
Designing Practical Software Bug Detectors Using Commodity
Hardware and Common Programming Patterns

Tong Zhang

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Application

Dongyoon Lee, Co-chair

Changhee Jung, Co-chair

Kirk Cameron

Danfeng Yao

Weidong Cui

December 9, 2019

Blacksburg, Virginia

Keywords: Software Bug Detection, Compilers, Commodity Hardware, Data Race

Detection, Memory Safety, Permission Check Placement Analysis

Copyright 2019, Tong Zhang

Designing Practical Software Bug Detectors Using Commodity
Hardware and Common Programming Patterns

Tong Zhang

(ABSTRACT)

Software bugs can cost millions and affect people’s daily lives. However, many bug detection

tools are not always practical in reality, which hinders their wide adoption. There are three

main concerns regarding existing bug detectors: 1) run-time overhead in dynamic bug detec-

tors, 2) space overhead in dynamic bug detectors, and 3) scalability and precision issues in

static bug detectors. With those in mind, we propose to: 1) leverage commodity hardware to

reduce run-time overhead, 2) reuse metadata maintained by one bug detector to detect other

types of bugs, reducing space overhead, and 3) apply programming idioms to static analyses,

improving scalability and precision. We demonstrate the effectiveness of three approaches

using data race bugs, memory safety bugs, and permission check bugs, respectively. First,

we leverage the commodity hardware transactional memory (HTM) selectively to use the

dynamic data race detector only if necessary, thereby reducing the overhead from 11.68x

to 4.65x. We then present a production-ready data race detector, which only incurs a 2.6%

run-time overhead, by using performance monitoring units (PMUs) for online memory access

sampling and offline unsampled memory access reconstruction. Second, for memory safety

bugs, which are more common than data races, we provide practical temporal memory safety

on top of the spatial memory safety of the Intel MPX in a memory-efficient manner without

additional hardware support. We achieve this by reusing the existing metadata and checks

already available in the Intel MPX-instrumented applications, thereby offering full memory

safety at only 36% memory overhead. Finally, we design a scalable and precise function

pointer analysis tool leveraging indirect call usage patterns in the Linux kernel. We applied

the tool to the detection of permission check bugs; the detector found 14 previously unknown

bugs within a limited time budget.

Designing Practical Software Bug Detectors Using Commodity
Hardware and Common Programming Patterns

Tong Zhang

(GENERAL AUDIENCE ABSTRACT)

Software bugs have caused many real-world problems, e.g., the 2003 Northeast blackout

and the Facebook stock price mismatch. Finding bugs is critical to solving those problems.

Unfortunately, many existing bug detectors suffer from high run-time and space overheads

as well as scalability and precision issues. In this dissertation, we address the limitations

of bug detectors by leveraging commodity hardware and common programming patterns.

Particularly, we focus on improving the run-time overhead of dynamic data race detectors,

the space overhead of a memory safety bug detector, and the scalability and precision of the

Linux kernel permission check bug detector. We first present a data race detector built upon

commodity hardware transactional memory that can achieve 7x overhead reduction com-

pared to the state-of-the-art solution (Google’s TSAN). We then present a very lightweight

sampling-based data race detector which re-purposes performance monitoring hardware fea-

tures for lightweight sampling and uses a novel offline analysis for better race detection

capability. Our result highlights very low overhead (2.6%) with 27.5% detection probabil-

ity with a sampling period of 10,000. Next, we present a space-efficient temporal memory

safety bug detector for a hardware spatial memory safety bug detector, without additional

hardware support. According to experimental results, our full memory safety solution incurs

only a 36% memory overhead with a 60% run-time overhead. Finally, we present a permis-

sion check bug detector for the Linux kernel. This bug detector leverages indirect call usage

patterns in the Linux kernel for scalable and precise analysis. As a result, within a limited

time budget (scalable), the detector discovered 14 previously unknown bugs (precise).

Dedication

Dedicated to my wife Wei Song, my parents, and my boy Ethan.

iv

Acknowledgments

First of all, I would like to thank my advisors, Drs. Dongyoon Lee and Changhee Jung, and

express my highest appreciation and deepest gratitude to them. They are great advisors and

mentors. They introduced me to system research, they gave me a lot of guidance, and they

shared their profound knowledge with me to make me a better researcher. They care about

me and also teach me the wisdom of life to make me a better person. Without their guid-

ance, I won’t be able to make such an achievement. I feel very lucky to have Dr. Dongyoon

Lee and Dr. Changhee Jung as my advisors and I sincerely hope that we will continue our

academic collaborations in the future.

I would also like to thank all committee members and express my sincere gratitude to them,

Drs. Kirk Cameron, Danfeng Yao, and Weidong Cui, for their valuable feedback and in-

sightful comment on my research. I am also very grateful for my mentor Drs. Wenbo Shen,

Ahemd Azab, and my collaborators Dr. Ruowen Wang, Tongping Liu, as well as Hongyu

Liu, and Sam Silvestro for their collaborative efforts in our joint projects.

It was a great pleasure to make a lot of friends in Virginia Tech, Drs. Qingrui Liu, Ke Tian,

Zheng Song, Hao Zhang, Xiaokui Shu, Fang Liu, Xiaodong Yu, Bo Li, Run Yu, Yue Cheng

as well as Xinwei Fu, Spencer Lee, Peeratham Techapalokul, Dong Chen, Ye Wang, Xuewen

Cui, Shengzhe Xu, Peng Peng, Da Zhang, Hang Hu and many other friends. I have so many

happy and enjoyable moments with you guys.

I would like to thank my family for the continuous support they have given me throughout

my time in graduate school; I could not have done it without their supports.

My thesis is supported in part by National Science Foundation under the grant CCF-1527463,

CSR-1750503, CSR-1814430, Google Faculty Research Awards, and Pratt Fellowship.

v

Contents

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 Three Focused Software Bugs . 1

1.1.1 Data Race Bugs . 2

1.1.2 Memory Safety Bugs . 2

1.1.3 Permission Check Bugs . 3

1.2 Problem Statements . 4

1.2.1 Time and Space Overheads of Dynamic Bug Detectors 5

1.2.2 Scalability and Precision Issues in Static Bug Detectors 6

1.3 Thesis Statement . 8

1.4 Contributions . 11

1.4.1 Reducing Run-time Overhead of Dynamic Data Race Bug Detectors 11

1.4.2 Reducing Space Overhead of Dynamic Memory Safety Bug Detectors 12

1.4.3 Solving Scalability and Precision Issues in Static Linux Kernel Per-

mission Bug Detectors . 13

vi

1.5 Organization . 14

2 Literature Review 15

2.1 Data Races . 15

2.1.1 Lockset-based Approaches . 16

2.1.2 Overlap-based Approaches . 16

2.1.3 Hardware Data Race Detectors . 17

2.1.4 Sampling-based Approaches . 18

2.1.5 Hybrid Static/Dynamic Approaches 19

2.1.6 Other Approaches to Reduce Dynamic Data Race Detector Overhead 19

2.1.7 Other Related Works . 20

2.2 Memory Safety . 21

2.2.1 Spatial Memory Safety . 21

2.2.2 Temporal Memory Safety . 22

2.3 Permission Check Bugs in Linux Kernel . 24

2.3.1 Permission Checks in Linux . 24

2.3.2 Hook Verification and Placement . 26

2.3.3 Kernel Static Analysis Tools . 27

2.3.4 Permission Check Analysis Tools . 28

3 Efficient Data Race Detection Using Hardware Transactional Memory 30

vii

3.1 Introduction . 31

3.2 Background and Challenges . 34

3.2.1 Hardware Transactional Memory . 34

3.2.2 Challenges in Using HTM for Race Detection 35

3.3 Overview . 36

3.4 Fast Path HTM-based Race Detection . 39

3.4.1 Transactionalization . 39

3.4.2 Handling Transactional Aborts . 41

3.4.3 Optimization . 43

3.5 Slow Path Software-based Race Detection 45

3.6 False Negatives . 47

3.7 Implementation . 48

3.8 Evaluation . 50

3.8.1 Methodology . 50

3.8.2 Performance Overhead . 51

3.8.3 False Negatives . 54

3.8.4 Cost-Effectiveness of Data Race Detection 55

3.9 Summary . 58

4 Practical Data Race Detection for Production Use 59

viii

4.1 Introduction . 60

4.2 Overview . 64

4.3 Lightweight Program Tracing . 65

4.3.1 PEBS-based Memory Access Sampling 66

4.3.2 PT-based Control-flow Tracing . 69

4.3.3 Synchronization Tracing . 69

4.4 Recovering Unsampled Memory Accesses . 70

4.4.1 Forward Replay . 71

4.4.2 Backward Replay . 73

4.5 Implementation . 75

4.6 Evaluation . 76

4.6.1 Methodology . 76

4.6.2 Performance Overhead . 78

4.6.3 Trace Size . 80

4.6.4 Race Detection . 82

4.6.5 Memory Operation Reconstruction 83

4.6.6 Offline Analysis Overhead . 84

4.7 Summary . 85

5 Memory Efficient Temporal Memory Safety Solution for MPX 86

ix

5.1 Introduction . 87

5.2 Overview of BOGO . 89

5.3 BOGO Approach Details . 93

5.3.1 Hot Bound Table Page Tracking . 93

5.3.2 Combine PartialScan and PageFaultScan to Achieve Low Overhead

and No False Negative . 93

5.3.3 Combine PageFaultScan and RedundancyPredication to Achieve Low

Overhead and No False Positive . 94

5.4 Optimization . 98

5.4.1 No PageFaultScan Optimization . 98

5.4.2 FullScan Optimization . 99

5.5 Dynamic Adaptation of Queue Size . 100

5.5.1 Scan Cost Analysis . 100

5.5.2 Impact of HPQ and FAQ Sizes . 100

5.5.3 Scan Cost-based HPQ Adaptive Scheme 102

5.6 Discussion . 102

5.7 Implementation . 103

5.7.1 Spatial Memory Safety . 104

5.7.2 Temporal Memory Safety . 105

5.8 Evaluation . 105

x

5.8.1 Methodology . 105

5.8.2 Security Evaluation . 109

5.8.3 SPEC CPU 2006 Benchmark . 111

5.8.4 Malloc/Free Benchmark . 115

5.8.5 Real-World Applications . 116

5.9 Summary . 117

6 A Permission Check Analysis Framework for Linux Kernel 118

6.1 Introduction . 119

6.2 Examples of Permission Check Errors . 122

6.2.1 Capability Permission Check Errors 124

6.2.2 LSM Permission Check Errors . 125

6.3 Challenges . 126

6.3.1 Indirect Call Analysis in Kernel . 126

6.3.2 The Lack of Full Permission Checks, Privileged Functions, and Their

Mappings . 129

6.4 KIRIN Indirect Call Analysis . 130

6.4.1 Indirect Call Target Collection . 131

6.4.2 Indirect Callsite Resolution . 132

6.5 Design of PeX . 134

6.5.1 Call Graph Generation and Partition 135

xi

6.5.2 Permission Check Wrapper Detection 136

6.5.3 Privileged Function Detection . 137

6.5.4 Non-privileged Function Filter . 138

6.5.5 Permission Check Error Detection 139

6.6 Implementation and Evaluation . 140

6.6.1 Evaluation Methodology . 141

6.6.2 Evaluation of KIRIN . 142

6.6.3 PeX Result . 144

6.6.4 Manual Review of Warnings . 146

6.6.5 Discussion of Security Bug Findings 147

6.7 Summary . 150

7 Conclusion 152

Bibliography 154

xii

List of Figures

3.1 TxRace: Transactionalization . 37

3.2 TxRace Overview . 37

3.3 TxRace Runtime Example . 38

3.4 (a) Race detected with long transactions (b) Race missed with short transac-

tions . 41

3.5 Detecting data races between fast and slow paths using the strong isolation

property of HTM . 42

3.6 Tracking the happens-before order of synchronizations on the fast path elim-

inates false warnings on the slow path . 46

3.7 Breakdown of runtime overhead. 49

3.8 Scalability of TxRace . 49

3.9 Effectiveness of loop-cut optimization . 53

3.10 The number of detected distinct data races across multiple runs for vips . . 53

3.11 Cost-Effectiveness of TxRace vs. Sampling 56

3.12 Runtime overhead for bodytrack . 57

3.13 Recall for bodytrack . 57

4.1 Overview of the ProRace Architecture. 64

xiii

4.2 The vanilla Linux PEBS driver . 66

4.3 The ProRace PEBS driver . 66

4.4 Forward and Backward Replays. 70

4.5 Example for Forward and Backward Replay 73

4.6 Performance overhead for PARSEC benchmarks 77

4.7 Performance overhead for real applications 77

4.8 Space overhead for PARSEC benchmarks . 78

4.9 Space overhead for real applications . 78

4.10 Performance overhead comparison . 79

4.11 Memory Recovery Ratio . 83

4.12 Offline analysis overhead . 83

5.1 BOGO: FullScan/PartialScan and PageFaultScan 90

5.2 BOGO handler algorithms. 95

5.3 Redundancy prediction: (a) shows a false positive case, and (b) shows how

BOGO removes the redundant scans and eliminates the false positive. Ac-

tions of BOGO appears above the bar while the status of HPQ/FAQ does

underneath the code. Each color represents a different redundant scan. . . . 96

5.4 Example of sound PartialScan. No further PageFaultScan is required. 98

5.5 MPX compilers overheads: geomean of SPEC 2006. 106

5.6 Performance Overhead. 108

xiv

5.7 BOGO Performance Overhead Breakdown. 108

5.8 Performance Overhead of Full Memory Safety Solutions. 110

5.9 Memory Overhead. 110

5.10 Sensitivity study: varying HPQ, fixed-size FAQ. 111

5.11 Sensitivity study: varying FAQ, fixed-size HPQ. 111

5.12 Malloc-free benchmark performance. The bar graphs shows the normalized

overhead (left y-axis). The line graph shows the free frequency (right y-axis). 115

5.13 Real-world application performance. 115

6.1 Capability check errors discovered by PeX. 123

6.2 LSM check errors discovered by PeX. 125

6.3 Indirect call examples via the VFS kernel interface. 127

6.4 Indirect callsite resolution for vfs_write. 132

6.5 Fixing container_of missing struct type problem. 133

6.6 PeX static analysis architecture. PeX takes as input kernel source code and

permission checks, and reports as output permission check errors. PeX also

produces mappings between identified permission checks and privileged func-

tions as output. 134

6.7 Permission check wrapper examples. 137

xv

List of Tables

2.1 Commonly used permission checks in Linux. 24

3.1 TxRace Execution Statistics and Performance. 49

3.2 Cost-Effectiveness of TxRace vs. TSan . 56

4.1 Evaluation Setup . 76

4.2 Data Race Detection . 81

5.1 Impacts of increasing HPQ and FAQ on the number and the cost of Partial,

Page Fault, and Full Scans. 98

5.2 llvm-mpx and BOGO validation. 106

5.3 Frequency of Partial, Full, and Page Fault Scans (per second). The sum of

Partial and Full Scans represents free frequency. 109

5.4 Real-world application test methods. Top four applications are utilities/-

clients, while the bottom fives are servers. 115

6.1 Input Statistics for Kernel v4.18.5. 141

6.2 Indirect Call Pointer Analysis. 142

6.3 PeX Results. 144

6.4 Comparison of PeX warnings when used with different indirect call analyses. 144

xvi

6.5 Bugs Reported By PeX. Confirmed or Ignored. 147

xvii

Chapter 1

Introduction

Software bugs are defects in a computer program, that often arise from mistakes and errors

in the program source code or design. They make the program produce incorrect results or

cause unintended behavior. Unfortunately, some software bugs have resulted in critical real-

world disasters, e.g., human deaths [30, 72, 124, 170, 185] and huge financial losses [6, 12, 20,

155, 158, 162]. A study conducted by the National Institute of Standards and Technology in

2002 points out that software bugs cost the US economy an estimated $59 billion in losses

every year, or about 0.6% of GDP [194]. In 2018, that number jumped to $1.7 trillion [26],

which is about 8% of GDP.

To address software bug problems, we design, develop, and evaluate new practical program

analysis tools to help software programmers detect and debug such software bugs, thereby

improving software reliability.

1.1 Three Focused Software Bugs

In particular, this thesis focuses on three important classes of software bugs: (1) data race

bugs, (2) memory safety bugs, and (3) permission check bugs. The following subsections

briefly introduce the three bugs and their real-world impacts.

1

2 Chapter 1. Introduction

1.1.1 Data Race Bugs

A data race is a critical software bug that may happen in shared-memory multithreaded

programs, which became popular with the advent of multicore systems. In multithreaded

programs, the interleavings among threads are nondeterministic, i.e., the program may pro-

duce different outputs for a given input across multiple runs. Thus, programmers have to

enforce correct order using synchronizations such as locks so that the program behaves as

intended. However, this is not a trivial task, leading to data races in many cases.

A data race bug happens when the following three conditions are met: (1) two or more threads

access the same memory location, (2) at least one of them performs a write operation, and

(3) their relative execution order is not explicitly enforced by synchronization primitives

such as locks [46, 134, 152]. Such a race condition in multithreaded applications has caused

many real-world problems. For example, data races were the root cause of Northeastern

US blackout in 2003 [179], which affected around 55 million people, and the mismatched

NASDAQ Facebook share prices in 2012 [158], which caused $13 million in losses. Therefore,

it is very critical to address data race problems to improve the reliability of multi-threaded

programs.

1.1.2 Memory Safety Bugs

Many software programs, such as webservers, databases, and operating systems, are often

developed using C/C++ programming languages that allow arbitrary pointer manipulations

and unmanaged memory accesses. While this is efficient and flexible, C/C++ programmers

are responsible for avoiding invalid memory accesses. If programmers are not careful, C/C++

software can have two forms of memory safety bugs: spatial and temporal memory safety

violations.

1.1. Three Focused Software Bugs 3

A spatial memory safety violation occurs when a program accesses a memory region beyond

the object’s designated bound (e.g., buffer overflow or underflow), which may lead to over-

writing another object illegally or reading a potentially sensitive data without permission.

On the other hand, a temporal memory safety violation happens when a program accesses a

de-allocated object (e.g., use-after-free or use-after-return).

Unfortunately, many security exploits take advantage of memory safety violations as a first

step in seizing control of a program. The first computer worm, Morris [155], exploits a

buffer overflow bug in the UNIX finger tool. The infamous Blaster worm [176], which

damaged millions of Windows workstations, also exploits a buffer overflow bug. A use-after-

free bug in the Darwin kernel is used to jailbreak iOS and achieve local privilege escalation

on macOS [107]. Consequently, there is an urgent need to design an efficient and effective

tool for detecting such memory safety bugs.

1.1.3 Permission Check Bugs

Access control [174] is an essential security service system software, especially in operating

systems. Access control allows only the entities with proper permissions to access and use

privileged resources (e.g., files, hardware). In many cases, access control is implemented

in the form of permission checks. For example, the DAC [17] in Linux operating systems

assigns different permissions for owners, groups, and other users. A write request to a file

is first checked against the file permission of that user. The access is granted if the user has

proper permissions; otherwise the access is denied.

There are three forms of permission check bugs: missing, inconsistent, and redundant checks.

A missing permission check bug happens when there is a program path in which a malicious

user can access critical resources without going through permission checks. An inconsistent

4 Chapter 1. Introduction

check bug happens when there are multiple program paths to the use of the same privileged

resources but they require different permissions, making it hard to determine which one is

correct. Finally, a redundant check bug occurs when access control unnecessarily checks the

same permissions multiple times.

These permission check bugs have caused many security vulnerabilities over the years. For

instance, CVE-2011-4080 [3] exposes the Linux kernel message buffer to non-privileged users

through a latent path bypassing the permission check in the kernel, which should otherwise

deny the access. The message buffer leaks kernel memory mapping information. A more

severe and easier-to-exploit bug, CVE-2006-1856 [2], allows an attacker to use writev/readv

syscall in order to bypass intended access restrictions and gain read and write access of

security sensitive files. What’s more, a permission check bug can even affect cloud service.

CVE-2017-17450 [4] enables a non-privileged advisory to escape from a container’s namespace

isolation and gain the control of system-wide settings.

1.2 Problem Statements

To address the aforementioned problems, researchers and practitioners have designed a va-

riety of dynamic and static program analysis tools. While many of them have been shown

to be very useful in detecting data race, memory safety, and permission check bugs, there

are three critical challenges still hindering the wide adoption of such tools in practice: (1)

run-time overhead in dynamic bug detectors, (2) space overhead in dynamic bug detectors,

and (3) scalability and precision issues in static bug detectors.

In this section, we elaborate on these problems and discuss the relevant state-of-the-art

solutions for each category. More discussion on other related works is deferred to Chapter 2.

1.2. Problem Statements 5

1.2.1 Time and Space Overheads of Dynamic Bug Detectors

Dynamic bug detectors identify a software bug by performing correctness checks along with

the program execution at run time. One of the key advantages of using dynamic program

analysis is that any reported bug is likely to be an actual bug as it is detected in a lively

running context where such an execution is proven to be feasible. In other words, dynamic

bug detectors rarely produce false positives, which would require a time-consuming bug

validation process. Dynamic bug detectors can also provide ample debugging information

(e.g., call stack, branch decision, or variable value), helping developers to reason about the

root cause of the detected bug.

However, many existing dynamic bug detectors, especially ones that are designed to de-

tect data races and memory safety bugs (of our interest), incur high run-time performance

(time) and memory (space) overheads. Such high overheads make it hard to adopt those

tools frequently in a regular software development cycle. What’s more, due to stringent

quality-of-service requirements, the overhead budget is even more limited in a production

environment, making many existing heavyweight tools unusable therein. The following two

problem statements (PS) summarize these two overhead problems.

PS 1: Dynamic bug detectors have a high performance overhead for run-time checks.

Additional run-time checks, often performed with instrumented codes, may slow down the

original program’s execution significantly. In particular, this disadvantage stands out in dy-

namic data race detection. For instance, Google’s ThreadSanitizer, the state-of-the-practice

data race detector, may slow down program execution by 30x [180]. FastTrack, the state-of-

the-art research prototype, reports an 8.5x slowdown for Java applications [79], and a 57x

slowdown for C/C++ applications [75]. Even worser, Intel’s Inspector XE, a commercial

6 Chapter 1. Introduction

product, may incur a 200x performance overhead [173] for some benchmarks. The run-time

overhead is also the critical concern for dynamic memory safety bug detectors [192], and we

discuss them in detail in Section 2.2.

PS 2: Dynamic bug detectors have a high space overhead for metadata management.

Dynamic bug detectors often need to maintain additional metadata for run-time checks,

causing a significant space (memory) overhead. For instance, many memory safety bug

detectors keep track of the pointer information. A spatial memory safety solution, [144],

maintains upper and lower bounds for each pointer and incurs a 3x space overhead. [199],

a temporal memory safety solution, maintains a pointer graph to detect a dangling pointer

and incurs 2.4x overhead. Meanwhile, even [181], the most widely used memory safety bug

detector, reports a 3.37x memory overhead.

1.2.2 Scalability and Precision Issues in Static Bug Detectors

Unlike dynamic bug detectors, static bug detectors analyze a program’s source code and

identify potential bugs without running the program. In theory, a static bug detector can

detect all the bugs of its kind in a program by exploring all possible program states (with

potentially many false positives). Two key merits of static bug detection is that developers

have a chance to fix the bugs before deployment, and it does not incur run-time overhead

unlike dynamic bug detection.

However, in practice, many static bug detectors suffer from scalability and precision issues.

The scalability issue is caused by numerous program states for static tools to explore. That is

why static bug detectors often cannot complete an analysis within a limited testing budget,

raising practical usability concerns. Besides, static tools make conservative assumptions for

1.2. Problem Statements 7

soundness due to the lack of run-time information (e.g., memory states, branch decisions,

memory alias information), leading to precision problems. Therefore, static tools often end

up producing a large number of false warnings. Unfortunately, false reports require tremen-

dous engineering efforts with no results.

To address the scalability and precision issues in static bug detectors, we are particularly

interested in programs with large code bases, such as OS kernels, for which static analysis is

a daunting challenge due to these issues. In particular, we focus on a static analysis tool that

can detect kernel permission bugs. In the following, we summarize the problem statement

(PS) for static bug detectors and discuss them in the context of static analysis tools for the

Linux kernel.

PS 3: Static bug detectors often have scalability and precision issues.

The large search space presented by program states makes static bug detectors unscalable.

This is especially true for huge and complex codebases such as the Linux kernel (15.8 MLoC).

For kernel bug detection, many static analysis tools run their analysis on the call graph of

the kernel code. Existing methods are problematic in two ways. The first is the scalability

issue. For example, K-Miner [82], a state-of-the-art static memory bug detector for the

Linux kernel, integrates a generic inter-procedural pointer analysis tool, SVF [189], for call

graph and indirect call analyses. However, there are around 115 thousand static instances

of indirect calls in the latest Linux kernel. Even though SVF is optimized using advanced

sparse analysis, it cannot handle such a large number of indirect calls. As a workaround, K-

Miner applies the SVF analysis only to a small portion of the kernel code at a time, limiting

the analysis scope. This brings about the precision issue, i.e., the lack of the whole picture of

the kernel code makes the analysis limited (partial), thereby trading precision for scalability.

For the same kernel call graph analysis, some other static kernel bug detectors take a scalable

8 Chapter 1. Introduction

but imprecise approach. For example, Check-It-Again [207], a Linux kernel lacking-recheck

bug detector, uses function type to match indirect call targets, which is imprecise and may

lead to wrong call targets that are not feasible at run time. Other recent kernel analysis works

like Dr. Checker [133] and Double-Fetch [216] are also using the same imprecise technique

to build a kernel call graph for scalability purposes. To produce accurate results within a

limited time budget, it is critical for a practical kernel bug detector to be both scalable and

precise.

1.3 Thesis Statement

The goal of this thesis is to address the aforementioned limitations in dynamic and static

program analysis tools and to design and develop more time- and space-efficient dynamic

bug detectors and more scalable and precise static bug detectors. The main contributions of

this thesis are summarized as the following thesis statements (TS):

TS1: To address performance overhead problem in dynamic bug detectors (PS1), we

leverage hardware support available in commodity hardware (originally designed for

other purposes) to accelerate dynamic program analysis.

Researchers have proposed custom hardware support to reduce run-time overhead of dy-

namic bug detectors [37, 66, 210]. Unfortunately, such a research prototype is not readily

available on the market. Instead, we begin to look at relevant hardware features in com-

modity processors. We find out that it is possible to leverage existing hardware features,

originally designed for other purposes, to speed up dynamic bug detection. For instance, a

processor feature called hardware transactional memory (HTM) [7] was added into Intel’s

processor to simplify concurrent programming. HTM allows a group of read and write in-

1.3. Thesis Statement 9

structions to be executed in an atomic manner. We see an opportunity to use HTM to detect

data races in (non-TM) multi-threaded programs. In Chapter 3, we demonstrate how HTM

can be used to accelerate existing dynamic data race detectors. Furthermore, we also study

program tracing and sampling features in many commodity processors. These features were

initially designed for low-overhead performance monitoring. We realized they are also useful

in implementing a sampling-based lightweight yet effictive data race detector. In Chapter 4,

we show how to use program tracing and sampling features for data race detection.

TS2: To address space overhead problems (PS2), we propose to reuse metadata

maintained by one bug detector to detect another kind of bugs.

In order to perform run-time checks, dynamic bug detectors maintain a collection of their

own metadata. When using different bug detectors together, the space overhead simply adds

up because their metadata are managed separately. We investigate a method to reuse one

set of metadata for multiple purposes. To give an example, Intel MPX [7] is a hardware

extension designed to detect spatial memory safety bugs. It maintains bound metadata for

each pointer and runs explicit bound checks at the time of pointer dereference to detect a

bug. If one would like to detect both spatial and temporal memory safety bugs, the existing

option is to run temporal memory safety bug detectors (e.g. DangSan [199]) along with Intel

MPX. However, this naïvely combined approach would simply require more memory space

for metadata management. To reduce memory overhead for full memory safety, we proposed

a solution to reuse Intel MPX’s bound metadata to detect temporal memory safety bugs as

well, removing the need for maintaining metadata for temporal memory safety. More details

are explained in Chapter 5.

10 Chapter 1. Introduction

TS3: To improve scalability and precision in static bug detectors (PS3), we adopt

domain-specific programming practices during static program analysis.

Static analyses often make a conservative assumption about program states. To achieve

precision, one has to consider numerous program states, raising scalability issues and mak-

ing it difficult to analyze large-size code. To address scalability issues, one can analyze

a small portion of program states, but this will hurt precision. In addition to program

source code, domain-specific program practice can be another input for static analysis tools.

Domain-specific programming practice can be viewed as a summary of run-time information

obtained directly from developers. A generic static analysis tool usually does not consider

this knowledge, thus spending more time or making unsound approximations when analyzing

the same amount of code. The knowledge of domain-specific program practice can help static

analysis tools make correct assumptions about the program faster, avoiding going through

complex analysis of large amounts of code. In other words, domain-specific knowledge can

help to reduce analysis scope and improve precision by pruning unnecessary search space

significantly.

We study common programming patterns used in software development and apply them to

design scalable and precise tools. In particular, we study Linux kernel call graph analysis,

which is the foundation of many kernel bug detectors. Kernel call graph analysis is tricky

because finding the correct target for widely used indirect calls is not trivial. Fortunately,

we discovered common usage pattern of indirect calls in the kernel. By applying it, we can

not only eliminate false targets but also avoid running a generic pointer analysis tool that is

not scalable to the kernel. In Chapter 6, we present a Linux kernel permission bug detector

built upon this analysis.

1.4. Contributions 11

1.4 Contributions

In this thesis, we focus on solving three problems: (PS1) the run-time overhead issue of

dynamic data race bug detectors, (PS2) the space overhead issue of a dynamic memory

safety bug detector, and (PS3) the scalability and precision issues of a static bug detector

for the Linux kernel permission check bug. We summarize our efforts in solving the problems

as contributions in the following subsections. We envision that the contributions made in this

thesis may be applied to other dynamic and static bug detectors to improve their efficiency.

1.4.1 Reducing Run-time Overhead of Dynamic Data Race Bug

Detectors

In TS1, to address the run-time overhead problem of dynamic bug detectors, we propose

to repurpose commodity hardware features to accelerate dynamic program analysis. We

demonstrate this idea on data race detectors and present two dynamic data race bug detectors

as follows:

We first present TxRace, a dynamic data race detector using commodity hardware trans-

actional memory (HTM) in Chapter 3. HTM is originally designed to simplify concurrent

programming. It executes a bundle of load and store instructions in an atomic manner.

HTM abort and rollback transactions once it detects conflict memory accesses of concur-

rent threads. Our approach runs the program with HTM for fast data race detection and

occasionally falls back to a slow but precise software based detection. This design helps

us to solve the challenges in designing the HTM-based data race detector, i.e., our design

can pinpoint racy instructions, remove false warnings caused by false sharing, and handle

non-conflict transaction abort efficiently. We compared our approach with a state-of-the-art

12 Chapter 1. Introduction

happens-before based data race detector and random sampling-based approach to show its

cost-effectiveness.

We then present ProRace, a dynamic data race detector, for production in Chapter 4. Our

approach is lightweight, transparent, and effective. Our method reduces overhead by using

tracing and sampling features in commodity processors. Those processor features can gener-

ate a trace or sample with low overhead and requires no change to program code, minimizing

the perturbation to original program execution. Furthermore, our novel forward and back-

ward replay method can reconstruct unsampled memory addresses using the collected trace.

Our new driver further lowers the tracing overhead compared to the original Linux kernel

driver. Finally, we compared our approach with RaceZ [184], which is another sampling-

based dynamic data race detector, using production software such as Apache and MySQL,

and the results show that our approach can detect more bugs at a much lower overhead.

1.4.2 Reducing Space Overhead of Dynamic Memory Safety Bug

Detectors

In TS2, to address the space overhead problem of dynamic bug detectors, we propose to

reuse metadata managed by one bug detector for detecting another type of bugs. We focus

on memory safety bug detectors and present a temporal memory bug detector as follows:

In Chapter 5, we present BOGO, a memory efficient temporal memory safety solution

(dynamic detector) for Intel’s MPX[7], which is a hardware-assisted spatial memory safety

solution. Our design does not track its own metadata but instead reuses spatial memory

safety check and bound metadata tracked for spatial memory safety. It works by scanning and

invalidating bound metadata of freed pointers using an efficient algorithm. The use-after-

free bug is detected using the existing spatial memory safety check. Furthermore, without

1.4. Contributions 13

re-compilation, our design can add temporal memory safety to MPX’s spatial memory safety.

We also implemented an LLVM-MPX pass to do sound bound checking, which outperforms

existing MPX compilers. The evaluation shows that our design can add temporal memory

safety with comparable run-time overhead and less memory overhead compared to state-of-

the-art solutions.

1.4.3 Solving Scalability and Precision Issues in Static Linux Ker-

nel Permission Bug Detectors

Finally, we study the permission check bug in the Linux kernel and leverage common pro-

gramming patterns (TS3) to address scalability and precision issues in static bug detectors.

We present PeX, a scalable static bug detector for detecting permission check placement

errors in the Linux kernel, in Chapter 6. We first solved the problem of scalable and precise

inter-procedural control flow graph generation using common indirect call usage pattern in

the Linux kernel. Our study shows most of the indirect calls are used to glue drivers and

kernel framework; function pointers are usually defined inside a struct as an interface. By

matching indirect call targets using such an interface, we can achieve scalable and precise

indirect call analysis. We show its effectiveness by comparing it with the existing type-based

approach and generic pointer analysis-based (SVF [189]) approach. We further automated

the process of identifying permission check functions and privileged functions. By running

the detector on the latest Linux kernel (v4.18.5), we found 36 new permission check bugs,

14 of which have been confirmed by kernel developers.

14 Chapter 1. Introduction

1.5 Organization

The remainder of the thesis is organized as follows. Chapter 2 discusses related work for data

race bug detection, memory safety bug, and permission check bug. Chapter 3 and Chap-

ter 4 present TxRace and ProRace, data race detectors leveraging commodity hardware

transactional memory and PMUs, respectively, to accelerate dynamic data race detection.

Chapter 5 details BOGO, a full memory safety solution that detects both spatial and tem-

poral memory safety bugs using Intel MPX’s metadata only. Chapter 6 discusses PeX, an

efficient and precise permission check analysis framework for the Linux kernel. We conclude

in Chapter 7.

Chapter 2

Literature Review

In this chapter, we focus on three kinds of bugs (data race bugs, memory safety bugs, and

permission check bugs) and discuss related works. We first discuss existing solutions for data

race detection, which includes lockset-based approaches, overlap-based approaches, hardware

data race detectors, sampling based approaches, and hybrid static-dynamic approaches. We

then discuss existing solutions for memory safety bug detection, which includes spatial mem-

ory safety solutions and temporal memory safety solutions. Finally, we discuss different per-

mission checks in the Linux kernel and permission check bugs. We further discuss existing

kernel static analysis works, and user application permission check related works.

2.1 Data Races

Data race happens when two or more threads access the same memory location [46, 134, 152],

at least one of them is writing to it, and their relative order is not explicitly enforced by

synchronization primitives such as locks. Data races have caused many real world problems,

e.g, the northeastern blackout [179], mismatched NASDAQ Facebook share prices [158], and

security vulnerabilities [219]. Researchers have designed many tools to detect data races.

However, such dynamic tools often have too much run-time overhead. We discuss them as

follows.

15

16 Chapter 2. Literature Review

2.1.1 Lockset-based Approaches

Eraser [177] introduced lockset-based approach, which infers data race through violation

of locking discipline. As lockset-based algorithms do not consider non-mutex synchroniza-

tion operations such as conditional variables, they are incomplete (generate false positives)

compared to the approach that tracks happens-before order of synchronization operations

using vector clocks. FastTrack [79] is known to be the most optimized algorithm in this

category, which reduced runtime overhead significantly compared to prior works such as

MultiRace [160]. Google’s ThreadSanitizer also tracks happens-before order similar to Fast-

Track. However, high runtime overhead is still a major concern.

2.1.2 Overlap-based Approaches

The recent advances in overlap-based data race detectors [43, 56, 75, 78] have shown their

cost-effectiveness and practical benefits by trading soundness for better performance. Data-

Collider [78] and Kivati [56] use hardware code/data breakpoint mechanism in processors to

detect data races. They set a data breakpoint to trap conflicting accesses by other threads.

This is similar to conflict detection mechanism in HTM, which detects concurrent conflicting

accesses. After setting up the breakpoint, they insert a short amount of time delay to the

thread to increase detection probability. The detection window in HTM spans the whole

length of a transaction, so the detection probability is likely to be higher than the breakpoint

based approach at the cost of false positive. Moreover, the small number of breakpoints (four

for x86 hardware) limits its coverage. As another overlap-based detector, IFRit [75] exploits

compiler analysis to form interference-free regions where data races can be detected when

they overlap. The scope of IFRit may be long in some cases, but it could be very short (e.g.,

basic block) in other cases since each region may start after the variable is defined in the

2.1. Data Races 17

SSA form. For performance reasons, IFRit gives up data race detection for those short-scope

regions.

2.1.3 Hardware Data Race Detectors

Data race detection also has been the subject of intense research by hardware community. In

general, hardware-assisted data-race detectors store metadata (e.g., locksets, vector-clocks)

in the cache, piggyback them on coherence protocol messages, and compare them to detect

data races.

HARD [235] is a hardware-based implementation of the lockset algorithm, whereas ReEn-

act [164] and CORD [163] implement happens-before based algorithm in hardware. RADISH [67]

proposes hardware-software co-design to enable always-on sound and complete data race de-

tections in which hardware performs the vast majority of race checks and software backs up

hardware resource limitations. Conflict Exceptions [131] extends a standard coherence pro-

tocol and caches to detect data conflicts between synchronization-free regions. SigRace [143]

employs custom hardware address signature where the memory addresses accessed by a pro-

cessor are hash-encoded and accumulated, and uses it do detect the outcome of potential

data races rather than the race itself. Then SigRace relies on checkpointing/rollback to

identify actual racing instructions.

RaceTM [88] proposes to use hardware transactional memory in detecting data races. This

approach is hardware-only solution that requires additional hardware extension to conven-

tional HTMs like LogTM [139]. For example, RaceTM requires two additional bits (debug

read/write bits) for every cache line. They added support to provide the conflict address

and responsible racy instructions as well.

Finally, even if TxIntro [126] is not a data race detector, it combines hardware performance

18 Chapter 2. Literature Review

counters (such as HITM, cache miss, and PEBS) with Intel’s TSX to infer the conflicting

data linear address.

