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Figure Extraction from Scanned Electronic Theses and Dissertations

Sampanna Yashwant Kahu

(ABSTRACT)

The ability to extract figures and tables from scientific documents can solve key use-cases

such as their semantic parsing, summarization, or indexing. Although a few methods have

been developed to extract figures and tables from scientific documents, their performance

on scanned counterparts is considerably lower than on born-digital ones. To facilitate this,

we propose methods to effectively extract figures and tables from Electronic Theses and

Dissertations (ETDs), that out-perform existing methods by a considerable margin. Our

contribution towards this goal is three-fold. (a) We propose a system/model for improving

the performance of existing methods on scanned scientific documents for figure and table

extraction. (b) We release a new dataset containing 10,182 labelled page-images spanning

across 70 scanned ETDs with 3.3k manually annotated bounding boxes for figures and tables.

(c) Lastly, we release our entire code and the trained model weights to enable further research

(https://github.com/SampannaKahu/deepfigures-open).



Figure Extraction from Scanned Electronic Theses and Dissertations

Sampanna Yashwant Kahu

(GENERAL AUDIENCE ABSTRACT)

Portable Document Format (PDF) is one of the most popular document formats. However,

parsing PDF files is not a trivial task. One use-case of parsing PDF files is the search

functionality on websites hosting scholarly documents (i.e., IEEE Xplore, etc.). Having the

ability to extract figures and tables from a scholarly document helps this use-case, among

others. Methods using deep learning exist which extract figures from scholarly documents.

However, a large number of scholarly documents, especially the ones published before the

advent of computers, have been scanned from hard paper copies into PDF. In particular,

we focus on scanned PDF versions of long documents, such as Electronic Theses and Dis-

sertations (ETDs). No experiments have been done yet that evaluate the efficacy of the

above-mentioned methods on this scanned corpus. This work explores and attempts to im-

prove the performance of these existing methods on scanned ETDs. A new gold standard

dataset is created and released as a part of this work for figure extraction from scanned

ETDs. Finally, the entire source code and trained model weights are made open-source to

aid further research in this field.
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Chapter 1

Introduction

1.1 Motivation

Figures and tables in scholarly papers contain important information. Automatic iden-

tification and extraction of figures and tables from PDF documents is key to enhancing

computational access to scholarly works1.

Our research focuses on Electronic Theses and Dissertations (ETDs). Beginning with Vir-

ginia Tech in 1997 and continuing today, graduate programs all over the world allow (or

often mandate) electronic submission of an ETD as a requirement for graduation. Univer-

sity libraries often provide public access to digital libraries of ETDs. Some universities scan

or digitize older theses and dissertations, in order to provide electronic access to these works.

For instance, Virginia Tech’s collection of ETDs now goes back to the year 1903. Most ETDs

written before the late 1990s are scanned versions of the library’s physical collection of theses

and dissertations. Our work aims to identify and extract figures from these older, scanned

documents.

There are many engineering challenges to accurately identifying figures in older scanned

ETDs. The image resolution and scanning quality may vary across the collection. OCR

quality of scanned documents sometimes is error-ridden. Most older ETDs were typewritten,

1For the rest of the paper, we use figures to refer to both figures and tables.

1
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and figures may have been hand-drawn or rendered in a separate process and literally cut-

and-pasted into the typewritten document. In addition, since ETD collections are cross-

disciplinary, the documents present a variety of layout and figure styles.

Our work builds on [54], which proposed a novel method for inducing high-quality labels

for figure extraction in a large number of scientific documents. Their technique uses data

from arXiv and PubMed to locate figures in scientific papers with a reported average pre-

cision of 96.8%. Unfortunately, this technique performs worse on scanned documents (as

demonstrated later in this document). One of our important contributions in this work is

to propose data augmentation methods to improve the performance of identifying figures

in scanned ETDs. Our technique takes the data used in the prior work to locate figures in

born-digital scientific papers and applies various transformations to the documents in order

to mimic older scanned papers.

1.2 Research questions

We explore the possibilities of engineering a system for extracting figures from scanned ETDs.

The resultant system should take as input the PDF of the scanned ETD and generate a page-

wise list of coordinates for bounding boxes around the figures in each of its pages. To achieve

this, we formulated the following research questions:

• RQ1: How well can existing methods perform figure extraction from scanned ETDs?

All of the existing methods for figure extraction have been tested on born-digital

ETDs. However, their performance on scanned documents (especially scanned ETDs)

has not been explored. Since the scanned and born-digital documents differ consider-
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ably in visual appearance, it would be interesting to see how well the existing methods

for figure extraction perform on scanned ETDs.

• RQ2: Can this performance be improved by using simple data augmentation tech-

niques and weight initialization from the original pre-trained model?

Since the visual appearance of the scanned and born-digital ETDs differ significantly,

it is possible that the performance of the existing methods worsens. In that case, differ-

ent data augmentation techniques to bring the feature distribution of the born-digital

documents closer to that of the scanned documents might create a dataset which can be

used to re-train the existing models. It would be interesting to see if the performance

improves after re-training.

• RQ3: Can this performance be improved by training on manually labelled data?

The original model as well as the model trained in RQ2 will be trained using data

that is automatically labelled. This data was not generated manually. Further, this

data is generated or adapted from born-digital sources, which as described above, differ

considerably in visual appearance from scanned ETDs. Whether the performance can

be improved further using a manually labelled dataset still remains to be explored.

This research question aims to address that.

• RQ4: Can this performance be improved by using transfer learning techniques?

All of the previous questions use the pre-trained model for weight initialization, but

train all the layers. However, it is often the case that not all the layers of a model

need to be trained when its weights are initialized from a pre-trained model from a

similar domain. Thus, this research question concerns trying to use transfer learning
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to improve the performance by training only a part of the layers.

1.3 Research challenges

1.3.1 PDF file parsing

Although PDF is one of the most preferred formats for working with documents, it is not

trivial to parse it. There are tools to convert PDF files into structured formats [13, 16,

17, 35, 42]. However, they are not completely successful. Although transforming a PDF

file is a much broader problem, it impacts the ability to extract figures from it. Further,

for transforming scanned PDF files into specialized representations, rule-based tools do not

work well, since these files are mostly images produced by flat-bed scanners.

1.3.2 Lack of gold standard data

The Deepfigures [54] model uses a dataset labelled using scripts that leverage the LaTeX

source of the documents (XML for PubMed). However, for the purpose of figure extraction

from scanned scholarly PDF files of ETDs, no such dataset exists. This means that there is

a lack of ground truth to validate methods for extracting figures from scanned ETDs.

1.3.3 Big data

In one study [54], the entire arXiv (consisting of LaTeX sources) and PubMed datasets were

used to generate labels for figure extraction and training the model. These two datasets

consume a significant amount of disk space. Although this work does not use the PubMed

dataset, an updated version of the arXiv dataset is used. The total size of the compressed
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version of this dataset on disk is about 1.3 TB. Further, when decompressed for processing

and converted to its PDF and image formats, it occupies an even larger space. This poses a

significant logistical challenge for working with this data and using it in research.

1.3.4 Training deep learning models

Obtaining large amounts of training data, and using that to train models, are key engineering

challenges faced by the deep learning community and anyone who deals with deep learning

models. Employing a huge amount of data to build large deep learning models with millions

of parameters naturally slows down the training process. As the complexity of the model

increases, the space-time computational complexity for training and evaluating it increases

too. Although we use relatively modern fast CPUs in conjunction with hardware accelerators

such as GPUs, the challenge of training the models in a reasonably short amount of time

still exists. Various techniques such as training multiple models in parallel and training only

a select few parameters of these models have been implemented and described in the latter

part of this thesis.

1.4 Research contributions

This thesis, on the topic of figure extraction from scanned ETDs, has the following research

contributions:

• We evaluate the performance of the original Deepfigures model [54] on

scanned ETDs.

Since the original Deepfigures model [54] was trained on born-digital scholarly doc-

uments, we expand the knowledge about its utility by evaluating its performance on
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scanned ETDs. We assess it using the F1-score, along with other metrics.

• We explore whether the original Deepfigures model can be improved for

figure extraction from scanned ETDs using data augmentation techniques

and weight initialization.

Scanned ETDs differ significantly in visual appearance from born-digital ETDs. Since

the original Deepfigures model [54] is trained on born-digital documents, we evaluate

its performance on a dataset augmented by various techniques which attempt to change

the visual appearance of the born-digital documents to look similar to scanned ETDs.

• We create a new gold standard dataset for figure extraction from scanned

ETDs.

Because of the lack of a good ground truth dataset for figure extraction from scanned

ETDs, there was no way to establish reliable performance metrics of any method that

aims to achieve that goal. Hence, we create a gold standard dataset containing more

than 10.1k images with more than 3.3k labels for figures.

• We explore whether using the gold standard dataset for training improves

performance.

Since the gold standard dataset is labelled manually, it is safe to assume that there is

no (or negligible) noise in its labels. Therefore, we train and evaluate our model on

the gold standard to explore whether training our model on noise-less data improves

the performance.

• We explore whether transfer learning and weight initialization improve the

performance.

Since we are already initializing the weights of the model using the pre-trained weights

of the original Deepfigures model [54], the convolutional layers retain most of the
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features trained for a similar task. Therefore, after weight initialization we freeze the

weights of the convolutional layers and only train the final fully connected layers. We

evaluate the performance of this model and report our findings.

1.5 Thesis organization

The rest of this thesis is organized as follows:

In Chapter 2, we introduce the related work in a topic-wise fashion in order to offer a broader

understanding of the domain.

In Chapter 3, we describe the different data augmentation techniques we used, the overall

data generation pipeline from the arXiv LaTeX source files, the process of curating and

labelling the gold standard dataset, and other relevant techniques used to prepare the data

for experiments.

In Chapter 4, we present the various experiments conducted to answer the proposed research

questions. We also present the results from these experiments and discuss the findings.

Finally, in Chapter 6, we conclude this thesis by revisiting research questions and contribu-

tions, and suggesting future work.



Chapter 2

Review of Literature

This thesis focuses on extracting figures from scanned ETDs. Many recent techniques have

been proposed for extracting figures from born-digital documents. Thus, it is important to

understand the past techniques and the relevant background about this field to get a better

understanding. In this chapter, we first describe the relevant terms of this field. Then we

introduce the past methods of extracting figures, and progressively move to the more recent

ones.

2.1 Machine learning literature

2.1.1 Standard computer vision deep learning architecture

The basic neural network is a multi-layer perceptron with fully connected layers. However,

for data with larger input dimensions this architecture quickly becomes computationally

expensive. Therefore, recent deep learning architectures for computer vision applications first

tend to extract higher level features, typically by using deep convolutional neural networks

(CNNs) [21, 38, 55]. These features are also known as image embeddings. These embeddings

are then passed as input to a final stack of layers, typically fully connected layers. Many

standard architectures rely on this approach for computer vision tasks [54] (Figure 2.1).

8
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Figure 2.1: This is the overall architecture of several popular CNN models. The initial layers
are usually a combination of convolution and max-pooling. Finally, there is a fully connected
layer and a classification layer [21].

2.1.2 ResNet-101

ResNets [33], proposed in 2015, have become a popular choice to be used as the initial

convolutional layers in a typical CNN architecture. These are especially helpful because of

their ease of training while being able to stack multiple layers on top of each other. ResNets

use a special type of architecture which uses skip connections between layers (Figure 2.2).

Because of these skip connections, the gradients propagating backwards from the layers of

the network do not vanish or explode. This enables effective training of the earlier layers of

deep neural networks, thereby increasing their learning capacity and improving the overall

performance [54].

2.1.3 Overfeat

Overfeat [53] was proposed in 2013 as a new way to predict the bounding boxes of objects

in images. Given an image, the task of predicting whether a certain object is present in
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Figure 2.2: A single building block of ResNet showing the skip connection [33].

the image is called classification. However, if the object is present in the image, the task of

predicting the location of that object is called object detection. This task is more complex

because instead of simply generating a binary output of whether a given object is present

in the image or not, the model now needs to predict the coordinates of the bounding box

enclosing the object. Further, the presence of multiple objects in a single image makes it

even more challenging, because now the dimension of the output to be produced by the

model is variable. A quick fix for this is to split the image into parts and run inference on

each part. However, this method quickly becomes computationally expensive.

