Terminating Parallel Simulations

Marc Abrams

TR 92-01

Department of Computer Science
Virginia Polytechnic Institute and State Umversuy
Blacksburg, Virginia 24061

February 4, 1992

Terminating Parallel Simulations

Marc Abrams
Computer Science Department
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106
U.S.A.

abrams@cs.vt.edu

TR-01 January 1992

Ahbstract

The simulation termination problem consists of three parts. First, find a value of simu-
lation time, denoted t, such that a termination condition evaluated using simulation model
attributes at time ¢ has value true. Second, report the value of each simulation ontput mea-
sure at time t. Finally, stop execution of the simulation. The problem is more difficult than
the classical termination detection and stability detection problems for two r€asons. First,
a simulation model termination condition may not be a stable property of the computation.
Second, evaluating the termination condition asynchronously with respect to the simulation
implies that when termination is detected the simulator has already modified old attribute
values needed to compute output measures. The paper presents two different general so-
lutions to the simulation termination problem for various simulation protocols and paraltel
architectures. Implementation of both solutions with consetvative-synchronous, optimistic,
and conservative-asynchronous simulation protocols as well as synchronous shared-memory,
distributed, and asynchronous shared memory architectures is discussed.

1 Introduction

Simulation models use many diﬂerént rules to decide when to terminate. However, most parallel
dis;:rete—event simulators can handle only a single termination condition: each logical process
constituting the simulation terminates when its local simulation time equals or exceeds a value T'.
To apply parallel simulation protocols to any simulation model, algorithms must be developed

to use any arbitrary termination rule, which is the objective of this paper.

The simulation termination problem is to devise an algorithm that can be added to a non-
lerminating simulation program so that the modified program will find a simulation time at which
o lermination condition (described later) holds, then calculate the value of each simulation output
measure using attribute values at this simulation time, and finally shut down the sirmmlation
program (i.e., terminate the processes comprising the simulation).

This problem formulation is based on the belief that in a commercial parallet simulation
system, one would like the user to specify a simulation model without worrying about termi-
nation, and then separately specily various termination conditions over the multi-year lifetime
of the simulation prograrm. The simulation systemn should automatically compose the termina-
tion condition with the non-terminating sirnulation, and the problem statement is to develop a
method of composition. Composing a termination condition with a non-terminating simulation
appears preferable to a termination mechanism that is “built m” to a simmlation program, which
complicates maintenance of the program.

A termination condition is a boolean valued function whose domain is a subset of all simu-
lation model attributes. Time is only one attribute upon which a termination condition may be

based, as the following examples lustrate:
T1: In a multiprogrammed computer system simulation, has deadlock occurred?
T9: In a colliding pucks simulation, have at least M collisions occurred in the system?
T3: In a colliding pucks simulation, have ezactly M collisions occurred in the system?
T4: In a colliding pucks simulation, have M & 0.1M collisions occurred in the system?

T5: In a mobile telephone simulation, is this the first time that three telephones’ radii of

communication overlap?

Té:

T7:

T8:

T:

T10:

1.1

In a mobile telephone simulation, is this the tenth time that three telephones’ radii of

communication overiap?

In a mobile telephone simulation, is this the last time that three telephones’ radii of com-

munication overlap in the simulation time interval [0,150}7

Let § and ¢ be constants. In an open queneing network simulation, does the average number
of jobs in the system at times t and ¢ — differ by less than € or have at least M jobs

entered the system?

In an electrical circuit simulation does the voltage at 2 set of nodes meet some stability
condition (Evaluating the stability condition requires a costly numerical integration of a

function.)?

Has the instantaneous number of jobs waiting for service in a queueing network simulation

reached ite maximum over the simulation time interval [0,1000]7

Categorization of Termination Conditions

Simulation termination conditions can be categorized based on three attributes:

Stability: A termination condition is steble if, once it holds, it continues to hold.[3] Condi-

tions T1 and T2 are the only stable properties listed above. If a termination detection
algorithm evaluates a stable termination condition using the values of simulation model
attributes at simulation time t, and the condition is false, then the condition must be
false at all times smaller than . In contrast, no such inference can be made in general
for non-stable conditions; therefore stable conditions are inherently easier to detect than

non-stable conditions.

L

Time guantification: Viewing a termination condition as a predicate calculus formula, expres-
sion of a termination condition may or may not require quantification over time. Condi-
tions T5-T6 and T10 require quantification over time. For example, consider condition T5.
Letting C(t) denote the Boolean predicate “three telephones’ radii of communication over-
lap,” the termination condition is Cy AR <t C).

Time quantified conditions require the condition to be evaluated for a set of times, rather
than a single time, which makes them inherently harder to detect than unquantified con-
ditions. In fact, the termination condition might have to be evaluated at every simulation

time at which a model attribute changes value, such as in condition T10.

This paper considers stable and non-stable non-quantified termination conditions; a general
solution to quantified conditions is left as an open problem. (The Exhaustive Termination
algorithm of Abrams and Richardson [1] and the Algorithm TW2 of Lin [6] both detect one
specific quantified condition, namely the first time that a Boolean condition holds, such as
condition T5. However the general problem cannot he solved by any existing algorithm.)

Termination conditions T2 through T10 illustrate various difficulties in detecting simulation
termination. All ten conditions require data that is global to the processes that comprise a
parallel simulation. Recording the global data that is required by a termination condition can
limit the performance of parallel simulation.

Conditions T3, T5, and T8 are difficult to detect because they only hold for narrow intervals
of simulation time. Condition T4 is somewhat easier to detect than T3 because it holds for
a wider interval of simulation time. Condition T9 suggests that sometimes the termination
condition may be as costly as or more costly than the simulation itself to evaluate; in this case
parallel evaluation of the termination condition may be more critical than parallel execution of

the simulation model. Some conditions represent the conjunct and/or disjunct of more primitive

conditions, such as conditions T8.

At worst, detecting a termination condition requires evaluating the condition at every simu-
lation time at which a logical process changes the value of any simulation attribute in the domain
of the termination condition. Detecting a quantified termination condition additionally requires
comparison of the value of measures at multiple time simulation times. Therefore a parallel sim-
ulation could require more wall clock time to execute than a sequential simulation. The problem
may not have a simple solution; for example Lin has shown that adding extra processors to
an optimistic protocol to evaluate a termination condition may introduce more overhead than

benefit.[6] This may pose a fundamental limitation on the speedup of parallel simulation.
1.2 Framework for Solutions

This paper is intended to provide a theoretical basis for the simulation termination problem
and to provide a framework for future development of solutions. Therefore we formally define
and develop two general solutions to the simulation termination problem. The framework fits
all proposed termination algorithms (Lin and Lazowska, Abrams and Richardson, Richardson,
Sanjeevan and Abrams, and Lin.{7, 1, 8, 6]), as discussed in Section 4.2.

Our solutions are general in the sense that they work with any underlying discrete-event
simulation, computer architecture, world view, and time flow mechanism. The solutions are
efficient for any parallel simulation protocol that tends to fill in space-time in ascending order.

