
Chapter 4

Application of Learning Automata to
Intelligent Vehicle Control

As stated in Section 2.2, vehicle control is one of the most important issues in ITS, and especially,
in AHS. Designing a system that can safely control a vehicle’s actions while contributing to the
optimal solution of the congestion problem is difficult. Besides the control problems at the
regulation layer, there is a need for extensive research on the planning layer of the control
structure described by Varaiya [Varaiya 93], or at the tactical level of the driving task
[Sukthankar96c]. When the design of a vehicle capable of carrying out tasks such as vehicle
following at high speeds, automatic lane tracking, and lane changing is complete, we must also
have a control/decision structure that can intelligently make decisions in order to operate the
vehicle in a safe way.

The task of creating intelligent systems that we can rely on consequently brings the idea of
“artificial intelligence” to mind. ITS community is well aware of the fact that the implementation
of such a complex (and maybe global) system requires investigation of several different methods
and the simultaneous applications of many. Several emerging methods, such as cellular automata,
self-organization, neural networks, fuzzy logic, and hybrid systems applications are being
mentioned [TRB95, Godbole95, Ho96, Deshpande96]. Initial research on intelligent vehicle
control indicates that a planning-regulation system that can guarantee optimal operation with a
sound theoretical background has not yet been developed, and it may be vital to the
implementation of an automated highway system [Varaiya93, Lasky93].

In this chapter, we introduce a decision/control method for intelligent vehicles.
Considering the complexity of an automated highway system or an intelligent vehicle-highway
system, classical control methods are found to be insufficient to provide a fully automated,
collision-free environment [Varaiya93]. Although we may not solve the “whole problem” using a
single method, we attempt to find a way to make intelligent decisions here. Our approach to the
problem of vehicle control makes the use of Learning Automata techniques described in Chapter
3. The learning algorithms used in this application are introduced and discussed separately in
Chapter 6 for reasons of clarity. We visualize the planning layer (See Section 2.3) of an intelligent
vehicle as an automaton (or automata group) in a nonstationary environment1. The aim here is to
design an automata system that can learn the best possible action (or action pairs: one for lateral,

1 The interpretation of the term ‘environment’ is twofold, as we explain later.

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 47

one for longitudinal) based on the data received from on-board sensors, and possibly some form
of vehicle-to-vehicle and roadside-to-vehicle communications.

The significance of this system is that the controller we define will be useful as a backup
system or the primary system in controlling the path of a vehicle in the case of communication loss
with the higher layer in the hierarchy of a full AHS as well as during transition from fully
automated to manual control. Since the implementation of a fully automated highway system is
not imminent, we will try to concentrate on autonomous vehicles throughout this work.

4.1. The Model
For our model, we assume that an intelligent vehicle is capable of two sets of lateral and
longitudinal actions. Lateral actions are shift-to-left-lane (SL), shift-to-right-lane (SR) and stay-
in-lane (SiL). Longitudinal actions are accelerate (ACC), decelerate (DEC) and keep-same-speed
(SM). The actions stay-in-lane and keep-same-speed are “idle actions,” and can also be treated as
a single action cruise. There are nine possible action pairs provided that speed deviations during
lane changes are allowed (Table 4.1).

ACC

DEC

SM

SL

SL

SL

ACC

DEC

SM

SR

SR

SR

ACC

DEC

SiL

SiL

SM SiL

Table 4.1. Possible action pairs (shaded regions indicate the
idle actions that can be combined into a single action).

An autonomous vehicle must be able to ‘sense’ the environment around itself. In the
simplest case, it is to be equipped with at least one sensor looking at the direction of possible
vehicle moves. Furthermore, an autonomous vehicle must also have the knowledge of the rate of
its own displacement. Therefore, we assume that there are four different sensors on board the
vehicle. These are the headway sensor, two side sensors, and a speed sensor. The headway
sensor is a distance measuring device which returns the headway distance to the object in front of
the vehicle. An implementation of such a device is a laser radar. Side sensors are assumed to be
able to detect the presence of a vehicle traveling in the immediately adjacent lane. Their outputs
are binary. Infrared or sonar detectors are currently used for this type of sensor. The speed sensor
is simply an encoder returning the current wheel speed of the vehicle.

