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Abstract 

The research presented in this dissertation is carried out in two parts; the first, 

which is the main work of this dissertation, involves development of continuous 

differentiability of the solution with respect to the unknown parameters. For linear 

parabolic partial differential equations, only mild conditions are assumed on the 

admissible parameter space. The nonlinear partial differential equation we consider 

is a generalized Burgers’ equation, for which we establish the well-posedness and 

the smoothness properties of the solution with respect to the parameters. 

In the second part, we consider parameter identification problems for these two 

parameter dependent systems. The identification scheme which we use here is the 

quasilinearization method. Based on the results in the first part of this work, we 

obtain existence and local convergence of the algorithm. We also present some 

numerical examples which demonstrate the performance of the quasilinearization 

scheme.
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Chapter 1 

Introduction 

During recent years considerable effort has been devoted to the problem of estimating 

unknown parameters in distributed parameter systems. Many parameter estimation 

problems are best formulated in an infinite dimensional state space where one must 

determine the parameter from some admissible parameter set that minimizes an 

appropriate cost function. 

There are two basic classes of approach for optimization based parameter es- 

timation. The first, an indirect approach proceeds by initially approximating the 

dynamic equations and then using optimization algorithms on the finite dimensional 

problem. This type of approach, which is typified by the papers [8] - [11], is usually 

easy to implement and successful. A disadvantage of this approach is that only sub- 

sequential convergence of the sequence of generated parameter estimates has been 

established. 

The second more direct approach is based on direct application of an optimiza- 

tion algorithm and employs numerical approximations at each step of the algorithm



to compute the necessary solutions of the dynamic equations. This approach is used 

in [7], {15], [26], [27] and [31]. Direct methods are often limited by the fact that 

the dependence on unknown parameters of the solution to the infinite dimensional 

dynamical equations may not be smooth enough to establish convergence of the algo- 

rithm. Indeed, some algorithms may not be properly defined without this necessary 

smoothness. When the direct methods can be applied, however, it is sometimes 

possible to establish not only sequential convergence but also rates of convergence. 

The work presented in this thesis is motivated by the use of a direct method 

such as quasilinearization to solve parameter estimation problems involving differ- 

ent types of partial differential equations. The crucial part in the proof of the 

convergence of the algorithm is to establish the smoothness properties with respect 

to the parameters. In our work, we discuss two kinds of parameter dependent sys- 

tems. The first one is a linear parabolic system with variable coefficients. This 

study is presented in Chapter 2. The second one is a generalized Burgers’ equation 

with variable coefficients; it is presented in Chapter 3. 

There is a considerable body of research on the problem of estimating coefficients 

in parabolic equations. In 1985, H. T. Banks and P. D. Lamm ([10]) developed an in- 

direct approach for estimating coefficients in parabolic distributed systems. In 1990, 

P. W. Hammer ([26]) developed a quasilinearization algorithm for a parameter es- 

timation problem involving a parabolic partial differential equation. Both of these



papers assumed strong smoothness assumptions on the admissible parameter space. 

In 1988, H. T. Banks and K. Ito ([8]) presented a general convergence/stability 

framework for using indirect methods to treat parameter identification problems 

involving distributed parameter systems. This framework permits one to give con- 

vergence and stability arguments in inverse problems under extremely weak com- 

pactness assumptions on the admissible parameter spaces. In Chapter 2, we use this 

idea in a direct approach. Actually, by modifying the framework, we successfully 

prove that the quasilinearization method is convergent under mild assumptions on 

the admissible parameter space. 

The next problem we consider is the application of quasilinearization to param- 

eter identification in nonlinear partial differential equations. In [26], P. W. Hammer 

presented some numerical results for Burgers’ equation with constant parameters. 

In [4], M. G. Armentano presented some numerical results for Burgers’ equation 

with spatially varying parameters. The numerical results presented in these papers 

were successful. However, neither of these papers contain a convergence proof for 

the nonlinear equations. The nonlinear partial differential equation we consider in 

this work is a generalized Burgers’ equation on a finite interval. In Chapter 3, we 

establish the well-posedness and the smoothness properties of the solution with re- 

spect to the parameters. These properties are necessary to establish the convergence 

of the quasilinearization algorithm.



In Chapter 4, we formulate the parameter estimation problems as optimal control 

problems and prove the existence of solutions to the problems in the first section. 

In the second section, we prove that with the smoothness properties established in 

Chapter 2 and Chapter 3, the quasilinearization algorithm converges. 

Finally, in Chapter 5, we present numerical examples which demonstrate the 

performance of the quasilinearization scheme.



Chapter 2 

Parameter Dependence in 

Parabolic Partial Differential 

Equations 

In this chapter, we consider the dependence on an unknown parameter of the solution 

of parabolic partial differential equations. We prove the smoothness properties under 

weak assumptions on the parameter space. 

2.1 The General Setting 

We consider a separable real Hilbert space H and another separable Hilbert space 

V, which is continuously and densely imbedded in H. We identify H with its own 

dual space; the dual of V is denoted by V*. Thus we have V C H C V* with 

continuous and dense imbeddings. We shall use the same notation (-,-) for the inner 

product in H and for the pairing between V* and V.



Let T be a positive integer. The space C([0,7], H) has the norm 

l|24|| = supreto,ryl|u(t) lz, 

and the space W}(0,T; V, H) = {u € L,(0,T;V):u’ € L2(0,T; V*)} has the norm 

lel = fo Nace’? + Cf ut(el2-aty 

Notice that, in some books W}(0,7; V, H) is also denoted by W(0, 7) (see [43]) or 

L*((0,T), V) N H1((0, 7), V*) (see {[39]). Here we use the notation in [44]. 

We consider the following first order system dependent on a parameter gq. Sup- 

pose f € L7((0,T),V*) and uo € H. We investigate a function u € W3(0,T; V, H) 

with 

aut) = A(q)u(t) + f(t), 
(2.1) 

u(0) = uo, 

where A(q) € L(V,V~) for each q. 

The parameter qg belongs to the space Q, which is assumed to be a subset of a 

separable Hilbert space with norm || - ||g. We assume that observations y; for the 

solution u(t;,g*) of (2.1) at discrete times t;, 2 = 1,2,---,m are given. The goal is 

to find g € Q from this data. In particular, we solve the following inverse problem:



Find ¢ € Q that minimizes the functional 

J(q) = Di [lCults a) — yilly, 

where C’ is a bounded linear mapping from the state space H to the observation 

space Y. Clearly, if y; = Cu(t;; q*), then ¢ = q” is the solution to the problem. 

With A(q), we can associate the sesquilinear forms 

a(q)($, ") = (A(q)¢, ¢), 

which is defined from V x V to R. We assume that o(q)(-,-) has the following 

properties: 

(Al) Boundedness: there exists a positive number M, such that for all g € Q and 

for ¢,y € V, the following holds 

lo(q)(6,9)1 < Malldllvilelly- 

(A2) Coercivity: there exists a positive number a and a real number Xo such that 

forg€ Q,d€ V we have 

a(q)(o.¢) + roll ol|7, > all ally. 

The following two results are well-known, see [39], {43], [44].



Proposition 2.1 Suppose (A1) and (A2) hold. Then for each q € Q, the equation 

(2.1) has exactly one solution u € W7(0,T;V, H). 

Proposition 2.2 The space W3(0,T;V,H) is continuously embedded in 

C([0,T], H). 

In order to solve the parameter estimation problem, using direct methods, we 

require some knowledge on the derivative of the state with respect to the unknown 

parameter. To obtain differentiability, we need the following additional] assumptions: 

(A3) F-differentiable of o(q) : For q € Q and for ¢,y € V, there exists a linear 

functional 0,0(q¢)(¢, ¢) defined from @ — FR such that for any h € Q 

Io(q + h)(9, 9) — 0(9)(4,%) — Wola), ¥)- Al < o([Flla)lellvileliv- 

(A4) Boundedness of 0,0(q¢)(¢,y) : For an element q in Q, there exists Mz > 0 

such that for any A in Q and ¢,y in V 

|0,0(4)(, 9) > h| < Mol[Allallallvileliv- 

Remark 2.1 From (A3) and (A4), we see that o has the continuity property. That 

is, there exists 6 = 6(q) > 0 such that if ||h|lg < 6, then there is Mz > 0 so that the



following holds 

llo(g + h)(G, e) — o(a)($, ¥)|| S MallAllollellvlleliv- 

2.2 Parameter Dependence 

In this section we deduce smoothness properties for the solution u(q) of (2.1) with 

respect to the parameter q. First, let us recall the definition of the Fréchet derivative 

([39]). 

Definition 2.1 Let X and Y be Banach spaces and let xo be a point in X. Let F be 

a mapping from a neighborhood of xo into Y. Then F is called Fréchet differentiable 

at Zo if there exists a bounded linear operator A € L(X,Y) such that 

sn WE (eot 2) — Feo) ~ Aally 
z+0 llzllx 
  = 0. 