Overfeat uses the latter method described above to run the model fully convolutionally on

the input image. The input image is split up using grids with cells of size 20 pixels by 15

pixels. These grids are passed as input to a few convolutional layers and then a couple of fully

connected layers to generate the bounding box coordinates as well as the confidence of these

coordinates. Finally, the output of all these images is stitched together and non-maximal

suppression is applied to get the final result.



2.1. Machine learning literature 11

2.1.4 YOLO

YOLO is the acronym for You Only Look Once. It is a popular computer vision object

detection deep learning model. It is capable of detecting multiple objects in an input image in

a single inference pass. Further, it is also well-known for its lower space and time complexity

during inference. This makes it a good alternative for deployment on edge devices where low

resource consumption is vital.

The first version of YOLO (i.e., YOLOv1) was proposed by Redmon et al. in 2016 [50].

This was the first work which, instead of re-purposing classifiers as object detectors, framed

object detection as a regression problem. Since YOLOv1 detects multiple bounding boxes

in a single forward pass, it can be trained end-to-end directly for detection performance.

Many subsequent versions of YOLO were proposed by various authors in the following years.

In 2020, the 5th version of YOLO (i.e., YOLOv5) was proposed. This model was released by

Ultralytics LLC. on Github [12]. YOLOv5 achieves higher detection performance than all of

the previous versions. Further, YOLOv5 comes in 4 different network sizes (small, medium,

large, and extra large). These various network sizes allows users to make a trade-off between

the time and space complexity. The exact details about the number of parameters and the

run times for each size variant of YOLOv5 are documented [12]. In our experiments, we use

the extra large version of YOLOv5 which has about 89 million trainable parameters.

Table 2.1 compares the Deepfigures and YOLOv5 model across the number of trainable

parameters in the model, the inference times averaged across 500 images that were run on

an Nvidia Tesla P100 GPU, and the year in which the model was published. The inference

times in Table 2.1 do not include any time needed for pre-processing the image and post-

processing the predictions. We measure only the time to make a single forward pass for a

single pre-processed image on the GPU.
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Table 2.1: Comparison of the features of the Deepfigures model and YOLOv5.

Model No. of params. Inference time Year published
Deepfigures 45 million 33.514 ms 2018

YOLOv5 (extra large) 89 million 35.048 ms 2020

We can observe that the inference times are almost the same even though the number of

parameters in YOLOv5 is almost double than that of Deepfigures. Our intuition says that

the time required to transfer data to and fro between the GPU and CPU could be a major

chunk of the inference times.

2.1.5 Weight initialization

Weight initialization in a deep learning model is the process of assigning values to the weights

and biases of each of its layers. Weight initialization is crucial for effective training of the

model and can make a huge impact on the convergence of the model and the time it takes

to achieve that.

One of the earliest methods for weight initialization is to do so randomly. It is common to

initialize all of the weights to close to zero, with just an epsilon of random deviation from

zero. This helps to break the initial stagnancy of the model while keeping it unbiased.

Another common technique was proposed by He et al. in their 2015 paper [32]. In this

technique, the bias vectors are initialized to zero. The weights are first chosen randomly

from a standard normal distribution. Each of these randomly chosen weights is multiplied

by
√

2/n , where n is the total number of incoming connections into the current layer from

the output of the previous layer.

However, given a pre-trained model, it is common to use its weights as the initial weights for

further training the model on a similar but different dataset. This brings us to the concept
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of transfer learning.

2.1.6 Transfer learning

Using the weights of a pre-trained model as the initial weights for training on another,

requires both the models to have the same or a similar architecture. This, as discussed

before, is a type of weight initialization. However, another common technique when given

a pre-trained model and a similar task is to train a part of the model. In other words, the

new model is initialized with the weights of the pre-trained model. Further, the weights

of some of the layers are kept unchanged while training the rest of the model on the new

dataset. This technique assumes that the high-level features learnt by the frozen layers can

be safely transferred to the new task. This often requires a lesser amount of data since not

all layers are training. This is also less computationally expensive. This technique is known

as fine-tuning a pre-trained model for a new task, and is a part of transfer learning [49, 57].

2.1.7 Data labelling tools

Machine learning models often rely on labelled data for their training. Further, deep learning

models require huge amounts of data because the features in the data useful for predictions

are learnt automatically. Whenever labelled data is not available, ML researchers often create

the labels manually (either through crowdsourcing or themselves). For object detection tasks,

many tools have been developed and made open source to effectively create these labels.

VGG Image Annotator (VIA) [27, 28] is one such tool for manually creating bounding box

labels on images. This is a light-weight tool which can be run entirely in an Internet browser.

It is written using HTML and JavaScript. It has the capability to export annotations in

CSV as well as the popular COCO format 3.10.
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2.1.8 Dataset formats

With the growth of research in the field of machine learning, researchers started to come up

with a variety of datasets for different tasks. However, for some common tasks, like object

detection, image classification, etc., the input format of data is often the same. This means

that with a unified format of dataset, the software needed to read it can be reused. Therefore,

multiple new dataset formats have sprung up, often named after a popular dataset in the

domain. A few examples of these formats are the COCO object detection format [3], Pascal

VOC [8], CIFAR-10, CIFAR-100 [2], and so on. These popular datasets are often supported

by prominent machine learning libraries such as TensorFlow and PyTorch with packaged

code to read and load them [9, 10]. Therefore, any dataset in these popular formats becomes

easier to load by re-using the code in these machine learning libraries.

2.1.9 Common metrics in machine learning for object detection

During training any machine learning model, it is important to measure how accurate it

is. This gives us a better sense of how well the model is training. For binary classification

tasks, a common metric is to measure the accuracy. However, accuracy is not a reliable

metric, especially when the training set labels are imbalanced. Therefore, precision, recall

and F1-score are some other metrics used in conjunction with accuracy. These are calculated

as follows:
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precision =
true positives

true positives+ false positives

recall =
true positives

true positives+ false negatives

F1 =
2 · precision · recall
precision+ recall

For object detection tasks, computing these metrics is different because predicting a bounding

box is not a binary classification task. Therefore, the intersection over union (IOU, as in

Figure 2.3) is computed between the predicted and true bounding boxes. A predicted box

is considered a true positive if its IOU is over a certain predefined threshold, but a false

positive otherwise [37].

2.1.10 Data augmentation

Data augmentation [48] is a popular technique in deep learning which helps to train a model

better without collecting any new data. With this technique, the existing training data is

modified and the deep learning model is re-trained on the modified data. Tanner et al. [56]

list the techniques frequently used for computer vision tasks, such as affine transformations,

random rotations, additive noise (salt-and-pepper, Gaussian, etc.), perspective transforma-

tions, random cropping, and so on. A number of open-source implementations have emerged

online for implementing these techniques. ImgAug [34] is one of the popular tools which

we use in this project. It provides the capability to augment not only the image, but also

the corresponding bounding boxes in the image. For example, if a certain degree of affine
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Figure 2.3: Computing the Intersection Over Union [37].

transformation is applied on an image, the corresponding bounding boxes will be adjusted

in order to accommodate for this transformation.

2.2 Older methods for PDF file parsing

In the following subsections we describe the various methods used in the past to parse PDF

files. Numerous open-source tools are available on the Internet which are able to parse and

extract some parts of the PDF file.
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2.2.1 PDFEdit

PDFEdit [35] is an open-source library which is based on the XPDF [19] toolkit. It also has

a GUI version available. With PDFEdit, it is possible to look into the underlying object tree

of a given PDF file. However, parsing images from these object streams is not trivial since

they are often represented in non-standard formats.

2.2.2 PDFAct

PDFAct [16] is another open-source tool which is built to extract structure from PDF files

of scientific articles. It takes in a PDF file as input and outputs a text file containing the

entire text in the PDF file. However, this tool does not extract the images.

2.2.3 PDFToCairo

Another interesting tool is PDFToCairo [17]. This tool converts PDF files using the Cairo

output device [14] of the poppler PDF library [18] to either an image format or the PostScript

(PS) format. Using PDFToCairo, it is possible to convert a PDF file to a final .eps format

on a Unix system by converting it to an intermediate format and filtering out some elements

from it. The resultant filtered .eps file does not contain any text. A sample command [30]

to achieve this is as follows:

pdftocairo -f 4 -l 4 -eps input.pdf - | sed '/^BT$/,/^ET$/ d' > output.eps

When Figures 2.4 and 2.6 were processed using this command, the outputs extracted are

shown in Figures 2.5 and 2.7. In Figure 2.7, it can be seen that not all the components of
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the figures have been extracted. This shows that this tool only extracts the vector graphics

from PDF files. Further, this tool works only on born-digital PDF files.

2.2.4 APDFL

APDFL [13] is another library, developed by Datalogics Inc. for extracting the various

components of a PDF file. However, similar to PDFToCairo, this library can’t extract all

types of figures from born-digital PDF files nor extract any figures from scanned PDF files.

2.3 Newer methods for PDF parsing

2.3.1 Grobid

Grobid [42] was started as a hobby in 2008 and was made open-source in 2011. It is a machine

learning library for extracting, parsing, and re-structuring PDF documents into TEI/XML

format. Grobid especially focuses on technical and scientific documents. However, the output

of Grobid is only the text of the PDF file. It cannot extract any graphical elements (e.g.,

figures) of the PDF document.

2.3.2 PDFFigures2

Clarke and Divvala [26] proposed a new approach which analyzes the structure of individual

pages by detecting chunks of body text, graphical elements, and captions, and then locates

figures by reasoning about the empty regions within that text. Their results are used as a

baseline for their future work – Deepfigures. However, similar to other tools described above,

PDFFigures2 relies on a rule-based system to extract or parse PDF files. Therefore, it only
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Figure 2.4: Input to PDFToCairo
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Figure 2.5: Output from PDFToCairo showing the successfully extracted figures
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Figure 2.6: Another input to PDFToCairo
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Figure 2.7: Output from PDFToCairo showing the partially extracted figures
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Figure 2.8: Sample images in the Deepfigures pipeline [54]. The figure to the left is the
original image of the page of the PDF file. The figure in the middle is the image of the
page with bounding boxes drawn around its figures. The figure to the right is the result of
pixel-by-pixel subtraction of the first two figures.

works for born-digital PDF files and not for scanned ones.

2.3.3 Deepfigures

Siegel et al. proposed Deepfigures [54], a method for extracting non-textual components

(charts, figures, and tables) from scholarly PDF files. Data from arXiv [58] and PubMed [24]

is used to locate figures in scientific papers. For the arXiv dataset, the authors modify the

original LaTeX source code of the PDF files such that it renders visible bounding boxes

around figures and captions. Figures are already present in a parsed format of the PubMed

dataset. These induced labels were then used to train a deep learning model (ResNet-101 [33]

in conjunction with the Overfeat architecture [53]) to predict the coordinates of the bounding

boxes around figures. The number of trainable parameters in the Deepfigures model total

about 45 million. The figures were then extracted by cropping these predicted bounding

boxes out from the rendered PDF files. (Figure 2.8).
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2.3.4 TableBank

Li et al. [41] proposed TableBank, an image-based table detection and recognition program

and dataset built on top of Deepfigures. Their contribution is an ML model with weak

supervision on a dataset of Word and LaTeX documents crawled from the Internet. The

authors claim that they do not filter the language or the domain of the documents being

crawled, which makes their dataset more diverse and robust. As with Deepfigures, this

technique involves modifying the source code of the document to introduce a bounding box

around figures. Li et al. take the idea a step further by building an RNN model for converting

detected tables (which are in image format) into a table markup format (i.e., a table parsed

into text). In other words, it converts an image of a table into a structured table using

RNNs. They call this process table structure recognition.

2.3.5 Faster R-CNN for table extraction

More recently, Hansen et al. [31] accomplished marginal improvements on the performance

of Deepfigures by employing an objection detection model, Faster R-CNN, which allowed

them to achieve better region assignments for tables in a PDF document. Further, they also

introduced a dataset with 31,639 manually labeled pages of PDF files with image bounding

boxes.