2.1.4 Sampling-based Approaches

LiteRace [135] and Pacer [47] pioneered the use of sampling for reducing the overhead of

dynamic data race detection. LiteRace focuses on sampling more accesses in infrequently-

exercised code regions, based on the heuristic that for a well-tested application, data races are

likely to occur in such a cold region. On the other hand, Pacer uses random sampling and thus

its coverage is approximately proportional to the sampling rate used. However, these code

instrumentation-based race detectors cause an unaffordable slowdown for some applications,

and their detection coverage is limited to the sampled accesses only. For example, though

LiteRace shows low 2-4% overhead for Apache, it makes CPU-intensive applications 2.1-2.4x

slower, and incurs 1.47x slowdown on average for their tested applications. Similarly, Pacer

also reports the average of 1.86x overhead at the 3% sampling frequency.

DataCollider [78] and RaceZ [184] avoid code instrumentation and thus incur a very low

overhead, but suffer from low detection coverage. DataCollider [78] makes use of hardware

debug breakpoints. After sampling a code/memory location, it sets a data breakpoint and

inserts a time delay. A trap during this delay indicates a conflicting access from another

thread. Though longer timing delays increase the likelihood of overlapping data races, they

also increase the overhead. In addition, hardware restrictions limit the number of concur-

rently monitored memory locations to four in the latest x86 hardware [101].

RaceZ leverages Intel’s PEBS to sample memory accesses. However, due to its reliance on the

inefficient Linux PEBS driver, RaceZ has to use a low sampling frequency for performance,

thereby compromising the detection coverage. RaceZ also attempts to reconstruct unsampled

2.1. Data Races 19

memory accesses, but its scope is limited to a single basic block.

2.1.5 Hybrid Static/Dynamic Approaches

Another line of work takes a hybrid static-dynamic approach. RaceMob [111], a recent

low-overhead solution, employs static analysis [204] to compute potential data races, and

crowdsources runtime race checks across thousands of users. To limit the overhead each

user may experience, RaceMob requires a large number of runs to distribute checks, and the

number of runs required depends on the precision of the static analysis. Elmas et al. [76], Choi

et al. [58] and Chimera [120] are other examples that make use of static data race analysis

to reduce runtime cost. In spite of its benefits, static analysis often suffers from precision

and scalability issues for large-scale applications, and the recompilation requirement is often

not a viable option in production settings.

2.1.6 Other Approaches to Reduce Dynamic Data Race Detector

Overhead

Several strategies other than sampling have been explored to reduce the overhead of dynamic

data race detection. Overlap-based data race detectors [43, 75, 131] focus on detecting races

only when racy instructions or code regions overlap at runtime. Wester et al. [211] paral-

lelizes data race detection. Frost [201] compares multiple replicas of the program running in

different schedules.

Greathouse et al. [85] presents a demand-driven race detector. They use hardware perfor-

mance counters in modern processors to monitor cache events indicating data sharing to turn

on race detection. Due to limitation in current hardware, they could identify W→R data

20 Chapter 2. Literature Review

sharing events only, and though all are presumably possible, not all cache sharing causes

data races.

Matar et al. [137] exploit Intel TSX (same as ours) to speed up data race detection, but

they leveraged HTM simply to replace locks that are used to provide atomicity in metadata

updates/checks.

2.1.7 Other Related Works

The idea of using separate low-cost tracing and high-cost (offline) analysis has been used

for program runtime monitoring [54, 59], especially in deterministic replay domain [38, 95,

118, 119, 157]. The lowest-overhead solution would be recording only synchronizations and

program-input as in RecPlay [171], which guarantees detecting the first race.

There are a large body of works that leverage PMU to reduce the runtime overhead of

program monitoring for various purposes. For debugging, Gist [112] uses Intel’s PT to

track the program execution paths for root cause diagnosis of failures, while CCI [106] uses

Intel’s Last Branch Record (LBR) to collect the branch trace and the return values for

cooperative concurrency bug isolation. For security, FlowGuard [127] uses Intel’s PT to

achieve transparent and efficient Control Flow Integrity (CFI), while CFIMon [215] uses

Intel’s Branch Trace Store (BTS) for the same goal. For performance, Brainy [109] leverages

Intel’s PEBS to understand the effect of the underlying hardware for effective selection of

data structures, while Jung et al. [108, 121] use the PEBS to characterize the cache behavior

of OpenMP [64] program for dynamic parallelism adaptation.

2.2. Memory Safety 21

2.2 Memory Safety

Memory safety bugs are a common source of real-world security vulnerabilities, and they are

more popular than data race bugs [5]. Programs written in memory unsafe languages such

as C/C++ are often vulnerable to memory safety bugs [192]. Spatial memory safety bugs

happen when a memory access does not fall into an object’s bound (e.g., buffer overflow).

Temporal safety bugs happen when dereferencing using a dangling pointer, which points to a

previously a deallocated object (e.g., use-after-free). Existing spatial and temporal memory

safety solutions maintain their own metadata in order to detect such a bug. To achieve full

memory safety, one can combine a spatial memory bug detector and a temporal memory bug

detector. However, this naïve approach would simply double memory overhead. We discuss

existing memory safety solutions and their way to maintain metadata as follows.

2.2.1 Spatial Memory Safety

Per-pointer Metadata Solutions

Those solutions maintain bounds information(base and bound) for each pointer. Explicate

bound check is performed at the time of pointer dereference. We further distinguish those

works into to types: fat-pointer type and dis-joint metadata type. Fat-pointer solutions

like [105, 150] augment the pointer and store bounds information adjacent to the original

pointer. The downside of fat pointer approaches is that they can change the memory layout

thus they can easily break the program relies on the such memory object layout especially it

can break binary compatibility. Dis-joint metadata is used by SoftBound[144] and MPX[7].

They maintains bounds information for each pointer in a disjoint memory location thus

won’t modify memory layout. This makes it binary compatible with existing code. The

problem with per-pointer metadata solutions is that when interacting with non-protected

22 Chapter 2. Literature Review

code, pointer metadata won’t be maintained, thus making the protection ineffective.

Per-object Metadata Solutions [151, 165, 181, 202, 223] use guard blocks at the beginning

and end of memory objects to detect out of bound memory accesses. Those solutions often

use page protection mechanism to to detect out of bound access. On the other hand, the use

of per-object “red-zone” [181] requires explicit check at the time of pointer dereference to

detect out of bound access. [36, 68, 172] allocate disjoint metadata for each memory object

and do explicit checking on pointer manipulation. Per-object metadata solutions usually

can’t guarantee that a pointer can only point to one desired object, but it also allows other

objects as well, so there might be false negatives.

2.2.2 Temporal Memory Safety

Special Allocators

Dinakar et al.[69] marks the free’d object page as non-accessible and leverages page protection

mechanism to detect memory access through dangling pointers. Cling [35] mitigate the use

of dangling pointers by only allowing the address space be used for object with same type

and alignment.

Pointer-graph Based Approaches

Nullification [117] achieves temporal safety by maintaining pointer sets and nullifies them

at the time of free() which is expensive and may change program behavior for those pro-

gram leverages dangling pointers but not dereference them. This approach violates C/C++

standard and have high overhead.

Undangle[49] aims at solving temporal memory error by tracking the creation and use of

dangling pointer, which also could be very expensive.

2.2. Memory Safety 23

DangSan[199] is a temporal memory error detector with enhanced per thread pointer logger

data structure to achieve fast on the fly checking.

FreeSentry[225] tracks point by information and invalidate pointers when object is freed.

Identifier-based Schemes

CETS[145] also maintains designated data structure for temporal safety but it is a separated

metadata for each pointer and memory object. CETS invalidates the metadata associated

with the memory object directly instead of nullifying each pointer. Dangling pointer deref-

erence is thus discovered by explicit check. CETS[145] is added on top of SoftBound to offer

temporal safety, the main idea is to add another field to the meta data(key) and allocated

memory(lock), which indicate the version information, at the time of dereference, the key

and lock is compared for spatial safety.

Watchdog[146] and WatchdogLite[147] take the idea of softbound and CETS to implement

ISA extensions to achieve low overhead full memory safety. However these approaches re-

quires new ISA which is not available in current processors.

Other Related Works CFI approaches guarantee program control flow which may be

caused by memory corruption attack. Stackguard[62] aims at preventing control flow hijack

by using on stack buffer overflow attack. ARM Pointer Authentication uses signature for

pointers to prevent crafted pointers by malicious program from being dereferenced. This

technique can mitigate the memory safety issue but can not fully prevent it from happening.

Finally, Sok[192] is a comprehensive survey concluding prior work which tries to tackle

memory safety problem.

24 Chapter 2. Literature Review

Table 2.1: Commonly used permission checks in Linux.

Type Total # Permission Checks
DAC 3 generic_permission, sb_permission, inode_permission
Capabilities 3 capable, ns_capable, avc_has_perm_noaudit
LSM 190 security_inode_readlink, security_file_ioctl, etc..

2.3 Permission Check Bugs in Linux Kernel

Previously we discussed dynamic detect data races detectors and dynamic memory safety

bugs detectors. In this subsection, we focus on another important category of bug detectors,

static bug detectors. We are especially interested in static bug detectors dealing with large

codebase, the Linux kernel. We depict deficiencies of existing kernel analysis works in the

following subsection, and we focus our discussion on Linux kernel permission checks [174],

which is an essential security enforcement scheme in operating systems. They assign users

(or processes) different access rights, called permissions, and enforce that only those who

have appropriate permissions can access critical resources (e.g., files, sockets). In the kernel,

access control is often implemented in the form of permission checks before the use of priv-

ileged functions accessing the critical resources. Without proper permission check function

placement, adversaries can take advantage of this bug to bypass security check and gain

access to critical resources [32].

2.3.1 Permission Checks in Linux

This section introduces DAC, Capabilities, and LSM in Linux kernel. Table 2.1 lists practically-

known permission checks in Linux. Unfortunately, the full set is not well-documented.

Discretionary Access Control (DAC)

DAC restricts the accesses to critical resources based on the identity of subjects or the

2.3. Permission Check Bugs in Linux Kernel 25

group to which they belong [166, 198]. In Linux, each user is assigned a user identifier

(uid) and a group identifier (gid). Correspondingly, each file has properties including the

owner, the group, the rwx (read, write, and execute) permission bits for the owner, the

group, and all other users. When a process wants to access a file, DAC grants the access

permissions based on the process’s uid, gid as well as the file’s permission bits. For example

in Linux, inode_permission (as listed in Table 2.1) is often used to check the permissions of

the current process on a given inode. More precisely speaking, however, it is a wrapper of

posix_acl_permission, which performs the actual check.

In a sense, DAC is a coarse-grained access control model. Under the Linux DAC design, the

“root” bypasses all permission checks. This motivates fine-grained access control scheme—

such as Capabilities—to reduce the attack surface.

Capabilities

Capabilities, since Linux kernel v2.2 (1999), enable a fine-grained access control by dividing

the root privilege into small sets. As an example, for users with the CAP_NET_ADMIN capability,

kernel allows them to use ping, without the need to grant the full root privilege. Currently,

Linux kernel v4.18.5 supports 38 Capabilities including CAP_NET_ADMIN, CAP_SYS_ADMIN, and

so on. Functions capable and ns_capable are the most commonly used permission checks

for Capabilities (as listed in Table 2.1). Both determine whether a process has a particu-

lar capability or not, while ns_capable performs an additional check against a given user

namespace. They internally use security_capable as the basic permission check.

Capabilities are supposed to be fine-grained and distinct [16]. However, due to the lack of

clear scope definitions, the choice of specific Capability for protecting a privileged function

has been made based on kernel developers’ own understanding in practice. Unfortunately,

this leads to frequent use of CAP_SYS_ADMIN (451 out of 1167, more than 38%), and it is

26 Chapter 2. Literature Review

just treated as yet another root [15]; grsecurity points out that 19 Capabilities are indeed

equivalent to the full root [14].

Linux Security Module (LSM)

LSM [214], introduced in kernel v2.6 (2003), provides a set of fine-grained pluggable hooks

that are placed at various security-critical points across the kernel. System administrators

can register customized permission checking callbacks to the LSM hooks so as to enforce

diverse security policies. The latest Linux kernel v4.18.5 defines 190 LSM hooks. One

common use of LSM is to implement Mandatory Access Control (MAC) [23] in Linux (e.g.,

SELinux [186, 187], AppArmor [11]). MAC enforces more strict and non-overridable access

control policies, controlled by system administrators. For example, when a process tries to

read the file path of a symbolic link, security_inode_readlink is invoked to check whether

the process has read permission to the symlink file. The SELinux callback of this hook checks

if a policy rule can grant this permission (e.g., allow domain_a type_b:lnk_file read). It

is worth noting that the effectiveness of LSM and its MAC mechanisms highly depend on

whether the hooks are placed correctly and soundly at all security-critical points. If a hook

is missing at any critical point, there is no way for MAC to enforce a permission check.

2.3.2 Hook Verification and Placement

There is a series of studies on checking kernel LSM hooks. Automated LSM hook verification

work [234] verifies the complete mediation of LSM hooks relying manually specified security

rules. While [80] automates LSM hook placements utilizing manually written specification

of security sensitive operations. However, required manual processes are error-prone when

applied to huge Linux code base. Edwards et al. [74] proposed to use dynamic analysis to

detect LSM hook inconsistencies. While PeX is using static analysis, can achieve better code

2.3. Permission Check Bugs in Linux Kernel 27

coverage.

AutoISES [193] is the most closely related work to PeX. AutoISES regards data structures,

such as the structure fields and global variables, as privileged, applies static analysis to

extract security check usage patterns, and validates the protections to these data structures.

The difference between AutoISES and PeX is three-fold. First, PeX is privileged function

oriented while AutoISES is more like data structure oriented. Second, AutoISES is designed

for LSM only, whose permission checks (hooks) are clearly defined, and therefore it is not

applicable to DAC and Capabilities due to their various permission check wrappers. In

contrast, PeX works for all three types of permission checks. Third, AutoISES uses type-

based pointer analysis to resolve indirect calls, while PeX uses KIRIN to resolve indirect

calls in a more precise manner.

There are also works[81, 141, 142] that extend authorization hook analysis to user space

programs, including X server and postgresql. However, their approaches canot be applied to

the huge kernel scale. Moreover, all of above works either do not analyze indirect calls at all,

or apply over approximate indirect call analysis techniques, such as type-based approach or

field insensitive approach. To the contrary, PeX uses KIRIN, a precise and scalable indirect

call analysis technique, which can also benefit these works by finding more accurate indirect

call targets.

2.3.3 Kernel Static Analysis Tools

Coccinelle [156] is a tool that detects a bug of pre-defined pattern based on text pattern

matching on the symbolic representation of bug cases. This is basically intra-procedural

analysis. Building upon Coccinelle, Wang et al. proposed another pattern matching based

static tool which detects potential double-fetch vulnerabilities in the Linux kernel [206].

28 Chapter 2. Literature Review

Sparse [27] is designed to detect the problematic use of pointers belonging to different

address space (kernel space or userspace). Later, Sparse was used to build a static analysis

framework called Smatch [25] for detecting different sorts of kernel bugs. However, Smatch

is also based on intra-procedural analysis, thus it can only find shallow bugs.

Double-Fetch [216], Check-it-again [207] focus on detecting time of check to time of use

(TOCTTOU) bugs. Dr. Checker [133] is designed for analyzing Linux kernel drivers. It

adopts the modular design, allowing new bug detectors to be plug-in easily. KINT [208]

applies taint analysis to detect integer errors in Linux kernel while UniSan [128] leverages the

same analysis to detect uninitialized kernel memory leakages to the userspace. Chucky [217]

also uses a taint analysis to analyze missing checks in different sources in userspace programs

and Linux kernel. However, Chucky can handle only kernel file system code due to the lack

of pointer analysis. Note that to resolve indirect call targets, all these works leverage a

type-based approach, which is not as accurate as KIRIN, thus suffering from false positives.

MECA [218] is an annotation based static analysis framework, and it can detect security

rule violations in Linux. APISan [228] aims at finding API misuse. It figures out the right

API usage through the analysis of existing code base and performs intra-procedural analysis

to find bugs. To achieve the former, APISan relies on relaxed symbolic execution which is

complementary to the techniques used in PeX.

2.3.4 Permission Check Analysis Tools

Engler et al. propose to use programmer beliefs to automatically extract checking informa-

tion from the source code. They apply the checking information to detect missing checks [77].

RoleCast [188] leverages software engineering patterns to detect missing security checks in

web applications. TESLA [39] implements temporal assertions based on LLVM instrument,

2.3. Permission Check Bugs in Linux Kernel 29

in which the FreeBSD hooks are checked by inserted assertions dynamically. Different from

TESLA, PeX uses KIRIN to analyze jump targets of all kernel function pointers statically,

achieving better resolution rate and code coverage. JIGSAW [203] is a system that can

automatically derive programmer expectations on resources access and enforce it on the

deployment. It is designed for analyzing userspace programs, cannot be applied to kernel

directly.

JUXTA [138] is a tool designed for detecting semantic bugs in filesystem while PScout [40]

is a static analysis tool for validating Android permission checking mechanisms. Kratos [183]

is a static security check framework designed for the Android framework. It builds a call

graph using LLVM and tries to discover inconsistent check paths in the framework. However,

Android has well-documented permission check specifications [9], i.e., privileged functions

and the permission required for them are both clearly defined. In contrast, the Linux kernel

has no such documentation, which makes it impossible to apply PScout and Kratos to Linux

kernel permission checks.

Chapter 3

Efficient Data Race Detection Using

Hardware Transactional Memory

Detecting data races is important for debugging shared-memory multithreaded programs,

but the high runtime overhead prevents the wide use of dynamic data race detectors. In this

chapter, we presents TxRace, a new software data race detector that leverages commodity

hardware transactional memory (HTM) to speed up dynamic data race detector (PS1).

TxRace instruments a multithreaded program to transform synchronization-free regions into

transactions, and exploits the conflict detection mechanism of HTM for lightweight data

race detection at runtime. However, the limitations of the current best-effort commodity

HTMs expose several challenges in using them for data race detection: (1) lack of ability

to pinpoint racy instructions, (2) false positives caused by cache line granularity of conflict

detection, and (3) transactional aborts for non-conflict reasons (e.g., capacity or unknown).

To overcome these challenges, TxRace performs lightweight HTM-based data race detection

at first, and occasionally switches to slow yet precise data race detection only for the small

fraction of execution intervals in which potential races are reported by HTM. According to

the experimental results, TxRace reduces the average runtime overhead of dynamic data race

detection from 11.68x to 4.65x with only a small number of false negatives.

30

3.1. Introduction 31

3.1 Introduction

A data race occurs when two or more threads access the same memory location, at least

one of them is a write, and their relative order is not explicitly enforced by synchronization

primitives such as locks [46, 134, 152].

Data races often lie at the root of other concurrency bugs such as unintended sharing,

atomicity violation, and order violation [130]. There are many real-world examples showing

the severity of data races, including the northeastern blackout [179], mismatched Nasdaq

Facebook share prices [158], and security vulnerabilities [219]. Moreover, data races make it

difficult to reason about the possible behaviors of programs. The C/C++11 standards [46,

102, 103] give no semantics to programs with data races, and the data race semantics for

Java programs [134] is considered to be too complex [205].

To address this problem, a variety of dynamic data race detectors [76, 79, 98, 160, 180, 227]

have been proposed to help programmers write more reliable multithreaded programs. How-

ever, such dynamic tools often add too much runtime overhead. For example, FastTrack, a

state-of-the-art happens-before based detector, incurs a 8.5x slowdown for Java programs [79]

and a 57x slowdown for C/C++ programs [75]. For different set of benchmarks, Intel’s

Inspector XE incurs a 200x slowdown [173], and Google’s ThreadSanitizer incurs a 30x slow-

down [180]. Such high overhead hinders the widespread use of dynamic data race detectors

in practice, despite their good detection precision.

We designed TxRace (Chapter 3), a novel dynamic data race detector which leverages hard-

ware transactional memory to accelerate data race detection.

Transactional Memory (TM) [94] was proposed to simplify concurrent programming as a new

programming paradigm, and hardware support for transactional memory has recently be-

come available in commodity processors such as Intel’s Haswell processor [96, 97]. This work

32 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

exploits the observation that the conflict detection mechanism of HTM can be repurposed

for lightweight data race detection in conventional multithreaded programs not originally

developed for TM.

However, naively leveraging HTM does not automatically guarantee efficient data race de-

tection. Rather, the limitations of the current commodity HTMs expose three challenges in

using them for data race detection: (1) As the HTMs are designed to transparently guar-

antee atomicity and isolation between concurrent transactions, they do not provide a way

to pinpoint racy instructions or conflicting addresses; (2) Since data conflicts are detected

at the cache line granularity, false alarms could be reported due to the false sharing; and

(3) Due to the best-effort nature of existing commodity HTMs, transactions may abort for

reasons other than data conflicts, including exceeding the hardware capacity, interrupts and

exceptions.

To overcome these challenges, it first instruments a multithreaded program to transform all

code regions between synchronizations (including critical sections) into transactions (Fig-

ure 3.1). At runtime, it then performs a two-phase data race detection comprising fast and

slow paths. During the initial fast path, it detects potential data races using the low-overhead

data conflict detection mechanism of HTM. In this stage, the detected races are only po-

tential races, as the conflict might be due to false sharing in the cache line. When a data

conflict is detected, the current HTMs do not identify the instruction that caused the trans-

action to abort, the conflicting address, or the other conflicting transaction. it addresses this

problem by artificially aborting all the (in-flight) concurrent transactions, rolling back them

to the state before the data conflict occurred, and then performing software-based sound

(no false negative) and complete (no false positive) data race detection [79, 98, 180] for the

concurrent code regions. This work refers to the rollback and subsequent re-execution with

software-based data race detection as the slow path, which enables it not only to pinpoint

3.1. Introduction 33

racy instructions but also to filter out any false positives. it also relies on the slow path to

cover the code regions, which cannot be monitored by transactions due to the limitations of

existing commodity HTMs. This conservative approach reduces the chance of missing data

races at the cost of runtime overhead, and it includes an optimization technique to avoid

repeated capacity aborts.

The experimental results show that using Intel’s Restricted Transactional Memory (RTM)

and Google’s ThreadSanitizer (TSan) for the fast and slow paths respectively, it achieves

runtime overhead reduction of dynamic data race detection from 11.68x (TSan) to 4.65x

(this work) on average. Using an HTM-based detector during the fast path may lead to

missing data races if they do not overlap in concurrent transactions (and for other reasons).

Nevertheless, it incurs only a few false negatives (high recall of 0.95) for tested applications.

This work makes the following contributions:

• To the best of our knowledge, TxRace is the first software scheme that demonstrates how

commodity hardware transactional memory can be used to build a lightweight dynamic data

race detector.

• TxRace proposes novel solutions to address the challenge in designing HTM-based data

race detector. They enable TxRace to pinpoint racy instructions, remove false data race

warnings caused by false sharing, and handle non-conflict transactional aborts efficiently.

• The paper presents experimental results showing cost effectiveness of TxRace compared to

a state-of-the-art happens-before based data race detector and its random sampling based

approach.

34 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

3.2 Background and Challenges

This section briefly introduces hardware transactional memory systems and discusses the

challenges in using them in data race detection.

3.2.1 Hardware Transactional Memory

Transactional Memory (TM) [94] provides programmers with transparent support to execute

a group of memory operations in a user-defined transaction in an atomic (all or nothing) and

isolated (the partial state of a transaction is hidden from others) manner. Hardware support

for transactional memory has been implemented in IBM’s Blue Gene/Q supercomputers [92]

and System z mainframes [104]; Sun’s (canceled) Rock processor [71]; Azul’s Vega proces-

sor [60]. Recently, HTM has become available in commodity processors used in desktops

such as Intel’s Haswell processor [96, 97].

TxRace leverages Intel’s Transactional Synchronization Extensions (TSX) introduced in the

Haswell processors. Intel TSX includes Hardware Lock Elision (HLE) and Restricted Trans-

actional Memory (RTM) supports, where the latter enables general-purpose transactional

memory. Intel RTM provides a new set of instructions comprising xbegin, xend, xabort,

and xtest to help programmers initiate, complete, abort a transaction, and check its status,

respectively. Intel RTM uses the first level (L1) data cache to track transactional states,

and leverages the cache coherence protocol to detect transactional conflicts [83, 224]. Intel

RTM supports strong isolation, which guarantees transactional semantics between transac-

tions and non-transactional code [136]. For conflict management, Intel RTM uses a simple

requester-wins policy in which on a conflicting request, the requester always succeeds and

the conflicting transactions abort [45].

3.2. Background and Challenges 35

3.2.2 Challenges in Using HTM for Race Detection

At first glance, it might be expected that HTMs can trivially provide lightweight data race

detection. However, the commercial HTMs, including Intel RTM, share limitations that

hinder their adoption for data race detection.

First, though HTMs can detect the presence of data conflicts and abort, HTMs including

Intel RTM do not provide programmers with the problematic instructions that caused the

transaction to abort, or with the affected memory addresses. Moreover, the concurrent trans-

actions to which the competing instructions belong may have been successfully committed

according to TM semantics. This implies that programmers cannot reason about the pairs

of memory accesses involved in the data race.

Second, HTMs detect data conflict by leveraging a cache coherence mechanism. Conflicts are

therefore discovered at the cache-line granularity (64-bytes in the Intel Haswell processor).

This may produce false warnings in data race detection due to non-conflicting operations on

variables that share a cache line. By comparison, traditional dynamic data race detectors

identify data races at the word (or byte) granularity, significantly reducing the likelihood of

false positives.

Third, HTMs have bounded resources, and irrevocable I/O operations are not supported.

Intel RTM does not support arbitrarily long transactions, simply aborting any transactions

exceeding the capacity of the hardware buffer for transactional states [93, 169]. Moreover,

changing privilege level always forces a transaction abort. The implication is that a trans-

action should not include any system call.

Finally, a transaction in best-effort (non-ideal) commodity HTMs including Intel RTM may

be aborted for an unknown reason (neither due to data conflict nor due to capacity overflow).

Intel’s reference manuals [96, 97] illustrate some causes of unknown aborts, such as operating

36 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

system context switches for interrupt or exception handling. However, neither the exact abort

reason nor the problematic instruction is provided to programmers, which makes it hard to

work around such a transaction abort.

3.3 Overview

TxRace is a lightweight software dynamic data race detector that leverages hardware trans-

actional memory support in modern commodity processors. The key insight is that TxRace

can detect potential data races with a very low runtime overhead by initially relying on the

conflict detection mechanism of HTM. The detected races are potential because the data

conflict between transactions might be caused by false sharing in the same cache line. When

transactions commit without data conflicts, TxRace incurs only the small runtime overhead

of the transactional execution. In this sense, this HTM-based check is called fast path in

which TxRace first takes to quickly identify potential data races. To address the aforemen-

tioned challenges of HTM-based detectors, on a data conflict, TxRace artificially aborts all

concurrent (in-flight) transactions, rolls them back to the state before the data conflict oc-

curs, and performs software-based sound and complete data race detection in an on-demand

manner. Such re-execution with software-based detection is called slow path, which allows

TxRace not only to pinpoint racy instructions but also to filter out false positives caused by

false sharing.

Figure 3.2 shows an overview of TxRace. It consists of a compile-time instrumentation

and a two-phase data race detection at runtime. TxRace inserts fast path transactional

codes (e.g., xbegin, xend) and slow path sound and complete data race detection codes

(e.g.,FastTrack [79], ThreadSanitizer [180]) into the original program at compile-time. Then,

TxRace makes use of the two-phase data race detection at runtime. This allows TxRace to

3.3. Overview 37

Figure 3.1: TxRace: Transactionalization

selectively perform sound and complete (but slow) data race detection for only a small

fraction of the whole execution, leading to significant runtime overhead reduction compared

to a traditional dynamic data race detection.

Figure 3.2: TxRace Overview

As illustrated in Figure 3.1, TxRace transforms program regions between synchronizations

(synchronization-free regions) into transactions. Then, TxRace performs HTM-based race

detection between program regions that overlap in parallel at runtime. For example, for

an execution where program regions ¬ and ® overlap, TxRace checks potential data races

between those two regions. Similarly, program regions between ­ and ®; or between ­ and

¯ are checked when they run concurrently. On the other hand, the original synchronization

lock L prevents the program regions ¬ and ¯ (and corresponding transactions) from being

overlapped at runtime. Therefore, the HTM will never observe conflicting memory accesses

in critical sections protected by the same lock. In the following figures, a white circle

corresponds to the beginning of a transaction, a black circle to its end.

38 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

Figure 3.3: TxRace Runtime Example

After compile-time instrumentation, TxRace detects data races at runtime using the fast

and slow paths as follows. Figure 3.3 shows an example with three threads, T1, T2, and

T3, each performing one transaction. Suppose the shared variable X is not protected by

the common lock, so that the transactions of T2 and T3 may run concurrently. During

the fast path, each transaction begins by first reading a shared global flag named TxFail

(as a part of instrumented code together with xbegin). Then, TxRace relies on HTM to

detect data conflicts. Suppose a transaction in T3 causes another transaction in T2 to

abort by accessing the shared variable X (step ¬). Intel RTM employs a requester-wins

conflict resolution strategy in which on a conflicting request, the requester always succeeds

and the conflicting transactions abort [45]. Thus, the concurrent transactions of T1 (no

conflict) and T3 (winner) may proceed further. To pinpoint the precise data race condition,

TxRace immediately aborts the in-flight transactions by making the aborted transaction in

T2 update TxFail (step ®) right after its rollback. Intel RTM supports strong isolation that

guarantees transactional semantics between transactions and non-transactional code [136].

Together with the requester-wins policy, the strong isolation property in Intel RTM cause a

transaction to abort if there is a conflicting access from a non-transaction code. Therefore,

the update to TxFail causes all the concurrent transactions to abort artificially (step ¯)

as they have read TxFail at the beginning of the transaction. When all the concurrent

transactions are rolled back (step °), they resume execution on the slow path in which

HTM is no longer used (step ±), but software-based sound and complete data race detection

3.4. Fast Path HTM-based Race Detection 39

is performed (step ²) instead. When the slow path finishes for the program regions where

potential data races are detected, TxRace switches back to the fast path in which HTM is

used for the next program regions.

3.4 Fast Path HTM-based Race Detection

This section first describes how TxRace instruments original programs to detect potential

data races as well as how it handles different types of transactional aborts, and then discuss

optimization techniques used for reducing performance overhead.

3.4.1 Transactionalization

To exploit HTM for potential data race detection, TxRace transforms a code region between

synchronization operations (including a critical section) into a transaction as illustrated in

Figure 3.1. To be specific, at compile-time, TxRace inserts transaction begin instructions

(xbegin) at thread entry points and after synchronization operations; and transaction end

instructions (xend) at thread exit points and before synchronization operations. System

calls require special consideration due to HTM limitations. Intel RTM, for example, aborts

a transaction if a change in privilege level takes place. Consequently, TxRace ends the

current transaction prior to each system call and begins a new transaction immediately after

the system call in order to guarantee forward progress.

Furthermore, TxRace instruments each transaction to read the shared flag TxFail immedi-

ately after xbegin. As discussed in Section 3.3, Intel RTM uses the requester-wins policy

that allows the requester to succeed on a conflicting request and aborts the conflicting

transactions [45]; and supports strong isolation that guarantees transactional semantics be-

40 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

tween transactions and non-transactional code [136]. These two properties cause an in-flight

transaction to abort on a conflicting access from non-transaction code. As TxRace makes

transactions read TxFail when they start, when a data conflict is detected, the aborted trans-

action can artificially abort other in-flight transactions by writing to the flag TxFail. For

example in Figure 3.3, when the aborted transaction in T2 writes to TxFail, the concurrent

in-flight transactions in T1 and T3 which have read TxFail get aborted. Similar techniques

have been used to abort in-flight transactions in hybrid TM systems [51, 65, 123] or to enable

transactional lock elision [34].

HTMs can only detect those data races that result in conflicts between concurrent trans-

actions. This suggests that maximizing the size of the transactions inserted at compile-

time will minimize the likelihood of false negatives. It would be ideal to transform each

synchronization-free region into a single transaction. However, as mentioned above, TxRace

cuts transactions across systems calls inevitably. A performance optimization called loop-cut

discussed further in Section 3.4.3 may also lead to cut a transaction originally formed for a

synchronization-free region.

Figure 3.4 (a) and (b) show that the length of transactions can affect the detection of

data races. Both (a) and (b) show unsynchronized and potentially-concurrent writes to the

shared variable X from threads T1 and T2: a race condition. In (a), each thread executes

a single lengthy transaction. The long transaction length increases the likelihood that the

two transactions will overlap, and in this case the data race on X is detected. In (b), each

thread executes two transactions, and the data race on X is more likely to be missed (a false

negative) as a result. As shown in (b), suppose the first transaction in T1 includes X=1 and

successfully commits prior to the beginning of the second transaction in T2, which includes

X=2. However, if the two transactions do not overlap, then neither will abort. For this

reason, similar to other overlap-based data race detectors [43, 56, 75, 78], TxRace may miss

3.4. Fast Path HTM-based Race Detection 41

Figure 3.4: (a) Race detected with long transactions (b) Race missed with short transactions

data races if they happen far apart in time. Though perfect soundness is thus out of reach,

the experimental results in Section 3.8 show that TxRace trades only a few false negatives

(recall of 0.95) for excellent performance.

3.4.2 Handling Transactional Aborts

The best-effort Intel RTM does not guarantee that a transaction will eventually commit

and make progress. In addition to data conflicts, there are many architectural and micro-

architectural conditions that may cause a transaction to abort. When a transaction is

aborted, Intel RTM rolls back the transaction to the point where it begins and reports the

abort type(s) in the register. TxRace handles transaction aborts according to the abort

reason as follows, while juggling the competing goals of reducing false negatives, decreasing

overhead, and offering a forward progress guarantee.

Conflict. A transaction aborted due to a data conflict indicates a potential data race. To

conduct precise data race detection, TxRace updates the shared flag (named TxFail) that

every transaction begins by reading, forcing all the concurrent (in-flight) transactions to

abort and roll back (Figure 3.3). TxRace then performs slow path software-based sound and

complete data race detection among the code regions that overlapped with the aborted code

region. Once a potential data race is detected by the fast path, the software-based slow-path

detector will winnow out the false positives and to find data races if one exists.

Retry. A transaction aborted with “retry” status might succeed if retried. If this flag is set

42 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

Figure 3.5: Detecting data races between fast and slow paths using the strong isolation
property of HTM

in conjunction with the conflict flag described above, TxRace treats the case as a conflict

and follows the slow path. Otherwise, TxRace retries the transaction.

Capacity. When a transaction is aborted due to overflow, TxRace makes only the thread

that observed the capacity abort fall back to slow path. Unlike the case for data conflicts,

TxRace does not artificially abort the other concurrent transactions (by not updating the

shared flag TxFail) since there is no indication of a potential data race with concurrent trans-

actions. Using concurrent slow and fast path executions minimizes performance overhead

while still giving TxRace high detection coverage (fewer false negatives) and the guarantee

of forward progress. Figure 3.5 demonstrates how TxRace can detect data races when both

fast and slow paths run at the same time. Here, threads T1 and T2 are on the fast path,

while threads T3 and T4 are on the slow path due to capacity aborts. In this case, data

races between threads T1 and T2 can be detected using HTM-based fast-path detection,

and data races between thread T3 and T4 can be detected using precise slow-path detection.

The interesting case is a race condition between fast path and slow path threads. If T2 is

on the fast path and T3 is on the slow path as shown in the example, the strong isolation

property of Intel RTM ensures that the transaction in T2 will be aborted in the event that

T3 makes the conflicting access to the variable X that T2 has accessed. In this case, TxRace

handles the conflict abort as described above. Because T3 is already in the slow path, the

precise data race condition can be identified once TxRace puts T2 in the slow path.

Unknown. A transaction may abort with an unknown (unspecified) reason. As TxRace

3.4. Fast Path HTM-based Race Detection 43

enforces that a transaction does not include a system call (Section 3.4.1), this is most likely

due to unexpected operating system context switches to handle interrupts, exceptions, etc.

To guarantee forward progress while achieving high detection coverage (fewer false negatives),

TxRace treats this case the same as the capacity abort.

Debug/Nested. The debug bit is set when a transaction aborts upon encountering a

debug breakpoint, while the nested bit is set when a transaction was aborted during a

nested transaction. Neither of these conditions may happen as a result of the TxRace

transactionalization process; no debug breakpoints are used, and TxRace does not introduce

nested transactions. TxRace simply ignores this case.

3.4.3 Optimization

To reduce performance overhead at runtime, TxRace applies several optimizations in the

fast path. First, TxRace checks if the program is in the single-threaded mode or not (e.g., in

the very beginning of program execution before spawning child threads). If so, there should

be no races, thus TxRace simply does not use HTM to monitor the program execution to

avoid unnecessary cost of transactions. If a function is profiled to be invoked in both single-

threaded and multi-threaded modes, then at compile-time TxRace clones the function and

instruments only the version that is called in multithreaded mode.

Second, Txrace reuses the same static analysis algorithm that Google TSan uses to avoid

unnecessary data race checks. If a memory operation is statically proven to be data race

free, then TSan does not instrument it. TxRace also does not insert transaction codes for

those code regions that are not instrumented by Google TSan to hook memory accesses for

data race detection.

Third, for regions containing a small number of memory operations, the overhead associated

44 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

with HTMs exceeds the cost of the software-based slow path. If a code region contains fewer

than K memory operations, TxRace favors the slow path. In our experiment we chose K =

5.

Finally, TxRace leverages our so-called loop-cut optimization for transactions that includes

loops with a large number of iterations; these loops are a frequent cause of capacity aborts.

By default, TxRace falls back to the slow path when a transaction experience a capacity

abort to obtain better detection capability for those code regions at the cost of some per-

formance overhead. To reduce this overhead, the loop-cut optimization aims to end the

long transaction before prior to a capacity abort. TxRace first profiles an application with

representative input to identify the candidate loops for the loop-cut optimization. In this

study, TxRace leverages the Last Branch Recorder (LBR), a branch tracing facility in Intel

processors [86], which allows TxRace to identify the last branch taken before a transaction

aborts. Then, TxRace inserts the following loop-cut logic to the end of the candidate loop

body.

The high level idea is for TxRace to keep track of the number of loop iteration (called loop-

cut-threshold). When the transaction experiences a capacity abort in the loop, TxRace takes

the slow path at first (default behavior), but when the same loop is executed next time,

TxRace uses this loop-cut-threshold to cut the current transaction early in the middle of

loop iterations, placing the rest of the iterations into another transaction to avoid capacity

aborts. As discussed above, short transactions cut by loop-cut optimization may lead to

false negatives.

HTM semantics make this implementation slightly tricky. Note that as the loop is a part of

transaction, it is not possible to use a counter incremented per loop iteration to obtain the

precise loop-cut-threshold value; updates to the counter will not survive a transaction abort.

TxRace addresses this problem by setting a small initial estimate loop-cut-threshold (two

3.5. Slow Path Software-based Race Detection 45

in our experiment) and by incrementing and decrementing the estimate when the transac-

tion commits/aborts, respectively (outside the transaction). This approach enables TxRace

to estimate the last largest loop-cut-threshold allowing the transaction to commit. This

work calls this scheme, which dynamically learns the loop-cut-threshold at runtime, TxRace-

DynLoopcut.