If such an A exists, we call it the Fréchet derivative of F at xo, denoted by DF (zo). 

Theorem 2.1 Suppose (Al) — (A4) hold. Let u(t;q) € C([0,T], H) be the solution 

of (2.1). Then for each t € [0,7], u(t;q) is Fréchet differentiable with respect to q 

at every gq € Q. Moreover, for each h € Q, v(t) = D,u(t; q)h ts the unique solution 

of the weak sensitivity equation 

(v9) + o(Q(v, 9) + o(g)(u(g),~)-h=0, for VWeeV 

v(0) = 0.



Proof. By Proposition 2.1 and Proposition 2.2, it is clear that both (2.1) and 

(2.2) have unique solutions in C'([0,7], H) for each q,h € Q. For the proof of the 

remaining part, as in [43] and [44], it suffices to prove the result for the case that 

Ao = 0 in condition (A2). 

Let h € Q, |lhllo < 6, where 6 is defined as in Remark 2.1. Let v(t) denote the 

solution of (2.2) corresponding to h. It is clear that for each fixed t € [0,7], the 

mapping from h € Q to v(t) € 7 is linear and continuous. From Definition 2.1, we 

only need to show that for each t € [0, 7, 

llu(ts@ +h) — u(t; ¢) — v(t) ln 
— 0 

Allo 

as ||h||g — 0. 

Let I(t) = u(t;q¢ +h) — u(t;q). Then I(t) satisfies 

(i,~)+o(q+h)(u(g+h),y) —o(g)(ulg),y)=0, for Vee, 

i(0) = 0. 

Thus, 

(,~) to(q+ hj) + o(g + h)(u(q), 9) — o(9)(u(q), 9) = 0. 

Select y = I(t), then we have 

(44,0) tog +All) = —o(g + h)(u(q),!) + o(a)(u(g),!) 

10



< MallAllal|uca)|lvllallv 

1 a 
< 5 Ma llAllallu(a)lly + allay. 

here we have used Remark 2.1. Integrating in time and compute the left hand side, 

we obtain 

[iat o(a+ myc niet = SIT) 0+ [ola A\(L, Dat 

T 
> ft allilizat. 

0 

Therefore, we have 

T T 

ff Wleae < ella’ [luca iat. (2.3) 

Now, set w(t) = u(t;q¢ +h) — u(t; ¢) — v(t), where |/h||q < 6. Then w(t) satisfies 

the following equation: 

(wip) + O(G + h)(ulg + A), ~) — o(G) (UM), ¥) — O(A(% P) — O,0(9)(u(G), 9) bh = 0 

w(0) = 0 

for each y in V. 

Therefore, we have 

(wi~) + o(9¢)(w,¢) 

+ [o(g t+ h)(ulg + h), 2) — o(G)(ulg + A), 9) — O0(G)(ulg + h), 9) + hl] 

ll



+ [0,0(4)(u(g + h),p) hk — O,0(G)(u(4), ) > A] = 0. 

Since o(q)(-,-) is sesquilinear, 0,0(g)(¢, y) is linear with respect to ¢. This implies 

(w:, ) + a(q)(w, y) 

+ [o(Gth)(u(g+ kh), ~) — o(@)(ulg + h), 9) — A0(G)(ulg +h), ) - A] 

+ d,0(g)(u(q + h) — u(q),¢)-h =0. (2.4) 

If we select y = w(t), then (2.4) reduces to 

1 d 9 
5 lulls = (uw;,w) 

IA
 of|[Allo) - [luCg + A)[lvllwlly + Mo|Allallu(g + &) — u(@)ilvlwllv 

_ o(q)(w, w ) 

o(llAllo)  lle(@)Ilvllwlly + éllAllaliu(g + 2) — u(4)|lv jelly — allelly IA
 

o([[AllG) + llu(ayily + Ellu(G +h) — u(@)Ilv IlAlld. lA
 

Integrating from 0 to ¢ and using the initial condition w(0) = 0, we obtain from 

(2.3) 

lolli S AlNAllQ + o(IAllQ). 

12



Thus, it follows that 

|w/|Pllollz > 0 as |lhIlg > 0, 

and this completes the proof. O 

Theorem 2.2 Suppose (Al) — (A4) hold. In addition, assume that 

(A5) Lipschitz continuous of 0,0(q)(¢,¢) with respect to q: For any ¢,¢% in 

V, there exists M4 > 0 such that 

A,o(q + Aq)(%,") — Wola) ¥)I| S MallAgllall¢llvlellv- 

Then for each t € [0,T], Du(t;q) ts locally Lipschitz continuous with respect to q. 

Proof. As in the proof of the previous theorem, we only need to consider the case 

Ao = 0 in condition (A2). Pick a point A in Q so that ||h||g = 1. Suppose v(q) and 

v(q + Ag) are the solutions of (2.2) with @ = q and Gg = q+ Ag, respectively. For 

small Aq, let r(t) = v(q¢ + Aq) — v(q). Then r(t) satisfies 

(71,9) — o(g)(v(q), 9) + o(g + Aqg)(v(q + Aq), p) — O,0(q)(ulg),e)- 
+0,0(q¢+ Aq)(u(q+ Aq), y~)-h=0 for VWwEV 

r(0) =0. 

Select y = r(t). Since o(q¢ + Aq)(r,r) > al|r||?,, it follows that 

d Srl = (rer) 

b
o
l
 ke 

13



= [o(9)(o(4),7) — o(4 + Ag)(v(a),”)] 

+ [,0(q)(u(q),7) > h — Ogo(q + Aq)(u(g),r) >] 

+ 0,0(q + Aq)(u(q) — u(qt+ Aq),r)-h — allr|ly 
IA
 Ms||Aq|lalle(@ilviiriv + MallAgllallu@)llvilrilv Alle 

+ Ma|lAllallu(a) — u(a + Ag)|lvllrilv — allrlly 

IA
 ClAglla(llo(ayllv + lleC@)lly) + Cllu(a) — u(q + Aa)llvs 

here we have used Remark 2.1, assumptions (A5) and (A4). Integrating from 0 to 

t, noting that r(0) = 0 and employing (2.3), we conclude that 

rll < Calla. 

2.3 An Example 

To conclude this chapter, we give an example which shows that the usual parabolic 

systems, which include the equations discussed in [26], can be treated with the theory 

we have just discussed. Notice that our assumption on the admissible parameter 

space is very weak. For other applications, the readers may consult [8]. 

Consider the following Dirichlet boundary value problem for a one-dimensional 

14



parabolic problem: 

| an) = (qiur)e + (qou)z + qsut f(t), on (0,1), 
(2.5) 

u(0) = Ug, 

where q = (q1, 92,93) is the parameter. Let the state spaces H = L7(0,1), V = 

H4(0,1). The weak form of the equation is given by 

(So) to(gluepl=(fv), ve, 

where the sesquilinear form is defined as 

a(9)($, 9) = (Mer, Yr) + (G29, Yr) — (934, ¥). (2.6) 

Proposition 2.3 Let Q = {(q1, 42,493) € C[0,1] x C[0,1] x C[0,1]|0<m <q} for 

some constant m. Then if q € Q, o(q)(-,-) as defined by (2.6) satisfies (Al) — (A5). 

Proof. Let qg € Q and ¢,y € Hd. Then by using Holder’s inequality and Poincaré’s 

inequality, we have 

Io(goe)l S Marge, ¥2)| + I(a2¢, ve)| + I(93b259)| 
1 1 

< llalle f [eslivelde + llgalle f Iollvelde 
1 

+ Ilalle f lellvlde 

< My|lalloll¢llzll¢llan (2.7) 

15



and 

o(q)(¢,¢) = (qibzr, be) + (G2, bx) + (93%, ) 

1 1 

> min{g} [ |éslldelde — llaalle [ |dlldelde 
1 

— [Iaalle [| |¢lléldz 
] 1 2 > 5m [ |delléclde — Cllollir 

> alléliin — rollélir (2.8) 

where M,, a are positive constants and C, Xo are real numbers. From (2.7) and (2.8), 

we can see that (Al) and (A2) hold. 

For (A3) - (A5), notice that o(q)(-,-) is linear with respect to g, which implies 

that 

0,0(q)(¢,~) -h = o(h)(4,¢%), (2.9) 

for each h € Q. Combining (2.7), (2.8) and (2.9), we obtain (A3) - (A5). 0 

The theoretical framework presented in [8], where they used an indirect approach 

to identify unknown coefficient functions, can be used to treat many types of systems 

including the problems in which the underlying semigroup is not analytic or the 

problems involving functional partial differential equations ([6]). With appropriate 

modifications, the framework we present here should also be able to treat some other 

16



types of problems. 
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Chapter 3 

A Generalized Burgers’ Equation 

3.1 Preliminary 

Consider the initial value problem 

u(t) + Au(t) = f(t, u(t)), t>0 
(3.1) 

u(0) = uo 

on a Hilbert space X, here we assume A is a sectorial operator (i.e. —A generates 

an analytic semigroup) and that the spectrum of A lies entirely in the (open) right 

half-plane. In-this case, the fractional powers of A are well defined, and the space 

Xq = D(A) with the graph norm ||ul|, = ||A®u|| is defined for each a > 0. 

