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We present a combined numerical and asymptotic approach for modeling droplets in microchannels.
The magnitude of viscous forces relative to the surface tension force is characterized by a capillary
number, Ca, which is assumed to be small. The numerical results successfully capture existing
asymptotic solutions for the motion of drops in unconfined and confined flows; examples include the
analytic Stokes flow solution for a two-dimensional inviscid bubble placed in an unbounded
parabolic flow field and asymptotic formulas for slender bubbles and drops in confined flows. An
extensive investigation of the accuracy of the computations is presented to probe the efficacy of the
methodology and algorithms. Thereafter, numerical simulations are presented for droplet breakup in
a symmetric microfluidic T-junction. The results are shown to support a proposed mechanism for
breakup, driven by a pressure drop in a narrow gap between the droplet and the outer channel wall,
which was formally derived in the limit Ca1/5�1 �A. M. Leshansky and L. M. Pismen, “Breakup
of drops in a microfluidic T junction,” Phys. Fluids 21, 023303 �2009��. © 2011 American Institute
of Physics. �doi:10.1063/1.3549266�

I. INTRODUCTION

Flows of two immiscible liquids in microchannels are
often dominated by surface tension. This allows for the gen-
eration of monodisperse emulsions by moving droplets
through networks of microchannels.1 For example, droplets
of controllable sizes can be produced when two immiscible
fluids flow through a T-junction channel.2 Despite the recent
research focus on droplet-based microfluidic techniques,
open questions still remain for the understanding of drop
deformation and breakup in a T-junction.3,4 From the numeri-
cal simulation point of view, there are known subtleties with
these profoundly complex phenomena. Large capillary forces
combined with the effect of confinement, droplet breakup,
and mechanisms that trigger the breakup are just a few of the
complexities in numerical simulations. From the practical
viewpoint, the question arises as to when the breakup occurs
since this is a determining factor for the size distribution of
daughter droplets. An important parameter is the capillary
number

Ca =
�eŪ

�
, �1�

which represents the comparative effect of viscous force

relative to the surface tension force, with Ū being the mean
velocity of the flow, � the interfacial tension, and �e

the viscosity of the carrier liquid. Even though we address
small Ca, the drop shape is far from spherical because of
confinement.

We address the dynamics of the two-dimensional slender
droplet in a pressure-driven flow through a microfluidic
T-junction. Specifically, we model the flow regime for small
Ca�10−3 named “shear-driven breakup.”5 The experiments
in Ref. 5 are for two fluid pairs: �i� fluorinated oil droplets in
de-ionized �DI� water with 1% w/w �weight� sodium dodecyl
sulfate, interfacial tension of 15.4 mN/m, drop to matrix vis-
cosity ratio of 1.67, range of speed of the droplet arriving at
the T-junction between 5.8 and 300 �m /s, and 3�10−4

�Ca�1.8�10−2; and �ii� DI water droplets in hexadecane
with 1% w/w SPAN80 �sorbitan monooleate�, interfacial ten-
sion of 5 mN/m, viscosity ratio of 0.11, range of speed from
2.4 to 165 �m /s, and 3.8�10−3�Ca�0.27. The micro-
channels have the cross-sectional dimensions of 80 �m high
and 80 �m wide. At high confinement, the breakup for small
Ca is likely caused by an increase in the upstream pressure
due to lubrication flow in a thin film sandwiched between the
drop and the channel wall. This breakup mechanism is flow-
driven and does not rely on capillary instability proposed
earlier6 as a potential cause of breakup. Although capillary
breakup is three dimensional, the flow-driven breakup is op-
erative in two-dimensional flow models. Another possibility
is that the breakup mechanism may be similar to a central
pinch-off of a drop placed in an unbounded extensional flow,
albeit more complicated due to the presence of confinement.
In this paper, we shall show that our direct numerical simu-
lations of the full set of equations agree well with the two-
dimensional theoretical model of Ref. 7 and the experimental
data on shear-driven breakup.5

The mechanism of breakup in Ref. 7 concerns the two-
dimensional flow where a capillary instability of a cylindri-
cal liquid thread is not operative. The dependence of the
critical droplet extension on the capillary number is therefore
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based on the analysis of the lubrication flow in the narrow
gap between the interface and the channel wall, where sur-
face tension and viscous forces are assumed to be compa-
rable. Outside this thin gap, surface tension force dominates
and a simple geometric construction for the droplet shape is
applied. Figure 8 of Ref. 7 is an attempt to validate the
low-Ca analytical formula derived in Ref. 7 with direct nu-
merical simulations with a volume-of-fluid �VOF� method8

for the maximum extension of the two-dimensional drop, �,
nondimensionalized by the width of the channel, w, as a
function of the capillary number. The comparison is pre-
sented for an extrapolation of the theory to moderate capil-
lary numbers because the numerical method failed at the
small Ca necessary to validate the analysis,

�/w � 1.3 Ca−0.21 for Ca1/5 � 1. �2�

Note that for Ca�0.02, the theory predicts drop breakup at
� /w noticeably less than what is found via the numerical
simulation. Thus, the physical relevance of Eq. �2� has re-
mained open for the range of capillary numbers for which it
was derived. In this paper, we shall validate this theory with
direct numerical simulations in the low capillary number
range. We shall begin at a slightly higher Ca=0.05, where
both theory and direct numerical simulations agree in Ref. 7,
and decrease Ca and examine the shape from the direct nu-
merical simulations.