As another scheme, TxRace-ProfLoopcut profiles an application with representative input to

figure out the initial loop-cut-threshold value beforehand. This approach allows TxRace to

avoid even the very first capacity abort. Similar to TxRace-DynLoopcut, TxRace-ProfLoopcut

handles misprofiling by adjusting the threshold when the transaction commits or aborts ac-

cordingly. Section 3.8.2 evaluates the effectiveness of the two loop-cut optimization schemes.

3.5 Slow Path Software-based Race Detection

For software-based data race detection during the slow path, TxRace uses Google’s Thread-

Sanitizer (TSan) [173, 180], an open-source state-of-practice data race detector. Similar

to the well-known sound and complete FastTrack algorithm [79], TSan keeps track of the

happens-before order for each memory location using a shadow memory. Then, TSan detects

data races when accesses to shared locations are not ordered. This process requires instru-

menting (1) synchronization operations to track the happens-before order; and (2) memory

operations to look up shadow memory and compare their happens-before order. By design,

TSan is complete (no false positive). However, to bound memory overhead, TSan maintains

N (default 4) shadow cells per 8 application bytes, and replaces one random shadow cell

when all shadow cells are filled. This may affect soundness (no false negative) of data race

detection. Thus, this work configured TSan to have enough number of shadow cells to be

sound as well.

46 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

Figure 3.6: Tracking the happens-before order of synchronizations on the fast path eliminates
false warnings on the slow path

The potential interplay of fast and slow path threads necessitates additional overhead during

the fast path. A naive fast path could rely solely on HTM to detect potential data races,

obviating the need to track the happens-before order imposed by synchronization operations.

However, threads may alternate between fast and slow paths for precise data race detection.

When TSan finishes in the slow path, TxRace resumes the use of the fast path to monitor

the next regions, achieving better performance. This design requires TxRace to keep track of

the happens-before order of synchronization operations even during the fast path to remove

false warnings during slow path. Figure 3.6 describes this feature in more detail. Suppose

that threads T1 and T2 have executed the slow path, fast path, and slow path in turn

for some reason other than conflicting accesses to X, and that there was a happens-before

order between signal and wait that appeared during the fast path. If TxRace does not

track this happens-before order during the fast path, the slow path data race detector would

report a data race between X=1 and X=2, which is a false warning. The performance

overhead breakdown in Section 3.8.2 shows that tracking synchronization operations is not

that expensive during the fast path.

3.6. False Negatives 47

3.6 False Negatives

TxRace is complete (no false positive) but unsound (some false negative). There are four

main reasons why TxRace could miss data races. First, fast-path HTMs do not detect data

conflicts between transactions that do not overlap in time, as discussed in Section 3.4.1.

This is different from sound (happens-before based) data race detectors such as FastTrack or

Google’s TSan, which identify races by tracking the happens-before order of synchronization

operations. In this sense, TxRace resembles overlap-based data race detectors [43, 56, 75, 78].

Second, when a transaction is aborted due to data conflict and TxRace writes the shared flag

TxFail to abort others, there is no guarantee that some of the already-running transactions

will not commit before they see the write. In this case, even though TxRace triggers the

slow path, the race will not occur again and thus cannot be detected.

Third, race detection between the fast and slow paths (Figure 3.5) only works in one direction.

If the slow path thread makes a shared memory access before the fast path thread makes a

conflicting access, then the HTM’s strong isolation guarantee does not apply. As a result,

when the opposite of the situation in Figure 3.5 happen, TxRace will not trigger the slow

path, and the race will not be detected.

Finally, TxRace by nature shares the limitations of the underlying HTM system. As of

now, Intel Haswell processor does not support more concurrent transactions than the total

number of hardware threads available. This implies that the number of threads that can be

monitored by HTM during fast path is limited.

During evaluation, the thread count was restricted to be smaller than the hardware thread

counts, ruling out the forth reason. All of the observed false negatives were due to non-

overlapping transactions.

48 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

3.7 Implementation

TxRace instrumentation framework is implemented in the LLVM compiler framework [115].

As a very first process, we translate application source codes into LLVM IR (Intermediate

Representation) and perform instrumentation as a custom transformation pass. During

this process, we do not include external libraries such as standard libc, libc++, libm, etc.,

assuming that such libraries are thread safe, and users are interested in detecting data races

in application codes. External libraries may be included into our scope when their LLVM

IR is provided. It is worthwhile to note that we included all the internal libraries that

are provided with core application codes such as gsl, libjpeg, glib, libxml2, etc. in PARSEC

benchmark suite [41] into our analysis.

Instrumentation for fast path needs to intercept synchronization operations and the program

points before/after system calls so that transaction begin/end codes can be inserted. For

example, a new transactional region starts after a new thread starts or after each system call.

As we do not include standard C/C++ libraries into our scope, we instrument system calls

at the library call boundary; i.e., before and after calls to library functions that may invoke

system calls such as synchronization (e.g., PThread library); standard I/O (e.g., read, write);

and dynamic memory management library (e.g., malloc, free). For the third party libraries

whose source codes are not available, dynamic binary instrumentation tools [48, 132, 151]

can be used to profile the program with representative input and to identify a list of external

library functions invoking system calls. Misprofiling would result in unknown aborts caused

by undetected system calls. TxRace falls back to slow path in case of unknown aborts

(by default), thus misprofiling only adds runtime overhead, and does not harm detection

coverage.

For slow path, we use off-the-shelf Google’s ThreadSanitizer (TSan) [173, 180], an open-

3.7. Implementation 49

0
1
2
3
4
5
6
7
8
9

10
11
12

Ru
nt

im
e

O
ve

rh
ea

d

baseline xbegin/xend conflict aborts capacity aborts unknown aborts

63.3x

31.6x

Figure 3.7: Breakdown of runtime overhead.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Ru
nt

im
e

O
ve

rh
ea

d

2 threads 4 threads 8 threads

65.6x
63.3x

52.2x

Figure 3.8: Scalability of TxRace

source state-of-practice happens-before based data race detector. For each memory location

and synchronization variable, TSan keeps track of happens-before order information into

shadow memory. TSan supports compile-time instrumentation for data race detection using

Clang frontend [195] and LLVM passes [115]. For simplicity, we instrument fast/slow path

codes together into the original program. For example, the same memory access hook is

instrumented for both fast/slow paths. Depending on the fast or slow path, the hook per-

forms TSan data race detection for slow path or it does nothing for fast path. For better

performance, it would be ideal to clone the codes and have separate fast/slow path codes to

remove the redundancy similar to [113, 191]. We leave this optimization as a future work.

application committed conflict capacity unknown TSan TxRace original TSan TxRace TSan TxRace
transactions aborts aborts aborts races races time(ms) time(ms) time(ms) overhead overhead

blackscholes 131105 2 0 7 0 0 253 467 460 1.85x 1.82x
fluidanimate 17778944 696789 10321 36614 1 1 539 8217 3724 15.23x 6.9x
swaptions 160640076 2599 557497 54317 0 0 868 5875 3446 6.77x 3.97x
freqmine 84 0 3 26 0 0 3973 55611 4569 14x 1.15x

vips 707547 16793 23403 14985 112 79(*) 953 1139087 60320 1195x 63.28x
raytrace 143 12 0 14 2 2 4546 23130 12203 5.09x 2.68x
ferret 208052 379 2413 4263 1 1 1060 11390 5852 10.74x 5.52x
x264 36808 245 423 5358 64 64 595 3837 3332 6.45x 5.6x

bodytrack 9950991 36004 47050 2004723 8 6(*) 503 6429 4479 12.78x 8.9x
facesim 12827334 1611 3372 38563 9 8(*) 2439 89242 28027 36.59x 11.49x

streamcluster 756908 170805 230 832 4 4 1430 39042 4253 25.9x 2.97x
dedup 2185219 106618 13889 40177 0 0 2748 13292 11513 4.84x 4.19x
canneal 3200570 25187 2896 106419 1 1 3499 15367 10375 4.39x 2.97x
apache 310781 227 446 9793 0 0 6916 21089 13600 3.05x 1.97x

geo.mean 11.68x 4.65x

Table 3.1: TxRace Execution Statistics and Performance.

50 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

3.8 Evaluation

Our evaluation answers the following questions:

• What is the overhead of TxRace data race detection? Is it efficient?

• Does TxRace effectively detect data races? How many false negatives are there?

• Is TxRace cost-effective compared to other approaches? Is it better than a sampling-

based approach, or a full happens-before based detector?

3.8.1 Methodology

We ran experiments on a 3.6GHz quad-core Intel Core™i7-4790 processor, with 16GB of

RAM, running Gentoo Linux (kernel 4.0.4). Intel’s Restricted Transactional Memory (RTM)

is used for HTM-based fast path data race detection. Intel Haswell processor supports

the same number of concurrent transactions as the hardware threads available, which is

four (eight with hyperthreading) in our case. On the other hand, Google’s ThreadSanitizer

(TSan) is used for software-based slow path data race detection.

TxRace was evaluated using 1) PARSEC benchmark suite [41] that is designed to be rep-

resentative of next-generation shared-memory programs including emerging workloads; and

2) Apache web server [1]. We used simlarge input for all the 13 application in PARSEC,

and tested Apache using ab (ApacheBench) by sending 300,000 requests from 20 concurrent

clients over a local network. Performance was reported in terms of overhead with respect

to the original execution time without data race detection. We compare our system (named

TxRace in the result) with off-the-shelf Google’s ThreadSanitizer (named TSan). All results

are the mean of five trials with four worker threads (except the scalability analysis).

3.8. Evaluation 51

3.8.2 Performance Overhead

Table 3.1 shows the TxRace execution statistic, the number of detected data races, and

overall performance results. The first column provides the application name. The next four

columns show transaction statistics during HTM-based fast path data race detection: the

number of total committed transactions, the number of data conflict aborts, the number

of capacity (overflow) aborts, and the number of unknown (unspecified) aborts. The next

two columns give the number of races detected by TSan and TxRace. The applications

in which TxRace cannot detect all the races reported by TSan are marked with asterisk.

The next three columns show the original, TSan, and TxRace execution times. The first is

the execution time of the original application (with no transactions, memory hooks, etc.);

the second is the execution time when TSan is used; the third is the execution time of our

system TxRace. The last two columns show TSan’s and TxRace’s overhead with respect to

the original execution.

Examining the results, we see that TxRace’s overhead is generally low. On average, TxRace

reduces runtime overhead of dynamic data race detection from 11.68x to 4.65x (geometric

means), showing 60% reduction ratio. For some applications such as vips and streamcluster,

TxRace achieved more than 10 times speedup over TSan.

Figure 3.7 shows a breakdown of the overhead normalized to the original execution time

(baseline) for all benchmarks. The black portion in each bar (xbegin/xend) represents the

pure fast path overhead in which transactions are executed, but no slow path is taken even

when they get aborted (simply run untransactionalized code). For most applications, this

overhead is pretty low (the geometric mean of 17%), except swaptions and streamcluster.

Upon further investigation, we found out that these two applications have tight loops that

have system calls in the loop body. In this case, TxRace ends and begins new transac-

52 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

tions around the system calls. This results in tight short transactions whose management

cost now becomes dominant. The next overhead comes from handling aborts due to data

conflicts (157%), which includes running slow path software-based data race detection. This

low-overhead result shows the benefits of using HTM-based potential data race detection be-

forehand, which allows TxRace to selectively perform the software-based dynamic data race

detection only for small fraction of execution intervals. Finally, the remaining performance

overhead comes from handling capacity and unknown aborts (126% and 66%, respectively).

To achieve small false negatives, TxRace takes the conservative approach of using slow path

software-based detector to monitor program regions that fast path HTM cannot cover. We

envision that if there is an ideal HTM such that a transaction aborts only if there is a data

conflict and do not have capacity/unknown aborts, then the runtime overhead of TxRace

would be improved significantly as TxRace only falls back to slow path when necessary (only

when a data conflict occurs).

Figure 3.8 shows the scalability of TxRace. We varied the number of worker threads from

2, 4 to 8, and measured the runtime overhead normalized to the original execution time

with 2, 4, and 8 worker threads, respectively. For comparison of two and four thread cases,

some applications such as swaptions and streamcluster show lower runtime overhead for four

thread cases, but most of the remaining applications show small differences in normalized

runtime overhead. Upon further investigation, we found out that the number of capacity

aborts (geometric mean of 644 vs. 474) and unknown aborts (geometric mean of 8377 vs.

4651) decreases from two to four thread cases. The reduction in capacity aborts makes sense

as many applications in PARSEC benchmark take advantage of data parallelism, and thus

each worker thread is likely to have smaller dataset with more worker threads. On the other

hand, the number of conflict aborts (geometric mean of 244 vs. 1242) increases from two to

four thread cases (likely due to increased concurrency). After all, the mixture of the increase

3.8. Evaluation 53

0
2
4
6
8

10
12
14
16
18
20

Ru
nt

im
e

O
ve

rh
ea

d

TSan TxRace-NoOpt TxRace-DynLoopcut TxRace-ProfLoopcut

36.6x1195x 63.3x 25.9x

Figure 3.9: Effectiveness of loop-cut optimiza-
tion

0

20

40

60

80

100

120

1 2 3 4 5 6 7

of

 d
et

ec
te

d
di

st
in

t d
at

a
ra

ce
s

of iterations

Figure 3.10: The number of detected distinct
data races across multiple runs for vips

and the decrease in transactional aborts causes different applications to show variation in

performance overhead.

Another interesting result of this experiment is the high overhead incurred for some applica-

tions with eight threads (e.g., fluidanimate, swaptions, streamcluster, and dedup). Examining

the results, we found that the number of unknown aborts increases significantly for eight

thread case (geometric mean of 42251, which is 5x and 9x more than two and four thread

cases, respectively). As Intel Haswell processor does not provide additional information re-

garding unknown aborts, further investigation was not possible, but we suspect that eight

concurrent transactions enabled by hyperthreading might lead to increased unkonwn aborts.

Finally, we evaluate the effectiveness of the loop-cut optimization discussed in the Sec-

tion 3.4.3. Figure 3.9 presents the normalized runtime overhead of TSan and three different

types of TxRace. They differ from each other based on how they handle a transaction

that includes a loop with a large number of iterations, causing capacity aborts frequently.

TxRace-NoOpt stands for the basic scheme without optimization that TxRace simply falls

back to slow path every time when a transaction gets aborted for the capacity reason.

TxRace-DynLoopcut represents the optimized scheme that for a transaction including a loop,

TxRace dynamically learns the loop iteration count (called loop-cut-threshold) that do not

54 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

cause a capacity abort at runtime. When the transaction gets aborted, TxRace falls back

to the slow path at first. However, when the same loop is executed next time, TxRace uses

the loop-cut-threshold to terminate the transaction early in the middle of loop iterations

and starts a new transaction to avoid capacity aborts. TxRace-ProfLoopcut is similar to the

above dynamic scheme, but it profiles the program with representative input to collect the

initial loop-cut-threshold, and avoids even the very first capacity aborts. Figure 3.9 shows

the benefits of leveraging the loop-cut optimization. In all cases, TxRace is more efficient

than TSan. On average, TxRace-ProfLoopcut shows the best result (4.65x) in terms of per-

formance overhead, and TxRace-DynLoopcut which does not require profiling the threshold

also performs better than TSan (5.34x).

3.8.3 False Negatives

In this section, we study false negatives of TxRace. HTMs detect data conflicts between

transactions that are concurrently overlapped in time. As a result, similar to other overlap-

based data race detectors [43, 56, 75, 78], TxRace may miss data races if they happen far

apart in time. The sixth and seventh columns of Table 3.1 represent the average number

of data races reported by happens-before based TSan and our overlap based TxRace. Here,

each race is in a form of racy instruction pair, and we count the number of static instances.

There are three applications (vips, bodytrack, and facesim) that TxRace detects less data

races than TSan. It turns out that the missed three cases of bodytrack and facesim are due

to the common initialization idiom, in which a data structure is allocated within a thread

and initialized without any synchronization while the structure is still local to the thread,

and then it becomes accessible to other threads, by adding it to a global data structure. For

example in facesim, a structure is initialized when a thread pool is created at the beginning

3.8. Evaluation 55

of program execution, then it becomes shared at a later time. TxRace missed such races

because conflicting accesses do not overlap.

On the other hand, for vips, though the number of data race found for each test run remains

about the same (average of 79), we observed that TxRace actually finds different sets of data

races across different runs. This makes sense because TxRace’s nature of the overlap-based

detection makes it sensitive to underlying OS scheduler. Figure 3.10 shows that when we

accumulate the distinct data races detected, TxRace can find all the data races (112) found

by TSan after seven runs. Note that for vips, TxRace (63.3x) is order of magnitude faster

than TSan (1195x).

3.8.4 Cost-Effectiveness of Data Race Detection

TxRace is complete (no false positive) but unsound (some false negative). In essence, TxRace

aims to be a cost-effective solution that exploits a critical tradeoff of soundness for perfor-

mance. To quantitatively evaluate how cost-effective TxRace is, we rely on a popular eco-

nomic analysis term called cost-effectiveness ratio where the denominator is the effectiveness

and the numerator is the cost. The original ratio is inverted and redefined for the context

of data race detection to quantify how cost-effective it is as follows:

CostEffectiveness =
Race_Detection_Effectiveness

Race_Detection_Cost

As a metric to evaluate the data race detection effectiveness, we use recall that is commonly

used to measure the quality of classifiers in information retrieval and bug detection com-

munities [42, 110, 122, 213]. Intuitively, high recall leads to less false negatives (undetected

56 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

application overhead recall cost-effectiveness
blackscholes 0.99 1 1.02
fluidanimate 0.45 1 2.21
swaptions 0.59 1 1.7
freqmine 0.08 1 12.17

vips 0.05 0.71 13.32
raytrace 0.53 1 1.9
ferret 0.51 1 1.95
x264 0.87 1 1.15

bodytrack 0.7 0.75 1.08
facesim 0.31 0.89 2.83

streamcluster 0.11 1 8.71
dedup 0.87 1 1.15
canneal 0.68 1 1.48
apache 0.65 1 1.55

geo.mean 0.38 0.95 2.38

Table 3.2: Cost-Effectiveness of TxRace vs.
TSan

flu
id
an

im
at

e
vi
ps

ra
yt
ra

ce

fe
rre

t

x2
64

bo
dy

ra
ck

fa
ce

si
m

st
re

am
cl
us

te
r

ca
nn

ea
l

C
o

s
t

E
ff

e
c
ti
v
e

n
e

s
s

0

2

4

6

8

10

12

14

TSan+Sampling 10%
TSan+Sampling 50%
TSan+Sampling 100%
TxTsan

Figure 3.11: Cost-Effectiveness of TxRace vs.
Sampling

data races). In the context of data race detection, recall is defined as follows:

recall =
|Reported_Data_Races ∩Real_Data_Races|

|Real_Data_Races|

For comparison to TSan, Real_Data_Races is defined as the data races reported by TSan.

To calculate the cost effectiveness (CE), we use TxRace’s runtime overhead normalized to

TSan’s. Table 3.2 summarizes how much more cost-effective TxRace is compared to TSan for

each benchmark application (here TSan’s CE is 1). TxRace turns out to be 2.38x (geometric

mean) more cost-effective than TSan across the benchmark applications. This is mainly

because in TxRace, only small portion of memory accesses are investigated for software-

based data race detection (slow path). On the other hand, the majority of memory accesses

are dealt with by transactional execution (fast path) at a very low runtime cost.

To justify such a high cost-effectiveness of TxRace, we also compare TxRace with TSan with

sampling. Sampling memory operations is an intuitive way to reduce runtime overhead of

dynamic data race detection. However, it also comes with false negative issues because some

data races might be missed at a low sampling rate. To study if TxRace is more cost-effective

3.8. Evaluation 57

Sampling Rate (%)
0 10 20 30 40 50 60 70 80 90 100

R
u
n
ti
m

e
 O

v
e
rh

e
a
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TxRace

25.5%

0.69

TSan+Sampling

Figure 3.12: Runtime overhead for bodytrack
Sampling Rate (%)

0 10 20 30 40 50 60 70 80 90 100

R
e
c
a
ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TxRace

47.2%

0.75

TSan+Sampling

Figure 3.13: Recall for bodytrack

than sampling, we vary the sampling rate and measure the resulting runtime overhead and

the recall of TSan for every benchmark. As a represetative application, we present the

result of bodytrack in detail. Figure 3.12 shows the runtime overhead normalized to 100%

sampling (full coverage), and Figure 3.13 shows the recall at different sampling rates while

treating 100% as an oracle. As expected, both the runtime overhead and recall increase as

the sampling rate increases. On the other hand, the normalized runtime overhead and the

recall of TxRace are 0.69 and 0.75, respectively. This implies that TxRace adds an overhead

equivalent to sampling about 25.5% of memory operations, but its recall is equivalent to

47.2% sampling, which shows its cost effectiveness.

Lastly, Figure 3.11 presents the cost-effectiveness of TxRace compared to TSan with sampling

across nine applications in which TxRace/TSan detect at least one data race. For some

applications such as fluidanimate, vips, and facesim, 10% sampling turns out to be more

efficient than 50% or 100% sampling cases. It turns out that the data race in such applications

manifest often at runtime, thus they get detected even at the low sampling frequency. In

other words, the number of dynamic instances of the data race is quite high even though

the number of static instance (unique race condition) is small (e.g., one for fluidanimate),

thus reaching the recall of almost 1 (no false negative) at the low frequency. After all, for

almost all applications execpt x264, TxRace outperforms TSan with sampling in terms of

58 Chapter 3. Efficient Data Race Detection Using Hardware Transactional Memory

the cost-effectiveness.

3.9 Summary

The spread of shared-memory multiprocessor architectures has spurred development of mul-

tithreaded programs. However, such programs are subject to concurrency bugs including

data races. Unfortunately, traditional dynamic data race detectors are too slow to use in

many cases. In this chapter, we improve the run-time overhead of dynamic data race bug

detectors (PS1). We presents TxRace, a new software dynamic data race detector that

exploits commodity hardware transactional memory support to enable dynamic data race

detection with a low run-time overhead (TS1). Leveraging existing HTM support allows

TxRace to use a precise but expensive dynamic data race detector only for a small fraction

of the whole execution in an on-demand manner, leading to performance improvement. The

experiment results show that TxRace achieves run-time overhead reduction of dynamic data

race detection by 60% on average with only a few false negatives (high recall of 0.95). TxRace

is published at [230].

Chapter 4

Practical Data Race Detection for

Production Use

In previous chapter, we presented a dynamic data race detector leveraging commodity hard-

ware transactional memory, which have 4.65x run-time overhead. However, due to the

undeterministic behaviour of data races it is often hard to find them all during testing and

they often manifest themselves in a production environment. Therefore, people are inter-

ested deploying dynamic data race detectors in production. In this chapter, we presents

ProRace, a dynamic data race detector practical for production runs. It is lightweight, but

still offers high race detection capability. To track memory accesses, ProRace leverages

instruction sampling using the performance monitoring unit (PMU) in commodity proces-

sors. Our PMU driver enables ProRace to sample more memory accesses at a lower cost

compared to the state-of-the-art Linux driver. Moreover, ProRace uses PMU-provided ex-

ecution contexts including register states and program path, and reconstructs unsampled

memory accesses offline. This technique allows ProRace to overcome inherent limitations

of sampling and improve the detection coverage by performing data race detection on the

trace with not only sampled but also reconstructed memory accesses. Experiments using

racy production software including apache and mysql shows that, with a reasonable offline

cost, ProRace incurs only 2.6% overhead at runtime with 27.5% detection probability with

a sampling period of 10,000.

59

60 Chapter 4. Practical Data Race Detection for Production Use

4.1 Introduction

Despite of extensive in-house testing races often exist in deployed software and manifest

in customer usage [111, 180, 184]. These test escapes occur because data races are highly

sensitive to thread interleavings, program inputs, and other execution environments that

testing cannot completely cover [43]. For the same reasons, data races are notoriously difficult

to reproduce and fix after being observed in a production run. Consequently, there is an

urgent need for a lightweight data race detector that can monitor production runs.

In production settings, it makes sense to trade off soundness (may miss data races) for per-

formance. Sampling [47, 78, 135, 184] has been proposed as a promising technique to address

the problem. However, LiteRace [135] and Pacer [47] still incur unaffordable slowdown for

some applications (e.g., Pacer [47] adds 86% overhead at the 3% sampling ratio) due to code

instrumentation based runtime checks. Though DataCollider [78] uses hardware breakpoint

support instead, their detection coverages are limited to sampled accesses only. RaceZ [184]

pioneered the use of hardware performance monitoring unit (PMU) to sample memory ac-

cesses, but it has to keep the low sampling frequency for performance thereby compromising

the detection coverage.

LiteRace [135] and Pacer [47] pioneered the use of sampling for reducing the overhead of

dynamic data race detection. LiteRace focuses on sampling more accesses in infrequently-

exercised code regions, based on the heuristic that for a well-tested application, data races are

likely to occur in such a cold region. On the other hand, Pacer uses random sampling and thus

its coverage is approximately proportional to the sampling rate used. However, these code

instrumentation-based race detectors cause an unaffordable slowdown for some applications,

and their detection coverage is limited to the sampled accesses only. For example, though

LiteRace shows low 2-4% overhead for Apache, it makes CPU-intensive applications 2.1-2.4x

4.1. Introduction 61

slower, and incurs 1.47x slowdown on average for their tested applications. Similarly, Pacer

also reports the average of 1.86x overhead at the 3% sampling frequency.

DataCollider [78] and RaceZ [184] avoid code instrumentation and thus incur a very low

overhead, but suffer from low detection coverage. DataCollider [78] makes use of hardware

debug breakpoints. After sampling a code/memory location, it sets a data breakpoint and

inserts a time delay. A trap during this delay indicates a conflicting access from another

thread. Though longer timing delays increase the likelihood of overlapping data races, they

also increase the overhead. In addition, hardware restrictions limit the number of concur-

rently monitored memory locations to four in the latest x86 hardware [101].

RaceZ leverages Intel’s PEBS to sample memory accesses. However, due to its reliance on the

inefficient Linux PEBS driver, RaceZ has to use a low sampling frequency for performance,

thereby compromising the detection coverage. RaceZ also attempts to reconstruct unsampled

memory accesses, but its scope is limited to a single basic block. This work shows that

ProRace has much less overhead, but detects significantly more data races compared to

RaceZ.

Another line of work takes a hybrid static-dynamic approach. RaceMob [111], a recent

low-overhead solution, employs static analysis [204] to compute potential data races, and

crowdsources runtime race checks across thousands of users. To limit the overhead each

user may experience, RaceMob requires a large number of runs to distribute checks, and the

number of runs required depends on the precision of the static analysis. Elmas et al. [76] and

Choi et al. [58] are other examples that make use of static data race analysis to reduce runtime

cost. In spite of its benefits, static analysis often suffers from precision and scalability issues

for large-scale applications, and the recompilation requirement is often not a viable option

in production settings.

62 Chapter 4. Practical Data Race Detection for Production Use

We design ProRace (Chapter 4), a new practical sampling-based data race detector for

production runs. It is lightweight, minimally affecting the application execution; transparent,

requiring neither recompilation nor static analysis; and effective, ensuring high race detection

coverage.

It consists of online program tracing and offline trace-based data race analysis. Though

offline analysis is required, the principal advantage of It is that very low runtime overhead

of the online part enables It to monitor real-time, interactive, or internetworked applications

at nearly full speed.

It makes use of the hardware PMU in commodity processors to monitor an unmodified pro-

gram at a very low overhead. To be specific, It samples memory accesses using Intel’s Precise

Event Based Sampling (PEBS) [99]. It’s newly designed PEBS driver avoids unnecessary

kernel-to-user copying and sampled data processing, reducing overhead by more than half

compared to the latest Linux PEBS driver. This allows It to take much more samples for a

given performance budget, enhancing its detection coverage.

During the offline phase, It reconstructs unsampled memory accesses to overcome the in-

herent limitation of sampling and to increase data race detection coverage further. The key

idea is to replay the program from each sample and reconstruct the addresses of other mem-

ory instructions. Over the sampling, PEBS provides not only the sampled instruction but

also its architectural execution context (e.g., register states) at sample time. It re-executes

the program binary starting from each sampled instruction with the register states, and

re-calculates the addresses of unsampled memory operations while emulating register and

memory states.

Furthermore, to recover more memory accesses around each sample, It collects the complete

control-flow trace using Intel’s Processor Trace (PT) [100], a new feature in the Intel proces-

4.1. Introduction 63

sor’s PMU, at runtime. The control-flow information guides which path to take during the

offline replay, enabling It to reproduce many other unsampled memory operations preceding

and following each sample along the observed program path.

Finally, It analyzes the recovered memory trace and the synchronization trace, to detect

data races using the happens-before based race detection algorithm [79].

This work makes the follwing contributions:

• ProRace presents a lightweight, transparent, and effective data race detector that can be

easily deployed to monitor production runs.

• ProRace proposes a new methodology to reconstruct unsampled memory addresses using

the control-flow trace collected at runtime. To the best of our knowledge, ProRace is the

first software scheme that demonstrates how commodity hardware support for control-flow

tracing can be used to enable the forward and backward reconstruction of unsampled memory

trace. The proposed solution can benefit future research on runtime monitoring beyond race

detection.

• This paper describes a PEBS driver that is many more efficient than the state-of-the-art

Linux PEBS driver.

• The experiments using production software including apache and mysql show that ProRace

can detect significantly more races than RaceZ, a PEBS based race detector, at a much lower

overhead.

64 Chapter 4. Practical Data Race Detection for Production Use

4.2 Overview

The goal of ProRace is to provide lightweight yet effective race detection for practical use in

a production environment. We envision a production environment similar to Google/Face-

book’s real-world datacenter in which various traces of production applications are already

collected for monitoring purposes, and dedicated analysis machines exist in the datacenter to

process the collected trace [110, 168]. In such environment, runtime monitoring overhead is

much more critical concerns than the size of trace and offline analysis overhead. Production

and analysis machines share a separate network, and thus writing a trace has a minimal

impact on the QoS of production applications that use another network. Analysis machines

can periodically process the trace to delete the ones analyzed in prior periods.

Hardware & OS

Application
Binary

Library

PT
Control Flow

Trace

PEBS Memory Trace

& Arch. Status

Sync. Ops
Trace

Decode &
Synthesis

Memory Ops
Reconstruction

(Section 5)

Extended

Memory

Trace

Data Race
Detector

Data
Race

Report

Section 4.1

Runtime Offline

Section 4.2

Section 4.3

Figure 4.1: Overview of the ProRace Architecture.

Figure 4.1 shows an overview of ProRace’s two-phase architecture: online program tracing

and offline data race detection. The online stage leverages the hardware PMU to trace a

program execution at low overhead. Specifically, PEBS is used to collect the sampled memory

access trace. PEBS provides both the sampled instruction and the architectural execution

context (e.g., register states) at the sample time. PT is used to obtain the complete control-

flow trace. The online stage also tracks the synchronization operations for later use in data

race detection.

The offline stage first combines the memory access and control flow traces into a time-

4.3. Lightweight Program Tracing 65

synchronized trace. Next it reconstructs unsampled memory operations. This is the critical

step that allows ProRace to achieve higher detection coverage than other sampling-based

approaches. Using the sampled instruction, register states, and control-flow information,

ProRace replays the program and recomputes the addresses of unsampled memory accesses

around each sample. The unsampled memory instructions whose target addresses can be

reconstructed during this step are included in an extended memory access trace. Combin-

ing this with the synchronization trace, ProRace performs happens-before based data race

detection using the FastTrack [79] algorithm to detect data races.

ProRace improves existing PMU-sampling-based data race detection in three ways. First,

ProRace presents a PEBS driver much more efficient than the latest Linux PEBS driver.

The improved design allows ProRace to take more samples for a given performance budget,

enhancing its race detection coverage. Second, ProRace recovers unsampled memory ac-

cesses. ProRace re-executes the program binary starting from each sampled instruction with

the PEBS-provided register states reconstructing the unsampled memory accesses while em-

ulating register and memory states. Third, ProRace uses the PT-collected control-flow trace

to choose which path to take during the offline binary re-execution. This permits ProRace to

recover many other unsampled memory operations around each sample along the observed

program path.

4.3 Lightweight Program Tracing

This section presents how ProRace traces a program execution at low overhead. At runtime,

ProRace collects three type of traces: memory access samples, control-flows, and synchro-

nization operations.

66 Chapter 4. Practical Data Race Detection for Production Use

PMU

DS Area

Record 0

Record 1

Record n

perf.data

Hardware

+

2

1

OS

perf tool

3

4

Wall clock time

sample period

…

Interrupt Handler

Ring Buffer

Figure 4.2: The vanilla Linux PEBS driver

PMU

DS Area

Record 0

Record 1

Record n

perf.data

Hardware 1

OS

perf tool 4

Interrupt Handler

Ring Buffer

Figure 4.3: The ProRace PEBS driver

4.3.1 PEBS-based Memory Access Sampling

ProRace samples memory accesses using PEBS [99]. PEBS users can specify types of events

to monitor such as retired memory instructions and taken branches, as well as whether

to sample user-level or both user- and kernel-level events. ProRace tracks only the user-

level retired load and store instruction events because of its interests in application memory

accesses for data race detection.

PEBS enables users to set a sampling period k for each monitored event type. After every k

events of a given type, PEBS delivers the sampled event along with its architectural execution

context at the sample time such as register values, the time stamp counter (TSC)1, but not

memory states, to the corresponding listener.

Care must be taken when choosing the sampling period. Small values of k yield more samples

but higher performance overhead. In addition, samples may be dropped if the kernel finds
1In old Intel processors, the PEBS samples did not include the time stamp, and the OS interrupt handler

logged its wall-clock time during the processing. As a result, there was a small timing gap between the actual
hardware sample time and the interrupt handler logging time. However, this is no longer an issue in recent
processors such as Skylake and Broadwell.

4.3. Lightweight Program Tracing 67

that too much time has been spent on the interrupt handling.

The Current Linux PEBS Driver

While the previous version of the Linux PEBS driver delivered every event using an overflow

interrupt, a mechanism called Debug Store (DS) was added in the 4.2 Linux kernel to reduce

the interrupt frequency. Figure 4.2 illustrates the interactions between the hardware PEBS,

the OS interrupt handler, and the user-level perf tool.

DS permits PEBS to automatically store samples in a kernel-space buffer referred to as the

DS save area whose default size is 64 KB (step ¬). The interrupt is delivered only when the

DS buffer is nearly full, reducing the frequency of interrupts.

On each interrupt, the OS interrupt handler processes the raw ‘PEBS events’, adding ad-

ditional information such as wall-clock time, sample size, and sample period (step ­), and

yielding ‘perf events’. It then copies the perf events into another buffer, a ring-buffer shared

with the user-land perf tool, resetting the DS save area for further PEBS events (step ®).

Finally, the perf tool polling on the ring-buffer commits the perf events to a file (step ¯).

Since the user-land perf tool may be configured to monitor incoming data from different cores,

and store them into the same file, the events in the file may not be ordered sequentially. Thus,

it reads the entire file later before its exit to sort all events and include other information.

Though DS support reduces the runtime overhead in using PEBS compared to the naive

interrupt-per-sample mechanism, our experimental results show that a sampling period more

frequent than 10K-100K will still incur slowdowns approaching 10%.

68 Chapter 4. Practical Data Race Detection for Production Use

ProRace’s New PEBS Driver

ProRace presents a new PEBS driver that significantly lowers the performance overhead

in using PEBS. The new design makes it possible to collect more samples for the same

performance cost. Figure 4.3 shows our new design incorporating the following changes:

First, ProRace eliminates expensive kernel-to-user copying by maintaining a single ring buffer

named aux-buffer. The ring buffer is partitioned into multiple 64 KB segments. Initially,

ProRace provides PEBS with one segment of the ring buffer; when PEBS finds it full and

raises an interrupt, the OS interrupt handler simply proffers the aux-buffer’s next available

segment. The user-level perf tool eventually comes into play, dumping the segment filled

with records into the file and making it available for further tracing. In this design, the

interrupt handler need only swap the segment locations for PEBS similar to conventional

double-buffering. The Linux driver for (newer) Intel’s PT incorporates a similar single buffer

design, but it is not used in the PEBS driver.

Second, ProRace skips data processing irrelevant to data race detection during PEBS sam-

ple handling. Specifically, ProRace does not add the metadata information (step ­ in

Figure 4.2).

Lastly, given a sampling period P, the sampling period is initially set to a random value

between one and P. At the first event the sampling period is changed to P. This enables

ProRace to start sampling at a random location per thread on each run, increasing its

sampling diversity to ultimately improve its race detection capability.

Experimental results in Section 4.6.2 show that the new driver reduces runtime overhead

significantly, making it possible for applications to use a small sampling period.

4.3. Lightweight Program Tracing 69

4.3.2 PT-based Control-flow Tracing

ProRace uses Intel’s PT [100] to collect program control flows. PT is an extension to the

PMU architecture for Intel’s Broadwell and Skylake processors. At runtime, PT records

the executed control-flow of the program in a highly-compressed format. Unlike event-

based PEBS, PT keeps track of complete control-flow information including (indirect) branch

target and call/return information without loss of precision. Nonetheless, PT incurs only

a very small overhead because the tracking is done off the critical path and by hardware.

This is significant improvement over previous (relatively) high overhead and limited tracking

features such as Branch Trace Store (BTS) and Last Branch Record (LBR) in old processors.

ProRace’s PT driver also implements the code-region based control-flow tracing feature. The

PT hardware allows users to specify four memory regions of interest from which to collect

the program control-flow. ProRace is configured to monitor only main executable memory

regions because of its interests in detecting application data races (assuming no Just-In-Time

compilation). Depending on use cases, dynamic library code regions may be included, or

static library code regions may be excluded, by examining the symbol table.

The memory access trace collected by PEBS and the control flow trace collected by PT can

be easily combined for offline processing because both traces include the per-core TSC value.

4.3.3 Synchronization Tracing

ProRace uses happens-before based data race detection [79] for precision (no false positives),

but offloads the expensive vector-clock processing to the offline phase. At runtime, ProRace

collects per-thread synchronization logs along with its type (e.g, lock/unlock), variable (e.g.,

lock variable address), and TSC value. The per-thread logs can be easily synchronized offline

because recent processors support invariant TSC [86] that is synchronized among cores and

70 Chapter 4. Practical Data Race Detection for Production Use

Instructions

Over PT Trace

Path

Forward

Replay

Backward

Replay

1 2

3

4

5

6

PEBS
Sample

Figure 4.4: Forward and Backward Replays.

runs at a constant rate.

For transparency, ProRace uses LD_PRELOAD to redirect standard pthread functions to

ProRace instrumented functions. In addition, ProRace tracks dynamic memory alloca-

tion/deallocation. Suppose that one object is freed, and another object happens to be allo-

cated to the same memory location. There can be no race condition between two different

objects, but a data race detector may falsely report one as their memory addresses are the

same. To avoid this kind of false positive, many data race detection tools keep track of

malloc and free, and so does ProRace.