We adopt the view of separating correctness concerns from efficiency concerns.[3, p. 9] There-
fore our solutions state what tests and assignments must be executed to solve the termination
problem. However they leave unspecified the issue of how the solutions are mapped to a parallel
computer architecture. In particular, they leave unspecified the issue of whether the termination

detection algorithm is mapped to separate processes and processors from the underlying sim-

ulation, because this is a question of efficiency that must be reexamined for each combination
of computer architecture and parallel simulation protocol that are used. The “how” question is
addressed in Section 5.

The problem statement and termination algorithms in the following section are presented
in two forms, first an informal and then a formal description. Furthermore, the algorithms are
presented as a sequence of three refinements. The informal presentations are intended to give
sufficient detail to permit a reader to skip the formal sections but still understand the algorithms.
The formal presentations eliminate ambiguities in the informal presentations and allow rigorous

proof of both progress and safety properties,
1.3 Relation to the Classical Termination Problem

The parallel simulation termination detection problem is related to two problems that have been
studied extensively in the literature: termination detection [4, Ch. 9] and stability detection {4,
Ch. 11]. The termination detection problem is to identify when a set of processes has ceased
its computation, which requires detecting that each process is idle and that no process will ever
again become active. The stability detection problem is to identify when a stable property holds
for an ongoing computation. Deadlock in a system that does not break deadlocks is an example
of a stable property.

The parallel simulation termination problem is more difficult than the classical termination
detection problem. The classical termination problem is one of determining when all processes
have become permanently idle. In contrast the underlying simnlation program is assumed to
continue execution until stopped by the superposed termination detection algorithm, just as in
the stability detection problem “The superposed program is required to detect a property of an

ongoing underlying computation.” f3, p. 270] Second, the classical termination problem is one of

detecting a termination condition that is a conjunct of predicates, where each predicate can be
evaluated by one process using only variables private to that process. In contrast, a simulation
termination condition is an arbitrary function of any or all simulation attributes, including those
global to all processes comprising the simulation.

The parallel simulation termination problem differs from the stability detection problem in
three ways. First, simulation termination requires identifying a point in the computation at
which a possibly non-stable condition holds, whereas the classical detection problem assumes a
stable condition. Detecting non-stable conditions is difficult because it can require exhaustive
examination of all global system states; therefore a good solution to the simulation termina-
tion problem should identify ways to deduce that certain global states may be excluded from
consideration, as is done in Section 4. Second, in the simulation termination problem, when a
time satisfying the termination condition is identified, a set of output measures must be evalu-
ated. The values of simulation model attributes required to evaluate output measures, generally
distinct from those required to evaluate termination, must be available. Further, the attribute
values at the termination time, which lies in the past of the processes that are earrying out
the parallel simulation, must be used. No analog to recovering old attribute values to evaluate
output measures exists in the stability detection problem. Third, no analog to time-quantified

termination conditions has been treated in the stability detection literature.
1.4 Summary of UNITY

The formal presentations in this paper use the notation, computation model, and proof system of
UNITY.[3] We use UNITY for several reasons. First, UNITY offers a way to state the algorithins
in a computer architecture and programming language independent form, which facilitates our

goal of developing a framework for all possible solutions to the termination problem for any sim-

ulation model and parallel execution method. Second, UNITY allows an algebraic specification
of the algorithm, which reduces our tendency to introduce arbitrary implementation decisions
into our solution. Finally, UNITY provides the ability to state and prove both progress and
safety properties in relatively compact form. In particular, the detects logical relation simpli-
fies formal reasoning. A summary of UNITY follows; a lengthier tutorial appears in Abrams,

Page, and Nance.{2)

Computational Model: “A UNITY program consists of a declaration of variables, a speci-
fication of their initial values, and a set of multiple assignment statements.” [4, p. 9] The state
of a program after some step of the computation is the value of all program variables. In the
UNITY computation model, “a program execution starts from any state satisfying the initial
condition and goes on forever; in each step of execution some assignment statement is selected
nondeterministically and executed. Nondeterministic selection is constrained by the following
fairness tule?” at any point duting program execution, every statermnent in the program must be
executed at some point in the future.[4, p. 9]

A UNITY program never terminates. However, a program may reach fixed point (FP),
which is a computation state in which execution of any assignment statement does not change
the state. At FP, the left and right hand side of each assignment statement arc equal, and an

implementation can thereafter terminate the program.

UNITY Specifications: In addition to expressing programs, UNITY can be used to state
and teason about program specifications through a set of logical relationships defined below.
(UNITY denotes Vi, i € W,C(s) by { Vi : i€ W = C(3)).)

Let p and ¢ denote arbitrary predicates, or Boolean valued functions of the values of program

variables. Let s denote an assignment statement in a program. The assertion p = ¢ is read “if

p holds then ¢ holds.” The assertion {p}s{g} denotes that execution of statement s in any state
that satisfies predicate p results in a state that satisfies predicate g, if execution of s terminates.
We will use three logical relations of UNITY: unless, leads-1o, and deiecls . The definitions

below are those of Chandy and Misra.[4, Ch. 3]

Unless: For a given program F, “p unless ¢ means that if p is true at some point in the
computation and ¢ is not, in the next step (i.e., after execution of a statement) either p remains
true or ¢ becomes true. Therefore either ¢ never holds and p continues to hold forever, or ¢ holds
eventually (it may hold initially when p holds) and p continues to hold at least until ¢ holds.
Formally, p unless ¢ = (Vs : sin I :: {pA—q}s{pVa}).

Two special cases of unless are stable and invariant. A stable predicate - just like a stable
termination condition — continues to hold once it holds: stable p= p unless false. An invariant
property always holds in any program execution: invariant p = (initial condition = ¢} A

stable q.

Leads-1o: Leads-to is denoted by the symbol —. The assertion “p +— ¢” means that if p becomes
true at some point in the computation, g is or eventually will be true. The formal definttion of

leads-to is somewhat lengthy, and is not given here.

Detects: The assertion “p detects ¢” means that if ¢ holds at some point in the computation,
then eventually p will also hold; further more when p holds ¢ also holds. Formally p detects ¢ =
(p = ¢) A (¢ — p). The simulation termination problem is expressed in terms of defects in

Section 3.

Program notation: Figure 1 shows the syntax of UNITY program. A <ver—decl-list> is a

list of variable declarations in Pascal. The <instial-list> specifies the initial values of program

Program <nrame>
declare <vaer-decl-list>
initially <inétial-list>
always <always-lisi>
assign <asg-list>

end { <name> }

Figure 1: UNITY program syntax.

variables. The <always-list> contains equations that may be thought of as functions. The
< asg-list> contains a list of assignment statements separated by the symbol “O0”. An assignment
statement may be multiple; the symbol “||” separates the component assignments. For example,
z:= y |l y := z swaps z and y. An assignment statement may be conditional; if the condition is
not met then the assignment is the identify function. For example, ¢ := —z if z < 0 assigns the
absolute value of # to #. A multiple assignment may be quantified. For example, given array
AJ0..N], the statement (]| i : 0<i<N == A[i]:=A[i+1]) shifts Afi+1] to A[i] for the specified range

of 1 in parallel.