2.3.6 Faster R-CNN for figure extraction

In May 2020, Lee et al. proposed the Newspaper Navigator dataset as a part of their pa-

per [40]. They created this dataset through crowdsourcing where each user added annotations

of 7 categories (headlines, photographs, illustrations, maps, comics, editorial cartoons, and
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advertisements) to a corpus of scanned historic newspapers from Chronicling America. More

than 48 thousand annotations were created across these 7 categories. These annotations were

validated through multiple users. Further, Lee et al. fine-tuned a pre-trained Faster R-CNN

to transfer its learning for detecting bounding boxes by training on this dataset. Inference

was then run on 16 million historical newspaper pages from Chronicling America. The work

in this paper comes closest to extracting figures from scanned ETDs.

All the techniques for parsing PDF files discussed till now work only on born-digital docu-

ments or are not demonstrated to work on scanned ETDs.

2.4 Born-digital vs. scanned ETDs

Before the late twentieth century, ETDs were either hand-written or typed using a typewriter

on paper (e.g., [23, 25]). However, as personal computers gradually became ubiquitous,

people started typing ETDs using software such as word processors and more recently LaTeX,

and were stored in digital libraries usually in PDF (e.g., [22, 54]). The former type of ETDs

were later digitized using scanners into PDF and then stored in digital libraries. As a result,

today’s digital libraries typically consist of two types of ETDs - scanned, and born-digital

- representing the two types of ETDs described above. This effect is not only limited to

ETDs, but also to any general scholarly documents, or sometimes general PDF files as well.
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Data generation pipeline and

pre-processing

Since our work builds upon Deepfigures [54], in this chapter we first review the general

strategy employed by Deepfigures [54]. Then we describe our modifications to this pipeline,

followed by our system to run this pipeline at scale.

3.1 Approach of Deepfigures [54]

The overall approach is to generate high quality labels for figure extraction on a large number

of scientific documents. The generated dataset is then used to train a deep learning model

which is a combination of ResNet-101 and the Overfeat architecture.

3.1.1 Label induction

This phase of Deepfigures deals with two datasets — arXiv and PubMed.

26
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arXiv dataset

First is the arXiv1 dataset which can be obtained using AWS’s S3 API2 as mentioned on

their bulk access website [58].

Modifying the LaTeX source: This dataset contains the LaTeX source code for each research

paper in the dataset. This LaTeX source code is first used to compile the PDF file which is

then converted to a list of images for each of its pages. Further, the LaTeX source code is

modified to add bounding boxes around each figure. This is achieved by adding a few lines

of LaTeX code at the beginning of the LaTeX source code.

Specifically, the following changes are made to the LaTeX source files:

\usepackage{color}

\usepackage{floatrow}

\usepackage{tcolorbox}

\DeclareColorBox{figurecolorbox}{\fcolorbox{red}{white}}

\DeclareColorBox{tablecolorbox}{\fcolorbox{yellow}{white}}

\floatsetup[figure]{framestyle=colorbox,

colorframeset=figurecolorbox,framearound=all,

frameset={\fboxrule1pt\fboxsep0pt}}

\floatsetup[table]{framestyle=colorbox,

colorframeset=tablecolorbox,framearound=all,

frameset={\fboxrule1pt\fboxsep0pt}}

1https://arXiv.org
2https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
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The first three lines declare the packages to add the bounding boxes around figures. The

next two lines declare the colours of the borders of the bounding boxes. Finally, the last two

lines use these declarations to modify the rendering options of all figures so that a border

of 1 pixel thickness is drawn around all the figures in the entire document. These modified

LaTeX files are similarly compiled into PDF files and converted to a list of images for each

of its pages.

Generating the labels: Now, for each scholarly paper in the dataset, we are left with two lists

of images - the first does not contain any bounding boxes around its figures while the second

does. Each image in these two lists represents a single page from the PDF document. Each

corresponding pair of images from these two lists are subtracted in a pixel-by-pixel fashion

to obtain a list of images with only the bounding boxes around the figures. For example,

the image for the n-th page from the first list is subtracted from the image for the n-th page

from the second list. The connected components in the resultant images are used to find the

coordinates of the bounding boxes.

PubMed dataset

Labels are also generated for the PubMed dataset. However, the PubMed dataset, along with

the paper PDF files, contains auxiliary data for better user experience. This auxiliary data

includes markup indicating the location of the captions and the image files for all figures.

These image files are used to do a multi-scale template matching on the page images of the

original paper to obtain the location of the figures in the page. The locations are then used

as labels for training the Deepfigures model.
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Evaluating label quality and training

The quality of these labels is evaluated by manually labelling a few randomly sampled images

and comparing these against the generated labels. These bounding boxes are then used to

train a deep learning object detection model (ResNet-101 [33] + Overfeat [53]) (Figure 3.1).

3.2 Feature distribution of datasets

3.2.1 Feature distribution of born-digital PDF files

Part of our work is based on the data generation pipeline in Deepfigures [54], reviewed in

Section 3.1. In Deepfigures, the labelled data is generated from two datasets, i.e., arXiv

and PubMed. In the case of arXiv, the LaTeX source of each paper is used to generate the

labels. This means that the compiled PDF file is ‘born-digital’ and not scanned (for example

using a flat-bed scanner) (Figure 3.2). Similarly, for the PubMed dataset, most of the PDF

files used to generate the labels are born-digital. Further, for the older PDF files, although

they are scanned, the figure/caption markup in the auxiliary data is not reliable, sometimes

non-existent. As can be seen in example documents [23, 29, 44, 52], although we can see the

figures in the PDF file, they are not always present in the markup. This implies the presence

of noise in the PubMed training data.

3.2.2 Feature distribution of scanned PDF files

As opposed to born-digital PDF files, scanned PDF files, at some point of time, existed as a

hard-copy and were later digitized into PDF using scanning tools such as flat-bed scanners

(Figure 3.3). The process of scanning introduces certain artifacts in the PDF file. For
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Figure 3.1: The architecture of the deep learning model used in Deepfigures [54]. The upper
part is ResNet-101 and the lower part is the Overfeat network for bounding box regression.
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Figure 3.2: A sample page rendered as an image from a born-digital ETD [22] from the
arXiv dataset.
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example, the content for some pages might be slightly rotated/tilted because of errors in

the placement of paper in the scanner. Other kinds of noise are possible, such as salt-and-

pepper noise, blurring, perspective transformations, etc. Further, the content of the PDF

files could have been prepared with a typewriter, or hand-written. Therefore, the overall

appearance of a scanned PDF file can vary drastically from a born-digital one. As a result,

the feature distribution of the training data on which Deepfigures was trained could be

significantly different than that of scanned PDF files, thereby resulting in lower performance

of Deepfigures on scanned documents. Quantifiable results to support this argument are

presented later in this thesis.

3.3 Our modifications to the Deepfigures [54] pipeline

A part of our work builds on the efforts of Deepfigures [54] by using various data augmen-

tation techniques to augment the training data in an attempt to improve performance on

older and scanned PDF documents. To the best of our knowledge, no such study was done

before.

3.3.1 Bringing the two feature distributions closer

We propose to modify the label generation pipeline of Deepfigures by augmenting the training

data used for Deepfigures using various data augmentation strategies. The purpose of this

data augmentation process is to bring the feature distribution of the original training data of

Deepfigures closer to the feature distribution of scanned documents. The hypothesis behind

this is that since the original Deepfigures model was not trained on scanned documents, it

will perform worse on them. Therefore, training it on a dataset whose feature distribution is
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Figure 3.3: A sample page rendered as an image from a scanned ETD [25] from VTechWorks.
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closer to that of scanned documents should help improve its performance on scanned dataset.

3.3.2 Why just image-based transformations are not enough

The proposed data augmentation can be achieved by modifying the original training data

such that its style (visual appearance) resembles that of scanned documents. Since the only

input to the deep learning model is the image of each page of the input PDF file, the main

aim is to make these input images look visually similar to an image of a scanned document.

The obvious choice is to somehow transform the image accordingly. However, we note that

simply applying image-based transformations won’t change the intrinsic layout of the page.

For instance, in Figure 3.2, irrespective of the amount of image-based transformations we

apply, features such as the layout of the page, relative positioning of the elements, font type

and size, etc. won’t change much.

3.3.3 Approach of transformations

To tackle this problem, we propose a two-stepped approach. We leverage techniques similar

to the ones employed by Deepfigures. We use a combination of LaTeX-based and image-

based transformations. We first alter the LaTeX source code of the documents. We then

apply image-based transformations on the resultant document. Following is the description

of these two approaches in more detail. It should be noted that these transformations are

selected heuristically.

3.3.4 LaTeX-based transformations

We propose the following LaTeX-based transformations:
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12pt font

Scanned ETDs were usually written using typewriters. As a result, the font of these docu-

ments is often larger than born-digital ones. Usually, in a LaTeX document, the font size is

declared in a line that looks like the following:

\documentclass[sigconf]{acmart}

We increase this font size to a 12pt font by replacing the above line with the following:

\documentclass[sigconf,12pt]{acmart}

This changes the text font to a 12pt font in the entire document. To find this line in the

LaTeX source code, we use the following Python regex:

r'\\documentclass\[(.*?)\]\{(.*?)\}'

Typewriter font

As mentioned above, since many scanned ETDs are written using typewriters, the visual

appearance of their font differs significantly from the font of a born-digital ETD.

For example, the font of a document typed using a typewriter looks like the font seen in

Figure 3.3. This font is different from that seen in Figure 3.2.

Another important characteristic of a document prepared with a typewriter is that not all

the characters in the text are of equal brightness/darkness. This can be seen in the third

word of the first paragraph in Figure 3.3. The word a is considerably lighter or faded relative

to the characters of the surrounding words. This can be seen at other places in the document

too.
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Further, the positioning of the characters is not strictly along a single straight horizontal

line and the spacing is sometimes uneven. Also, sometimes characters are slightly rotated.

For example, the first word of the fourth line in Figure 3.3 is and, and the first character

of this word (i.e., a) is slightly shifted down. One possible explanation for these phenomena

could be the mechanical idiosyncrasies of the typewriter.

Furthermore, the fonts of different typewriters vary slightly. Some models of typewriters

have the ability to change the font. For example, some models of the IBM Selectric let one

change a ball to get a different font style [5].

As mentioned above, since many scanned ETDs were written using typewriters, and since

there are many types and variations in the typewriter fonts, we change the font type to

resemble the typewriter font. To achieve this, we add the following lines to the beginning of

each LaTeX document:

\renewcommand\ttdefault{cmvtt}

\renewcommand{\familydefault}{\ttdefault}

These lines change the font of the entire document to the CMVTT font in LaTeX. CMVTT

is a font available in the LaTeX software libraries that belongs to the Computer Modern font

family.

The above commands, however, do not mimic the various quirks of real-life typewriters.

Further, the CMVTT font family does not support the bold font [45]. We aim to address

these issues as part of future work.
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Increased line spacing

We also observed that for scanned ETDs written using typewriters, the line-spacing (the

space between two consecutive text lines) in the document is considerably larger than that

of a born-digital document. Therefore, we increase the line spacing to 1.5 by adding the

following command to the beginning of each LaTeX document:

\linespread{1.5}

3.3.5 Image-based transformations

To implement the image-based transformations, we use the popular ImgAug [34] software

library. We propose the following image-based transformations. For each transformation

described below, we mention the software command from ImgAug [34] and its arguments

used for implementing the transformation.

Random affine rotation

While scanning the hard-copy of a document, it is possible that the page might be slightly

rotated. As a result, in the scanned PDF file, not all pages will be perfectly aligned. Further,

this process is not constant; it can happen randomly.

Therefore, for each page of each PDF file in the dataset, we first randomly sample a floating-

point number between -5 and +5 from a random number generator following a standard

normal distribution. We rotate the image of this page by the number of degrees defined by

this number. In other words, we randomly rotate each page, between -5 and +5 degrees.

Affine(rotate=(-5, 5))
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Additive Gaussian noise

A flatbed scanner works by reflecting the light from paper and creating an image of the

paper based on the light reflected back. Light reflecting from the surface of the paper is a

natural phenomenon. Hence, we add Additive Gaussian Noise to the image to mimic this

effect. The parameters of this noise are heuristically chosen using trial-and-error.