II. GOVERNING EQUATIONS

We consider a drop of initial radius a and viscosity �i in
a channel of width H �see Fig. 1�. The carrier liquid has a
viscosity �e and density �e. The no-slip boundary condition
is applied at the walls of the channel. At the inlet, a uniform

normal velocity, Ū, is applied with a zero gradient condition
for the pressure. At the outlet, typical outflow boundary con-
ditions, zero pressure and velocity gradient, are applied. We
solve the equations of conservation of mass and momentum
for two incompressible Newtonian fluids. In what follows, u
represents the velocity field and p the hydrodynamic pres-
sure. We nondimensionalize the variables as follows:

x� = x/H, t� = tŪ/H, �� = �/�e, �� = �/�e,

u� = u/Ū, p� = pH/��eŪ� .

The equations of motion then become

�� · u� = 0, �3�

Re� �

�t�
���u�� + �� · ���u�u���

= − ��p� + �� · 	� +
1

Ca
Fst

� , �4�

where 	�=�����u�+��u�T� represents the dimensionless
shear stress tensor, Fst

� denotes the dimensionless body force

due to surface tension, Re=�eŪH /�e denotes the Reynolds
number, and Ca is the capillary number defined by Eq. �1�.

III. NUMERICAL ALGORITHM

The numerical simulation of a droplet with strong sur-
face tension effects may be conducted with a variety of
interface-tracking and interface-capturing methods.1,9–11

These include level set methods,12 phase field methods,13,14

marker methods,15 and VOF methods,16–18 combined with
spatial and temporal discretizations such as the boundary
integral formulation,19 finite elements, and finite
differences.20–22 A phase field method was developed in Ref.
23 and applied in Ref. 24 for a combined numerical, theoret-
ical, and experimental study of confined droplet breakup in a
T-junction with both an applied pressure gradient and a
crossflow. The study includes the range of low capillary
numbers that we address, but the presence of crossflow
makes their analysis different from ours. Our results are ob-
tained with an in-house code based on a VOF
approach,18,25,26 which provides a simple way for treating
topological changes of the interface. We implement the
“height function” �HF� methodology, which yields a consis-
tent representation of surface tension force. This enables an
accurate computation of interface curvature, which con-
verges with mesh refinement.18,27,28 Thus, the VOF-HF
method is one of the recent developments that has extended
the applicability of the VOF method to surface tension domi-
nant phenomena. Below, we briefly describe the imple-
mented VOF-HF methodology in our numerical model. For
details, the reader is referred to Refs. 18, 25, 26, and 29.

In the VOF-HF methodology, the interface is locally rep-
resented as a graph in the Cartesian coordinates. The two-
dimensional HF method is illustrated in Fig. 2 on a uniform
mesh of size 
. About each interface cell, in the direction
most normal to the interface �estimated here by a simple
finite difference evaluation of �f�, fluid “heights” are calcu-
lated by summing volume fractions. In two dimensions, we
construct either a 7�3 or a 3�7 stencil around each inter-
face cell. For example, for the cell �i , j� illustrated in Fig. 2,
	ny	� 	nx	, and so the height functions are constructed by
summing volume fractions vertically,

y

x
lo

H

H/2

inflow profile

axis of symmetry

outflow

FIG. 1. �Color online� Schematic of the initial condition for numerical
simulations.
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hi = 

k=j−3

k=j+3

f i,k
 , �5�

with corresponding expressions for hi−1 and hi+1. The heights
h are then used to compute the interface normal n� and cur-
vature � at cell centers,

n�cc = � hx

− 1
�, �cc =

hxx

�1 + hx
2�3/2 , �6�

where hx and hxx are discretized using second-order central
differences. This approach yields the accuracy in curvature
and surface tension force, which are essential to modeling
very low capillary number flows.

The domain is discretized adaptively using the quadtree
finite volumes arranged hierarchically. Primitive variables
are collocated at cell centers; normal velocities are also
specified at faces, as in the Marker-and-Cell �MAC� grid.
The flow equations are discretized using a projection method
based on a fractional-step scheme and is capable of simulat-
ing variable densities. In the fractional-step projection
method, an interim velocity is computed first; this velocity
field is projected onto a divergence-free velocity field, with
the pressure field obtained as the solution of a Poisson equa-
tion. Advection terms are discretized using a second-order
upwind scheme. As the face-centered velocities are exactly
divergence-free, the volume fractions are advected using
these velocities.

Next, we compare the computational results with the ex-
isting asymptotic and analytic results corresponding to the
motion of deformable drops and bubbles in nonuniform un-
bounded and confined viscous flows. These benchmark com-

putations are an indicator of the accuracy of the implemented
HF methodology in the regime of interest for the T-junction
simulations that follow.