Theorems: The theorems listed below are used in the proofs. Each proof is written in the

form of hypothesis

conclusion
P=4q
— 1
e (1)
p—q,r unless b 2)
pAre—={gAr)vb
pr+ ¢, 7 is stable (3)
pPAP— gAY

(VYm:meW :: p(m) — g(m)))

(Im:meW upm)}— (Im:meW = g(m))
p g p e g _ (5)
pVpP gV

10

For any set W:

(Vm:meW pA(M=m)» (pAM=<m)Vq)
p—q

(6)

p detects g, q detecls r)
p delecls r

Theorems (1), (2), (3), (4), (5), (6), and (7) are the implication theorem, the progress safety
progress theorem, a corollary to the progress safety progress theorem, the general disjunction
theorem, the finite disjunction theorem, an induction theorem for leads-to, and the transitive
property for detects , respectively.[3, pp. 64, 65, 71, 65-66, 71, 72, 210]

Theorem (8) is used to prove p —+ ¢ by induction over the value of a metric. The metric is
denoted by M, which is a function of a program state. The range of M, set W, must be partially
ordered under < and have a lower bound. The inductive hypothesis of Theorer (6) is that if one
can prove that in any program state either p A —¢ holds and the value of the metric eventually
decreases or g holds, then because the metric has a lower bound, ¢ must eventually hold.

We will often prove a detecis relation by decomposing it into a chain of more primitive

detects , then proving the primitive defects using the definition of defects and other theorems,
and finally applying Theorem (7).

In addition to these theorems, subsequent proofs require an instance of the Substitution
Aziom: if “invariant I holds, then any predicate p may be replaced by pA 1.

Finally, proofs are written in a structured form consisting of a sequence of deductions; each

deduction is followed by 2 comma and a justification for that deduction.
2 Specification of Simulation

Before we can present a formal statement of and solution to the sirmulation termination problem,

we need a formal statement of what it means to carry out a discrete event simulation. Therefore

11

we start by formally specifying simulation itself to the extent needed for subsequent sections.
The definition will be presented informally, and then formalized as a set of UNITY assertions.

Because we seek a general solution to the simulation termination problem, our definition
of simulation must subsume both sequential and parallel execution. It must also subsume all
conceptual frameworks used for simulation, such as event-, activity-, and process-oriented world
views. It must also subsume all time flow mechanisms used in discrete-event simulation, including
next event, process view, transaction view, and three-phase approach.

We propose the following definition of “pure” simulation. A simulation represents the time
evolution of a set of attributes. A discrete-event simulation, viewed operationally, starts with
each attribute assigned an initial value. At a sequence of time instances, each attribute will be
assigned a value. The value assigned to an attribute may be the same as or different from its
old value.

Let a1,az,...,a,...,a, represent the attributes modeled by a simulation program. A simu-
lation program starts with an initial value for each of the n attributes and calculates a sequence
of values for all attributes. Integer 7, for 1 < i < n, indexes an attribute. All UNITY formulas
in which 7 appears are implicitly quantified over all i € [1, 2], unless otherwise noted.

The integer k, for k= 1,2,3,. ., indexes simulation time sieps in the simulation. The first
simulation time step, £ = 1, denotes the initial assignment of values to attributes. The k-th
simulation time step denotes the k-th assignment of values to model attributes.

Suppose that simulation time step & = 1 corresponds to simulation time 0.0, time step & = 2
to simulation time 340.35, time step k& = 3 to simulation time 990.8, and so on. The values
0.0, 340.35, and 990.8 are irrelevant in reasoning about simulation termination. Therefore we
only refer to time steps 1,2, and 3, and do not define any notation to refer to the simulation

times 0.0, 340.35, and 990.8. The “current simulation time” is simply one of the n attributes in

12

a simulation model.

Let N denote an upper bound on the number of values that are assigned to the attribute set.
Equivalently, ¥ is the maximum number of time steps that are simulated before the underlying
simulation stops execution possibly without the termination condition being satisfied. In theory,
there is always an integer N that serves as an upper bound on the number of time steps that
a simulation can compute. In practice, the limit N alway exists, because no computer program
executes forever. Note that the limit N has nothing to do with the termination problem; a person
may write a simulation program in which the termination condition is never met, in which case
the simulation will not compute more than N time steps. Otherwise the simulation generally
detects termination in less than N time steps.

We specify simulation in terms of n arrays, a;[1..N], for i = 1,2,.. ., n, and variables K and

TCD.

Array a;[1..n]: Array elements { Vi :: a;[1]) represent the initial values of the n model at-
tributes. Array elements { Vi : 1<k < N :: a;[k]) represent the k-th values assigned to

model attributes.

K: Variable K is initially 1. At any point during simulation, the values assigned to the first
K time steps of all attributes will never change. Attributes at time steps 1,2,...,K are
termed committed, the set of uncommitted time steps in a simulation 1s {k : K < &k <
N}. Therefore K represents a horizon of committed time steps that advances during
simulation. Attribute values at committed time steps have been assigned their final values,
while attributes at uncommitied time steps may or may not have been assigned values,
or their vaives may be reassigned as the simulation progresses. We will not specily any

constraints on how attributes at uncommitted time steps are assigned values, so that the

13

golution presented admits any parallel execution scheme. The distinction of committed and
uncommitted time steps makes the solution presented most efficient for simulation methods
that tend to fill in space-time in ascending order. (For example, optimistic methods reassign
attribute values as each logical simulation process advances, and rolls back, and again

advances.)

TCD: Boolean simulation program variable TCD (i.e., “termination condition detected”) is ini-
tially false. The simulation never assigns a value to this variable. An external algorithm
(namely the termination detection algorithms proposed in Section 4) will set TCD to true
when it detects termination based on the final atiribute values calculated by the underlying

simulation.

Let 7 denote the underlying simulation program. Specification $im contains the formal
specification of U. The term “in U7 ” at the end of each assertion means that the assertion
applies in program U, but not in any other program, such as the termination detection program

developed in successive sections.

Specification Sim: Initially, TCD = false and K = 1.
(Sim1) {Vj = K=junless K >j YinU
(Sim2) (Vk = ~TCDAK<NAK=k— K>k)inl
(Sim3) invariant 1 <K < NinU
(Sim6) stable { Vk,z : 1< k<K uaik]j]=2zin U)

(8im7) invariant TCD = FPin U

Specification Sim states the following. Initially the simulation has not detected a termination

condition and only the initial stmulation time step is committed. The committed time horizon

14

Increases monotonically (Sim1); this precludes the possibility of a committed time step becoming
uncommitted. If in the present computation state the simulation the termination condition has
not been detected and there still exist uncommitted time steps, then eventually at least one
more time step commits (Sim2). The committed time horizon never exceeds &, the limit on
simulation duration (Sim3). At any point during the simulation we are guaranteed that attributes
(Vi,k: 1<k <K : gK]) have been assigned their final values (that is their values never
change) (Sim6). The underlying simulation has reached fixed point when variable TCD is true;
therefore the underlying simulation can be terminated (Sim7).

Note that the specification does not state how a new value is calculated for an attribute.
This is unnecessary to specify the simulation termination problem and its sclution; in fact we
want our solution to be correct no matter how attributes are updated. The specification only
states that the simulation make progress because K is guaranteed o increase as long as the
termination condition has not been detected and the simulation has not reached time step limit
N (Sim2). The specification also does not address the issue of when variable TCD is assigned

the value true; this is part of the simulation termination problem.

3 Problem Statement

3.1 Informal Description

Let C' denote a termination condition, and let C'(k) denote the condition value when evaluated
using the values of simulation model attributes at the k-th time step, for k£ > 0. We write C(k)
for convenience, even though € is also a function of a subset of the attribute set (Vi i a;[k]}. We
also define C(k) = false, for k < 0.