For our assumption concerning the function f in (3.1), we will use the following 

definition: 

Definition 3.1 Let U be an open subset of Rx X°, where a is between0<a< 1. 

We say that f is locally Holder continuous in t and locally Lipschitz in x on U if for 

every (t,u) € U, there exists a neighborhood V of (t,u) so that for (ty, uz), (t2, u2) € 

18



V, there are L > 0 and @> 0 such taht 

\| F(t1, ur) — f (ta, ua) |x < L(|tr — tel? + Jus — walla). 

The following local existence theorem for the solution of equation (3.1) can be 

found in [37], [28] and [18]. 

Theorem 3.1 Let A be as before and let f be locally Holder continuous in t and 

locally Lipschitz continuous in x in an open set U C Rx X*. Then for every initial 

data (to, uo) € U, there exists T = T(to,uo) > 0 such that the initial value problem 

(3.1) has a unique local solution u(t) on (to,to + T) with initial value u(to) = uo. 

In this chapter, the equation we consider is a special case of (3.1). In Section 3.2, 

we will show that the equation satisfies the conditions in Theorem 3.1 and we will 

establish regularity properties. In Section 3.3 we establish a Maximum Principle for 

the equation; and in Section 3.4 we prove the global existence and differentiability 

of the solution with respect to the parameters. 

19



3.2 Local Existence and Regularity Properties 

We consider a generalized Burgers’ equation which has the Dirichlet boundary con- 

dition and is defined on a finite interval [0,1] by 

Ut = EUrz — Q(z)uUs, 0O<xr<1, t>0, 

u(t, 0) = u(t, 1) = 0, t> 0, (3.2) 

u(0,r) = ud(z), 0<2<l, 

where € > 0. We assume q(x) € C[0,1], and uo(x) € Hj(0, 1). 

Let X = L(0,1), define an operator A in X by Au = —eugz, with D(A) = 

H?(0,1) H$(0,1). It is well-known that —A generates an analytic semigroup, and 

the spectrum o({A) of A consists of all eigenvalues en*r?,n = 1,2,---. Thus we 

have Re(o(A)) > 0. Therefore, we can define fractional powers of A and D(A?) is 

H3(0,1). Let X1/? = D(A/?) = H}(0,1). 

The function f(u) = —q(xr)uu, is defined from X'/? to X, and (3.2) can be 

written as the initial-value problem 

u.+Au=f(u), t>0 

u(0) = uo. 

Lemma 3.1 f : X'/* = X is locally Lipschitz. In particular, if u € X'/?, then 

there exists a neighborhood V of u and a constant C' > 0 such that for v,w € V, 

flo) — flw)|lx < Ello — wll xan. 

20



Proof. For any v,w € H23(0,1), since H1(0,1) is continuously embedded in C,[0, 1], 

it follows from Poincaré’s inequality that 

F(v) — flw)|[c2 = || — a(x )vve + q(x) wwel|z2 

< |la(2)|le,|]vv2 — wwel|z 

< fla(z)llo,(v(ve — we)|[z2 + |lwe(v — w)|l]z2) 

< |la(z)lle, (ello, + []ue — wellz2 + [|wellz2 - |v — wlle,) 

< |la(z)lle, - C(ullzs - lve — wellze + []wellz2 - |]v — wil) 

< Clla(z)lo, - (lollas + [lwllax) - lw — wlln 

Hence, f is locally Lipschitz. O 

The following theorem establishs the existence and smoothness properties of local 

solutions to (3.2). This result is based on Lemma 1, Definition 3.3.1, Theorem 3.3.3 

and Theorem 3.5.2 from Chapter 3 of [28]. Part of the result can also be derived 

from [37]. 

Theorem 3.2 Suppose « > 0 and q(x) € C[0,1]. Then for every ug € X'/? = 

Hj(0,1), there exists T > 0 such that (3.2) has a unique solution u(t) on [0,T), 

where u(t) € C([0,7), Hj(0,1)) 9 C*((0.7), H5(0,1)), and u(t) € D(A) for each 

t € (0,T). 

21



For our system (3.2), this solution possess, the following regularity property. 

Theorem 3.3 /f u(t) = u(t,x) is the local solution given in Theorem 3.2, then 

u(t,x) is continuous on [0,T') x [0,1]. Moreover, u(t,x) is a classical solution of 

(3.2) on [0,T) x [0,1]. 

Proof. First, from Theorem 3.2 we know that 

u(t) € C([0, 7); Hy (0, 1)) A C*((0, T); Ho (0, 1)). 

Also, since H5(0,1) is continuously imbedded in C[0,1], we see that u(t,z) is con- 

tinuous on (0,7) x [0,1] and is continuously differentiable in ¢ € (0,7') for each 

xz € (0,1). Since u(t) € D(A) = H?(0,1) N HG(0, 1), it follows that u(t, x) is contin- 

uously differentiable for each ¢t € (0,T). Clearly, uz: belongs to L?(0,1). 

Notice that every term, except eu,,, in the equation is continuous. Thus, uzz is 

also continuous. Consequently, we see that, for t € (0,7) and z € (0,1), u(t,z) is 

continuously differentiable in ¢ and twice continuously differentiable in x. Hence it 

is a Classical solution, completing the proof. O 

3.3 The Maximum Principle 

Theorem 3.4 Let u(t,z) be the solution of (3.2) on [0,T) x [0,1]. Under our 

assumptions, the maximum absolute value of u(t,z) is reached on {0} x [0,1]. That 

22



1S, 

lu(t,)| S max |u(0, «)| 

fort € [0,T), x € [0,1] and |lu(t,-)\lc = maxocr<s |u(t,z)| 1s decreasing on t € 

[0, T). 

Proof. Let v(t, 2) = e~7*u(t, x) for some \ > 0 and let 7’ be any number between 0 

and T. From Theorem 3.2, we know that u(t, x) is continuous on [0,7] x [0, 1], hence 

v?(t, x) is also continuous on [0,7] x [0,1] and thus v(t,) reaches its maximum 

value on (0, 7] x (0, 1]. Suppose the maximum value of v(t, z) is reached at (t1, 21) € 

(0,7] x (0,1). Without loss of generality, we may assume that v?(t1,21) > 0. By 

Theorem 3.2, we see that for each z € [0,1], v?(t,z) is continuous differentiable in 

t € (0,7) D (0,7), and for each t € [0,7], v2(t, x) is twice continuous differentiable 

in z € (0,1). So the first derivative of v? in z vanishs at the point (t;, 21); that is, 

(v?),(t1, 21) = 0. (3.3) 

The first derivative of v? in t vanishs at the point (t1,21) where t, € (0,7'); and 

when t, = T, it is greater than or equal to 0, hence we have 

(v?).(t1,21) > 0. (3.4) 
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The second derivative of v? in z is less than or equal to 0, 

(v)ee(t1, 21) < 0. (3.5) 

Since (v?)_(t1, 21) = 2u(t1, 71)ve(t1, 71) = 0 and v(ti, 21) 4 0, we have 

vz(t1,21) = 0. (3.6) 

Now lets go back to look at the equation (3.2) and we will get a contradiction. 

Multiply both sides of the first equation of (3.2) by u(t, z), we get 

1 
~(u*)s — €Uzzu + qu7u;z = 0, 
2 

Since (u?)z_ = 2uuge + 2u2, it follows that 

1 € 
alu) — S(u)ox + cud + Sulu?) = 0 

Replace u by e2'v one obtains 

(v7), + Av? — e€(v)or + 2ee™v? + ge?'v(v?); = 0. (3.7) 

It follows from (3.3), (3.4), (3.5). and (3.6) that at the point (t;,21) we have 

(v7), 20, Av? >0, —e(v* Jee > 0, 
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and the last two terms of (3.7) are zero. This means that the equation (3.2) can not 

hold at (t;,2,). Thus, v?(t, x) does not achieve its maximum value at (t1, 21), which 

is an arbitrary point in (0,7'] x (0,1). Therefore, the maximum value of v(t, x) is 

achieved on {0} x [0,1], that is 

|v*(t,x)| < max |v*(0,x)| for ¢€[0,7T), z € [0,1], 

or equivalently, 

le*u?(t, x) | < imax |uo(z)| for ¢€[0,7), xz € [0,1]. 

Hence, for all \ > 0, it follows that 

a 

ju(t,x)| < e?! max [uo(z)|. 

Now letting \ — 0, we obtain 

ju(t,r)| < max |uo(x)| for t€ (0,7), x € [0,1], 

and this completes the proof. O 

3.4 Global Existence and Differentiable Depen- 

dence Properties 

Theorem 3.5 Assume ¢€, b(r) and uo(x) satisfy the hypotheses of Theorem 3.4. 
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Then the system has a unique global classic solution. 