IV. BENCHMARK COMPUTATIONS

In order to validate the accuracy of our numerical model
for the simulation of low capillary number flows, we have
conducted the following benchmark computations. The first
test is a two-dimensional inviscid bubble placed at the center
of the unbounded parabolic velocity profile in Stokes flow
considered by Richardson in Ref. 30. There is a one-
parameter family of solutions governed by a dimensionless
surface tension,

Z = �/a2B�e, �7�

where 2Ba is the applied pressure gradient driving the flow;
i.e., B=
p / �2�eL�, with a being a characteristic size of the
bubble. We shall see later that Z is not simply the inverse of
the capillary number, but incorporates a dimensionless mea-
sure of confinement.

The conformal mapping z=w�
�, which maps the surface
of the bubble in a complex z plane to the unit circle in the
complex 
 plane, is given by Ref. 30,

w�
� = a�
 +
1

3

+

�


 − �
� , �8�

where w�
� is analytic for 	
	�1. The constants � and �
are determined by numerically solving the coupled pair of
equations,

3� = Z�G1��,��, �2 − 3� − 1 = 2Z�2G2��,�� .

The functions G1 and G2 are given by

G1��,�� =
1

�



0

� �1 − 2� cos � + �2�
	P�ei��	

d� ,

G2��,�� =
1

�



0

� �cos � − ��
	P�ei��	

d� ,

where P�
�= �
2−1 /3��
−��2−�
2. Note that for suffi-
ciently large surface tension, the bubble has a circular cross
section, so a is defined to be the radius. On the other hand,
for moderate surface tension, the same value of an initial
radius a in Eq. �8� would correspond to bubbles with differ-
ent cross-sectional areas and a normalization would be re-
quired if bubbles of a fixed area are to be compared.

The bubble placed at the center of the parabolic flow
profile is found to move faster than the undisturbed fluid
velocity at the center, giving rise to a scaled bubble excess
velocity,30

Ue

a2B
= −

2Z

3�



0

� �1 − 2� cos � + �2�cos �

	P�ei��	
d�

+
�

4�2 �1 + 3�� +
13

12
� +

4

9
. �9�

For the wall-bounded parabolic flow in a two-dimensional
slit of width H, the maximum velocity of the undisturbed

n

hi-1

hi+1

i-1 i i+1

j+3

j+2

j+1

j

j-1

j-2

j-3
y

x

hi

FIG. 2. The 7�3 stencil used to calculate fluid heights for the height func-
tion method.
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parabolic flow is Um=H2 /8�e�
p /L�. Therefore, we can
write

Z = 1
4 �H/a�2Ca−1, �10�

where the capillary number, Ca=�eUm /�, represents the
comparative effect of viscous force relative to the surface
tension force. The scaled bubble excess velocity can be re-
written as Ue / �a2B�= 1

4 �Ue /Um��H /a�2.
The numerical simulations are carried out for a cylindri-

cal bubble of radius a centered between parallel plates of
width H=1 and length L=4–8, depending on the value of Z.
The viscosity of the carrier fluid is �e=1. The viscosity of
the drop �i=0.01 is chosen to optimize the computational
cost. The densities of the two fluids are matched. The steady-
state velocity is calculated from bubble displacements by
averaging over the time taken by the drop to pass a distance
of approximately four diameters. The mean flow velocity is

Ū=1 throughout. The Reynolds number based on the chan-
nel half width,

Re = �eŪH/2�e,

is prescribed to be 0.5 to ensure that fluid inertia is negligible
for the results presented in this paper, which we have verified
by repeating the simulation at Re=0.25,0.1. Additionally,
spatial and temporal convergence tests were conducted to
ensure that the results are independent of the mesh size, time
step, and the channel length.

Figures 3–5 compare the steady-state bubble shapes cal-
culated from Eq. �8� �solid line� and the numerical simula-
tions �dots� obtained in the finite computational domain de-
scribed above. The surface tension parameter Z is varied for
a=0.075,0.15,0.3. When Z�1, the numerical results agree
excellently with the unbounded theory for the smaller radii,
a=0.075 and 0.15. The comparison illustrates the manner in
which confinement affects the drop shape since the computed
solution is for a confined bubble, while the analytic solution
is for unconfined flow. Generally, our numerical simulations
show further effects of confinement where differences with
the Richardson’s solution arise. For smaller radii �e.g.,
a=0.15� such that the boundaries of the computational do-
main are sufficiently far apart, we reproduce the solution in
Ref. 30; namely, at high surface tension Z, the bubble re-
mains nearly circular as in Fig. 4�d�, while at lower surface
tension, the rear of the bubble fattens as in Figs. 4�a� and
4�b� toward the formation of a re-entrant cavity upon Z→0.