The simulation termination problem is the following. Construct a termination detection

program, denoted T'1, that will;

15

P1: find a simulation time step at which C holds, and

P2: calculate the value of each simulation output measure using simulation attribute values at

the time step found in P1.

Furthermore, the composition of 7D with the underlying simulation, Sim, should reach fixed
point when P1 and P2 are complete.

For simplicity, assume that a simulation model calculates a single ontput measure; general-
izing the solution to multiple output measures is straightforward. Function om(k) denotes the
output measure; its value is the output measure evaluated using attribute values at the k-th
time step. We write om(k) for convenience, even though om is also a function of a subset of
the attribute set (Vi :: a;[k]). In general functions omand C require different subsets of the

attributes.

Program Composition: 'Progra.ms TD and U will be composed using the UNITY union,
denoted UDTD[4, Chapter 7.2]. Program UOTD consists of appending programs TD and U
together.

The properties in specification Sim are stated to hold only in program U. The variables used
in Sim (a;[1..n) and K) will not be modified in program TD. Therefore (Sim1), (Sim3) and
(Sim6), which only use these variables, also apply in program UOTD, by the locality corollary

of the Unity union theorem[4, p. 157].

16

3.2 Formal Description

Parallel simulation termination problem: Given an underlying simulation program,
U, meeting specification Sim and a termination condition C, devise a termination detection
program, TD, introducing variable om local to TD such that:

PS1: TCD detects { 3k : 1< k<K :: C(k)) in TD,

PS2: invariant TCD=> { 3k : 1 < k< K :: om= om(k) A C(k) } in TD, and

PS3: invariant TCD = FP in UOTD

The detects relation (PS1) implies the following. If C(k) holds for some committed time
step k, then eventually the simulation will reach fixed point, when it can be terminated. In
addition, when fixed point holds, there will still exist a committed time step k for which C{(k)
holds. Formula PS2 states that when fixed point holds, variable om contains the desired output
measure, evaluated using attribute values from a time step at which the termination condition
holds. Finally, assertion PS$ states that the composite program has reached fixed point and can
be terminated when TCD is assigned frue.

The following lemma about C is a property of program UDTD, no matter what termination
detection program is used: the value of the termination condition at every committed time step is
constant. The property follows from the fact that all attributes are assigned their final attribute

values at all committed times in the underlying simulation.

Lemma 1

stable (Vk,z = 0< k< K A z € {true,false} :: C(k)== } in UDTD

Proof: Follows from (Sim1), (Sim6}, and the definition of C. o

17

4 General Solutions

"This section presents three solutions to the termination problem: Solnl, Soln2, and Soln3.
In general we expect that the wall clock time required to execute the underlying simulation,
U, is elongated by some period of time due to the termination detection program, TD. The
solutions provide two different strategies of reducing time required to evaluate the termination
condition. 'Fhe first, in Soln! and its refinement, Soln2, attempts to minimize the time added by
TD by evaluating the termination condition at different time steps in parallel. The second, in
Soln3, attempts to minimize the added time by evaluating the termination condition fewer times,
by guessing time steps at which the termination condition is true, possibly at the expense of
increasing the number of time steps simulated by the underlying simulation. This is equivalent
to defining a function that specifies in what order time steps should be tested. We view the
two techniques — parallel evaluation and ordering — as mutually exclusive, because parallelism is
enhanced by the absence of ordering.

All assertions that follow hold in program TD, unless otherwise noted.
4.1 Reducing Termination Time through Parallel Evaluation
4.1.1 Overview

Solution strategies Solnl and Soln2 only evaluate the termination condition at committed time

steps. Committed time steps will be partitioned into three subsets:

unknown-if-false (UF): the set of all committed time steps at which the termination condition

is not known to fail,

known-false (KF): the set of all committed time steps at which the termination condition is

known to be false through evaluation of the termination condition, and

18

irrelevant (1) a set of all committed time steps which are unnecessary to evaluate, as explained

below.

"The preliminary solution (Section 4.1.2) proposes a strategy that only categorizes time steps
as unknown-if-false and known-false. The subsequent refinement adds rules to identify irrelevant
time steps by defining a notion of congruent time steps to identify a minimal set of time steps

at which the termination condition must be evaluated.,

4.1.2 A Preliminary Solution

Informal description: We propose a strategy which employs local variables UF, KF, and s in
the termination detection program, T'D. The proposed solution always maintains the invariant
that sets UF and KF mutually exclusively and exhaustively partition the set of all committed
time steps and zero. Variable s contains a time step.

Variable s is initially zero, a time step at which the termination condition fails by definition.
Whenever the termination condition fails at time step s and there exists some unknown-if-false
time step not equal to s, the time step is added to the set of known-false time steps, in KF, and
§ Is assigned some unknown-if-faise time step, from UF. We leave unspecified the order in which
we exarmine values in the interval to permit mapping the solution to a parallel architecture, as

described in Section 5.1.1.

Formal specification of solution strategy: Initially, KF = @, [/F = {0}, and s = 0.

19

Specification Soluf: [(td1)- (td7)]
(td1) TCD detects C(s)
(td2) invariant TCD = om = om(s)
(td3) invariant s € UF
(td4) invariant UFU KF={0,1,2,...,K} A UFNKF=0
(td5) (Vk = s=k A =C(s) A ||UF> 1 ke KF)
(td6) stable {Vk: 0<k< N : ke KF)
(td7) invariant (Vk : &k € KF :: ~C(k))

(td8) invariant TCD = FP

Specification Sofnl states the following. If during simulation variable s is assigned a time
step at which the termination condition holds, then C(s) will continue to hold until variable
T'CD is set to frue to detect termination (td1). When variable TCD is set to true, variable om
contains the value of the output measure using attribute values at time step s (td2). Variable
s always contains an unknown-if-false time step (td3). The set consisting of all committed time
steps and the integer zero is partitioned into sets UF, of unknown-i-false time steps, and K F, of
known-false time steps (td4). (Assertions (td3) and (td4) imply that the termination detection
algorithm never evaluates the termination condition at any time step for which final values of
attributes are not known.) If the termination condition is false at time step s and there is an
unknown-if-false time step other than s, then eventually the value of s is added to set KF (td5).
(Assertions (td3) and (td5) imply that when the value of s is added toset KF, then s is assigned
another unknown-if-false time step.) Time steps are never removed from the set of known-false

time steps (¢d6). (Assertions (td4) and (td7) imply the following. If in some computation

20

state K = k, for some integer k, and subsequently the underlying simwulation advances K as
simulation time steps commit, then the values & + Lk+2,..., K must be added to set UF.
The termination condition does not hold at any KF time step (td7). The termination detection

program has reached fixed point, and hence can be terminated, when TCD is true (td8).

Correctness proof of solution strategy: We prove that the three assertions (PS1 through
PS3) comprising the problem specification are met by any solution strategy that satisfies condi-
tions (td1) through (td8) of Soln1.

