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FRACTURE BEHAVIOR CHARACTERIZATION OF CONVENTIONAL
AND HIGH PERFORMANCE STEEL FOR BRIDGE APPLICATIONS

William Norfleet Collins
(ABSTRACT)

The work described herein examines the fracture behavior of steels used in bridge
applications. As part of Transportation Pooled Fund (TPF) Project 5-238, Design and Fabrication
Standards to Eliminate Fracture Critical Concerns in Steel Members Traditionally Classified as
Fracture Critical, researchers aim to take advantage of advances made in both steel production

technology and in the field of fracture mechanics.

Testing and analysis of both conventional and High Performance Steel (HPS) grades of
bridge steel was conducted as part of this study. This includes both Charpy V-Notch testing, as
well as more rigorous elastic-plastic fracture toughness testing. Analysis includes the application
of the master curve methodology to statistically characterize fracture behavior in the ductile to
brittle transition region. In addition, a database of historic bridge fracture toughness data was
compiled and re-analyzed using plasticity corrections to estimate elastic-plastic fracture
toughness. Correlations between Charpy V-Notch impact energy and fracture toughness, which
forms the basis for the current material specification, were also examined. Application of
fracture toughness characterization of both new and historic data results in updated

methodologies for addressing fracture in bridge design.
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Chapter 1: Introduction

Two and three girder steel bridge systems categorized as Fracture Critical (FC), along
with other bridges containing designated Fracture Critical Members (FCMs), have been avoided
by design engineers and transportation officials in the United States since the late 1960’s.
Although these systems can be very efficient and economical for use in medium and long span
bridges, the performance history of older bridges and the extensive inspection program required

has resulted in the limited implementation of these designs.

Prior to the mid-twentieth century, fracture of steel bridges was not a recognized problem
for design engineers. Although brittle fractures and failures were acknowledged as early as the
late 1800’s in standpipes and tanks (Shank 1953), the mechanics of fracture had not been fully
investigated and were not very well understood. With the emergence of welded connections
taking prevalence over rivets, fracture was elevated to the forefront of design during World War
I as multiple American and British-built ships experienced catastrophic brittle fractures (Biggs
1958). It was not until 1967 however, when the fracture and collapse of the U.S. 35 Highway
Bridge (Silver Bridge) resulted in the loss of 46 lives, that bridge officials recognized the
importance of fracture critical members (NTSB 1970). As a result of this catastrophe, the Federal
Highway Administration (FHWA) called for the development and implementation of a new

fracture control plan (FCP) for steel bridges (Frank and Galambos 1972).

Based on the behavior of structural steel economically available at the time, the FCP
relied heavily on design and construction details, as well as inspection requirements, to ensure

the safety of steel bridges. The requirements for bridges deemed to be Fracture Critical, or those



containing FCMs, were such that building and maintaining this type of bridge system became
economically unfeasible. The practice of general avoidance of FC bridges remains in place

today, both with designers and bridge officials.

Recent advances in the production of structural steel have resulted in new High
Performance Steel (HPS) that have improved performance properties in comparison to both
conventional and previously available high strength steels (Wright 1997). Performance benefits
of the new HPS included an optimization of strength, ductility, resistance to corrosion,
weldability, and most notably, fracture toughness. In addition, technological innovations in steel
production have made HPS more economical than it has been in the past. HPS structural
members meeting the improved performance properties can be regularly produced today. To take
full advantage of these performance benefits in bridge design, an understanding of HPS fracture

behavior is needed.

1.1 Transportation Pooled Fund Project

FHWA Transportation Pooled Fund (TPF) Project 5-238, Design and Fabrication
Standards to Eliminate Fracture Critical Concerns in Steel Members Traditionally Classified as
Fracture Critical, was initiated with the objective of taking advantage of the inherent fracture
performance benefits of HPS. The project includes the examination of material characteristics,
fatigue, fracture design and detailing specifications, fabrication methodology, and shop and field

inspections to be used for bridges designed and built with HPS.

The experimental program of this TPF includes the behavior characterization of multiple

grades of HPS, as well as fracture testing of full scale girders. Researchers at Purdue University



and Virginia Tech are collaborating in these efforts. The end goal of this research is to create
specifications for a new class of Fracture Critical bridges which will take advantage of the

improved performance of HPS. This will eliminate or greatly reduce the extensive inspection
requirements, thus making two and three girder steel bridge systems more competitive in the

marketplace.

1.2 Scope and Obijectives of This Study

TPF 5-238 will use results from material characterization tests and full scale fracture tests
to set specifications for a new category of fracture critical bridges using HPS steel. The main
objectives of this study are to fully characterize the fracture behavior of multiple heats, plates,
and grades of HPS. Specifically, HPS material testing includes:

e Yield and Tensile Strength
e Charpy V-Notch Impact Toughness
e Fracture Toughness at Static and Dynamic Rates

e Crack Arrest Toughness

Analysis of this data may result in the development of correlations between Charpy V-
Notch (CVN) tests and quantifiable fracture and performance parameters. Development of
appropriate specifications and material requirements would be based on these correlations,
enabling producers and designers to easily verify the fracture characteristics of plate steel being

produced for bridge applications.