Figure 6 shows the dimensional velocity of the bubble as
a function of surface tension for three fixed values of a. The
velocity decreases as surface tension increases, as expected
from the theory of Ref. 30. Another way to view the results
is to recast them using Eq. �9� to compare Ue /a2B as a func-
tion of Z. This dependence is depicted in Fig. 7. The error
bars represent twice the standard deviation and indicate the
uncertainty in the reported computations. Richardson’s
theory anticipates that for the unbounded parabolic flow the
excess velocity corresponding to different a �void symbols�
should collapse onto the same master curve �solid line in Fig.
7�. The numerical solution shows that the bubble velocity
exceeds the undisturbed maximum fluid velocity at low val-

ues of Z for all a, in agreement with the analytic solution �9�.
However, it can be readily seen in Fig. 7 that in a channel
flow the excess velocity becomes negative as the surface
tension Z increases. This deviation from the Richardson’s
theory is due to confinement and it is more pronounced for
larger bubbles. Note that the retardation effect of the solid
boundary on the bubble velocity at large Z is qualitatively
consistent with the asymptotic solution in Ref. 31 for unde-
formable neutrally buoyant spherical drops, flowing axially
in viscous Poiseuille flow in a cylindrical capillary: the drop
was found to move slower than the maximum velocity of the
undisturbed flow Um by a factor �Um�a /R�2, where R is the
radius of the capillary.
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FIG. 3. Bubble shapes at the center of the parabolic velocity profile for
a=0.3: Z=0.93 �a�, 1.85 �b�, 3.7 �c�, 7.4 �d�. Theoretical prediction from Eq.
�8� �solid line� compared with the numerical simulations �dashed line�.
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We next present benchmark computations for slender
bubbles and droplets in confined channels and vary the vis-
cosity ratio and capillary number. Initially, the ratio of the
drop length to the drop radius is 4, and the ratio of the drop-
let diameter to the channel width is 0.45. The channel width
is fixed at H=1 and the channel length is varied from L=5 to
8, depending on the value of Ca. The viscosity of the carrier
fluid is �e=1, and the viscosity of the bubble is varied such
that �=�i /�e=0.01,0.125,0.4,1. The densities of fluids are
matched. Spatial and temporal convergence tests were con-
ducted at Re=0.1,0.25,0.5 and the results were checked to
be invariant with the mesh size, time step, and Reynolds
numbers. In contrast to the previous benchmark computation,

grid refinement is very important to accurately capture the
thin film dynamics between the drop and the wall. Specifi-
cally, the final dynamics is controlled by the flow near the
wall where the circular meniscus transitions into the film. We
use an adaptive mesh to focus the computations on the re-
gions where the velocity gradient is high. The refinement
between the wall and the droplet consists of at least three to
four grid points vertically across that region. This is again
tested for sufficiency by varying the number to five nodes.
Figure 8 depicts a typical adaptive mesh utilized for the nu-
merical simulations along with the droplet shape and the
pressure distribution �color contours�.
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FIG. 4. Bubble shapes at the center of the parabolic velocity profile for
a=0.15: Z=0.74 �a�, 1.85 �b�, 3.7 �c�, 9.3 �d�. Theoretical prediction from
Eq. �8� �solid line� compared with the numerical simulations �dashed line�.
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FIG. 5. Bubble shapes at the center of the parabolic velocity profile for a
=0.075: Z=0.3 �a�, 1.48 �b�, 2.96 �c�, 14.8 �d�. Theoretical prediction from
Eq. �8� �solid line� compared with the numerical simulations �dashed line�.
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For slow viscous flows and Ca�1, Bretherton32 consid-
ered the method of matched asymptotic expansions for the
motion of a long bubble immersed in the Poiseuille flow in a
tube. He assumed a quasiunidirectional flow in the thin film
sandwiched between the bubble and the tube; this lubrication
approximation yielded the velocity U of the bubble im-
mersed in the Poiseuille flow to be approximated at leading
order in Ca=�eU /��1,

U/Ū � 1 + 1.29�3�eU/��2/3. �11�

This theory can be readily modified for the two-dimensional
bubble placed in the Poiseuille flow between two parallel
plates
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FIG. 6. Bubble dimensional velocity vs the surface tension for a=0.075 �a�,
0.15 �b�, 0.3 �c�.

�

�

�

� �

�

�

�

�
� � �

�

�

�

� � �

0 2 4 6 8 10

�0.1
0.0
0.1
0.2
0.3
0.4
0.5

Z

U
e�
a2
B

FIG. 7. �Color online� Bubble excess velocity upon varying Z, for
a=0.075 ���, 0.15 ���, and 0.3 ���, compared with the analytic solution in
Eq. �9� �–�.