The proofs use of induction {Theorem (6)) and the transitivity of detecis (Theorem (7)).
Induction is used to reason about repeated assignment to variable 5. The metric (i.e., function
of current program state) required by Theorem (6), M, is an upper bound on the number of times
that the termination condition will be evaluated for the remainder of the simulation. The upper
bound has the property that it decreases in value each time s is assigned a new value. The metric
is the sum of the number of unknown-if-false time steps ([IUF]]) and the number of uncommitted
time steps that the simulation has or will compute (N — K). Formally M = ||UF|| +(N — K).
The domain of the metric is 10,1,..., N},

Lemmas 2 through 6 facilitate the proof. Lemma 2 states that the metric is equivalent to
N minus the number of known-false and irrelevant time steps. Lemma 3 states that metric A
is a decreasing function. Lemma 4 states that if the set of unknown-if-false time steps contains
two or more elements, and if the termination condition fails at the current time step in s, then
the metric must eventually decrease. Lemmas 5 and 6 lie at the heart of the overall proof of
correctness of Solni as well as of later refinements. Lemma 5 demonstrates that if there exists an
unknown-if-false time step at which holds, then variable s will eventually be set to a time step

at which € holds. This lemma will be reproven for each of the subsequent refinements, because

21

the refinements are more sophisticated methods of exploring the interval [1, K] via assignments
to variable s. Lemma 6 implies that if C holds at a committed time step, then C will eventually

hold at an unknown-if-false time step.

Lemma 2 M = N - ||KF||

Proof: By (td4), ||UF]| = K — |}KF||. Substituting this expression into the definition of M

completes the proof. O

Lemma 3 (Ym = M =m unless M <m }

Proof:

{ Vm 2 ||KFl} = m unless || KF}}| > m)
; by (td6)

{(Vm @ N —||KF||=m unless N — ||KF|| < m)
, by last deduction, because N is constant

(Vm M =maunless M <m)
, substitute Lemma 2 into last deduction o

Lemma 4 (Vm = M =m A ~C(s) A ||UF][>1—M<m)

Proof:

(¥t ||KF|| =1 unless || KF]| >t)
, by (td6)

{Vt 2 =C(s) A ||UF]|>1 A ||KF||=t — [|KF]|>1)
» Progress-safety-progress (Theorem (2)) applied to last deduction and (td5)

(V¥m,t = N—||KFl|=m A =C(s) A ||UF|>1 A ||KR|=t — (||KF] >

t AN-|IKR|=m) Vv [IKF||>t) ,
, Progress-safety-progress (Theorem (2)) applied to last deduction and result of substi-
tuting Lemma 2 into Lemima 3

{(VYm:M=mA-C(s) AM|[UF|>1—M<m)
» |KF|| > t AN — ||KF]] = m = false in last deduction, because N is constant

22

Lemma 5 C(s) detects { 3k : k€ UF :: C(k))

Proof: Let p=(3k : k € UF :: C(k) }. From the definition of detects , we must show two
things. First, C(s) = p; this follows from (td3) and (td4). Second, p — C({s); this is proven
below.

Observe that, by General Disjunction (Theorem (4)),

pA|UF}+ N — K < 0] v false
pA[|UF|+ N-K =1] — C(s)
pA[llUR|+ N - K > 1} A C(s) — C(s)
pPA[[JlUA|+N—-K=ml Am>1A-C(s)—=p A[||JUF}J+ N - K <m]
pPAM=mv— (pAM<m)V C(s)

{¥Ym B

Applying the Induction Theorem (6) to the conclusion yields the desired result, p = C(s).
Therefore we are left with establishing each of the four formulas in the hypothesis. Note that
these four formulas are mutually exclusive and exhaustive assertions about the state of the

simulation when p holds, based on the value of metric M.

Proof that pA[[|UF||4+ N — K < 0] — false:

p=> VA2 1
, predicate calculus
invariant N - K >0
, by (S8im3)
p=>||URI+N-K>1
, Substitution axiom applied to last two deductions

pAUF|+ N - K <0] = false
, predicate calculus on last deduction

p A[[UF}+ N~ K <0] — false
, Theorem (1) applied to last deduction

Proof that pA[j|JUFI|+ N — K = 1] — C(s):

p={iUF 21
, bredicate calculus

23

pAJUFA|+N-K=1=pA||UAI=1
, by last deduction

pAIUA|+N-~K=1=pA||UF|=1AscUF
, Substitution axiom on last deduction and (td3}

p A|I|IUR|+N-K =1] = C(s)
, simplify last deduction, and apply Theorem (1)

Proof that pA[|[|[UF]|+ N—K > 1] A C(s) = C{s): By predicate calculus, pA{]|UF|+ N —

K > 1] A C(s) = C(s); applying Theorem (1) completes the proof.

Proof that pA[JJIUF||[+ N —K=ml Am>1A ~C(s) = p A[||UF}}+ N - K <m]:

(@ {(¥Vm 2 pAM=mAm>1A-C(s)=||UF|>1)
, by (td3)

(b)
(YmapAM=mAm>1LA-CE =2>pAM=mAm>1A-C(s)A||UF]>1)
, by previous deduction

Y{VYmupAM=mA-C() A|lUF||>1—=pAM<m)
, apply Theorem (3) to Lemma 1 and Lemma 4

@ UAl>1 = M>1
, by {Sim3) and definition of M

Y (YmupAM=mAm>1LA-CE) A|UF|>1—=pAM<m)
, substitute (d} into (c)

D{VmupAM=mAm>1LA-CE)—pAMm)
, combine (b} and (e) a

Lemma 6 (3k : k€ UF:: C(k)) detects { Ik : 1 <E < K C(k))
Proof: Let p=(3k : k€ UF = C(k) yand g ={ Jk : 1 <k < K :: C(k)). We must prove
two things. First, p = ¢; this follows from (td4) and the fact that ~C(0) holds by definition.

Second, ¢ — p; this follows from (td4) and (td7). O

Proof of PS1: Follows from (td1), LLemmas 5 and 6, and two applications of Theorem (7). O

24

Proof of PS2:

TCD detects (3k : 1<k <K :: Ck))
, by PS1

TCD= (3k:1<k<K = Ck))
, last deduction and definition of detects

TCD= {3k : 1<k <K :: om=om(k))
, (¢d2), (td3), and (td4)

TCD=(3k : 1<k <K :: om=om(k) A C(k))
, Combine last two deductions o

Proof of PS3: By the UNITY union theorem,[4, pp. 155-6]
invariant p in P A invariant p in Q = invariant p in POQ

Therefore PS3 follows from (Sim7) and (td8). 0

Derivation of a program from the solution strategy specification: Figure 2 illustrates
one possible program, TD, that meets specification Solni. A proof that the Program Selni
meets specification Soln! is straightforward and is omitted in the interest of space. Informally,
the always relationship embodies (td4); the assignment statement embodies the remaining the

remaining assertions in Solnf and does not violate any assertion in specification Sim.