Each sensor is connected to its associated module. Sensor modules evaluate the sensor
signals in the light of the current automata actions, and send a response to the automata (Figure
4.1). We visualize each sensor module as a teacher in a nonstationary automata environment (or a
multi-environment system). The detailed descriptions of these sensor modules are given in the
next section.

Our basic model for planning and coordination of lane changing and speed control is
shown in Figure 4.1. The response of the environment is a combination of the outputs of all four

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 48

teacher blocks. The details of the mapping F is given in Section 4.4. The mapping F from sensor
module outputs to the input β of the automata can be a binary function (for a P-model
environment), a linear combination of four teacher outputs, or a more complex function  as is
the case for this application. An alternative and possibly more ideal model would use a linear
combination of teacher outputs with adjustable weight factors (e.g., S-model environment).

Headway

Left Detection

Speed Detection

Right Detection

F

distance
Decision blocks/
Teachers

speed

binary

binary

β

Longitudinal
Automaton

Lateral
Automaton

α1 & α2 action
Vehicle Highway

Sensors

LA Environment

Physical Environment

Planing Layer

Regulation & Physical
Layers

Figure 4.1 Automata in a multi-teacher environment connected to the physical layers.

It is important to differentiate between “automaton environment” and the “physical
environment.” The action α of an automaton is a signal to the regulation layer which defines the
current choice. It is the regulation layer’s responsibility to interpret this signal. When an action is
carried out, it of course affects the physical environment. The sensors in turn sense the changes in
the environment, and the feedback loop is closed with the sensor modules and the signal β.

The regulation layer is not expected to carry out the action chosen immediately. This is
not even possible for lateral actions. To smooth the system output, the regulation layer carries out
an action if it is recommended m times consecutively by the automaton, where m is a predefined
parameter less than or equal to the number of iterations per second (Figure 4.2). In other words,
the length of the memory vector is m. Whenever this vector (or buffer) is filled with the same
action, the action is fired. This may of course be changed to “k times in the last m choices” or a
more sophisticated decision rule.

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 49

Action from
Planning Layer

Action to
Execute

IF ACTIONS ARE THE SAME

A1 A2 A2 A3 A1 A2

m

Figure 4.2. Memory vector/buffer in regulation layer.

When an action is carried out, the action probabilities in the controlling automaton are
initialized to 1/r, where r is the number of actions. Although not necessary, this initialization
enables the learning automaton to adapt to a new situation faster. One of the reinforcement
schemes described in Chapter 6 is designed to speed up the adaptation process when the
probability of the best/desired action is close to zero. When this new nonlinear scheme and/or very
fast update rates are used, probability vector initialization is not necessary. When an action is
executed, the memory vectors are initialized also; all locations are filled with the idle actions SiL
or SM. A minimum processing speed of 25, and a maximum of 200 iterations per second are
assumed. This value is related only to the computations; the sensor data feeds may have a
different (and constant) rate. The upper limit of 200Hz is due to the communication requirements
considered in the current AHS research [Lasky93].

The discussion of nonstationary environments in Chapter 3 is based on the changing
penalty probabilities of actions. In this application, the action probabilities of the learning
automata are functions of the status of the physical environment (e.g., a decreasing headway
distance will result in a penalty response from the front sensor module if the chosen action is for
ACC). The realization of a deterministic mathematical model of this physical environment may be
impossible, if not extremely difficult. Therefore, simulation is the only way of demonstrating the
expediency and/or absolute optimality for a nonstationary automata environment resulting from a
changing physical environment.

4.2. Sensor/Teacher Modules
The four teacher modules listed above are simple decision blocks that calculate the response
associated with the corresponding sensor, based on the last chosen action. Table 4.2 below
describes the output of these decision blocks for side sensors.

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 50

Sensor Status (Left /Right)

Actions2
Vehicle in sensor

range or no adjacent
lane

No vehicle in sensor
range and adjacent

lane exists
SiL 0 / 0 0 / 0
SL 1 / 0 0 / 0
SR 0 / 1 0 / 0
SM # #

ACC # #
DEC # #
Table 4.2. Output of the left/right sensor modules.