FIG. 8. �Color online� An example of the adaptive mesh utilized for the
numerical simulations along with the droplet shape and the pressure distri-
bution �color contours�.
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FIG. 9. �Color online� Drop velocity normalized by the mean velocity in the
channel vs Ca, for �=0.01 ���, 0.125 ���, 0.4 �� �, 1 ���, �a� compared
with asymptotic approximations given by Eq. �12� �–� and Eq. �14� �- -�; �b�
log�U / Ū−1� vs log Ca.
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U/Ū � 1 + 0.643�3�eU/��2/3. �12�

An extension to slender droplets with an arbitrary viscosity is
given in Refs. 33 and 34, where the analytic solution for the
lubrication flow in the thin film of the continuous phase is
coupled to the numerical solution for the flow within the
droplet. For a very viscous drop, however, the analysis of the
flow in the thin film suffices and the results analogous to
Eqs. �11� and �12� can readily be found as follows: the co-
efficients 1.29 and 0.643 in Eqs. �11� and �12�, respectively,
are reduced by a factor of 2−1/3�0.794, yielding

U/Ū � 1 + 1.02�3�eU/��2/3 �13�

for a bubble in a cylindrical capillary and

U/Ū � 1 + 0.51�3�eU/��2/3 �14�

for a two-dimensional bubble in a slit channel.
Figure 9�a� shows the drop velocity normalized by the

average velocity in the channel as a function of Ca at differ-
ent viscosity ratios. The numerical results �symbols� agree
quite well with the lubrication approximation for a bubble
�–�
�Eq. �12�� and a very viscous drop �- -� �Eq. �14��; the agree-
ment is excellent for Ca→0. The predicted scaling of the

U / Ū−1 versus Ca is demonstrated in Fig. 9�b� for varying �.
The velocity of the slender drop can also be computed as

a function of the constant film thickness h between the slen-
der drop and the channel wall for any arbitrary viscosity.
This is presented in the Appendix with an argument based on
the conservation of mass. The drop velocity normalized by
the mean velocity in the channel can be expressed as a func-
tion of the nondimensional film thickness h�=h / �H /2� and
the viscosity ratio � as

U

Ū
=

1

2

3� − �3� − 2��1 − h��2

� + �1 − h��3 − ��1 − h��3 . �15�

The film thickness and the drop velocity obtained from the
numerical computations are plotted together with the predic-
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FIG. 10. �Color online� Drop velocity normalized by the mean velocity in
the channel vs nondimensional film thickness h�, for �=0.01 �a�, 0.125 �b�,
0.4 �c�, 1 �d�; numerical results �symbols� compared with Eq. �15� �–�.

-80

-60

-40

-20

0

20

40

60

2 2.5 3 3.5 4

∂u
/∂y

x

(a)

-50

-30

-10

10

30

50

1.5 2 2.5 3 3.5 4 4.5

∂u
/∂y

x

(b)

-30

-20

-10

0

10

20

30

1.5 2 2.5 3 3.5 4

∂u
/∂y

x

(c)

-20
-15
-10
-5
0
5

10
15
20

2.5 3 3.5 4 4.5 5 5.5

∂u
/∂y

x

(d)

-2

0

2

4

6

8

10

3.5 4 4.5 5 5.5 6 6.5

∂u
/∂y

x

(e)

FIG. 11. Velocity streamlines in the drop in a frame of reference moving
with the steady-state drop �upper plot�. Shear rate �u /�y along the channel
wall �lower plot� for the steady states: Ca=0.005 �a�, 0.01 �b�, 0.02 �c�,
0.045 �d�, 0.27 �e�; �=0.01.
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tion �15� in Fig. 10. It is evident that the comparison of
numerical results with theoretical estimates is excellent, es-
pecially as Ca→0.

The upper plots in Figs. 11 and 12 show velocity stream-
lines in the drop frame of reference for moving interfaces

which have reached steady-state shapes. An interesting ob-
servation is the mixing dynamics inside the drop in this
closely fitting geometry. As shown in Fig. 9�a�, the drop
moves faster than the mean velocity in the channel. There-
fore, there exists a region near the drop axis where the ve-
locity is higher than the steady-state velocity of the drop,
causing the formation of the vortices. The mobility of the
surface of the drop gives rise to one clockwise vortex that
extends to the middle of the drop accompanied by two sec-
ondary counterclockwise vortices of weaker strength, one in
the front and one in the back near the stagnation points. With
the increase of the capillary number, the primary vortex ap-
pears to fill the center volume of the drop, suppressing the
secondary vortices. In front of the drop, a backward recircu-
lation is formed in the channel, while at the back of the drop,
the recirculating flow in the channel is forward. The flow in
the thin film sandwiched between the drop and the channel
wall is observed to be indeed quasiunidirectional. Two stag-
nation points are observed on the drop surface at the points
of intersection of the backward recirculation in front of the
drop and forward recirculation at the back of the drop. Fig-
ures 11 and 12 show that increasing the viscosity contrast
from �=0.01 to 1 induces a strengthening of vortices in front
and at the rear of the drop, as well as the backward recircu-
lation motion of the central vortex.