AdditiveGaussianNoise(scale=(10, 60))

Salt-and-pepper noise

Since salt-and-pepper noise is often seen on images caused by sharp and sudden disturbances

in the image signal, we use it as our next transform [51].

SaltAndPepper(p=0.1)

Here, p represents the probability of replacing a pixel by noise. We chose this parameter

heuristically.

Gaussian blur

Digital images are limited to a certain resolution as compared to natural objects. This

happens because to represent any image in its digital form, there are only a certain number

of bytes available to encode it. Therefore, during the process of digitization of any hard-copy,

a certain sharpness/resolution is lost.

To incorporate this in our augmentation transformations, we apply Gaussian Blurring. This

is basically just image smoothing using a Gaussian Kernel.
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GaussianBlur(sigma=0.5)

G(x, y) =
1

2πσ2
e

−x2−y2

2σ2

Sigma is used to generate the Gaussian smoothing kernel using the Gaussian formula.

Linear Contrast

Although today’s flatbed scanners are built using advanced technology, they still are not

capable of capturing all of the natural colors of a natural object. Therefore, to incorporate

this characteristic of flat-bed scanners, we add Linear Contrast.

LinearContrast(alpha=1)

alpha determines the amount of linear contrast to introduce in the image.

Perspective transform

During the scanning of hard-copies, it is possible that the paper might be stretched. To

incorporate this, we implement Perspective Transform.

PerspectiveTransform(scale=0.025)

Figure 3.4 shows the effect of applying all image-based transformations and 3.5 shows

the effect of applying all LaTeX-based transformations on a sample born-digital page of a

research paper [22].
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Figure 3.4: A sample page from [22] with all image-based transformations applied.
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Figure 3.5: A sample page from [22] with both image-based and LaTeX-based transforma-
tions applied.
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3.4 Generating labels

All of the above transformations for augmenting the data are done in conjunction with

the original Deepfigures pipeline. Figure 3.6 provides a better overall view of the modified

pipeline.

In Figure 3.6, the step named “Add markup for LaTeX augmentations” is our modification

to the Deepfigures pipeline for adding the LaTeX-based transformations.

Similarly, the step named “Apply image-based augmentations using ImgAug” is another

modification to the Deepfigures pipeline for adding the image-based transformations.

We use PDFLaTeX for compiling all LaTeX documents. Specifically, we use the TexLive [11]

distribution.

3.5 System design to run our pipeline at scale.

Training a deep learning model often involves dealing with a large amount of data. The

typical process of training a model involves storing, processing, and reading this data. As

the size of this data grows, it becomes increasingly difficult to deal with it. Problems such

as storage, pre-processing, and reading it are often encountered at scale.

In this work, we train our deep learning model on the arXiv dataset, which contains over 1

TB of data. Therefore, in this section, we describe how we designed a scalable pipeline to

pre-process this data for training the model in real-time.
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Figure 3.6: The modified version of the Deepfigures pipeline for our experiment.
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3.5.1 Background

Dataset description

As described in Chapter 2, the goal is to train a deep learning model (ResNet-101 + Overfeat)

for predicting the bounding boxes around the figures of scholarly documents. The training

data for this is the arXiv dataset available at [58] along with its description. The entire

dataset is about 1.2 TB on disk. It consists of about 2600 tar files. Each tar file is not more

than 500 MB in size. Within each of these files, there are multiple tar.gz files, each of which

contains the LaTeX source code for one scholarly paper.

Training pipeline

The input to the deep learning model is an image of each page of each scholarly paper along

with the coordinates of the bounding boxes for all figures on that page, if any. This is

obtained using the following steps. A detailed description of these steps can be found in [54].

• For each tar file, unzip it.

• For each tar.gz within the tar file, unzip it.

• Compile the LaTeX source code and convert each page of the resultant PDF file into

images.

• Modify the LaTeX source code such that it draws bounding boxes around figures after

compiling. Repeat the process in the previous step to obtain the images.

• Perform a pixel-by-pixel subtraction of the corresponding images generated in the

above two steps to obtain the coordinates of bounding boxes.
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3.5.2 Challenges

Executing the above-mentioned steps at scale introduces the following engineering challenges:

Disk space

An obvious way to achieve this is by first unzipping and processing the entire 1.2 TB dataset,

and then starting the training of the deep learning model. However, unzipping the entire

1.2 TB arXiv dataset and performing all of the steps in the pipeline results in a total disk

space of about 30 TB. Obtaining such a large amount of disk space is costly and might not

always be feasible.

Processing time

The data pre-processing steps in the pipeline involve unzipping of huge files, compiling

LaTeX source code and doing image processing operations. These steps make the pipeline

computationally expensive. Using a single CPU core for pre-processing the entire 1.2 TB of

dataset will take a long time and thus will be prohibitively slow for training (because the

GPU will have to wait for the single CPU to generate the data).

The approach mentioned in the Deepfigures paper [54] processes the data in parallel using

multiple cores. However, it needs to store the entire 30 TB of processed data on disk before

the training can be started. As a result, it needs a lot of disk space and that becomes a

bottleneck.
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3.5.3 Proposed system

We propose a solution which will allow us to improve the performance of the pre-processing

pipeline when used in conjunction with the training of the deep learning model.

Main intuition

We know that the pre-processing pipeline and the training of the model have different kinds

of computing requirements. In other words, the pre-processing pipeline uses only the CPU

(multiple cores, if parallelized) and the training of the deep learning model mostly uses the

GPU. We leverage this fact to do both the pre-processing and the training simultaneously.

We design our code in such a way that multiple CPU cores will pre-process the data in

parallel and will supply it to the deep learning model. This ensures that neither the CPU

nor the GPU has unused capacity during the entire process.

Implementation

Figure 3.7 shows the system diagram of our implementation. We declare N processes for

loading and pre-processing the data from the disk. Each of these processes will work on one

single tar file which it will pick up from a process-safe queue. At the start of the program,

for the arXiv dataset, this queue should contain about 2600 items. Each item will be a file

pointer (e.g., file path) to one of the 2600 tar files in the arXiv dataset.

Each process will read the .tar file it is currently processing, unzip it, and for each paper

tar.gz will follow the process mentioned in Figure 3.6. Once it is done processing, it will

pass the processed output to the main training process for training. Each of these worker

processes will be allocated a separate temporary disk space for operations such as unzipping

files, etc. The life-cycle of these temporary directories is entirely managed by each of these
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Figure 3.7: System diagram of our system for running the modified Deepfigures pipeline at
scale.

individual worker processes. They are cleaned up when the process ends.

Possible shortcomings

One of the limitations of this approach is that the processed dataset is not being stored.

It needs to be re-generated each and every time we need to train. However, this limitation

can be easily overcome by implementing a disk-backed caching layer. This way, every time

any part of the dataset is processed, its processed version gets stored in the cache for future
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use. Only the necessary data can be stored in this disk-backed cache in a compressed form,

thereby alleviating storage space limitations for the cache.

3.6 Gold standard

We use the data generated using our data augmentation pipeline for training our model.

A common practice is to split the entire data available into train, validation, and test sets

to benchmark the performance of the model. Out of these, the validation set is used to

fine-tune or choose the best model during training while the test set is used to get a final

unbiased estimate of the model. However, the shortcoming of this method is that if there is

any noise in the available data, the validation and the test sets would have noise too. This

would lead to inaccurate performance numbers. To solve this problem, we create a gold

standard dataset. The gold standard dataset will act as the ground-truth and thus can be

used to get a reliable estimate of model performance.

3.6.1 MIT DSpace

MIT’s DSpace [15] is used in its institutional repository. Among other scholarly documents,

that contains collections of ETDs authored by MIT students.

Each ETD in these collections first exists as a hard-copy and is then scanned into DSpace.

Since we want to create a gold standard dataset whose feature distribution should closely

match the distribution of scanned ETDs, these scanned ETDs are useful to us.

Another important reason for using MIT’s DSpace for our gold standard is that these ETDs

are organized into separate department-wise sub-collections. Further, the ETDs from each

department are categorized into the type of degree (e.g., Masters, Ph.D., Bachelors, etc.).
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This helps reduce the bias in the type of figures in the gold standard, if any. Further, this

also enables us to do an analysis on different groupings such as by department or degree.

Lastly, each ETD also has accompanying metadata. This contains information such as the

date of publication, author name, etc. This helps us filter the ETDs based on the year in

which they were published.

3.6.2 Collecting ETDs

URLs used for crawling

Each ETD in MIT’s DSpace website is uniquely represented by its handle. A sample handle

is 1721.1/42427. Given the handle of any ETD, its PDF file and its metadata can be easily

accessed through the URL:

https://dspace.mit.edu/handle/1721.1/42427?show=full

In fact, any resource in the website (e.g., ETD, collection, sub-collection, etc.) is represented

by a unique handle. We leverage this fact to crawl the website for a given department and

obtain the handles of the associated ETDs. Given the handle of a department, the list

of its ETD handles can be obtained in a paginated fashion through its browse page. For

example, for the Department of Electrical Engineering and Computer Science, the handle is

1721.1/7599 and its browse URL is:

https://dspace.mit.edu/handle/1721.1/7599/browse



50 Chapter 3. Data generation pipeline and pre-processing

Crawler

We write a simple crawler script in Python using web scraping tools like LXML [6] to

download the handles of all ETDs using the browse URL of each department. Further, for

each ETD handle, we use its URL to download its PDF file and its metadata. Although

the PDF file is relatively easy to download, the metadata is in HTML format. Therefore,

to convert it to a format better suited for querying, we used the read_html() function in

Pandas [46] to convert it to JSON.

Rate limits

MIT’s DSpace website implements a rate limit for the number of requests an IP can make

to it. We figured this out when we ran our crawler scripts to download the ETDs and the

metadata. We were periodically getting HTTP 429 as the response code when we exceeded

a certain number of requests from a given IP address. To solve this issue, we added retry

mechanisms in our crawling script. As a result, whenever HTTP 429 was the response, we

used to sleep our crawler for 5 seconds and then try again. This way, we prevented MIT’s

DSpace website from getting overloaded, which perhaps was the intention behind the rate

limiter.

3.6.3 Sampling ETDs

Out of the downloaded ETDs, we randomly sampled ETDs with some constraints. The

date of issue should be pre-1990, and at-most one ETD should be sampled from each sub-

community (doctoral theses, masters theses, bachelor’s theses, etc.) within each department.

After accounting for empty sub-communities, our sample contained a total of 70 ETDs 3.8.
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Figure 3.8: Year-wise distribution of ETDs sampled for the gold standard dataset.

3.6.4 Labelling ETDs

After collecting the ETDs for this dataset, we converted each ETD into the images of their

pages at 100 DPI. We did not change the original aspect ratio of the pages. In this process, a

total of 10182 images of pages were obtained. We used the VGG Image Annotator (VIA) [27,

28] tool to manually label these images with bounding boxes around figures. The following

guidelines were used when carrying out this labelling:

• Some papers had a lot of software code directly written in the PDF file. This code

was not labelled.

• Table of Contents was labelled.

• Captions for both figures and tables were labelled.
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• List of figures was labelled.

• List of tables was labelled.

• Bibliography was not labelled.

• Mathematical equations (including matrices) were not labelled.

• For screen-captures (including newspaper cut-pastes, which had figures in them), the

individual figures within the figures were labelled. The encompassing figure was not

labelled. No nested labelling was done.

A total of 3375 figures were labelled across the entire dataset. The total number of figures

across each of the 70 ETDs is shown in Figure 3.9.

A screenshot of the VGG Image Annotator tool while creating labels for the gold standard

dataset appears in Figure 3.10.

Note: For manually labelling the gold standard dataset, the bounding boxes were drawn such

that the figures and tables as well as their captions were circumscribed by the bounding box.

This was done for the following two reasons:

• The bounding boxes generated by the Deepfigures pipeline exhibit a similar behaviour,

wherein, the bounding box circumscribes both the figure/table and its caption (see

Figure 2.8).