4.4 Recovering Unsampled Memory Accesses

ProRace leverages PMU-based instruction sampling to collect memory accesses. As with all

the sampling-based race detectors, it might end up with false negatives due to unsampled

memory accesses. To overcome the inherent limitation of sampling, ProRace reconstructs

unsampled memory accesses offline by re-executing the program binary around each PEBS-

sampled instruction with forward replay (Section 4.4.1) and backward replay (Section 4.4.2).

In addition, ProRace leverages full control-flow information recorded by PT to guide which

path to execute during both replays.

4.4. Recovering Unsampled Memory Accesses 71

For each PEBS sample, ProRace alternates forward and backward replays following the

observed program path as shown in Figure 4.4. Basically, the forward replay corresponds to

the re-execution of the unsampled instructions between the current and the next samples,

while the backward replay to that of those preceding the current sample for dealing with

the instructions missed by the forward replay. ProRace repeats the replays until there is no

more PEBS sample to be processed. The rest of this section details the path-guided binary

re-execution and how it can reconstruct unsampled memory accesses.

4.4.1 Forward Replay

When an event is sampled, PEBS not only offers precise instruction location of the event, but

also provides the architectural states such as the entire register file contents at the sample

time. By leveraging such execution contexts as inputs, ProRace re-executes the program

binary from each PEBS sample point over the program path reconstructing the addresses of

the memory operations. Such path-guided binary re-execution is called forward replay.

For each PEBS-sampled instruction, ProRace restores the register file contents, and attempts

to execute every following instruction over the program path until the next PEBS-sample

point is reached. For each instruction being executed, ProRace checks if the operands are

available at the time of the instruction execution. For this purpose, ProRace keeps track of

the architectural status by bookkeeping all the register and memory values in a special hash

table called program map.

ProRace simply treats every memory location as unavailable in the first place. The desti-

nation register of load instructions becomes unavailable when they read from unavailable

memory locations. If all the operands of an instruction being replayed are not available,

ProRace simply skips the instruction setting all its outputs as unavailable. Otherwise,

72 Chapter 4. Practical Data Race Detection for Production Use

ProRace executes the instruction updating the resultant architectural status such as reg-

isters and memory locations in the program map. Note that the memory emulation requires

a special care for correctness, and thus it is used in a limited fashion. By default, when any

available register is written to a certain memory location, ProRace bookmarks the value for

a later access during the replay in the program map and treats the location as available.

However, when ProRace hits a system call or an unavailable instruction, it conservatively

invalidates emulated memory states. Moreover, the memory emulation might lead to incor-

rect memory address reconstruction after the racy access (i.e., conflicting write) from other

threads. To address this problem, when a race is detected on the emulated memory location

in a later phase, ProRace invalidates the memory location and regenerates the trace from

that racy point (i.e., conflicting read) with the unavailable register value. Thus, ProRace is

safe as it never uses racy memory location during the trace regeneration.

While the forward replay progresses further, more registers become unavailable by the load

instructions reading from unavailable memory locations. Thus, at some point, ProRace may

end up with a situation where no register is available. One might think that the forward

replay cannot proceed anymore because no more instruction can be executed due to the

lack of available operands. However, continuing the replay even across the point where

all registers become unavailable can capture some unsampled memory accesses that would

otherwise be impossible to reconstruct. For example, if memory instructions leverage PC-

relative instructions, e.g., mov offset(%rip) in x86-64, ProRace can figure out the memory

location by adding the offset to %rip which is always available as an instruction pointer (PC).

By taking advantage of the full control-flow trace recorded by PT, ProRace performs the

forward replay across basic block boundaries until it reaches the very next PEBS-sampled

instruction.

Figure 4.5 shows how ProRace reconstructs many unsampled memory accesses using forward

4.4. Recovering Unsampled Memory Accesses 73

0: mov %rax,0x18(%rsp)
1: movslq 0x0(%rbp,%rbx,4),%rdx
2: mov (%r15,%rbx,8),%rsi
3: mov 0x8(%rsi),%rax
4: mov %r10,%rdi
5: mov 0x8(%r14),%rax
6: add %rax,%r13
7: xor %eax,%eax
8: mov %r13,0x8(%r14)
9: mov 0x18(%rsp),%rcx
10: mov (%r15,%r12,8), %rsi

Figure 4.5: Example for Forward and Backward Replay

replay with a real-world example extracted from Apache. Suppose ProRace sampled the mov

at a line 0 and recorded the register states at the sample time. After restoring all the register

values, ProRace performs the forward replay for the following instructions. Here, the forward

replay can successfully reconstruct the memory addresses of the instructions at line 1, 2, 5,

8, 9 and 10 since their registers used for the address calculation are all available.

However, the memory address of the instruction at line 3, i.e., mov 0x8(%rsi),%rax, cannot

be reconstructed because %rsi reads from memory location that is currently unavailable by

the instruction at line 2, i.e., mov (%r15,%rbx,8),%rsi. To solve this problem, ProRace

performs the backward replay right after the forward replay.

4.4.2 Backward Replay

Forward replay cannot reconstruct the address of memory operations if the register operand

of memory instructions is unavailable, or if the address is not obtained by PC-relative ad-

dressing. This motivates ProRace to leverage two forms of backward replay to reconstruct

the memory addresses skipped by the forward replay: backward propagation and reverse

execution.

74 Chapter 4. Practical Data Race Detection for Production Use

Backward Propagation

The key observations is that many of unavailable registers can be recovered by consulting

the next PEBS-provided execution contexts where all the register values are available. More

precisely, the backward replay can reconstruct the memory access whose register operand

became unavailable during the forward replay, provided the register has not been updated

before the next PEBS-sampled instruction. Fortunately, according to empirical results, the

registers used for memory address calculation often have a long live-range [140] after they

become unavailable during the forward replay.

In light of this, ProRace back-propagates all the register values restored at the very next

PEBS sample to the instructions where each register has been most recently updated. For

this purpose, the forward replay marks such instructions checkpointing the register file at

the time the register is updated. In addition, the forward replay keeps track of the youngest

one among the instructions as an entry point of the later backward replay. Once all the

register back-propagation is performed, ProRace simply jumps to the youngest instruction

and resumes the re-execution there. In a sense, the backward replay can be considered as

yet-another forward replay starting from a different location, i.e., the youngest instruction,

not the current PEBS-sampled instruction.

Figure 4.5 also shows how the backward replay reconstructs an unsampled memory access

that the forward replay cannot deal with. Suppose ProRace sampled the instruction at

line 10. This allows ProRace’s backward analysis to restore the value of %rsi, which is not

possible for the forward replay to deal with. In this way, ProRace can successfully reconstruct

the memory address of the instruction at line 3 using the restored register.

4.5. Implementation 75

Reverse Execution

The second type of ProRace’s backward replay is based on reverse execution [52, 63, 125].

In its simplest form such as register-to-register copy, the reverse execution can restore both

register values based on the equality as long as at least one of them is known. It is also pos-

sible to restore the register used as an operand of arithmetic instructions provided the other

operand (register) is known during the backward replay. For example, the reverse execution

can restore the %rdx operand of an instruction (%rax = %rdx + $offset), if the other

operand (%rax) is already available by subtracting the $offset from %rax. ProRace’s back-

ward replay engine currently supports reverse execution of integer arithmetic instructions

such as additions and subtractions.

Note that once an unavailable register is restored by the reverse execution, ProRace can

restore others that have a dependence on that register. As PT provides the program path,

ProRace only needs to track the data dependencies, and triggers forward and backward

replays iteratively until they reach the fixed point [140] where no further restoration is

found. This simple yet effective technique allows the backward replay to go backward further

possibly reconstructing more unsampled memory accesses.

4.5 Implementation

The online tools for ProRace consists of two parts: kernel-level PMU drivers and user-land

perf tool. The new PEBS driver is implemented based on the Linux kernel version 4.5.0. The

four PT hardware filter is added to collect branch traces only from the regions of interest.

The offline tool is comprised of four parts: 1) the dynamic standard C library (glibc version

2.21) to intercept synchronization and memory allocation operations; 2) the modified perf

76 Chapter 4. Practical Data Race Detection for Production Use

Thread Workload
apache 14 ApacheBench. 100K requests,

8 clients, 128KB file size
cherokee 38 ApacheBench. 100K request, 8 clients,

128KB file size
mysql 20 SysBench. 10K requests, 32 clients,

10 million records
memcached 5 YCSB. 200K requests,

all ABCDE workload
transmission 4 1.48GB file

pfscan 4 6.8GB file
pbzip2 4 1GB file
aget 4 2.1GB file

Table 4.1: Evaluation Setup

tool to decode raw PT data; 3) the forward-and-backward replay engine that reconstructs

memory traces, implemented using Intel’s PIN [132] dynamic binary instrumentation tool;

and 4) the FastTrack-based data race detector.

The PMU drivers and perf tool includes 4579 lines of C and assembly codes. The offline

tools contain 7024 lines of C/C++ code, 793 lines of perl code, 105 lines of python code,

and 623 lines of bash code.

4.6 Evaluation

This section evaluates ProRace’s runtime overhead, trace size, data race detection effective-

ness, memory reconstruction ratio, and offline analysis overhead.

4.6.1 Methodology

We ran experiments on a 4.0GHz quad-core Intel Core™i7-6700K (Skylake) processor, with

16GB of RAM, running Gentoo Linux Kernel 4.5.0. ProRace was evaluated using (1) PAR-

SEC benchmark suite; and (2) seven real-world applications including apache web server,

4.6. Evaluation 77

19.869 7.762 16.1 25.141 6.536 24.695 7.587 15.969 7.525.477 7.089 5.403

0

1

2

3

4

5

N
or
m
al
ize

d	
O
ve
rh
ea
d

10 100 1000 10000 100000

Figure 4.6: Performance overhead for PARSEC benchmarks

9.13

0
1
2
3
4
5

N
or
m
al
ize

d	
O
ve
rh
ea
d

10 100 1000 10000 100000

Figure 4.7: Performance overhead for real applications

mysql database server, cherokee web server, pbzip2 parallel compressor, pfscan parallel file

scanner, transmission BitTorrent client, and aget parallel web downloader. We use simlarge

input for all the applications in the PARSEC suite and set the thread number to be four

(equal to the number of cores). The evaluation setup for the real-world applications is listed

in Table 4.1. All network and database applications were tested using the local area network

which has a gigabit connection.

For data race detection analysis, ProRace was evaluated using 12 data race examples in

real-world applications from previous study [226]. The 12 cases include three data races in

apache, three races in mysql, two races in cherokee, two races in pbzip2, one race in pfscan,

and the last one in aget. Some other cases in [226] are excluded because they do not include

a data race, or are not well documented.

78 Chapter 4. Practical Data Race Detection for Production Use

1

10

100

1000

10000

Tr
ac
e	
Ge

ne
ra
tio

n	
(M

B/
s)

10 100 1000 10000 100000

Figure 4.8: Space overhead for PARSEC benchmarks

0.01
0.1
1

10
100

1000

Tr
ac
e	
Ge

ne
ra
tio

n	
(M

B/
s)

10 100 1000 10000 100000

Figure 4.9: Space overhead for real applications

4.6.2 Performance Overhead

Figure 4.6 shows the performance overhead of ProRace for PARSEC benchmarks, with the

varying PEBS sampling period from 10 to 100K. As expected, a small sampling period results

in more samples, leading to high overhead. The geometric mean of performance overhead

over all 13 applications in the PARSEC suite goes up from 4%, 7%, 31%, 2.85x, to 7.52x

for the decreasing sampling period of 100K, 10K, 1K, 100, and 10, respectively. There are

four applications bodytrack, canneal, dedup, streamcluster that incurs small 5-9% runtime

overhead for the sampling period of 1K. Setting the sampling period to 10K makes 12/13

applications’ overhead less than 10%. The user of ProRace can perform similar sensitivity

analysis to find the lowest sampling period, given a performance overhead budget. Assuming

the 10% budget, our experiment shows that the sampling period should be set between 1K

and 10K for such CPU-intensive applications.

4.6. Evaluation 79

49.92 7.8

PARSEC

7.52

Real	Applications

0

1

2

3

4

5

N
or
m
al
ize

d	
O
ve
rh
ea
d

Vanilla ProRace

Figure 4.10: Performance overhead comparison

Figure 4.7 shows the performance overhead of ProRace for real world applications, with

the varying PEBS sampling period from 10 to 100K. Some applications including mysql,

transmission, pfscan, pbzip2 showed a similar trend of high overhead for a small sampling

period. However, the other applications shows negligible (<1%) overhead even with the

very small sampling period of 10. The applications belonging to this second category are

indeed network I/O dominant applications (with not much file I/O). The runtime overhead

of ProRace can be hidden by network I/O. However, ProRace apparently cannot hide its

overhead with file I/O well because it has to perform many writes to a file during tracing.

On geometric average, the runtime overhead goes up from 0.8%, 2.6%, 8%, 34%, to 80% for

the decreasing sampling period of 100K, 10K, 1K, 100, and 10, respectively. Assuming the

10% budget, our experiment shows that the sampling period may be set to smaller than 1K

(even 10) for real (I/O-bound) applications.

The next study focuses on evaluating the efficiency of ProRace’s new PEBS driver over the

vanilla Linux driver. Figure 4.10 shows side-by-side runtime overhead comparing for each

sampling period from 10 to 100K. For clarity, the figure only presents the geometric mean

of PARSEC and real applications, respectively. As can be seen in the figure, ProRace’s

new driver outperforms the vanilla Linux driver. For an extreme case of the period of 10,

80 Chapter 4. Practical Data Race Detection for Production Use

the vanilla driver incurs 50x slowdown, but ProRace shows 7.5x slowdown for PARSEC

benchmarks. As another data point, with relatively large period of 100K, the vanilla driver

incurs 20%, whereas the ProRace reports only 4% slowdown for the same benchmarks.

The overhead of RaceZ can be estimated to be around the same because it depends on the

stock Linux driver. RaceZ also reports similar performance figures: 2.8% for the sampling

period of 200K and 30% for 20K. The experimental result shows that ProRace has much less

overhead than RaceZ. For example with the period 1K, RaceZ results in a 3.4x slowdown,

whereas ProRace only incurs 31% overhead for the PARSEC suite.

As the last experiment for performance evaluation, we study a breakdown of runtime over-

head among PEBS overhead, PT overhead, synchronization tracing overhead. We find that

the PT overhead is very small contributing only 3% slowdown at most, respectively. The

results show the benefits of PT’s hardware supports for trace compression and memory range

based filtering. Similarly, the synchronization tracing overhead also has a very small impact

on performance (<1%). Finally, the PEBS overhead dominates the overall ProRace perfor-

mance ranging from 97% to 99%. The result makes sense because PEBS events (memory

operations) are much more frequent than PT records (branches), and PEBS events require

rich information collection such as register states.

4.6.3 Trace Size

ProRace uses PEBS and PT to collect memory access samples and control-flow information

at runtime. Figure 4.8 shows the trace size generated per a second during program execution

of PARSEC benchmarks, with the varying PEBS sampling period from 10 to 100K. The PT

trace size remains constant across different PEBS configurations, and its size is measured

before decompression. As PT records are highly compressed by hardware, the PEBS trace

4.6. Evaluation 81

Bug manifestation Access Type RaceZ ProRace
Period:100 Period:1000 Period:10000 Period:100 Period:1000 Period:10000

apache-21287 double free memory indirect 6 0 0 50 3 0
apache-25520 corrupted log register indirect 14 3 0 57 52 15
apache-45605 assertion register indirect 0 0 0 60 11 1
mysql-3596 crash memory indirect 0 0 0 5 1 0
mysql-644 crash memory indirect 20 1 0 21 6 1
mysql-791 missing output memory indirect 12 0 0 59 2 0
cherokee-0.9.2 corrupted log register indirect 43 11 2 63 29 8
cherokee-bug1 corrupted log register indirect 7 3 0 57 19 5
pbzip2-0.9.4-crash crash memory indirect 0 0 0 0 0 0
pbzip2-0.9.4-benign - pc relative 2 0 0 100 100 100
pfscan infinite loop pc relative 0 0 0 100 100 100
aget-bug2 wrong record in log pc relative 0 0 0 100 100 100

(average) 8.7 1.5 0.2 56 35.3 27.5

Table 4.2: Data Race Detection

dominates the overall trace size (∼99%). As expected, a small sampling period results in

more samples, leading to large trace size. Note that the y-axis is logarithmic. On geometric

average, the trace size per second (in MB/s) goes up from 26, 69, 321, 597, to 463 for the

decreasing sampling period of 100K, 10K, 1K, 100, and 10, respectively. One outlier is that

the trace size for the sampling period of 10 turns out to be less than that of 100 (though it

incurs higher overhead as shown in the above experiment). Further investigations show that

with a very low sampling period, though the hardware may sample more, these samples may

be dropped if the kernel finds that too much time has been spent on the interrupt handling.

This implies that there is no benefit of setting the sampling period smaller than a certain

(application-specific) threshold.

Figure 4.9 shows the trace size per second (in MB/s) for real-world applications, with the

varying PEBS sampling period from 10 to 100K. The result shows the similar trend but

much less space overhead compared to PARSEC benchmarks. On geometric average, the

trace size per second (in MB/s) goes up from 0.2, 1.2, 7.9, 40.8, to 99.5 for the decreasing

sampling period of 100K, 10K, 1K, 100, and 10, respectively.

82 Chapter 4. Practical Data Race Detection for Production Use

4.6.4 Race Detection

To evaluate the ProRace’s effectiveness in data race detection, we used 12 real-world data

race bugs [226]. For each race bug, we fed a buggy input as documented in the previous

study [226], and did not control the thread schedules. We collected 100 traces for each

PEBS sampling period: 100, 1K and 10K; and counted how many times ProRace can report

the data race among the 100 traces. In effect, the resulting number can be regarded as an

approximate detection probability. For comparison, we also measured the number of data

races detected by RaceZ. Note that RaceZ enables memory trace reconstruction within one

basic block, and for backward replay, it only supports a trivial form of backward propagation

within that single basic block. On the other hand, ProRace includes PT-based full forward-

and-backward replay across basic blocks; and supports backward propagation and reverse

execution based backward replay.

Table 4.2 shows the summary of ProRace’s data race detection effectiveness. The first column

corresponds to the application name and its bug-tracking number, if exists, while the second

refers to how the bug manifests during a program execution. The third column describes

its characteristics that we analyzed manually. The next six columns show the number of

traces where RaceZ and ProRace detect data races out of 100 traces (i.e., representing the

detection probability) for each sampling period of 100, 1K and 10K, respectively.

It is important to note that ProRace does detect a data race. As expected, in general, the

detection probability increases as the sampling period decreases. On the other hand, some

race bugs in pbzip2-0.9.4, pfscan, and aget-bug2 are detected every time (100%). Examining

the results, we see that the address of the racy variable uses PC-relative addressing in the

program. Thus, reproducing the address of such racy memory accesses is easy because the

%rip register is always available as PC, i.e., an instruction pointer. Here, to detect such

4.6. Evaluation 83

1

10

100

1000

N
or
m
al
ize

d	
M
em

or
y

Re
co
ve
ry
	R
at
e

Basicblock	Replay Forward	Replay Forward/Backward	Relpay

Figure 4.11: Memory Recovery Ratio

1

100

10000

O
ve
rh
ea
d	
pe

r	O
ne

	S
ec
on

d	
Pr
og
ra
m
	E
xe
cu
tio

n

PT	Decoding Trace	Reconstruction	 Data	Race	Detection	

Figure 4.12: Offline analysis overhead

race bugs, ProRace only needs to know what basic blocks contain the racy memory accesses,

which is obtained by PT’s control-flow trace, without understanding the PEBS-provided

execution contexts.

As can be seen, for a given sampling period, ProRace detects many more data races than

RaceZ. For example, ProRace improves the detection probability from 0.2% to 27.5% on

average (arithmetic mean) for the sampling period of 10K, which only incurs 2.6% runtime

overhead (Figure 4.7). For the low sampling period of 100, ProRace can detect almost all

cases (11/12), but RaceZ misses many. It also turns out that RaceZ cannot effectively detect

races on simple PC-relative addressing cases because RaceZ requires sampling at the exact

basic block containing the racy access. Overall, the results show that ProRace’s PT-guided

forward-and-backward replays are very helpful in detecting data races.

4.6.5 Memory Operation Reconstruction

ProRace leverages the forward and backward replays to reconstruct unsampled memory

operations. RaceZ also tries to recover other memory accesses, but its scope is limited to

one basic block that the sampled instruction belongs to. This section shows the benefit of

using ProRace’s forward and backward replays in terms of the memory reconstruction ratio.

84 Chapter 4. Practical Data Race Detection for Production Use

Figure 4.11 shows the memory instruction recovery ratio (i.e., the number of recovered and

sampled memory operations normalized to the number of original PEBS-sampled instruc-

tions) for the six buggy applications with the sampling period of 10K.

The first left-most bar shows how many more memory operations can get reconstructed

within one basic block (equivalent to RaceZ’s approach). The results show that the basic-

block granularity recovery scheme can reconstructs only 1.3x-11.9x memory operations, with

the average (arithmetic mean) of 5.4x ratio. Upon further investigation, we found out that

apache, which shows a good 9.53x recovery ratio, has a lot of simple memory instructions

that use PC-relative addressing in a basic block. However, that was not the case for other

applications like mysql, which shows only a 1.6x recovery ratio.

The next two bars show the benefit of forward replay only and forward+backward replays in

ProRace. On average, the forward replay recovers 134x more memory accesses compared to

the baseline (PEBS samples). The backward replay provides additional benefits, and when

the backward replay is combined with the forward replay, they achieve a higher recovery

ratio of 164x on average. The results shows that ProRace’s race detection coverage (which

is approximately proportional to the number of recovered and sampled memory operations)

is more than 30 times better than RaceZ’s limited basic-block level reconstruction.

4.6.6 Offline Analysis Overhead

Lastly, Figure 4.12 shows the offline analysis overhead when traced with the sampling period

of 10K. The results shows that to analyze one second of program execution, offline analysis

takes 54.5 seconds for apache and 35.3 seconds for mysql. Pfscan shows the worst analysis

overhead as it generates a very large trace for a short amount of program execution time.

We also present the breakdown of offline analysis overhead, including 1) PT trace decoding;

4.7. Summary 85

2) memory trace reconstruction; and 3) data race detection, each of which takes 33.7%,

64.7%, and 1.6% of the total offline analysis cost, respectively (note the logarithmic y-axis).

Note that we conducted this experiment using a single machine. However, the PT trace de-

coding and trace reconstruction parts, which contributes >98% of the total cost, can be easily

parallelized. PT records are independent each other, and the forward-and-backward replay

can be also performed region by region, making it suitable for using multiple analysis ma-

chines. Moreover, the result includes the overhead of PIN-based dynamic binary instrumen-

tation. The same features can be implemented using static instrumentation tools [116, 229]

for better performance.

4.7 Summary

In this chapter we repurpose PMU hardware, which is originally designed for performance

profiling (TS1), for lightweight data race detection (PS1). We presents ProRace, a novel

PMU sampling-based data race detector that can be deployed in production settings. Its new

kernel driver, that eliminates unnecessary copying and data processing, significantly lowers

the run-time overhead of using PEBS to sample memory accesses. Furthermore, ProRace

introduces a novel technique to reconstruct unsampled memory operations with the PT-

guided forward and backward replays, thereby enhancing the data race detection coverage.

The experimental results highlight ProRace’s high data race detection capability using the

12 real-world data race bugs. ProRace is published at [231].

Chapter 5

Memory Efficient Temporal Memory

Safety Solution for MPX

In previous chapters (Chapter 3 and Chapter 4), we discussed leveraging commodity hard-

ware to reduce run-time overhead of dynamic data race detectors. In this chapter, we focus

on memory safety bugs which are more common than data races and try to solve space

overhead problem of memory safety bug detectors (PS2). Memory safety bug often cause

security vulnerability, recent Intel processors support hardware-accelerated bound checks,

called Memory Protection Extensions (MPX). Unfortunately, MPX provides no temporal

safety. In this chapter, we presents BOGO, a lightweight full memory safety enforcement

scheme that transparently guarantees temporal safety on top of MPX’s spatial safety. In-

stead of tracking separate metadata for temporal safety, BOGO reuses the bounds metadata

maintained by MPX for both spatial and temporal safety. On free, BOGO scans the MPX

bound tables to invalidate the bound of dangling pointers; any following use-after-free error

can be detected by MPX as an out-of-bound error. Since scanning the entire MPX bound

tables could be expensive, BOGO tracks a small set of hot MPX bound table pages to check

on free, and relies on the page fault mechanism to detect any potentially missing dangling

pointer, ensuring sound temporal safety protection.

Our evaluation shows that BOGO provides full memory safety at 60% runtime overhead

and 36% memory overhead for SPEC CPU 2006 benchmarks. We also show that BOGO

86

5.1. Introduction 87

incurs a reasonable 2.7x slowdown for the worst-case malloc-free intensive benchmarks; and

moderate 1.34x overhead for real-world applications.

5.1 Introduction

Memory unsafe languages such as C/C++ are prone to bugs leading to memory safety

violations [192]. Spatial safety violation occurs when memory access is not within the object’s

bound (e.g., buffer overflow), while temporal safety violation1 happens when accessing a

deallocated object (e.g., use-after-free).

Many security breaches are caused by memory safety violations [5]. While buffer overflow

vulnerabilities have been exploited for return oriented programming [161] and other code

reuse attacks [44, 53, 197], use-after-free vulnerabilities have also been exploited to corrupt

control flow: e.g., virtual function table hijacking [175].

Keeping pace with a broad range of research, hardware support for security has been

adopted in mainstream commodity processors – notably, Intel’s Memory Protection Ex-

tensions (MPX) for hardware-accelerated bounds checking. MPX keeps track of per-pointer

bound metadata (the base and bound of heap/stack objects) in bound tables. On a pointer

dereference, MPX checks if the pointer value remains within the bounds, ensuring spatial

memory safety. Unfortunately, MPX does not support temporal memory safety. Thus, full

memory safety can only be achieved by augmenting MPX with a separate temporal safety so-

lution. However, existing solutions for temporal memory safety require their metadata track-

ing and checking. DangSan[199], DangNull[117], Undangle[49] and FreeSentry[225] maintain

designated data structures for temporal safety and do pointer nullification at the time of
1We use “temporal memory safety” and “no use-after-free vulnerabilities” interchangeably, though the

former subsumes the latter. The same is true for “spatial memory safety” and “no out-of-bound vulnerabil-
ities”.

88 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

free(). The dereference of a dangling pointer is discovered as a segment fault. CETS[145]

also maintains a separated metadata for each pointer and memory object. The detection

is achieved through explicit check. Simply combining existing temporal memory solutions

with Intel MPX would double the time and space overhead.

We propose a lightweight full memory safety enforcement scheme, BOGO (Chapter 5), that

works with MPX (Intel Skylake onwards). This work demonstrates a novel software solu-

tion that transparently extends MPX to support both spatial and temporal memory safety,

without additional hardware support or significant performance degradation.

The key insight to realize the “promotion” is that the MPX bound table can be searched

for dangling pointers to an object when it is freed. Since the bound table entry already

maintains the bound information for each pointer, dangling pointers can be identified by

checking for bounds enclosing the address being freed. For each dangling pointer p found, it

invalidates the bound information of the bound table entry, indexed by that pointer p. On

the later dereference of p (use-after-free), MPX instrumentation will find an invalid bound

(as a part of its bound checking), and raise an exception. In effect, it achieves temporal

safety by transforming it into spatial safety.

This approach relieves it of the burden to maintain and check a separate temporal memory

safety metadata, reducing time overhead and more drastically space overhead. it introduces

a new synergistic way to enforce spatial and temporal memory safety by repurposing one

for another. However, scanning the entire MPX bound tables on each free could lead to

significant performance overhead. it leverages a novel page-protection-based technique to

address this performance challenge. it tracks the working set of MPX bound table pages

and only searches those hot pages on free for performance. To track a dangling pointer

potentially in the rest cold pages, it makes the cold MPX bound table pages non-accessible.

Any following access to a cold page is always preceded by a page fault. its page fault handler

5.2. Overview of BOGO 89

scans the faulted MPX page and invalidates any dangling pointers therein, guaranteeing

soundness.

This work makes the following contributions:

• To the best of our knowledge, BOGO is the first temporal memory safety protection

solution that does not maintain its own metadata, but seamlessly reuses bound metadata

tracked for spatial memory safety.

• BOGO transparently provides an MPX-enabled binary with full memory safety without

application change or other hardware support.

• We implement llvm-mpx, an LLVM-based MPX pass, with sound bound checking opti-

mizations, outperforming existing MPX compilers.

• The experimental results show that BOGO can support full memory safety at comparable

(in many cases, better) runtime overhead and much less memory overhead, compared to the

state-of-the-art solutions.

• We stress-test BOGO with the worst-case malloc-free intensive benchmarks, and also

evaluate BOGO’s interoperability and scalability for real-world multithreaded applications.

5.2 Overview of BOGO

The goal of this project(BOGO) is to provide full memory safety on top of MPX-enabled

processors without significant overheads. With BOGO, users can buy such processors for

spatial memory safety, and get temporal memory safety (almost) free; hence relieving the

burden of the compiler and architectural support for temporal memory safety guarantee.

More precisely, this paper focuses on temporal memory safety for heap objects (use-after-

90 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

BTE[a]=..	

a=malloc()	 b=malloc()	 c=a	

1me	
Scan	ALL	BTPs	‘c’;	Inv(a);	Inv(c)	

*a	(MPX	excep1on)	

Check(a,	BTE[a])	BTE[b]=..	

free(c)	

BTE[c]=..	

Put(a)	
	

a=malloc()	 b=malloc()	 c=a	

1me	

Scan	HPQ	for	‘c’;	Inv(c)	

																		*a								(UAF	missed;		
							HPQ	{a,	c}					false	nega1ve)	

Pop(b);	Put(a);Check(a,	BTE[a])	Put(b)	

free(c)	

Pop(a);	Put(c)	
	

?:	Page	fault	of	BTP[?]						Put(?):	HPQ.insert(BTP[?])					Pop(?):	HPQ.evict(BTP[?])						Inv(?):	BTE[?]=invalid	

HPQ	{a}	
	

HPQ	{a,	b}	
	

HPQ	{b,	c}	
	

HPQ	{b,	c}	
	

(a)	

(b)	

Put(a)	
	

a=malloc()	 b=malloc()	 c=a	

1me	

Scan	HPQ	for	‘c’;	Inv(c)	

				*a	(MPX	excep1on)	
HPQ	{a,	c};	FAQ	{c}	

Scan	BTP[a]	for	FAQ,	i.e.,	‘c’;	Inv(a)	
Protect(BTP[b],	NO_RW)	

Pop(b);	Put(a);	Check(a,	BTE[a])	Put(b)	

free(c)	

Protect(BTP[a],	NO_RW)	
Pop(a);	Put(c)	

HPQ	{a}	
	

HPQ	{a,	b}	
	

HPQ	{b,	c}	
	

HPQ	{b,	c};	FAQ{c}	
	

(c)	

a	 b	 c	 a	

a	 b	 c	 a	

Figure 5.1: BOGO: FullScan/PartialScan and PageFaultScan
(a) FullScan; (b) PartialScan only; and (c) PartialScan and PageFaultScan. (b) misses the
use-after-free error, and (c) solves the problem with PageFaultScan. For brevity, (b) and

(c) omit the bound creation and propagation. A bold uparrow represents a BTP fault. Put
and Pop inserts/evicts a BTP to/from HPQ. Inv invalidates a BTE.

free), and BOGO in the current form does not provide temporal safety for stack objects

(use-after-return). Additional support required for stack objects is discussed in Section 5.6.

Threat Model and Assumptions. BOGO relies on MPX for spatial memory safety,

and adds temporal memory safety upon it. Therefore, BOGO assumes that underlying

MPX-enabled processors can be trusted, and there are no hardware security bugs in the

processor circuit fabrication [209, 220]. This work also assumes that adversaries cannot

corrupt the MPX metadata by using non-memory-safety related attacks such as row hammer

attacks [178, 200] or illegitimately having higher (root) privilege. Any attempts to corrupt

the MPX metadata by exploiting memory safety vulnerabilities will be detected by BOGO

itself. As BOGO relies on the soundness of MPX metadata, we further assume that MPX

instrumentation is applied to all the source codes when soundness is required.

Overview. BOGO takes binary compiled with MPX instrumentation and transparently

5.2. Overview of BOGO 91

achieves temporal memory safety by reusing MPX metadata. At a high level: On free

of a pointer p, it searches BTs for the entry whose bound overlaps with the object being

deallocated. The existence of such a BTE implies that another pointer, say q, also pointing

to the same object, becomes a dangling pointer. When found, it invalidates the metadata of

dangling pointers. Later dereference of pointer q will be checked by MPX (for the default

spatial memory safety), leading to an OutOfBound exception because of the invalidated bound.

The beauty of BOGO is that it enforces temporal memory safety by triggering the violation

of spatial memory safety. Users can differentiate temporal from spatial violations by checking

a special value in the bound register.

BOGO attempts to eliminate dangling pointers on free like the aforementioned pointer

graph-based temporal memory safety solutions. However, there is one big difference. BOGO

does not maintain additional metadata (e.g., pointer graph) for temporal memory safety.

Instead, it reuses MPX metadata as is, and scans the BTs to invalidate dangling pointers.

FullScan. Consider an example in Fig. 5.1(a). On free(c), a naive FullScan checks all

BTs, finds aliased pointer a, and invalidates BTE[a] so that later use of dangling pointer

a would result in an MPX exception. However, searching the whole MPX BTs can lead

to unacceptable performance degradation due to the large search space, thus care must be

taken to minimize the cost.

PartialScan. To bound the scan cost on free, BOGO tracks a small set of hot, recently

used BTPs (Bound Table Pages) using a page protection mechanism, keeps them in the Hot

BTP Queue (HPQ), and performs PartialScan that looks for dangling pointers only on the

hot BTPs in the current HPQ.

Fig. 5.1(b) shows an example. Suppose the bounds of pointers a, b, and c are stored in

different BTPs: BTP[a], BTP[b], and BTP[c]. Further assume that the size of HPQ is 2.

92 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

Each page fault on the first pointer access causes the corresponding BTP to be inserted into

HPQ. When HPQ becomes full on the BTP[c] page fault (at the statement c=a), BOGO

evicts the cold (least recently added) BTP[a] from the HPQ and inserts the hot BTP[c] into

the HPQ. Then, free(c) checks dangling pointers only against BTP[b] and BTP[c] in the

current HPQ, a small subset of all BTPs.

However, this PartialScan may lead to a false negative (i.e., missing a use-after-free error)

when a dangling pointer happens to be in a cold BTP. In Fig. 5.1(b), as BTP[a] is not in

HPQ, BTE[a] was not scanned/invalidated by free(c), even though a and c are aliased.

Thus, the following dereference of the dangling pointer, *a, remains undetected.

PageFaultScan. BOGO introduces PageFaultScan to guarantee sound temporal memory

safety. When a BTP is evicted from HPQ, BOGO marks the cold BTP not-readable and

not-writable so that the later access to the cold BTP can be trapped by a page fault. Note

that when a pointer is dereferenced, MPX always accesses its BTE for the spatial memory

safety check, resulting in a page fault. Meanwhile, on free, BOGO also tracks the freed

addresses in the Freed Address Queue (FAQ) if they are partially checked only over hot

BTPs: i.e., by PartialScan, not by FullScan. Upon a page fault of a cold BTP, BOGO

checks against freed addresses in FAQ to see whether there exists any dangling pointer to

the addresses in the cold BTP. Then, BOGO recovers page access permissions of the BTP

and puts it into the HPQ.

Using the same example, Fig. 5.1(c) illustrates that BOGO guarantees the detection of all

use-after-free errors using both PartialScan and PageFaultScan. Though PartialScan on

free(c) did not invalidate the bound of BTE[a], the dereference of pointer a would result

in a page fault on which PageFaultScan can detect the use-after-free error by scanning the

BTP[a] for the freed address c stored in FAQ.

5.3. BOGO Approach Details 93

5.3 BOGO Approach Details

This section presents how BOGO tracks hot BTPs to bound the scan cost on free (Sec-

tion 5.3.1); how PartialScan and PageFaultScan can ensure no false negative (Section 5.3.2);

and how to achieve redundancy-free and false-positive-free PageFaultScan (Section 5.3.3).

5.3.1 Hot Bound Table Page Tracking

Fig. 5.2 (Lines 2-12) shows how BOGO makes use of a page protection mechanism to track

hot BTPs at a low cost. Upon a BTP fault, BOGO restores the read/write permissions

(Line 3) and puts this “hot” (most recently accessed) BTP into the bounded Hot BTP

Queue (HPQ) (Line 9). When the HPQ is full, BOGO evicts the “coldest” (least recently

added) BTP in a FIFO manner, and makes it not-readable and not-writable (Lines 9-12).

The latter part of this section discusses the rest of the BTP fault handler.

5.3.2 Combine PartialScan and PageFaultScan to Achieve Low

Overhead and No False Negative

On free, BOGO scans BTs and invalidates the BTE of dangling pointers. Fig. 5.2 (Lines

14-21) presents how BOGO instruments free. BOGO can safely rely on PartialScan and

PageFaultScan as long as it can hold free addresses in the FAQ. In some cases, the FAQ can

be configured to be large enough to avoid FullScan. In other cases, if the FAQ becomes full,

BOGO falls back to FullScan that checks all the free addresses in FAQ over all the BTs (Line

20). We discuss FullScan optimization in Section 5.4.2. After FullScan, BOGO may reset

FAQ (Line 21) as there are no longer pending temporal memory safety checks to perform.

Any unused BTs can be safely reclaimed at this point. This approach trades performance

94 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

for soundness.

For performance, BOGO favors PartialScan (Line 18) that looks up dangling pointers only

over hot BTPs in the HPQ. To ensure soundness (see the difference between Fig. 5.1(b) and

Fig. 5.1(c)), the free addresses that are checked via PartialScan are collected in the Free

Address Queue (FAQ) along with the free time2 (Line 16). These free addresses remain in

the FAQ until the next FullScan (Line 20-21), and meanwhile they are checked over the

(cold) BTPs resulting in page faults via PageFaultScan (Line 4-8). The evict_time and

free_time will be discussed in the next section.

5.3.3 Combine PageFaultScan and RedundancyPredication to Achieve

Low Overhead and No False Positive

Though PageFaultScan ensures no false negatives, it may lead to a false positive. Consider

the following code:

a=malloc(8); b=malloc(64); c=a; free(c);

a=malloc(8); *b; c=b; free(b); *a;

The pointer a was once a dangling pointer after free(c), but is reassigned by the second

a=malloc(8) of the same size, rendering *a legal. However, if this malloc reuses a freed

object for locality, which is the case for modern allocators, PageFaultScan may raise a false

alarm.