The counter-rotating primary and secondary vortices cor-
respond to wall shear stresses with opposite signs. Figure
13�a� shows the velocity streamlines in a frame of reference
where the drop is moving. Interestingly, a recirculating vor-
tex arises due to the entrainment of the fluid as the drop
moves forward. This recirculation contributes a significant
effect on the distribution of the shear stress at the wall. The
lower plots for each case in Figs. 11 and 12 give the wall
shear rates at various capillary numbers for �=0.01,1. The
magnitude of the maximum shear rate at the wall increases
with decreasing capillary number. The corresponding in-
crease in the shear rate is due to an increase in the pressure
gradient at that point �see Fig. 13�b��. In the entrained recir-
culating vortex region, the shear rate alternates the direction
becoming negative, and therefore, there exists a region be-
tween the front and the rear of the drop where the shear rate
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FIG. 12. Velocity streamlines in the drop in a frame of reference moving
with the steady-state drop �upper plot�. Shear rate �u /�y along the channel
wall �lower plot� for the steady states: Ca=0.005 �a�, 0.01 �b�, 0.02 �c�,
0.045 �d�, 0.27 �e�; �=1.
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FIG. 13. �Color online� �a� Steady-state flow field in a frame of reference
where the drop is moving from left to right. �b� Pressure distribution for
steady states; the highest pressure gradient occurs near the stagnation point
at the back of the drop: Ca=0.01 and �=0.01.
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is zero. The shear rate away from the drop is simply that of
the unperturbed Poiseuille flow.

Although the magnitude of the maximum shear rate at
the wall varies significantly with the change in the capillary
number, the overall behavior of the wall shear rate with re-
spect to x is qualitatively similar at every capillary number.
With increasing capillary number, the entrained recirculating
vortex becomes weaker �not shown here�, causing a drop in
the peak of the wall shear rate, while at Ca=0.005, the maxi-
mum wall shear stress is almost 50 times higher than that of
Ca=0.27.

V. DROPLET BREAKUP IN A T-JUNCTION

An open question regarding the deformation of a long
drop suspended in another liquid and pushed through a
T-junction is the relevance of the simplified interfacial geom-
etry assumed by Leshansky and Pismen.7 The resolution of
this issue requires direct numerical simulations in a difficult
regime that focuses on small capillary numbers and high
confinement. In this regime, the asymptotic theory in Ref. 7
has yet to be ascertained with computational results. In par-
ticular, more than one mode of drop breakup has been ob-
served in the experimental data5 when a long drop goes
through a T-junction.

In accordance with the experimental data in Ref. 5, the
theory of Leshansky and Pismen predicts that � /H scales like
Ca−1/5 and h /H scales like Ca2/5, where � is the maximum
extension of the two-dimensional drop and h is the minimal
film thickness between the drop and the outlet channel wall.
In the limit of Ca1/5�1 and h�H, the results of their theory
can be expressed as

�0/H � 0.98 Ca−0.21, �16�

where �0 is the initial drop extension and

h/H � 1.08 Ca2/5. �17�

We now present the results of our computational inves-
tigation of the capillary extension and breakup of two-liquid
systems in a T-junction for the initial condition sketched in
Fig. 1. Our numerical experiments are compared with the
theory of Ref. 7 for unprecedented low capillary numbers.

Figures 14 and 15 demonstrate the numerical calcula-
tions for viscosity ratios of �=0.1 and �=1 �symbols�, re-
spectively, along with Eq. �16� extrapolated to moderate val-
ues of Ca. As a whole, the numerical results agree very well
with the theory for a wide range of Ca. For �=1, we find that
our numerical simulations are consistent with the predicted
�Ca�−0.21 law with a prefactor of 0.9. The experimental ob-
servations of Ref. 3 also suggest a smaller prefactor for
higher viscosity drops rather than lower viscosity drops. Our
simulations also reveal that drops with higher viscosity break
up earlier; a possible explanation for this is the generation of
higher shear stresses for drops with higher viscosities.
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FIG. 14. �Color online� Phase diagram of numerical simulations for a drop
in a symmetric T-junction. The solid line is �0 /H�0.98�Ca�−0.21. The sym-
bols correspond to numerical results for nonbreaking ��� and breaking ���
drops; �=0.1.
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FIG. 15. �Color online� Phase diagram of numerical simulations for a drop
in a symmetric T-junction. The solid line is �0 /H�0.9�Ca�−0.21. The sym-
bols correspond to numerical results for nonbreaking ��� and breaking ���
drops, �=1.

0 0.01 0.02 0.03 0.04

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

h
/H

Ca

10
−3

10
−2

10
−1

FIG. 16. Comparison of the dependence of the minimal film thickness on Ca
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We next present the dependence of the minimal film
thickness h on Ca. We compare our numerical results with
the theoretical prediction �17� in the limit of h�H. The
scaled minimal gap thickness, h /H, as a function Ca is de-
picted in Fig. 16. The solid line corresponds to Eq. �17�,
while the inset represents the scaling of the minimal gap
thickness with �Ca�2/5 law. The agreement of the full numeri-
cal calculations with the prediction of the low-Ca theory is
remarkable. It can be readily seen that for very small Ca, the
numerical results coincide with the asymptotic analysis. The
agreement of the theoretical law with the experimental re-
sults is already established in Ref. 5.

An additional observation proposed by the theoretical
prediction in Ref. 7 is the critical width of the drop at the
axis of symmetry �neck thickness� preceding breakup onset.
The theory estimates the critical width dc to be roughly 0.5H.
Figure 17 shows the computed critical thickness at various
capillary numbers for the nonbreaking drops closest to the
breakup threshold, and these compare well with the estimate
in Ref. 7 and the experimental observations described in
Ref. 5.