As seen in Table 4.2, a penalty response from the left sensor module is received only when
the action is SL and there is a vehicle in the left sensor’s range or the vehicle is already traveling
at the left or rightmost lane. Similarly, the action SR is penalized if there is a vehicle on the right
lane. All other situations result in a reward response from this sensor module. The longitudinal
automaton do not use side sensors for reinforcement. Initial simulations define the range of the
side sensors using two parameters sr1 and sr2 as shown in Figure 4.3. It is assumed that the side
sensor’s range covers only the adjacent lane, and the sensor is mounted right at the middle of the
vehicle’s side.

The output of the side sensors are assumed to be binary, indicating the existence of a
vehicle on the adjacent lane. However, the side sensor module may also use the distance of the
detected vehicle from the sensor source for more intelligent decisions. This type of design may
result in a more expensive implementation, as it requires distance measurement and possibly
additional sensors.

V1 V2

V3

V1 > V2

fsr

sr1 sr2

Figure 4.3. Sensor ranges for an autonomous vehicle.

2 The actions are shift-to-left-lane (SL), shift-to-right-lane (SR), stay-in-lane (SiL), accelerate (ACC), decelerate
(DEC) and keep-same-speed (SM).

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 51

Assuming that the front sensor is capable of detecting the headway distance, we define the
headway module as shown in Table 4.3. If the sensor ‘sees’ a vehicle at a close distance (< fsr), a
penalty response is sent to the automaton for actions stay-in-lane, accelerate, and keep-same-
speed. All other actions (shifting lane or decelerating) may serve to avoid a collision, and
therefore, are encouraged. Then, an implemented headway module’s task is simply to compare the
time-of-flight of the echo to the predefined time interval corresponding to distance fsr. Also note
that although we show the limiting value fsr as the sensor range in Figure 4.3, the actual sensor
range and this value do not have to be equal. The output of this module affects both automata as
seen in Table 4.3.

The speed sensor of the autonomous vehicle is assumed to be an encoder connected to the
wheel shaft. The output of the encoder can be used to detect the wheel speed, which is
approximately equal to vehicle speed (or equal when cruising). The speed module’s task is simply
to compare the actual speed to the desired speed, and based on the action chosen, send a feedback
to the longitudinal automata. The responses depending on the speed and the longitudinal actions
are given in Table 4.4.

Sensor Status
Actions Vehicle in range

(headway < fsr)
No vehicle in range

(headway ≥ fsr)
SiL 1 0
SL 0 0
SR 0 0
SM 1 0

ACC 1 0
DEC 0* 0
Table 4.3. Output of the Front Sensor block.

Sensor Status
Actions dev < -pdif -pdif < dev < pdif dev > pdif

SiL # # #
SL # # #
SR # # #
SM 1 0 1

ACC 0 0 1
DEC 1 0 0

dev ≡ actual speed - desired speed
pdif ≡ permitted difference between actual and desired speeds

Table 4.4. Output of the Speed Sensor Module.

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 52

When the actual vehicle speed differs from the desired speed by a large amount, then only
the action decreasing the speed deviation receives a reward; others are penalized. This forces the
vehicle to slow down or speed up in order to match the desired speed. The value of the parameter
pdif (permitted difference between actual and desired speeds) is predefined.

The values of the sensor limits sr1, sr2, fsr, and pdif define the capabilities of the sensors
(in the case front and side sensors) as well as the “behavior” of the vehicle. Sensitivity to the
headway distance and/or to speed fluctuations are given by the predefined parameters and are key
to the behavior of the autonomous vehicle. For example, a vehicle with shorter side sensor range
will tend to “jump in front of vehicle in the next lane” more often than a vehicle equipped with
more capable sensors.

Now that we have defined the sensor module outputs, the problem is to intelligently
employ these signals for automata reinforcement. It is possible to treat all sensor modules as
separate teachers with conflicting feedback responses for the automata. For example, consider the
situation given in Figure 4.3. The longitudinal action will receive a penalty from the front sensor
module due to the existence of a vehicle in front. If the actual speed of this vehicle is less than the
desired speed, the speed module will try to force the vehicle to increase its speed. These two
outputs conflict, and it is obvious that one must have priority over the other: no matter what its
current speed is, a vehicle must slow down in order to avoid a collision if it senses another vehicle
occupying the immediate space in front of itself. The next section describes our approach to the
problem.