Figure 5.3(a) illustrates the case with the heap snapshot change over time. At time t1,

a=malloc(8) returns 0x10 and sets BTE[a]. At t3, BTP[a] is evicted from HPQ. At t4 on

free(c), PartialScan does not check BTP[a], and puts the freed address (0x10) in FAQ. At
2This is an abstract time that we implement as the FAQ index, to avoid the cost of using real timestamps.

5.3. BOGO Approach Details 95

1 /* [btp] and [faddr] form a s i n g l e element l i s t with the parameter */
2 OnBoundTablePageFault (btp)
3 mprotect (btp ,RW)
4 evict_time = get_evict_time (btp)
5 f o r each faddr in FAQ
6 f ree_time = get_free_time (faddr)
7 i f (ev ict_time < free_time)
8 scan ([btp] , [faddr]) // PageFaultScan
9 evicted_btp = i n s e r t (HPQ, btp)

10 i f (evicted_btp != NULL)
11 set_evict_time (evicted_btp)
12 mprotect (evicted_btp ,NONE)
13
14 OnFree (faddr)
15 f r e e (faddr) // ac tua l f r e e
16 i n s e r t (FAQ, faddr) // index as f r e e time
17 i f (FAQ. l ength != MAX)
18 scan (HPQ, [faddr]) // Part ia lScan
19 e l s e
20 scan (ALL,FAQ) // Ful lScan
21 r e s e t (FAQ)
22
23 scan (btp_l i s t , f a dd r_ l i s t)
24 f o r each btp in btp_l i s t
25 f o r each faddr in f add r_ l i s t
26 // scan and i n v a l i d a t e i f ove r l ap s
27 f o r each bte in btp
28 i f (bte . base<=faddr && faddr<=bte . bound)
29 bte . base = INVALID
30 bte . bound = INVALID

Figure 5.2: BOGO handler algorithms.

t5, the second a=malloc(8) happens to return the same location 0x10, as shown in the third

heap snapshot. At t7, BTP[a] becomes cold again. As a result, the last *a at t9 results in

a page fault on BTP[a]. PageFaultScan finds an overlap between BTE[a] and 0x10 in FAQ.

However, this is a false alarm.

One naive workaround would be not to release the memory to the system on free so that the

freed object cannot be reused for later allocation, until BOGO performs FullScan. However,

96 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

obviously, it will increase the memory footprint significantly.

BTE[a]ç(0x10,8)

a=malloc(8) b=malloc(64) c=a
time

Scan(b, 0x10)
Scan(c, 0x10)

Inv(c)

a=malloc(8)
HPQ{a,c}

FAQ{0x10}

Scan(a,0xff)
Scan(a,0x10); Inv(a)

Pop(b); Check(a, BTE[a])

free(c)

Pop(a)

HPQ{a} HPQ{a,b} HPQ{b,c} HPQ{b,c}
FAQ{0x10}

(a)
a b c a

Scan (a, 0x10);Inv(a)
Pop(b)

BTE[a] ç (0x10,8)
b

*b
HPQ{a,b}

FAQ {0x10}

Scan(b, 0x10)
Pop(c)

Check(b, BTE[b])

c=b

Scan(c, 0x10)
Inv(c)
Pop(a)

HPQ{b,c}
FAQ{0x10}

c
BTE[b]ç(0xff,64)

Scan(b, 0xff)
Scan(c, 0xff)
Inv(b); Inv(c)

free(b)
HPQ{b,c}

FAQ{0x10,0xff}

a

*a
(MPX exception;

false alarm)

@0x10 @0xff

a bc

@0x10 @0xff

a bc

@0x10 @0xff

a bc

@0xff

b

@0x10

a c b

@0x10

a c

@0xff

Heap Snapshot

a=malloc(8) b=malloc(64) c=a
time

a=malloc(8)
HPQ{a,c}

FAQ{0x10}

Scan(a,0xff)
Scan(a,0x10); Inv(a)

PopTime(b,t9);
Check(a, BTE[a])

free(c)
HPQ{a} HPQ{a,b} HPQ{b,c} HPQ{b,c}

FAQ{0x10}

(b)
a b c a b

*b
HPQ{a,b}

FAQ {0x10}

c=b

Scan(c, 0x10)
Inv(c)

PopTime(a,t7)

HPQ{b,c}
FAQ{0x10}

c

Scan(b, 0xff)
Scan(c, 0xff)
Inv(b); Inv(c)

free(b)
HPQ{b,c}

FAQ{0x10,0xff}

a

*a

BTE[a]ç(0x10,8)

Scan(b, 0x10)
Scan(c, 0x10)

Inv(c)
PopTime(a,t3)

Scan (a, 0x10); Inv(a)
PopTime(b,t5)

BTE[a] ç (0x10,8)

Scan(b, 0x10)
PopTime(c,t6)

Check(b, BTE[b])BTE[b]ç(0xff,64)

PopTime(?,!): BTE[?].evict_time=!; Pop(?)

?: Page fault of BTP[?]; HPQ.insert(BTP[?]) Pop(?): HPQ.evict(BTP[?]); Protect(BTP[?], NO_RW) Inv(?): BTE[?]=invalid Scan(?, @): Scan BTP[?] for @

t1 t2 t3 t4 t5 t6 t7 t8 t9

t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 5.3: Redundancy prediction: (a) shows a false positive case, and (b) shows how
BOGO removes the redundant scans and eliminates the false positive. Actions of BOGO
appears above the bar while the status of HPQ/FAQ does underneath the code. Each color
represents a different redundant scan.

Redundancy Predication. We present a novel redundancy prediction technique. The

crux of the problem is due to redundant checks. Focus on the three cases: t4 when Par-

tialScan adds the freed address 0x10 into the FAQ; t7 when BTP[a] becomes cold; and t9

when PageFaultScan performs a check on the freed address 0x10. Recall that we originally

introduced PageFaultScan because PartialScan did not perform a check on cold BTPs at

that time. However, in this scenario, BTP[a] becomes cold after a PartialScan, implying

that PageFaultScan does not need to check the freed address 0x10 on BTP[a]. More formally

speaking, it is safe for PageFaultScan to skip the scanning of BTP for a given freed address

faddr in FAQ if TimeBTP
evict is greater (i.e., later) than Timefaddr

freed . We provide the proof at the

end of this section.

Based on this observation, BOGO keeps track of Timefaddr
freed when faddr is added in FAQ

(Line 16), and TimeBTP
evict when a BTP is evicted from HPQ (Line 11). On PageFaultScan,

BOGO compares their times (Lines 4-7), and avoids redundant checks, leading to better

5.3. BOGO Approach Details 97

performance and no false positives.

To illustrate, Figure 5.3(b) shows how BOGO deals with the false positive with redundancy

prediction. Since the eviction time of the BTP[a] (t7) is greater than the freed time of 0x10

(t4), PageFaultScan (t9) safely skips Scan(a,0x10) and avoids the false alarm. For the same

reason, BOGO skips PageFaultScan at times t6, t7 for BTP[b] and BTP[c], respectively.

However, PageFaultScan at t5 cannot be skipped, and it needs to check the faulted page

BTP[a] with the freed address 0x10. Note, for all the scans that can be safely skipped, they

are paired with the corresponding previous scan that performs the same bound check. Such

a pair is shown using the same color in Fig. 5.3(b), where three pairs exist (green, blue, and

red).

Now we prove that this redundancy elimination is safe.

Theorem 1. On a BTP fault, it is safe (no missing detection) for PageFaultScan to skip

the scanning of the BTP for a given freed address faddr in FAQ if TimeBTP
evict is larger than

Timefaddr
freed .

Proof. We provide a direct proof sketch. Recall BOGO basically has two scan methods,

PageFaultScan and the free time PartialScan which checks HPQ. Thus, we need to prove

that either method has already scanned the BTP that satisfies the time condition, i.e.,

Timefaddr
freed < TimeBTP

evict . First, if the BTP was a part of HPQ at Timefaddr
freed , the free must

have scanned the BTP obviously. Thus, this case makes it redundant to scan the BTP in

the current PageFaultScan (referred to as currPFS).

Second, if PartialScan on free did not scan the BTP (i.e., it was not in the HPQ at Timefaddr
freed),

it must have been evicted before; let’s refer to the time as TimeBTP
pastEvict. The implication is

there must be a PageFaultScan (referred to as pastPFS) between two evictions, and it must

have happened after the free which otherwise would have scanned the BTP, and we get the

98 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

following:
TimeBTP

pastEvict < Timefaddr
freed < TimeBTP

pastPFS

< TimeBTP
evict < TimeBTP

currPFS

(5.1)

Then, we investigate if the pastPFS scanned the BTP. As shown above inequality, for

the pastPFS, the eviction time of the BTP (TimeBTP
pastEvict) is not larger than the free time

(Timefaddr
freed). Thus, pastPFS must have scanned the BTP, making it redundant to scan the

BTP in currPFS. Consequently, Theorem 1 must be true.

In sum, with PageFaultScan and redundancy prediction, BOGO can eliminate unnecessary

scans, achieving better performance and no false positives.

5.4 Optimization

p=malloc() free(p)

q=p
No	BTP	Fault

t

Figure 5.4: Example of sound
PartialScan. No further Page-
FaultScan is required.

Partial Scan Page Fault Scan Full Scan
number per-scan cost number per-scan cost number per-scan cost
of scans O(|HPQ|) of scans O(|FAQ|) of scans O(|ALL| ∗ |FAQ|)

HPQ ↑ - ↑ ↓ - - -
FAQ ↑ ↑ - - ↑ ↓ ↑

Table 5.1: Impacts of increasing HPQ and FAQ on the
number and the cost of Partial, Page Fault, and Full Scans.

5.4.1 No PageFaultScan Optimization

On free, when FAQ is not full, BOGO performs PartialScan that checks hot BTPs and stores

the freed address into FAQ so that later PageFaultScans can detect dangling pointers that

PartialScan might miss (Section 5.3.2). This PageFaultScan backup mechanism is necessary

because dangling pointers may have resided in cold BTPs. If BOGO can prove the absence

of dangling points in the cold BTPs, then it does not need to add the freed address into the

5.4. Optimization 99

FAQ, bringing two benefits: 1) to save the FAQ space (triggering FullScan slowly) and 2) to

avoid succeeding PageFaultScans against the freed address.

Consider an example in Fig. 5.4 where there were no BTP faults between the memory

allocation and deallocation. The absence of BTP faults implies that any potential copy

of pointer p, the necessary condition of dangling pointers, must have happened only with

those pointers whose BTEs lie in the hot BTPs. Otherwise, a BTP fault would have been

triggered and HPQ has been altered. In this case, on free, BOGO only needs to check the

freed address with the hot BTPs in the current HPQ, and there is no need to add it to the

FAQ for later PageFaultScans. In practice, applications often have short-living heap objects

where malloc and free are adjacent to each other in time.

To support this optimization, BOGO maintains a small hash table which tracks the addresses

of objects that have been allocated since the last BTP fault. BOGO stores the address being

allocated on malloc, and checks if the hash table holds the address being deallocated on

free. When there is a match, PartialScan applies the proposed optimization by not putting

the freed address into the FAQ. BOGO resets the hash table on a BTP fault (as a part of

HPQ maintenance).

5.4.2 FullScan Optimization

When FAQ is full, BOGO performs FullScan over the entire BTs (Fig. 5.2 Line 20). A naive

implementation would iterate over the (1st-level) BD to find all the valid (2nd-level) BTs.

Scanning the huge BD leads to severe performance degradation. Even for a valid BT, many

of its BTPs may have not been accessed, and thus scanning them would cause unnecessary

page faults. To avoid scanning the BD and all BTs, which would be an order of magnitude

slower, BOGO uses a custom syscall to get only the accessed BTPs, and scans them directly.

100 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

The syscall looks up per-process memory descriptor for virtual memory area(VMA) reserved

for MPX and returns those pages whose accessed bit is set in the page table.

5.5 Dynamic Adaptation of Queue Size

BOGO maintains two queues: HPQ and FAQ. Their sizes have a significant impact on

the number and cost of Partial, Page Fault, and Full Scans that determine the overall

performance. This section first analyzes the cost of each scan (Section 5.5.1) and the impacts

of HPQ and FAQ sizes (Section 5.5.2). Then, we introduce scan cost-based dynamic adaptive

scheme that adjusts the size of HPQ at runtime for optimal performance (Section 5.5.3).

5.5.1 Scan Cost Analysis

In general, the cost of each scan is the product of the number of BTPs to scan and the

number of free addresses to scan (Fig. 5.2 Lines 24-30). Note that the innermost loop in

Line 27 iterates over (constant number of) 128 BTEs (of size 32B each) in a BTP (of size

4KB). Therefore, the cost of PartialScan is O(|HPQ|) as it scans the Hot BTPs in the HPQ

against a single pointer address being freed. The cost of PageFaultScan is O(|FAQ|) as it

checks the freed addresses in the FAQ against a single (once cold now hot) BTP being page

faulted. Lastly, the cost of FullScan is O(|ALL| ∗ |FAQ|) as it checks the freed addresses in

the FAQ against all BTPs.

5.5.2 Impact of HPQ and FAQ Sizes

Table 5.1 summarizes the impacts of increasing the size of HPQ and FAQ on the number

and the cost of each scan, while decreasing its sizes has an opposite effect.

5.5. Dynamic Adaptation of Queue Size 101

Increasing HPQ. HPQ keeps track of Hot BTPs to perform PartialScan, and thus increas-

ing the size of HPQ would increase the cost of PartialScan. The number of PartialScans

is irrelevant to the size of HPQ. To be precise, the number depends on the free frequency

and the size of FAQ (as it determines which Partial or Full Scan to take on free). On the

other hand, increasing HPQ would decrease the number of PageFaultScans as HPQ can hold

more hot BTPs. Note that the total cost of each scan would be proportional to the number

of scans and the per-scan cost. The size of HPQ has opposite impacts on these two scans.

Therefore, for the common cases where PartialScan and PageFaultScan are used (without

FullScan), the size of HPQ should be tuned to make a good balance on both scans. Our

sensitivity study on the HPQ size in Section 5.8.3 shows that each application has a different

optimal HPQ size, motivating our adaptive scheme in Section 5.5.3.

Increasing FAQ. Unlike HPQ, the bigger FAQ, in general, leads to better performance.

First, its impacts on PartialScan is small because the number of PartialScans varies slightly.

Second, increasing FAQ at a glance may look like harming PageFaultScan as it iterates over

the free addresses in the FAQ. However, in reality, this is not true because PageFaultScan

stops scanning when it finds a freed address whose free time is earlier than the eviction time

of the BTP being page faulted as discussed in Section 5.3.3 and Fig. 5.3. In other words, the

cost of PageFaultScan even with the very large FAQ is in effect bounded. Lastly, as the cost

of FullScan is way more expensive than the other two scans, it is better to keep its number

low by making the FAQ big enough. Therefore, in the next section, we focus on tuning the

HPQ size at runtime.

102 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

5.5.3 Scan Cost-based HPQ Adaptive Scheme

Based on the above observation, BOGO dynamically adjusts the size of HPQ to balance

PartialScans and PageFaultScans. To this end, BOGO divides a program execution into

regular intervals, called quanta. Then, at runtime BOGO measures and compares the cost

(execution time) of PartialScans and PageFaultScans in a quantum, and then decides whether

to reduce or enlarge the size of HPQ for the next quantum. If the cost of PageFaultScan

is higher than that of PartialScan, BOGO increases the HPQ, and vice versa. This scan

cost based adaptive scheme allows BOGO to adapt application specific characteristics (e.g.,

free frequencies) and the program phase changes even within the same application. Our

experimental results in Section 5.8.3 show that BOGO with adaptive HPQ outperforms the

one with profiled-based manual configuration. By default, BOGO uses the quantum of 100

ms, sets the initial size of HPQ to be 16, and changes the HPQ size exponentially.

5.6 Discussion

Free-after-free. Consider the following code:

a=malloc(8); b=a; free(a); a=malloc(8); free(b);

Suppose two mallocs are allocated to the same region. Then, b would free a’s buffer. If one

sees free(b) as the use of b, BOGO can perform a bound check on free(b). As BOGO

invalidates the BTE[b] on free(a), it can detect such a case.

Use-after-return. This refers to dereference of deallocated stack object [84]. BOGO can

be extended to detect it by invalidating the bounds belonging to current stackframe upon

return. Static analysis can help to avoid such a check in many cases, thus supporting the

detection at a low cost. For instance, static analysis can tell whether there is a pointer that

5.7. Implementation 103

points to the stackframe and escapes the function. Such cases are expected to be rare: (1) a

pointer to the current stackframe is returned; (2) a pointer to the stackframe is propagated

across the function. It implies that for most of returns, the scan could be avoided.

Multithreading. Metadata-based memory error detectors may lead to false positives or

false negatives when a pointer operation and metadata updates/checks do not happen in

an atomic manner. For solutions like CETS [145] that only lookup, update, and check per-

pointer metadata at a time, if a program is data-race-free, atomicity could be achieved by

placing instrumentation codes into the same critical section as the original pointer operation.

For a program with data races, this remains a challenge. On the other hand, for solutions

like DangSan [199] and BOGO, that access other pointer’s metadata (for invalidation), the

problem gets worse because concurrent metadata updates from independent pointers may

form a race condition: e.g., while one scans on free, another may update the metadata.

DangSan chooses to favor performance over soundness without additional support. The

current BOGO prototype shares the same limitation. However, it is possible to mark the

BTPs to be scanned as non-accessible during scanning and make a concurrent thread wait

at the page granularity (instead of stopping the world). This design remains future work.

During our experiments with multithreaded applications (Section 5.8.5), we did not observe

false warnings (false negatives are unknown).

Custom Memory Allocator. They need to be patched to invoke BOGO’s scan, which

otherwise may lead to false negatives. They can be identified by using techniques like [55].

5.7 Implementation

The llvm-mpx pass consists of 9240 LoC, along with 1605 LoC in LLVM framework diff.

The custom syscall consists of 419 LoC in the kernel diff.

104 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

5.7.1 Spatial Memory Safety

We implemented llvm-mpx pass using LLVM [115] to support spatial memory safety on MPX.

It instruments at the IR level, protecting heap, address-taken stack and global objects. It

follows the same per-pointer bound checking convention used in SoftBound [144] and gcc-mpx.

Yet, it instruments more instructions than SoftBound: e.g., atomic, vectorization, and invoke

instructions. Moreover, llvm-mpx models the same set of libc functions as gcc-mpx: e.g.,

malloc, memcpy, and strcpy. As the address of the pointers being checked is always taken

(e.g., bndldx(&p)) in the IR, pointer variables are not promoted to registers, and llvm-mpx

checks them all. llvm-mpx keeps the BT up-to-date, which BOGO relies on, while gcc-mpx

and icc-mpx often store bound information in the stack instead of BT.

Optimizations. llvm-mpx performs three optimizations during the instrumentation: (1)

Bound check elimination: if memory access can be statically verified, it elides MPX checks.

This is analogous to bound check optimization in the pioneering work of Gupta [87]. gcc-mpx

also has the same form of optimization. (2) Dead bound elimination: The lack of bound

checks can make the corresponding bound and the related instructions (e.g., bndmk/bndldx/bndstx)

dead if they are not “used” by others. it identifies such dead codes by following the use-def

chain [140] and eliminates them. (3) Bound check consolidation: if it can statically calculate

the range of the access in a loop or a vectorized code, it consolidates the checks into one

check and pays the overhead only once. This is a very simple form of optimization proposed

in Gupta’s work [87] and WPBound [222].

Since the above optimizations are safe for spatial memory safety [87, 222], they do not

compromise BOGO’s temporal memory safety guarantee. For example, optimization (1)

only deals with local arrays or globals, not the heap objects that are the target of BOGO.

Optimization (2) won’t trigger if pointers are copied, returned, etc. (i.e., bound is “used”).

5.8. Evaluation 105

Bound narrowing. The current prototype does not implement bound narrowing [13].

When a program accesses a specific field of a struct object, the compiler can shrink the bound

to that field, rather than the full object, for the fine-grained bounds checking. However, this

causes a compatibility issue breaking some SPEC 2006 applications with C idioms due to the

resulting false positives [57, 154]. Bound narrowing is optional in gcc-mpx, and not supported

in many other tools [70, 146, 147, 149, 182] including SoftBound [144, 148].

5.7.2 Temporal Memory Safety

BOGO is built upon LLVM-4.0, glibc-2.23 and linux-4.10. The kernel is modified to support

the followings: (1) BTP permission initialization; (2) FullScan optimization (Section 5.4.2);

(3) custom mprotect avoiding touch unrelated kernel data structures; and (4) signal delivery

when a BTP is reclaimed (becomes unavailable) so that it can be removed from HPQ,

avoiding a potential segmentation fault during scanning.

5.8 Evaluation

5.8.1 Methodology

We used three sets of benchmarks for evaluation. SPEC CPU 2006 is used in Section 5.8.3

for detailed performance evaluation. The malloc-free benchmark [110, 153] is used in Sec-

tion 5.8.4 for stress-test. Finally, 9 real-world (multithreaded) applications are tested in Sec-

tion 5.8.5. The setup is a 4GHz quad-core Intel i7-6700K CPU with 16GB RAM. The

performance numbers are the average of 5 runs. Except where otherwise mentioned, all

experiments are done with the following configurations: (1) the size of FAQ is 65535 and

FullScan is used when it becomes full; (2) the initial size of HPQ is 16 with dynamic adaptive

106 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

scheme (Section 5.5.3) enabled; (3) reference input is used for SPEC.

0
1
2
3
4

icc-mpx gcc-mpx llvm-mpxN
or

m
al

ize
d

O
ve

rh
ea

d Inst→O2
Inst→O2→LTO
O2→Inst
O2→LTO→Inst

Figure 5.5: MPX compilers overheads: geomean of SPEC 2006.
Source Application Bug manifest

Sp
at
ia
l

BugBench [129]

bc-1.06 storage.c:177 util.c:577
gzip-1.2.4 gzip.c:828
man-1.5h1 main.c:977
ncompress compress42.c:892
polymorph-0.4.0 polymorph.c:120,195,198,200,202

CVE-2004-2167 latex2rtf-1.9.15 definitions.c:155
CVE-2007-4060 corehttp-0.5.3alpha http.c:32
CVE-2011-4971 memcached-1.4.5 memmove()
CVE-2016-6289 php-7.1Git-2016-06-29 zend_virtual_cwd.c:1243
CVE-2016-6297 php-7.1Git-2016-06-30 zip_stream.c:289
CVE-2017-9928 lrzip-0.631 lrzip.c:979
CVE-2017-9929 lrzip-0.631 lrzip.c:1074
CVE-2018-5268 OpenCV-3.3.1 grfmt_jpeg2000.cpp:343
CVE-2018-6187 MuPDF-1.12.0 pdf-write.c:2901

SPEC 2006
400.perlbench perlio.c:748, sv.c:4124
450.soplex islist.h:287,357 svector.h:351
464.h264ref mv-search.c:1016

Te
m
po

ra
l NIST/Juliet [8]

102205 102226 102248 102287 102307 102311
102367 102444 102528 102609 102611 102613
102615 102617 102619 152889 102225 102247
102267 102289 102308 102321 102411 102468
102577 102610 102612 102614 102616 102618
102663 2151

CVE-2014-9661 FreeType 2.5.3 ftstream.c:182
CVE-2015-7801 optipng-0.6.4 opngoptim.c:977
CVE-2017-10686 nasm-2.14rc0 dereferences of free’d Token obj
CVE-2017-15642 sox-v14.4.2 formats.c:245

Table 5.2: llvm-mpx and BOGO validation.

Patching Spatial Safety Errors. With llvm-mpx, we found the same set of bounds errors

5.8. Evaluation 107

in original SPEC applications as reported in Oleksenko et al.’s work [154] (see their Section

4.4). Thus, we patched [28] them to perform bound-error-free performance evaluation3.

Instrumentation before or after Optimizations. It is worth noting that llvm-mpx pass

is applied after standard optimizations including LTO (link-time optimization). That is, ap-

ply -O2 for each bitcode file, then perform -O2 LTO to create a single file. llvm-mpx is applied

at last. The same convention of using all possible optimizations before the instrumentation

was adopted in SoftBound [144] and others [145, 148, 190, 221].

We investigated the high runtime overhead of icc-mpx and gcc-mpx. By scrutinizing the

order of applied compiler passes in gcc-mpx and icc-mpx, we noticed that they first per-

formed MPX instrumentation thus preventing other optimizations. For example, gcc-mpx’s

instrumentation happens very early in the compiler pass order, i.e., the 12th among 174

passes. And those before the instrumentation are not actually optimization passes. There-

fore, all the optimizations can be significantly restricted, e.g., dead code elimination can be

suppressed due to the inserted MPX bounds checking code.

Figure 5.5 highlights the impact of the optimize-before-instrument convention on the per-

formance overhead of llvm-mpx; each bar represents the average overhead of all SPEC 2006

applications which is normalized to that of baseline with no spatial safety support. By fol-

lowing the convention, our llvm-mpx incurs 1.26x slowdown in the 6th bar: O2→LTO→Inst.

When we instrument before optimizations like gcc-mpx and icc-mpx, the overhead is signifi-

cantly increased, i.e., 3.35x slowdown in the 4th bar: Inst→O2→LTO.

We also found out that Oleksenko et al. [154] did not apply LTO for both gcc-mpx and

icc-mpx. However, it turns out that applying LTO after the instrumentation does not im-

prove the performance significantly. This is confirmed by the small height gap between the

3For soplex, we manually modified the pointer manipulations that violate standard memory model, and
made their bounds checking always succeed. See discussion in [154] Section 4.4.

108 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

3rd (Inst→O2) the 4th (Inst→O2→LTO) bars in Figure 5.5. We believe that the same phe-

nomenon will be observed in gcc-mpx and icc-mpx because LTO is restricted anyway by the

inserted MPX bound checks. Thus, we conclude that the reason for the poor performance

of gcc-mpx and icc-mpx is mainly due to their unconformity of optimize-before-instrument

convention.

1
1.5

2
2.5

3

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
43

3.
m

ilc
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
0.

lb
m

44
4.

na
m

d
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

2.
sp

hi
nx

3
48

3.
xa

la
nc

bm
k

ge
om

ea
n

No
rm

al
ize

d
O

ve
rh

ea
d

DangSan
llvm-mpx
BOGO(static)
BOGO

14.52 6.76 7.72 18.6 16.16

Figure 5.6: Performance Overhead.

0
0.2
0.4
0.6
0.8
1

40
0.
pe
rlb

en
ch

40
1.
bz
ip
2

40
3.
gc
c

42
9.
m
cf

43
3.
m
ilc

44
5.
go
bm

k
45
6.
hm

m
er

45
8.
sje

ng
46
2.
lib
qu

an
tu
m

46
4.
h2
64

re
f

47
0.
lb
m

44
4.
na
m
d

44
7.
de
al
II

45
0.
so
pl
ex

45
3.
po

vr
ay

47
1.
om

ne
tp
p

47
3.
as
ta
r

48
2.
sp
hi
nx
3

48
3.
xa
la
nc
bm

k
PageFaultScan PartialScan FullScan

Figure 5.7: BOGO Performance Overhead Breakdown.

5.8. Evaluation 109

Application Partial Full Page Fault Application Partial Full Page Fault
400.perlbench 816926.10 0.49 2875.50 470.lbm 0.03 0 0.01
401.bzip2 0.34 0 0.04 444.namd 4.74 0 0.15
403.gcc 29474.74 0.25 201114.61 447.dealII 770810.54 9.63 0.05
429.mcf 0.03 0 18.30 450.soplex 1432.80 0 641.12
433.milc 18.41 0 0.01 453.povray 17648.83 0 5318.45
445.gobmk 1808.81 0 1386.05 471.omnetpp 73419.43 0.35 214350.09
456.hmmer 4426.50 0 0.28 473.astar 13613.71 0.10 1321.86
458.sjeng 0.01 0 0.01 482.sphinx3 38908.55 0.58 985.62
462.libquantum 0.45 0 0.01 483.xalancbmk 607803.72 0.44 0.25
464.h264ref 514.04 0 599.12

Table 5.3: Frequency of Partial, Full, and Page Fault Scans (per second). The sum of Partial
and Full Scans represents free frequency.

5.8.2 Security Evaluation

llvm-mpx’s Spatial Memory Safety. BOGO’s ability to detect use-after-free hinges on

spatial memory safety solution. Thus, it is critical to validate whether llvm-mpx is sound.

For a fair and accurate comparison, we picked LLVM-based SoftBound [144] as baseline,

instead of comparing across different compilers (e.g., llvm-mpx vs. gcc-mpx). To this end, we

collected the number of dynamic bounds checks performed on a subset of tested applications

with reference input; the open source version of SoftBound [144] currently works for only 6

SPEC applications, all of which we tested. We confirmed that llvm-mpx performs a higher

number of bounds checks than SoftBound because the former supports more instructions

(Section 5.7.1). Oleksenko et al. [154] also report that gcc-mpx leads to a much higher

instruction count than icc-mpx (∼3x vs. ∼1.5x – see their Figure 10). To further validate

llvm-mpx, we tested real-world applications with buffer overflow bugs4. As in Table 5.2, the

first 5 cases are from BugBench [129] followed by 9 CVEs. llvm-mpx detected all without

false positives. Note that llvm-mpx also detected known bugs in SPEC [28].

Based on the above validation steps, we conclude that our llvm-mpx implementation is cred-

4RIPE [212] is not used as it does not support the 64-bit system.

110 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

ible thus being able to serve as a solid basis for BOGO’s temporal safety enforcement.

BOGO’s Temporal Memory Safety. We empirically evaluated BOGO’s implementation

for temporal memory safety. First, we inspected BOGO’s detection capability for 32 cases

from NIST/Juliet (CWE416, Use-After-Free) [8], as listed in Table 5.2. BOGO soundly

detected them all. Second, BOGO detected all use-after-free vulnerabilities in 4 tested

CVEs.

0
1
2
3
4

401.bzip2 429.mcf 433.milc 458.sjeng 464.h264ref 470.lbm geomean

N
or

m
al

iz
ed

O

ve
rh

ea
d SoftBound+CETS ASan BOGO

Figure 5.8: Performance Overhead of Full Memory Safety Solutions.

0
1
2
3
4
5
6
7

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
43

3.
m

ilc
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
0.

lb
m

44
4.

na
m

d
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

2.
sp

hi
nx

3
48

3.
xa

la
nc

bm
k

ge
om

ea
nM

em
or

y
O

ve
rh

ea
d DangSan llvm-mpx BOGO 186.6

Figure 5.9: Memory Overhead.

5.8. Evaluation 111

1

10

100

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
43

3.
m

ilc
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
0.

lb
m

44
4.

na
m

d
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

2.
sp

hi
nx

3
48

3.
xa

la
nc

bm
k

ge
om

ea
n

No
rm

al
ize

d
O

ve
rh

ea
d

16 64 256 512 1024

Figure 5.10: Sensitivity study: varying HPQ, fixed-size FAQ.

1

10

100

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2
40

3.
gc

c
42

9.
m

cf
43

3.
m

ilc
44

5.
go

bm
k

45
6.

hm
m

er
45

8.
sje

ng
46

2.
lib

qu
an

tu
m

46
4.

h2
64

re
f

47
0.

lb
m

44
4.

na
m

d
44

7.
de

al
II

45
0.

so
pl

ex
45

3.
po

vr
ay

47
1.

om
ne

tp
p

47
3.

as
ta

r
48

2.
sp

hi
nx

3
48

3.
xa

la
nc

bm
k

ge
om

ea
n

No
rm

al
ize

d
O

ve
rh

ea
d

2047 8191 16383 32767 65535 131071 262143

Figure 5.11: Sensitivity study: varying FAQ, fixed-size HPQ.

5.8.3 SPEC CPU 2006 Benchmark

Performance Overhead.

Fig. 5.6 shows the performance overhead normalized to the baseline without memory safety.

For each application, there are four bars to compare: DangSan (temporal-only), llvm-mpx

(spatial-only), BOGO (static), and BOGO. The first bar is for DangSan, the state-of-the-art

112 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

temporal memory safety only solution. It does not support use-after-return. We evaluated

it using the open source version from GitHub [18]. On average, DangSan incurs 1.41x

slowdown. The second bar is for llvm-mpx. On average, llvm-mpx incurs 1.26x slowdown.

The next two bars show the performance overhead of BOGO (static) and BOGO which

provide both spatial (via llvm-mpx) and temporal memory safety. The third bar, i.e., BOGO

(static), reports the best per-app result selected by profiling with varying HPQ size (the

sensitivity study on HPQ is shown in Section 5.8.3). The last bar, i.e., BOGO, shows that its

scan cost-based dynamic adaptation of HPQ size (Section 5.5.3) outperforms the best static

configuration, i.e., BOGO (static). We observed significant improvements for perlbench, gcc

where BOGO could dynamically adapt to the phase changes of runtime execution behaviors.

Note, the dynamic adaptation scheme can offer similar or better performance without prior

profiling or knowledge of the program behavior. On average, BOGO incurs 1.6x slowdown

for spatial and temporal safety.

We then present detailed performance overhead analysis for BOGO. First, Table 5.3 shows

the frequencies of PartialScan, FullScan, and PageFaultScan (numbers/sec). Overall, the

frequency of FullScan is very small shows the benefit of PartialScan+PageFaultScan. We

found that naive FullScan only approach incurs more than 10x slowdown (not shown in

Fig. 5.6). Note that the sum of Partial and Full Scan frequencies represents free frequency,

and it varies significantly across different applications (up to 817K/sec). This implies that the

SPEC benchmarks cover a broad spectrum of the deallocation behaviors which affect BOGO’s

performance overhead. Later, we stress-test BOGO with malloc-free intensive benchmarks

(Section 5.8.4) and evaluate it with real-world applications (Section 5.8.5).

Fig. 5.7 reports BOGO’s performance overhead breakdown of time spent for three scans.

Two applications incur relatively high BOGO overhead: gcc and omnetpp. It turns out that

gcc and omnetpp have frequent Partial and Page Fault Scans as shown in Table 5.3. In

5.8. Evaluation 113

general, applications with higher scan frequencies (e.g., perlbench, xalancbmk) incur higher

overhead compared to the others. gcc and omnetpp also suffer from scanning larger dataset

in HPQ and FAQ, According to Fig. 5.7, gcc and omnetpp spent about 50:50 on PartialScan

and PageFaultScan, showing the effectiveness of HPQ dynamic scheme for applications with

such high overhead.

Other Full Memory Safety Techniques

Overhead would add up when combining a temporal memory safety solution (e.g. DangSan)

with another spatial memory safety solution (e.g., llvm-mpx). As shown in Fig. 5.6, DangSan

and llvm-mpx incur 1.41x and 1.26x slowdown, respectively. When combined, the total

runtime overhead would be similar to BOGO (1.6x), yet BOGO is more memory efficient

(Section 5.8.3).

SoftBound+CETS [145, 148] keeps separate per-pointer metadata for spatial memory

safety (SoftBound) and temporal memory safety (CETS). Fig. 5.8 highlights the perfor-

mance of BOGO compared to other full memory safety solutions for 6/19 SPEC 2006 appli-

cations; the latest open source version of SoftBound+CETS [24] is broken for the remaining

13 applications. For those 6 applications, BOGO (1.25x slowdown) significantly outperforms

SoftBound+CETS (1.94x); (Their paper reports 1.75x overhead for 9/19 SPEC 2006 and

8/16 SPEC 2000 applications). It seems that the open source version might be less opti-

mized. Although SoftBound+CETS supports use-after-return detection, it is disabled for fair

comparison. AddressSanitizer [181] maintains per-object metadata. Their paper reports

1.73x slowdown for SPEC 2006, higher than BOGO (1.6x). When we run it, with use-after-

return disabled, for the same 6 applications in Fig. 5.8, it incurs 1.57x slowdown which is still

higher than BOGO (1.25x) but lower than the SoftBound+CETS (1.94x). AddressSanitizer

quarantines freed memory and defer actual reclamation to support use-after-free detection,

114 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

causing memory bloat. To avoid high memory overhead, it does actual free periodically,

thereby sacrificing soundness.

Memory Overhead

Figure 5.9 shows the memory usage of DangSan (temporal-only), llvm-mpx (spatial-only),

and BOGO. It is measured by taking the average of resident memory (VmRSS) and nor-

malized to the baseline without memory safety. On average, DangSan incurs 2.84x memory

overhead, which is slightly higher than what the paper reports (2.4x) [199], while llvm-mpx

and BOGO incur 1.16x and 1.17x, respectively. Thus, BOGO adds very small memory over-

head for full memory safety. When DangSan is combined with MPX for the full safety, the

total space overhead would add up. For omnetpp, DangSan suffers from 186.62x (134.65x

according to the paper [199]) overhead, while BOGO incurs only 1.92x overhead compared

to llvm-mpx (1.91x). Although DangSan maintains a huge pointer graph for performance,

it still incurs 7x slowdown for omnetpp as shown in Fig. 5.6.

Sensitivity Study

Dynamic adaptation is disabled in this study. Figures 5.10 and 5.11 show the performance

sensitivity studies with respect to the sizes of HPQ and FAQ, respectively. Figure 5.10 shows

the result of varying HPQ with the fixed-size (65535) FAQ. As discussed in Section 5.5.2, the

size of HPQ affects PartialScan and PageFaultScan in opposing directions. Each application

favors different sizes of HPQ. For example, omnetpp prefers small HPQ, mcf favors larger

HPQ, and gcc works best on the middle size HPQ. This justifies BOGO’s dynamic HPQ

size adaptation, and Fig. 5.6 confirms its effectiveness. On the other hand, a bigger FAQ

is in general preferable as it reduces the number of FullScans. For example, omnetpp in

5.8. Evaluation 115

0

10

0
2
4
6
8

cfrac espresso gs make perl geomean

#o
f m

ill
io

n

fr
ee

s/
se

c

N
or

m
al

iz
ed

O

ve
rh

ea
d llvm-mpx BOGO free frequency

Figure 5.12: Malloc-free benchmark performance. The bar graphs shows the normalized
overhead (left y-axis). The line graph shows the free frequency (right y-axis).

Application LOC Test method Free Freq.
aget 1K download 4GB file, 8 threads 0.45
pfscan 2K search 4GB file, 8 threads 27
pbzip2 6K compress 4GB file, 8 threads 5,280
transmission 116K download file 3.8GB 13,354
memcached 18K YCSB [61], workload ABCDEF 0.35
cherokee 102K ab [10], 8 conc. clients, 100K req. 27,509
nginx 166K ab [10], 8 conc. clients, 100K req. 115,113
apache 270K ab [10], 8 conc. clients, 100K req. 486
mysql 1,473K sysbench [29], 8 conc. clients, 100K req. 677,774

Table 5.4: Real-world application test methods. Top four applications are utilities/clients,
while the bottom fives are servers.