Figures 18�a�–18�f� illustrate the snapshots of a non-
breaking drop going through a T-junction for Ca=0.06,
�0 /H=1.75, and �=0.1. �a� The drop is initially placed far-
ther away from the T-junction. �b� The drop reaches the junc-
tion while slowing down. �c� The drop is pushed through the
daughter channel while blocking the T-junction passage; the
pressure significantly increases at the T-junction corner due
to the blockage. �d� The drop is pushed further through the
daughter channel due the upstream pressure; a tunnel opens
up which allows the carrier liquid to flow through. �e� The
drop reaches a steady state and a recirculating flow forms
inside the drop. Higher velocity gradients above the drop tip
and the recirculating flow inside the drop are shown in Fig.
18�f�. It should be noted that due to the imposed symmetry
condition, nonbreaking drops attain a steady-state configura-
tion rather than escaping through one of the daughter chan-
nels. The case Ca=0.06, �0 /H=1.75, and �=0.1 yields a
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FIG. 17. The critical thickness of the neck of the drop at various capillary
numbers for the nonbreaking drops closest to the breakup threshold is com-
pared for the theoretical dc�0.5H �¯ � and full numerical simulations ���;
�=0.1.
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FIG. 18. �Color online� �a� Initial placement of the drop; due to symmetry,
only half of the computational domain is modeled. �b� Drop arrives at the
junction. �c� Drop penetrates into the T-junction, keeping the daughter chan-
nel closed. �d� Drop moves into the T-junction; a tunnel opens up. ��e� and
�f�� The nonbreaking drop achieves a steady state. ��a�–�e�� The color con-
tours illustrate the pressure distribution. �f� The steady-state velocity field
and streamlines are depicted: Ca=0.06, �0 /H=1.75, and �=0.1.
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FIG. 19. �Color online� �a� Drop arrives at the junction. �b� Drop penetrates
into the T-junction, keeping the daughter channel closed. �c� Drop moves
into the T-junction; a tunnel opens up. �d� A neck forms while the drop is
being elongated. �e� The neck thins out rapidly after its width reaches a
critical thickness. �f� Drop breaks up. ��a�–�c� and �f�� The color contours
illustrate the pressure distribution. ��d� and �e�� The velocity field and
streamlines are depicted: Ca=0.06, �0 /H=1.75, and �=1.
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steady-state configuration, but a drop at a higher viscosity
is found to break up. Figures 19�a�–19�f� illustrate the
snapshots of a breaking drop for Ca=0.06, �0 /H=1.75, and
�=1. Higher shear stresses are shown to be responsible for
elongating the higher viscosity drop more than at �=0.1 and
for the eventual breakup.

We next detail the behavior of the droplet as it goes
through the T-junction preceding the breakup at Ca=0.08,
�0 /H=1.75, and �=0.1. A pressure-driven flow pushes the
drop to penetrate into the T-junction �Fig. 20�a��. Upon ar-
rival at the T-junction, a tunnel of the thickness of a lubrica-
tion layer forms �Fig. 20�b��. The tunnel remains open there-
after. An increased upstream pressure due to lubrication flow
in the thin film sandwiched between the drop and the channel
wall occurs next �Fig. 20�b��. High tangential viscous
stresses build up at the interface due to the lubrication flow
between the droplet and the channel wall �Fig. 20�c��, result-
ing also in a recirculating flow inside the drop �Fig. 20�d��.
This mechanism is responsible for the elongation of the drop.
A necking process kicks in after the drop is sufficiently elon-
gated, and the drop breaks up �Fig. 20�e��. The curvature is
found to reach a constant radius at the drop tip, while the
depression corresponds to a large curvature radius of the
concave region. This scenario is exactly consistent with the
analytical framework of Ref. 7. Figures 21–23 present
the simulation results of �0 /H=2 for Ca=0.04 and �=0.1,
Ca=0.04 and �=1, and Ca=0.05 and �=0.1, respectively.

We note that Ref. 5 describes the experimental observa-
tion of a distinct regime, namely, “breakup with permanent
obstruction,” in which a very long droplet obstructs the chan-
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FIG. 20. �Color online� �a� The drop arrives at the junction. �b� The drop
penetrates into the T-junction, keeping the daughter channel closed. �c� A
tunnel opens up for the lubrication flow between the drop tip and the wall of
the channel. The tunnel remains open throughout. �c� Viscous stresses build
up and elongate the drop. ��d�–�f�� A neck forms and the width of the neck
decreases rapidly, followed quickly by the drop breakup. The color contours
illustrate the pressure distribution: Ca=0.08, �0 /H=1.75, and �=0.1.
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FIG. 21. �Color online� �a� The drop arrives at the junction. �b� The drop
penetrates into the T-junction, keeping the daughter channel closed. �c� The
drop moves into the T-junction; a tunnel opens up. ��d�–�f�� The nonbreaking
drop achieves a steady state. ��a�–�e�� The color contours illustrate the pres-
sure distribution. �f� The steady-state velocity field and streamlines are de-
picted: Ca=0.04, �0 /H=2, and �=0.1.
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FIG. 22. �Color online� �a� The drop arrives at the junction. �b� The drop
penetrates into the T-junction, keeping the daughter channel closed. �c� The
drop moves into the T-junction; a tunnel opens up. �d� A neck forms while
the drop is being elongated. �e� The neck thins out rapidly after its width
reaches a critical thickness. �f� The drop breaks. ��a�–�c� and �f�� The color
contours illustrate the pressure distribution. ��d�–�e�� The velocity field and
streamlines are depicted: Ca=0.04, �0 /H=2, and �=1.
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nel upon entering the junction. A necking process then kicks
in, followed by the drop breakup. This regime will be ex-
plored in a future investigation.

