs = — Bs B = B, = = Bs (5.31) 

Next, consider only the portion of the solution that contains the four repeated zero roots, 

or 

w(x) = w3X° + WoXxX" + W4X + Wo 

a(x) = a3x° + ayx* + aX + ap 
3 : (5.32) 

B(x) = Dax” + box” + byx + Do 

y(x) = mx" + mx? + myx + Mo . 

When these functions are substituted into the last four Euler equations (Equation 5.11), re- 

lationships between the constants can be found. Three more constants which are functions 

of the material properties are introduced first: 

R, = 2c, + Co + Cy 

Co + 2C4 + C5 (5.33) 

R3 = Cg + Cy + 2g : 

wa
 

© 

il 

The details of finding the relationships between the unknown constants are omitted for brevity. 

The approach is identical as in the three-layer model; the powers of x are balanced in each 

of the four equations. For the five-layer beam model, 
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a, = 0 a, = 2Wo 

bs = 0 b, = 2Wo 

M3 = 0 M4 = 2Wo 

BR, 
ao = 3W3 ag = Ww, + “Cg 3 . (5.34) 

6R, 
by = 3W3 bo = W, + “tg 43 

6R, 
Ms = 3W3 Mo = Wy + “e7 3 

The assumed solution in Equation 5.27 was written as a function of 32 unknowns. That number 

has now been reduced to eight. The solution is 

w(x) = Wax + WoxX" + W4X + Wo + Ws cosh 45x + We Sinh Asx + wz cosh 17x 

+ Wg sinh 47x 

2 BR, . ; 
a(x) = 3W4x + 2Wox + (Wy + ey" Wa) + wesA, sinh Asx — WeA, cosh 45x 

+ w7A, sinh 47x — WgA, cosh 27x 

6R 
B(x) = 3w4Xx" + 2WoX + (Ww, + Ws) + wsB, sinh Asx _ WeB, cosh Asx 

+ w7B, sinh 27x — wgBy cosh 47x 

BR 
y(X) = 3w4Xx" + 2Wox + (Wy + ws) + weM, sinh Asx — WeM, cosh Asx 

+ w7Mp, sinh 27x — weM, cosh Apx . 

(5.35) 

The eight boundary conditions of Equation 5.14 which apply to these displacement functions 

can now be used to completely solve the static elastic problem. 
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Application of Boundary Conditions 

To simplify the solution procedure, the boundary conditions for the beam’s response to 

a mechanical load is considered separately from the response to a thermal gradient. 

Mechanical Load 

For no thermal gradient through-the-thickness of the beam, the constant b in Equation 5.4 

is Zero. Therefore, the constants M!, Mj} and M!, which are defined in Equation 5.6, are also 

zero. Thus, the boundary conditions in Equation 5.14 which contain these constants can be 

L 
written as, atx = 3° 

2c, ©. C372’ 0 
E 2C4 eat = 1°} ; (5.36) 

Cz Cy 2g Jy’ 0 

For these equations to have a non-trivial solution, the determinant of the matrix must be 

identically equal to zero. Substitution of the definitions of the c; from Equation 5.6 shows that 

d d 
the determinant is not identically zero; therefore the quantities a. e and x each must 

be zero atx = >. The boundary conditions for the mechanical load are rewritten to reflect 

this fact: 
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atx = 0: atx = =: 

=O = 0 

= 0 Fs (5.37) 
d 

=0 a =0 

= 0 (67 + Cy + c6)( SX ) — Cry — Caf — Cot = + 

When these boundary conditions are applied to the solution in Equation 5.35, a system of eight 

equations and eight unknowns results. These equations can be solved simultaneously to find 

the unknowns, which are 

where 

Wi 

Wes 

W7 

Wo = 

—P 
~ 12(Ry + Ry + Rs) 

Pe 
a(R, + Ry + Rs) 

R,BM RoMA RAB p(t + |       

  

2(R, + Rp + R3)(AB + BM + MA) 

—P CeCg (RaCg — RyCg) — —C7eg (R3Cg — RyC7) (5.38) 

2(R, + Rp + R3)(AB + BM + MA) 
  

—P) | —opeg [Rata — Raz) — | —eges— }fRea — Rice) 

2(R, + Ry + R3)(AB + BM + MA) 

We + Ws , 

AB = A, Bo - B,A> 

MA = M,A> - A, M, . 
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The expression for w, is much more complicated than in the three-layer sandwich beam 

model. Now, the three-layer solution is used to simplify the five-layer sandwich beam model. 

The expression for w, in the three-layer beam model is shown in Equation 3.53 and is repeated 

here for convenience: 

R? R3 
w®) = Po 5 (= + =) (5.40) 

2(R, + Ro) 8 ; 

Assume a similar form for the five-layer model: 

  

2 2 2 R R R 
w)) = P ; (= + = + = | | (5.41) 

a(R, + Ry + Ra) \ 8 ? 

Although the algebra to prove that the previous expression is identical to w, in Equation 5.38 

is prohibitively difficult, it has been proven computationally in Appendix C. Thus, the solution 

of the three-layer model is used to simplify the five-layer beam model when standard algebra 

techniques fail. The form of w, in Equation 5.41 is used hereafter. 

Aiso presented in Appendix Cc is the proof that ws and we, are small compared to the tip 

deflection. Because of their relatively small size, they are approximately zero, or 

Ws =~ 0 

We =~ 0 

Ww, =0 (5.42) 

Wg = 0 

Wy = 0 

A comparison of the five-layer sandwich beam model solution to a strength of materials 

solution for a five-layer tip-loaded cantilever sandwich beam again shows that the strength 

of materials solution is exactly 

Wsom(X) = wax” + Wax" (5.43) 
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Thus, the five-layer sandwich beam model is the sum of the strength of materials solution and 

additional terms which account for the shear deformation, just like the three-layer model. 

Thermal Gradient 

For a beam with no mechanical load, i.e. P = 0, the boundary conditions are 

_ 7: —_ tl. atx = 0: atx = >: 

u=0 2eo( $2.) + NI = 0 OV dx u 

_ da GB Gy T 
a=0O0 2e($2.) + oo Sr) + oo( Ge) + ME = 0 

5.44) 
_ da dg dy T_ ( 

B=0 oo( $2) + 20(-E) + os( St) + mp = 0 

w = 0 (67 +05 + ¢5)( SY) — cry — gp - cox = 0 . 

When the boundary conditions are applied to the solution in Equation 5.35, a system of eight 

equations and eight unknowns again is the result. Solved simultaneously, they yield 
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cosh 7 

Wo = —Ws - WwW, =0 

MI[AB(cots — 2c4C4) + BM(4cycg — c2) + MA(ca¢s — 2CoCg)] 

2(8C4C4Cg + 2CnC4C5 — 2c4ce — 2c4c, - 2¢5c,)(AB + BM + MA) 

  Wo = 

M5LAB(cC3 — 2€4Cs) + BM(cac5 — 2CoCg) + MA(4C,C, — c3)] 
  + 

2(8C4C4Cg + 2CoC34C5 — 2c,c% _ 204C, _ 2c5c—)(AB + BM + MA) 

T 2 
M, [AB(4c,¢, — cz) + BM(cgcs ~ 2c3c4) + MA(coC3 — 2c,Cs)] 
  

2(8C4C4Cg + 2CoCqCs — 2C,04 — 2c4C4 — 2C5C,)(AB + BM + MA) 

(5.45) 

The solution is similar to that of the three-layer beam subjected to a thermal gradient, the 

solution for which can be extracted from Equation 3.53. The actual expressions for ws and w7 

are incredibly complicated and, because they are inversely proportional to hyperbolic cosines 

of very large numbers, they are approximately zero anyway. 

As was done in the solution for mechanical loads, the solution for the temperature- 

gradient problem can be simplified by using the three-layer model to make intuitive steps in 

the algebra that are substantiated by numerical computations. For the three-layer model, the 

coefficient wz resulting from the thermal gradient alone is (see Equation 3.53) 

T T 

w® = Me + MY) 
2 2(R, + Ro) 

The wz term in the five-layer model is assumed to have the same form, namely 

T T T Vo) = —(M, + Mg + M,) 

2 2(R, + Ro + Rs) 
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Although the algebra necessary to move from the expression for wz in Equation 5.45 to we in 

Equation 5.47 is prohibitively difficult, these expressions have been proven computationally to 

be equivalent in Appendix C. Thus, the three-layer model is used again to simplify the five- 

layer model. 

Combined Mechanical Load and Thermal Gradient 

The solution for the response of a tip-loaded cantilever beam with a through-the-thickness 

gradient is simply the sum of the two solutions, or, for the solution in Equation 5.35, the con- 

  

stants are 

—- — PP 
W3 = 42(R, + Rp + Ra) 

T T T we PL _ (Mz + Mg + M,) 

2 8(R, +R, + Ra) 2(R, + Ro + Rs) 
2 2 2 

we = —+s( Fe, =| = 
2(R,+R,+R,)° \ °9 Cs C7 (5.48) 

Ws = 0 

W720 

Ws ~0 

Wo = 0 

Summary 

The development of the five-layer beam model, a model considerably more complex than 

the three-layer beam model, is now complete. The three-layer beam model provided consid- 

erable guidance in the development of the five-layer model. It provided the motivation for 
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some of the simplifying approximations of the algebra and made it possible to see explicitly 

where the inclusion of the adhesive layer effected the model. The next chapter is devoted to 

numerical results obtained using the five-layer beam model. 
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Chapter 6 - The Five-Layer Sandwich Beam Model: 

Numerical Results 

Because the sensitivity studies using the static elastic solution did provide insight into the 

importance of the material properties for the three-layer model, the sensitivity calculations 

will be repeated for the five-layer model. Thus, the static elastic response of the five-layer 

beam is studied before the viscoelastic response is studied. Because the adhesive is a sep- 

arate constituent in the five-layer model, its material properties must now be considered. 