0

1

2

age
t

pfsc
an

pbzip
2

tra
nsm

iss
ion

memcach
ed

ch
eroke

e
nginx

apach
e

mysql

ge
omean

No
rm

al
ize

d
O

ve
rh

ea
d llvm-mpx BOGO

Figure 5.13: Real-world application performance.

Figure 5.11 definitely favors a larger FAQ. We found that the rest applications are not very

sensitive to the size of FAQ, though there is some fluctuation. For this reason, BOGO does

not currently adjust FAQ on the fly.

5.8.4 Malloc/Free Benchmark

Stress-testing BOGO with malloc/free intensive applications [110, 153] shows higher run-

time overhead (Fig. 5.12) than SPEC: on average, 2.7x slowdown for BOGO, and 1.27x for

116 Chapter 5. Memory Efficient Temporal Memory Safety Solution for MPX

llvm-mpx only. The reason is two-fold: (1) the huge amount of malloc/free (up to 5.8M/s)

puts significant pressure on BOGO’s page scan mechanism; and (2) the execution time of

the applications is very short (less than 2 seconds) even with the largest input, and the ma-

jority of the entire execution time is spent allocating/deallocating numerous objects. Thus,

BOGO’s activity ends up taking a significant portion. However, except for perl (5.8M/s)

and espresso (3.9M/s), the overhead of the remaining applications is under 80%, and the

overhead added by BOGO upon llvm-mpx is only 34%.

5.8.5 Real-World Applications

We evaluated BOGO with 9 real-world applications using the test cases listed in Table 5.4.

The five servers including apache and mysql are set up with default configuration. While

nginx is a single-threaded multi-process server, all the rest 8 are multithreaded applications.

As discussed in Section 5.6, BOGO does not guarantee soundness for multithreaded appli-

cations as with others [144, 145, 154, 199]. Thus, this experiment is just for performance

evaluation and compatibility demonstration purposes. We note that all instrumented ap-

plications behave correctly. Despite no soundness guarantee, as reported in Section 5.8.2,

BOGO (llvm-mpx) could detect a buffer overflow bug in memcached-1.4.5. Given the work-

loads, the free frequency varies up to 678K per second. As shown in Fig. 5.13, the runtime

overhead of BOGO ranges from 1x to 1.83x, with a geomean of 1.34x, which is less than that

of more CPU-intensive and malloc/free-frequent SPEC applications.

5.9. Summary 117

5.9 Summary

In this chapter, we tackle the space overhead problem of dynamic memory safety bug de-

tectors (PS2). We presents BOGO, which seamlessly adds temporal memory safety to the

spatial memory safety on Intel MPX. BOGO scans bound metadata to find dangling point-

ers, invalidates their bounds, and detects temporal memory safety bugs as spatial safety

bugs. This frees BOGO from maintaining separate metadata for temporal memory safety,

saving both runtime and space overhead (TS2). Our evaluation shows that BOGO supports

full memory safety at comparable runtime overhead and much less memory overhead than

other state-of-the-art solutions. BOGO is published at [232].

Chapter 6

A Permission Check Analysis

Framework for Linux Kernel

So far we have discussed how to improve run-time and space overheads of dynamic bug

detectors. In this chapter, we focus on static bug detectors and propose to use domain-

specific knowledge to improve the scalability and precision (PS3) of static bug detectors

altogether. Furthermore, we study permission check bug in the Linux kernel and apply

common programming patterns to kernel analysis in order to achieve scalability and precision.

Permission checks play an essential role in operating system security by providing access

control to privileged functionalities. However, it is particularly challenging for kernel de-

velopers to correctly apply new permission checks and to scalably verify the soundness of

existing checks due to the large code base and complexity of the kernel. In fact, Linux kernel

contains millions of lines of code with hundreds of permission checks, and even worse its

complexity is fast-growing.

In this chapter, we presents PeX, a static Permission check error detector for LinuX, which

takes as input a kernel source code and reports any missing, inconsistent, and redundant

permission checks. PeX uses KIRIN (Kernel InteRface based Indirect call aNalysis), a novel,

precise, and scalable indirect call analysis technique, leveraging the common programming

paradigm used in kernel abstraction interfaces. Over the interprocedural control flow graph

built by KIRIN, PeX automatically identifies all permission checks and infers the mappings

118

6.1. Introduction 119

between permission checks and privileged functions. For each privileged function, PeX ex-

amines all possible paths to the function to check if necessary permission checks are correctly

enforced before it is called.

We evaluated PeX on the latest stable Linux kernel v4.18.5 for three types of permission

checks: Discretionary Access Controls (DAC), Capabilities, and Linux Security Modules

(LSM). PeX reported 36 new permission check errors, 14 of which have been confirmed by

the kernel developers.

6.1 Introduction

Access control [174] is an essential security enforcement scheme in operating systems. They

assign users (or processes) different access rights, called permissions, and enforce that only

those who have appropriate permissions can access critical resources (e.g., files, sockets). In

the kernel, access control is often implemented in the form of permission checks before the

use of privileged functions accessing the critical resources.

Over the course of its evolution, Linux kernel has employed three different access control mod-

els: Discretionary Access Controls (DAC), Capabilities, and Linux Security Modules (LSM).

DAC distinguishes privileged users (a.k.a., root) from unprivileged ones. The unprivileged

users are subject to various permission checks, while the root bypasses them all [16]. Linux

kernel v2.2 divided the root privilege into small units and introduced Capabilities to allow

more fine-grained access control. From kernel v2.6, Linux adopted LSM in which various

security hooks are defined and placed on critical paths of privileged operations. These se-

curity hooks can be instantiated with custom checks, facilitating different security model

implementations as in SELinux [187] and AppArmor [11].

120 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

Unfortunately, for a new feature or vulnerability found, these access controls have been

applied to the Linux kernel code in an ad-hoc manner, leading to missing, inconsistent,

or redundant permission checks. Given the ever-growing complexity of the kernel code, it

is becoming harder to manually reason about the mapping between permission checks and

privileged functions. In reality, kernel developers rely on their own judgment to decide

which checks to use, often leading to over-approximation issues. For instance, Capabilities

were originally introduced to solve the “super” root problem, but it turns out that more

than 38% of Capabilities indeed check CAP_SYS_ADMIN, rendering it yet another root [15].

Even worse, there is no systematic, sound, and scalable way to examine whether all privileged

functions (via all possible paths) are indeed protected by correct permission checks. The lack

of tools for checking the soundness of existing or new permission checks can jeopardize the

kernel security putting the privileged functions at risk. For example, DAC, CAP and LSM

introduce hundreds of security checks scattered over millions of lines of the kernel code,

and it is an open problem to verify if all code paths to a privileged function encounter its

corresponding permission check before reaching the function. Given the distributed nature

of kernel development and the significant amount of daily updates, chances are that some

parts of the code may miss checks on some paths or introduce the inconsistency between

checks, weakening the operating system security.

We designed PeX (Chapter 6), a static permission check analysis framework for Linux kernel.

Our approach makes it possible to soundly and scalably detect any missing, inconsistent and

redundant permission checks in the kernel code. At a high level, it statically explores all

possible program paths from user-entry points (e.g., system calls) to privileged functions

and detects permission check errors therein. Suppose it finds a path in which a privileged

function, say PF, is protected (preceded) by a check, say Chk in one code. If it is found that

any other paths to PF bypass Chk, then it is a strong indication of a missing check. Similarly,

6.1. Introduction 121

it can detect inconsistent and redundant permission checks. While conceptually simple, it is

very challenging to realize a sound and precise permission check error detection at the scale

of Linux kernel.

In particular, there are two daunting challenges that we should address. First, Linux kernel

uses indirect calls very frequently, yet its static call graph analysis is notoriously difficult.

The latest Linux kernel (v4.18.5) contains 15.8M LOC, 247K functions, and 115K indirect

callsites, rendering existing precise solutions (e.g., SVF [189]) unscalable. Only workaround

available to date is either to apply the solutions unsoundly (e.g., only on a small code

partition as with K-Miner [82]) or to rely on naive imprecise solutions (e.g., type-based

analysis). Either way leads to undesirable results, i.e., false negatives (K-Miner) or positives

(type-based one).

For a precise and scalable indirect call analysis, we introduce a novel solution called KIRIN

(Kernel InteRface based Indirect call aNalysis), which leverages kernel abstraction interfaces

to enable precise yet scalable indirect call analysis. Our experiment with Linux v4.18.5 shows

that KIRIN allows us to detect many previously unknown permission check bugs, while other

existing solutions either miss many of them or introduce too many false warnings.

Second, unlike Android which has been designed with the permission-based security model

in mind [9], Linux kernel does not document the mapping between a permission check and a

privileged function. More importantly, the huge Linux kernel code base makes it practically

impossible to review them all manually for the permission check verification.

To tackle this problem, we presents a new technique which takes as input a small set of

known permission checks and automatically identifies all other permission checks including

their wrappers. Moreover, our dominator analysis [140] automates the process of identifying

mappings between permission checks and their potentially privileged functions as well. Our

122 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

experiment with Linux kernel v4.18.5 shows that starting from a small set of well-known 3

DAC, 3 Capacities, and 190 LSM checks, our approach automatically (1) identifies 19, 16,

and 53 additional checks, respectively, and (2) derives 9243 pairs of permission checks and

privileged functions.

This work makes the following contributions:

• New Techniques: We proposed and implemented PeX, a static permission check analysis

framework for Linux kernel. We also developed new techniques that can perform scalable

indirect call analysis and automate the process of identifying permission checks and privileged

functions.

• Practical Impacts: We analyzed DAC, Capabilities, and LSM permission checks in the

latest Linux kernel v4.18.5 using PeX, and discovered 36 new permission check bugs, 14 of

which have been confirmed by kernel developers.

• Community Contributions: We will release PeX as an open source project, along with

the identified mapping between permission checks and privileged functions. This will allow

kernel developers to validate their codes with PeX, and to contribute to PeX by refining the

mappings with their own domain knowledge.

6.2 Examples of Permission Check Errors

This section illustrates different kinds of permission check errors, found by PeX and con-

firmed by the Linux kernel developers. We refer to those functions, that validate whether

a process (a user or a group) has proper permission to do certain operations, as permission

checks. Similarly, we define privileged functions to be those functions which only a privileged

process can access and thus require permission checks.

6.2. Examples of Permission Check Errors 123

1 int scsi_ioctl(struct scsi_device *sdev, int cmd,
void __user *arg)↪→

2 {
3 ...
4 case SCSI_IOCTL_SEND_COMMAND:
5 if (!capable(CAP_SYS_ADMIN) ||

!capable(CAP_SYS_RAWIO))↪→
6 return -EACCES;
7 return sg_scsi_ioctl(sdev->request_queue, NULL,

0, arg);↪→
8 ...
9 }

(a) sg_scsi_ioctl (Line 7) is called with CAP_SYS_ADMIN and
CAP_SYS_RAWIO capability checks (Line 5). arg is user space con-
trollable.

1 int scsi_cmd_ioctl(struct request_queue *q, ...,
void __user *arg)↪→

2 {
3 ...
4 case SCSI_IOCTL_SEND_COMMAND:
5 ...
6 if (!arg)
7 break;
8 err = sg_scsi_ioctl(q, bd_disk, mode, arg);
9 break;

10 ...
11 return err;
12 }

(b) sg_scsi_ioctl (Line 8) is called without capability checks. arg
is user space controllable.
1 int sg_scsi_ioctl(struct request_queue *q, struct

gendisk *disk, fmode_t mode, struct
scsi_ioctl_command __user *sic)

↪→
↪→

2 {
3 ...
4 err = blk_verify_command(req->cmd, mode);
5 ...
6 return err;
7 }
8
9 int blk_verify_command(unsigned char *cmd, fmode_t

mode)↪→
10 {
11 ...
12 if (capable(CAP_SYS_RAWIO))
13 return 0;
14 ...
15 return -EPERM;
16 }

(c) sg_scsi_ioctl calls blk_verify_command, which checks
CAP_SYS_RAWIO capability.

Figure 6.1: Capability check errors discovered by PeX.

124 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

6.2.1 Capability Permission Check Errors

Figure 6.1 shows real code snippets of Capability permission check errors in Linux kernel

v4.18.5. Figure 6.1a shows the kernel function scsi_ioctl, in which sg_scsi_ioctl (Line

7) is safeguarded by two Capability checks, CAP_SYS_ADMIN and CAP_SYS_RAWIO (Line 5). To

the contrary, scsi_cmd_ioctl in Figure 6.1b calls the same function sg_scsi_ioctl (Line 8)

without any Capability check. These two functions share three similarities. First, both of

them are reachable from the userspace by ioctl system call. Second, both call sg_scsi_ioctl

with a userspace parameter, void __user *arg. Last, there is no preceding Capability check

on all possible paths to them (though scsi_ioctl performs two checks).

The kernel is supposed to sanitize userspace inputs and check permissions to ensure that

only users with appropriate permissions can conduct certain privileged operations. As SCSI

(Small Computer System Interface) functions manipulate the hardware, they should be pro-

tected by Capabilities. At first glance, scsi_ioctl seems to be correctly protected (while

scsi_cmd_ioctl misses two Capability checks).

However, delving into sg_scsi_ioctl ends up with a different conclusion. As shown in

Figure 6.1c, sg_scsi_ioctl calls blk_verify_command, which in turn checks CAP_SYS_RAWIO.

Considering all together, scsi_ioctl checks CAP_SYS_ADMIN once but CAP_SYS_RAWIO “twice”,

leading to a redundant permission check. On the other hand, scsi_cmd_ioctl checks only

CAP_SYS_RAWIO, resulting in a missing permission check for CAP_SYS_ADMIN. In particular, PeX

detects this bug as an inconsistent permission check because the two paths disagree with

each other, and further investigation shows that one is redundant and the other is missing.

6.2. Examples of Permission Check Errors 125

1 static int do_readlinkat(int dfd, const char __user
*pathname, char __user *buf, int bufsiz)↪→

2 {
3 ...
4 error = security_inode_readlink(path.dentry);
5 if (!error) {
6 touch_atime(&path);
7 error = vfs_readlink(path.dentry, buf, bufsiz);
8 }
9 ...

10 }

(a) Kernel LSM usage in system call readlinkat. vfs_readlink
(Line 7) is protected by security_inode_readlink (Line 4). Both
pathname and buf (Line 1 and Line 7) are user controllable.
1 int ksys_ioctl(unsigned int fd, unsigned int cmd,

unsigned long arg)↪→
2 {
3 ...
4 error = security_file_ioctl(f.file, cmd, arg);
5 if (!error)
6 error = do_vfs_ioctl(f.file, fd, cmd, arg);
7 ...
8 }
9

10 int xfs_readlink_by_handle(struct file *parfilp,
xfs_fsop_handlereq_t *hreq)↪→

11 {
12 ...
13 error = vfs_readlink(dentry, hreq->ohandle, olen);
14 ...
15 }

(b) Kernel LSM usage in system call ioctl. It calls
security_file_ioctl (Line 4) to protect do_vfs_ioctl (Line 6).
hreq->ohandle and olen are also user controllable.

Figure 6.2: LSM check errors discovered by PeX.

6.2.2 LSM Permission Check Errors

The example of LSM permission check errors is related to how LSM hooks are instrumented

for two different system calls readlinkat and ioctl.

Figure 6.2a shows the LSM usage in the readlinkat system call. On its call path, vfs_readlink

(Line 7) is protected by the LSM hook security_inode_readlink (Line 4) so that a LSM-

based MAC mechanism, such as SELinux or AppArmor, can be realized to allow or deny

the vfs_readlink operation.

Figure 6.2b presents two sub-functions for the system call ioctl. Similar to the above case,

ioctl calls ksys_ioctl, which includes its own LSM hook security_file_ioctl (Line 4) be-

126 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

fore do_vfs_ioctl (Line 6). This is proper design, and there is no problem so far. However, it

turns out that there is a path from do_vfs_ioctl to xfs_readlink_by_handle (Line 10), which

eventually calls the same privileged function vfs_readlink (see Line 7 in Figure 6.2a and

Line 13 in Figure 6.2b). While this function is protected by the security_inode_readlink

LSM hook in readlinkat, that is not the case for the path to the function going through

xfs_readlink_by_handle. The problem is that SELinux maintains separate ‘allow’ rules for

read and ioctl. With the missing LSM security_inode_readlink check, a user only with

the ‘ioctl allow rule’ may exploit the ioctl system call to trigger the vfs_readlink operation,

which should only be permitted by the different ‘read allow rule’.

The above two Capability and LSM examples show how challenging it is to ensure correct

permission checks. There are no tools available for kernel developers to rely on to figure out

whether a particular function should be protected by a permission check; and, (if so) which

permission checks should be used.

6.3 Challenges

This section discusses two critical challenges in designing static analysis for detecting per-

mission errors in Linux kernel.

6.3.1 Indirect Call Analysis in Kernel

The first challenge lies in the frequent use of indirect calls in Linux kernel and the difficulties

in statically analyzing them in a scalable and precise manner. To achieve a modular design,

the kernel proposes a diverse set of abstraction layers that specify the common interfaces to

different concrete implementations. For example, Virtual File System (VFS) [31] abstracts a

6.3. Challenges 127

1 struct file_operations {
2 ...
3 ssize_t (*read_iter) (struct kiocb *, struct

iov_iter *);,!
4 ssize_t (*write_iter) (struct kiocb *, struct

iov_iter *);,!
5 ...
6 }

(a) The Virtual File System (VFS) kernel interface.

const struct file_operations ext4_file_operations
{

. . .

.read_iter = ext4_file_read_iter,

.write_iter = ext4_file_write_iter,

. . .
}

syscall(1, fd, buffer, count)

write(fd, buffer, count)

SyS_write(fd, buffer, count)
vfs_write(fd.file, buffer, count, fd.pos)

file->f_op->write_iter(kio, iter);

User space

Kernel space syscall dispatcher

const struct file_operations nfs_file_operations
{

. . .

.read_iter = nfs_file_read,

.write_iter = nfs_file_write,

. . .
}

(b) VFS indirect calls in Linux kernel.
Figure 6.3: Indirect call examples via the VFS kernel interface.

file system, thereby providing a unified and transparent way to access local (e.g., ext4) and

network (e.g., nfs) storage devices. Under this kernel programming paradigm, an abstraction

layer defines an interface as a set of indirect function pointers while a concrete module ini-

tializes these pointers with its own implementations. For example, as shown in Figure 6.3a,

VFS abstracts all file system operations in a kernel interface struct file_operations that

contains a set of function pointers for different file operations. When a file system is ini-

tialized, it initializes the VFS interface with the concrete function addresses of its own. For

instance, Figure 6.3b shows that ext4 file system sets the write_iter function pointer to

128 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

ext4_file_write_iter, while nfs sets the pointer to nfs_file_write.

However, kernel’s large code base challenges the resolution of these numerous function point-

ers within kernel interfaces. For example, the kernel used in our evaluation (v4.18.5) includes

15.8M LOC, 247K functions, and 115K indirect callsites. This huge code base makes existing

precise pointer analysis techniques [89, 90, 91, 159, 189] unscalable. In fact, Static Value

Flow (SVF) [189], i.e., the state-of-the-art analysis that uses flow- and context-sensitive

value flow for high precision, failed to scale to the huge Linux kernel. That is because SVF

is essentially a whole program analysis, and its indirect call resolution thus requires tracking

all objects such as functions, variables, and so on, making the value flow analysis unscalable

to the large-size Linux kernel. In our experiment of running SVF for the kernel on a machine

with 256GB memory, SVF was crashed due to an out of memory error1.

Alternatively, one may opt for a simple “type-based” function pointer analysis, which would

scale to Linux kernel. However, the type-based indirect call analysis would suffer from serious

imprecision with too many false targets, because function pointers in the kernel often share

the same type. For example, in Figure 6.3a, two function pointers read_iter and write_iter

share the same function type. Type based pointer analysis will even link write_iter to

ext4_file_read_iter falsely, which may lead to false permission check warnings.

PeX addresses this problem with a new kernel-interface aware indirect call analysis technique,

detailed in Section 6.4.

1SVF internally uses LLVM SparseVectors to save memory overhead by only storing the set bits. However,
it still blows up both the memory and the computation time due to the expensive insert, expand and merge
operations.

6.3. Challenges 129

6.3.2 The Lack of Full Permission Checks, Privileged Functions,

and Their Mappings

The second challenge lies in soundly enumerating a set of permission checks and inferring

correct mappings between permission checks and privileged functions in Linux kernel.

Though some commonly used permission checks for DAC, Capabilities, and LSM are known

(Table 2.1), kernel developers often devise custom permission checks (wrappers) that inter-

nally use basic permission checks. Unfortunately, the complete list of such permission checks

has never been documented. For example, ns_capable is a commonly used permission check

for Capabilities, but it calls ns_capable_common and security_capable in sequence. It is

the last security_capable that performs the actual capability check. In other words, all

the others are “wrappers” of the “basic” permission check security_capable. This example

shows how hard it is for a permission check analysis tool to keep up with all permission

checks.

To make matters worse, Linux kernel has no explicit documentation that specifies which priv-

ileged function should be protected by which permission checks. This is different from An-

droid [9], which has been designed with the permission-based security model in mind from the

beginning. Take the Android LocationManager class as an example; for the getLastKnownLocation

method, the API document states explicitly that permission ACCESS_COARSE_LOCATION or

ACCESS_FINE_LOCATION is required [22].

Unfortunately, existing static permission error checking techniques are not readily applicable

in order to address these problems. Automated LSM hook verification [193] works only

with clearly defined LSM hooks, which would miss many wrappers in the kernel setting.

Many other tools require heavy manual efforts such as user-provided security rules [80, 234],

authorization constraints [142], annotation on sensitive objects [81]. These manual processes

130 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

are particularly error-prone when applied to huge Linux code base. Alternatively, some

works such as [74, 141] rely on dynamic analysis. However, such run-time approaches may

significantly limit the code coverage being analyzed, thereby missing real bugs.

Moreover, all of above existing works cannot detect permission checks soundly. Their in-

ability to recognize permission checks or wrappers leads to missing privileged functions or

false warnings for those that are indeed protected by wrappers. Since the huge Linux kernel

code base makes it practically impossible to review them all manually, reasoning about the

mapping is considered to be a daunting challenge.

In light of this, PeX presents a novel static analysis technique that takes as input a small set

of known permission checks to identify their basic permission checks and leverages them as a

basis for finding other permission check wrappers (Section 6.5.2). In addition, PeX proposes

a dominator analysis based solution to automatically infer the mappings between permission

checks and privileged functions (Section 6.5.3).

6.4 KIRIN Indirect Call Analysis

PeX proposes a precise and scalable indirect call analysis technique, called KIRIN (Kernel

InteRface based Indirect call aNalysis), on top of the LLVM [115] framework. KIRIN is

inspired by two key observations: (1) almost all (95%) indirect calls in the Linux kernel

are originated from kernel interfaces (Section 6.3.1) and (2) the type of a kernel interface

is preserved both at its initialization site (where a function pointer is defined) and at the

indirect callsite (where a function pointer is used) in LLVM IR. For example in Fig. 6.3b,

the kernel interface object ext4_file_operations of the type struct file_operations is

statically initialized where ext4_file_write_iter is assigned to the field of write_iter. For

the indirect call site file→f_op→write_iter, one can identify that f_op is of the type struct

6.4. KIRIN Indirect Call Analysis 131

file_operations and infer that ext4_file_write_iter is one of potential call targets. Based

on this observation, PeX first collects indirect call targets at kernel interface initialization

sites (Section 6.4.1) and then resolves them at indirect callsites (Section 6.4.2).

6.4.1 Indirect Call Target Collection

In Linux kernel, a kernel interface is often defined in a C struct comprised of function

pointers (Section 6.3.1): e.g., struct file_operations in Fig. 6.3a. Many kernel inter-

faces (C structs) are statically allocated and initialized as with ext4_file_operations and

nfs_file_operations in Fig. 6.3b. Some interfaces may be dynamically allocated and ini-

tialized at run time for reconfiguration.

For the former, KIRIN scans all Linux kernel code linearly to find all statically allocated

and initialized struct objects with function pointer fields. Then, for each struct object,

KIRIN keep tracks of which function address is assigned to which function pointers field

using an offset as a key for the field. For instance, Fig. 6.4a shows the LLVM IR of stati-

cally initialized ext4_file_operations. KIRIN finds that the kernel interface type is struct

file_operations (Line 1), and ext4_file_write_iter is assigned to the 5th field write_iter

(Line 7). Therefore, KIRIN figures out that write_iter may point to ext4_file_write_iter,

not ext4_file_read_iter (even though they have the same function type).

For the rest dynamically initialized kernel interfaces, KIRIN performs a data flow analysis

to collect any assignment of a function address to the function pointer inside a kernel inter-

face. KIRIN’s field-sensitive analysis allows the collected targets to be associated with the

individual field of a kernel interface.

132 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

1 @ext4_file_operations = dso_local local_unnamed_addr
constant %struct.file_operations {,!

2 %struct.module* null,
3 i64 (%struct.file*, i64, i32)* @ext4_llseek,
4 i64 (%struct.file*, i8*, i64, i64*)* null,
5 i64 (%struct.file*, i8*, i64, i64*)* null,
6 i64 (%struct.kiocb*, %struct.iov_iter*)*

@ext4_file_read_iter,,!

7 i64 (%struct.kiocb*, %struct.iov_iter*)*
@ext4_file_write_iter,,!

(a) LLVM IR of ext4_file_operations initialization.

1 %25 = load %struct.file_operations*,
%struct.file_operations** %f_op, align 8,!

2 %write_iter.i.i = getelementptr inbounds
%struct.file_operations,
%struct.file_operations* %25, i64 0, i32 5

,!

,!

3 %26 = load i64 (%struct.kiocb*, %struct.iov_iter*)*,
i64 (%struct.kiocb*, %struct.iov_iter*)**
%write_iter.i.i, align 8

,!

,!

4 %call.i.i = call i64 %26(%struct.kiocb* nonnull
%kiocb.i, %struct.iov_iter* nonnull %iter.i) #10,!

(b) LLVM IR of callsite file→f_op→write_iter in vfs_write.
Figure 6.4: Indirect callsite resolution for vfs_write.

6.4.2 Indirect Callsite Resolution

KIRIN stores the result of the above first pass in a key-value map data structure in which

the key is a pair of kernel interface type and an offset (a field), and the value is a set of

call targets. At each indirect callsite, KIRIN retrieves the type of a kernel interface and the

offset from LLVM IR, looks up the map using them as a key, and figures out the matched

call targets. For example, Fig. 6.4b shows the LLVM IR snippet in which an indirect call

file→f_op→write_iter is made inside of vfs_write. When an indirect call is made (Line

4), KIRIN finds that the kernel interface type is struct file_operations (Line 1) and the

offset is 5 (Line 2). In this way, KIRIN reports that ext4_file_write_iter (assigned at

Line 7 in Fig. 6.4a) is one of potential call targets that are indirectly called by dereferencing

write_iter.

When applying KIRIN to Linux kernel, we found in certain callsites, the kernel interface

6.4. KIRIN Indirect Call Analysis 133

1 struct usb_driver* driver =
container_of(intf->dev.driver, struct
usb_driver, drvwrap.driver);

,!
,!

2 retval = driver->unlocked_ioctl(intf,
ctl->ioctl_code, buf);,!

(a) C code of a container_of usage, followed by an indirect call.
1 #define container_of(ptr, type, member) ({
2 void *__mptr = (void *)(ptr);
3 ((type *)(__mptr - offsetof(type, member))); })

\\
4 %unlocked_ioctl = getelementptr inbounds i8*, i8**

%add.ptr76, i64 3,!

(b) Original container_of and the LLVM IR for the callsite.
1 #define container_of(ptr, type, member) ({
2 type* __res;
3 void* __mptr = ((void *)((void*)(ptr) -

offsetof(type, member)));,!
4 memcpy(&__res, &__mptr, sizeof(void*));
5 (__res);})

\\\
\\

6 %unlocked_ioctl = getelementptr inbounds
%struct.usb_driver, %struct.usb_driver* %20, i64
0, i32 3

,!
,!

(c) Modified container_of and the LLVM IR for the callsite.
Figure 6.5: Fixing container_of missing struct type problem.

type is not presented in the LLVM IR, making their resolution impossible. For example,

the macro container_of is commonly used in order to get the starting address of a struct

object by using a pointer to its own member field. Fig. 6.5a shows an example of using

container_of (Line 1). It calculates the starting address of usb_driver through its own

member drvwrap.driver. Based on the address, the code at Line 2 makes an indirect call by

using a function pointer unlocked_ioctl that is another member of the struct usb_driver

object.

Fig. 6.5b shows the original macro container_of (Lines 1-3) and resulting LLVM IR (Line

4). The problem of this macro is that it involves a pointer manipulation, the LLVM IR of

which voids the struct type information, i.e., the second argument of the macro. To solve

this problem, KIRIN redefines container_of in a way that the struct type is preserved in

the LLVM IR (on which KIRIN works), as in Fig. 6.5c (Lines 1-5). This adds back the kernel

interface type struct.usb_driver in the LLVM IR (Line 6), thereby enabling KIRIN to infer

134 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

the correct type of driver and resolve the targets for unlocked_ioctl.

Our experiment (Section 6.6.2) shows that KIRIN resolves 92% of total indirect callsites

for allyesconfig. PeX constructs a more sound (less missing edges) and precise (less false

edges) call graph than other existing workarounds (e.g., [82]).

KIRIN
Indirect Call

Pointer Analysis
(§5)

Call Graph
Generation &
Partitioning

(§6.1)

Privileged
Function
Detection

(§6.3)

Permission
Check Wrapper

Detection
(§6.2)

Non-privileged
Function

Filter
(§6.4)

Permission
Check Error

Detection
(§6.5)

Permission
Checks

(Table 1)

Kernel
Source

(IR)

ICFG

all permission checks

potential
privileged
functions

privileged
functions

pointer
targets Permission

Check
Errors

Privileged
Functions

Permission
Checks

Figure 6.6: PeX static analysis architecture. PeX takes as input kernel source code and per-
mission checks, and reports as output permission check errors. PeX also produces mappings
between identified permission checks and privileged functions as output.

6.5 Design of PeX

Fig. 6.6 shows the architecture of PeX. It takes as input kernel source code (in the LLVM

bitcode format) and common permission checks (Table 2.1), analyzes and reports all detected

permission check errors, including missing, inconsistent, and redundant permission checks.

In addition, PeX produces the mapping of permission checks and privileged functions, which

has not been formally documented.

At a high-level, PeX first resolves indirect calls with our new technique called KIRIN (Sec-

tion 6.4). Next, PeX builds an augmented call graph—in which indirect callsites are con-

nected to possible targets—and cuts out only the portion reachable from user space (Sec-

tion 6.5.1). Based on the partitioned call graph, PeX then generates the interprocedural

control flow graph (ICFG) where each callsite is connected to the entry and the exit of the

callee [73]. Then, starting from a small set of (user-provided) permission checks, PeX auto-

6.5. Design of PeX 135

matically detects their wrappers (Section 6.5.2). After that, for a given permission check,

PeX identifies its potentially privileged functions on top of the ICFG (Section 6.5.3), fol-

lowed by a heuristic-based filter to prune obviously non-privileged functions (Section 6.5.4).

Finally, for each privileged function, PeX examines all user space reachable paths to it to de-

tect any permission checks error on the paths (Section 6.5.5). The following section describes

these steps in detail.

6.5.1 Call Graph Generation and Partition

PeX generates the call graph leveraging the result of KIRIN (Section 6.4), and then partitions

it into two groups.

User Space Reachable Functions: Starting from functions with the common prefix

SyS_ (indicating system call entry points), PeX traverses the call graph, marks all visited

functions, and treats them as user space reachable functions. The user reachable functions

in this partition are investigated for possible permission check errors.

Kernel Initialization Functions:

Functions that are used only during booting are collected to detect redundant checks. The

Linux kernel boots from the start_kernel function, and calls a list of functions with the com-

mon prefix __init. PeX performs multiple call graph traversals starting from start_kernel

and each of the __init functions to collect them.

Other functions such as IRQ handlers and kernel thread functions are not used in later

analysis since they cannot be directly called from user space. The partitioned call graph

serves as a basis for building an interprocedural control flow graph (ICFG) [140] used in the

inference of the mapping between permission checks and privileged functions (Section 6.5.3).

136 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

6.5.2 Permission Check Wrapper Detection

Sound and precise detection of permission check errors requires a complete list of permission

checks, but they are not readily available (Section 6.3.2). One may name some commonly

used permission checks, as in Table 2.1. However, they are often the wrapper of basic

permission checks, which actually perform the low-level access control, and even worse there

could be other wrappers of the wrapper.

PeX solves this by automating the process of identifying all permission checks including

wrappers. PeX takes an incomplete list of user-provided permission checks as input. Start-

ing from them, PeX detects basic permission checks, by performing the forward call graph

slicing [114, 167, 196] over the augmented call graph. For a given permission check function,

PeX searches all call instructions inside the function for the one that passes an argument of

the function to the callee. In other words, PeX identifies the callees of the permission check

function which take its actual parameter as their own formal parameter. Similarly, PeX

then conducts backward call graph slicing [114, 167, 196] from these basic permission checks

to detect the list of their wrappers. PeX refers to only those callers that pass permission

parameters as wrappers, excluding other callers just using the permission checks.

Fig. 6.7 shows an example of the permission check wrapper detection. Given a known

permission check ns_capable (Lines 10-13), PeX first finds security_capable (Line 4) as a

basic permission check, and then based on it, PeX detects another permission check wrapper

has_ns_capability (Lines 14-20). Note that the parameter cap is passed from both the

parents ns_capable_common and has_ns_capability to the child security_capable; and the

result of security_capable is returned to them. Our evaluation (Section 6.6.3) shows that

based on 196 permission checks in Table 2.1, PeX detects 88 wrappers.

6.5. Design of PeX 137

1 static bool ns_capable_common(struct user_namespace
*ns, int cap, bool audit),!

2 {
3
4 capable = audit ?

security_capable(current_cred(), ns, cap) :,!
5 security_capable_noaudit(current_cred(), ns,

cap);,!
6 if (capable == 0)
7 return true;
8 return false;
9 }

10 bool ns_capable(struct user_namespace *ns, int cap)
11 {
12 return ns_capable_common(ns, cap, true);
13 }
14 bool has_ns_capability(struct task_struct *t,
15 struct user_namespace *ns, int cap)
16 {
17 ...
18 ret = security_capable(__task_cred(t), ns, cap);
19 ...
20 }

Figure 6.7: Permission check wrapper examples.

6.5.3 Privileged Function Detection

It is important to understand the mappings between permission checks and privileged func-

tions for effective detection of any permission check errors therein. However, the lack of clear

mapping in Linux kernel complicates the detection of permission check errors (Section 6.3.2).

To address this problem, PeX leverages an interprocedural dominator analysis [140] that

can automatically identify the privileged functions protected by a given permission check.

PeX conservatively treats all targets (callees) of those call instructions, that are dominated

by each permission check (Section 6.5.2) on top of the ICFG (Section 6.5.1), as its potential

privileged functions. The rationale behind the dominator analysis is based on the following

observation: since there is no single path that allows the dominated call instruction to be

reached without visiting the dominator (i.e., the permission check), the callee is likely to be

the one that should be protected by the check on all paths 2.

Algorithm 1 shows how PeX uses the dominator analysis to find potential privileged functions

2This does not necessarily mean that the permission check dominates all call instructions of ICFG which
invoke the resulting privileged function. As long as some call instructions are dominated by the check, their
callees are treated as privileged functions.

138 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

Algorithm 1 Privileged Function Detection
INPUT:

pcfuncs - all permission checking functions
OUTPUT:

pvfuncs - privileged functions
1: procedure Privileged Function Detection
2: for f ← pcfuncs do
3: for u← User(f) do
4: CallInst← CallInstDominatedBy(u) ▷ Inter-procedural analysis, for full program path
5: callee← getCallee(CallInst)
6: pvfuncs.insert(callee)
7: end for
8: end for
9: return pvfuncs
10: end procedure

pvfuncs for a given list of permission check functions pcfuncs. For each permission check

function f (Line 2), PeX finds all users of f, i.e., the callsite invoking f (Line 3). For each

user (callsite) u, PeX performs interprocedural dominator analysis over the ICFG to find all

dominated call instructions (Line 4). All their callees are then added to pvfuncs (Lines 5-6).

Note that the call graph generated by KIRIN (Section 6.4) has resolved most of the indirect

calls, which allows PeX to perform—on top of the resulting ICFG—more sound privileged

function detection. For example, our experiment (Section 6.6.3) shows that KIRIN can iden-

tify ecryptfs_setxattr (reachable via indirect calls over the ICFG) as a privileged function

and detect its missing permission check bug (Table 6.5, LSM-17). Note that if some other

unsound workaround such as [82] had been used, this bug could not have been detected.

6.5.4 Non-privileged Function Filter

The conservative approach in Section 6.5.3 may lead to too many potential privileged func-

tions. In this step, PeX applies heuristic-based filters to prune out false privileged functions.

In the current prototype, the filter contains a set of kernel library functions which are not

privileged functions, e.g., kmalloc, strcmp, kstrtoint. Though PeX is currently designed to

avoid false negatives (and thus leverages a small set of library filters only), one can add more

6.5. Design of PeX 139

Algorithm 2 Permission Check Error Detection
INPUT:

pc− pv - permission check function to privileged function mapping
pcfuncs - all permission check functions
kinitfuncs - kernel init functions

1: procedure Permission Check Error Detection
2: for pair ← pc− pv do
3: pvfuncs← pair.pv ▷ privileged functions
4: pcfunc← pair.pc ▷ permission check functions
5: for f ← pvfuncs do
6: allpath← getAllPathUseFunc(f) ▷ get all user reachable paths that call the privileged function f
7: for p← allpath do
8: pvcall← PrivilegeFunctionCallInPath(p)
9: if pvcall not Preceded by pcfunc then
10: if pvcall not Preceded by any pcfuncs then
11: report(p) ▷ Report missing checks
12: else
13: report(p) ▷ Report inconsistent check
14: end if
15: else if pvcall Preceded by multiple same pcfunc then
16: report(p) ▷ Report redundant checks
17: end if
18: end for
19: end for
20: end for
21: for f ← kinitfuncs do
22: if f uses any pcfuncs then
23: report(f) ▷ Report unnecessary checks during kernel boot
24: end if
25: end for
26: end procedure

aggressive filters to purge more false privileged functions. With releasing PeX, we expect

a good opportunity for the kernel development community to contribute to the design of

non-privileged function filters where domain knowledge is helpful.

6.5.5 Permission Check Error Detection

This last step is validating the use of privileged functions to detect any potential permission

check errors. For a given mapping between a permission check and a privileged function,

PeX performs a backward traversal of the ICFG, starting from the privileged functions with

the corresponding permission check in mind. Note that PeX validates every possible path

to each privileged function of interest.