In addition to the work being done on HPS, five plates of conventional bridge steel

removed from in-service structures will be examined to determine fracture toughness. This data,



combined with existing bridge fracture datasets, will be examined in terms of modern analysis

techniques to be compared with the performance of the HPS grades of steel

1.3 Original Contribution

This study provides an original contribution to the field of civil engineering through the
development of fracture toughness datasets of HPS grade bridge steels. Many behavior
characteristics of HPS have been examined and documented in the past. Lacking in this data is
the complete characterization of HPS fracture toughness, even though increased toughness is
marketed as a performance benefit. In addition, the application of the master curve methodology
for bridge fracture data is another important original contribution of this work. This has the
potential to greatly influence the design and material toughness specifications of steel bridges, as

it allows statistical fracture toughness characterization in the ductile to brittle transition region.

1.4 Dissertation Organization

This dissertation is organized into nine chapters and follows the manuscript format. A
literature review of current fracture control methodology, experimental programs, HPS
development, and material testing is presented in Chapter 2. Chapter 3 introduces the
experimental procedures being used in this study, including steel specimen layout. Manuscripts
of papers ready to be submitted to technical journals make up Chapters 4 through 6. Chapters 4
and 5 present historical bridge fracture data within the context of this study, and examine the
relationship between Charpy V-Notch impact tests and the master curve reference temperature.
The third manuscript, found in Chapter 6, presents the static fracture toughness testing and

characterization of HPS steel. Chapter 7 contains results of HPS dynamic initiation and crack

4



arrest toughness testing, and Chapter 8 presents results of fracture initiation testing of
conventional bridge steels. Lastly, Chapter 9 provides a summary of the work presented in the
previous chapters and presents conclusions and recommendations for future work based upon the

results of all testing and analysis.



Chapter 2: Literature Review

2.1 Introduction to Fracture Mechanics

Most evaluation and design processes are based on a comparison between some
characteristic material capacity property (typically yield or tensile strength) and demand
(typically an applied stress field). The use of fracture mechanics in engineering methodologies
introduces a new variable into these evaluations and design processes. Fracture mechanics
compares not only the applied stress and a material property (fracture toughness), but also
includes the size of an assumed or known flaw present in the material. Thus, fracture mechanics
is the study of a material’s behavior under a given stress state in the presence of a flaw. The
ability of a material to resist fracture in the presence of that flaw is said to be its fracture

toughness.

At the atomic level, a material will fracture only if a degree of stress exists that is
sufficient to break the atomic bonds. However, experimental studies have revealed that fracture
resistance is typically three to four times smaller than the theoretical cohesive strength of a brittle

material (Anderson 1995). This is due to the increase in stress at internal flaws.

Typically the stress raiser effect of internal flaws is illustrated through the use of an
elliptically shaped through-hole in a material, as shown in Figure 2-1. The length of the flaw is
defined by 2a, and the width by 2b, while the radius of curvature is defined by p. A gross cross-

sectional stress, S, is applied perpendicular to the major axis of the elliptical flaw.
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Figure 2-1. Elliptical Hole in a Flat Plate

As the aspect ratio of the flaw is increased (i.e., a>>Db), the ellipse begins to resemble a
sharp crack. Examining the stress at the tip of the crack (o), indicated by a dot in the figure, it
can be shown that the local stress is inversely proportional to the radius of curvature (Anderson

1995). This stress is represented in Equation 2.1.

a
c=S 2ﬁ+1 Eq. 2.1

where o is the stress at the tip of the ellipse, S is the applied stress, a is half of the flaw length,

and p is the radius of curvature of the ellipse. It can be seen from Eqg. 2-1 that as the radius of



curvature gets smaller, the stress increases. Thus, for an infinitely sharp crack, the stress at the
crack tip approaches infinity. Clearly it is impossible for infinite stresses to exist in real
materials. However, it can be seen that flaws have the ability to cause large increases in stress

that can lead to failure well before the material’s yield strength is reached.

2.1.1 Fracture Modes

When discussing fracture, it is important to note the direction of the applied stress field in
relation to the crack orientation. There are three modes of fracture that can be examined
independently or combined to form mixed-modes. The three fracture modes are presented
visually in Figure 2-2 . Mode | exists where loading is applied normal to the crack plane, causing
an opening of the crack. Modes Il and 111 refer to shear loading, either in plane or out of plane.
When fracture toughness values are presented, fracture modes I, 11, and I11 are represented by
subscripts. Typical engineering problems including a crack involve tensile stresses, and Mode |
fracture is of primary interest. All discussions of fracture in this study are Mode | unless

explicitly noted otherwise.

%

Mode | Mode Il Mode Il

Figure 2-2. Three Modes of Fracture Loading



2.1.2 Linear Elastic Fracture Mechanics

Early fracture research by Griffith employed an energy approach to describe behavior at a
crack or flaw (Griffith 1920). Griffith postulated that a crack in a material can only grow if the
propagation causes either a reduction or no change in the potential energy state. Working from
this, Griffith was able to develop an expression for the stress level that would cause fracture
initiation, of. This expression included the modulus of elasticity of the material, details
concerning flaw size and geometry, and the surface energy of the material. Although this
approach works well for ideally brittle materials such as glass, it greatly underestimates the
toughness of materials capable of plastic deformation such as steel. Accounting only for the
energy released by broken atomic bonds, this neglected the energy dissipation occurring near the
crack tip due to dislocations. For this reason, modifications to Griffith’s approach were made by
both Irwin and Orowan to allow for small amounts of plasticity at the crack tip relative to

specimen geometry (Irwin 1948, Orowan 1948).