Proof. For the function f(u) = —q(x)uuz, we have 

[Ff (u) [zz = || — a(e)uuellze < [lello,lello,luellz2- 

Since u € H4(0,1), it follows from the fact that H'(0,1) is continuously embedded 

in C[0,1] and Poincaré ’s inequality that 

F(u)|lz2 < Chellis 

for some C’ > 0, where C' depends only on q(z). 

This shows that f maps bounded sets in X!/? = H2(0,1) to bounded sets in 

X = [7(0,1). Thus if u(t) is a solution of (3.2) on [0,7) and T is maximal, then 

either T = oo or there exists a sequence t, — T’ as n — oo such that ||u(tn)|| x172 > 

oo. (See Theorem 3.3.4. in Chapter 3 of [28].) 

Next we prove ||u(t)|| 1/2 is bounded on any finite interval. 

Let u(t) be a solution of (3.2) on (0,7) with T < co. Taking the L*(0,1) inner 

product of both sides of the first equation of (3.2) with —u,,, we have 

1 
~—|\y,|/? = ~e|lure||72 + | q(x )uzuugedz. (3.8) 
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For the last integral on the right side of (3.8), we have the estimate 

1 

| f g(e)usuusede| < |juollesllalicelluellzllesellza 

46 < Slusel[32 + ue|l2e. 

Here, we used Theorem 3.3 and Hélder’s inequality on the first step and the inequal- 

ity 

ab < 6a? + i 

on the second step. If we select 6 = €/2, then (3.8) yields 

lluollé, llallc oll, ese 2, d “|iuele + elluselie < “2 

= Clluelliz, 

where C is a fixed constant for €, q(x), uo(x) are given. 

Now let us consider the following inequality (which is the previous one without 

the second term on the left): 

d 2 A 2 F luellis < Clluellde (3.9) 

From Theorem 3.1, we know that u(t) € C’((0,7), Hj(0,1)). Thus, for small p € 
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(0,7), it follows from (3.9) that 

|| u(t) ||72 < einllluz(P)IIF2)-Ce . et. (3.10) 

From (3.10), it is clear that ||u.(t)||z2 is bounded on [0,7). So the Poincaré’s 

inequality implies that ||u(t)|]q: is bounded on [0,7'). Now it is clear from the 

argument at the beginning of the proof that (3.2) has a global solution. 0 

By Theorem 3.4.4. and Corollary 3.4.5. in [28], we have the following theorem 

which establishes differentiability of the solution u(t) of (3.2) w.r.t. the parameters. 

Theorem 3.6 Let u(t) be the solution of (3.2) on [0,00). Then the mapping 

(€,9,U.) > u(t; €,q, Uo) ts infinitely often differentiable from R* x C,[0, 1] x Hd(0, 1) 

into H3(0,1) for t € (0,00). Moreover, the derivatives w(t) = D,u(t), v(t) = 

Dyzyu(t), z(t) = Dy, u(t) are the solutions of the following equations 

d 

r = €Wrr q(z)uw, — q(x )u,w + Ure, w(0) = 0; 

dv 

dt = Urr — q(x)uv; ~~ q(x)ucv — UUz, v(0) = 0; 

d 
7 = €Zz7 — q(r)uzz — q(x)uzz, 2(0) = 1. 
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Chapter 4 

Parameter Estimation by 

Quasilinearization 

In this chapter we formulate the parameter estimation problems as an optimal con- 

trol problem in which the parameters are the control variables. We discuss two 

issues, the first one is the existence of a solution to the resulting optimal control 

problem, the second one is the convergence result of the quasilinearization method. 

4.1 Formulation of the Parameter Estimation 

Problem 

The parameter estimation problem for (2.1) or (3.2) can be formulate as follows. 

We assume we are given observations or data y; € Y at discrete times t;, 7 = 

1,2,---,m, where the observation space Y is a Hilbert space. The state space H 

is a Hilbert space, and we assume the admissible parameter set @ is a subset of a 

Hilbert space. We wish to determine q so that some observed part, Cu/(t;;q), of the 

state u depending on q best approximates y;. In other words, we seek to identify 
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q*(x) in Q, that minimizes 

J(q) = Y7[|Cu(tssg) — ville + Bllallins (4.1) 

where C is a bounded linear mapping from the state space H to Y and 8 > 0. When 

G3 > 0, the second term is a ‘cost term’ and serves as a regularization. 

To establish the existence of a solution to our inverse problem, we need the 

following definition: 

Definition 4.1 Let X and Y be Banach spaces. We say that a mapping Ff: X — Y 

is sequentially weakly continuous if whenever 

Ln — £ weakly in X, 

we have 

F(qn) 2 F(Z) iny. 

We have the following two solution existence theorems; the first one is for G > 0 

and the second one for § > 0. 

Theorem 4.1 Suppose q — Cu(t;¢) is sequentially weakly continuous in Q for each 

t. Then there exists a solution q*(x) € Q for the inverse problem with 3 > 0. 

Proof. It is clear that {J(q): q € Q} is bounded below by zero, so it has a biggest 
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lower bound. Let y be the biggest lower bound for {J(q:q € Q}. That is, 

y =inf{J(q:¢ € Q}. 

Then there is a minimizing sequence {q,} such that 

J(qx(z)) + y, as k > oo. 

Since 

alle < 50) (4.2) 

{qi} is bounded in Q. Hence, the sequence q, has a weakly convergent subsequence 

{qx, }. Let q* be such that 

dk, ~q° weakly in Q. 

Then, it follows by our hypothesis that 

Cu(gk,) ~ Cu(q*) in Y. 

By the continuity property of our Hilbert space norm, we conclude that 

Lemj+cod (4k, ) = J(q*). 
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Consequently, we have J(q*) = y. Hence, q* is a solution of the inverse problem. O 

Theorem 4.2 Suppose q — Cu(t; q) ts sequentially weakly continuous in Q for each 

t. Moreover, assume Q is a bounded. Then there exists a solution q*(x) € Q for the 

inverse problem. 

Proof. The result can be got in the same way as in the proof of Theorem 4.1 except 

using the hypotheses instead of (4.2) to get {qx} is bounded. O 

As an example, we apply Theorem 4.1 and Theorem 4.2 to a parameter estima- 

tion problem governed by the generalized Burgers’ equation, which was presented 

in previous chapter. 

The parameter dependent system we are considering is the following 

fu(t) = ze — 9(t)uuz, 0<r<1,t>0, 

u(t,0) = u(t,1) = 0, i> 0, (4.3) 
u(0,z) = uo(z), O<2r<l. 

Let the state space H be Hj(0,1). When we consider the regularity term (i.e. 

6B > 0), we let Q be H'(0,1), otherwise let Q € H1(0,1) and bounded in C0, 1]. 

Let Y be any Hilbert space and C' be a bounded linear operator from H5(0,1) to 

Y. In the next Chapter, we will use Y = R' x R™, l,m € Zt, and C to be the 

projection from H2(0,1) to R' x R™ in our numerical examples. Combining the 

results in Chapter 3 with Theorem 4.1, we have the following result. 
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Corollary 4.1 There exists a solution q*(x) of the parameter estimation problem 

governed by (4.3). 

Proof. From Theorem 4.1 and Theorem 4.2, we only need to prove that the mapping 

q — Cu(t;q), from H'(0,1) to Y, is sequentially weakly continuous for each t. 

Let qx — q weakly in H'(0,1). Since H'(0,1) is compactly embedded in C;4(0, 1), 

it follows that q, converges to q in C,(0,1). It follows from Theorem 3.6 that for 

each ¢ € [0,T) u(t; qx(z)) — u(t; q) in H5(0,1). 

Finally, since C is a continuous mapping from Hj(0,1) to Y, we have that 

Cu(t;q,) converges to Cu(t;q) in Y for each ¢t. Hence, Cu(t;q) is sequentially 

weakly continuous with respect to gq and the proof is complete. 0 

4.2 The Quasilinearization Algorithm 

In this section we discuss the convergence property of the quasilinearization algo- 

rithm for the parameter estimation problem. We consider the parameter estimation 

problem formulated as in the previous section. For the sake of convenience, we 

rewrite (4.1) in a simpler form as follows: Let Y = Y™ (with the product norm), 

y = (Y1,Y2,°°, Ym) and U(q) = (Cu(ti; q), Cu(te;9,---,Cul(tm3q)). Also, we let 

Z=Y x Q (with the product norm) and set 

U(q)—y F(q)= , 
(@) ( V'8q 
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With this setting, (4.1) becomes 

J(q) = ||F()llz- (4.4) 

The method we use to solve this parameter identification problem in this section 

is quasilinearization. The concept of quasilinearization was introduced in [12]. Since 

then, there have been various extensions and variations (see [7], [15], [16], [26], [4]). 