Materials and Material Properties 

As with the three-layer beam model, the five-layer beam model is studied for two different 

material systems. The composite material system of the three-layer model is one of these. 

For the five-layer model, the thickness of the honeycomb (HRH 327) is now the value 2h and 

the thickness of the adhesive layers, te, is a separate quantity. The elastic moduli of the 

honeycomb are the same as in the three-layer model. The adhesive under consideration is 
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FM73, a film adhesive produced by American Cyanimide. The extensional modulus E, is a 

typical value for adhesives, and G, was found by assuming that the adhesive is isotropic and 

has a Poisson’s ratio of 0.3. The nominal thickness of FM73 is 0.005”. The face sheets are the 

quasi-isotropic quartz-epoxy material used for the three-layer model composite beam. Also, 

the aluminum beam studied in Chapter 4 is considered. This aluminum beam is now assumed 

to have FM73 adhesive joining the aluminum face sheets of the three-layer model to the alu- 

minum honeycomb core of the three-layer model. The material properties for both systems 

are presented in Table 7. 

Sensitivity Studies 

The sensitivities of the static elastic five-layer beam model to reductions in material 

properties and layer thicknesses are found separately for the mechanical load and the thermal 

gradient, as they were in the three-layer model. To study the sensitivity, a particular material 

property or layer thickness is reduced by an order of magnitude and the tip deflection is found 

using this reduced value. This tip deflection is normalized with respect to the tip deflection 

that is found when the nominal material properties are used, or 

Wtip 
Sensitivity = (6.1) 

nominal 
tip 

This is identical to the approach used in Chapter 4 to study the elastic sensitivity of the 

three-layer model to the various material properties and thicknesses. 
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Table 7. Nominal Material Properties and Geometries for Five-Layer Beam Model 

  

Aluminum Beam 
  

  

    

Face Sheets Adhesive Honeycomb Core 

E, = 10.0E6 psi E, = 0.5E6 psi E,; = 1.0E3 psi 

G, = 3.85E6 psi G, = 0.179E6 psi G, = 68E3 psi 

t, = 0.040 in tz = 0.005 in h = 0.250 in 

4 

a,=13E-6 oF a2 = 25E-6 Se a3 = 13E-6 oF 

  

Composite Beam 
  

  

            

Face Sheets Adhesive Honeycomb Core 

E, = 2.5E6 psi E, = 0.5E6 psi E,; = 1.0E3 psi 

G, = 0.96E6 psi G, = 0.179E6 psi G; = 29E3 psi 

t, = 0.040 in te = 0.005 in h = 0.250 in 

ay =5E-6 — a= 25E-6 — a= 1.5E-6 
F F F 
  

  

  
Mechanical Load 

The bending response of the five-layer beam model to a mechanical load is shown in 

Equations 5.35, 5.38, 5.41 and 5.42. To find the tip deflection, x = > is used: 

PL PL 1 2 3 

(Ry + Ro + Rs) 4(Ry + Ro + Rg) 
    

The numerical results of the sensitivity studies for the mechanical load are reported in 

Table 8 and Table 9 for the aluminum beam and composite beam respectively. For both ta- 
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bles, the left column indicates which material property or thickness is reduced by a factor of 

ten. The right column is the value of Equation 6.1 for that case. 

Inspection of these tables reveals little information that was not already determined from 

the sensitivity studies of the three-layer model. The sensitivities of the two material systems 

are similar. The beam response is most sensitive to a reduction of the thickness h. Re- 

ductions of the modulus of elasticity and thickness of the face sheet cause the next greatest 

increase in tip deflection. Also, the five-layer model is sensitive to a reduction of the shear 

modulus of the core, G;. Like the three-layer model, the five-layer model is insensitive to re- 

ductions of the shear modulus of the face sheets, G,, and the modulus of elasticity of the core, 

E3. | 

The major difference between the three- and five-layer models is the inclusion of sepa- 

rate adhesive layers in the five-layer model. However, it is apparent from Table 8 and 

Table 9 that the five-layer beam model is relatively insensitive to reductions of the elastic 

properties or thickness of the adhesive. 

Thermal Gradient 

The tip deflection for a five-layer beam subjected to a through-the-thickness thermal 

gradient with no mechanical loads is 

—L?(M, + Mg + M,) 

B(R, + Rp + Ra) 
  Wtip = (6.3) 

Like the tip deflection of the three-layer beam subjected to a thermal gradient (Equation 4.12), 

this expression does not include any of the shear moduli; therefore, the tip deflection should 

be completely insensitive to reductions of the shear moduli. 

The numerical results of these sensitivity studies are shown in Table 10 and Table 11 for 

the aluminum and composite beams, respectively. Again, the left column of these tables in- 
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Tabie 8. Sensitivity of Five-Layer Aluminum Beam - Mechanical Load 

  

  

Reduced Variable Sensitivity 

NONE 1.000 

E, 7.694 

Gy 1.002 

ty 8.759 

E2 1.004 

G2 1.014 

te 1.036 

E; 1.000 

G; 2.869 

h 23.260 

ALL 7859.10         
  

dicates which material property or thickness value was reduced by a factor of ten, and the 

right column is the value of Equation 6.1 for the case under consideration. 

As was discovered for the mechanical load sensitivity study, the sensitivities of the five- 

layer beam differ little from those of the three-layer beam. Both material systems have similar 

sensitivities. The five-layer model, like the three-layer model, is relatively insensitive to re- 

ductions of nearly all the elastic properties and layer thickness values of the face sheets and 

core. The five-layer beam model is relatively insensitive to reductions of the elastic properties 

and thickness of the adhesive layers as weil. One exception is the sensitivity to the coefficient 

of thermal expansion of the face sheets, «,; however, the three-layer beam model was sensi- 

tive to a, too. 

There is one unusual sensitivity that can only be found using the five-layer beam model. 

The five-layer composite beam subjected to a thermal gradient is more sensitive to reductions 
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Table 9. Sensitivity of Five-Layer Composite Beam - Mechanical Load 

  

  

Reduced Variable Sensitivity 

NONE 1.000 

E, 7.353 

G, 1.002 

ty 8.219 

E, 1.016 

G2 1.004 

te 1.049 

E; 1.001 

G; 2.235 

h | 25.460 

ALL 8600.03         
  

in the modulus of elasticity of the face sheets than the three-layer beam model (see Table 5 

on page 55). Reducing E; by a factor of ten increases the thermally-induced deflection of the 

beam by 56% for the five-layer beam; however, it barely influences the deflection of the 

three-layer beam. The difference must be a result of the presence of the adhesive layer, but 

it also is only an issue for the composite beam. For both the aluminum and composite five- 

layer beams, the coefficient of thermal expansion of the face sheets, a,, has a strong influence 

on the thermally induced deflection. When the modulus of elasticity of the aluminum face 

sheets is reduced, it is still numerically larger than the modulus of elasticity of the adhesive. 

Therefore, control of the thermally-induced deflection still lies with the face sheets for the 

aluminum beam. However, when the modulus of elasticity of the composite face sheets is 

reduced, it is nearly one-half the modulus of elasticity of the adhesive layer. Thus, control of 

the thermally-influenced deflection of the five-layer composite beam with reduced &, lies with 
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the stiffer adhesive layer. Because the adhesive layer has a higher coefficient of thermal ex- 

pansion than the composite face sheet, the thermally-influenced deflection is greater. 

The Time-Dependent Five-Layer Beam Model 

The sensitivity studies are a useful tool for determining which material properties influ- 

ence the elastic response of the beam. They are not a substitute for a viscoelastic solution; 

rather, the elastic sensitivity studies complement the viscoelastic model. First, material 

properties which have a significant effect on the elastic tip deflection are determined from the 

sensitivity studies. Then, the viscoelastic tip deflection can be found by assuming these ma- 

terial properties are time-dependent. As was done in the three-layer viscoelastic model, 

Maxwell fluids are used to represent the behavior of the materials. Also, the cases of more 

and less time-dependent behavior are considered. The former case allows the shear strain 

in the material to increase by a factor of ten in 20 years, as it did previously, and the latter 

case allows it to double in 20 years. For the extensional material behavior, the higher level 

of time-dependent behavior allows a ten percent increase in normal strain in 20 years, and the 

lower level allows one percent. The material properties of the composite beam are used in 

the following studies. To measure the magnitude of the effect that time-dependent material 

behavior has on the beam response, the percent increase in tip deflection is again computed 

as 

Percent Increase Wrplt) — Wtip 
— °o 

in Tip Deflection — Wtip x100% (6.4) 
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Table 10. Sensitivity of Five-Layer Aluminum Beam - Thermal Gradient 

  

  

Reduced Variable Sensitivity 

NONE 1.0000 

E, 1.0410 

G, 1.0000 

t 1.0474 

a 0.1092 

E2 0.9957 

Gz 1.0000 

te 0.9957 

Oe 4.0000 

E, 1.0000 

G; 1.0000 

h 0.9968 

a3 0.9998 

ALL 0.1000       
  

  

Mechanical Load 

The five-layer model sensitivity studies reveal that, for the mechanically loaded case, the 

response of the beam is most sensitive to reductions in the extensional modulus of the face 

sheets, E,, and the shear modulus of the core, G3. The deflection is less sensitive to the re- 

ductions of the shear modulus of the face sheet, G;. This is identical to the information ob- 

tained from the sensitivity studies of the three-layer model. 
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Table 11. Sensitivity of Five-Layer Composite Beam - Thermal Gradient 

  

  

Reduced Variable Sensitivity 

NONE . 4.0000 

E, 1.5597 

G, 1.0000 

th 1.6344 

a 0.1858 

E2 0.9316 

G2 1.0000 

te 0.9317 

ae 0.9143 

E; 4.0004 

G; | 4.0000 

h 0.9507 

a3 0.9998 

ALL 0.1000       
  

  

One goal of this work is to maintain simplicity and closed-form solutions. In the three- 

layer model, an approximation of the tip deflection based on the relative values of the exten- 

sional moduli of the core and face sheets (E, and E; respectively) is used to simplify the 

time-dependent model when E, is time dependent. Without this simplification, it has been 

shown that the time-dependent solution can be found but is not in a practical form. This 

simplification is not possible in the five-layer model. Therefore, because both the three-layer 

and five-layer models have similar sensitivities to elastic reductions of the modulus of 

elasticity of the face sheets, and because the five-layer time-dependent model for E,(t) is 

prohibitively complicated, a time-dependent E, is not considered here. Two material proper- 
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ties to which the five-layer model is not sensitive elastically are allowed to be time-dependent 

for this discussion. The shear modulus of the adhesive layers, Gz, does not appear separately 

in the three-layer model; therefore, the effect of any possible time-dependence of G, has not 

previously been discussed. Also, the shear modulus of the face sheets, G,, is allowed to vary 

with time in order to compare the three-layer and five-layer viscoelastic models. 