This approach was then expanded upon by Irwin (Anderson 1995), who defined an
energy release rate, G. This represents the amount of energy (U) per unit crack area (A) that is

required to extend the crack, as shown in Equation 2.2,

du

- Eq. 2.2
dA a

G =

Here dU is the change in potential energy and dA is the change in crack surface area. This
was initially very useful in describing the necessary crack driving force in the presence of a flaw,

as it was possible to examine changes in resistance as the crack propagated. However,



application of the energy release rate in both testing and design was difficult, and new

approaches were developed.

It has already been shown that a sharp crack in a material causes a dramatic increase in
the stress at the crack tip. Stress fields in front of the crack tip can be expressed in terms of series
functions. These functions include one singular and multiple non-singular terms. When
examining the stress field very close to the crack tip, these non-singular terms disappear, and we
are left with a single term that can describe the stresses in the vicinity of the crack tip. This term,
the stress intensity factor, is represented by K, and defines the amplitude of the stresses near an

ideally infinite sharp crack tip in ideally linear-elastic and isotropic materials.

Mathematically speaking, K is the limit of the stress field as you approach the crack tip
because no stress can be defined at the crack tip. It is more convenient, however, to express K in

a more general form, shown in Equation 2.3.

K = F SVra Eq. 2.3

In this equation, F is a function defining loading and geometry, S is the applied gross
nominal stress, and a is a variable representing crack length. Closed form solutions for a
multitude of crack geometries have been developed and can be found in most fracture mechanics

texts.

For ideally linear-elastic materials the relationship between the energy release rate, G,

and the stress intensity factor, K, is given by Equation 2.4.

G=— Eq. 24
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G and K are as previously defined, and £ an effective modulus related to the elastic
modulus of the material. For plane stress conditions £ is just the elastic modulus, while for

plane strain the modulus is modified by Poisson’s ratio.

As mentioned previously, these formulations assume ideally linear-elastic behavior, and
can only account for limited amounts of plasticity at the crack tip. Because of this and the use of
the theory of linear elasticity in the derivation of the presented equations, this approach to

fracture mechanics is known as Linear Elastic Fracture Mechanics (LEFM).

In ductile materials such as structural steel, yielding can occur in the vicinity of the crack
tip causing blunting. Blunting is the process by which crack tip sharpness is decreased due to
plastic deformation. This increases the radius of the crack tip, relaxing the actual stresses at this
location. When excessive yielding occurs in the region preceding the crack tip, violating limits
on plastic zone size, the LEFM approach no longer represents the true state of stress at the flaw.
Because of this, a new approach is necessary to characterize behavior of materials that exhibit

excessive non-linear deformation.

2.1.3 Elastic Plastic Fracture Mechanics

Researchers found that LEFM was inadequate in characterizing most structural steels due
to high ductility and toughness. During testing, excessive crack tip blunting invalidated the
LEFM approach, leaving an important class of materials with no comprehensive approach to
fracture characterization (Anderson 1995). This void led to research into what would become

Elastic Plastic Fracture Mechanics (EPFM).

Plastic zone corrections, beyond that originally introduced by Irwin, can account for

limited amounts of plasticity at the crack tip (Dowling 1999). Application of this approach is

11



done by increasing the crack size in Equation 2.3. The crack size, a, is replaced by an effective
crack size, ae, which is increased by the length of the plastic zone. Because the calculation of
plastic zone length is dependent on stress intensity, applying this plastic zone correction is an
iterative process. In addition to the difficulties of applying this correction, permissible yielding is

still limited, and large amounts of plasticity at the crack tip cannot be analyzed.

Two EPFM approaches attempt to account for large amounts of plasticity. These are the
crack-tip opening displacement (CTOD) and the J-Integral. CTOD was initially developed as a
test method for examining the fracture toughness of structural steels when LEFM approaches
failed. The J-Integral concept was initially developed mathematically, and test methods were

later developed to physically verify the approach.

In the early 1960’s it was proposed that fracture behavior of a material could be
characterized by the opening of crack faces at the original crack length (Wells 1961). CTOD,
represented by J, is the opening between the initially sharp crack, and the crack that has been
blunted due to plastic deformation. The degree of blunting increases in proportion to the fracture
toughness of the material being tested, and CTOD can be used to characterize fracture toughness.
For limited amounts of plasticity, CTOD can be directly related to LEFM parameters, as seen in
Equation 2.5.

46

=
T Oy

Eq. 2.5
In this equation ¢ is CTOD, ays is yield stress, and G is as previously defined. Application
of CTOD to engineering structures requires empirical driving force estimates and design

reference curves, making it much more difficult to apply than LEFM parameters.
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The J-integral concept, developed independently by both Rice and Cherepanov (Rice
1968 and Cherepanov 1967), is equal to the work performed per unit area of fracture surface on a
nonlinear elastic body containing a crack (Zhu and Joyce 2012). The J-Integral relates to the
difference in absorbed energy under loading for incremental changes in crack size. Thus, it can
be thought of as elastic-plastically analogous to the linear elastic energy release rate, G. For the

unique case of a linear elastic material, the J-Integral is equal to the energy release rate.

Mathematically, the J-Integral was originally defined as a path-independent line integral
enclosing the crack tip. This integral evaluates the strain energy around the crack tip, as shown in

Equation 2.6.

r
] = f (Wdy - T-%ds) Eq. 2.6
0

In this equation /" defines the path around the crack tip, w is the strain energy density, T;
are the components of an applied traction, u; are components of the displacement vector, and ds

is the incremental length around the contour 7. This is presented schematically in Figure 2-3.