Algorithm 2 shows PeX’s permission check error detection algorithm. Recall that PeX treats

140 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

user reachable kernel functions and kernel initialization functions separately and detects dif-

ferent forms of errors (Section 6.5.1). Lines 2-12 shows how PeX detects missing, redundant,

and inconsistent checks in user reachable kernel functions. For each privileged function f

(Line 5) in a mapping, PeX finds all possible paths allpath from user entry points to that

privileged function f over the ICFG (Line 6). Line 7-18 checks each path p for the preceding

permission check function, the lack of which should be reported as a bug. If the call to the

privileged function (pvcall) is not preceded by the corresponding permission check function

(pcfunc) and any other check functions (those in pcfuncs) over a given path p, then PeX

reports a missing check (Lines 6-7). And if pvcall is preceded not by the corresponding

check (pcfunc) but other check in pcfuncs, PeX reports an inconsistent check. Finally, if

PeX discovers that pvcall is indeed preceded by pcfunc checks but multiple times, then

it reports a redundant check (Lines 15-17). Besides, Lines 21-25 shows how PeX detects

redundant checks in kernel initialization functions. As kinitfuncs includes a conservative

list of functions that can only be executed during booting (thus obviating the need of any

checks), all detected permission checks are marked as redundant (Lines 22-24).

6.6 Implementation and Evaluation

PeX was implemented using LLVM [115]/Clang-6.0. It contains about 7K lines of C/C++

code. Clang was modified to preserve the kernel interface type at allocation/initialization

sites by using an identified struct type instead of using unnamed literal struct type. We also

automated the generation of the single-file whole vmlinux LLVM bitcode vmlinux.bc using

wllvm [33]. This avoids building each kernel module separately or changing kernel build

infrastructures, as observed in prior kernel static analysis works [82, 207]. We evaluated PeX

on the latest stable Linux kernel v4.18.5. In summary, KIRIN resolves 86%–92% of indirect

6.6. Implementation and Evaluation 141

Table 6.1: Input Statistics for Kernel v4.18.5.

defconfig allyesconfig
of yes(=y) config 1284 9939
of compiled LOC 2,414,772 15,881,692
vmlinux size 481 MB 3.8 GB
vmlinux.bc size 387 MB 3.3 GB
of total functions 42,264 247,465
of syscall entries 857 1,027
of init functions 1,570 9,301
of indirect callsites (ICS) 20,338 115,537

callsites depending on its compilation configurations. PeX reported 36 permission check

errors warnings to the Linux community, 14 of which have been confirmed as real bugs.

6.6.1 Evaluation Methodology

We evaluated PeX with two different kernel configurations: (1) defconfig, the (commonly-

used) default configuration, and (2) allyesconfig with all non-conflict configuration options

enabled. The use of allyesconfig not only stress-tests PeX (including KIRIN) with a larger

code base than defconfig, but also covers the majority of kernel code, allowing PeX to detect

more bugs.

In addition, we used 3 DAC, 3 Capabilities, and 190 LSM permission checks(Table 2.1)

as input permission checks, from which PeX finds other wrappers. For the non-privileged

function filter, we collected 1827 library functions from lib directory in the kernel source

code. All experiments were carried out on a machine running Ubuntu 16.04 with two Intel

Xeon E5-2650 2.20GHz CPU and 256GB DRAM.

142 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

Table 6.2: Indirect Call Pointer Analysis.
defconfig allyesconfig

KIRIN TYPE KM KIRIN TYPE KM
% of ICS resolved 86 100 1 92 100 na
of avg target 3.6 10K 3.6 6.2 81K na
analysis time (min) 1 1 9,869 6.6 1 na

6.6.2 Evaluation of KIRIN

We compared the effectiveness and efficiency of KIRIN with type-based approach and SVF-

based K-Miner approach.

K-Miner [82] works around the scalability problem in SVF by analyzing the kernel on a per

system call basis, rather than taking the entire kernel code for analysis. K-Miner generates

a (small-size) partition of kernel code which can be reached from a given system call, and

(unsoundly) applies SVF for that partition. For comparison, we took K-Miner’s implemen-

tation from the github [19] and added the logic to count the number of resolved indirect

callsites and the average number of targets per callsite. As K-Miner was originally built on

LLVM/Clang-3.8.1, we recompiled the same kernel v4.18.5 using wllvm with the same kernel

configurations.

Table 6.2 summaries evaluation results of KIRIN, comparing it to the type-based approach

and K-Miner approach in terms of the percentage of indirect callsite (ICS) resolved, the

average number of targets per ICS, and the total analysis time.

Resolution Rate

For K-Miner, we observe somewhat surprising results: it resolves only 1% of all indirect

callsites. After further investigation, we noticed that SVF runs on each partition whose code

base is smaller than the whole kernel, its analysis scope is significantly limited and unable

to resolve function pointers in other partitions, leading to the poor resolution rate.

6.6. Implementation and Evaluation 143

Besides, we found out that K-Miner does not work for allyesconfig which contains a

much larger code base than defconfig. Note that K-Miner evaluated its approach only

for defconfig in the original paper [82]. The K-Miner approach turns out to be not scalable

to handle allyesconfig which ends up encountering out of memory error even for analyzing

a single system call.

Resolved Average Targets

For KIRIN, the number of average indirect call targets per resolved indirect callsite is much

smaller than that of the type-based approach as shown in the second row of Table 6.2.

The reason is that the type-based approach classifies all functions (not only address-taken

functions) into different sets based on the function type. This implies that all functions in

the set are regarded as possible call targets of that function pointer. For example, as shown

in Fig. 6.3a, two functions ext4_file_read_iter and ext4_file_write_iter share the same

type. As a result, the type-based approach incorrectly identifies both functions as possible

call targets of the function pointer f_ops→write_iter.

Analysis Time

The total analysis times of each ICS resolution approach are shown in the last row of Ta-

ble 6.2. As expected, the type-based approach is the fastest, finishing analysis in 1 minute

for both configurations. KIRIN runs slower than the type-based approach. However, the

analysis time of KIRIN (≈1 minute) is comparable to that of the type-based approach for

defconfig, while KIRIN takes 6.6 minutes for allyesconfig.

For a fair comparison with K-Miner, care must be taken when we collect its indirect call

analysis time. For a given system call, we measured K-Miner’s running time from the

144 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

Table 6.3: PeX Results.

defconfig allyesconfig
DAC CAP LSM DAC CAP LSM

of input checks 3 3 190 3 3 190
of detected wrappers 11 13 34 19 16 53
of priv func detected 174 869 2030 631 3770 10915
of priv func after filter 116 582 1635 537 3245 10260
of warnings grouped
by priv func 72 210 853 221 850 1017

total time (min) 6 8 11 83 247 169

Table 6.4: Comparison of PeX warnings when used with different indirect call analyses.

defconfig allyesconfig
DAC CAP LSM Bugs DAC CAP LSM Bugs

KIRIN 72 210 853 21 221 850 1017 36
TYPE 218 348 1319 21 164 964 4364 19 (PeX Timeout)
KM 54 196 241 6 na na na na (SVF Timeout)

beginning until it produces the SVF point-to result, which does not include the later bug

detection time. To obtain the total analysis time of K-Miner, we summed up the running

times of all system calls. The result shows that SVF based K-Miner takes about 9,869 minutes

to finish analyzing all system calls of defconfig, which is much slower than KIRIN’s.

6.6.3 PeX Result

Table 6.3 summarizes PeX’s intermediate program analyses. As allyesconfig subsumes

defconfig in static analysis, we focus on discussing allyesconfig results here. Overall, PeX

finishes all analyses within a few hours and reports about two thousand groups of warnings,

which are classified by privileged functions. One may implement a multi-threaded version

of PeX to further reduce the analysis time.

Given the small number of input DAC, CAP, and LSM permission checks (3, 3, and 190 each),

PeX’s permission check detection (Section 6.5.2) was able to identify 19, 16 and 53 permission

check wrappers. For example, PeX detects wrappers such as nfs_permission and may_open

6.6. Implementation and Evaluation 145

for DAC; sk_net_capable and netlink_capable for Capabilities; and key_task_permission

and __ptrace_may_access for LSM.

Table 6.3 also shows the number of potentially privileged functions detected by PeX (Sec-

tion 6.5.3) and the number of remaining privileged functions after kernel library filtering

(Section 6.5.4). We found that there are typically 1-to-1 or 2-to-1 mapping between per-

mission checks and privileged functions. Overall, PeX reports 221, 850, and 1017 warnings

(grouped by privileged functions) for DAC, CAP, and LSM, respectively.

Table 6.5 shows the list of 36 bugs we reported, 14 of which have been confirmed by Linux

kernel developers. Kernel developers ignored some bugs and decided not to make changes

because they believe that the bugs are not exploitable. We discuss them in detail in Sec-

tion 6.6.5.

Comparison. To highlight the effectiveness of KIRIN, we repeated the end-to-end PeX

analysis using type-based (PeX+TYPE) and K-Miner-style (PeX+KM) indirect call analy-

ses. Table 6.4 shows the resulting number of warnings and detected bugs when the 36 bugs—

shown in Table 6.5—are used as an oracle for false negative comparison.

For allyesconfig, PeX+TYPE and PeX+KM could not complete the analysis within the 12-

hour experiment limit. PeX+TYPE generated too many (false) edges in ICFG and suffered

from path explosion during the last phase of PeX analysis; only 19 bugs were reported before

the timeout. In the mean time, PeX+KM timed out on an earlier pointer analysis phase,

thereby failing to report any bug.

When defconfig is used for comparison, PeX+TYPE and PeX+KM were able to complete

the analysis. In this setting, PeX+KIRIN (original) and PeX+TYPE both report 21 bugs (a

subset of 36 bugs detected with allyesconfig). Though PeX+TYPE can capture them all

(as type-based analysis is sound yet imprecise), it generates up to 3x more warnings, placing

146 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

a high burden on the users side for their manual review. On the other hand, as an unsound

solution, PeX+KM produces a limited number of warnings, resulting in the detection of only

6 bugs missing the rest.

6.6.4 Manual Review of Warnings

The manual review process of reported warnings is to determine whether a privileged func-

tion identified by PeX (Section 6.5.3) is a true privileged function or not. As long as one

can confirm that a function is indeed privileged, reported warnings regarding its missing,

inconsistent, and redundant permission checks should be true positives from PeX’s point of

view.

Though kernel developers with domain knowledge may be able to discern them with no

complication, we (as a third-party) try to understand whether a given function can be used

to access critical resources (e.g., device, file system, etc.). As a result, we conservatively

reported 36 bug warnings to the community; we suspect that there could be more true

warnings missed due to our lack of domain knowledge. We plan to release PeX and the

list of potential privileged functions, hoping kernel developers will contribute to identify

privileged functions and fix more true permission errors.

Certain static paths reported by PeX may not be feasible dynamically during program exe-

cution, resulting in false positives. One may devise a solution solving path constraints as in

symbolic execution engines [50] to address this problem, PeX currently does not do so.

6.6. Implementation and Evaluation 147

Table 6.5: Bugs Reported By PeX. Confirmed or Ignored.

Type-# File Function Description Status
DAC-1 fs/btrfs/send.c btrfs_send missing DAC check when traversing a snapshot C
DAC-2 fs/ecryptfs/inode.c ecryptfs_removexattr(),_setxattr() missing xattr_permission() C
DAC-3 fs/ecryptfs/inode.c ecryptfs_listxattr() missing xattr_permission() C
CAP-4 drivers/char/random.c write_pool(), credit_entropy_bits() missing CAP_SYS_ADMIN C
CAP-5 drivers/scsi/sg.c sg_scsi_ioctl() missing CAP_SYS_ADMIN or CAP_RAW_IO I
CAP-6 drivers/block/pktcdvd.c add_store(), remove_store() missing CAP_SYS_ADMIN I
CAP-7 drivers/char/nvram.c nvram_write() missing CAP_SYS_ADMIN I
CAP-8 drivers/firmware/efi/efivars.c efivar_entry_set() missing CAP_SYS_ADMIN C
CAP-9 net/rfkill/core.c rfkill_set_block(), rfkill_fop_write() missing CAP_NET_ADMIN C
CAP-10 block/scsi_ioctl.c mmc_rpmb_ioctl() missing verify_command or CAP_SYS_ADMIN I
CAP-11 drivers/platform/x86/thinkpad_acpi.c acpi_evalf() missing CAP_SYS_ADMIN I
CAP-12 drivers/md/dm.c dm_blk_ioctl() missing CAP_RAW_IO I
CAP-13 block/bsg.c bsg_ioctl inconsistent/missing CAP_SYS_ADMIN C
CAP-14 kernel/sys.c prctl_set_mm_exe_file inconsistent capability check I
CAP-15 kernel/sys.c prctl_set_mm_exe_file inconsistent capability and namespace check I
CAP-16 block/scsi_ioctl.c blk_verify_command redundant check CAP_SYS_RAWIO I
LSM-17 fs/ecryptfs/inode.c ecryptfs_removexattr(), _setxattr() missing security_inode_removexattr() C
LSM-18 mm/mmap.c remap_file_pages missing security_mmap_file() I
LSM-19 fs/binfmt_elf.c load_elf_binary() missing security_kernel_read_file I
LSM-20 fs/binfmt_elf.c load_elf_library() missing security_kernel_read_file I
LSM-21 fs/xfs/xfs_ioctl.c xfs_file_ioctl() missing security_inode_readlink() C
LSM-22 kernel/workqueue.c wq_nice_store() missing security_task_setnice() C
LSM-23 fs/ecryptfs/inode.c ecryptfs_listxattr() missing security_inode_listxattr C
LSM-24 include/linux/sched.h comm_write() missing security_task_prctl() C
LSM-25 fs/binfmt_misc.c load_elf_binary() missing security_bprm_set_creds() I
LSM-26 drivers/android/binder.c binder_set_nice missing security_task_setnice() I
LSM-27 fs/ocfs2/cluster/tcp.c o2net_start_listening() missing security_socket_bind I
LSM-28 fs/ocfs2/cluster/tcp.c o2net_start_listening() missing security_socket_listen I
LSM-29 fs/dlm/lowcomms.c tcp_create_listen_sock missing security_socket_bind I
LSM-30 fs/dlm/lowcomms.c tcp_create_listen_sock missing security_socket_listen I
LSM-31 fs/dlm/lowcomms.c sctp_listen_for_all missing security_socket_listen I
LSM-32 net/socket.c kernel_bind missing security_socket_bind I
LSM-33 net/socket.c kernel_listen missing security_socket_listen I
LSM-34 net/socket.c kernel_connect missing security_socket_connect I
LSM-35 fs/ocfs2/cluster/tcp.c o2net_start_listening() redundant security_socket_create C
LSM-36 fs/ocfs2/cluster/tcp.c o2net_open_listening_sock() redundant security_socket_create C

6.6.5 Discussion of Security Bug Findings

Missing Check

Fig. 6.2b is one of the confirmed missing LSM checks (LSM-21). We discuss two more

confirmed cases.

The CAP-4 missing check in kernel random device driver is particularly critical and triggered

active discussion in the kernel developer community (including Torvalds). Random number

generator serves as the foundation of many cryptography libraries including OpenSSL, and

thus the quality of the random number is very critical. This security bug allows attackers

to manipulate entropy pool, which can potentially corrupt many applications using cryp-

148 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

tography libraries. Specifically, a problematic path starts from evdev_write and reaches the

privileged function credit_entropy_bits, which can control the entropy in the entropy pool,

while bypassing the required CAP_SYS_ADMIN permission check.

The LSM-21 missing check in xfs_file_ioctl led to another interesting discussion among

kernel developers [21]. With this interface, a userspace program may perform low-level file

system operations, but security_inode_read_link LSM hook was missing. An adversary

could exploit this interface and gain access to the whole file system that is not allowed

by LSM policy. Interestingly, however, the privileged function performed CAP_SYS_ADMIN

Capability permission check. This created disagreement between kernel developers: one

group argues that the LSM hook is necessary, while another thinks that CAP_SYS_ADMIN is

sufficient. We agree with the former because LSM is designed to limit the damage of a

compromised process to the system, even the ones of root user [186]. We believe that LSM

permission checks should still be enforced as always for better security even when the current

user is root.

Kernel developers decided not to fix 9 of our reports because they believe these bugs are not

exploitable. As discussed earlier, PeX in the current form neither validates if a suspicious

static path is dynamically reachable, nor generates a concrete exploit to demonstrate the

security issue; we believe both are good future works. Nonetheless, we have one complaint

to share.

For the LSM-19 and LSM-20 cases, PeX found that the LSM hooks security_kernel_read_file

and security_kernel_post_read_file were used to protect the privileged functions kernel_read_file

and kernel_post_read_file in some program paths. We reported missing LSM hooks in

load_elf_binary and load_elf_library for these privileged functions. However, the kernel

developers responded that those hooks are used to monitor loading firmware/kernel mod-

ules only (not other files), and thus no patch is required. Here, the implication we found

6.6. Implementation and Evaluation 149

is three-fold. First, the permission check names are ambiguous and misleading. Second, we

were not able to find any documentation of such LSM specification regarding the protection

of firmware/kernel modules. Last, PeX actually found a counter-example in IMA where the

same checks are indeed used for loading other files (neither firmware nor kernel modules).

Consequently, we suggest changing the function name and documenting the clear intention

to avoid any confusion and to prevent system administrators from creating an LSM policy

that does not work.

Inconsistent Check

The CAP-13 inconsistent check has been discussed in Fig. 6.1. One program path in

Figs. 6.1a and 6.1c has two CAP_SYS_RAWIO checks and one CAP_SYS_ADMIN check, while an-

other path in Figs. 6.1b and 6.1c has only one CAP_SYS_ADMIN check. PeX detects this

bug as an inconsistent check, but from the viewpoint of correction, which requires adding

CAP_SYS_RAWIO, this may also be viewed as a missing check. There is a separate redundant

check error in CAP_SYS_RAWIO.

Upon further investigation, we were interested in learning the practices in using multiple ca-

pabilities together. scsi_ioctl in Fig. 6.1a checks both CAP_SYS_ADMIN and CAP_SYS_RAWIO.

However, in a different network subsystem (not shown), we found that too_many_unix_fds

performs a weaker permission check with the CAP_SYS_ADMIN or CAP_SYS_RAWIO condition.

We believe this OR-based weaker check is not a good practice because this in effect makes

CAP_SYS_ADMIN too powerful (like root), diminishing the benefit of fine-grained capability-

based access control.

The CAP-14 and CAP-15 inconsistent error reports were acknowledged but ignored by the

kernel developers for the following reason. For the same privileged function prctl_set_mm_exe_file,

150 Chapter 6. A Permission Check Analysis Framework for Linux Kernel

which is used to set an executable file, PeX discovered one case requiring CAP_SYS_RESOURCE

in user namespace, and another case checking CAP_SYS_ADMIN in init namespace. Kernel

developers responded that each case is fine by design for that specific context. PeX does not

consider the precise context in which prctl_set_mm_exe_file is used (similar to aforemen-

tioned security_kernel_read_file used for loading kernel modules), leading to an imprecise

report, but we believe that both CAP-14 and CAP-15 are worthwhile for further investiga-

tion.

Redundant Check

A redundant check occurs in two forms. First, for user-reachable functions, it happens when

a privileged function is covered by the same permission checks multiple times. We reported

three cases. The CAP-16 case was discussed in Figs. 6.1a and 6.1c with two CAP_SYS_RAWIO

checks, which was ignored by kernel developers. On the other hand, for the LSM-35 and

LSM-36 cases found in the ocfs2 file system, the other kernel developer group confirmed and

promised to fix the bugs. Second, any permission check in kernel-initialization functions is

marked as redundant because the boot thread is executed under root. PeX detected tens of

such cases, but we did not report them as they are less critical.

6.7 Summary

In this chapter, we tackle scalability and precision problems in static kernel bug detectors

(PS3). We presents PeX, a static permission check analysis framework for Linux kernel,

which can automatically infer mappings between permission checks and privileged functions

as well as detect missing, inconsistent, and redundant permission checks for any privileged

functions. PeX relies on KIRIN, our novel call graph analysis based on kernel interfaces, a

6.7. Summary 151

common programming pattern in the Linunx kernel, to resolve indirect calls precisely and

efficiently (TS3).

We evaluated both KIRIN and PeX for the latest stable Linux kernel v4.18.5. The experi-

ments show that KIRIN can resolve 86%-92% of all indirect callsites in the kernel within 7

minutes. In particular, PeX reported 36 permission check bugs of DAC, Capabilities, and

LSM, 14 of which have already been confirmed by the kernel developers. PeX is published

at [233].

Chapter 7

Conclusion

Addressing software bugs is becoming a more urgent task. Over the years, software bugs

are not only causing more and more damages to the economy but affecting people’s daily

life. Software developers use bug detectors to help locate and fix bugs. However, many

bug detectors are not practical, limiting the wide adoption. In this thesis, we study and

address common problems of dynamic and static bug detectors, therefore helping developers

to improve software quality.

First, we study dynamic bug detectors and address run-time (PS1) and space overheads

problems (PS2). To reduce run-time overhead, we propose to repurpose commodity hard-

ware (TS1) to improve dynamic bug detectors. Especially, we study data race bugs, which

are becoming popular in multi-threaded shared-memory programs. We design TxRace, which

demonstrates that we can leverage commodity transactional memory to accelerate a dynamic

data race detector. The experimental results show that TxRace reduces the average run-time

overhead from 11.68x to 4.65x, with only a small number of false negatives.

Due to the undeterministic nature of data races, it is hard to find all data races during

testing. Thus people are interested in deploying dynamic data race detector in production

environment, which can better exercise the program and catch more data races. We present

a production-ready sampling-based dynamic data race detector, ProRace, which further

reduces the run-time overhead leveraging PMU for lightweight tracing. The evaluation shows

that ProRace incurs only 2.6% run-time overhead with 27.5% detection probability with a

152

153

sampling period of 10,000.

To address the space overhead problem, we propose to reuse existing metadata maintained

by one bug detector to detect other kinds of bugs (TS2), reducing space overhead in dynamic

bug detectors. We study memory safety bugs, which is more common than data race bugs.

We present a memory-efficient solution, BOGO, which adds temporal memory safety upon

Intel MPX’s spatial memory safety solution. BOGO reuses Intel MPX’s bound metadata

as well as run-time checks, reducing spacing overhead. The evaluation shows that BOGO

incurs 60% run-time overhead and 36% memory overhead providing full memory safety.

Finally, we study static bug detectors and address scalability and precision problems (PS3).

To improve scalability and precision, we propose applying common programming patterns to

static analyses (TS3). We focus on static analysis for large program code, the Linux kernel,

and improve the scalability and precision of a common analysis, kernel call graph generation,

using function pointer usage pattern in the Linux kernel. Furthermore, to demonstrate its

effectiveness, we designed a kernel permission check bug detector based on the aforemen-

tioned analysis. Our detector can help kernel developers find out missing,inconsistent, and

redundant permission checks, that is critical to operating system security. We evaluated it

using the latest Linux kernel and it detected 14 previously unknown bugs within a limited

time budget.

Bibliography

[1] The apache http server. http://httpd.apache.org.

[2] Cve-2006-1856. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2006-1856, .

[3] Cve-2011-4080. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2011-4080, .

[4] CVE-2017-17450 Missing Capability Check in Linux Kernel. https://www.

cvedetails.com/cve/CVE-2017-17450/, .

[5] 2011 cwe/sans top 25 most dangerous software errors. http://cwe.mitre.org/top25/.

[6] Child support it failures savaged. https://www.zdnet.com/article/

child-support-it-failures-savaged/.

[7] Intel mpx explained – performance evaluation. https://intel-

mpx.github.io/performance/.

[8] Nist software assurance reference dataset project. https://samate.nist.gov/SARD.

[9] Android Permission Overview. https://developer.android.com/guide/topics/

permissions/overview.

[10] ab - apache http server benchmarking tool. https://httpd.apache.org/docs/2.4/programs/ab.html.

[11] Apparmor. https://gitlab.com/apparmor/apparmor/wikis/home/.

154

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1856
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1856
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4080
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4080
https://www.cvedetails.com/cve/CVE-2017-17450/
https://www.cvedetails.com/cve/CVE-2017-17450/
https://www.zdnet.com/article/child-support-it-failures-savaged/
https://www.zdnet.com/article/child-support-it-failures-savaged/
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://gitlab.com/apparmor/apparmor/wikis/home/

BIBLIOGRAPHY 155

[12] Hack flasback: The mt.gox hack – the most

iconic exchange hack. https://www.ledger.com/

hack-flasback-the-mt-gox-hack-the-most-iconic-exchange-hack/.

[13] Struct bound narrowing. https://gcc.gnu.org/wiki/Intel MPX support in the GCC

compiler#Narrowing.

[14] alse boundaries and arbitrary code execution. https://forums.grsecurity.net/

viewtopic.php?f=7&t=2522, .

[15] CAP_SYS_ADMIN: the new root. https://lwn.net/Articles/486306/, .

[16] capabilities - overview of linux capabilities. http://man7.org/linux/man-pages/

man7/capabilities.7.html, .

[17] Discretionary access control. https://en.wikipedia.org/wiki/Discretionary_

access_control.

[18] Dangsan open source implementation. https://github.com/vusec/dangsan.

[19] K-miner: Data-flow analysis for the linux kernel. https://github.com/ssl-tud/

k-miner.

[20] Knight shows how to lose $440 million in 30 min-

utes. https://www.bloomberg.com/news/articles/2012-08-02/

knight-shows-how-to-lose-440-million-in-30-minutes.

[21] Re: Leaking path in xfs’s ioctl interface(missing lsm check) by stephen smalley. https:

//lkml.org/lkml/2018/9/26/668.

[22] Locationmanager. https://developer.android.com/reference/android/

location/LocationManager#getLastKnownLocation(java.lang.String).

https://www.ledger.com/hack-flasback-the-mt-gox-hack-the-most-iconic-exchange-hack/
https://www.ledger.com/hack-flasback-the-mt-gox-hack-the-most-iconic-exchange-hack/
https://forums.grsecurity.net/viewtopic.php?f=7&t=2522
https://forums.grsecurity.net/viewtopic.php?f=7&t=2522
https://lwn.net/Articles/486306/
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://en.wikipedia.org/wiki/Discretionary_access_control
https://en.wikipedia.org/wiki/Discretionary_access_control
https://github.com/ssl-tud/k-miner
https://github.com/ssl-tud/k-miner
https://www.bloomberg.com/news/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes
https://www.bloomberg.com/news/articles/2012-08-02/knight-shows-how-to-lose-440-million-in-30-minutes
https://lkml.org/lkml/2018/9/26/668
https://lkml.org/lkml/2018/9/26/668
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)
https://developer.android.com/reference/android/location/LocationManager#getLastKnownLocation(java.lang.String)

156 BIBLIOGRAPHY

[23] Mandatory access control. https://en.wikipedia.org/wiki/Mandatory_access_

control.

[24] Softbound+cets open source implementation. https://github.com/santoshn/softboundcets-

34.

[25] Smatch: pluggable static analysis for c. https://lwn.net/Articles/691882/.

[26] Software fail watch: 5th edition. https://www.tricentis.com/resources/

software-fail-watch-5th-edition/.

[27] Sparse. https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html.

[28] Spec2006 addresssanitizer patch. https://github.com/google/sanitizers/

blob/master/address-sanitizer/spec/spec2006-asan.patch.

[29] Scriptable database and system performance benchmark.

https://github.com/akopytov/sysbench.

[30] Toyota’s killer firmware: Bad design and its conse-

quences. https://www.edn.com/design/automotive/4423428/

Toyota-s-killer-firmware--Bad-design-and-its-consequences.

[31] Virtual file system. https://en.wikipedia.org/wiki/Virtual_file_system.

[32] Forgot your windows 98 password? no problem. https://imgur.com/fqjnK.

[33] Whole Program LLVM: a wrapper script to build whole-program llvm bitcode files.

https://github.com/travitch/whole-program-llvm.

[34] Yehuda Afek, Amir Levy, and Adam Morrison. Software-improved hardware lock

elision. In Proceedings of the 2014 ACM Symposium on Principles of Distributed

Computing, PODC ’14, pages 212–221, 2014. ISBN 978-1-4503-2944-6.

https://en.wikipedia.org/wiki/Mandatory_access_control
https://en.wikipedia.org/wiki/Mandatory_access_control
https://lwn.net/Articles/691882/
https://www.tricentis.com/resources/software-fail-watch-5th-edition/
https://www.tricentis.com/resources/software-fail-watch-5th-edition/
https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html
https://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
https://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
https://en.wikipedia.org/wiki/Virtual_file_system
https://github.com/travitch/whole-program-llvm

BIBLIOGRAPHY 157

[35] Periklis Akritidis. Cling: A memory allocator to mitigate dangling pointers. In

USENIX Security Symposium, pages 177–192, 2010.

[36] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds

checking: An efficient and backwards-compatible defense against out-of-bounds errors.

In Proceedings of the 18th Conference on USENIX Security Symposium, SSYM’09,

pages 51–66, 2009.

[37] A. Alomary et al. PEAS-I: A hardware/software co-design system for ASIPs. pages

2–7, 1993.

[38] Gautam Altekar and Ion Stoica. Odr: output-deterministic replay for multicore de-

bugging. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems

principles, pages 193–206. ACM, 2009.

[39] Jonathan Anderson, Robert NMWatson, David Chisnall, Khilan Gudka, Ilias Marinos,

and Brooks Davis. Tesla: temporally enhanced system logic assertions. In Proceedings

of the Ninth European Conference on Computer Systems, page 19. ACM, 2014.

[40] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: analyzing

the android permission specification. In Proceedings of the 2012 ACM conference on

Computer and communications security, pages 217–228. ACM, 2012.

[41] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC

Benchmark Suite: Characterization and Architectural Implications. In Proc. of the

17th PACT, October 2008.

[42] C.M. Bishop et al. Pattern recognition and machine learning. Springer New York:,

2006.

158 BIBLIOGRAPHY

[43] Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Brandon Lucia. Efficient,

software-only data race exceptions. In Proceedings of the 2015 ACM SIGPLAN In-

ternational Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA ’15, 2015.

[44] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-oriented pro-

gramming: a new class of code-reuse attack. In Proceedings of the 6th ACM Symposium

on Information, Computer and Communications Security, pages 30–40. ACM, 2011.

[45] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill, Michael M.

Swift, and David A. Wood. Performance pathologies in hardware transactional mem-

ory. In Proceedings of the 34th Annual International Symposium on Computer Archi-

tecture, ISCA ’07, pages 81–91, 2007. ISBN 978-1-59593-706-3.

[46] Hans-J. Boehm and Sarita V. Adve. Foundations of the c++ concurrency memory

model. In Proceedings of the 2008 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’08, pages 68–78, 2008.

[47] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. Pacer: Proportional

detection of data races. In Proceedings of the 2010 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’10, pages 255–268, 2010.

ISBN 978-1-4503-0019-3.

[48] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for

adaptive dynamic optimization. In Proceedings of the International Symposium on Code

Generation and Optimization: Feedback-directed and Runtime Optimization, CGO ’03,

pages 265–275, 2003. ISBN 0-7695-1913-X.

[49] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. Undangle: early

detection of dangling pointers in use-after-free and double-free vulnerabilities. In Pro-

BIBLIOGRAPHY 159

ceedings of the 2012 International Symposium on Software Testing and Analysis, pages

133–143. ACM, 2012.

[50] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and au-

tomatic generation of high-coverage tests for complex systems programs. In OSDI,

volume 8, pages 209–224, 2008.

[51] Irina Calciu, Justin Gottschlich, Tatiana Shpeisman, Gilles Pokam, and Maurice Her-

lihy. Invyswell: A hybrid transactional memory for haswell’s restricted transactional

memory. In Proceedings of the 23rd International Conference on Parallel Architectures

and Compilation, PACT ’14, pages 187–200, 2014.

[52] Christopher D. Carothers, Kalyan S. Perumalla, and Richard M. Fujimoto. Efficient

optimistic parallel simulations using reverse computation. ACM Trans. Model. Comput.

Simul., 9(3):224–253, July 1999. ISSN 1049-3301. doi: 10.1145/347823.347828. URL

http://doi.acm.org/10.1145/347823.347828.

[53] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Hovav

Shacham, and Marcel Winandy. Return-oriented programming without returns. In

Proceedings of the 17th ACM Conference on Computer and Communications Security,

CCS ’10, pages 559–572, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0245-

6. doi: 10.1145/1866307.1866370. URL http://doi.acm.org/10.1145/1866307.

1866370.

[54] Shimin Chen, Babak Falsafi, Phillip B. Gibbons, Michael Kozuch, Todd C. Mowry,

Radu Teodorescu, Anastassia Ailamaki, Limor Fix, Gregory R. Ganger, Bin Lin,

and Steven W. Schlosser. Log-based architectures for general-purpose monitoring

of deployed code. In Proceedings of the 1st Workshop on Architectural and System

Support for Improving Software Dependability, ASID ’06, pages 63–65, New York,

http://doi.acm.org/10.1145/347823.347828
http://doi.acm.org/10.1145/1866307.1866370
http://doi.acm.org/10.1145/1866307.1866370

160 BIBLIOGRAPHY

NY, USA, 2006. ACM. ISBN 1-59593-576-2. doi: 10.1145/1181309.1181319. URL

http://doi.acm.org/10.1145/1181309.1181319.

[55] Xi Chen, Asia Slowinska, and Herbert Bos. On the detection of custom memory

allocators in c binaries. Empirical Softw. Engg., 21(3):753–777, June 2016. ISSN

1382-3256. doi: 10.1007/s10664-015-9362-z. URL http://dx.doi.org/10.1007/

s10664-015-9362-z.

[56] Lee Chew and David Lie. Kivati: Fast detection and prevention of atomicity violations.

In Proceedings of the 5th European Conference on Computer Systems, EuroSys ’10,

pages 307–320, 2010. ISBN 978-1-60558-577-2.

[57] David Chisnall, Colin Rothwell, Robert NM Watson, Jonathan Woodruff, Munraj

Vadera, Simon W Moore, Michael Roe, Brooks Davis, and Peter G Neumann. Beyond

the pdp-11: Architectural support for a memory-safe c abstract machine. In ACM

SIGPLAN Notices, volume 50, pages 117–130. ACM, 2015.

[58] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar,

and Manu Sridharan. Efficient and precise datarace detection for multithreaded object-

oriented programs. In Proceedings of the ACM SIGPLAN 2002 Conference on Pro-

gramming Language Design and Implementation, PLDI ’02, pages 258–269, 2002. ISBN

1-58113-463-0.

[59] Jim Chow, Tal Garfinkel, and Peter M. Chen. Decoupling dynamic program analysis

from execution in virtual environments. In USENIX 2008 Annual Technical Conference,

ATC’08, pages 1–14, Berkeley, CA, USA, 2008. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1404014.1404015.

[60] Cliff Click. Azuls experiences with hardware transactional memory. In In HP Labs -

Bay Area Workshop on Transactional Memory, 2009.

http://doi.acm.org/10.1145/1181309.1181319
http://dx.doi.org/10.1007/s10664-015-9362-z
http://dx.doi.org/10.1007/s10664-015-9362-z
http://dl.acm.org/citation.cfm?id=1404014.1404015
http://dl.acm.org/citation.cfm?id=1404014.1404015

BIBLIOGRAPHY 161

[61] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st

ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154, New York, NY,

USA, 2010. ACM. ISBN 978-1-4503-0036-0. doi: 10.1145/1807128.1807152. URL

http://doi.acm.org/10.1145/1807128.1807152.

[62] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie,

Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard: automatic

adaptive detection and prevention of buffer-overflow attacks. In Usenix Security, vol-

ume 98, pages 63–78, 1998.

[63] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick Fratantonio, and Vasileios P.

Kemerlis. Retracer: Triaging crashes by reverse execution from partial memory dumps.

In Proceedings of the 38th International Conference on Software Engineering, ICSE

’16, pages 820–831, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3900-1. doi:

10.1145/2884781.2884844. URL http://doi.acm.org/10.1145/2884781.2884844.

[64] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory

programming. IEEE Computer Science and Engineering, 5(1):46–55, 1998.

[65] Luke Dalessandro, François Carouge, Sean White, Yossi Lev, Mark Moir, Michael L.

Scott, and Michael F. Spear. Hybrid norec: A case study in the effectiveness of best

effort hardware transactional memory. In Proceedings of the Sixteenth International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, ASPLOS XVI, pages 39–52, 2011. ISBN 978-1-4503-0266-1.

[66] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hardbound:

Architectural support for spatial safety of the c programming language. In Proceed-

ings of the 13th International Conference on Architectural Support for Programming

http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/2884781.2884844

162 BIBLIOGRAPHY

Languages and Operating Systems, ASPLOS XIII, pages 103–114, 2008. ISBN 978-1-

59593-958-6.

[67] Joseph Devietti, Benjamin P. Wood, Karin Strauss, Luis Ceze, Dan Grossman, and

Shaz Qadeer. Radish: Always-on sound and complete ra detection in software and

hardware. In Proceedings of the 39th Annual International Symposium on Computer

Architecture, ISCA ’12, pages 201–212, 2012. ISBN 978-1-4503-1642-2.

[68] Dinakar Dhurjati and Vikram Adve. Backwards-compatible array bounds checking

for c with very low overhead. In Proceedings of the 28th International Conference on

Software Engineering, ICSE ’06, pages 162–171, 2006. ISBN 1-59593-375-1.

[69] Dinakar Dhurjati and Vikram Adve. Efficiently detecting all dangling pointer uses in

production servers. In Dependable Systems and Networks, 2006. DSN 2006. Interna-

tional Conference on, pages 269–280. IEEE, 2006.

[70] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. Safecode: Enforcing alias anal-

ysis for weakly typed languages. In Proceedings of the 27th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’06, pages 144–157, New

York, NY, USA, 2006. ACM. ISBN 1-59593-320-4. doi: 10.1145/1133981.1133999.

URL http://doi.acm.org/10.1145/1133981.1133999.

[71] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experience with a

commercial hardware transactional memory implementation. In Proceedings of the

14th International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS XIV, pages 157–168, 2009. ISBN 978-1-60558-406-5.

[72] Mark Dowson. The ariane 5 software failure. ACM SIGSOFT Software Engineering

Notes, 22(2):84, 1997.

http://doi.acm.org/10.1145/1133981.1133999

BIBLIOGRAPHY 163

[73] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Demand-driven computation

of interprocedural data flow. In Proceedings of the 22nd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 37–48. ACM, 1995.

[74] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. Runtime verification of autho-

rization hook placement for the linux security modules framework. In Proceedings of

the 9th ACM Conference on Computer and Communications Security, pages 225–234.

ACM, 2002.

[75] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J. Boehm.

Ifrit: Interference-free regions for dynamic data-race detection. In Proceedings of the

ACM International Conference on Object Oriented Programming Systems Languages

and Applications, OOPSLA ’12, pages 467–484, 2012. ISBN 978-1-4503-1561-6.