To study the influence of the shear moduli on the problem, the elastic tip deflection of the 

five-layer beam can be written to reveal the dependence on the three shear moduli using 

Equations 5.6 and 6.2: 

      

PL? PL Rj R3 3 Wap = + + + . (6.5) 

For the time-dependent tip deflection, the load P is a step function whose magnitude is P,. 

Influence of Time-Dependent Core Shear Modulus (G, ) on Beam Response 

In Chapter 4, the constitutive equation which governs the behavior of a Maxwell fluid model 

appeared in Equation 4.14 and is repeated here for convenience: 

T+ Pt =H ay . (6.6) 

The strain as a function of time can be found for the case where the stress is a step function 

of magnitude ¢ : 

A Py t 
y(t) = *( qa, + a; ) . (6.7) 

For time zero, the elastic case, it is apparent from 

y(0) = *(=) = (4) ; (6.8) 
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that the elastic shear modulus of the core is 3, or 

G,= — . (6.9) 

For the case where the shear strain of the core doubles in 20 years, 

y(20) = (t + 20) = 2y(0) = ae | (6.10) 

and the constants p, and q; are 

Pp, = 20 and q, = 20G, . (6.11) 

For the case of greater time-dependent behavior, the strain increases by a factor of ten in 20 

years, or 

1 20 a 1 m= (+ B) = 00) = 10S 6.12 y(20) (4 a’ y(9) G, (6.12) 

which leads to 

‘ 20 ; 20 
p, = “>| and q,= “9 &3 : (6.13) 

To find the time-dependent tip deflection, the Laplace transform of the elastic tip de- 

Q(s 
flection, Equation 6.5, is performed and G; is replaced by ae : 

_ Po L3 

uplS) = “Ss” | Gar, + Rp 4 Ry) 
2 2 2 + Po L R? . R? . R2 (6.14) 

SL (Ry + Ry tRa)* I\ 9, 20S) Gata 2G att 
P(s) 

    

  

(s) 
P(s) 
  For a Maxwell fluid, the ratio is 
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Qis) | q,s 

P(s) ~ 1+ P4s 

  (6.15) 

Therefore, the tip deflection in Laplace domain is 

Pp 3 

tp S | 48(R, + Ry + Rs) 
: 6.16 

Po L Rj ( 1+ pys ) RS RS (6-19) 
+ | ———| }] =-( ——— ) + = + . 

S 4(R, + Ro + Ra)° 2h Q,S 2Goty 2G,t, 

The inverse Laplace transform converts this to the time-dependent tip deflection, which is 

  

0 R —— ( -)( ) (8.17) 
Ww = Ws ————_—_— —— : . tip tip + A(R, + Rp + Ra)? \ 2h JX % 

Thus, for the model which allows for less time-dependent behavior, the tip deflection in 20 

years is found using Equations 6.11 and 6.17. It is 

  (t) + Pot Ri (6.18) WwW. i = W, : . tip NP" A(R, FRp + Ry)? \ 2Gah 

For the greater strain case, q’, is found in Equation 6.13. The tip deflection in 20 years is 

2 

Wrip(t) = Wp + SPot 5 Ri . (6.19) 
4(Ry + Ro +R)? \ 2Gah 
  

These results are shown as a function of time in Figure 13 and can be directly compared to 

Figure 9. The three-layer and five-layer models have almost identical increases in tip de- 

flection for time-dependent shear behavior of the core. Likewise, from Table 3 on page 51 

and Table 9, the elastic sensitivities for both models are also nearly identical for reductions 

_of the shear modulus of the core. 
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Figure 13. Percent Increase In Tip Deflection of Five-Layer Beam Model for G, (t) 

Influence of Time-Dependent Adhesive Shear Modulus (G, ) on Beam 

Response 

Like the shear modulus of the core, the time-dependent behavior of the adhesive shear 

modulus G; is modelled by a Maxwell fluid and is bracketed by the cases where the strain 
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increases by a factor of two and a factor of ten in 20 years In the previous work, the relation- 

ship between the shear modulus and p, and q, was found. That relationship is the same for 

this case and is, like Equation 6.9, 

G=— . (6.20) 

Also, for the case where the strain doubles in 20 years, p, and q; are 

q, = 20G, and p, = 20 . (6.21) 

For the other case, that of the strain increasing ten-fold in 20 years, 

' 20 ' q1 = -9 & and p', = — . (6.22) 

  

Q(s 
As before, a replaces the shear modulus in the Laplace-transformed form of Equation 6.5: 

— Po L? 

Wup(S) = “Ss” | Ger, + Rp + Ry) 
2 2 2 , Po L RRR (6.23) 

SL 4(R,+Ro+Ra)° |\ 2Ssh ot, Ls) 2G,t, 
2 P(s) 

    

  

In particular, the tip deflection in Laplace domain when G; is modelled as a Maxwell fluid is 

— Po L3 

Wels) = “3” | Ga, + Rp + Ra) 
6.24 

p R? R2 / 14+ 4s R2 (6.24) 
+ L + —*(—+ )}+ == 

s 4(R, + Ro + Ra)° 2G,h 2t, qs 2G,t, 

and the tip deflection as a function of time is 

    

2 

Wtip(t) = Wrip + fe __ Re (+) | (6.25) 
— A(RY Rg +Ry)? \ 22 JN 91 
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Thus, for the model whose strain doubles in 20 years, the tip deflecticn in 20 years is 

  (t) + Pot Re (6.26) Ws = Ws . _ (9. 

"p NPT A(R, + Ry + Ra)? \ 2G2te 

For the other case, the tip deflection in 20 years is 

2 

Wrip(t) = Wp + SPot ; Re . (6.27) 
A(R, + Ro +R)? \ 2Gate 
  

The tip deflection as a function of time is shown in Figure 14. The elastic sensitivity studies 

indicate that a reduction of G, has little effect on the tip deflection; the response of the beam 

changes only slightly for time-dependent shear behavior of the adhesive layers for both levels 

of time-dependence. The significance of the elastic sensitivity studies is again reaffirmed. 

Influence of Time-Dependent Face Sheet Shear Modulus (G, ) on Beam 

Response 

Again, two Maxwell fluid models are used to represent the time-dependent shear be- 

havior of the face sheets. The relationship between p, and q; and the shear modulus is the 

same as in Equations 6.9 and 6.20: 

G,=— . (6.28) 

As before, the behavior is bracketed by a two-fold and ten-fold increase in strain in 20 years. 

For the first case, a two-fold increase, 

q, = 20G, and p, = 20 . (6.29) 

For the ten-fold increase in strain, 
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Figure 14. Percent Increase in Tip Deflection of Five-Layer Beam Model for Gp (t) 

é 20 ; 20 q, = ™@ of and py = “9. (6.30) 

. . . (Ss). To apply the correspondence principle to the tip deflection, G, is replaced by P(s) in the 

transformed form of Equation 6.5: 
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— Py L° 

WuplS) = “S"| GaR, + Rp + Re) 
2 2 2 

+ Po L Ri + Ro + R3 (5.31) 

SL a(R, + Ro +Ra)? {\ 2S3h 2Goty Pa) t 
P(s) 

    

  

For the Maxwell fluid model, this is 

P 3 
Wip(S) = So} LY 

tp S | 48(R, +R +Rz) 
(6.32 

p R? R? R2 /14+p4s 6.82) 4 2 L tog 20, U3 ( TEP 

S | 4(Ry +R, +Rs)" 2G3h 2G,t, 2t, q4s 

Therefore, the time-dependent tip deflection is the inverse Laplace transform of Equation 6.32: 

    

  

2 

Wrip(t) = Wrip + Pot ; R3 (4) . (6.33) 
A(Ry + Rat Ry) \ 2h 7h 9 

For the Maxwell fluid model! which allows less time-dependent behavior, the tip deflection in 

20 years is 

  (t) + Pol R3 (6.34) Wi = Wi, : . tip tip 4(R, + Ro + R,)° 2G,t, 

and for the Maxwell fluid model which allows for more time-dependent behavior, it is 

  (t) + Pot Rs (6.35) Ws = W . . 

"p NPT (Ry + Ry + Ry)? \ 2Grh 

Again, the tip deflection is linearly dependent on time and is shown as a function of time in 

Figure 15. As the elastic sensitivities imply, a time-dependent reduction of G, has even less 

effect on the tip deflection, than a time-dependent G,, Figure 14. 
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Figure 15. Percent Increase in Tip Deflection of Five-Layer Beam Model for G, (t) 

Through-the-Thickness Linear Thermal Gradient 

The elastic sensitivity studies for the five-layer beam model subjected to a thermal gra- 

dient revealed that only a reduction of the modulus of elasticity of the composite face sheet 
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significantly increases the tip deflection. Therefore, the viscoelastic response of the beam to 

time-dependent extensional behavior of the face sheets is studied. 