13



ds

Crack Tip

I

Figure 2-3. J-Integral Contour Schematic

Although initially presented in this manner, the J-Integral concept did not gain traction
with researchers until experimental test methods were developed for its evaluation. Multiple
researchers were able to prove that the J-Integral uniquely defines stress and strain at the crack
tip in nonlinear materials. This makes the J-Integral a parameter of both energy and stress

intensity (Anderson 1995).

Application of the J-Integral to engineering problems is much easier than that of CTOD,
due to the fact that it does characterize the stress intensity at a flaw. Critical J-Integral values, J,
can be converted to elastic plastic fracture toughness values, K;, using the material’s elastic
modulus and Poisson’s ratio, v, as shown in Equation 2.7. With this relationship, elastic plastic

fracture evaluation can be performed in the same manner as linear elastic fracture evaluation.
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Eq. 2.7

2.2 Introduction to Measures of Fracture Toughness

Quantifiable measures of fracture toughness have evolved as understanding of fracture
mechanics and fracture testing methods have been developed. Current fracture testing
specifications and their associated measures of toughness have recently been consolidated into a
single document, ASTM E 1820-08 Standard Test Methods for Fracture Toughness (ASTM
2008) Understanding past testing methods and techniques is imperative in contextualizing results
of historical data sets, i.e. it is imperative to understand the state of testing when the research was
conducted. Current and past fracture toughness testing techniques are presented herein in a
succinct manner. It is beyond the scope of the present study to present the entire chronicle of
fracture mechanics, or the record of fracture testing methods. Others have presented the
development of fracture mechanics and testing, including Anderson (1995), Cotterell (2002), and
Zhu and Joyce (2012). It is also beyond the scope of this study to introduce all former and
current fracture toughness test methods. Although more fracture toughness tests exist and are in
use, this review presents only the methods that are the most common in bridge steel research and

have relevance to the current study.

2.2.1 Charpy V-Notch Impact Fracture Toughness

For over 100 years, the Charpy V-Notch Impact test has been the benchmark of fracture
toughness testing for material qualification in the structural steel industry. Noted for its time and

economic efficiency, as well as ease of specimen fabrication and test procedure, the CVN Impact
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test is standardized in ASTM E 23-07, along with other notched bar impact tests (ASTM 2007).
The CVN specimen is a small, rectangular bar with a radiused “V notch” centered on the length.
Placed on an anvil, the specimen is contacted with a swinging drop hammer, and the amount of
energy absorbed by the material as fracture occurs is measured. The absorbed energy is the CVN
toughness of the material, and is extremely dependent on test temperature. Typical behavior
exhibited by steel specimens includes brittle, cleavage fracture at low temperatures, termed lower
shelf behavior. As test temperature is increased, the toughness also increases in what is known as
the brittle to ductile transition region. Finally, at high temperatures, steels exhibit ductile
behavior and high CVN toughness values, and their behavior is said to be on the upper shelf. A
typical CVN curve of HPS 70W steel is presented in Figure 2-4 displaying lower shelf,

transition, and upper shelf behavior.
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Figure 2-4. Typical CVN Behavior for HPS Steel
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Other parameters that can be recorded from CVN testing are lateral expansion of the
broken specimen and percentage of the shear fracture on the failure surface, both of which
typically show the same temperature dependence as the absorbed energy. However, CVN
fracture toughness is not directly applicable to fracture mechanics parameters or design

calculations (Dowling 1999).

2.2.2 Fracture Mechanics-Based Fracture Toughness

In the late 1960°s and early 1970’s, the beginning of earnest examination of fracture in
bridges, LEFM was still the prevailing method of fracture analysis. Elastic plastic fracture
mechanics test methods were being investigated. Reliable test methods were yet to be developed,
and research was still being performed with the use of LEFM. Fracture toughness, the ability of a

material to resist fracture initiation in the presence of a sharp crack, was defined in terms of K.

The use of LEFM in testing was very useful for material evaluation as it yielded a single
value, representing the toughness at initiation of brittle fracture. As long as the critical toughness
of a material, K, is greater than the applied stress intensity, K, the material is able to resist
fracture initiation. Because of limitations on plastic zone size in the validity of LEFM
parameters, materials exhibiting slow stable crack growth prior to fracture are difficult to
characterize. Valid K, testing for Mode I fracture values (K) require plane strain fracture
behavior, which is dependent on specimen size. Rolled steel plate thickness is often too thin to
obtain valid plane strain results at reasonable test temperatures. Nonetheless, test data obtained
from tests beyond validity limits has often been presented in the literature, and has been used in

the characterization of structural steels (Barsom et al. 1972, Roberts et al. 1977).
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K-based fracture toughness, like CVN toughness, is a temperature dependent property.
Fracture behavior, when examined with respect to changing temperature, follows a pattern
similar to CVN energy, shown in Figure 2-4 above, with a well-defined lower shelf and a brittle
to ductile transition region. Upper shelf values of fracture initiation toughness are difficult to
characterize, due to the absence of a single value of toughness in the presence of large amounts
of stable tearing. More information on temperature dependence and the brittle to ductile

transition region can be found in the discussion on the Master Curve, Section 2.3.1.

Advances in testing methodologies were needed to account for tests where large amounts
of plasticity were present, as previously discussed. Structural steels are too tough to be
characterized with LEFM, requiring the development of test methods using EPFM. The two most
common EPFM parameters used by researchers of structural steel are CTOD, and the J-integral.
Both of these parameters provide measures of fracture toughness in the presence of plastic
deformation, and have much less stringent validity requirements than linear elastic K-based

approaches (Anderson 1995).