VI. CONCLUDING REMARKS

We have implemented an accurate surface tension model
for the numerical simulation of drops and bubbles in micro-
channels. The accuracy of our numerical methodology was
demonstrated by simulating benchmark problems for micro-
flows and microdroplets with strong confinement and for
various capillary numbers and viscosity ratios. Our numeri-
cal results show very good agreement with the solution of
Stokes flow concerning a two-dimensional inviscid bubble
placed in a parabolic flow and with asymptotic results con-
cerning the motion and deformation of slender bubbles and
drops in confined flows.

We present a combined asymptotic and numerical study
of the breakup of drops through a T-junction. Minimal gap
width, thickness of the neck, and breakup conditions com-
puted numerically are consistent with the simplified model
and asymptotic analysis in Ref. 7 and experimental data in
Ref. 5. Our numerical simulations also agree with the esti-
mated critical conditions for breakup. However, more than
one mode of drop breakup has been observed in the experi-
mental data of Ref. 5 when drops with very long extension
go through a T-junction; this is a regime that is outside the
scope of this paper.
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APPENDIX: 2D SLENDER DROPLET IN A CHANNEL:
MASS CONSERVATION ARGUMENTS

Let the pressure gradient in a Poiseuille flow be defined
as the pressure drop 
P over length L. Let v= �u�y� ,0� de-
note the pressure-driven flow between parallel plates of
width W, separated by a distance H. The Navier–Stokes
equations are ��2v=�p, where

�uyy +

P

L
= 0. �A1�

This yields

u�y� =
1

2�


P

L
��H/2�2 − y2� . �A2�

The flow rate is

Q = W

−H/2

H/2

u�y�dy =
1

12�


P

L
WH3. �A3�

The average flow rate is

Ū = Q/HW =
1

12�


P

L
H2. �A4�

Now consider the motion of a slender drop of radius a
between parallel plates of height H. The flow in the thin film
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FIG. 23. �Color online� �a� The drop arrives at the junction. �b� The drop
penetrates into the T-junction, keeping the daughter channel closed. �c� A
tunnel opens up that allows the lubrication flow between the drop tip and the
wall of the channel. The tunnel remains open throughout. �c� Viscous
stresses build up elongating the drop. ��d�–�f�� A neck forms and the width
of the neck decreases rapidly, followed quickly by the drop breakup. The
color contours illustrate the pressure distribution: Ca=0.05, �0 /H=2, and
�=0.1.
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FIG. 24. �Color online� Drop velocity normalized by the mean velocity in
the channel as a function of the nondimensional film thickness: �=1 ���,
0.4 ���, 0.125 ���, 0.01 ���.
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satisfies the no-slip boundary condition at the channel wall
and the continuity of velocity and shear stress at the inter-
face; from the Poiseuille flow solution

uh�y� =
1

2�e

�p

�x
�y2 − �H/2�2� �A5�

and

ud�y� =
1

2�i

�p

�x
�y2 −

H2

4
�� + �1 − ���2�� , �A6�

where �=a / �H /2�=1−h / �H /2�, �=�i /�e, and h is the film
thickness between the drop and the wall. The subscripts h
and d stand for the drop and the carrier liquid, respectively.

From the conservation of mass,

Q = Qd + Qh, �A7�

where

Qd = 2W

0

a

ud�y�dy =
1

12�i

�p

�x
WH3�

��1

2
��3� − 2��2 − 3��� , �A8�

Qh = 2W

a

H/2

uh�y�dy = −
1

12�i

�p

�x
WH3�1 −

3

2
� +

4

8
�3� .

�A9�

Substitution of Eqs. �A3�, �A9�, and �A10� into Eq. �A7�
yields

�p

�x
= −


P

L
� �

� + �3 − ��3� . �A10�

The drop velocity is then

Ud = Qd/�2Wa� = Ū�1

2

3� − �3� − 2��2

� + �3 − ��3 � �A11�

using Eqs. �A4� and �A10�. It is worth noting that expanding
Eq. �A11� for ��1 and using the normal stress balance at the
interface also reveals that h� scales like Ca2/3.

Figures 24 and 25 show the drop velocity normalized by
the mean velocity in the channel and the excess pressure
due to the drop normalized by the pressure gradient in the
channel in the absence of the drop as a function of the non-
dimensional film thickness h�=h / �H /2� for varying viscosity
ratios.
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