4.3. Nonlinear Combination of Multiple Teacher Signals
Action probabilities of the longitudinal and lateral automata are updated using the binary feedback
from the four sensor modules described in the previous section. As seen in Table 4.5, lateral
actions probabilities depend on three sensor outputs (front and side sensors), and longitudinal
action probabilities are updated based on the output of the headway and speed sensor modules.

Modules
Actions Headway Left Right Speed

SiL ? 0 0 -
SL 0 ? 0 -
SR 0 0 ? -
SM ? - - ?

ACC ? - - ?
DEC 0 or 0* - - ?

‘?’ means reward (0) or penalty (1) response is possible.
‘-‘ means that output is not used; can be treated as ‘0’.
 ‘0*’ has a higher priority (See discussion below).

Table 4.5. Action - Sensor Module matrix.

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 53

The probability of the lateral action SiL depends mainly on the output of the headway
sensor. When this action is chosen, the probability is decreased when the headway module
indicates a vehicle in the front sensor range. Side sensors always sends a reward response to this
action no matter what the situation is. Therefore, we can obtain a combined environment response
for this action by simply OR-ing the binary module outputs.

The same method is also valid for the two other lateral actions. Probabilities of actions SL
and SR depend on the output of the left and right sensor modules, respectively. A decision to shift
lane is penalized if the associated sensor indicates the presence of a vehicle in the adjacent lane.
Therefore, by using a simple OR function, we can combine all three sensor module outputs to
obtain a meaningful teacher response for the lateral automaton.

For the longitudinal actions, although there are only two sensors modules whose feedback
is considered for reinforcement, the decision is more complicated. Longitudinal actions SM and
ACC may receive a penalty or reward from the front sensor depending on the headway distance.
The output of the speed module depends on the actual speed of the vehicle, and is used to force
the vehicle to match the desired speed. Action DEC is considered as ‘good’ all the time by the
headway sensor module. However, the reward response in the case where there is a vehicle in the
front sensor range (indicated by 0*) is different than the normal reward response (indicated by 0):
this reward response must “override” a possible penalty from other modules. For the safety of the
vehicle, the output of this sensor must have a higher priority than that of the speed module.
Therefore, a simple OR-gate is not sufficient; additional Boolean functions must be used. Possible
action-sensor output scenarios are shown in Table 4.6.

Sensor Module Output
Actions Speed Headway Combined

SM 0 0 0
or 0 1 1

ACC 1 0 1
1 1 1
0 0 0

DEC 0 0* 0
1 0 1
1 0* 0

Table 4.6. Possible longitudinal action-sensor output scenarios.

Again, an OR-ing of the headway and speed module outputs will give the combined
output in Table 4.6 except the case where the action is DEC and the headway module indicates
the presence of a vehicle in front. Therefore, the output of an OR-gate must be “double-checked”
for this condition. Since we are using OR gates, we can define “don’t care” conditions (‘-‘) as
reward responses. Thus, it is possible to OR the outputs of all sensors. Then, the function F
mapping individual sensor outputs to a combined feedback signal is defined as in Figure 4.4.

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 54

DEC βLNG

OR

Speed Sensor

Left Sensor

Right Sensor

Action

IF act.=DEC & Hdwy = 0
β = 0

ELSE β = f

 f

Lateral Automaton

Long. Automaton

βLAT

Headway Sensor
=?

or

Figure 4.4. The definition of the mapping F.

Therefore, by adding one conditional rule to the OR-ed feedback signal, we obtain a
combined environment response to be applied to the automata. This single response is used to
update the action probabilities in both automata using the reinforcement schemes described in the
next section.

4.4. The algorithms
As described in previous chapter, the environment response is used to update the action
probabilities in an automaton. The update algorithm, called the reinforcement scheme, is the key
to automata learning. In Chapter 3, we introduced the learning paradigm and related definitions.
As we describe in more detail in Chapter 6, the reinforcement schemes are categorized according
to their nature and the behavior of the automaton. There are four different reinforcement schemes
used throughout this dissertation. These are:

• Linear reward-penalty LR-P (with a = b),
• Multi-teacher general absolutely expedient (MGAE) scheme,
• Linear reward-penalty L≠

R-P (with a ≠ b),
• NLH, an absolutely expedient nonlinear scheme.