• As per our intuition, if there is a future need to separately extract the captions from

figures/tables, it could be easier to do so from an already extracted sub-region of the

page as opposed to extracting it from the entire page.
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Figure 3.9: Figure count per ETD in the gold standard dataset. X-axis shows the ETD
handles from [15].
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Figure 3.10: A screenshot of VGG Image Annotator tool [27, 28] during creating labels for
the gold standard dataset.
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Figure 3.11: Validation and test splits of the gold standard dataset

3.6.5 Validation and test splits

We split the gold standard dataset into two equal halves after shuffling it randomly. The

first half will be used as the validation set for fine-tuning or choosing the best model during

training. The second half will be used as the test set for reporting the final unbiased estimate

of the model. In the rest of this thesis, we use these two sets for reporting our results

(Figure 3.11).
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Results and discussion

In this chapter, we describe the various experiments we conducted as a part of this work, in

chronological order.

4.1 Experiment 1

4.1.1 Experimental setup

The Deepfigures [54] model was trained on the data generated from two datasets — arXiv

and PubMed. However, the size on disk for these two datasets is quite large. Therefore,

training a deep learning model, albeit using a GPU, takes a long time (sometimes days).

Therefore, in this experiment our aim is to do a proof of concept (POC) on a smaller dataset.

In this experiment, we train the model on the data and labels generated using our modified

pipeline. However, instead of training on the entire dataset, we use a small subset of the

dataset.

Sampling a subset of the arXiv dataset

In order to choose the subset of the dataset, we limit ourselves to the arXiv dataset and

ignore the PubMed dataset. This was done because the data augmentations described in

56
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Section 3.3.5 and Section 3.3.5 can be applied only if the LaTeX source of the paper is

available.

We further reduce the size of the training data by randomly sampling from the arXiv dataset.

One of the ways to sample from the arXiv dataset is to randomly drop a few training images

and their labels when running the pipeline described in Figure 3.7. Although this method

provides a higher degree of randomness, the limitation of doing so is that we will still have

to process the entire dataset. This will lead to unnecessary computation.

Therefore, we optimize the procedure by randomly sampling 50 out of the 2600 tar files from

the arXiv dataset. The limitation of using this method is that we don’t randomly sample

data within a tar file. In other words, if we choose a tar file, all of the papers in it are counted

in our sample set. However, the benefits far outweigh the limitations while maintaining a

good degree of randomness within the sample. Using this method, we don’t have to process

the entire dataset — just what is sampled. Further, the training process does not need access

to the entire dataset, which can alleviate some disk space problems.

Training

We train the model using the modified Deepfigures pipeline we proposed (Figure 3.6). Specif-

ically, in this experiment, we use all augmentations mentioned in Section 3.3.5 and Sec-

tion 3.3.5.

We use the same hyper-parameters as the ones used in [54]. We train it for 100,000 steps

with a batch size of 1.
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4.1.2 Results

Table 4.1 shows the results of the experiment. We trained two models. The first was

trained using only the image-based transformations for data augmentation. The second was

trained with both image and LaTeX-based transformation. We tested them by comparing

the predictions with a manually labelled scanned sample ETD [25]. This ETD was chosen

randomly from Virginia Tech’s VTechWorks digital library since the gold standard dataset

using MIT ETDs was not yet created during the time of conducting this experiment. The

ground truth of this ETD contains 26 figures and no tables. This ETD also contains some

non-textual pages with blue background representing some kind of blueprints. However, we

exclude such pages for the purposes of this evaluation.

Table 4.1: Performance of the original Deepfigures model as compared to the re-trained mod-
els when run on a scanned ETD from VTechWorks [25]. (TPs=True Positives, FPs=False
Positives, FNs=False Negatives)

Model TPs FPs FNs Precision Recall F1
Deepfigures 0 29 26 0 0 0

Ours (image-based transformations) 7 16 15 0.30 0.318 0.309
Ours (all transformations) 10 15 16 0.4 0.385 0.392

From Table 4.1, we can see that as we add more augmentations, the true positives increase

and the false positives and the false negatives decrease. This clearly shows that our data

augmentation techniques improve the model performance on the scanned ETD we tested on.

However, to get more robust numbers, we decide to conduct more experiments using more

scanned ETDs and better evaluation metrics.
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4.2 Experiment 2

4.2.1 Experimental setup

We lacked two things in the previous experiment. Firstly, we didn’t have strong evaluation

metrics for measuring the performance of our model. In other words, although we computed

the precision, recall, and F1-scores, we did not define mathematically how we deem a pre-

dicted bounding box as a true positive, etc. We describe this in more detail in Section 4.2.1.

Secondly, we evaluated it only on a single scanned ETD. Therefore, we address these two

limitations in this experiment.

More importantly, to train more models and compare them with the original Deepfigures

model, we need to know how the original Deepfigures model performs on the gold standard.

For Deepfigures [54], the authors have released the trained model weights. We use these

weights to run inference for the validation and test sets of the gold standard dataset on that

model.

Evaluation metrics

The Deepfigures [54] model outputs a set of bounding boxes for each figure it detects in

the image. We match these predicted bounding boxes to the true bounding boxes in order

to minimize the total Euclidean distance between the centers of paired bounding boxes.

As mentioned in [26, 54], this is an instance of the linear assignment problem and can be

efficiently solved using the Hungarian algorithm [39]. Once the predicted boxes have been

matched with the true boxes, we deem a predicted box as correct if its intersection over

union (IOU) with the true box is greater than or equal to 0.8 (i.e., True positive), incorrect

if less than 0.8 (False Positive) [54]. If the model fails to detect a box which it should have
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detected, we deem it as a False Negative. In other words, if the model predicts a box even

though there is no figure present inside it, we deem it as a False Negative [37]. Using these

three metrics and the formulae mentioned in Section 2.1.9, we can find the precision, recall,

and F1 score.

Evaluating on gold standard

As mentioned in Section 3.6, we create the gold standard to better evaluate model perfor-

mance. During the training, we store multiple checkpoints of the model at regular intervals.

These checkpoints consist of the model weights, the definition of the model architecture,

and some metadata. In other words, these checkpoints contain all the necessary information

needed to re-instantiate the model and it’s weights at the state in which the checkpoint

was created. We use the validation set to choose the best performing model from all the

checkpoints, and we use the test set to report the performance of this selected best model.

4.2.2 Results

Table 4.2 shows the performance of the original Deepfigures model on the gold standard

dataset. When we compare the performance of Deepfigures in Table 4.1 with its performance

in Table 4.2, we can see the improvement. According to Table 4.1, the Deepfigures model

is not able to detect any True Positives. However, according to Table 4.2, the Deepfigures

model does detect some figures. One possible explanation for the better performance of

Deepfigures in this experiment is that we evaluate it only on a single ETD, as discussed in

Section 4.1, and perhaps that ETD is an outlier. This highlights the importance of using a

well-sampled and balanced gold standard dataset for evaluating models.

In Section 1.2, RQ1 was posed in which we aim to explore the performance of existing



4.3. Experiment 3 61

methods for figure extraction from scanned ETDs. In this experiment, we evaluated the

performance of Deepfigures on our gold standard dataset using metrics such as precision,

recall, and F1-score, thereby answering RQ1.

Table 4.2: Performance of the original Deepfigures model on the gold standard dataset.
(TPs=True Positives, FPs=False Positives, FNs=False Negatives)

Model TPs FPs FNs Precision Recall F1
Deepfigures 1005 1227 1143 0.450 0.468 0.459

4.3 Experiment 3

4.3.1 Experimental setup

As discussed in Section 4.1, we trained the model on the data augmented using all the

transformations (i.e., image-based as well as LaTeX-based). However, since we have chosen

these transformations heuristically and not based on quantifiable metrics, it is possible that

not all of these transformations are causing the performance of the Deepfigures model to

improve.

Finding ‘helpful’ transformations

Each transformation in the list mentioned in Section 3.3.4 or Section 3.3.5 can either be

disabled or enabled. The total number of possible combinations for this is 2n where n is the

number of transformations possible. Training 2n models for a significantly large number of

transformations might not be computationally feasible. Therefore, we propose a leave-one-

out ablation study to get a better idea about which transformations are actually helpful.
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Leave-one-out ablation study

In an leave-one-out ablation study, we train n different models in parallel, where n is the

total number of possible transformations. In each of these models, we keep all of the hyper-

parameters constant, except the list of transformations to apply. For the n-th model, we

disable the n-th transformation and leave the remaining enabled. Based on the results, if the

n-th model performs poorly, we can say that disabling the n-th transformation has worsened

the performance and therefore, enabling that transformation contributes positively towards

the model performance.

A note about the leave-one-out ablation study

Although the leave-one-out ablation study gives us some idea about the performance of each

transformation, it does not give the entire picture. For instance, it is possible that two

transformations performing well on their individual ablation studies could perform worse

when used together. This can be further extended for combinations of more than 2 trans-

formations. Therefore, we do not claim that the leave-one-out strategy gives us the most

optimal combination of transformations. However, it does help in getting a general idea

for weeding out the worst performing transformations, and therefore helps in improving the

overall performance of the model.

4.3.2 Results

We trained 11 deep learning models as described in Section 4.3.1.
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Interpreting the plot of F1-score vs. training step

During the training of these models, we saved periodic checkpoints of the model weights.

We ran inference on the validation set for each of these checkpoints and plotted the F1-score

against the training step. One such plot of the F1-score vs. the training step can be seen

in Figure 4.1. The plot in Figure 4.1 is for one of the ablation studies in which Additive

Gaussian Noise was excluded. The learning rate used for training this model is plotted

against the training step in Figure 4.2.

From Figure 4.1, we observe that the very first value of the F1-score is about the same as

that of Deepfigures. This is expected because without any training, the model is identical

to Deepfigures.

As the training progresses for the first few hundred steps, the F1-score varies quite drastically.

This change can be attributed to the relatively high learning rate in the initial part of the

training.

In the latter part of the training, as the learning rate decreases, the F1-score stays relatively

stable. The F1-score frequently surpasses the F1-score of Deepfigures before slightly going

down again. It is during this phase of the training process that the peak F1-score is achieved.

From these observations, it can be said that for this experiment, we should start from a

lower learning rate since it is at this stage that we see the F1-score improve. Therefore, we

note the task of training with lower learning rate as part of future work.

Interpreting the ablation study results

In Table 4.3, for each trained model, we choose the model’s checkpoint which was performing

best on the validation set of the gold standard. Then, we reported its accuracy on the test
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Figure 4.1: Plot of F1-score evaluated on the validation set vs. the training step when trained
as part of the 24-hour ablation study in which Additive Gaussian Noise was excluded. The
red line indicates the performance of Deepfigures.
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Figure 4.2: Plot of the learning rate vs. the training step when trained as part of the 24-hour
ablation study in which Additive Gaussian Noise was excluded.
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Table 4.3: Performance of the original Deepfigures model on the gold standard dataset
compared to the models trained as part of our leave-one-out ablation study. All models were
trained for 24 hours each. (TPs=True Positives, FPs=False Positives, FNs=False Negatives)

Model TPs FPs FNs Precision Recall F1
Deepfigures 1005 1227 1143 0.450 0.468 0.459

Ours (All enabled) 619 506 569 0.550 0.521 0.535
Ours (Additive Gaussian Noise) 561 465 668 0.547 0.456 0.498

Ours (Affine) 577 530 587 0.521 0.496 0.508
Ours (Gaussian Blur) 506 619 569 0.450 0.471 0.460

Ours (Linear Contrast) 630 498 566 0.559 0.527 0.542
Ours (Perspective Transform) 597 539 558 0.526 0.517 0.521

Ours (Salt and Pepper) 686 509 499 0.574 0.579 0.576
Ours (Line spacing 1.5) 614 737 343 0.454 0.642 0.532
Ours (Typewriter font) 566 476 652 0.543 0.465 0.501

set of the gold standard. If a model selected using this method performs well on the test set,

we can safely say that it will perform well on any new data it encounters.

We draw the following observations from this table:

• We observe that the F1-scores of almost all of our models surpass the F1-score of the

original Deepfigures model. This observation supports answering RQ2 affirmatively.

It, however, is not enough to completely support an affirmative response to RQ2 since

a single set of observations from one experiment may not be statistically significant.