Thickness dependent validation requirements of LEFM are not as stringent when
applying EPFM. However, it is extremely important to control the amount of constraint
experienced at the crack front. Concerns about constraint can be eliminated by properly
following specimen geometry guidelines presented in ASTM E 1820-08 and ASTM E 1921-08
(ASTM 2008). Typical specimens used in all fracture mechanics testing consist of variations of
two main specimen types: the compact tension (C(T)) specimen, and the single edge bend

(SE(B)) specimen, as shown in Figure 2-5. Fracture toughness specimens are typically defined
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by dimension W, a, and B, representing width, crack length, and thickness, respectively. Width,

W, and crack length, a, are represented schematically in Figure 2-5.
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Figure 2-5. Typical Fracture Mechanics Specimens: a. SE(B) and b. C(T)

C(T) specimens are loaded in tension through the use of clevis grips and pins, while
SE(B) specimens are loaded in a three-point bend setup. Both can be used to perform static,
intermediate, and dynamic load rate tests, although the SE(B) does offer advantages as its
smaller size allows experiments to reach high strain rates without the use of large drop tower test
equipment. In all test geometries the specimen thickness is denoted in terms of XT, where X is
specimen thickness in inches. Thus one and two inch thick specimens are said to be 1T and 2T,

respectively. All specimen thicknesses follow this same nomenclature.

Differences between LEFM and EPFM fracture toughness testing have yielded an array
of parameters that can be used in the evaluation of engineering structures. Single value
parameters of interest to this study are briefly defined here. For EPFM parameters, only J-
Integral values are discussed, although for each J-based toughness parameter there is a

corresponding CTOD-based parameter.
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Plane-strain fracture toughness, K¢, is a LEFM parameter representing a lower bound
fracture toughness corresponding to a plane-strain stress state. Historically, this is the most
commonly used fracture toughness parameter. Validity of K| testing can be difficult, especially

with high toughness materials that experience substantial plasticity and stable tearing.

Two EPFM parameters describe brittle cleavage fracture initiation. In terms of the J-
Integral, these are J; and J,. Jc is a well-defined parameter that corresponds to a cleavage fracture
prior to any ductile tearing. The parameter J, relates to fracture after an undefined amount of
ductile tearing occurs. If J; is obtained from test record, it is typically considered to be the
critical toughness value. J, on the other hand, is typically not used. As ductile tearing progresses,
test specimens can experience loss of crack-tip constraint, which can lead to unconservative
toughness values if J, is considered to be the critical value of fracture toughness. For this reason,
a parameter was defined that represented the onset of ductile tearing (Wallin 2011). J\. represents
the toughness at the initiation of ductile crack growth. This is defined in ASTM E1820-08 as the
J value corresponding to 0.2 mm. (0.008 in.) of crack extension (ASTM 2008). As previously
discussed, critical J-Integral values can be converted into a corresponding K; fracture toughness,

and evaluated against calculated stress intensity values.

2.2.3 Crack Arrest Toughness

While fracture toughness parameters K, J, and CTOD represent the ability of a material to
resist fracture initiation in the presence of a crack, crack arrest toughness of a material,
represented by K, is the ability of a material to stop a brittle fracture that has already initiated.

Standardized in ASTM E 1221-12 (ASTM 2012), crack arrest toughness is not a commonly used
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parameter, although it has been used to characterize steels for naval and nuclear applications

(Joyce, et al. 2010).

In order to obtain crack arrest values, it is necessary to initiate a brittle crack by loading a
specimen that contains fracture susceptible details, such as fatigue pre-cracking or a brittle weld
deposit. Once fracture is initiated it is necessary to remove the driving force in order to capture
the arrest ability of the material. Crack arrest toughness has been shown to follow a similar
temperature dependence of that seen in fracture toughness measures. However, because of the
necessary test parameters of initiating fracture and immediately removing the driving force,
researchers have had difficulty in characterizing crack arrest toughness in the upper transition
region (Link, et al. 2009). Crack arrest toughness testing has not previously been used to
characterize bridge steels, but the ability to describe the capacity of a material to arrest dynamic

fracture events is very promising.

2.3 Material Fracture Characterization

Knowing that fracture toughness is dependent on temperature and strain rate, it is
important to be able to characterize a material in terms of one or both of these variables. In other
industries, fracture behavior is characterized by what is known as the Master Curve, a
statistically based function that describes the toughness of steels in the brittle to ductile transition
region based on elastic plastic fracture toughness test data. Characterization of material
toughness in the US bridge industry has typically been performed by applying correlations that
relate CVN impact data to static, intermediate, and dynamic load rate fracture toughness, K, over

a full range of temperatures.
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2.3.1 Master Curve and Reference Temperature, T,

The Master Curve approach is a method that characterizes fracture toughness of a
material in the brittle to ductile transition region based on elastic plastic toughness, K;. An
exponential curve anchored to a reference temperature, T,, has been shown to be applicable to
ferritic steels. The process for determining this curve, along with its tolerance bounds, is

presented in ASTM E 1921-08 (ASTM 2008).