4.1.3 Refinement: Eliminating Congruent Time Instances

Informal description: The following refinement can further reduce the number of evaluations
of C required to detect termination. Given a simulation model and a termination condition, it is
often possible to infer that at certain time steps no model attribute has changed that will cause
a change in the value of the termination condition. For example, in condition T2 of Section 1,
the termination condition need not be evaluated at any time step at which a collision does not

occur. Two time steps are congruent, denoted j 2 j/, for any time steps j and 7/, if C(j) = c(i"

25

Program TD
declare

UF, KF: set of integers, s, OldK: integer
initially

s=0 || KF=0 || OldK=0

assign

s := some element in UF if =C(s) A ||UF}j>1 A -TCD

{| KF := KF U {s} if =C(s) A |IUF|[>1 A -TCD
[| UF:= U¥- { s} if ~C(s) A |[UF||>1 A —TCD
|} om := om(s) if C(s) A -TCD
|| TCD:= true if C(s) A -TCD
O(({ |li : OMK<j<K : UF:=UFU{j})}
| OlK:=K)
end { TD }

Figure 2: Program implementing specification Solnl.

26

is known to hold before the simulation executes. Congruence is a reflexive, symmetric, and
transitive relation.

In the previous specification, s is assigned values from set UF, the set of all committed
time steps at which the termination condition has not yet been evaluated. Soln2 modifies this
statement so that whenever the committed time threshold advances, newly committed time steps
congruent to a time step in unknown-if-false are added to an additional set, I, which contains
irrelevant time steps, to reduce the number of times that the termination condition is evaluated.
Set I'is a local variable to program TD.

One form of this refinement is employed by existing termination detection algorithms (Abrams
and Richardson [1] as well as Lin [6]). In these algorithms, the agent responsible for detecting
termination is only sent the values of attributes that are required to evaluate the termination

condition when the values change.

Formal specification of solution strategy: The refined specification, Seln2, consists of

replacing (td4)by (td9) through (td12). Initially, I = §.

Specification Soln2: [(td1)-(td3), (td5)~(td12)]
(t9) invariant UFU KFUTI={0,1,2,...,K} A UFOKFAI=0
(td10) invariant no two distinet elements of I/F are congruent
(td11) stable {Vk : 0< k<N = kel)
(td12) invariant { Vk : ke 7 (3’ . k' € UFUKF = k = kY)

The new assertions state the following. The set of committed time steps are partitioned into
sets UF, of unknown-if-false time steps, KF, of unknown-if-false time steps, and I, of irrelevant

time steps (id9). (The assertion that (td9) replaces partitions committed time steps into only

27

two sets: UF and K F) No two distinct elements of known-false are congruent {td10). (Assertions
(td3) and (td10) imply that when the value of s is added to set KF, then s is assigned another
unknown-if-false time step.) Time steps are never removed from the set of irrelevant time steps
(td11). Each time step in the set of irrelevant time steps is congruent to some committed time

step that is either unknown-if-false or known-false (td12).

Correctness proof of solution strategy: Variables UF and KF in the specification Soln2
refer to different sets than in specification Solni. Therefore, rather than prove that specification
Soln2 implies the assertion removed from Soln? ({td4)), we again demonstrate that that the
problem specification (assertions PS1 through PS3) are met by any program satisfying Soln2.
The proof is similar to that for specification Solnf, but with the following modifications.
First, replace each occurrence of ||KF|f by ||KFU If]. Second, modify the proof of Lemma 6 as
explained below. (The proofs of Lemmas 2 through 5 as well as PS1 through PS3 do not depend

on (td4) and hence hold for Soin2.)

Modified proof of Lemma 6: The proof of p => ¢ does not require modification. However,
q > p follows from (td9), (td7), and { V& : k € I = =C(k)). The last assertion follows because

each element in [is congruent to some element in either UF or KF by (td12). i

Derivation of a program from the solution strategy specification: A program TD
satisfying Soln? is the obtained by modifying the program in Figure 2 as follows. Add “I= §”

to the initially section. In the assign section, modify the assignment to UF as follows:

O((lj: OUK<j<K = L=Iufj} if(3]: JeKFUUF: j=))
{ li: OMK <j<K = UF:=UFU{j} if{¥j: JEKFUUF: j’))

|| OldK:=K)

28

4.2 Reducing Termination Time through Reduced Evaluation

Informal description: Solution strategy Solnf requires at worst N evaluations of the termi-
nation condition to detect termination. This results from an exhaustive search of time steps
in the interval [1, N]. Strategy Soln2 can reduce the worst case number of evaluations to the
number of equivalence classes of time steps, provided that a simulation program can efficiently
identify congruent time steps. The next strategy, Soln3, improves the average case performance
by exploring the interval [1, N]in a sequence tailored to a particular termination condition. The
sequence is prescribed by an ordering function, f, whose domain is a time step and the values
of all simulation model attributes at that time step, and whose range is a positive integer time
step. For convenience, we write f(k), for some time step k, even though f may also be a func-
tion of simulation model attributes. An efficient ordering function could on the average detect
termination sooner than strategies Solnt and Soln2, which prescribe no order. In general, in the
worst case Selnd requires the same number of evaluations as Soln2. However, in the case of a
stable termination condition, an appropriate ordering function can also reduce the worst case
performance to as few as one,

Let fi(k) denote the i-fold composition of function f. Function f must satisfy the following

properties:
F)€e{1,2,...,N}fori=1,2,....N
FRER (VP
F0) # fH(0) for i # j

The first property requires that the first N evaluations of function f map a time step to one of

the first NV time steps. The second property states that after function f returns the first N time

29

steps, it must return a time step that the simulation will never compute. Finally, the images of
function f applied to any two distinct time steps are distinct.

"This solution strategy views the termination detection problem as one of searching the interval
[1, N] for a time step that satisfies the termination condition.

The solution strategy again requires variable s, denoting a time stamp. Again, s is initially
zero. Whenever s contains a committed time step and the termination condition evaluates
to false for time step s, s is assigned f(s). Unlike Solnf and Soin2, variable s may assume

uncommitted as well as committed time steps.

Examples of ordering functions: Ordering functions must be tailored to individual classes

of termination conditions. Some examples are given below.

Ezhaustive termination: The ordering function f(k) = & + 1 may be used with any termination
condition. The Exhaustive Termination Algorithm of Abrams and Richardson(1], as well
as the non-stable termination condition given by Lin]6] are both refinements of strategy

Soln3 with this ordering function.

fnierval termination: Stable termination conditions permit a simple ordering function that can
dramatically reduce the number of evaluations of the termination condition. If C holds
at time step &, then it hold at all time steps larger than k. If the termination condition
fails at some time step k, then simply wait ¢ time steps, for any finite integer ¢, before

reevaluating C, provided that k+c < N. Formally, f(k) = k + ¢.

In fact, selecting ¢ = N guarantees that the termination condition is evaluated exactly
once, which is optimal in the number of evaluations, However, this may not minimize
the wall clock time required to execute detect termination, as discussed later. The Inter-

val Termination Algorithm of Abrams and Richardson is a refinement of Selnd with the

30

ordering function f(k) = & + e.]1]

Predictive termination: A variety of predictive guesses may be formulated based on the exact
form of the termination condition. One prediction is based on extrapolation from the
points (0,0) and (s,e(s)). For example, condition T2 from Section 1 can be written as
C(s) = (¢(s) > M), where c(s) is the number of collisions that have occurred at the time
step 5. Extrapolation leads to the ordering function f(s) = (Ms)/e(s). For example, if
M =1000 and at the 5-th time step 50 collisions have occurred (¢(5) = 50), then f(5) = 100

guesses that 1000 collisions will have occurred by the 100-th time step.