• The model in which Gaussian Blur was disabled has a score of 0.460. This is close

to the F1-score of the original Deepfigures model (0.459). In all of the other models,

Gaussian Blur was enabled, and their performance is significantly higher than the

original Deepfigures model. Therefore, it is likely that Gaussian Blur is the most

‘helpful’ transform because disabling it decreases the performance, while enabling it

improves performance. Again, since this is just a single experiment, we cannot say



4.4. Experiment 4 67

that this is conclusive.

Since the observations made above are not enough to answer RQ2 confidently, we investigate

further in the next experiment.

4.4 Experiment 4

4.4.1 Experimental setup

This experiment is similar to the one discussed in Section 4.3, where each model was trained

for 24 hours. However, it is possible that 24 hours might not be sufficient for all of the

models to train fully. Further, getting an additional set of observations could help us make

a more robust argument. Therefore, in this experiment, we re-run the ablation studies with

the same hyper-parameters but for 72 hours each.

4.4.2 Results

Table 4.4 shows the results when the ablations studies were conducted for 72 hours.

We make the following observations from Table 4.4:

• We observe that almost all of our models significantly out-perform the original Deep-

figures model. This observation is in agreement with the one made in Section 4.3.2.

Remember that RQ2 (posed in Section 1.2) aims to explore whether using data aug-

mentation helps to improve the model performance. Therefore, using the observation

in Section 4.3.2 and the one made here, we can say with greater confidence that using
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Table 4.4: Performance of the original Deepfigures model on the gold standard dataset
compared with the models trained as part of our leave-one-out ablation study. All models
trained for 72 hours each. (TPs=True Positives, FPs=False Positives, FNs=False Negatives)

Model TPs FPs FNs Precision Recall F1
Deepfigures 1005 1227 1143 0.450 0.468 0.459

Ours (All enabled) 604 482 608 0.556 0.498 0.526
Ours (Additive Gaussian Noise) 613 448 633 0.578 0.492 0.531

Ours (Affine) 589 407 698 0.591 0.457 0.516
Ours (Gaussian Blur) 642 510 542 0.557 0.542 0.550

Ours (Linear Contrast) 602 460 632 0.567 0.488 0.524
Ours (Perspective Transform) 560 739 395 0.431 0.586 0.497

Ours (Salt and Pepper) 625 503 566 0.554 0.525 0.539
Ours (Line spacing 1.5) 705 594 395 0.542 0.641 0.588
Ours (Typewriter font) 641 386 667 0.624 0.490 0.549

data augmentation helps improve the performance of the original Deepfigures model

on scanned ETDs, thereby answering RQ2.

• We further observe that the F1-score of the model in which Gaussian Blur is disabled is

no longer the lowest performing model. In fact, it significantly outperforms the original

Deepfigures model. This is in contrast to the observation made in Section 4.3.2.

• Further, in Table 4.3, the F1-score of the model in which Additive Gaussian Noise is

disabled (0.498) is lower than the F1-score of the model in which Affine transform is

disabled (0.508). However, in Table 4.4, the F1-score of the model in which Additive

Gaussian Noise is disabled (0.531) is higher than the F1-score of the model in which

Affine transform is disabled (0.516). Because of these contrasting observations, we

cannot yet conclude that ablation studies aid in identifying the ‘helpfulness’ of the

various data transforms, and hence more investigation is recommended.
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4.5 Experiment 5

4.5.1 Experimental setup

We decided to train the model on the gold standard data. The dataset consists of about 10k

images with 3.3k labels for figures. Instead of doing a random 50-50 split for training and

testing sets, we decide to do a random 80-20 split in order to train the model on as much

data as possible.

In the previous experiments, we trained on the data generated using the modified Deepfigures

pipeline and we were evaluating on the gold standard. However, for this experiment, since

we are training on the gold standard data, we decide to not have separate validation and

test sets.

Further, unlike the previous experiments, instead of running the inference on the entire

validation and testing set after each checkpoint, we run inference only on a single batch from

the testing set.

4.5.2 Results

Figure 4.3 is a plot of the testing accuracy on the y-axis and the training-step on the x-axis.

The training step starts from 500,000 because the original Deepfigures model [54] was trained

on 500,000 steps, and we use it for weight initialization.

In other words, when the authors of [54] started training the Deepfigures model, its weights

were randomly initialized. They trained it for 500,000 training steps (training batches).

Since we use the model architecture and the training weights released [54] for initializing our

weights, in a way we are continuing their training from 500,000-th step onward (albeit on
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augmented data).

Further, the plot of test accuracy is smoothed using an exponential moving average filter

for better interpretation. In a moving average filter, each data point in the data window

is regarded equally important when calculating the average. In an exponential moving

average filter, more emphasis is placed on the recent data by computing the weights using

an exponential function [7].

In Section 1.2, we pose RQ3 which aims to explore whether the performance of the original

Deepfigures model can be improved by training it on the gold standard dataset. As we can

observe from the plot, the test accuracy continues to drop, and does not improve. This

suggests that the performance of the model for extracting figures is slowly worsening when

trained on the gold standard dataset, thereby answering RQ3.

We speculate that this could have happened because of, but not limited to, the following

two reasons:

• Because of the weight initialization, the starting point of the model in the multi-

dimensional curve of the loss function could be in a local minimum. This could possibly

make it difficult for the model to reach the minimum for the gold standard dataset.

• The gold standard contains about 10K images. Compared to the size of the arXiv

dataset and based on the architecture of the Deepfigures model, this might not be

sufficient to learn the task completely.
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Figure 4.3: The plot of test accuracy of the Deepfigures model vs. the training step when
its weights are initialized using the original Deepfigures model [54] and when trained on the
gold standard dataset.
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4.6 Experiment 6

4.6.1 Experimental setup

In Section 4.5 we use the original Deepfigures model for initializing the weights. However,

as can be observed from Figure 4.3, the model performance is worsening. Therefore, in this

experiment we try to leverage the features of the trained model weights of Deepfigures.

In transfer learning, after initializing the weights from a trained model, often the weights of

some layers are frozen and only a few layers are trained. The reasoning behind this is that

the feature maps that were learned in the trained model do not need to be trained again if

the new task is in a similar domain.

Therefore, after initializing the weights with the original Deepfigures model, we freeze the

weights of the ResNet-101 layers. During our training, we only train the remaining Over-

feat layers towards the end of the model. The rest of the training process is identical to

Section 4.5.

One of the advantages of this method is that this usually requires less data for model con-

vergence since only the last few layers are training.

4.6.2 Results

Figure 4.4 shows the plot of the smoothed test accuracy against the training steps. We

observe that the test accuracy decreases as the model training progresses. This means that

the model’s performance is worsening. Contrary to remarks made in Section 4.5.2, although

we are training only the last few layers, the performance of the model does not improve.

This answers the RQ4 posed in Section 1.2 that training the final layers of the Deepfigures
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Figure 4.4: The plot of test accuracy of the Deepfigures model vs. the training step when
its weights are initialized using the original Deepfigures model [54] and when only the final
fully connected layers are trained on the gold standard dataset.

model (i.e. transfer learning) using the gold standard dataset does not improve the model

performance.

4.7 Experiment 7

4.7.1 Experimental setup

In all of the previous experiments, we use the Deepfigures model. However, the best F1-score

we are able to obtain yet is not more than 0.588. Therefore, we decide to experiment with

a different object detection model. To this effect, we train the YOLOv5 model.
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As mentioned in Section 2.1.4, we choose the extra large version of YOLOv5 with about 89

million trainable parameters. We train on the gold standard dataset and use 8-fold cross

validation to report its performance. We use a batch size of 8.

4.7.2 Results

The results of the 8 fold cross validation are in Table 4.5. We observe that the mean F1-score

of all the cross validation folds is 0.860. This F1-score is significantly higher that the original

F1-score of Deepfigures. Further, this F1-score is also significantly higher than the F1-score

obtained in any of our previous experiments.

Although the mean F1-score of 0.860 is significantly higher than the previous experiments, it

is important to look at the standard deviation which tells us how consistently we are able to

achieve this score. According to Table 4.5, the standard deviation of the F1-score is 0.0732.

This means that the F1-score values do not vary more than 7.32% of the mean.

Further, in the previous experiments, we used the Deepfigures model architecture which uses

a combination of ResNet-101 and Overfeat. The total number of trainable parameters in the

Deepfigures model is about 45 million. However, YOLOv5 uses about 89 million trainable

parameters. This means that the number of trainable parameters in YOLOv5 is almost

double than that for Deepfigures. This could be one possible explanation for the higher

F1-score achieved by YOLOv5 as compared to Deepfigures.

4.8 Discussion of results

In this section, we summarize and discuss the results we obtained in the experiments that

we conducted.
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Table 4.5: Performance of the original Deepfigures model on the gold standard dataset
compared with the 8-fold cross validation of YOLOv5. (TPs=True Positives, FPs=False
Positives, FNs=False Negatives)

Model TPs FPs FNs Precision Recall F1
Deepfigures 1005 1227 1143 0.450 0.468 0.459

YOLOv5 (K=0) 298 100 45 0.749 0.869 0.804
YOLOv5 (K=1) 262 39 57 0.870 0.821 0.845
YOLOv5 (K=2) 381 127 170 0.75 0.691 0.720
YOLOv5 (K=3) 282 22 8 0.928 0.972 0.949
YOLOv5 (K=4) 358 46 24 0.886 0.937 0.911
YOLOv5 (K=5) 457 58 32 0.887 0.935 0.910
YOLOv5 (K=6) 209 51 26 0.804 0.889 0.844
YOLOv5 (K=7) 261 43 19 0.859 0.932 0.894
YOLOv5 (Mean) 313.5 60.75 47.625 0.842 0.881 0.860

YOLOv5 (Std. dev.) 79.9 34.9 51.7 0.066 0.0899 0.0732

In Section 4.1, we described the POC we did to determine the feasibility of using data aug-

mentation. The main goal of this experiment was to show whether using data augmentation

on the born-digital training data (i.e., making the training data look more like scanned

ETDs) helps improve the performance of figure extraction on scanned ETDs. From Ta-

ble 4.1 we observed that using data augmentation indeed helps improve the performance.

Our intuition behind this is that the selected data augmentation techniques brought the

visual appearance of the born-digital ETDs closer to the scanned ETDs, thereby improving

the performance of the model on scanned ETDs. However, in this experiment, we evaluated

using only one ETD and did not have well-defined evaluation metrics.

Therefore, we conducted the next experiment (Section 4.2) to address these issues. We used

well-defined evaluation metrics such as the IOU, TPs, FP, FN, Precision, Recall and the

F1-score. We also used the gold standard dataset for stronger evaluation of the model. In

Table 4.2, we report the F1-score of the original Deepfigures model by evaluating it on our

gold standard dataset. Therefore, we are able to answer RQ1 as follows:
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Answer to RQ1: The performance of the original Deepfigures is significantly lower for

figure extraction from scanned ETDs as compared to its performance for figure extraction

from born-digital documents. For figure extraction from scanned ETDs, it achieves an F1-

score of 0.459.

In Section 4.3 and Section 4.4, we describe ablation studies in an attempt to find out which

data augmentation transformations are helpful. For each of the models trained as part of

these ablation studies, we chose the set of weights (a.k.a., checkpoints) which scored the

highest value of F1-score on the validation set of the gold standard, and then reported the

performance of the selected checkpoint on the test set of the gold standard. From the results

obtained in Table 4.3 and Table 4.4, we did not observe any concrete trend in the data

to prove the usefulness of the ablation studies in determining which transforms are helpful.

However, since most of the model in the ablation studies achieved a significantly higher score

than the original Deepfigures model, we were able to answer RQ2 as follows:

Answer to RQ2: The performance of the original Deepfigures model can be improved by

training it on augmented data and by using weight initialization from the pre-trained model.

Further, as discussed in Section 4.5 and Section 4.6, we attempted to further improve the

performance by training on the gold standard and by using transfer learning techniques,

respectively. Specifically, as discussed in Section 4.5, we initialized the weights of the Deep-

figures model and only trained the Overfeat layers. However, in both of these experiments,

the performance of the model did not improve. Therefore, we can answer RQ3 and RQ4 as

follows:

Answer to RQ3: The performance of the original Deepfigures model was not improved by

training on manually labelled data.

Answer to RQ4: The performance of the original Deepfigures model was not improved by
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using transfer learning techniques.