Based on a weakest link flaw distribution model, the Master Curve uses a three parameter
Weibull distribution to define the probability of failure due to cleavage fracture in a theoretically
homogenous material. The reference temperature, T, is the temperature at which the median
cleavage initiation toughness is equal to 100 MPavm (91 ksiVin). Data from varying specimen
sizes are size corrected to 1T thickness. This size correction is performed to take into account the
distribution of flaws in a material. A thick specimen will inherently have more flaws than a thin
specimen, and thus will have a higher incidence of fracture. Reference temperature, T, can
reliably be calculated with as few as six specimens tested at a single temperature. The reference
temperature may also be determined from test data at multiple test temperatures, providing
researchers with two testing options for reference temperature determination: single- and multi-

temperature testing. The shape of the median fracture toughness is then given by

Kjc(meay = 30 + 70e0-019(T~To)) Eq. 2.8

where Ky is in MPaVm, and T and T,, test temperature and reference temperature, respectively,

are given in degrees Celsius.

Both upper and lower bound limits of the Master Curve are calculated using
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1
1 /a
K]C(O.xx) =20+ [ln (m)] {11 + 778(0'019(T_T0))}

Eq. 2.9

where Ky, T, and T, are as previously defined, and xx represents the selected cumulative

probability of failure. For example, for 5 and 95 per cent boundary limits, 0.xx would be equal to

0.05 and 0.95, respectively. A typical Master Curve with T, equal to -75 C (-103 °F), along with

upper and lower bound limits was determined using the above equations. As can be seen in

Figure 2-6, the tolerance bounds used on this example are 5 and 95 per cent. The data for this

figure was provided as an example in ASTM E 1921-08, and was obtained from a plate of

A533B steel.
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Figure 2-6. Typical Master Curve A533B Steel, Adapted from ASTM E 1921
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Provisions for the application of the master curve methodology to crack arrest toughness
are presented in the crack arrest specification. With respect to temperature, crack arrest
toughness behavior follows the same exponential master curve as fracture initiation toughness.
Two main aspects differentiate between initiation and arrest master curves. The first is that arrest
data is not size adjusted. While cleavage fracture toughness is dependent on the distribution of
discrete initiation sites throughout the material matrix, arrest is more of a global mechanism.
Because of this there are no statistical size corrections for crack arrest data. The second main
difference is found in the determination of tolerance bounds. Tolerance bounds for fracture
initiation are based on statistical flaw distribution and can be determined based solely on the
median toughness reference temperature. Tolerance bounds for arrest data are developed upon
the variance of actual test data with respect to the master curve. Thus, arrest data with very little
scatter produces tight tolerance bounds and vice versa, while the bounds for initiation curves are

independent of data variation.

The Master Curve provides a statistically verified characterization of fracture toughness
in the brittle to ductile transition region. This allows for the defining of behavior at highway
bridge service temperatures. The literature provides further background for the Master Curve,
including the effects of strain rate, constraint conditions, and material inhomogeneity (McCabe,
et al. 2007, Wallin 1997, Wallin 2001, and Wallin, et al. 2004). A thorough introduction to the
application of the master curve methodology, as well as an example data set, is presented in

Chapter 4.
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2.3.2 CVN Correlations

As previously stated, CVVN toughness values are not directly applicable to fracture
mechanics problems. Relationships have been proposed to correlate CVN toughness to fracture
mechanics based toughness values. The correlation used in setting the AASHTO material
toughness specifications is the Barsom and Rolfe Two Stage correlation (Barsom 1974). The
correlation is based on both loading rate and temperature to account for the difference between

an impact load rate and the in-service load rate for highway bridges.
2.3.2.1 Barsom and Rolfe Two Stage Correlation, 1974

The premise of this correlation is that CVN toughness values can be converted to K-
based fracture parameters depending on the rate of loading (Barsom 1974). Toughness of
standard CVN test values are empirically correlated to K through the use of

2

K
— =5(CVN) Eq.2.10

where K is fracture toughness in psiVin, E is the material’s modulus of elasticity in psi, and CVN
is the absorbed CVN energy in ft-Ibf. If the CVN specimen is tested with an impact hammer, K
corresponds to K4, the dynamic fracture toughness of the material. When CVN is tested
statically, K corresponds to K,.. Because CVN impact values are typically used to qualify
structural steels, the correlation equation provides a link to dynamic fracture toughness. Barsom
and Rolfe found that effects of strain rate could be taken into account by shifting, with respect to
temperature, the resulting fracture toughness values. The temperature shift is related to the yield

stress of the material by
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Tshift =215 — 1'50-)15 Eq 211

where the temperature shift is given in degrees Fahrenheit, and yield stress is in ksi. The equation
is only applicable for yield strength ranges between 26 and 140 ksi (180 and 965 MPa). For
highway bridge applications, it was proposed that loading rates are neither static nor dynamic,
but somewhere in between. For this reason, the temperature shift used in setting AASHTO
material toughness standards is only 75% of the shift presented in Equation 2.11. It is important
to note that this correlation is only applicable to CVN data located in the lower shelf and lower

half of the transition toughness range.
2.3.2.2 Barsom and Rolfe Single Stage Correlation, 1970

An earlier version of the Barsom and Rolfe CVN-K correlation did not take into account
loading rate, and used a direct correlation between CVN impact and static K. values (Barsom
and Rolfe 1970). This relationship is represented by

2

K}’; =2 (CVN)"/2 Eq. 2.12

where all variables are as previously defined.

2.3.2.3 Corten and Sailors Correlation, 1971

Corten and Sailors also presented a correlation between CVN impact and fracture
toughness which does not consider the rate of loading, Equation 2.13 (Corten and Sailors 1971,

Sailors and Corten 1972).
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K, = 15.5 (CVN)/2 Eq. 2.13

where Ky is given in ksiVin and CVN is given in ft-Ibf.
2.3.2.4 Marandet and Sanz Correlation, 1977

Marandet and Sanz (1977) developed a CVN-K correlation from low carbon steels with
142 yield strengths ranging from 215 to 1100 MPa (31 to 160 ksi). This correlation does not
include rate effects, and relates CVN impact toughness to static fracture toughness through

Equation 2.14.