A termination condition of the form ¢(s) € [a,b) can be handled by a method that is
analogous to solving for roots of equations. One strategy is to find time steps a’, & such
that e¢(a’) < a and e(¥') > b, and then use binary search to locate a time step between o’

and b’ satisfying the termination condition. In this case f(a’,d") = bi;“’. For example,

consider condition T4 from Section 1, with M = 1000. Letting c(s) again denote the

number of collisions that have occurred, if c(50) = 510, s = 100, and ¢(100) = 1903, then

the termination condition is next evaluated at time step 75.

More sophisticated predictions may be made; for example one could fit a curve to periodic
observations of (s, ¢(s)) during simulation to obtain a better estimate of when ¢(s) will equal
M. A termination condition of the form ¢1(8) > ¢2(s) can be handled by fitting curves to

observations of functions ¢; and ¢z, and then analytically solving for the intersection point.

An ordering function can be characterized as conservative or aggressive, based on the magni-
tude of f(k)—k~—1, which is the number of time steps that are skipped in successive evaluations
of the termination condition. The earljer example of exhaustive termination (f(k) = k + 1) uses

a conservative function that skips zero time steps. In contrast, the interval termination function

31

skips c—1 time steps. The magnitude of ¢ determines the degree of aggression. There is a trade-
off between aggression and conservativeness: A conservative ordering function maximizes the
number of evaluations of the termination condition, but will minimize the number of time steps
that the underlying simulation computes. However, increasing the aggressiveness of the ordering
function reduces the number of evaluations of the termination condition but will select a larger
time step as the termination time. The relative cost of evaluating the termination condition and
simulating another time step determines the number of time steps to skip that is optimal in the
sense of minimizing the wall clock time required to execute a simulation and detect termination.

The optimum is, unfortunately, not known before simulation.

Formal specification of solution strategy: Initially, s = 0.

Specification Solnd: [(td13)-(¢d16)]
(¢d13) TCD detects C(s)
(td14) invariant TCD = om = om(s)
(td15) (Ve s=k As<K A -C(s) — k€ KF)

(td15) invariant TCD = FP

Specification Solng states the same properties as (td1), (td2), and (td8) of Soln!. In addition,
Soln3 states that if the termination condition is false at committed time step s then s will be

assigned f(s) (td14).

Correctness proof of solution strategy: Because solution Soln3 is fairly simple, we only
outline the proof that the three assertions (PS1 through PS3) comprising the problem specifica-

tion are met by any solution strategy that satisfies conditions (td12) through (td15) of Solnl.

32

Assertion PS1 can be proved by induetion (Theorem 6) and (Sim2) using as the metric N
minus the number of times that f has been evaluated so far. The metric is bounded below by
zero. Assertion PS2 follows from (td12) and (td13). The proof of Assertion PS3 is identical to

its proof in Section 4.1.2.

5 Mapping General Sblution to Parallel Simulation Pro-
tocols

This section describes mapping termination detectors Soln! and Soln3 of Section 4 to various
parallel simulation protocols and parallel and distributed architectures. We omit Solnl!, because
Soln? is its refinement. Qur mapping of Solr2 to a parallel processor uses different PTOCESSOTS
to evaluate C(k) for different values of k. In our mapping of Soln3, a single evaluation of C(k)
for a particular value of k can be mapped to a set of processors when possible.

The key decisions that must be specified are
1. how the multiple assignment statements of Soin2 and Soln3 are mapped to processes, and

2. how to reduce the worst case memory requirement, of O(N) in Seln2 and Solnd so that the

algorithm can run, at best, in no more memory than the underlying simulation requires.

Decision 2 arises because the last section assurned that the underlying simulation retains
the final values of all attributes at all committed time steps. Transforming Soin2 and Soln? to
reduce the memory required will constrain the order in which the termination condition must

be evaluated.
5.1 Mapping to Architectures

We consider three architectures. The first is a parallel asynchronous shared memory archi-

tecture, in which all processors can read and write any memory location, and each processor

33

asynchronously executes a separate list of statements. The second is a distributed architeciure,
in which each processor again asynchronously executes a separate list of statements and has a
local memory that it can read and write; processors communicate through channels. The third is
a parallel synchronous shared memory architecture, in which all processors perform an operation

upon reception of a commmon clock pulse; this is an SIMD architecture.

5.1.1 Mapping Seln?2 to Architectures

Asynchronous shared memory architecture: Each of L processors runs a copy of the
termination detection program, TD (Figure 2, as modified for Soin2). The value of L must be
chosen to balance the overhead of the TD against the time penalty of the 7D over the underlying
stmulation. Each processor ¢ has a private copy of variables s and TCD, denoted s; and TCD;,
respectively. Sets UF, KF, and I are partitioned into disjoint sets (e.g., UF;, KF;, and),
with each processor being assigned one partition. Whenever additional time steps commit, the
newly committed times are partitioned among the processors to each partition of sets I/F and [,
Therefore each processor i asynchronously transfers potential stopping time steps from set UF;
to s;, evaluates C(s;), and either adds s; to set KF; or sets variable TCD; to cause termination.
For efficiency, each termination detection program may only be scheduled when there are a
sufficiently large number of newly commitied time steps, to reduce the overhead.

This solution can be expressed by modifying Seln2 to quantify all assertions involving sets
UF, KF, and I over all processors. In addition, assertions (td1) must be modified to detect the
conjunct C(s;) A C(s2) A C(sg). Finally, it could be the case that multiple processors detect
termination by the time that variable TCD is assigned true. This case is particularly likely for
a stable condition. Therefore assertion (td2) is modified to select one of the detected time steps

as the termination time at which output measures are reported.

34

Copies of the TD program can read the attributes required to evaluate the termination

condition and calculate the output measure from shared memory.

Distributed architecture: Again, a copy of T'D executes on a set of I, processors. In addition,
a central coordinator process is sent updates of the committed time horizon through a channel
from the underlying simulation. All processes comprising the underlying simulation send the
coordinator messages containing the values of attributes required to evaluate the termination
condition for each newly committed time step. The coordinator then partitions the time steps
and distributes them along with the appropriate attributes to the copies of the TD program via
channels. Whenever a 7D program evaluates the termination condition to true, it sends the time
step to the coordinator via a channel. When the coordinator receives the first time step back
from a T'D program, it uses the time step as the termination time. The coordinator can then
query processes of the underlying simulation to obtain attribute values required to evaluate the
output measures at the termination time step. If there are many output measures, the evaluation

of some can be assigned by the coordinator to a process running the T'D program,

5.1.2 Mapping Solnd to Architectures

Single processor: The implementations of Soin2 described above may or may not be efficient
depending on the number of processors used, L, and the volume of attributes required for the
termination condition. For example, in algorithms stndied by Lin f6], the overhead in paral-
lelizing the termination detection program outweighed the benefits of using multiple processors.
Therefore we propose that termination detection program for Solng be implemented on a single
processor. The efficiency of Solng lies in the fact that it reduces the number of evaluations of

the termination required in the first place, rather than parallelizing many evaluations.