Influence of Time-Dependent Face Sheet Modulus of Elasticity (E, ) on Beam 

Response 

Two Maxwell fluid models are used to bracket the expected behavior of the face sheets. 

One model allows the strain to increase by one percent in 20 years; the other allows a ten 

percent increase in 20 years. Because these models are identical to those used in Chapter 

4, the constants p, and q, as found in Chapter 4 are used here. For the model which allows 

a one percent increase in strain, from Equation 4.60, 

q, = 2000E, and p, = 2000 . (6.36) 

For the model which allows a ten percent increase in strain, from Equation 4.61, 

q', = 200E, and p’, = 200 . (6.37) 

The definitions in Equations 5.6 and 5.33 are substituted into the elastic tip deflection of a 

cantilever beam subjected to a linear through-the-thickness thermal gradient to reveal the 

dependence on E;: 

— bl? 
Wtip = 46. * 

2 2 t 2 2 2 
E ty ty 2 tg h 
4a4t, h+ to + 2 + 42. + E,ast, h+ > + 42 + E3a3h a 

2 2 2 2 2 
ty t ty tp h h? 

jen (1 htt) + | + aC +3) + 42 + E3h (+) + 42 

(6.38) 
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New constants are now introduced to simplify the previous equation. They are 

— bl? 
16 

2 2 ty tf 
«| (n+n+$) + = | 

2 2 
te to h h? 

hy ot 
ty [A+to+ > + 72 

2 2 
to ty h h? 

Using these, Equation 6.38 becomes 

  

> li 

O ll 

Oo
 Il 

  

«( A+ 8 6.40 “up = EC +D ) ° (6.40) 

_ Qs ; 
To apply the correspondence principle, the ratio Pis) replaces E, in the transformed form of 

Equation 6.40. Like the mechanical load, the thermal gradient is considered to be a step 

function of time. (Transient heat conduction difficulties are being ignored.) Therefore, the 

general expression for the tip deflection in Laplace domain is 

(Sa +8]   

  

  

    

— K 
Wrip(S) = —>- (6.41) 

XS) \e 4 p 
P(s) 

For a Maxwell fluid model, this becomes 

$ 
( a +8 : 

~ K LA T+ ms _ kK | stAgi + Bp) + 8 5.42 
~ S$ | s(Cq, + Dp,) + D (8.42) Wrip(S) = —- 

q4S (st )ewe] 
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Once the Inverse Laplace transform has been performed, the previous expression becomes 

the time-dependent tip deflection. This is 

_ K AD — BC —_— Ot__ 
Wip(t) = D E + ar( Cq, + Dp, Jel Cay + Opy ) (6.43) 

Unlike most of the previous viscoelastic studies, the tip deflection of a beam subjected to a 

thermal gradient is not a linear function of time. The time-dependent tip deflections for the two 

cases under consideration are shown in Figure 16. Upon inspection of this figure, it is ap- 

parent that, even though the tip deflection is actually an inverse exponential function of time, 

it appears to be an approximately linear function of time. The influence of time-dependent 

behavior of the face sheets on the tip deflection is slight; the percent increase of tip deflection 

in 20 years for the case of more time-dependent behavior is less than one percent. 

Quasi-Elastic Approach 

As was done for the three-layer beam model, the quasi-elastic approach can be used to 

study the five-layer beam. Here both the tip-loaded cantilever beam and the cantilever beam 

subjected to a linear through-the-thickness thermal gradient are considered. As before, the 

quasi-elastic increase in tip deflection is found by increasing the particular compliances by a 

certain factor. This increase in tip deflection is normalized with respect to the elastic tip de- 

flection, as in Equation 4.77, and this ratio is reported in the third column of Table 42. As 

before, the first column indicates the material property that experiences a compliance in- 

crease and the second column presents the factor by which the compliance is increased. The 

fourth column shows the percent increase in tip deflection as computed by the viscoelastic 

approach and given by Equation 4.78. Like the quasi-elastic results for the three-layer model, 

the quasi-elastic results for the five-layer beam are nearly identical to the viscoelastic results 
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Figure 16. Percent Increase in Tip Deflection of Five-Layer Beam Model for E, (t) - Thermal Gra- 
dient 

with only one exception; the quasi-elastic tip deflection for the case of an increased compli- 

ance which corresponds to G; (the shear modulus of the core) is slightly less than the 

viscoelastic tip deflection. 
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Table 12. Quasi-Elastic Tip Deflection of the Five-Layer Composite Beam 

  

  

  

  

              

  

Tip-Loaded Cantilever Beam 

Material Quasi-Elastic Viscoelastic 
Property Factor Result Result 

Gy 10.0 0.2% 0.2% 

G2 10.0 0.4% 0.4 % 

G; 10.0 123.5 % 127.3 % 

Cantilever Beam Subjected to Thermal Gradient 

E, 1.1 0.7 % 0.7 % 

Summary 

This completes the rather comprehensive treatment of the five-layer sandwich beam 

model. For the most part, the results are similar to the results found using the three-layer 

sandwich beam model. ‘The single exception is the sensitivity of the beam to a thermal gra- 

dient when the modulus of elasticity of the composite face sheet is reduced. An explanation 

for this was presented based on the presence of an adhesive layer. Without using the five- 

layer model, this important physical effect would not have been revealed. As with the three- 

layer model, sufficient details have been presented so that the use of more complicated 

functions for the time-dependent behavior of the constituents can be considered. 

The next chapter begins the discussion of the experimental aspects of this study. The 

apparatus used to measure the time-dependent response of various constituents are de- 

scribed, and the experimental procedure is discussed. There are inherent difficulties in 

measuring the time-dependent response of materials. Strain readings from electronic devices 

such as electrical strain gages can “drift” over time. Also, environmental changes such as 
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temperature, humidity and vibrations effect electrical resistance and mechanical measure- 

ment devices (e.g., dial gages). Even so, an attempt is made to observe the time-dependent 

behavior of the quartz-epoxy material in tension and the glass-imide honeycomb in shear. 

Based on the elastic sensitivity studies and the viscoelastic studies, the time-dependent be- 

havior of these particular beam constituents have the most influence on the response of the 

sandwich beam. Simple viscoelastic models are then fit to the observed these behaviors and 

the three-layer sandwich beam model is used to predict the time-dependent response of a 

sandwich beam in three-point bending. This prediction is compared to experimental meas- 

urements of the response of a sandwich beam in three-point bending. 
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Chapter 7 - Experimental Apparatus and Procedure 

The work presented in the previous chapters indicated that the time-dependent behavior 

of the sandwich beam constituents has an influence on the overall time-dependent behavior 

of the beam. The degree of influence depends on the particular constituent and the level of 

time-dependent behavior of that constituent. For demonstrative purposes, Maxwell fluid 

models with two levels of time-dependence were considered. Although the Maxwell fluid 

model might be considered an oversimplification, it does reflect one important aspect of 

polymer response, namely the tendency to continuously deform under stress. Although for 

purposes of demonstration a Maxwell fluid is a convenient model because of its simplicity, it 

does not necessarily accurately represent the behavior of any of the constituents, nor do the 

two levels of time-dependence studied accurately reflect the magnitude of time-dependence 

of the constituents. In this context, several important questions can be asked. First, do the 

quartz-epoxy face sheets loaded in tension or compression behave tike a Maxwell fluid 

model? Can the behavior of the glass-imide honeycomb in shear be modelled as a Maxwell 

fluid? If so, what strain increases are observed with time? Second, if they do not behave as 

Maxwell fluids, which viscoelastic model can be used to more accurately reflect their behav- 

ior? Finally, once the viscoelastic behavior of the constituents is quantified and modelled, can 

these models be used in the three-layer or five-layer beam model to accurately predict the 
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response of an actual beam with time? These are important questions and constitute a study 

in their own right. However, to begin to answer these questions, some experimental work was 

conducted. The work focused on determining the time-dependent behavior of the quartz- 

epoxy face sheet material in extension, the time-dependent behavior of the glass-imide 

honeycomb core material in shear, and the time-dependent behavior of a sandwich beam 

subjected to three-point bending. The time-dependent shear behavior of the face sheets and 

the time-dependent behavior of the adhesive in both shear and extension were not studied. 

If the analytical predictions in the previous chapters are correct, then using the models which 

best fit the time-dependent behavior of the face sheets in extension and the core in shear in 

either beam model will result in predictions that should closely match the observed time- 

dependent beam deflection. 

This chapter discusses the apparatus and procedure used to measure the time- 

dependent response of the quartz-epoxy face sheet material in extension, the glass-imide 

honeycomb in shear, and a sandwich beam in three-point bending. 

Time-Dependent Behavior of the Quasi-lsotropic 

Quartz-Epoxy Face Sheets 

To observe the time-dependent behavior in tension of the quasi-isotropic Astroquartz-155 

as a function of time, two coupons with nominal widths of 0.5” and thicknesses of 0.04” were 

cut. Two back-to-back strain gages were bonded to each specimen to measure axial strain. 

One sample was placed in a standard dead-weight loading creep frame and loaded. The other 

sample was in close physical proximity to the loaded specimen but remained unloaded. The 

four strain gages were used to complete a Wheatstone bridge circuit. Because the experiment 

was not performed in a controlled environment, the strain gages on the unloaded sample were 
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used to compensate for the effects of temperature or humidity changes on gage resistance. 

A load was applied in a step-wise fashion. For the first hour, the strain was recorded at in- 

tervals of less than ten minutes. Then, as the need for more frequent data readings declined, 

the interval increased gradually. The experiment continued for over 40 days. Compensation 

for electronic drift in the strain gages was not made. However, preliminary experiments with 

the same two specimens, both unloaded, indicated that drift was several orders of magnitude 

smaller than the readings for the loaded specimen. 