Quasilinearization is a recursive Newton’s method type of algorithm, which can be 

defined as follows: 

Given an initial guess qo € Q, define 

qh) = g* — D(qe)*M* (qe) F (qx), 

= G(q*) k=0,1,2,3,---, (4.5) 

where 

M(q) = D,F(q); 

D(q) = M*(q)M(q), 

and M*(q) is the adjoint operator of M(q). 

The following results are straightforward and can be found in [26]: 

Lemma 4.1 Suppose u(t;q) is Fréchet differentiable with respect to q and the map- 

ping q > D,u(t;q) is locally Lipschitz continuous in Q for each t. Then both M(q) 

and M*(q) are locally Lipschitz continuous in Q, D(q) is continuous in Q. 
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Under some assumptions, we can obtain superlinear convergence when there is 

an exact fit to data and linear convergence when there is ’small’ error in data. These 

results are typical in the quasilinearization methods, and the proofs given here are 

in the same idea as those in [7], [15], and [26]. 

Theorem 4.3 Suppose the hypotheses of Lemma 4.1 are satisfied. Assume J(q*) = 

0 and D(q*)~! exists. Then for every € > 0, there exists a constant 6 > 0 such that 

IG(iq)-a |< Clla-@l?+ella—q'l| whenever ||q— "|| < 4, 

where C is a constant which depends on q*. In particular, q* is a point of attraction 

of the iterative scheme q**1 = G(q*). 

Proof. First, we observe that 

G(q)-¢ = D(q)"[D(a)(q-@) -— M*(q) F(q)] 

= D(q)"[M*(q)[M(q)(q- 9°) -— F(Q)]] 

= D(q)"[M*(q)[M(q) — M(q")I(q - 9°) 

The last term on the right hand side of (4.6) is equal to zero since, by assumption, 

J(q*) = 0. From Lemma 4.1, we know D(q) is continuous at q*. Since by assumption 
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D(q*)~? exists, there exists constants 69 and K so that for ||q¢ — q*|| < 60, D(q)7’ 

exists and ||D(q)~"|| < AK. By Lemma 4.1 M*(q) is continuous at q*, so there exist 

constants 6; and B, such that if ||q — q*|| < 6, then ||M*(q)|| < B. Therefore, we 

have 

IGiQ-dll < KBI[M(qg)-M(e)(a-7)ll 

+ KB||F(q)- F(a") - M(a*\(a-@)|- (4.7) 

Since M(q) is locally Lipschitz continuous at each point g in Q, there exists a 

constant L such that 

WL0(q) — M(q*)\(a—4°)|| < Lila- a" |!’ (4.8) 

For the second term of (4.7), by the definition of the Fréchet derivative, for any 

€ > 0, there exists a constant 62 > 0 so that if {|g — g*|| < 62, then 

IF(Q)-— FP") -M@)(a-P)Il < ela-'l- (4.9) 

Combining (4.8) and (4.9) with the inequality (4.7), we see that 

IG(q) — a" || < KBm[Lllq - a"? + ella — al] (4.10) 

whenever ||q — q*|| < 6 = min{éo, 6), 62}. This completes the proof. Oo 
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The next theorem does not require an exact fit to data, but it does require the 

data ‘error’ is small. Note that if M*(q) is locally Lipschitz continuous at q*, then 

there exists 6* > 0 such that for 0 < 6 < 6 there exists a Lipschitz constant L(6é) 

if |g —q*|| < 6. Let K = liminfs_9 L(5) and let K be defined as in the proof of 

Theorem 4.3. Then we have the following. 

Theorem 4.4 Suppose the hypotheses of Lemma 4.1 are satisfied. Assume D(q*)7+ 

exists and gq” is the fired point of G. Let K and K be the constants as above. If 

] 
< ——, (4.11) 

BKK Fo) 

then q* is a point of attraction of the iterative scheme q**! = G(q*), where G is 

defined as in (4.5). 

Proof. We proceed as in the proof of Theorem 4.2. First, observe that in (4.6) the 

last term on the right hand is no longer equal to zero. So, for ||q — q*|| < 6, (4.10) 

becomes 

IG(q)-—q|| < KBm[L\\q- "||? + ela—- 7] 

+ ||D(q) "IM" F(a II. (4.12) 

By our assumption, g* = G(q*) and it follows that 

M*(q")F(q*) =0. (4.13) 
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From how we define K, there exists a constant 6 such that for ||q — q*|| < 6 

."(q) — M"(q7)|| S$ 2K |lq— "Il. (4.14) 

Now, combining (4.13) and (4.13) with (4.12), we have 

IG(q)—4"| < KBm{[L\q- 9°? + dla— ll 

+ K||[M*(q) — M*(q*)|F(q")|| 

< KBm[L\\q~- 4°’ + ella- ll] 

+ K-2K|q-a|I|F@)I- 

Hence, it follows by (4.11) that 

* x |] 2 * 2 * 

Gq) — aI] < Cilla — a" || + Crella — "|| + gla — q"|| 

whenever ||q — q*|| < min{6,6}, where C; and C2 are constants. Therefore, g* is a 

point of attraction of the iterative scheme q**) = G(q*). 0 
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Chapter 5 

Numerical Results 

In this chapter we present numerical results based on the quasilinearization algo- 

rithm established in [15], [26] and [4]. In [15], J. A. Burns, E. M. Cliff and D. W. 

Brewer developed the algorithm for delay differential equation where the unknown 

parameters include constant coefficients and the delay. In [26], P. W. Hammer de- 

veloped the algorithm for a parabolic partial differential equation with a spatially 

varying parameter. P. W. Hammer also presented some numerical examples for a 

nonlinear parabolic equation (Burgers’ equation) with a constant parameter. In [4], 

M. G. Armentano presented some results for a nonlinear parabolic equation with 

spatially varying parameter. 

The goal of our numerical effort was to present some concrete numerical solu- 

tions which demonstrate the problems we discussed. Since many numerical examples 

have been done for the parameter estimation problems governed by linear parabolic 

problems (see [10] and [26]), we only consider for the nonlinear equation case. In the 
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first example, we give some numerical solutions for the type of nonlinear equations 

we discussed in Chapter 3 by using the finite element method. In Examples 2 - 6, we 

consider parameter estimation problem with spatially varying parameter in a non- 

linear parabolic partial differential equation. However, we use linear splines instead 

of the polynomials used in [4] to approximate the parameters. Finally, in Examples 

7 - 9, we present numerical solutions for parameter estimation in another nonlinear 

partial differential equation. The computer codes are written in Matlab and carried 

out on either a DEC 3000 machine, housed at ICAM, or a Sun SPARCstation 2 

(with a Weitek 80 MHz CPU upgrade) at mathematics department. 

In each of the examples we use linear splines to approximate the parameter 

q(z) € Q. Specifically, we choose 

Na 

Q = {}- aigi(x)|(a0,1,-++,aNn,)" € RY} 
=0 

to approximate the parameter space Q, where g;(x) denotes the standard hat func- 

tion on the interval Ce o] for 2 = 0,1,2,---,N,. The functions are defined by 

—N,xt+1, 2€ [0,57] 

go(x) = 
0, elsewhere 
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N,z-(t-1), «ce [he x] 

g(t) = 4 —Njz+(it+1), 2 € ly He] 

0, elsewhere 

for: = 1,2,---,N,—1 and 

N,x-(N,-1), re co 1] 

9N,(Z) = 
0, elsewhere. 

The finite element method is used to solve the partial differential equations. 

Linear splines are used to discretize the equation in space. For the state equation, 

a linearized backward Euler method and a linearized Crank-Nicolson method ([40]) 

are used to discretize the equation in time. For the sensitive equation, we use 

a backward Euler method to discretize the equation in time. A 8-point Guassina 

quadrature formula is used for the calculation of the the integrals. 

Suppose we have the following variational formulation of our problem: Find 

u(t) € V = A4(0, 1), ¢ € [0, 7], such that 

(ur, v) + (a(u)ue,v) = (f(u),v)) Woe V, 
(5.1) 

u(0) = Ug. 

Let V, be a finite-dimensional subspace of V with basis {hy,h2,---,An,}, where 

h(x) are the standard linear spline functions on the interval [0,1] satisfying zero 
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boundary conditions. The functions are defined by 

  (N,+1)e@-((-1), ce [shone 

  h(z)= ¢ -(N,4+1)r+(t@4+1), re estharse 

0, elsewhere 

for 1 = 1,2,---,N,. Replacing V by the finite-dimensional subspace V;, we get the 

following semi-discrete analogue of (5.1): Find u,(t) € Va, t € [0,7], such that 

(un. ¥) + (a(ur)ua,,v) = (f(ua,),v) Woe Va, 
(5.2) 

(u,(0),v) = (uo, v) Vu € Vp. 