Finally, as in Section 4.7, we decide to use a different model since the highest F1-score we

could achieve in the previous experiments was not significantly higher than the F1-score of

the original Deepfigures model. Therefore, we train a YOLOv5 model on the gold standard

dataset with 8-fold cross validation, a batch size of 8 and random weight initialization.

The mean F1-score of the 8 cross validation folds was 0.860 with a standard deviation of

0.0732. We speculate that this significant boost in the F1-score as compared to any of

the Deepfigures models in our previous experiments could be due to the difference in the

number of trainable parameters in the two models. In Deepfigures, there are a total of

about 45 million trainable parameters. However, in YOLOv5, the total number of trainable

parameters is 89 million, which is almost double. This could be one explanation for the

higher performance of YOLOv5. Further, it is also possible that the loss functions of the

Deepfigures model could be stuck in a local minimum because of the weight initialization.

This could make it difficult for it to come out of the local minimum and therefore prevent it

from achieve it’s global minimum on the augmented data.
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Future work

This research was conducted on a fairly large amount of data. The hyper-parameters we used

were mostly the same as the ones used in Deepfigures [54]. However, since the task is now to

extract figures from scanned ETDs, tuning the hyper-parameters might have improved the

performance further; especially using a lower learning rate.

Since the ETDs sampled in the gold standard dataset span across multiple years, it would be

interesting to evaluate the performance of our methods with respect to the dates on which

the ETDs were published.

Another interesting analysis would be to find the performance of our methods separately on

figures and tables. However, this would be possible only when there are separate training

labels for figures and tables.

Further, the transformations tried out during the ablation studies were limited and chosen

heuristically. A better approach would be to design a system to choose the transformations

automatically. For example, some kind of function to measure the ‘visual’ similarity between

two images of ETDs could help us choose transformations more effectively. This function to

measure the similarity index could possibly be approximated by a machine learning model.

However, until we come up with such a function to measure the similarity, trying out more

combinations of ablation studies could help us reach the optimal combination of transforms.

It would also be interesting to report the performance of YOLOv5 after training it on the
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arXiv dataset after applying the augmentations proposed in Sections 3.3.5 and 3.3.4.

Another interesting way to make born-digital ETDs look like scanned ETDs could leverage

the recent advances in style transfer using CycleGANs. Research has been done to make any

painting or image look like it was painted by, for example, Van Gogh [59].

Lastly, the model used for Deepfigures [54] is a combination of ResNet-101 and Overfeat.

Several newer object detection models such as Single Shot Detector, Faster R-CNN, etc.

have been proposed since. Using these could yield better results.
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Conclusions

This research focuses on extracting figures from scanned Electronic Theses and Dissertations

(ETDs). We begin by describing the research problem, formulating the research questions

that we are trying to answer, and reviewing the various works from the literature relevant

to this work, such as Deepfigures and PDFFigures2.

We also propose LaTeX-based and image-based data transformations to augment the training

data and thereby bring the feature distribution of the born-digital ETDs closer to that of

scanned ETDs. To efficiently apply these proposed data transformations at scale, we discuss

our system, which uses multiple parallel processes to pre-process the data for training.

All of the data we use was generated from born-digital ETDs. Previously, there was no

ground-truth for evaluating the performance of our methods. Therefore, we curate a gold

standard dataset consisting entirely of scanned ETDs and manually label it with bounding

boxes around figures. This dataset consists of over 10k page images and 3.3k labels.

Finally, we describe the experiments we conducted to evaluate the performance of our pro-

posed methods. In two of our experiments, we are able to obtain a set of model weights which

are able to achieve an F1-score on the hidden (test) set greater than the original Deepfigures

model. We also describe experiments in which we show that our approaches to training

on the gold standard under the aforementioned experimental setup does not improve the

performance, even after using transfer learning.
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Appendix A

Software Details

A.1 Technology stack

The technology stack used for this research is based on the Python 3 programming language.

We also use Bash for scripting. Following are some of the tools we used in this work.

A.1.1 Anaconda 3

Anaconda is an enterprise-ready, secure, and scalable data science platform that empowers

teams to govern data science assets, collaborate, and deploy data science projects [1]. How-

ever, we use it mainly as our Python environment manager. As a result, to run our code

on a different computer, the software environment can be easily set up using Anaconda and

the requirements file we provide in our source code.

A.1.2 Docker

Docker is a set of software tools to package your application to enable it to run in an isolated

and platform-agnostic container [43]. We use it to package our code. This makes it simple

to run our code on any computer which has a Docker process running without setting up

the Anaconda environment.
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A.1.3 TensorFlow

TensorFlow is a machine learning system that operates at large scale and in heterogeneous

environments. TensorFlow uses data-flow graphs to represent computation, shared state,

and the operations that mutate that state [20]. Our code uses TensorFlow as a part of the

TensorBox framework [4] for implementing the machine learning models that we use.

A.1.4 PyTorch

PyTorch is an open source machine learning library based on the Torch library, used for

applications such as computer vision and natural language processing, primarily developed

by Facebook’s AI Research lab [47]. Although we use TensorFlow for implementing the

machine learning models used in this work, we use PyTorch for implementing our scalable

data processing system proposed in Section 3.5.

A.1.5 TexLive

We use PDFLaTeX to compile the LaTeX source code of the arXiv papers. TexLive is a

tool which contains PDFLaTeX and is intended to be a straightforward way to get up and

running with the TeX document production system [11].

A.1.6 VGG Image Annotator

VIA is the acronym for VGG Image Annotator. We use VIA for manually drawing bounding

boxes for our gold standard dataset. VIA was released by the Visual Geometry Group (VGG)

at the University of Oxford [27, 28, 55].
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A.2 Github repository and code organization

Our entire code is available at our Github repository [36]. This repository contains the

README file which has the instructions to set up and run our code on any computer. In

this section we describe the main modules and directories in which our code is organised.

A.2.1 ./bin

This directory contain the binaries for the PDFFigures .jar files. These binaries were used

in the original code of Deepfigures [54] for comparing the results with PDFFigures.

A.2.2 ./deepfigures

This directory contains the code for the Deepfigures pipeline and our modified Deepfigures

pipelines. It also contains the code for making the inference from the PDF files on a trained

model.

A.2.3 ./dockerfiles

This directory contains the Dockerfiles. The Dockerfiles in this directory are used to package

our code into Docker containers.

A.2.4 ./gold_standard

This directory contains the source code for curating the gold standard dataset. This includes

scripts to crawl the MIT website, download the PDF and metadata files, sample from the
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downloaded files, convert the PDF files to the list of images, visualize the annotations,

convert the annotations to various common formats, etc.

A.2.5 ./hpc

We conduct most of our experiments on Virginia Tech’s (VT) Advanced Research Computing

(ARC) computer cluster. This directory contains all of the Bash scripts to launch and manage

the jobs on ARC for our various experiments.

A.2.6 ./models

This directory contains the sample hyper-parameters for the machine learning models that

we use.

A.2.7 ./my_tests

This directory contains a few unit tests.

A.2.8 ./scripts

A script called manage.py in the root directory of the source code is used to run a few fre-

quently used operations, such as launching the training, pre-processing the data downloaded

from arXiv, running inference on a given PDF, and so on. The ./scripts directory contains

the code for each of these operations which is invoked by the manage.py script.
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A.2.9 ./vendor

This directory contains the source code from TensorBox framework [4] that we use to train

the Deepfigures model.

A.2.10 ./yolov5

This directory contains the source code that is used in conjunction with the YOLOv5 source

code [12].
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B.1 Software environment setup

The code in our repository uses many software libraries. Therefore, to be able to run our

code, these software libraries need to be set up on the computer on which we need to run it.

Sections B.1.1 and B.1.2 describe the two ways of setting up the environment.

The methods described in Sections B.1.1 and B.1.2 need Nvidia’s CUDA toolkit v9.0.176

and Nvidia’s CUDNN library v7.1 installed for using the GPU. These come pre-installed in

ARC. To use these two libraries, request a GPU compute node and execute the following

two commands to load these modules:

module load cuda/9.0.176

module load cudnn/7.1

On any other system, Nvidia’s official installation guides available on the internet can be

used.

B.1.1 Docker

Before running the code using Docker, Docker should be installed and the Docker daemon

should be running on the host system. To build a Docker image using the Dockerfiles from

87
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the source code, run the following command at the root of the source code:

# Create and set up the Anaconda environment

ENV_NAME=deepfigures_3

conda remove --name $ENV_NAME --all -y

conda create --name $ENV_NAME python=3.6 -y

source activate $ENV_NAME

pip install -r requirements.txt --no-cache-dir

# Build the Docker images from the Dockerfiles.

python manage.py build

This will build two Docker images, one image that uses the GPU and another that only

uses the CPU. (Note: Although we are using Docker, the Anaconda environment still needs

to be set up to install the software libraries used in the manage.py script in the above set

of commands.) Once the Docker images are built, run the desired image. In the following

command, we run the GPU image:

docker run -it sampyash/vt_cs_6604_digital_libraries:deepfigures_gpu_0.0.6

The above command will run the recently built Docker image. Remember to change the

image version to the one that you built if needed. This command will give a Bash shell session

inside the Docker image. Any further commands, such as training the model, generating the

data, or running inference can be easily run inside this Docker session using manage.py.

Pre-built Docker images can also be found in our Docker hub repository at: https://hub.

docker.com/r/sampyash/vt_cs_6604_digital_libraries/tags. To run these pre-built

Docker images, just the above ’docker run’ command is sufficient. However, building the

https://hub.docker.com/r/sampyash/vt_cs_6604_digital_libraries/tags
https://hub.docker.com/r/sampyash/vt_cs_6604_digital_libraries/tags
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Docker image from the source as mentioned above will give the latest version of the source

code.

When Docker is not installed on the host

When Docker is not installed and running on the host system, it is recommended to install

and start it. However, to install and start Docker, root user privileges are required, which

are not always available. When root privileges are not available and a Docker image needs

to be run, it is possible to use Singularity instead. Singularity is an alternative to Docker

for HPC systems. It is containerization software similar to Docker and is used to package

your apps.

Further, the Docker daemon needs to run with root level privileges. This Docker daemon

is responsible for running all the Docker images on the system. Therefore, any Docker that

is run, runs with root level privileges irrespective of whether that Docker image needs the

privileges or not. This essentially gives the user root level privileges on the host system,

which is often not desired on multi-tenant systems such as an HPC cluster. Singularity does

not run its images with root level privileges, and hence is a suitable alternative to Docker

on HPC systems. Further, Singularity is also able to run pre-built Docker images. However,

any functions in that Docker image which need root level privileges might not run properly.

None of the Docker containers in our work need root level privileges, and hence can be safely

run using Singularity.

If Singularity is installed on the host system, pre-built Docker images from Docker hub can

be directly run as follows:

# This command will pull and convert the Docker image into a .sif file

# and store it in the configured Singularity directory on the host.
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# Note: If you want to build a fresh image from source,

# you can build a new image and push it to Docker Hub.

singularity pull \

docker://sampyash/vt_cs_6604_digital_libraries:deepfigures_gpu_0.0.6

# Edit this with your Singularity directory.

SINGULARITY_DIR=/work/cascades/sampanna/singularity

# Run the pulled image.

singularity run --nv \

-B /home/sampanna/deepfigures-results:/work/host-output \

-B /home/sampanna/deepfigures-results:/work/host-input \

$SINGULARITY_DIR/vt_cs_6604_digital_libraries_deepfigures_cpu_0.0.6.sif \

/bin/bash

The above commands will pull the sampyash/vt_cs_6604_digital_libraries:deepfigures_gpu_0.0.6

Docker image from Docker Hub, convert it into a .sif file, and return a shell session inside

the pulled container. This shell session then can be used to run any of the scripts from the

source code.

B.1.2 Anaconda

Another way of running the code is to set up the Anaconda environment and run the code

natively on the operating system, without Docker. We do this by installing all the required

dependencies inside an Anaconda environment using the following commands:

# Create and set up the Anaconda environment
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ENV_NAME=deepfigures_3

conda remove --name $ENV_NAME --all -y

conda create --name $ENV_NAME python=3.6 -y

source activate $ENV_NAME

pip install -r requirements.txt --no-cache-dir

Further, the Deepfigures and the TensorBox modules need to be installed in the current

environment using their respective setup scripts.

