
Static Analysis to Improve RTL Verification

Akash Agrawal

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Michael Hsiao, Chair
Haibo Zeng

A. Lynn Abbott

February 16, 2017
Blacksburg, Virginia

Keywords: Static Analysis, ATPG, RTL, Reachability Analysis
Copyright 2017, Akash Agrawal

Static Analysis to Improve RTL Verification

Akash Agrawal

ABSTRACT

Integrated circuits have traveled a long way from being a general purpose microprocessor to

an application specific circuit. It has become an integral part of the modern era of technology

that we live in. As the applications and their complexities are increasing rapidly every day,

so are the sizes of these circuits. With the increase in the design size, the associated testing

effort to verify these designs is also increased. The goal of this thesis is to leverage some of

the static analysis techniques to reduce the effort of testing and verification at the register

transfer level. Studying a design at register transfer level gives exposure to the relational

information for the design which is inaccessible at the structural level.

In this thesis, we present a way to generate a Data Dependency Graph and a Control Flow

Graph out of a register transfer level description of a circuit description. Next, the generated

graphs are used to perform relation mining to improve the test generation process in terms

of speed, branch coverage and number of test vectors generated. The generated control flow

graph gives valuable information about the flow of information through the circuit design.

We are using this information to create a framework to improve the branch reachability

analysis mainly in terms of the speed. We show the efficiency of our methods by running

them through a suite of ITC’99 benchmark circuits.

Static Analysis to Improve RTL Verification

Akash Agrawal

GENERAL AUDIENCE ABSTRACT

In this era of modern technology, digital circuits and microprocessors have become an un-

avoidable part of everyone’s life. The role of these circuits is becoming more and more critical

as they are running a lot of critical services for us. Testing and verifying the design has been

a very important aspect in the designing of these circuits. With the increasing number of its

applications and the advancement of the technology, the size and complexity of the designs

have also increased. It has imposed a need to test the design at a stage when it is easy to test

and easy to fix also. There have been a lot of research focused on automatically generating

the test pattern at an early stage of development and the work presented in this thesis is an

effort to take it one step further in the process.

The method proposed in this work is taking advantage of the fact that a design speaks for

itself and can give a lot of information if looked at carefully. We present a way to extract

important information about the data dependency and its flow through the design. With

the help of this information, we are generating relations between the design elements which

can aid the test generation process to achieve its goal more efficiently. We are also using

this information to help in proving that some part of the design is inaccessible. We show the

efficiency of our method by running them through benchmark designs.

Dedicated to my family.

Daughter Ishita Agrawal

Wife Varnika Gupta

Parents Ram Prakash and Shusham Agrawal

iv

Acknowledgments

I would first like to thank my advisor Michael Hsiao for his guidance throughout my stint

at Virginia Tech. It was his course and teaching style which motivated me to work towards

a research problem. His belief in my capabilities, encouragement to try new things and the

feedback kept me motivated to produce the ideas presented here.

I would like to thank all the members of PROACTIVE who have supported me directly

or indirectly in my work. Most notably, Kelson Gent and Tonmoy Roy, whose ideas and

contributions were invaluable for my work.

I would like to thank some of my close friends in Blacksburg, Vikas BM, Debjit Gupta,

Ashutosh Agrawal, Rohan Gaur, Ameya Khandekar and Anshuman Verma to make my stay

memorable.

Finally, I would like to thank my wife, Varnika Gupta, for her immense support and love

without which it would not have been possible for me to achieve my goals.