Time-Dependent Behavior of the Glass-lmide Honeycomb 

Core 

A special fixture to measure the time-dependent shear behavior of all three constituent 

materials (the quasi-isotropic quartz-epoxy face sheets, the film adhesive and the glass-imide 

honeycomb) was designed. A schematic of the fixture is shown in Figure 17. The fixture 

consists of two plates of steel, between which the material in question can be bonded. Two 

more pieces, the ends of the fixture, are removable. Each of the end pieces has three holes 

which allow the tensile load to be applied through the centerline of any of the three materials, 

each of which has a different thickness. In other words, the centerline of the material being 

tested coincides with the line of action of the applied tensile load. The relative displacement 

of the two steel plates is measured using a crack-opening-displacement (COD) gage. The in- 

itial opening of the COD gage can be adjusted by using a slider mechanism which is attached 

to the steel plates. This slider mechanism is shown in detail in Figure 18. The mechanism 

is composed of a slider which is set into a stationary block attached to one plate and con- 

trolled by a screw. The slider fits into a dove tail cut in the stationary block. Turning the screw 

either increases or decreases the distance between the slider and another block which is 
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Figure 17. Shear Fixture 
  

connected to the other steel plate. Both the slider and the second block have grooves into 

which the COD gage Is set. 

Although the fixture was designed to be used for all three constituent materials, the pre- 

vious work indicates that the shear behavior of only the core is important. Therefore, for the 

second experiment, a sample of the glass-imide honeycomb was bonded to the fixture using 

the FM73 film adhesive. Thus, the data obtained from the fixture more accurately represent 

the core of the three-layer beam modeli, which is a combination of the honeycomb and adhe- 

sive layers. The specimen had a nominal width of 1.5” and length of 3.0”. The fixture (com- 

plete with specimen) was placed in the creep frame. The COD gage was set in place. The 

slider mechanism was adjusted so that the initial, unloaded opening of the gage corresponded 

to a strain reading of zero. Like the previous experiment, the load was applied in a stepwise 

fashion, and the strain was recorded at intervals of less than ten minutes for the first hour. 
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Gradually, the intervals increased in length as the need for more frequent strain data de- 

creased. This experiment was continued for about fourteen days. 
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Time-Dependent Behavior of the Sandwich Beam in 

Three-Point Bending 

Another fixture was designed in order to examine the time-dependent behavior of a 

sandwich beam in three-point bending. This fixture is basically an elevated aluminum plat- 

form. Parallel grooves 8” apart in the aluminum plate constrain two dowel pins which act as 

simple supports for the beam. Midway between the simple supports are four posts, two on 

each side of the beam. The load is applied across the width of the beam at the midspan by 

a dowel pin which slides down between the four posts. Screws connect this dowel pin to a 

pan which holds weights. This apparatus is shown in Figure 19. In addition to the basic fix- 

ture, two posts were added at strategic locations to support the dial gages which were used 

| to measure the beam’s deflection. 

A sandwich beam of Astroquartz-155 quasi-isotropic face sheets, FM 73 adhesive and 

HRH 327 glass-imide honeycomb core with a nominal width of 1” was placed in the fixture. 

A load was applied in a stepwise fashion by placing weights on the pan. The deflection of the 

beam at two points was measured using dial gages at a point 1” from the simple support and 

1” from the center. The deflection of the beam at these two points was recorded, first for small 

intervals of time and then for gradually longer intervals. The experiment continued for 38 

days. The measurement of the deflection at two points, as opposed to just one point, is used 

to check the consistency of the readings. 

The results of the three experiments and the fitting of simple viscoelastic models to the 

data are presented in Chapter 8. 
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Chapter 8 - Experimental Results and Viscoelastic 

Models 

The results of measuring the time-dependent behavior of the quartz-epoxy face sheet 

material in extension and the glass-imide honeycomb material in shear are reported in this 

chapter. The results are reported as percent increase in strain as a function of time, or 

Percent Increase ___e(t) — (0) 
3 

in Strain 7 e(0) x100'% (8.1) 

Additionally, the initial value of strain, 2(0), is reported, as well as the stress level used for 

testing. Viscoelastic models are then chosen to represent the time-dependent behavior of 

these materials, and these models are used with the three-layer beam model to predict the 

percent increase of the deflection of the sandwich beam in three-point bending. This is then 

compared to the experimental results from the sandwich beam. Because the creep frame 

used magnifies the load using a lever arm and fulcrum, and because of the cross-sectional 

areas of the specimens, these stress levels are not “even” numbers (i.e., 50 psi), even though 

the dead weight loads were. 
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Time-Dependent Behavior of the Quasi-lsotropic 

Quartz-Epoxy Face Sheets 

With an applied stress of 9,670 psi, the initial strain of the quasi-isotropic quartz-epoxy 

material was 3,650x10-§. The percent increase in strain, Equation 8.1, is shown as a function 

of time in Figure 20. By definition, the percent increase in strain at time zero is zero. For the 

quartz-epoxy, the strain increased rapidly for approximately 10 days, after which the strain 

increased at a slower, nearly constant, rate. 

One viscoelastic model which corresponds to this type of behavior is the four-parameter 

fluid. A four-parameter fluid consists of a free spring, Kelvin element, and free dashpot, all in 

series, as shown in Figure 21. The time-dependent percent increase in strain of a four- 

parameter fluid for a constant stress is also shown in that figure. The manner in which the 

parameters of a four-parameter fluid, E,, E:, 4, and 2 influence the time-dependent response 

is also noted in the figure. The free spring responds instantaneously to an applied stress, 

after which the Kelvin element and free dashpot contribute to the time-dependent portion of 

the strain. Eventually, the Kelvin element reaches a maximum amount of strain, after which 

the strain increases linearly for an indefinite period of time. The constitutive behavior of a 

four-parameter fluid is given by 

o+ pio + Poe = Qe + Gre , (8.2) 

where 

Eom, + Eong + Eang 
  

  

Pa = EOE; 
> = 41"2 

2" EGE, (8.3) 
G4 = "2 

1412 
q2 = Ey 
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Figure 20. Percent Increase in Strain of Quartz-Epoxy Face Sheets 
  

Equation 8.2 can be transformed to the Laplace domain: 

— 2 - G(s)(1 + pyS + PyS*) = e(s)(q,8 + gS) . (8.4) 

For a stress that is applied as a step function, o(s) is 

(8.5) 

For this stress, the strain as a function of time can be found by substituting Equation 8.5 into 

Equation 8.4, solving for €(s), and performing the inverse Laplace transform. It is 
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E, +E “Ett af -o 1 1 — t c(t) = ( ce Ee + | . (8.6) 

The percent increase in strain of a four-parameter fluid can be written as a function of time 

as 

  Percent Increase EQ Et Eo 3 ereent I {2 rem] + (42) ebetoor @7 

The constant E, can be determined from the initial strain. For the quasi-isotropic quartz- 

epoxy, it is 

oC _ 9670psi 6 . = = = 2.65x10°psi_, (8.8) 
°  e(0) 3650x107 © 
  

which is, in fact, quite close to the elastic value used in Chapters 4 and 6, 2.5x10® psi. Once 

E, has been found, 42 can be determined by examining the slope of the straight line portion 

of the percent increase in strain graph. The slope is 

100E, 
"2 
  m = (8.9) 

For the quasi-isotropic quartz-epoxy, an hand-fit straight line through this latter portion of the 

data has a slope of approximately 0.0632 _1_ thus 

  

  

days ' 

100E, 100(2.65x 10° psi) 9. m= — > = r = 4.19x10°psi-days . (8.10) 
0.0832 

days 

To find the other two constants, E, and ,, several different approaches can be used. One 

approach is a least-square error technique. For a range of E, and »; values, a cumulative | 

error can be calculated by summing the squares of the difference between the computed 
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value of percent increase in strain from Equation 8.7 and the experimental value. In other 

words, for each E, and ; value, the error 

2 
ERR = Experimental Percent Computed Percent (8.11) 

~ Increase in Strain Increase in Strain 

where i is the total number of data points, is calculated. The range of E, and », can be refined 

to minimize this error. For the quasi-isotropic quartz-epoxy, the error is minimized when 

3.45x10 psi 

1.13x10" psi-days 

E 
' (8.12) 

4 

To compare this four-parameter fluid model to the experimental data, the percent increase in 

strain of both the model and the experiment are presented together in Figure 22. Although 

the agreement is not perfect, the four-parameter fluid model does capture the essential char- 

acteristics of the experimental behavior. 

A different approach to finding E, and y, could yield better results. In this approach, the 

straight line that was used to find 2 is extended to intercept the t=0 axis. This intercept is, 

as shown in Figure 21 by the dashed line, 

  

  

; 100E,, 
intercept = (8.13) 

E, 

Thus, for this case, E, is 

- 100E, 100(2.65x10°psi) _ 301x107 os; 344 
1 intercept 8.25 =e TN PST (8.14) 
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(First Approach) 

The value of 7, can then be chosen, either by trial and error or by a least-squares approach, 

so that the four-parameter fluid model closely matches the experimental behavior. Using the 

former method resulted in 

ny = 5.00x10’psi-days . (8.15) 

The percent increase in strain of a four-parameter fluid model described by these constants 

and the ones itn Equations 8.8 and 8.10 is shown in Figure 23, along with the experimental 
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Figure 23. Percent Increase in Strain of Quartz-Epoxy Face Sheets - Experimental and Model 
(Second Approach) 

data. The agreement between this model and experiment is much better than for the first 

approach and is used later. 
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Time-Dependent Behavior of the Glass-lmide Honeycomb 

Core 

With a shear stress of 67 psi applied, the initial shear strain of the glass-imide honeycomb 

material was 15,100x10-°. The percent increase in strain, Equation 8.1, is shown as a function 

of time in Figure 24. Like before, the time-dependent strain of the material behaves much like 

a four-parameter fluid, although the behavior is a bit more erratic. In order to avoid confusion 

between the four-parameter fluid models previously defined for the quartz-epoxy material in 

extension, the spring and dashpot constants are defined for this four-parameter fluid model 

as shown in Figure 25. As before, the spring constant of the free spring, now G,, can be found 

using the initial strain and is 

a 66.7psi 

0) -6 y 1510010 

  = 4.42x10°psi . | (8.16) 

Also like before, the dashpot constant of the free dashpot can be found by examining the slope 

of the straight line portion of Figure 24. An hand-fit straight line through the data has a slope 

of about 0.161 1 Therefore, y2 is 
days 

100G, 100(4.42x10°psi) 6. = a = 7 = 2.75x10°psi-days . (8.17) 
0.161 

  

  

days 

The other two constants, G, and y;, can be found using the same techniques as before. 