# Edit this to point to the location where you cloned the source code.

PROJECT_SOURCE=/home/sampanna/deepfigures-open

# This will remove any previously generated build files.

# If none are present, it won't do anything.

rm -rf $PROJECT_SOURCE/build \

$PROJECT_SOURCE/dist \

$PROJECT_SOURCE/deepfigures_open.egg-info \

$PROJECT_SOURCE/vendor/tensorboxresnet/.eggs \

$PROJECT_SOURCE/vendor/tensorboxresnet/build \

$PROJECT_SOURCE/vendor/tensorboxresnet/dist \

$PROJECT_SOURCE/vendor/tensorboxresnet/tensorboxresnet.egg-info \

$PROJECT_SOURCE/vendor/tensorboxresnet/tensorboxresnet/utils/stitch_wrapper.cpp

# Uninstall previously installed deepfigures-open and tensorboxresnet, if any.

pip uninstall deepfigures-open -y

pip uninstall deepfigures-open -y
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pip uninstall tensorboxresnet -y

pip uninstall tensorboxresnet -y

cd $PROJECT_SOURCE

# Install deepfigures-open in the current environment.

python setup.py install

# Install tensorboxresnet in the current environment.

cd vendor/tensorboxresnet && python setup.py install && cd ../..

# Remove any generated build files to keep the source code clean.

rm -rf $PROJECT_SOURCE/build \

$PROJECT_SOURCE/dist \

$PROJECT_SOURCE/deepfigures_open.egg-info \

$PROJECT_SOURCE/vendor/tensorboxresnet/.eggs \

$PROJECT_SOURCE/vendor/tensorboxresnet/build \

$PROJECT_SOURCE/vendor/tensorboxresnet/dist \

$PROJECT_SOURCE/vendor/tensorboxresnet/tensorboxresnet.egg-info \

$PROJECT_SOURCE/vendor/tensorboxresnet/tensorboxresnet/utils/stitch_wrapper.cpp

After executing the above commands, the Anaconda environment should be ready for use.

Amazon Web Services (AWS) integration

Optionally, to be able to download the arXiv papers from AWS cloud buckets as mentioned

in [58], AWS credentials need to be added to the credentials file present in the root directory
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of the source code. This needs to be done because the arXiv data which is present in AWS

buckets is in requester-pays type of buckets. This means that one needs to pay to download

this data.

A sample of the credentials file looks as follows:

[default]

aws_access_key_id=dummy_key_id

aws_secret_access_key=dummy_secret_access_key

aws_session_token=dummy_session_token

Replace the values in this file with the appropriate credentials from your AWS account.

In case your AWS account does not have the above keys, you can also set your credentials

in the deepfigures-local.env file present in the root directory of the source code.

TexLive setup

Optionally, to be able to process the arXiv data downloaded from AWS and to generate the

labels for training, TexLive needs to be set up. Using the Quick Install instructions at https:

//www.tug.org/texlive/quickinstall.html, TexLive can be set up on your system. To

install TexLive on a system without root level privileges, install it in a directory for which you

have sufficient privileges (e.g., your home directory). Depending on the system’s performance

and the download speed, the entire installation process can take about an hour. The total

disk space consumed by the full installation is about 7 GB.

https://www.tug.org/texlive/quickinstall.html
https://www.tug.org/texlive/quickinstall.html
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B.2 Recommended hardware

We use the ARC cluster extensively for running our code. ARC contains many compute

nodes with different hardware configurations. The nodes we most frequently used in this

work are the ones which have GPU. Typically, the compute nodes we used had about 32 cores

and 2 Nvidia P100 GPUs attached. These compute nodes had about 512 GB of memory

and each of the P100 GPUs had about 12 GB of memory.

For tasks which do not require hardware accelerators, such as running inference on the mod-

els, generating the labels from the arXiv dataset, downloading the arXiv dataset, etc., GPUs

are not needed. Therefore, similar compute nodes without GPUs can be used. However, for

training the machine learning models, using GPUs is highly recommended.

Further, for each user, ARC provides about 6 TB of high throughput disk storage which

is useful for overcoming any data loading bottlenecks while training the machine learning

models.

B.3 Reproducing the experiments

In Chapter 4, we described the various experiments that we conducted. All of our exper-

iments were run on ARC. To run an experiment on ARC, a shell script is needed which

describes the requested hardware resources needed to run the job and the exact modules,

environment, and the commands that need to be executed to run the experiment. All such

scripts that we used in this work are available in the ./hpc directory as described in Sec-

tion A.2.5.

Following is an example of one such script which launches the training of the Deepfigures

model. The comments in the following scripts above each group of lines describe what that
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group of lines does.

#!/bin/bash -x

## Resource requests if running on newriver.

#PBS -l nodes=1:ppn=28:gpus=1

#PBS -l walltime=20:00:00

#PBS -q p100_normal_q

#PBS -A your_allocation_name

#PBS -W group_list=newriver

#PBS -M youremail@vt.edu

#PBS -m bea

## Resource requests if running on cascades.

#SBATCH --nodes=1

#SBATCH --exclusive

#SBATCH --gres=gpu:1

#SBATCH --mail-type=ALL

#SBATCH --mail-user=youremail@vt.edu

#SBATCH -t 20:00:00

#SBATCH -p v100_normal_q

#SBATCH -A your_allocation_name

# Experiment name for pre-fixing checkpoint directory names.

EXPERIMENT_NAME=377268_arxiv_eval_included_checkpoint_lr_test
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# Defining the timestamp for naming directories.

current_timestamp() {

date +"%Y-%m-%d_%H-%M-%S"

}

ts=$(current_timestamp)

# Loading modules.

module purge

module load cuda/9.0.176

module load cudnn/7.1

# Setting up the environment.

CONDA_ENV=deepfigures_3

PYTHON=/home/sampanna/.conda/envs/"$CONDA_ENV"/bin/python

# System-specific setup commands.

if [ "$SYSNAME" = "cascades" ]; then

# Commands to be executed if the host system is cascades.

module load Anaconda/5.1.0

module load gcc/7.3.0

source activate "$CONDA_ENV"

SCRATCH_DIR=$TMPRAM # 311 GB on v100 nodes. I/O: 331 MBPS.

elif [ "$SYSNAME" = "newriver" ]; then

# Commands to be executed if the host system is cascades.

module load Anaconda/5.2.0

module load gcc/6.1a.0
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source activate "$CONDA_ENV"

SCRATCH_DIR=$TMPFS # 429 GB on p100 nodes. I/O: 770 MBPS.

else

echo "Unrecognised system. Exiting."

exit 1

fi

# Defining environment variables.

DEEPFIGURES_RESULTS=/work/cascades/sampanna/deepfigures-results

SOURCE_CODE=/home/sampanna/deepfigures-open

ZIP_DIR=$DEEPFIGURES_RESULTS/pregenerated_training_data/377268

WEIGHTS_PATH=$DEEPFIGURES_RESULTS/weights/save.ckpt-500000

HYPES_PATH=$SOURCE_CODE/models/sample_hypes.json

MAX_ITER=10000000

LOG_DIR=$DEEPFIGURES_RESULTS/model_checkpoints

DATASET_DIR=$DEEPFIGURES_RESULTS/arxiv_coco_dataset

TRAIN_IDL_PATH=$DATASET_DIR/figure_boundaries_train.json

TRAIN_IMAGES_DIR=$DATASET_DIR/images

TEST_IDL_PATH=$DATASET_DIR/figure_boundaries_test.json

TEST_IMAGES_DIR=$DATASET_DIR/images

GOLD_STANDARD_DATASET_DIR=$DEEPFIGURES_RESULTS/gold_standard_dataset

HIDDEN_IDL_PATH=$GOLD_STANDARD_DATASET_DIR/figure_boundaries.json

HIDDEN_IMAGES_DIR=$GOLD_STANDARD_DATASET_DIR/images

MAX_CHECKPOINTS_TO_KEEP=200

TEST_SPLIT_PERCENT=20

USE_GLOBAL_STEP_FOR_LR=False
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# Starting the training.

$PYTHON -m tensorboxresnet.train \

--weights "$WEIGHTS_PATH" \

--gpu="$CUDA_VISIBLE_DEVICES" \

--hypes="$HYPES_PATH" \

--max_iter="$MAX_ITER" \

--logdir="$LOG_DIR" \

--experiment_name="$EXPERIMENT_NAME" \

--train_idl_path="$TRAIN_IDL_PATH" \

--test_idl_path="$TEST_IDL_PATH" \

--hidden_idl_path="$HIDDEN_IDL_PATH" \

--train_images_dir="$TRAIN_IMAGES_DIR" \

--test_images_dir="$TEST_IMAGES_DIR" \

--hidden_images_dir="$HIDDEN_IMAGES_DIR" \

--max_checkpoints_to_keep="$MAX_CHECKPOINTS_TO_KEEP" \

--timestamp="$ts" \

--scratch_dir="$SCRATCH_DIR" \

--zip_dir="$ZIP_DIR" \

--test_split_percent="$TEST_SPLIT_PERCENT" \

--use_global_step_for_lr "$USE_GLOBAL_STEP_FOR_LR"

echo "Job ended. Job ID: $SLURM_JOBID"

exit 0

Further, all hyper-parameters required to train the model are defined in a separate .json file.
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All such files used for our experiments are available in the ./hpc directory.

These .json files also define the seeds of the random number generators in our code. This

way, the experiments can be reproduced in a deterministic way.

Most of the hyper-parameters we use in our experiments are similar to the ones mentioned

in the above code snippet. Any significant changes for running a certain experiment are

mentioned in the experimental setup section of each experiment in Chapter 4.
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C.1 Sample images from the gold standard dataset

Following are some randomly sampled images from the gold standard showing the manually

annotated bounding boxes.

100
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Figure C.1: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/100321, page number: 049.

https://dspace.mit.edu/handle/1721.1/100321
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Figure C.2: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/103195, page number: 027.

https://dspace.mit.edu/handle/1721.1/103195
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Figure C.3: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/13252, page number: 007.

https://dspace.mit.edu/handle/1721.1/13252
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Figure C.4: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/13252, page number: 042.

https://dspace.mit.edu/handle/1721.1/13252
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Figure C.5: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/15434, page number: 068.

https://dspace.mit.edu/handle/1721.1/15434
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Figure C.6: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/15568, page number: 233.

https://dspace.mit.edu/handle/1721.1/15568
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Figure C.7: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/15820, page number: 164.

https://dspace.mit.edu/handle/1721.1/15820
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Figure C.8: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/16394, page number: 003.

https://dspace.mit.edu/handle/1721.1/16394
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Figure C.9: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/17465, page number: 004.

https://dspace.mit.edu/handle/1721.1/17465
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Figure C.10: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/27399, page number: 172.

https://dspace.mit.edu/handle/1721.1/27399
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Figure C.11: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/27399, page number: 266.

https://dspace.mit.edu/handle/1721.1/27399
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Figure C.12: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/29848, page number: 133.

https://dspace.mit.edu/handle/1721.1/29848
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Figure C.13: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/42427, page number: 182.

https://dspace.mit.edu/handle/1721.1/42427
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Figure C.14: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/45675, page number: 110.

https://dspace.mit.edu/handle/1721.1/45675
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Figure C.15: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/54312, page number: 168.

https://dspace.mit.edu/handle/1721.1/54312
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Figure C.16: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/54373, page number: 027.

https://dspace.mit.edu/handle/1721.1/54373
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Figure C.17: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/58489, page number: 157.

https://dspace.mit.edu/handle/1721.1/58489
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Figure C.18: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/75557, page number: 021.

https://dspace.mit.edu/handle/1721.1/75557
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Figure C.19: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/95535, page number: 159.

https://dspace.mit.edu/handle/1721.1/95535
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Figure C.20: Sample image with its manual annotation from the gold standard dataset.
Source: https://dspace.mit.edu/handle/1721.1/97289, page number: 315.

https://dspace.mit.edu/handle/1721.1/97289
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Licenses

This document, along with any source code and dataset released with it, is protected un-

der the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license

https://creativecommons.org/licenses/by-nc-sa/4.0/.
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