35

Synchronous shared memory architecture: One simple way to parallelize Soln3 is to eval-
uate a termination condition at a single time step using multiple processors in an SIMD fashion.
This technique can only be used for certain termination conditions, by exploiting properties of
those classes. For example, decentralized consensus protocols [5] can be used to evaluate termi-
nation conditions whose operators form an Abelian group, and recursive doubling [10] can be

used to evaluate conditions that are solutions to recurrence relations.
5.2 Mapping to Limited Memory

All solution strategies proposed provide few constraints on the order in which time steps are
evaluated by the termination detection algorithm. Soln2 tends to evaluate the condition in
ascending time step order, but only because the committed time step threshold limits the size
of set of unknown-if-false time steps. Sofnd can use any possible sequence by an appropriate
ordering function. In each of these solutions, memory requirements for termination can be

minimized by constraining the order of evaluation.

Optimistic Protocols: Optimistic protocols have an inherent advantage over all other pro-
tocols for termination detection because they can always recompute any needed attribute at
any simulation time step. For example, consider Solnd with a predictive ordering function that
evaluates the condition first at time step N and then uses bisection to search for a time step at
which the termination condition holds. This implies that the simulation needs to keep O(Nn)
storage, for N time steps and n attributes, under the assumption that every attribute is needed
for evaluation of either the termination condition or some output measure, An optimistic proto-
col is nicely suited to this case, because it can recompute attributes for a termination detector
that evalnates the termination condition in an arbitrary time step order. An optimistic protocol

can coinputer termination in a minimal amount of memory. The use of an optimistic protocol

36

is detailed in Abrams and Richardson[1].

Conservative-Synchronous: Conservative-synchronous protocols are attractive for termina-
tion detection because the termination condition can be evaluated at each global synchronization
point with minimal synchronization overhead. The method can be augmented with a limited
state saving and rollback method to obtain the same flexibility in regenerating attribute values for
arbitrary simulation time steps as in optimistic protocols. The use of a conservative-synchronous

protocol is detailed in Sanjeevan and Abrams[9].

Conservative-asynchronous: Conservative-asynchronous protocols are appear poorly suited
for general termination conditions, because they lack the ability to regenerate attribute values
at arbitrary time steps. In fact, the only way that these protocols can perform this function is
by including the state saving, rollback, and anti-message functions that are present in optimistic
protpcols.

However, conservative-asynchronous protocols are well-suited to stable termination cond;-
tions. This is because if the termination detector finds that the termination condition is satisfied
at time step k, then it can select a time &' > k that is in the future of all processes in the
underlying simulation as the termination time step. Time step k' can then be distributed to
all underlying simulation processes, so that they stop when they reach time step &', and can
then send attribute values at time step &’ to the termination detector for calculation of output

measures. This method is further explained in Abrams and Richardson[1].
6 Conclusions

For practitioners that just require batch simulation of a system for T simulation time units,

complex simulation termination rules such as those listed in Section 1 are unnecessary. Therefore

37

one could ask whether it is necessary to worry about complex termination rules.

We expect that in the future, as simulation more often is done with interactive, asynchronous
user input; on a parallel or distributed architecture; and in more sophisticated settings, such as
simulation-in-the-loop, complex termination rules may grow in importance.

In addition, the ability to implement complex termination rules in parallel simulations opens
up the possibility of using simulation as a tool to search the transient behavior of a complex
system. For example, one could run a simulation of a large telephone or communication network
and make queries such as “when did congestion of certain switching nodes first develop” and
“what was the system state at each time that the maximum utilization of any communication
link in the system exceed 50%.

Given the need for solving the simulation terminatjon problem, the paper presents two general
and incompatible strategies for termination, The first, Soln2, is a novel algorithm that tries
to minimize the cost of termination detection by evaluating many time steps in parallel. An
advantage of the algorithm is that it is scalable; that is, the detector will not become a bottleneck
as the size of the simulation model grows (this may preclude use of a single process as the
termination detector, as Lin does [6]). The second solution, Soln2, is novel in its use of guesses
of when the simulation will terminate. The guesses are embodied by an ordering function. A
suitable ordering function subsumes termination algorithms proposed in the literature.

Our solutions suggest that a simulation modeler should use a stable termination condition
and to minimize the number of attributes required for evaluation of the termination condi-
tion and all output measures. This permits use of optimistic, conservative-synchronous, or
conservative-agynchronous simulation protocols. If the modeler cannot do this, then an opti-
mistic protocol should be used for its flexibility to recompute whatever old attribute values are

required. Conservative-synchronous protocols can also be used, if a limited ability to checkpoint

38

and recompute states at synchronization points is added. Conservative-asynchronous protocols
cannot be used, unless they are augmented with the same rollback and cancellation mechanism
present in an optimistic protocol.

When a non-stable condition is used, a simulation modeler is also advised to devise a pre-
dictive ordering function and use termination strategy Solnd to search committed time steps in
a sophisticated manner, for example by bisection, to minimize the number of evaluations of the
condition. A suitable predictive function could make the cost of using a non-stable conditions
as low as that of a stable condition.

A number of open problems on simulation termination exist:

¢ formulation of ordering function required by specification Soln3,

formulation of algorithms to terminate time-quantified termination conditions,

» complexity analysis of the parallel simulation problem to establish fundamental limits on
the performance of parallel simulation given certain difficult classes — such as non-stable

and time-quantified — of termination conditions,

further empirical studies measuring the cost of termination in actual simulations (two cases

are reported by Lin [6] and Sanjeevan and Abrams 191},

¢ further refinement of the general algorithms given here to obtain efficient implementations

for particular simulation protocols and parallel computer architectures.

References
[1] M. Abrams and D. S. Richardson, “Implementing a Global Termination Condition and Col-

lecting Output Measures in Parallel Simulation,” Proc. Advances in Parallel and Distributed
Simulation, Society for Computer Simulation, Anaheim, Jan. 1991, pp. 86-91.

39

[2] M. Abrams, E. Page, and R. Nance, “Linking Simulation Model Specification and Parallel
Execution Through UNITY,” Proc. 1991 Winter Simulation Conference, Phoenix, AZ, Dec.
1991,

[3] K. M. Chandy and R. Sherman, “Space-Time and Simulation,” Distributed Simulation 1 389,
SCS, Jan. 1989, pp. 53-57.

[4] Chandy K. M. and J. Misra, Parallel Program Design: A Foundation, Reading, MA: Addison
Wesley, 1988,

[5] T. V. Lakshman and V. K. Wei, Efficient Decentralized Consensus Protocols Using Specially
Structured Communication Graphs, Tech. Memo TM-ARH-0011042, Bell Communications
Research, Red Bank, N.J., 1988.

[6] Y. B. Lin, “On Terminating a Distributed Discrete Event Simulation,” Bellcore, submitted
for publication, 1991.

[7] Y. B. Lin and E. D. Lazowska, “Design Tssues for Optimistic Distributed Discrete Event
Simulation,” submitted to IEEE Transactions on Parallel and Distribuied Systems, 1991.

(8] D. s. Richardson, Terminating Parallel Discrete Event Stmulations, M.S. thesis, TR 91-9,
Computer Science Department, Virginia Polytechnic Institute and State University, May
1991.

[9] V. Sanjeevan and M. Abrams, “The Cost of Terminating Synchronous Paralle] Discrete-
Event Simulations,” Prec, 1991 Winter Simulation Conference, Phoenix, AZ, Dec. 1991.

[10] H. Stone, High-Performance Computer Architectures, 2nd ed., Reading, MA: Addison Wes-
ley, 1990, pp. 232-233.

40