K,. = 19VCVN Eq.2.14

2.3.2.5 Roberts and Newton Lower Bound Correlation, 1984

Roberts and Newton presented a loading rate independent correlation, intended to
represent a lower bound of fracture toughness (Roberts and Newton 1984). The relationship
between impact CVN and K is very similar to that of Corten and Sailors, and is presented as

Equation 2.15.

K. = 9.35 (CVN)©63 Eq. 2.15

where K| is given in ksiVin and CVN is given in ft-Ibf.
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2.3.2.6 British Standard 7910 CVN-T, Relationship

A relationship directly connecting CVN toughness to the Master Curve Reference
Temperature, T, is presented in British Standard 7910 (BS 7910) (British Standards Institute
2005). The relationship is based on knowing the CVN test temperature at a specific energy value
of 27 or 40 J (20 or 29 ft-1bf). This temperature is then converted into a reference temperature by
subtracting18 or 24 C for the 27 or 40 J temperatures, respectively. This temperature adjustment

can be seen in Equations 2.16 and 2.17.

T, =T,, — 18C Eq. 2.16

The more conservative of these two values is then used in Equation 2.18, which is
equivalent to the Master Curve equation presented in ASTM E 1921-08. In the BS 7910 equation
the size correction and probability of failure are built into the equation, as seen with the variables

B and Ps for thickness and failure probability, respectively.

25\ 1/4 1 1/4 Eq. 2.18
Kinat = 20 + [11 + 7710019 =To=Ti)}] (—) In
B 1-P

In this equation temperatures are in Celsius, fracture toughness is in MPa\m, and
thickness is in millimeters. An additional factor is added to the equation to account for the scatter
in CVN impact test data. This is the variable Tk, which is recommended to be 25 °C, unless

CVN test data shows that another value should be used. Applying this temperature adjustment
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factor to the original equations provides a direct correlation between CVN and T,. Equations

2.19 and 2.20 represent this modification to the previously presented equations.

T, = Ty, — 18C + 25C Eq. 2.19

T, = T,o — 24C + 25C Eq. 2.20

2.3.2.7 CVN-Master Curve Relationship

Based on a slightly modified BS7910 approach, ASTM E 1921-08 presents a relationship

that is intended to be a guide for determining a starting test temperature for determining T,

(ASTM 2008). Some researchers, however, have used it as a correlation for comparison purposes

(Alstadt 2008). The relationship is based on knowing the CVN test temperature at a specific

energy value of 28 or 41 J (21 or 30 ft-1bf), and is dependent on specimen size. A constant value,

C, is used to adjust the CVN test temperature, yielding a reference temperature, T,. Constant

values for C can be found in Table 2-1 (ASTM 2008).

Table 2-1. Constants for Test Temperature Selection Based on CVN

Specimen Size Constant C (°C)
(nT) 28 41

0.4 -32 -38

0.5 -28 -34

1 -18 -24

2 -8 -14

3 -1 -7

4 2 -4

Reference temperature, T, is then determined from Equation 2.21.
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To =Teyn +C Eq. 2.21

In this equation T, is the reference temperature used in the Master Curve, Tcyy IS the

CVN test temperature, and C is a value taken from Table 2-1.

2.4 Fracture in Bridge Steels

Of the nearly 200,000 steel bridges in service in the United States, since the 1950’s there
have only been two failures resulting in catastrophic loss of life (Albrecht and Wright 2000). Of
these two failures, the Point Pleasant Bridge and the 1-35W bridge in Minneapolis, only the Point
Pleasant Bridge collapsed due to fracture. In fact, other bridges have experienced fractures,
sometimes of multiple girders, without structural failure. Even two girder bridges designated as
fracture critical have been able to remain in service after being subjected to full depth girder
fractures including (a) the US 52 Bridge in Savannah, Illinois in 1976, (b) the Interstate 79 over
Neville Island bridge, Glenfield, Pennsylvania in 1977, and (c) the US 422 Bridge in Pottstown,
Pennsylvania in 2003 (Fisher, et al. 1977, Schwendeman and Hedgren 1978). Milwaukee’s three
girder Hoan Bridge experienced full depth fracture in two girders, with partial depth fracture in
the third, without full collapse (Connor, et al. 2007). Fisher presents a comprehensive list of

highway bridges that have fractured (Fisher 1984).

Historically, the understanding was that brittle fractures occurred in bridges due to the
growth of fatigue cracks that reach critical size. Brittle fracture has been documented for
numerous cases, and was the focus for much of the early fracture research on structural steels.

Weld defects have also resulted in the fracture of highway bridge girders. These fractures
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resulted in AASHTO banning electro-slag welding in 1977. However, this directive was

rescinded in 2000 (FHWA 2000).

Recently researchers have observed that fractures do occur in bridge girders without a
preceding fatigue crack or identifiable weld defects. These fractures initiate from locations in
bridges experiencing tri-axial constraint, usually due to the detailing of welded connections
(Mahmoud, et al. 2005). Constraint-induced fracture (CIF) is an extremely dynamic event, and
was found to be the cause of fractures in both the US 422 and Hoan bridges (Connor, et al.
2007). In the 1970’s some researchers were concerned with so-called pop-in cracking, where
fractures initiate in a weld or heat-affected zone despite the absence of prior fatigue cracking
(Hartbower 1979). In spite of this, emphasis was placed on the control of fatigue crack growth to
prevent brittle fracture, and little attention was given to issues concerning any other cause of

fracture.