The first algorithm is a well-known linear reinforcement scheme, one of the first LA
algorithms [Bush58]. The second algorithm is given by Baba [Baba83, Baba85], and also is valid
for S-model environments. The last two reinforcement schemes are extensions of the first two,
and have desirable characteristics for our application. They are the direct results of our attempts
to create reinforcement schemes with desirable characteristics suitable for this study of learning
automata applications to intelligent vehicle control. The detailed description of the algorithms can

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 55

be found in Chapter 6. Here, we will briefly mention their characteristics and relative properties.
Table 4.7 gives the general description of the above mentioned schemes.

Scheme Nature Behavior Advantages

LR-P - Linear
- Equal learning
parameters (a = b)
- Nonprojectional

- Expedient
[Narendra89]

 L≠
R-P - Linear

- Unequal learning
parameters (a ≠b)
- Nonprojectional

- Expedient, and optimal
in an “ideal environment”
(See Chapter 6)

-Faster convergence
with same learning
parameter a.
- Optimal (equilibrium)
solution is guaranteed
in N-person nonzero-
sum games

MGAE - Nonlinear
- Projectional
- Applicable to S-model

- Absolutely expedient
[Baba85]

NLH - Nonlinear
- Projectional
- Applicable to S-model

- Absolute expedient (See
Chapter 6)

- Faster convergence
than MGAE

Table 4.7. Properties of the reinforcement schemes.

The second algorithm is slightly different than the first one, and has not been studied in
detail previously. However, the convergence characteristics is better when the same learning
parameter a associated with reward is used. Furthermore, LR P−

≠ is proven to guarantee
convergence to an equilibrium point3 in N-person games. This is a property we would like to use
for analyzing the behavior of multiple autonomous vehicles. The last algorithm is an extension of
the third one, again resulting in a faster convergence in probability updates. These two schemes
are also proven to be absolutely expedient, meaning that the decision tends to a ‘better’ one at
every time step.

4.5. Simulation Results
The first simulation example shows a single autonomous vehicle traveling faster than (nine) other
vehicles on a 3-lane highway. All other vehicles are assumed to be cruising at fixed speed of
80kmh without changing lanes. The autonomous vehicle’s desired speed is set at 85kmh. Sensors
limits are fsr = 15m and sr1 = sr2 = 10m; the permitted speed deviation is 1kmh. Linear reward-
penalty scheme LR P=

≠ is used for reinforcement (see Table 4.8 for all other parameter settings). At

3 Or Nash equilibrium, where no player has a positive reason to change her strategy.

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 56

t = 0, the autonomous vehicle, traveling in lane 3, approaches the group of vehicles cruising at
fixed speed of 80kmh (Figure 4.5a; the vehicles are traveling from left to right). It immediately
changes lane to avoid a collision. It detects another slow moving vehicle in lane 2 at
approximately t = 10sec and slows down to keep a 15-meter headway distance (see Figure 4.6a).
At approximately t = 14sec, it shifts to lane 1. Immediately after the lane change, the speed is
adjusted to desired value of 85kmh. At t = 34sec and t = 45sec, two shift-to-left-lane actions are
carried out, again due to the presence of slow moving vehicles in front (Figures 4.5d-e). During
these maneuvers, the vehicle speed is not decreased, because the probability of the lateral action
SL reached 1 much faster than that of the longitudinal action DEC. The reason for this behavior is
the fact that the lateral action SR receives penalty at all times due to the presence of another
vehicle in the right lane, or due to the fact that the vehicle is in the rightmost lane.

After two shifts to the right lane (Figures 4.5f-h), the vehicle finds itself again in lane 1,
traveling behind another vehicle. The speed is adjusted to match the speed of the vehicle in front
(Figure 4.6). At this point, the only lateral action receiving reward is SiL, and this action is fired
repeatedly. Longitudinal automata, on the other hand, will chose the action necessary to keep the
headway distance over 15m. Whenever the headway distance is larger than this predefined limit,
the vehicle will attempt to increase its speed to 85kmh. It cannot move out from the pocket
created by two slow moving vehicles.

t=0s t=3s

t=14s t=33s

t=45s t=61s

t=74s t=90s

Lane 1

Lane 2

Lane 3

(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

Figure 4.5. Positions of nine vehicles: gray colored vehicle is autonomous,
black colored vehicles are cruising at constant speed.