For ranges of these constants, the cumulative error is calculated using the least-squares ap- 

proach in Equation 8.11. The ranges are refined until the error is minimized and the best 

values are found for G, and y;. They are 

5.38x10"psi 

8.33x10°psi-days . 

Gy (8.18) 
¥4 
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Figure 24. Percent Increase in Strain of Glass-Imide Honeycomb 

Again, the percent increase in strain of the four-parameter fluid model which is described by 

Equations 8.16, 8.17 and 8.18 is presented with the experimental percent increase in strain in 

Figure 26. The time-dependent behavior of the glass-imide honeycomb in shear can be 

matched quite closely with this four-parameter fluid model. 

For comparison, G, and y; are also found using the second approach. As with Equation 

8.10, G, is 

1006, 100(4.42x10°psi) 
G, intercept 5.05 5.36x10 psi . (8.19)   
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Figure 26. Percent Increase in Strain of Glass-lmide Honeycomb - Experimental and Model (First 
Approach) 
  

This is within one percent of the previously determined G,. Therefore, because the least- 

squares approach yielded a model which so well represented the time-dependent behavior 

of the material in shear, and because G, is nearly identical, the value of y; from before, 

namely, 

y, = 8.33x10°psi-days (8.20) 

is selected for the value of y,; for the second model. The percent strain increase of this model 

is presented along with the experimental data in Figure 27. As expected, the results from 
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Figure 27. Percent Increase in Strain of Glass-Imide Honeycomb - Experimental and Model (Sec- 

ond Approach) 

using the second approach for the reduction of the data are nearly identical to the results from 

using the first approach. 
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Time-Dependent Behavior of the Sandwich Beam in 

Three-Point Bending 

The deflection of a sandwich beam subjected to three-point bending was measured at two 

points along the length of the beam over a period of about 38 days. Because the experimental 

work focuses on the agreement between the time-dependent portions of the analytical model 

and the experimental data, only the time-dependent portion of the data is reported here. Also, 

because the shape of the deflected beam does not change with time, the percent increase in 

deflection for the two points should, in theory, be the same. Figure 28 presents the average 

of the percent increase in deflection for the two points measured. For all intents and pur- 

poses, the results from measuring the deflection at the two points were identical. 

As can be seen, the behavior is quite unlike what would be anticipated. The periodic 

oscillations were not expected. The period of the oscillations was about six or seven days, 

during which time period the deflection actually decreases as well as increases with constant 

load. Both dial gages registered this periodic characteristic. Despite the oscillatory behavior, 

the mean trend is for an increase in deflection. Because of this, it was felt that this trend could 

be predicted successfully using the four-parameter fluid models of the face sheets and the 

core in the three-layer sandwich beam model. First, the influence of the time-dependence of 

the quartz-epoxy face sheets is considered. For simplicity, the approximation tip deflection 

of Equation 4.71 is used. The tip deflection in Laplace domain is identical! in form to Equation 

4.72 and is repeated here for convenience: 

  

  

  

i, (6) P.L° 
Win(S) = 

"Pp 96 Qs) 2 1 2 

» 2 (8.21) 
Pok (2h? + ht,)? (hty + 3th) 

4 5 = + = . 
2 1 ,2 9 ? 

16s(h° + ht, + 3 fh) 
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Figure 28. Percent increase of Deflection of Sandwich Beam in Three-Point Bending 

For a four-parameter fluid, the ratio of the polynomials Q(s) and P(s) is 

Q(s) _ q,s + qos 

P(s) 
  re (8.22) 

1 + pys + pos 

where qi, Gz, P1 and pz are defined in Equation 8.3. When this ratio is substituted into Equation 

8.18 and the inverse Laplace transform performed, the result is the time-dependent tip de- 

flection. It is 
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3 _ 

Wrio(t) = Win + Pol tt e( —-e i) . (8.23) 
Hp up 2 142, | "2 E, 

The response of the three-layer sandwich beam to the time-dependence of the 

honeycomb core in shear was studied in Chapter 4 also. The tip deflection in Laplace domain, 

Equation 4.49, is also repeated here: 

_ Po 3 L Ri Rp 

mee | aa oy ° water (yaa Fey) BA 
P(s) 

    

S 
me for a four-parameter fluid, Equation 8.19, is substituted into Equation 8.21. The 

time-dependent tip deflection is the inverse Laplace transform of the resulting equation, or 

Po R2\P y 1 (,_ e- 3.05 Wtip(t) = Wtip + AR, + Rey? Oh ¥9 + 5 ( —-en ) . (8.25) 

The time-dependent response of the beam to both the time-dependent shear behavior of 

  The ratio 

the core and the time-dependent extensional behavior of the face sheets can be found by 

combining the results in Equations 8.20 and 8.22. This does not mean that these equations 

are simply added; rather, the time-dependent portions are added, or 

  

3 _ 
Wrip(t) = Wri + Pot + 4 E(1-.« i) 

tip tip 2 4.2 | "2 E, 
96t,(n™ + At, + 3) 

2 Pol 7 | t 1 ( m) + —2_{ +] — + —(1-e% 
A(Ry + Ro) ( an %2 G, 

The percent increase in tip deflection should, as explained previously, be the same at any 

(8.26) 
  

point along the length of the beam. Therefore, the percent increase in deflection as predicted 

by the three-layer beam model using the four parameter fluid models found in this chapter is 
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3 -—E,t PoL ep E(w) 
S6ty(n° + ht, + Zh) 1 

Ww x100% 
tip (8.27) 

Pol Ri \f 1 aSit 
2 \ Oh wte(i-e™) 4(R, + Ro) 2 1 

Ww x100% . 
up 

This is shown as a function of time in Figure 29 along with the experimentally-measured per- 

cent increase in deflection for comparison. 
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For the first five days, this expression does a 
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marginally acceptable job of predicting the response of the beam. However, after the first five 

days, the experimental results are much higher than predicted by the model. There are se- 

veral possible explanations for this. First, the time-dependent experiment on the honeycomb 

in shear was only conducted for fourteen days. Perhaps its behavior had not quite levelled 

off to a constant increase in strain, therefore making the four-parameter fluid a poor choice 

as a model. Also, none of these experiments were performed concurrently. Changes in 

weather, such as temperature and humidity, are known to effect polymer based materials, and 

unexpected vibration and motion of the experimental fixtures, such as that due to construction 

work in the building, may have adversely effected the results of the experiments. Because 

these experiments were not performed simultaneously, they may have been influenced by 

different environmental effects. 

The periodic nature of the actual beam response remains an issue and certainly is a topic 

for future research. The periodic response, measured for over a month, raises suspicions of 

a periodically changing environment (e.g., air conditioning not run during weekends). Friction 

in the experimental apparatus would not cause the deflection to decrease with time. Friction 

would simply cause the deflection to remain constant for a period, then, as the friction is 

overcome, the deflection would increase again. Assuming the load is constant for a period, 

which in fact it should be, the only way for deflection to decrease with time is to have material 

properties which change with time. Specifically, the effective elastic moduli would have to 

increase with time! Another issue that can be considered is the response of quartz-epoxy 

material on the compression side of the beam. Experiments were conducted on the quartz- 

epoxy in tension. The time-dependent behavior was much greater than expected. This could 

be due to the time-dependent behavior of the matrix material, the time-dependent behavior 

of the fibers, or the time-dependent behavior of the interface between the matrix and the fi- 

bers. lf the interface was losing bond integrity with time in tension, then the compression 

response could be quite different. Here, the time-dependent compressive response is as- 

sumed to be the same as the time-dependent tensile response. The time-dependent 

compressive behavior of the material is certainly a topic for further study. 
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Summary 

Although the experimental results are less than comprehensive, they do demonstrate the 

potential of the sandwich beam models and the correspondence principle of viscoelasticity. 

lf further experiments were performed in controlled environments, or at least concurrently, 

better agreement between the predictions for the deflection of the beam and the actual ex- 

perimental data might be expected. However, the periodic nature of the actual beam re- 

sponse may involve other issues. 
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Chapter 9 - Observations, Conclusions and 

Recommendations for Further Study 

In the course of this work, analytical elastic models in which the material properties ap- 

pear explicitly were successfully developed for both the three-layer and five-layer symmetric 

sandwich beams. Knowledge of the form of the simpler three-layer beam model was used to 

predict the form of the more complicated five-layer model, and the predictions have been 

verified computationally. That the form of these models was similar supports the conclusion 

that a seven-layer (or even nine-layer) beam model can be developed by the same procedure. 

For a mechanical load, the response of the both models can be separated into two portions: 

the response of the beam as predicted by strength of materials, and an additional amount of 

response due to shear. The additional shear response is composed of several terms, many 

of which are so small as to be negligible. 