2.5 Fracture Control Plan and Specifications

2.5.1 History of Fracture Control Plan

Material toughness requirements for bridge steels, specified in terms of CVN, were first
introduced in 1968 (Wright 2002). The requirements were based on the experience of the ship
building industry, where it was known that a minimum CVN value of 20 J (15 ft-1b) typically
prevented brittle fracture. This value was chosen because it was known that fractures in ships
were rare when steel met or exceeded this toughness level. Following the FHWA’s call for an
updated fracture control plan, The American Iron and Steel Institute (AISI) initiated Project 168

at U.S. Steel Research (Barsom 1974). The objective of the research was to investigate the
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fracture toughness of structural steels for bridge applications. Analysis of results served in the
formation of ASTM material toughness requirements and the American Association of State and

Highway Transportation Officials (AASHTO) fracture control plan (AASHTO 1978).

Initially the CVN toughness requirements were the same for all steel bridges, regardless
of layout or geometry. Eventually higher material toughness requirements were put in place for
bridges with member’s whose fracture would result in failure of the entire structure. The
delineation between redundant and non-redundant structural design became the distinction

between non-fracture critical and FC bridges and members.

The current FCP consists of three interrelated factors which are used to prevent fractures
from occurring in steel bridges: material toughness requirements, control of weld flaws through
welding inspection and fabrication guidelines, and in-service inspection criteria. The original
1978 AASHTO Guide Specifications for Fracture Critical Non-Redundant Steel Bridge
Members contained design and review responsibilities, qualification and certification of welders
and inspectors, material toughness requirements, and fabrication requirements and procedures.
The 1978 Guide Specifications have been updated multiple times, and the majority of the
fracture control plan can now be found in Section 12 of the AASHTO/AWS D1.5M/D1.5 Bridge

Welding Code (AASHTO/AWS 2010).

Current material toughness requirements for all steels used in bridge applications can be
found in both the AASHTO LRFD Bridge Design Specifications (AASHTO 2008) and ASTM A
709-13 (ASTM 2013). The AASHTO Manual for Bridge Evaluation contains the in-service
inspection requirements and criteria for all types of highway bridges (AASHTO 2011). Because

the focus of this research lies with fracture behavior and material toughness of HPS steels, the
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literature review will concentrate on this aspect of the FCP. Details of the FCP pertaining to

fabrication and inspection are only briefly addressed.

2.5.2 Fracture Critical Definitions and Designations

Definitions of FC are found in the FCP and are as follows (AASHTO/AWS 2010):

2.1 Fracture critical members or member components (FCMs) are tension members
or tension components of members whose failure would be expected to result in

collapse of the bridge.

2.2 Tension components of a bridge member consist of components of tension
members and those portions of a flexural member that are subject to tension
stress. Any attachment having a length in the direction of the tension stress
greater than 4 inches (101.6 mm.) that is welded to a tension component of a
“fracture critical ” member shall be considered part of the tension component

and, therefore, shall be considered ‘‘fracture critical.”

Design and review responsibilities are also found in the FCP, where the engineer is fully
responsible for the design of the bridge, including the selection of materials, structural details,
and welding requirements. The determination of what is categorized as fracture critical members

and member components is also the responsibility of the engineer.

2.5.3 Material Toughness Requirements

CVN impact toughness values have historically been used as quality control and

assurance measures in the steel industry. All material toughness values found in the FCP are in
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terms of CVN impact toughness. Although not a direct test of fracture toughness, CVN values
have been correlated to data from more rigorous and informative fracture tests. The correlations
between CVN impact toughness and static critical plane-strain fracture toughness values, K,
were empirically determined from data developed through the use of LEFM technology (Barsom
1974). Although the field of fracture mechanics has advanced beyond LEFM, correlations from
the 1970’s are still used to determine and set material specifications for today’s bridge steels. A

detailed discussion of CVN-K correlations is presented in Section 2.4.

Because the fracture toughness of ferritic steels is known to vary dramatically with
changes in temperature, higher toughness requirements are needed for steels in bridges located in
colder climates (Anderson 1995). For this reason, AASHTO divided the United States into three
service temperature regions based on the lowest anticipated service temperature (LAST), with
CVN test temperatures adjusted accordingly. States are given the authority to determine their
LAST based on historically recorded temperatures. A contour map showing an approximation of
the three design zones is presented in Figure 2-7. This figure was adapted from AASHTO’s
temperature contour map developed for bearing design (AASHTO 2008). Table 2-2 presents the
temperature limits of the three zones (AASHTO 2008). Qualifying impact tests are not
performed at the LAST, however, due to a temperature shift employed in the CVN-K|¢

correlation procedure.
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Figure 2-7. Approximate LAST Zones

Table 2-2. Temperature Zone Designations

Temperature Zone | Minimum Service Temperature

I -18°C (0°F) and above

I -19°C (-1°F) to -34°C (-30°F)

1l -35°C (-31°F) to -51°C (-60°F)

Alternative FCPs based on different material toughness requirements were proposed, but
due to the available technology in the steel making industry, these alternatives were determined
to be too costly, and aspects of the FCP other than material toughness were relied upon to
prevent fractures in steel bridges. Some of the alternatives advocated CVN testing at bridge
service temperatures (Hartbower 1979) and including a required level of dynamic toughness
sufficient to ar