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 57

 0 10 20 30 40 50 60 70 80 90

1

2

3

4

time (sec)

Vehicle Lane

 0 10 20 30 40 50 60 70 80 90

72

74

76

78

80

82

84

86

88

90

time (sec)

Vehicle Speed (kmh)

(a) (b)

Figure 4.6. Automated vehicle’s (a) lane position and (b) speed (See also Figure 4.5).

The second and third simulation results show the behavior of a vehicle following a slowly
moving vehicle. Both simulations have been started with an initial headway distance of 30m
(Figure 4.7). Front sensor range fsr is set to 15m. The memory vector size is the same as the
processing speed (25), and this results in speed changes every second at the least. The only
difference between two simulations is in the desired speeds; 81kmh in the second, and 85kmh in
the third simulation. The headway distance and speed of the automated vehicles are shown in
Figures 4.8 and 4.9.

t=0s

30m

Figure 4.7. An automated vehicle following a slow-moving
vehicle in lane 2.

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 58

 0 20 40 60 80 100 120
5

10

15

20

25

30

35
Headway (m)

time (sec)
 0 20 40 60 80 100 120

70

72

74

76

78

80

82

84

86

88

90

time (sec)

Vehicle Speeds (kmh)

(a) (b)
Figure 4.8. (a) Headway distance and (b) speed of an autonomous vehicle following another

 slowly moving vehicle: the desired speed of the autonomous vehicle is 81kmh while the vehicle
in front cruises at 80kmh.

 0 20 40 60 80 100 120
5

10

15

20

25

30

35
Headway (m)

time (sec)
 0 20 40 60 80 100 120

70

72

74

76

78

80

82

84

86

88

90

time (sec)

Vehicle Speeds (kmh)

 (a) (b)
Figure 4.9. (a) Headway distance and (b) speed of an autonomous vehicle following another

slowly moving vehicle: the desired speed of the autonomous vehicle is 85kmh while the vehicle
in front cruises at 80kmh.

As seen in the above figures, both vehicles are able to avoid a collision4; the headway
distance is never too close. However, the response of the automated vehicle is oscillatory. The
longitudinal automaton sends the action ACC whenever the headway distance is larger than 15m

4 This is, of course, possible provided that the iteration rate is fast enough or memory vector is relatively short.

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 59

to reach the desired speed of 85kmh. The action DEC is the choice when the distance is less than
the predefined limit. Also, the oscillation amplitude is higher when the relative speed is higher.
Although the oscillations are smaller for the desired speed setting closer to the speed of the
vehicle in front, the behavior is unstable, as seen in Figure 4.7.

Sim.
#

Learning
Parameters

Sensor limits
(m)

Proc.
Speed

Memory buffer size Figures

a b fsr sr2 sr1 (Hz) lateral long.
1 0.15 0.10 15 10 10 25 25 25 4.5, 4.6
2 0.15 0.10 15 10 10 25 25 25 4.7, 4.8
3 0.15 0.10 15 10 10 25 25 25 4.7, 4.9
4 0.15 0.10 15 10 10 25 25 25 4.10

Table 4.8. Parameter settings for simulations.

Although not shown here, the behavior of the vehicles change with different parameters.
The choice of sensor limits and learning coefficients as well as the iteration speed and the size of
the regulation buffer are important factors.

Another important issue is the fact that the automated vehicles in simulations 2 and 3
chose to adjust their speed (back and forth) to keep a safe distance instead of shifting to lane 1 or
lane 3 to evade the slow moving vehicle. Since the only lateral action receiving a penalty from the
front sensor module is SiL, the probability of the two other actions SL and SR reach 0.5. This
results in a memory buffer filled with (approximately) equal number of two different actions. The
vehicle cannot decide which action to take.
 Figure 4.10 shows the initial and final positions, numbers and speeds of ten autonomous
vehicles. The vehicles are traveling from left to right on a 500m circular highway. Final speeds
shown in Figure 4.10(f) are equal to desired speeds set initially. Simulation parameters are again
given in Table 4.8.