[76] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: A race and transaction-

aware java runtime. In Proceedings of the 2007 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’07, pages 245–255, 2007. ISBN

978-1-59593-633-2.

[77] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs

as deviant behavior: A general approach to inferring errors in systems code. In ACM

SIGOPS Operating Systems Review, volume 35, pages 57–72. ACM, 2001.

[78] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk. Effec-

tive data-race detection for the kernel. In In Proceedings of the 9th USENIX conference

on Operating systems design and implementation, OSDI ’10, 2010.

[79] Cormac Flanagan and Stephen N. Freund. Fasttrack: Efficient and precise dynamic

race detection. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming

164 BIBLIOGRAPHY

Language Design and Implementation, PLDI ’09, pages 121–133, 2009. ISBN 978-1-

60558-392-1.

[80] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. Automatic placement of authoriza-

tion hooks in the linux security modules framework. In Proceedings of the 12th ACM

conference on Computer and communications security, pages 330–339. ACM, 2005.

[81] Vinod Ganapathy, Trent Jaeger, and Somesh Jha. Towards automated authoriza-

tion policy enforcement. In Proceedings of Second Annual Security Enhanced Linux

Symposium. Citeseer, 2006.

[82] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. K-miner: Un-

covering memory corruption in linux. In Proceedings of the 2018 Annual Network and

Distributed System Security Symposium (NDSS), San Diego, CA, 2018.

[83] Bhavishya Goel, Ruben Titos-Gil, Anurag Negi, Sally A. McKee, and Per Stenstrom.

Performance and energy analysis of the restricted transactional memory implemen-

tation on haswell. In Proceedings of the 2014 IEEE 28th International Parallel and

Distributed Processing Symposium, IPDPS ’14, pages 615–624, Washington, DC, USA,

2014. ISBN 978-1-4799-3800-1.

[84] Google. Addresssanitizeruseafterreturn, 2017. URL https://github.com/google/

sanitizers/wiki/AddressSanitizerUseAfterReturn.

[85] Joseph L. Greathouse, Zhiqiang Ma, Matthew I. Frank, Ramesh Peri, and Todd Austin.

Demand-driven software race detection using hardware performance counters. In Pro-

ceedings of the 38th Annual International Symposium on Computer Architecture, ISCA

’11, pages 165–176, 2011. ISBN 978-1-4503-0472-6.

https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterReturn

BIBLIOGRAPHY 165

[86] Part Guide. Intel® 64 and ia-32 architectures software developer’s manual. Volume

3B: System programming Guide, Part, 2, 2011.

[87] Rajiv Gupta. Optimizing array bound checks using flow analysis. ACM Letters on

Programming Languages and Systems (LOPLAS), 2(1-4):135–150, 1993.

[88] Shantanu Gupta, Florin Sultan, Srihari Cadambi, Franjo Ivancic, and Martin Roet-

teler. Racetm: Detecting data races using transactional memory. In Proceedings of the

Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, SPAA

’08, pages 104–106, 2008. ISBN 978-1-59593-973-9.

[89] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and accurate pointer

analysis for millions of lines of code. In ACM SIGPLAN Notices, volume 42, pages

290–299. ACM, 2007.

[90] Ben Hardekopf and Calvin Lin. Exploiting pointer and location equivalence to optimize

pointer analysis. pages 265–280, 2007.

[91] Ben Hardekopf and Calvin Lin. Flow-sensitive pointer analysis for millions of lines of

code. In Proceedings of the 9th Annual IEEE/ACM International Symposium on Code

Generation and Optimization, pages 289–298. IEEE Computer Society, 2011.

[92] Ruud Haring, Martin Ohmacht, Thomas Fox, Michael Gschwind, David Satterfield,

Krishnan Sugavanam, Paul Coteus, Philip Heidelberger, Matthias Blumrich, Robert

Wisniewski, alan gara, George Chiu, Peter Boyle, Norman Chist, and Changhoan

Kim. The ibm blue gene/q compute chip. IEEE Micro, 32(2):48–60, March 2012.

ISSN 0272-1732.

[93] William Hasenplaugh, Andrew Nguyen, and Nir Shavit. Quantifying the capacity

166 BIBLIOGRAPHY

limitations of hardware transactional memory. In WTTM ’15: 7th Workshop on the

Theory of Transactional Memory, July 2015.

[94] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support

for lock-free data structures. In Proceedings of the 20th Annual International Sympo-

sium on Computer Architecture, ISCA ’93, pages 289–300, 1993. ISBN 0-8186-3810-9.

[95] Jeff Huang, Charles Zhang, and Julian Dolby. Clap: Recording local executions to

reproduce concurrency failures. In Proceedings of the 34th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’13, pages 141–152, 2013.

ISBN 978-1-4503-2014-6.

[96] Intel. Intel architecture instruction set extensions programming refer-

ence. chapter 8: Intel transactional synchronization extensions, 2012.

https://software.intel.com/sites/default/files/m/9/2/3/41604.

[97] Intel. Intel 64 and ia-32 architectures optimization reference manual. chapter 12: Intel

tsx recommendations, 2014. http://www.intel.com/content/dam/www/public/us/en/

documents/manuals/64-ia-32-architectures-optimization-manual.pdf.

[98] Intel. Intel inspector xe, 2015. http://software.intel.com/en-us/intel-inspector-xe.

[99] Intel®Microarchitecture Codename Nehalem Performance Monitoring Unit Program-

ming Guide. Intel Corporation, 2010.

[100] 6th Generation Intel®Processor Datasheet for S-Platforms. Intel Corporation, 2015.

[101] Intel®64 and IA-32 Architectures Software Developers’ Manual. Intel Corporation,

Santa Clara, CA, 2016.

[102] International Organization for Standardization. ISO/IEC 14882:2011: Information

technology – Programming languages – C++, 2011.

BIBLIOGRAPHY 167

[103] International Organization for Standardization. ISO/IEC 9899:2011: Information tech-

nology – Programming languages – C, 2011.

[104] Christian Jacobi, Timothy Slegel, and Dan Greiner. Transactional memory architec-

ture and implementation for ibm system z. In Proceedings of the 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-45, pages 25–36,

2012. ISBN 978-0-7695-4924-8.

[105] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney, and

Yanling Wang. Cyclone: A safe dialect of c. In USENIX Annual Technical Conference,

General Track, pages 275–288, 2002.

[106] Guoliang Jin, Aditya V. Thakur, Ben Liblit, and Shan Lu. Instrumentation and

sampling strategies for cooperative concurrency bug isolation. In William R. Cook,

Siobhán Clarke, and Martin C. Rinard, editors, OOPSLA, 2010.

[107] jndok. Analysis and exploitation of pegasus kernel vulnerabilities. http://jndok.

github.io/2016/10/04/pegasus-writeup/.

[108] C. Jung, D. Lim, J. Lee, and S. Han. Adaptive execution techniques for SMT multi-

processor architectures. In ppopp05, pages 236–246, 2005.

[109] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and Santosh Pande.

Brainy: effective selection of data structures. In Proceedings of the 32nd ACM SIG-

PLAN conference on Programming language design and implementation, PLDI ’11,

pages 86–97, New York, NY, USA, 2011. ACM.

[110] Changhee Jung, Sangho Lee, Easwaran Raman, and Santosh Pande. Automated mem-

ory leak detection for production use. In Proceedings of the 36th International Con-

ference on Software Engineering, 2014.

http://jndok.github.io/2016/10/04/pegasus-writeup/
http://jndok.github.io/2016/10/04/pegasus-writeup/

168 BIBLIOGRAPHY

[111] Baris Kasikci, Cristian Zamfir, and George Candea. Racemob: Crowdsourced data

race detection. In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles, SOSP ’13, pages 406–422, 2013. ISBN 978-1-4503-2388-8.

[112] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and George Can-

dea. Failure sketching: A technique for automated root cause diagnosis of in-production

failures. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP

’15, pages 344–360, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3834-9. doi:

10.1145/2815400.2815412. URL http://doi.acm.org/10.1145/2815400.2815412.

[113] Kirk Kelsey, Tongxin Bai, Chen Ding, and Chengliang Zhang. Fast track: A soft-

ware system for speculative program optimization. In Proceedings of the 7th Annual

IEEE/ACM International Symposium on Code Generation and Optimization, CGO

’09, pages 157–168, 2009. ISBN 978-0-7695-3576-0.

[114] Bogdan Korel and Juergen Rilling. Program slicing in understanding of large programs.

In Program Comprehension, 1998. IWPC’98. Proceedings., 6th International Workshop

on, pages 145–152. IEEE, 1998.

[115] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. In Proceedings of the International Symposium on Code

Generation and Optimization: Feedback-directed and Runtime Optimization, CGO ’04,

pages 75–, 2004. ISBN 0-7695-2102-9.

[116] Michael A. Laurenzano, Mustafa M. Tikir, Laura Carrington, and Allan Snavely. Pebil:

Efficient static binary instrumentation for linux. In International Symposium on the

Performance Analysis of Systems and Software, 2010.

[117] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long

http://doi.acm.org/10.1145/2815400.2815412

BIBLIOGRAPHY 169

Lu, and Wenke Lee. Preventing use-after-free with dangling pointers nullification. In

NDSS, 2015.

[118] Dongyoon Lee, Mahmoud Said, Satish Narayanasamy, Zijiang Yang, and Cristiano

Pereira. Offline symbolic analysis for multi-processor execution replay. In Proceed-

ings of the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 42, pages 564–575, 2009. ISBN 978-1-60558-798-1.

[119] Dongyoon Lee, Mahmoud Said, Satish Narayanasamy, and Zijiang Yang. Offline sym-

bolic analysis to infer total store order. In Proceedings of the 2011 IEEE 17th Inter-

national Symposium on High Performance Computer Architecture, HPCA ’11, pages

357–358, 2011. ISBN 978-1-4244-9432-3.

[120] Dongyoon Lee, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Chimera:

Hybrid program analysis for determinism. In Proceedings of the 33rd ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’12, pages

463–474, 2012. ISBN 978-1-4503-1205-9.

[121] Jaejin Lee, Jung-Ho Park, Honggyu Kim, Changhee Jung, Daeseob Lim, and SangY-

ong Han. Adaptive execution techniques of parallel programs for multiprocessors. J.

Parallel Distrib. Comput., 70(5):467–480, May 2010. ISSN 0743-7315.

[122] Sangho Lee, Changhee Jung, and Santosh Pande. Detecting memory leaks through

introspective dynamic behavior modelling using machine learning. In Proceedings of

the 36th International Conference on Software Engineering, 2014.

[123] Yosef Lev, Mark Moir, and Dan Nussbaum. PhTM: Phased transactional memory. In

TRANSACT ’07: 2nd Workshop on Transactional Computing, aug 2007.

170 BIBLIOGRAPHY

[124] Nancy G. Leveson and Clark S. Turner. An investigation of the therac-25 accidents.

IEEE Computer, 26(7):18–41, July 1993.

[125] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. Compiler-directed

lightweight checkpointing for fine-grained guaranteed soft error recovery. In Proceedings

of the International Conference on High Performance Computing, Networking, Storage

and Analysis (SC), Nov 2016.

[126] Yutao Liu, Yubin Xia, Haibing Guan, Binyu Zang, and Haibo Chen. Concurrent

and consistent virtual machine introspection with hardware transactional memory. In

Proceedings of the 2014 IEEE 20th International Symposium on High Performance

Computer Architecture, HPCA ’14, 2014.

[127] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and Haibing Guan.

Transparent and efficient cfi enforcement with intel processor trace. In Proceedings of

the 2017 IEEE 23rd International Symposium on High Performance Computer Archi-

tecture, HPCA ’17, 2017.

[128] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. Unisan: Proactive ker-

nel memory initialization to eliminate data leakages. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, pages 920–

932. ACM, 2016.

[129] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. Bugbench:

Benchmarks for evaluating bug detection tools. In Workshop on the evaluation of

software defect detection tools, volume 5, 2005.

[130] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: A

comprehensive study on real world concurrency bug characteristics. In Proceedings of

BIBLIOGRAPHY 171

the 13th International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS XIII, pages 329–339, 2008. ISBN 978-1-59593-958-6.

[131] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans-J. Boehm. Conflict

exceptions: Simplifying concurrent language semantics with precise hardware excep-

tions for data-races. In Proceedings of the 37th Annual International Symposium on

Computer Architecture, ISCA ’10, pages 210–221, 2010. ISBN 978-1-4503-0053-7.

[132] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building

customized program analysis tools with dynamic instrumentation. In Proceedings of

the 2005 ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’05, pages 190–200, 2005. ISBN 1-59593-056-6.

[133] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher Kruegel,

and Giovanni Vigna. Dr. checker: A soundy analysis for linux kernel drivers. In 26th

{USENIX} Security Symposium ({USENIX} Security 17), pages 1007–1024. USENIX

Association, 2017.

[134] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. In

Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’05, pages 378–391, 2005. ISBN 1-58113-830-X.

[135] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. Literace: Effective

sampling for lightweight data-race detection. In Proceedings of the 2009 ACM SIG-

PLAN Conference on Programming Language Design and Implementation, PLDI ’09,

pages 134–143, 2009. ISBN 978-1-60558-392-1.

[136] Milo Martin, Colin Blundell, and E. Lewis. Subtleties of transactional memory atom-

icity semantics. IEEE Comput. Archit. Lett., 5(2):17–17, July 2006. ISSN 1556-6056.

172 BIBLIOGRAPHY

[137] Hassan Salehe Matar, Ismail Kuru, Serdar Tasiran, and Roman Dementiev. Accelerat-

ing precise race detection using commercially available hardware transactional memory

support. In 5th Workshop on Determinism and Correctness in Parallel Programming,

WoDet ’14, 2014.

[138] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Taesoo

Kim. Cross-checking semantic correctness: The case of finding file system bugs. In

Proceedings of the 25th Symposium on Operating Systems Principles, pages 361–377.

ACM, 2015.

[139] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.

Wood. LogTM: Log-based transactional memory. In Proceedings of the 2006 IEEE 12th

International Symposium on High Performance Computer Architecture, pages 254–265,

February 2006.

[140] S.S. Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann Pub-

lishers, 1997.

[141] Divya Muthukumaran, Trent Jaeger, and Vinod Ganapathy. Leveraging choice to

automate authorization hook placement. In Proceedings of the 2012 ACM conference

on Computer and communications security, pages 145–156. ACM, 2012.

[142] Divya Muthukumaran, Nirupama Talele, Trent Jaeger, and Gang Tan. Producing hook

placements to enforce expected access control policies. In International Symposium on

Engineering Secure Software and Systems, pages 178–195. Springer, 2015.

[143] Abdullah Muzahid, Dario Suárez, Shanxiang Qi, and Josep Torrellas. Sigrace:

Signature-based data race detection. In Proceedings of the 36th Annual International

Symposium on Computer Architecture, ISCA ’09, pages 337–348, 2009.

BIBLIOGRAPHY 173

[144] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.

Softbound: Highly compatible and complete spatial memory safety for c. In Pro-

ceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’09, pages 245–258, 2009. ISBN 978-1-60558-392-1.

[145] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. Cets:

compiler enforced temporal safety for c. In ACM Sigplan Notices, volume 45, pages

31–40. ACM, 2010.

[146] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watchdog: Hardware

for safe and secure manual memory management and full memory safety. In Proceedings

of the 39th Annual International Symposium on Computer Architecture, ISCA ’12,

pages 189–200, 2012. ISBN 978-1-4503-1642-2.

[147] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watchdoglite:

Hardware-accelerated compiler-based pointer checking. In Proceedings of Annual

IEEE/ACM International Symposium on Code Generation and Optimization, CGO

’14, pages 175:175–175:184, 2014. ISBN 978-1-4503-2670-4.

[148] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. Everything you want

to know about pointer-based checking. In LIPIcs-Leibniz International Proceedings in

Informatics, volume 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[149] Santosh Ganapati Nagarakatte. Practical low-overhead enforcement of memory safety

for c programs. PhD thesis, University of Pennsylvania, 2012.

[150] George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley

Weimer. Ccured: Type-safe retrofitting of legacy software. ACM Transactions on

Programming Languages and Systems (TOPLAS), 27(3):477–526, 2005.

174 BIBLIOGRAPHY

[151] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dy-

namic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’07, pages 89–100, 2007.

ISBN 978-1-59593-633-2.

[152] Robert H. B. Netzer and Barton P. Miller. What are race conditions?: Some issues

and formalizations. ACM Lett. Program. Lang. Syst., 1(1):74–88, March 1992. ISSN

1057-4514.

[153] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Efficiently and precisely

locating memory leaks and bloat. In Proc. of the 30th PLDI, 2009.

[154] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof

Fetzer. Intel MPX explained: An empirical study of intel MPX and software-based

bounds checking approaches. CoRR, abs/1702.00719, 2017. URL http://arxiv.org/

abs/1702.00719.

[155] Hilarie Orman. The morris worm: A fifteen-year perspective. IEEE Security & Privacy,

1(5):35–43, 2003.

[156] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. Documenting

and automating collateral evolutions in linux device drivers. In Acm sigops operating

systems review, volume 42, pages 247–260. ACM, 2008.

[157] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H Lee,

and Shan Lu. Pres: probabilistic replay with execution sketching on multiprocessors.

In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,

pages 177–192. ACM, 2009.

http://arxiv.org/abs/1702.00719
http://arxiv.org/abs/1702.00719

BIBLIOGRAPHY 175

[158] PCWorld. Nasdaq’s facebook glitch came from race condi-

tions, May 2012. http://www.pcworld.com/article/255911/ nas-

daqs_facebook_glitch_came_from_race_conditions.html.

[159] Fernando Magno Quintao Pereira and Daniel Berlin. Wave propagation and deep

propagation for pointer analysis. In Code Generation and Optimization, 2009. CGO

2009. International Symposium on, pages 126–135. IEEE, 2009.

[160] Eli Pozniansky and Assaf Schuster. Multirace: Efficient on-the-fly data race detection

in multithreaded c++ programs: Research articles. Concurr. Comput. : Pract. Exper.,

19(3):327–340, March 2007. ISSN 1532-0626.

[161] Marco Prandini and Marco Ramilli. Return-oriented programming. IEEE Security &

Privacy, 10(6):84–87, 2012.

[162] Dick Price. Pentium fdiv flaw-lessons learned. IEEE Micro, 15(2):86–88, 1995.

[163] Milos Prvulovic. Cord: Cost-effective (and nearly overhead-free) order-recording and

data race detection. In Proceedings of the 2006 IEEE 12th International Symposium

on High Performance Computer Architecture, HPCA ’06, 2006.

[164] Milos Prvulovic and Josep Torrellas. Reenact: Using thread-level speculation mecha-

nisms to debug data races in multithreaded codes. In Proceedings of the 30th Annual

International Symposium on Computer Architecture, ISCA ’03, pages 110–121, 2003.

ISBN 0-7695-1945-8.

[165] Feng Qin, Shan Lu, and Yuanyuan Zhou. Safemem: Exploiting ecc-memory for

detecting memory leaks and memory corruption during production runs. In High-

Performance Computer Architecture, 2005. HPCA-11. 11th International Symposium

on, pages 291–302. IEEE, 2005.

176 BIBLIOGRAPHY

[166] Lili Qiu, Yin Zhang, Feng Wang, Mi Kyung, and Han Ratul Mahajan. Trusted com-

puter system evaluation criteria. In National Computer Security Center. Citeseer,

1985.

[167] Sanjay Rawat, Laurent Mounier, and Marie-Laure Potet. Listt: An investigation into

unsound-incomplete yet practical result yielding static taintflow analysis. In Availabil-

ity, Reliability and Security (ARES), 2014 Ninth International Conference on, pages

498–505. IEEE, 2014.

[168] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt.

Google-wide profiling: A continuous profiling infrastructure for data centers. IEEE

Micro, 30(4).

[169] Carl G. Ritson and Frederick R.M. Barnes. An evaluation of intel’s restricted trans-

actional memory for cpas, 2013.

[170] Simon Rogerson. The chinook helicopter disaster. IMIS Journal, 12(2), 2002.

[171] Michiel Ronsse and Koen De Bosschere. Recplay: A fully integrated practical

record/replay system. ACM Trans. Comput. Syst., 17(2):133–152, May 1999. ISSN

0734-2071.

[172] Olatunji Ruwase and Monica S Lam. A practical dynamic buffer overflow detector. In

NDSS, volume 2004, pages 159–169, 2004.

[173] Paul Sack, Brian E. Bliss, Zhiqiang Ma, Paul Petersen, and Josep Torrellas. Accurate

and efficient filtering for the intel thread checker race detector. In Proceedings of the 1st

Workshop on Architectural and System Support for Improving Software Dependability,

ASID ’06, pages 34–41, 2006. ISBN 1-59593-576-2.

BIBLIOGRAPHY 177

[174] Ravi S Sandhu and Pierangela Samarati. Access control: principle and practice. IEEE

communications magazine, 32(9):40–48, 1994.

[175] Pawel Sarbinowski, Vasileios P Kemerlis, Cristiano Giuffrida, and Elias Athanasopou-

los. Vtpin: practical vtable hijacking protection for binaries. In Proceedings of the

32nd Annual Conference on Computer Security Applications, pages 448–459. ACM,

2016.

[176] Madalina-Ioana Sas. Snowwall: A visual firewall for the surveillance society. 2017.

[177] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-

derson. Eraser: A dynamic data race detector for multithreaded programs. ACM

Trans. Comput. Syst., 15(4):391–411, November 1997. ISSN 0734-2071.

[178] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer bug to gain

kernel privileges. Black Hat, pages 7–9, 2015.

[179] SecurityFocus. Software bug contributed to blackout, Feb. 2004.

http://www.securityfocus.com/news/8016.

[180] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: Data race detec-

tion in practice. In Proceedings of the Workshop on Binary Instrumentation and

Applications, WBIA ’09, pages 62–71, 2009. ISBN 978-1-60558-793-6.

[181] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.

Addresssanitizer: A fast address sanity checker. In USENIX Annual Technical Con-

ference, pages 309–318, 2012.

[182] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov.

Addresssanitizer: A fast address sanity checker. In Proceedings of the 2012 USENIX

Conference on Annual Technical Conference, USENIX ATC’12, pages 28–28, Berkeley,

178 BIBLIOGRAPHY

CA, USA, 2012. USENIX Association. URL http://dl.acm.org/citation.cfm?id=

2342821.2342849.

[183] Yuru Shao, Qi Alfred Chen, Zhuoqing Morley Mao, Jason Ott, and Zhiyun Qian.

Kratos: Discovering inconsistent security policy enforcement in the android framework.

In NDSS, 2016.

[184] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert Hundt, Wenguang Chen,

and Weimin Zheng. Racez: A lightweight and non-invasive race detection tool for pro-

duction applications. In Proceedings of the 33rd International Conference on Software

Engineering, ICSE ’11, pages 401–410, 2011. ISBN 978-1-4503-0445-0.

[185] Robert Skeel. Roundoff error and the patriot missile. SIAM News, 25(4):11, 1992.

[186] Stephen Smalley and Robert Craig. Security enhanced (se) android: Bringing flexible

mac to android. In NDSS, volume 310, pages 20–38, 2013.

[187] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing selinux as a linux

security module. NAI Labs Report, 1(43):139, 2001.

[188] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. Rolecast: finding missing

security checks when you do not know what checks are. In ACM SIGPLAN Notices,

volume 46, pages 1069–1084. ACM, 2011.

[189] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow analysis in llvm.

In Proceedings of the 25th International Conference on Compiler Construction, pages

265–266. ACM, 2016.

[190] Yulei Sui, Ding Ye, Yu Su, and Jingling Xue. Eliminating redundant bounds checks

in dynamic buffer overflow detection using weakest preconditions. IEEE Transactions

on Reliability, 65(4):1682–1699, 2016.

http://dl.acm.org/citation.cfm?id=2342821.2342849
http://dl.acm.org/citation.cfm?id=2342821.2342849

BIBLIOGRAPHY 179

[191] Martin Susskraut, Thomas Knauth, Stefan Weigert, Ute Schiffel, Martin Meinhold,

and Christof Fetzer. Prospect: A compiler framework for speculative parallelization.

In Proceedings of the 8th Annual IEEE/ACM International Symposium on Code Gen-

eration and Optimization, CGO ’10, pages 131–140, 2010.

[192] Laszlo Szekeres, Mathias Payer, TaoWei, and Dawn Song. Sok: Eternal war in memory.

In Security and Privacy (SP), 2013 IEEE Symposium on, pages 48–62. IEEE, 2013.

[193] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. Autoises:

Automatically inferring security specification and detecting violations. In USENIX

Security Symposium, pages 379–394, 2008.

[194] Gregory Tassey. The economic impacts of inadequate infrastructure for software test-

ing. 2002.

[195] The Clang Team. Clang 3.8 threadsanitizer, 2015.

http://clang.llvm.org/docs/ThreadSanitizer.html.

[196] Frank Tip. A survey of program slicing techniques. Centrum voor Wiskunde en Infor-

matica, 1994.

[197] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent Freeh, and Peng

Ning. On the expressiveness of return-into-libc attacks. In Proceedings of the 14th Inter-

national Conference on Recent Advances in Intrusion Detection, RAID’11, pages 121–

141, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-23643-3. doi: 10.1007/

978-3-642-23644-0_7. URL http://dx.doi.org/10.1007/978-3-642-23644-0_7.

[198] National Computer Security Center (US). A guide to understanding discretionary

access control in trusted systems, volume 3. National Computer Security Center, 1987.

http://dx.doi.org/10.1007/978-3-642-23644-0_7

180 BIBLIOGRAPHY

[199] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. Dangsan: Scalable use-

after-free detection. In Proceedings of the Twelfth European Conference on Computer

Systems, pages 405–419. ACM, 2017.

[200] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clemen-

tine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.

Drammer: Deterministic rowhammer attacks on mobile platforms. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS

’16, pages 1675–1689, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4139-4. doi:

10.1145/2976749.2978406. URL http://doi.acm.org/10.1145/2976749.2978406.

[201] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Peter M.

Chen, Jason Flinn, and Satish Narayanasamy. Doubleplay: Parallelizing sequential

logging and replay. In Proceedings of the Sixteenth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS XVI,

pages 15–26, 2011. ISBN 978-1-4503-0266-1.

[202] Guru Venkataramani, Brandyn Roemer, Yan Solihin, and Milos Prvulovic. Mem-

tracker: Efficient and programmable support for memory access monitoring and de-

bugging. In High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th

International Symposium on, pages 273–284. IEEE, 2007.

[203] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer, and Trent Jaeger. Jigsaw:

Protecting resource access by inferring programmer expectations. In USENIX Security

Symposium, pages 973–988, 2014.

[204] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: Static race detection on

millions of lines of code. In Proceedings of the the 6th Joint Meeting of the Euro-

pean Software Engineering Conference and the ACM SIGSOFT Symposium on The

http://doi.acm.org/10.1145/2976749.2978406

BIBLIOGRAPHY 181

Foundations of Software Engineering, ESEC-FSE ’07, pages 205–214, 2007. ISBN

978-1-59593-811-4.

[205] Jaroslav Ševčík and David Aspinall. On validity of program transformations in the java

memory model. In Proceedings of the 22Nd European Conference on Object-Oriented

Programming, ECOOP ’08, pages 27–51, 2008. ISBN 978-3-540-70591-8.

[206] Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve Dodier-Lazaro. How double-

fetch situations turn into double-fetch vulnerabilities: A study of double fetches in the

linux kernel. In USENIX Security Symposium, 2017.

[207] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. Check it again: Detecting lacking-

recheck bugs in os kernels. In Proceedings of ACM conference on Computer and

communications security. ACM, 2018.

[208] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M Frans Kaashoek.

Improving integer security for systems with kint. In OSDI, volume 12, pages 163–177,

2012.

[209] Xiaoxiao Wang, Mohammad Tehranipoor, and Jim Plusquellic. Detecting malicious

inclusions in secure hardware: Challenges and solutions. In Hardware-Oriented Security

and Trust, 2008. HOST 2008. IEEE International Workshop on, pages 15–19. IEEE,

2008.

[210] Robert NM Watson, Jonathan Woodruff, Peter G Neumann, Simon W Moore,

Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben

Laurie, et al. Cheri: A hybrid capability-system architecture for scalable software com-

partmentalization. In 2015 IEEE Symposium on Security and Privacy, pages 20–37.

IEEE, 2015.

182 BIBLIOGRAPHY

[211] Benjamin Wester, David Devecsery, Peter M. Chen, Jason Flinn, and Satish

Narayanasamy. Parallelizing data race detection. In Proceedings of the Eighteenth

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’13, pages 27–38, 2013. ISBN 978-1-4503-1870-9.

[212] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouter Joosen.

Ripe: Runtime intrusion prevention evaluator. In Proceedings of the 27th Annual

Computer Security Applications Conference, ACSAC ’11, pages 41–50, New York, NY,

USA, 2011. ACM. ISBN 978-1-4503-0672-0. doi: 10.1145/2076732.2076739. URL

http://doi.acm.org/10.1145/2076732.2076739.

[213] R.R. Wilcox. Introduction to Robust Estimation and Hypothesis Testing. Elsevier

Science & Technology, 2012. ISBN 9780123869838.

[214] Chris Wright, Crispin Cowan, James Morris, Stephen Smalley, and Greg Kroah-

Hartman. Linux security module framework. In Ottawa Linux Symposium, volume

8032, pages 6–16, 2002.

[215] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. Cfimon: Detecting violation of

control flow integrity using performance counters. In Proceedings of the 2012 42Nd

Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), DSN ’12, pages 1–12, Washington, DC, USA, 2012. IEEE Computer Soci-

ety. ISBN 978-1-4673-1624-8. URL http://dl.acm.org/citation.cfm?id=2354410.

2355130.

[216] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. Precise and

scalable detection of double-fetch bugs in os kernels. 2018.

[217] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad Rieck. Chucky:

Exposing missing checks in source code for vulnerability discovery. In Proceedings of

http://doi.acm.org/10.1145/2076732.2076739
http://dl.acm.org/citation.cfm?id=2354410.2355130
http://dl.acm.org/citation.cfm?id=2354410.2355130

BIBLIOGRAPHY 183

the 2013 ACM SIGSAC conference on Computer & communications security, pages

499–510. ACM, 2013.

[218] Junfeng Yang, Ted Kremenek, Yichen Xie, and Dawson Engler. Meca: an extensible,

expressive system and language for statically checking security properties. In Proceed-

ings of the 10th ACM conference on Computer and communications security, pages

321–334. ACM, 2003.

[219] Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadhavan. Concurrency

attacks. In The 4th USENIX Workshop on Hot Topics in Parallelism, Berke-

ley, CA, 2012. USENIX. URL https://www.usenix.org/conference/hotpar12/

concurrency-attacks.

[220] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis Sylvester. A2:

Analog malicious hardware. In Security and Privacy (SP), 2016 IEEE Symposium on,

pages 18–37. IEEE, 2016.

[221] Ding Ye, Yu Su, Yulei Sui, and Jingling Xue. Wpbound: Enforcing spatial mem-

ory safety efficiently at runtime with weakest preconditions. In Proceedings of the

2014 IEEE 25th International Symposium on Software Reliability Engineering, IS-

SRE ’14, pages 88–99, Washington, DC, USA, 2014. IEEE Computer Society. ISBN

978-1-4799-6033-0. doi: 10.1109/ISSRE.2014.20. URL http://dx.doi.org/10.1109/

ISSRE.2014.20.

[222] Ding Ye, Yu Su, Yulei Sui, and Jingling Xue. Wpbound: Enforcing spatial mem-

ory safety efficiently at runtime with weakest preconditions. In Software Reliabil-

ity Engineering (ISSRE), 2014 IEEE 25th International Symposium on, ISSRE ’14,

pages 88–99, Washington, DC, USA, 2014. IEEE, IEEE Computer Society. ISBN

https://www.usenix.org/conference/ hotpar12/concurrency-attacks
https://www.usenix.org/conference/ hotpar12/concurrency-attacks
http://dx.doi.org/10.1109/ISSRE.2014.20
http://dx.doi.org/10.1109/ISSRE.2014.20

184 BIBLIOGRAPHY

978-1-4799-6033-0. doi: 10.1109/ISSRE.2014.20. URL http://dx.doi.org/10.1109/

ISSRE.2014.20.

[223] Suan Hsi Yong and Susan Horwitz. Protecting c programs from attacks via invalid

pointer dereferences. In ACM SIGSOFT Software Engineering Notes, volume 28, pages

307–316. ACM, 2003.

[224] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar. Performance

evaluation of intel® transactional synchronization extensions for high-performance

computing. In Proceedings of the International Conference on High Performance Com-

puting, Networking, Storage and Analysis, SC ’13, pages 19:1–19:11, 2013. ISBN 978-

1-4503-2378-9.

[225] Yves Younan. Freesentry: protecting against use-after-free vulnerabilities due to dan-

gling pointers. In NDSS, 2015.

[226] Jie Yu and Satish Narayanasamy. A case for an interleaving constrained shared-

memory multi-processor. In Proceedings of the 36th Annual International Symposium

on Computer Architecture, ISCA ’09, pages 325–336, 2009. ISBN 978-1-60558-526-0.

[227] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: Efficient detection of data race

conditions via adaptive tracking. In Proceedings of the Twentieth ACM Symposium on

Operating Systems Principles, SOSP ’05, pages 221–234, 2005. ISBN 1-59593-079-5.

[228] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik.

Apisan: Sanitizing api usages through semantic cross-checking. In USENIX Security

Symposium, pages 363–378, 2016.

[229] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R. Sekar. A platform for secure

static binary instrumentation. In Proceedings of the 10th ACM SIGPLAN/SIGOPS

http://dx.doi.org/10.1109/ISSRE.2014.20
http://dx.doi.org/10.1109/ISSRE.2014.20

BIBLIOGRAPHY 185

International Conference on Virtual Execution Environments, VEE ’14, pages 129–140,

New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2764-0. doi: 10.1145/2576195.

2576208. URL http://doi.acm.org/10.1145/2576195.2576208.

[230] Tong Zhang, Dongyoon Lee, and Changhee Jung. Txrace: Efficient data race detec-

tion using commodity hardware transactional memory. ACM SIGARCH Computer

Architecture News, 44(2):159–173, 2016.

[231] Tong Zhang, Changhee Jung, and Dongyoon Lee. Prorace: Practical data race de-

tection for production use. ACM SIGOPS Operating Systems Review, 51(2):149–162,

2017.

[232] Tong Zhang, Dongyoon Lee, and Changhee Jung. Bogo: Buy spatial memory safety,

get temporal memory safety (almost) free. In Proceedings of the Twenty-Fourth Inter-

national Conference on Architectural Support for Programming Languages and Oper-

ating Systems, pages 631–644. ACM, 2019.

[233] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and

Ruowen Wang. Pex: A permission check analysis framework for linux kernel. In 28th

{USENIX} Security Symposium ({USENIX} Security 19), pages 1205–1220, 2019.

[234] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using cqual for static analysis of

authorization hook placement. In USENIX Security Symposium, pages 33–48, 2002.

[235] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. Hard: Hardware-assisted lockset-

based race detection. In Proceedings of the 2007 IEEE 13th International Symposium

on High Performance Computer Architecture, HPCA ’07, pages 121–132, 2007. ISBN

1-4244-0804-0.

http://doi.acm.org/10.1145/2576195.2576208

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Three Focused Software Bugs
	Data Race Bugs
	Memory Safety Bugs
	Permission Check Bugs

	Problem Statements
	Time and Space Overheads of Dynamic Bug Detectors
	Scalability and Precision Issues in Static Bug Detectors

	Thesis Statement
	Contributions
	Reducing Run-time Overhead of Dynamic Data Race Bug Detectors
	Reducing Space Overhead of Dynamic Memory Safety Bug Detectors
	Solving Scalability and Precision Issues in Static Linux Kernel Permission Bug Detectors

	Organization

	Literature Review
	Data Races
	Lockset-based Approaches
	Overlap-based Approaches
	Hardware Data Race Detectors
	Sampling-based Approaches
	Hybrid Static/Dynamic Approaches
	Other Approaches to Reduce Dynamic Data Race Detector Overhead
	Other Related Works

	Memory Safety
	Spatial Memory Safety
	Temporal Memory Safety

	Permission Check Bugs in Linux Kernel
	Permission Checks in Linux
	Hook Verification and Placement
	Kernel Static Analysis Tools
	Permission Check Analysis Tools

	Efficient Data Race Detection Using Hardware Transactional Memory
	Introduction
	Background and Challenges
	Hardware Transactional Memory
	Challenges in Using HTM for Race Detection

	Overview
	Fast Path HTM-based Race Detection
	Transactionalization
	Handling Transactional Aborts
	Optimization

	Slow Path Software-based Race Detection
	False Negatives
	Implementation
	Evaluation
	Methodology
	Performance Overhead
	False Negatives
	Cost-Effectiveness of Data Race Detection

	Summary

	Practical Data Race Detection for Production Use
	Introduction
	Overview
	Lightweight Program Tracing
	PEBS-based Memory Access Sampling
	PT-based Control-flow Tracing
	Synchronization Tracing

	Recovering Unsampled Memory Accesses
	Forward Replay
	Backward Replay

	Implementation
	Evaluation
	Methodology
	Performance Overhead
	Trace Size
	Race Detection
	Memory Operation Reconstruction
	Offline Analysis Overhead

	Summary

	Memory Efficient Temporal Memory Safety Solution for MPX
	Introduction
	Overview of BOGO
	BOGO Approach Details
	Hot Bound Table Page Tracking
	Combine PartialScan and PageFaultScan to Achieve Low Overhead and No False Negative
	Combine PageFaultScan and RedundancyPredication to Achieve Low Overhead and No False Positive

	Optimization
	No PageFaultScan Optimization
	FullScan Optimization

	Dynamic Adaptation of Queue Size
	Scan Cost Analysis
	Impact of HPQ and FAQ Sizes
	Scan Cost-based HPQ Adaptive Scheme

	Discussion
	Implementation
	Spatial Memory Safety
	Temporal Memory Safety

	Evaluation
	Methodology
	Security Evaluation
	SPEC CPU 2006 Benchmark
	Malloc/Free Benchmark
	Real-World Applications

	Summary

	A Permission Check Analysis Framework for Linux Kernel
	Introduction
	Examples of Permission Check Errors
	Capability Permission Check Errors
	LSM Permission Check Errors

	Challenges
	Indirect Call Analysis in Kernel
	The Lack of Full Permission Checks, Privileged Functions, and Their Mappings

	KIRIN Indirect Call Analysis
	Indirect Call Target Collection
	Indirect Callsite Resolution

	Design of PeX
	Call Graph Generation and Partition
	Permission Check Wrapper Detection
	Privileged Function Detection
	Non-privileged Function Filter
	Permission Check Error Detection

	Implementation and Evaluation
	Evaluation Methodology
	Evaluation of KIRIN
	PeX Result
	Manual Review of Warnings
	Discussion of Security Bug Findings

	Summary

	Conclusion
	Bibliography