In order to solve this initial value problem for a system of ordinary differential equa- 

tions, we will implement a two-step method, a linearized Crank-Nicolson method, 

supplying by a single-step method, a linearized backward Euler method, with fixed 

step size h; ([40]). These two methods are carefully discussed and used to solve 

linear and nonlinear parabolic problems in [30] and [40]. In the linearized backward 

Euler method for the semi-discrete problem (5.2) we seek approximations uz € Vp, 

of u(-,tn), n = 0,1,---,N:, satisfying 

(BoM oy) + (a(ut Jur, ,ve)+ = (f(ut-), v) 
(5.3) 

for Vv € Vz, n = 1,2,---,N:. In the linearized Crank-Nicolson method for (5.2) we 
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seek uf € V,,n =0,1,---, Ne such that 

up—up} n- n—2\ Ub +uno n— n— 
(“AF —,v) + (a(gug? — gu?) a=, 0) = (f(Sug? — gun”), v) 

(5.4) 

(uh v) = (uo, v) 

for Vv € Vi, n = 1,2,---,N;. In our examples we generate u} from u® by (5.3) and 

then revert to (5.4) for the computation of the subsequent steps. 

Example 5.1 In this example, we consider the equation 

Ut = EUge — Q(X)UUr, 0<2x<1, t>0, 

u(t,0) = u(t,1) = 0, t>0, 

u(0, 2) = uo(z), 0<ar<l. 

Figure 5.1(a) and Figure 5.1(b) show the solution in case for € = 5, q(x) = 1 

and uo(x) = sin(rz). This numerical solution has also been computed by Kang in 

[32] and we notice that the result here is the same as the one in [32] (Figure 4.3.19.). 

Figure 5.1(c) and Figure 5.1(d) show the solution for « = g5, q(x) = xsin(3x) and 

uo(z) = sin(27zr). In each case, we draw a 2D graph and a 3D graph. 
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We next consider the following parameter estimation problems: 

Given observations y;; € R'xR”™,1 <i<m,1<j <1, determine the parameter 

q* in the admissible space Q that minimizes the functional 

1 2 J(q) = 5 Di lultin 253g) ~ ysl’, 
i,j 

where u(t;q) is the solution to equation (5.1). 

For all of the examples considered here, we choose a true parameter and use 

the finite element method to solve for ‘true’ solution u*(t,z). We then add random 

noise to obtain the noisy observation data y;;,2 = 1,2,---,m, 7 =1,2,---,/ (or no 

errors for exact data). In the next four examples, we consider the following state 

space model discussed in Chapter 3: 

Ut = EUge — Q(X)UUz, 0O<r<1, t>0, 

u(t, 0) = u(t, 1) =0, t> 0, 

u(0,z) = u(x), O0<2r<1, 

where € = 1/10 and uo(z) = sin(rr). The parameter to be estimated is the spatially 

varying parameter g(x) and the tolarence is 0.001. 

Example 5.2 Here qg*(z) = zrsin(3r). The data y;; = u*(t;,2;) is given for 

t; = 0.25,0.5,0.75,1 and z; = 0.25,0.4,0.5,0.6,0.75,1. The iterative scheme is 

started with an initial estimate q°(r) = 0. The iterative results for q*(x), J(q*) and 

||u* — u*||;2 are given in Table 5.2 and Figure 5.2(a). Typical fit to data curves are 
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presented in Figure 5.2(b). We use N, = 9, N; = 10 and N, = 4 in this example. 

Since we use exact data, we get pretty accurate results. 

Table 5.2 Estimate g(r), Exact Data 
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| q*(z) = rsin(3z) | 

k J(q") llué — uw G G 
0 1.8712913e-02 4.6062553e-02 | 0.0000000e+00 0.0000000e+00 
1 2.2764263e-03 2.5770944e-02 -9.1502666e-01 3.5941530e-01 
2 1.0895802e-03 1.1270525e-02 -1.6995680e-01 2.1389020e-01 

3 1.2286964e-06 3.0277521e-04 -4,0855091e-02 1.8009448e-01 

4 1.1096643e-09 2.6446144e-05 5.0378634e-03 1.6926737e-01 

3 1.239307 7e-11 2.5630600e-06 -4.9815535e-04 1.7051592e-01 

6 7.0249148e-14 2.1779503e-07 4,2385976e-05 1.7040128e-01 

k G qs & 
0 0.0000000e+00 | 0.0000000e+00 | 0.0000000e+00 
1 6.2534803e-01 6.206349 1le-02 2.9961586e+00 

2 3.9903206e-01 6.3178694e-01 5.4593767e-01 
3 4.9162250e-01 5.9223543e-01 1.2845363e-01 

4 4.9957664e-01 5.8367194e-01 1.3957243e-01 
5 4.9867194e-01 5.8353864e-01 1.4122597e-01 

6 4.9875312e-01 5.8355549e-01 1.4111616e-01
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Example 5.3 We choose q*(z) = e~*/? and generate exact data yj; = u*(ti, 2;) 

for t; = 0.2,0.4,0.6 and 2; = 1/10,2/10,---,9/10. We start the iterative estimate 

scheme with an initial estimate q°(z) = 0. Again, since we use exact data we expect 

accurate results. The iterative results and typical 2-dimensional fit to data curves 

are presented in Table 5.3, Figure 5.3(a) Figure 5.3(b) and Figure 5.3(c). Figure 

5.3(d) shows the data and the 3-dimensional fit to data curves for the first 3 steps. 

Since there are a lot of data covered by the surface graph, in Figure 5.3(e) we turn 

u®(t,z) (with data) around to see how the data under the surface fits. In this 

example we use N, = 9, NM; = 10 and N, = 4. 

Table 5.3. Estimate q(x), Exact Data 

  

  

  

  

  

  

| g(r) =e”? 
k J(q*) juk — u*| qi G 
0 | 1.1330576e-01 | 9.0298462e-02 | 0.0000000e+00 | 0.0000000e+00 
1 | 4.7498209e-03 | 1.7681642e-02 | -1.1414594e+00 | 1.3163610e+00 
2 | 2.6762964e-04 | 4.1283736e-03 | 1.0771134e+00 | 8.3685265e-01 
3 | 3.1411724e-07 | 1.4879095e-04 | 9.9529337e-01 8.8581729e-01 
4 | 7.6939258e-09 | 2.4862086e-05 | 1.0007309e+00 | 8.8206590e-01 
5 | 1,2812167e-10 | 3.2522006e-06 | 9.9990065e-01 8.8254883e-01 
6 | 1.9723594e-12 | 4.0697630e-07 | 1.0000134e+00 | 8.8249072e-01 
k 4G 4 5 
0 | 0.0000000e+00 | 0.0000000e+00 | 0.0000000e+00 
1 | 5.3869092e-01 | 8.2116370e-02 | 2.8775978e+00 
2 | 8.1969002e-01 | 7.0492437e-01 | 7.7781557e-01 
3 | 7.7850505e-01 | 6.8866191e-01 | 6.0760792e-01 
4 | 7.7876278e-01 | 6.8742413e-01 | 6.0621997e-01 
5 | 7.7881317e-01 | 6.8727354e-01 | 6.0656510e-01 
6 | 7.7879866e-01 | 6.8729130e-01 | 6.0652626e-01           
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Example 5.4 In this example, we use N, = 31 to get u*(t, x) and generate data 

yi; = u*(t;,2;) + 6;; for t; = 0.25, 0.5, 0.75, 1, 2; = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 0.9, 

where 6;; are random numbers with uniform distribution that fall in the range 

[—0.005, 0.005]. Specifically, we have 

6= 

0.0026 0.0048 —0.0043 —0.0006 —0.0023 0.0040 0.0000 —0.0001 
0.0049 0.0022 0.0013 0.0027  —0.0014 0.0041 0.0002 —0.0023 
—0.0013 0.0025 0.0038 —0.0002 —0.0033 —0.0044 -—0.0018 —0.0041 

—0.0025 0.0015 —0.0023 —0.0026 —0.0001 0.0040 0.0049 0.0045 

We choose q*(r) = e~*/*, g°(x) = 0 and when we solve the equation, we use N, = 15. 