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 60

t=1s

1

2 3
4

5

6
7

8
9

10

80

85 80
80

80

80
80

80
80

80

t=243s

1 23 4
5 6

7 8
9

10

82 8082 79
80 80

83 78
81

80

(a)

(b)

(c)

(d)

(e)

(f)

ch4m1.mpg
(1.230Mb, every frame represents one fifth of a second)

(g)

Figure 4.10. Initial and final positions (a, d), numbers (b, e), and speeds (c, f) of ten automated
vehicles traveling on a 3-lane 500-meter circular highway. The mpeg movie of the simulation is

accessible via icon (g).

As seen in figure above and the mpeg movie, vehicles with higher speeds are slowly
moving ahead of the others. All vehicles are able to avoid collision, either by slowing down or
shifting lanes. In the end, all vehicles have reached their desired speeds, since they were all able to
shift to an open lane, sooner or later during the simulation. However, the paths taken to overtake
slower vehicles are not the shortest and/or quickest paths.

4.6 Discussion of the Results
The simulation results given in the previous section are indicative of several important issues. First
of all, assuming that the regulation layer can respond to the planning layer’s requests in time, and
that the real dynamic behavior of this system as well as actual sensor are not drastically different
than the simplified model here, our planning layer intelligent controller is capable of safely
directing the vehicle(s). Of course, the processing speed and the learning parameters need to be
adjusted to guarantee timely responses to environmental changes. Considering the current

Cem Ünsal Chapter 4. Application of Learning Automata to intelligent Vehicle Control 61

technology in computing, the iteration speed is not a big concern. Learning parameters must be
chosen large enough to guarantee fast learning for the desired iteration speed while avoiding
values larger than 0.3 for linear schemes, and 0.1 for nonlinear schemes in order to avoid
unnecessarily large action probability update of a non-optimal action probability to 1. The length
of the memory vector is another factor in “firing” actions. This buffer is definitely needed for
lateral actions, in order to avoid continuous lane changes, while its size can be decreased down to
1 for longitudinal actions provided that the speed changes are continuous.

Although there are no collisions with carefully selected parameters to obtain the necessary
convergence speed, the path and/or behavior of the vehicles are far from optimal. The
autonomous vehicle in simulation number 1 did not possess the information to help it avoid a
pocket created by two slow moving vehicles. The decisions are based on local data, and therefore
cannot guarantee global solutions for the vehicle, or the traffic as a whole for that matter.
Conflicting decisions are expected.

The observed oscillations in the headway distance is due to the “discrete time” control of
the speed, and the defined front sensor limit. For a fast processing speed and a more realistic
speed controller design, the problem may be relatively insignificant. However, with the current
definition of the headway module, the vehicles will keep decelerating even though the headway
distance is “improving.”

Furthermore, unnecessary lane changes can be observed in simulation number 4. This is
again due to the fact that the vehicles do not have an evaluation method for the desired lane when
such a decision is needed. This fact is also the cause of the behavior seen in simulations 2 and 3.
When lateral actions SL and SR are both “good,” the vehicle is unable to change lanes using the
current method of firing actions when the memory vector/buffer is full (see Section 4.1).

Initial simulations show promising results, but there is a need for more elaborate sensor
definitions, and for more complex decision rules. The next chapter will address these upgrades,
and other related issues.

It is interesting to note that again a task performed easily by human beings proves to be
very complicated for a “machine.” Even a simple decision of shifting lanes in order to avoid being
stuck in a packet of slow moving vehicles (simulation 1, Figure 4.5h) requires complicated
sensory hardware and, possibly, a complex communication mechanism. However, a human driver
can simply look farther ahead toward the adjacent lanes, and decide to slow down in order to find
an opening. Research currently conducted on AHS aims to solve such problems with extensive
vehicle-to-vehicle and/or vehicle-to roadside communications [Construction96, Lygeros94],
multiple sensors and sensor fusion [Agogino96] and a hierarchical control structure [Varaiya91,
Varaiya93, Lygeros95, Lygeros96]. When, the hierarchical system and all vehicles are
“connected,” they will collectively reach a solution. However, such an architecture consequently
requires an expensive implementation. The problem of making decisions based on local
information would exist even in a full AHS environment unless the system is fully hierarchical.