Once the elastic models were developed, sensitivity studies were performed using rep- 

resentative material properties. From these sensitivity studies, several conclusions can be 

drawn. First, although they cannot predict the time-dependent response of the beam to a 

given loading condition, the elastic sensitivity studies are a useful tool which indicate which 

material properties most influence the response of the beam in both the elastic case and the 
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viscoelastic case. Thus, a material property which is important to the elastic response of the 

beam is likewise important to the viscoelastic response of the beam. Also, the elastic sensi- 

tivity studies of a beam in three-point bending yield similar results for both the three-layer and 

five-layer models. The single most important material property to the response of the beam 

in three-point bending is the modulus of elasticity of the face sheets. The second most im- 

portant property is the shear modulus of the core. All other material properties have a smaller 

role in the response of the sandwich beam to three-point bending. For the elastic sensitivity 

studies of a beam subjected to a linear thermal gradient, the three-layer and five-layer models 

did not yield identical results. Specifically, because the three-layer model does not include 

the adhesive layers separately, the effect of these layers is overlooked. In the five-layer 

model, when the face sheet modulus of elasticity is reduced to the point where it is less than 

the adhesive extensional modulus, the thermal expansion properties of the adhesive, not the 

face sheets, control the response of the beam. One important conclusion that can be drawn 

based on this observation is that, although for most cases the five-layer model may not yield 

any unique information, it should not be overlooked. The effect of the adhesive layers are only 

manifested in the five-layer beam model. Also, if the material properties of the adhesive layer 

are in question (i.e., if a particular adhesive is to be chosen), the five layer model must be 

used. 

After the models were studied for their elastic responses, the viscoelastic three-layer and 

five-layer models were developed using the correspondence principle of viscoelasticity. As 

already mentioned, the material properties which most influence the beam elastically also 

have the most influence on the time-dependent beam models. Specifically, time-dependence 

of the core in shear is much more important than time-dependence of either the adhesive or 

face sheets in shear. Also, the extensional time-dependent behavior of the face sheets has 

the most influence on the overall response of the beam, nearly a one-to-one relationship. 

Once the analytical work, both elastic and viscoelastic, was complete, experiments to 

measure the time-dependent behavior of the constituent materials and the sandwich beam 

were designed and performed. The materials tested were representative of candidate mate- 
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rials for the precision segmented reflector construction. A quasi-isotropic quartz-epoxy face 

sheet material was tested in tension, and a glass-imide honeycomb was tested in shear. Both 

of these materials exhibited a much higher amount of time-dependent behavior than was ex- 

pected, on the order of ten percent increase in strain in a matter of weeks.[4] Viscoelastic 

models were used to describe the behavior of these materials. For both, four-parameter fluid 

models captured the essential characteristics of their time-dependent behavior. These 

viscoelastic models were used in conjunction with the three-layer beam model to predict the 

time-dependent response of the beam to three-point bending. However, when this prediction 

was compared to actual observed behavior, the comparison was poor. The periodic nature 

of the observed response of the sandwich beam remains unexplained. In order to gain more 

insight into the actual time-dependent behavior of the sandwich beam and its constituents, 

further experimental work is strongly recommended. These experiments should be performed 

simultaneously and in close proximity to each other so that any aberrant weather conditions 

or other unexpected occurrences will similarly effect all of the experiments at the same time. 

The experiments performed for this study should be repeated. Additionally, the time- 

dependent behavior of the quartz-epoxy face sheet material in compression should be meas- 

ured. Should it differ significantly from the time-dependent behavior in tension, serious 

consideration should be given to using a model which accounts for different tensile and 

compressive properties. Also, the time-dependent behavior of the adhesive in extension 

should be studied experimentally, and its influence on the response of the five-layer beam 

using the correspondence principle of viscoelasticity should be determined. The experimental 

results should then be used in conjunction with the five-layer beam model to more accurately 

reflect the behavior of the actual sandwich beam. 
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Appendix A. Coefficient of Thermal Expansion of 

Aluminum Honeycomb 

A honeycomb material is, as the word honeycomb implies, composed of many hexagonal 

cells. The coefficient of thermal expansion of. unsupported honeycomb material in two 

orthogonal directions can be defined. For a hexagonal cell, the increase in cell size can be 

measured from the center of one wail to the center of the opposite wall, or the increase in can 

be measured from one corner to the opposite corner. These two cases are depicted in 

Figure A.1, the two directions being referred to as the “w” direction and the ’c” direction. 

With this notation, “w” denotes the wall-to-wall direction and “c” denotes the corner-to-corner 

direction. 

By definition, the coefficient of thermal expansion of a material is the amount of strain 

caused by a one degree temperature increase. By using geometry and this basic definition 

of the coefficient of thermal expansion, the thermal expansion coefficient of the honeycomb in 

the “c” and “w” directions can be found. 

If the lengths of each of the six walls of a cell are denoted by L, then the increase in length 

of each wall is 

AL = a ATL’, (A.1) 
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Figure A.1. Two Directions for Hexagonal Honeycomb Materials 
  

where AT Is the temperature change and a is the coefficient of thermal expansion of alumi- 

num. The two coefficients of thermal expansion can be defined as, for the wall-to-wall direc- 

tion, 

tw = (A.2) 

and for the corner-to-corner direction, 

a= SS (A.3) 
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where AW, W, AC and C are shown in Figure A.2. It is important to notice that with aluminum, 

thermal expansion results in similar hexagons, i.e. the original hexagon deforms simply into 

a larger hexagon. For the wall-to-wall case, using the geometry of a hexagon as shown in 

Figure A.2, 

W = Ltan60° and AW = ALtan60° , (A.4) 

which yields 

( AL tan 60° ) 

L tan 60° 
tw = aT =a. (A.5) 

For the corner to corner case, 

C = 2L and AC = 2AL , (A.6) 

which yields 

( 2AL ) 
2L 

ae Sr Ss . (A.?) 

For both the “W” and”C” direction, the coefficient of thermal expansion of a honeycomb ma- 

terial is the same as the coefficient of thermal expansion of the material of which the 

honeycomb is composed. Thus, for the aluminum honeycomb core, the coefficient of thermal 

expansion is the same as the coefficient of thermal expansion for solid aluminum. 
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Figure A.2. Single Hexagonal Cell of Honeycomb - Unexpanded and Expanded 
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Appendix B. Approximations: Three-Layer 

Sandwich Beam Model 

In Chapter 4, a few approximations were made to simplify the expression for the tip de- 

flection based on the relative size of the terms of which it is composed. These approximations 

are justified in this appendix. 

Approximation for Equation 4.12 

The first of these approximations was used to simplify the tip deflection of the beam 

subjected to a linear through-the-thickness thermal gradient as it appeared in Equation 4.11. 

Equation 4.11 is repeated here for convenience: 

T T.,2 T T 
(Mg + M,)b (MR, _- MgRo)(C7R, _ CgR) 
  a - (B.1) 

- 8(Ry + Ra) C7CQ(Ry + Ro)” 

The sensitivity studies were performed using the following approximate tip deflection: 
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T T\, 2 

eoorx (Mg + My)L 8D 
"P B(R, + Ro) ) 

Notice that the omitted portion is exactly the expression for we in Equation 4.6 multiplied by 

sinh +. or 

Wape™ = Wp — WesinhS= (B.3) 

Another type of sensitivity study is now introduced. For this, the approximate tip de- 

flection is compared to the actual tip deflection, Equation B.1, for all of the cases considered 

in the thermal sensitivity studies of Chapter 4. Two tables, Table B.1 and Table B.2 present 

in the left columns which material property or layer thickness is reduced from its nominal 

value as given in Table 1 on page 47 by a factor of ten. The right column is the value of the 

following: 

  (B.4) 

Inspection of these tables reveals that the approximate tip deflection is at most 0.6% different 

than the actual tip deflection of Equation B.1. 

Approximation for Equation 4.32 

Another approximation was used in Chapter 4, this time to simplify the tip deflection of 

a cantilever beam in order to more easily apply the correspondence principle of 

viscoelasticity. The actual tip deflection was shown in Equation 4.4 and is repeated: 
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Approximation for Three-Layer Aluminum Beam - Thermal Gradient 

  

  

  

Reduced Variable _ 
tip 

NONE 1.000002 

E, 1.000002 

G, 1.000002 

ty 1.000000 

ay 0.99996 

E, 1.000000 

G2 1.000020 

h 1.000000 

Xe 1.000003 

ALL 1.000000         
  

2 2 

woe Pe, RR 
"Pp 48(R, + Ro) A(R, +R,)* \ %9 C7 

  

9 (B.5) 
P(c7Ry — CgRo) (: = ) _ -—e 

2¢7Cg4(C7 + Cg)(Ry + Ry)* 

The approximate tip deflection includes only the first two terms, or 

3 R? R? apprx _ PL PL ™ 2 B6 Wtip WR, +R + AR, #Ro® +R ( ct + . (B.6) 

Again, the relative sizes of these expressions are compared for all of the cases considered in 

the Chapter 4 mechanical-load sensitivity studies. The results are presented in Table B.3 and 

Table 8.4 for the aluminum and composite beams respectively. In these tables, the left col- 

umns indicate which material property or layer thickness is reduced by a factor of ten; the 

Appendix B. Approximations: Three-Layer Sandwich Beam Model 160



right columns present the value of Equation B.4 for the tip and approximate tip deflections in 

Equations B.5 and B.6. It is apparent from these tables that the approximate tip deflection 

differs from the actual tip deflection by at most 3.1%. 

Approximation for Equation 4,71 

The final approximation in the three-layer model was used to simplify the expression for 

the tip deflection of a tip-loaded cantilever beam based on the relative values of the exten- 

sional moduli. Specifically, the modulus of elasticity of the core is so small in comparison to 

  

Table B.2. Approximation for Three-Layer Composite Beam - Thermal Gradient 

  

  

  

: 
wie Reduced Variable Wp 

NONE 1.000006 

E, 1.000006 

G, 1.000005 

ty 1.000001 

as 
1.000001 

E, 1.000001 

G, 1.000059 

h 1.000000 

at 1.000006 

ALL 1.000000       
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Table B.3. Approximation for Three-Layer Aluminum Beam - Mechanical Load 

  

  

  

  

Reduced Variable wi 
Wup 

NONE 1.003 

Ey 1.000 

G; 1.002 

th 1.000 

E2 1.003 

Gz 1.031 

h 1.001 

ALL 1.000       

  

  

Table B.4. Approximation for Three-Layer Composite Beam - Mechanical Load 

  

  

  

  

. wipr™ 
Reduced Variable Wup 

NONE 4.001 

E, 1.000 

G, 1.001 

ty 
1.000 

E, 1.001 

G, 1.020 

h 1.000 

ALL 1.000       
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that of the face sheets that it is approximated as zero. The approximate tip deflection, shown 

in Equation 4.71, is repeated: 

  

“tip = + Cg C7 

2 
2 42 

PL PL Qn? +nty? hh tg) | 
2 1,2 2 

(B.7) 

This is compared to the value of the tip deflection as given by Equation B.6 for all of the cases 

considered previously. The left columns of Table B.5 and Table B.6 indicate which material 

property or layer thickness is reduced by a factor of ten. The right columns of these tables is 

the value of Equation B.4. The approximate tip deflection of Equation B.7 differs from that of 

Equation B.6 by less than one percent for all cases. 