Since we choose different N, for u*(t, x) and u*(t, x), and add noise to the observation 

data, we expect less accurate results. The computational findings for g* and J(q*) 

are given in Table 5.4 with corresponding q*(x) presented in Figure 5.4(a). A typical 

fit to data curve is shown in Figure 5.4(b). (N, = 4 and N,; = 10.) 
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Table 5.4 Estimate q(x), Noisy Data 

  

q*(r) =e 
—xr/2 

  

  

J(q") a q3 q% 
  

1.2440204e-01 

2.4117856e-03 

3.0208156e-04 

1.1906665e-04 

1.1845728e-04 

1.1845772e-04 

1.1845782e-04 

0.0000000e+ 00 

1.3660263e+ 00 

3.9453418e-01 

3.7636845e-01 

3.6727683e-01 

3.6806724e-01 

3.6805193e-01 

0.0000000e+00 

1.6486209e-01 

1.0050367e+00 

9.7706711e-01 

9.8335473e-01 

9.8274927e-01 

9.8279161le-01 

0.0000000e+00 

1.6370505e+00 

7.2752623e-01 

7.9361691e-01 

7.8651285e-01 

7.8700973e-01 

7.8699552e-01 
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qi G q6 

0.0000000e+00 | 0.0000000e+00 | 0.0000000e+00 
-4,7859232e-01 

8.2225610e-01 

8.4835639e-01 

8.5241722e-01 

8.5205323e-01 

8.5205183e-01   
1.2422202e+00 

7.3461032e-01 

6.9903955e-01 

6.9886332e-01 

6.9887111le-01 

6.9887892e-01   
3.3994208e-01 

4.0614400e-01 

4.859591 7e-01 

4.8388759e-01 

4.8406660e-01 

4.8403862e-01     
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Example 5.5 This example is the same as the last one except we choose q*(z) = 

zsin(3z) and y;; = u*(t;,2;) + 5; with 6; = 55:55 where 6;; is the one in Example 

5.4. Again, since we choose different N, for u*(t,xz) and u*(t,x), and add noise to 

the observation data. Since the noise is smaller than in Example 5.4, we expect to 

see better parameter estimations. The computational findings for g* are given in 

Table 5.5 with corresponding qg*(x) presented in Figure 5.5(a). A typical fit to data 

curve is shown in Figure 5.5(b). (N, = 4 and N; = 10.) 

Table 5.5 Estimate g(r), Noisy Data 

  

q*(z) = rsin(3z) 
  

J(q*) qt q5 q3 
  

2.8878106e-02 

1.5488178e-03 

9.2831812e-05 

6.5148763e-06 

6.3061199e-06 

6.3058897e-06 

6.3058588e-06 

0.0000000e+00 

2.7066786e-0 1 

-1.6274533e-01 

-8.8031936¢e-02 

-9.2101078e-02 

-9.1890142e-02 

-9.1900312e-02 

0.0000000e+00 

-2.97262 19e-02 

1.5052944e-01 

1.2146274e-01 

1.2309801e-01 

1.2300720e-01 

1.2301205e-01 

0.0000000e+00 

6.429694 5e-01 

3.190918 7e-01 

3.654473 9e-01 

3.628699 7e-01 

3.630244 3e-01 

3.630152 6e-01 
  

q4 4% GG 
  

O
o
»
 

PF 
w
n
 

Fr 
O
F
 

o
F
 
W
N
 

CO
] 

>
 

    
0.0000000e+00 

6.360777 1e-02 

7.0583 765e-01 

6.4829558e-01 

6.5231982e-01 

6.5203429e-01 

6.5205493e-01   
0.0000000e+00 

9.3402033e-01 

5.2690846e-0 1 

5.3825280e-01 

5.3673258e-0 1 

5.36854 75e-0 1 

5.3684543e-0 1   
0.0000000e+00 

-9.5367131e-02 

1.4345777e-01 

1.3405970e-01 

1.3635384e-0 1 

1.3614861le-01 

1.3616524e-01   
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Example 5.6 In this example, we increase the range of the noise to be 

[—0.05, 0.05]. We choose gq” = gxsin(3r) and generate data y;; = u*(ti,2;) + 6; 

for t; = 0.2,0.4,0.6 and x; = 1/10,1/20,---,9/10 where 6;; are random noise. We 

start the iterative estimate scheme with initial estimate q°(r) = 0. Since the noise 

added to the observation data is large in this example, we expect less accurate re- 

sults. The iterative results and 2-dimensional fit to data curves are presented in 

Table 5.6, Figure 5.6(a), Figure 5.6(b) and Figure 5.6(c). (N, = 9, N, = 4 and 

  

  
  

  

  
  

  

N; = 10.) 

Table 5.6 Estimate g(r), Noisy Data 

| q*(x) = rsin(3z) 

k J(q") n q q5 
0 5.1567995e-02 0.0000000e+00 0.0000000e+00 0.0000000e+00 
l 2.9961498e-02 1.0232796e+00 -3.1943739e-01 2.3895 762e+00 

2 1.1812766e-02 2.9700674e+00 -7.70421 21e-01 1.8359208e+00 

3 8.9351825e-03 2.1263864e+00 -5.9692588e-01 1.8031 708e+00 

4 8.9265192e-03 2.2147449e+00 -6.2714665e-01 1.8412713e+00 

o 8.9266759e-03 2.1931268e+00 -6.1938236e-01 1.8283935e+00 

6 8.9265966e-03 2.1974871e+00 -6.2095068e-01 1.8312534e+00 

k Va qs 
0 0.0000000e+-00 0.0000000e+00 

1 -3.5344787e-01 3.3322282e+00 

2 6.8538232e-01 5.7157491e-01 

3 5.326259 1e-01 6.0790314e-01 

4 5.6394563e-01 5.0665733e-01 

5 5.6051397e-01 9.1449227e-01 

6 5.6147943e-01 9.1184326e-01           
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The last three examples are for parameter estimation problems governed by the 

following equation: 

Uy — Quu, —Tu*u, = eUzz, +t € [0,1], z € [0,1] 

u(t,0) = u(t, 1) =0 

u(0, x) = u(x) 

where € > 0. We do not have any theoretical results for this type of equation. 

Here we only present numerical findings. In all these examples, we generate data 

yi; = u*(ti,2;)+6;; for t; = 0.25, 0.5, 0.75, 1 and x; = 0.25, 0.4, 0.5, 0.6, 0.75, 1, where 

{é6,;} represent observation errors. 

Example 5.7 In this example, we set r = 1 and gq = 1, estimate «. We choose 

c* = & and start the iterative scheme with an initial estimate «° = 0.1. The 

computational findings for exact data are given in Table 5.7(a) with corresponding 

fit to data graph presented in Figure 5.7(a). We then add random noise to the 

data. In this case, y;; = u*(t;,2;) + 6;; where 6;; are random numbers with uniform 

distribution that fall in range [—0.01,0.01]. For exact data we expect accurate 

results; for noisy data, we expect some error. The numerical findings for noisy data 

are given in Table 5.7(b) with corresponding fit to data graph presented in Figure 

5.7(a). (N; = 31, N, = 10.) 
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Table 5.7(a) Estimate «, Exact Data 

  

  

  

  

        
  

  

  

  

  

        

e* = 1/60 

k é J(€*) [u* — u*l| 
0 | 1.0000000e-01 | 4.7974567e-02 | 1.6563412e-01 
1 | 4.7854675e-02 | 2.5962191e-03 | 8.3804947e-02 
2 | 2.6791189e-02 | 2.3161879e-04 | 3.3208839e-02 
3 | 1.6754350e-02 | 1.7650008e-08 | 3.2928204e-04 
4 1.6665608e-02 2.5715208e-12 3.97984 13e-06 

Table 5.7(b) Estimate «, Noisy Data 

e* = 1/60 

k é Je") ju* — u*l| 
0 1.0000000e-01 4.7816859e-02 1.656341 2e-01 
1 4.8101391e-02 2.8012559e-03 8.4304765e-02 
2 2.7704784e-02 6.0298699e-04 3.9827992e-02 

3 1.8741741e-02 4.1417794e-04 7.5066486e-03 

4 1.8366698e-02 4.1393780e-04 6.2256280e-03 

3 1.8356829e-02 4.1393984e-04 6.1904070e-03 
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Example 5.8 In this example, we set « = 1/10 and q = 1, estimate r. We choose 

r* = 2 and start the iterative scheme with an initial estimate r° = 0.5. Again, since 

we use exact data we expect accurate results. The computational findings for r* 

are given in Table 5.8 with corresponding fit to data graph presented in Figure 5.8. 

(N- = 9, N; = 10.) 

Table 5.8 Estimate r, Exact Data 

  

  
  

  

j r“=2 

k r J(r*) I|u* — u*| 
0 5.0000000e-01 4.6216406e-02 6.4954838e-02 

1 2.0109018e+00 1.5740903e-06 4.377943 7e-04 

2 1.9960245e+00 2.1018210e-07 1.5979406e-04 

3 2.0014358e+00 2.7376383e-08 5.7693945e-05 

4 1.9994796e+-00 3.998225 7e-09 2.0913252e-05 

5 2.0001884e+00 4.7139010e-10 7.0699165e-06 

6 1.9999318e+00 6.1828294e-11 2.741485 7e-06 

7 2.0000247e+00 8.1060212e-12 9.9265722e-07         
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Example 5.9 In this example, we set € = 1/10 and r = 1, estimate g. We 

choose q* = 5 and start the iterative scheme with an initial estimate q° = 0. Again, 

since we use exact data we expect accurate results. The computational findings for 

k r™ are given in Table 5.9 with corresponding fit to data graph presented in Figure 

5.9. (N, = 9, N; = 10.) 

Table 5.9 Estimate g, Exact Data 

  

  

  

  

L g=5 | 
k q° J(q*) Ilu* — u*]| 
0 | 0.0000000e+00 | 8.3479196e-01 | 2.6030279e-01 
1 | 1.8637211e+00 | 1.7727140e-01 | 1.3697375e-01 
2 | 4.0335507e+00 | 7.9322887e-03 | 3.6058255e-02 
3 | 4.9720370e+00 | 5.0518150e-06 | 9.7488322c-04 
4 | 5,0023797e+00 | 3.6281802e-08 | 8.2785252e-05 
5 | 4,9997889e+00 | 2.857353le-10 | 7.3454024e-06 
6 | 5,0000187e+00 | 2.2329548e-12 | 6.4935210e-07 
7 | 4.9999983e+00 1.7462012e-14 5.7423127e-08         
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Figure 5.9 Fit to Data, (0 0 0 — data) 
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Chapter 6 

Concluding Remarks 

In this thesis, we studied parameter identification problems for linear and nonlinear 

parabolic problems. The conditions are investigated under which the gradient of 

the state with respect to a parameter possesses smoothness properties which lead to 

local convergence of an estimation algorithm based on quasilinearization. For linear 

parabolic partial differential equations, we presented a framework which provides 

smoothness and convergence arguments under weak assumptions on the admissi- 

ble parameter spaces. We established the maximum principle, the well-posedness 

and the smoothness properties of the solutions of a generalized Burgers’ equation. 

Convergence of the quasilinearization algorithm is considered. 

Numerical examples based on this algorithm were used to test the method. The 

numerical effort demonstrated that the method has potential, but also indicated 

that much work remains to be done before a complete theory can be developed. 

In particular, the algorithm seemed to work for problems with exact data and not 

77



for noisy data. Moreover, the numerical method was not analized for convergence. 

These issues need to be addressed in future work. 

18



Bibliography 

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. 

[2] E. L. Allgower, and K. Bohmer, A Mesh-Independence Principle for Operator 

Equations and Their Discretizations, Arbeitspapiere der GMD 129, Bonn, 

January 1985. 

[3] E. L. Allgower, K. Bohmer, F. A. Potra, and W. C. Rheinboldt, A Mesh- 

Independence Principle for Operator Equations and Their Discretizations, 

SIAM J. NUMER. ANAL., VOL. 23, No. 1, pp.160-169, February 1986. 

[4] M. G. Armentano, Parameter Identification in Burgers’ Equation, Preprint. 

[5] H. T. Banks, J. A. Burns and E. M. Cliff, Parameter Estimation and Iden- 

tification for System with Delays, SIAM J. Control and Optimization, 19, 

pp.791-828, 1981. 

[6] H. T. Banks, R. Fabiano and Y. Wang, Estimation of Boltzmann damping 

coefficients in beam models, to appear. 

79



[7] 

[3] 

[9] 

[10] 

[11] 

[12] 

[13] 

H. T. Banks and G. M. Groome, Jr., Convergence Theorems for Parameter 

Estimation by Quasilinearization, J. Math. Anal. Appl., 42, pp.91-109, 1973. 

H. T. Banks and K. Ito, A Unified Framework for Approximation in Inverse 

Problems for Distributed Parameter Systems, Control-Theory and Advanced 

Technology, 4, pp.73-90, 1988. 

H. T. Banks and K. Kunish, Estimation Techniques for Distributed Parameter 

Systems, Birkhauser, New York, 1989. 

H. T. Banks and P. D. Lamm, Estimation of Variable Coefficients in Parabolic 

Distributed Systems, IEEE Trans. Automat. Control, 30, pp.386-398, 1985. 

H. T. Banks and D. A. Rebnord, Analytic Semigroups: Applications to Inverse 

Problems for Flexible Structures, ICASE Report No. 90-36, May 1990. 

R. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary Value 

Problems, American Elsevier, New York, 1965. 

J. Borggard, J. A. Burns, E. Cliff, and M. Gunzburger, Sensitivity Calcula- 

tions for a 2D, Inviscid, Supersonic Forebody Problem, ICASE Report No. 

93-13, March 1993. 

80



[14] D. W. Brewer, The Differentiability with Respect to a Parameter of the Solu- 

[15] 

[16] 

[17] 

[18] 

[19] 

[20] 

tion of a Linear Abstract Cauchy Problem, SIAM J. Math. Anal. 13, 607-620 

(1982). 

D. W. Brewer, J. A. Burns and E. M. Cliff, Parameter Identification for 

an Abstract Cauchy Problem by Quasilinearization, Quart. of Appl. Math., 

1(1993), pp.1-22. 

J. A. Burns and E. M. Cliff, An Abstract Quasilinearization Algorithm for 

Estimating Parameters in Hereditary Systems, IEEE Trans. Automat. Contr., 

25(1980), pp.126-129. 

J. A. Burns, E. M. Cliff and M. D. Gunzburger, An Optimization Problem 

Involving a Nonlinear Two-Point Boundary Value Problem, ICAM Report, 

91-07-03. 

J. A. Burns and S. Kang, A Control Problem for Burgers’ Equation with 

Bounded Input/Output, Nonlinear Dynamics 2: pp.235-262, 1991. 

J. A. Burns and Y. Yan, Dynamics of Nonhomogeneous Boundary Value of 

Burgers’ Equation, Preprint. 

C. I. Byrnes, D. S. Gilliam and V. I. Shubov, On the Zero and Pole Dynamics 

of a Nonlinear Distributed Parameter System, Preprint, 1994. 

81



[21] P. G. Ciarlet, The Finite Element Methods for Elliptic Problems, North- 

[22] 

[23] 

[24] 

[25] 

[26] 

[27] 

Holland, Amsterdam, 1978. 

J.D. Cole, On a Quasi-Linear Parabolic Equation Occurring in Aerodynamics, 

Quart. Appl. Math., Vol. IX, No. 3, pp. 225-236, 1951. 

R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear Systems The- 

ory, Springer-Verlag, 1978. 

J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Nonlinear Equa- 

tions and Unconstrained Optimization, Prentice Hall, Englewood Cliffs, NJ, 

1983. 

C. A. J. Fletcher, Burgers’ Equation: A Model for All Reasons, Numerical 

Solution of Partial Differential Equations, J. Noye ed., North-Holland Publ. 

Co., pp.139-225, 1982. 

P. W. Hammer, Parameter Identification in Parabolic Partial Differential 

Equations Using Quasilinearization, Ph.D. dissertation, Virginia Tech, Blacks- 

burg, Virginia, July, 1990. 

M. Heinkenschloss, Mesh Independence for Nonlinear Least Squares Problems 

with Norm Constraints, SIAM J. Optimization, Vol. 3, No. 1, pp. 81-117, 

1993. 

82



[28] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer- 

Verlag, New York, 1981. 

[29] E. Hopf, The Partial Differential Equation uz+ uur = HUszr, Comm. Pure and 

Appl. Math., Vol. 3, pp.201-230, 1950. 

[30] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite 

Element Method, Cambridge University Press, 1992. 

[31] D. M. Hwang and C. T. Kelley, Sequential Quadratic Programming for Param- 

eter Identification Problems, Parameter Systems, Perpignan, France, 1989. 

[32] S. Kang, A Control Problem for Burgers’ Equation, Ph.D. dissertation, Vir- 

ginia Tech, Blacksburg, Virginia, April 1990. 

[33] C. T. Kelley and E. W. Sachs, Approzimate Quasi-Newton Methods, Mathe- 

matical Programming 48, pp.41-70, 1990. 

[34] C. T. Kelley and E. W. Sachs, Pointwise Broyden Methods, SIAM J. Opti- 

mization, Vol. 3, No. 2, pp. 423-441, May 1993. 

[35] T. Lin and B. Zhang, A Finite Control Problem for an Initial Value Inverse 

Problem with Overspecified Boundary Data, Preprint. 

[36] J. M. Ortega and W. C. Rheinboldt, Jterative Solution of Nonlinear Equations 

wn Several Variables, Academic Press, Orlando, Florida, 1970. 

83



[37 

[38] 

[40] 

[41] 

[42] 

[43] 

[44] 

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differ- 

ential Equations, Springer-Verlag, New York, 1983. 

M. H. Protter and H. Weinberger, Maximum Principles in Differential Equa- 

tions, Printice-Hall, Englwood Cliffs, New Jersey, 1967. 

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equa- 

tions, Springer-Verlag, New York, 1992. 

V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, 

Springer-Verlag, 1984. 

L. W. White, A Study of Uniqueness for the Initialization Problem for 

Burgers’ Equation, Journal of Mathematical Analysis and Applications 172: 

pp.412-431, 1993. 

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, 1974. 

J. Wloka, Partial Differential Equations, Cambridge University Press, New 

York, 1987. 

E. Zeidler, Nonlinear Functional Analysis and its Applications II/A, Springer- 

Verlag, New York, 1990. 

84



VITA 

Lan Zhang was born in Sichuan, China on March 25, 1968, daughter of Anxun 

Zhang and Suzhen Zhu. She received the B.S. degree in Mathematics from Chengdu 

University of Science and Technology in 1989. She came to the United States in 

1989 and received her Ph.D. in mathematics from Virginia Polytechnic Institute and 

State University in 1995. 

Lan Zhang 

85