  

Table B.S. Approximation for Three-Layer Aluminum Beam (E, = 0) - Mechanical Load 

  

  

  

Reduced Variable _ 
np 

NONE 1.0001 

E, 1.0018 

G, 1.0001 

ty 1.0020 

E2 1.0000 

G2 1.0000 

h 1.0000 

ALL 1.0002       
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Table -B.6. Approximation for Three-Layer Composite Beam (E, = 0) - Macnanical Load 

  

  

  

    

Reduced Variable _ 
tp 

NONE 1.0006 

E, 1.0072 

Gy 1.0006 

th 1.0082 

E, 1.0001 

G2 1.0002 

h 1.0000 

ALL 1.0007     
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Appendix C. Approximations and Verifications: 

Five-Layer Sandwich Beam Model 

Verification of Equations 5.41 and 5.47 

For the three-layer sandwich beam model, all of the constants w,, i = 0,1,2,3,5,6 were 

found in closed form. In the five-layer sandwich beam model, all of the constants can be found 

in closed form; however, because of their complexity, not all of these constants are useful if 

left in the form in which they were found. The results of the three-layer beam model are used 

to simplify some of the constants of the five-layer beam model. 

First, for the tip-loaded cantilever beam, the constant w, was found in closed form in 

Equation 5.38 and is 

  

R,BM R,MA ___ RAB 
P Cg + Cg + Cr 
  Ww, = (C.1) 

2(R, + Ro + R3)(AB + BM + MA) 

A form similar to that of w, for the three-layer model was assumed in Equation 5.41: 
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2 2 2 R R R we) - ——P___. (= + 2 4 =) , (C.2) 
2(R, + Ro + Ra) 9 8 , 

For the expressions in Equation C.1 and C.2 to be equivalent, the following identities must be 

  

  

  

true: 

BM _ Ry 
(AB + BM + MA) ~ (Ry, + Ro + Rg) 

MA = Re (C.3) (AB + BM + MA) — (R, + Ry + Rs) 
AB _ Rs 

(AB + BM + MA) ~ (R, + Ry + Rj) 

or 

R(AB+BM+MA) _ R(AB+BM+MA) _ R(AB+BM+MA) _ | (C.4) 
    

BM(R,+R,+R3) MA(R, +R, +R) AB(R, + Rp + Rs) 

Also, for the cantilever beam subjected to a thermal! gradient, wz was found in closed form in 

Equation 5.45. It is 

M.[AB(co¢s — 2€3C,4) + BM(4c,4c, — c2) + MA(cC3Cs5 — 2C5Cg)] 

2(8C4C4Cg + 2CoC4C5 — 2c,c¢ — 2c4c, — 2c45cg)(AB + BM + MA) 

MpLAB(c¢3 — 2C,Cs5) + BM(cC3C5 — 2CoCg) + MA(4c,C, — c5)] 

W2 =   

  + (C.5) 
2(8C,C4Cg + 2CoC3C5 — 2c,cz - Cac, - 2c3c,)(AB + BM + MA) 

My [AB(4c,c4 — ¢3) + BM(co¢s — 2c3C4) + MA(C2¢3 — 2cyCs)] 
  

2(8C,C4Cg + 2¢,C3C5 — 2,08 — 2c4c, — 2c%cg)(AB + BM + MA) 

A form similar to that of w, for the three-layer model was assumed in Equation 5.47 and is 

T T T a2 (M, + Mg + M,) 

2 2(R, + Ro + R3) 
  (C.6) 

For Equations C.5 and C.6 to be equivalent, the following must be identities: 
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AB(CoCs — 2C3C,4) + BM(4c4C, — c2) + MA(C3Cs5 — 2C9Cg) — 4 
  

(8C,C4Cg + 2C5C3C5 — 2C cz — 2chc, ~ 2c3c (AB + BM+MA (Ry + Ro + Ra) 104% 26305 15 3% 2%6 

  

  

  

AB(C9C3 — 2C4C5) + BM(C4C5 — 2cQ¢g) + MA(4CyCg— C5) 4 cn 

(8C,C4Cg + 2CoC3C5 — 2c,cz - 2c%c, - 2cac~)(AB +BM + MA) ~ (Ry + Ro + Ra) 

AB(4c,c,4 — c3) + BM(coc5 — 204C,4) + MA(Coc3 — 2C4C5) — 4 

(8C,C4Cg + 2C4C3C5 — 2c,cz - 2c3C, - 2c2C—)(AB + BM + MA) (Ry +Rg+Rs) | 

or 

— [AB(cx¢5 — 2c4¢4) + BM(4egcg — cS) + MA(C3C5 — 2c9C6) (R, + Ro + Ry) ; 

(BC,C4Cg + 2CyCqCg — 2408 — 2c5C4 — 2C5C,)(AB + BM + MA) 7 

— [AB(c9¢3 — 2¢4¢5) + BM(caC5 — 2c9eg) + MA(4c4cg — €§) (Ry + Rp + Rs) 1 (ce) 
  

(8C,C4Cg + 2CyC4C5 — 2c,c8 — 2c4c, — 2c5cg)(AB + BM + MA) 

- [AB(4c4c, - c3) + BM(coCs5 — 2C3C4) + MA(c2C3 — 2c4€s) |(Ry +R, + R3) 
  

(8C,C4Cg + 2€ 035 — 2¢,€% — 2chc, — 2c%cg)(AB + BM + MA) - 

If the six expressions of Equations C.4 and C.8 can be identically found to be exactly one for 

enough cases, then using the expressions for w, in Equation C.2 and wz in Equation C.6 is 

justified. The twelve material properties and layer thicknesses of the composite beam in Ta- 

ble 7 on page 103 are used as nominal values. Additionally, these material properties and 

layer thicknesses are both increased and reduced by a factor of ten. For every possible per- 

mutation of nominal, reduced and increased values, the six expressions are computed. This 

results in 3,188,646 (6x3'?) values, all of which must be exactly one to verify the assumptions. 

  

  

Out of 3,188,646 values, all but 132 fail within an % of one (greater than 0.99999 but less 

than 1.00001); all but three fall within Ae % of one (greater than 0.9999 but less than 1.0001); 

and all 3,188,646 values are within one-tenth of one percent of being exactly one (greater than 

0.9998 but less than 1.001). Given the accuracy of real number computations on computers, it 

is safe to say that, at least for all 531,441 (317) cases considered, the six expressions are 

identically equal to one. 
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Approximation for Equation 5.42 

The deflection of a tip-loaded cantilever beam was found in Chapter 5 and is completely 

described in Equations 5.35, 5.38 and 5.41. Like the three-layer beam, the tip deflection of the 

five-layer beam can be closely approximated by omitting terms which are much smaller than 

the rest. The tip deflection is given by 

  

w3L° wo? wyL 

Ask AsL 
+ ws cosh 7 + We, sinh > (C.9) 

+ Ww; cosh 7 + Wg, sinh > 

Using Equation 5.38 and the definitions of the hyperbolic sine and cosine functions, the last five 

terms can be rearranged: 

Ast Ash ArL ArL 
Wo + Ws Cosh 7 + We, sinh a + w7 cosh 7 + We sinh 7 

del AL (C.10) 

= Wel 1 - o(F)] + Wel 1 — o(>)] , 

Ash Ark , ; , 
Both exponents, 7. and 72 are sufficiently large for both the aluminum and composite 

beams that the following is true within the capabilities of most computers: 

Ast 
e- (+) = 0 

AL (C.11) 

(+) = 0 

If the approximate tip deflection consists of only the first three terms in Equation C.9, or 

3 2 
W3L Wol W, L 

Wip = 3 + 4 + 5 ; (C.12) 
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then the tip deflection can be written as 

apprx 
Wp = Wnp + We + We .- (C.13) 

As was done in Appendix B, the approximate tip deflection (Equation C.12) is compared to the 

actual tip deflection (Equation C.13) using the following ratio: 

  (C.14) 

This ratio is found for all of the cases considered in the sensitivity studies of Chapter 6. The 

left columns of Table C.1 and Table C.2 indicate which material property or layer thickness 

was reduced by a factor of ten; the right columns of these tables present the value of Equation 

C.14. Like the three-layer beam, the approximate tip deflection of the five-layer beam differs 

from the actual tip deflection by at most 3.1%. 
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Table C.1. Approximation of Five-Layer Aluminum Beam - Mechanical Load 

  

  

Reduced Variable wape™ 

NONE 1.0026 

E, 1.0001 

G, 1.0016 

ty 1.0000 

E, 1.0026 

G, 1.0028 

te 1.0026 

E, 1.0026 

G; 1.0306 

h 1.0006 

ALL 1.0000         
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Table C.2. Approximation of Five-Layer Composite Beam - Mechanical Load 

  

  

Reduced Variable wae 

NONE 1.0013 

E 4.0001 

G, 1.0006 

ty 1.0000 

E, 1.0012 

G2 4.0013 

te 1.0012 

E; 4.0013 

G; 1.0203 

h 1.0003 

ALL 4.0000         
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