- Akash Agrawal

v

Contents

1 Introduction 1

1.1 Problem Scope . 1

1.2 Contributions of the Thesis . 3

1.2.1 Static Analysis . 3

1.2.2 Relational Mining . 4

1.2.3 Improved Reachability Analysis . 6

1.3 Thesis Organization . 7

2 Background 9

2.1 Register Transfer Level Description . 9

2.2 Verilator . 12

2.3 Control Flow Graph and Data Flow Graph 13

2.4 Abstract Syntax Tree . 14

2.5 Branch Coverage . 16

vi

2.6 BEACON . 17

2.7 SMT Solver . 19

2.7.1 Z3 . 20

2.8 Relations in the Design . 21

3 Contributions 22

3.1 Static Analysis . 22

3.1.1 Data Dependency Graph Generation 23

3.1.2 Control Flow Graph Generation . 26

3.2 Use of Static Analysis . 28

3.2.1 Relation Mining Algorithm . 29

3.2.2 Reachability Analysis . 32

4 Experimentation and Results 38

4.1 Overview . 38

4.2 Static Analysis . 39

4.2.1 Experimental Setup . 39

4.2.2 Results . 40

4.3 Improved BEACON . 41

4.3.1 Experimental Setup . 41

vii

4.3.2 Results . 41

4.4 Improved Reachability Analysis . 42

4.4.1 Experimental Setup . 42

4.4.2 Results . 42

5 Conclusion 45

5.1 Concluding Summary . 45

5.2 Future Work . 45

Bibliography 47

viii

List of Figures

2.1 A Simple Synchronous Circuit . 11

2.2 Verilog description for Figure 2.1 . 11

2.3 Sample Verilog code to C++ conversion using Verilator 12

2.4 An example of AST conversion . 15

2.5 A Simple flow for BEACON vector generation 18

2.6 BEACON guidance framework . 19

3.1 An example of DDG for a C++ function . 23

3.2 An example of DDG for an RTL design . 24

3.3 An example of CFG for an RTL design . 27

3.4 An example of DDG for an RTL design . 31

3.5 Relations generated for Figure 3.4 . 31

3.6 Verilated C++ code for Unreachability Analysis 34

3.7 Assignment Graph for branch 18 in Fig 3.6 35

ix

3.8 Inferring Reachability of a Branch Node based on its Children Nodes 36

x

List of Tables

4.1 OR1200 & ITC99 Core Characteristics . 39

4.2 Time taken to generate DDG and CFG . 40

4.3 Sequential Stuck-at Fault Coverage Results 42

4.4 Reachability Analysis Results . 44

xi

List of Algorithms

3.1 Generating Data Dependency Graph . 25

3.2 Generating Control Flow Graph . 28

3.3 Algorithm for Relation Mining . 30

3.4 Reachability Analysis Main Function . 33

3.5 Reachability Analysis Recursive Function . 34

3.6 Reachability Analysis Extension . 37

xii

Chapter 1

Introduction

In this age of technology, integrated circuits have become increasingly important as well as

a critical part of our day to day lives. From our communication to transportation, feeding

to sleeping, they aid us in everything we do. The role of these circuits is becoming more

and more critical every day as they are running a lot of critical things like our cars, health

devices, home security and more. A small glitch in these services is enough to make a big

loss to our lives. With this heavy use, it has become very important to functionally verify

them before putting them in devices for use.

1.1 Problem Scope

Gone are the days when the circuit used to be very small with very simple functionality

[1] so that they can be tested and verified manually. Circuit complexities have increased

rapidly with time. Moore’s [2] law has become a measure of progress for the industry.

This exponential increase in the circuit complexity has immensely increased the testing and

verification efforts.

1

Akash Agrawal Chapter 1. Introduction 2

This increase in circuit size and complexity has imposed a need for new and faster methods

for the formal verification of the design [3]. At present, at least 50% of the chip design time is

spent on verification efforts [4]. As a result, ATPG has become an emerging area of research

interest.

Verification of design needs to be done at each level of the design. The test generation ate

one level can take help from the information available to the previous level. For example,

register transfer level description of design has relational information, valid states of the

signals etc., which is lost at the physical level of design. This high-level information can aid

in the generation of efficient test vectors at lower levels [5].

An approach for verification can be to test all possible input combination for the design and

compare the output for each test against a golden set of expected outputs. This approach

quickly becomes impractical as number of inputs in circuits today can be very large. A

hybrid model was proposed in [6] using a polynomial circuit model to leverage simulation

alongside the use of formal models. Formal verification techniques can check the design

against a spec but its practicality is also limited as no technique till date has not been able

to achieve 100% coverage [7]. There are other simulation-based techniques which work on

evolutionary ants [8, 9, 10], cultural algorithms [11] and ant colony optimization [12].

While most of the techniques use circuit simulation as a way to generate the test vectors,

static analysis can be useful to extract valuable information from the design which can

increase the effectiveness of existing ATPG techniques. In this work, we present a framework

to generate information about the design using static analysis and then further use it to

perform relational mining and an improved branch reachability analysis. The work is able

to generate better test vectors in terms of number of vectors generated, branch coverage

Akash Agrawal Chapter 1. Introduction 3

and time taken to generate them. The reachability analysis is also improved in terms of

efficiency.

1.2 Contributions of the Thesis

The contributions of this thesis can be seen as follows.

1.2.1 Static Analysis

Static analysis is a set of methods which are used to obtain information about the code

structure without executing it. It is also used to obtain an idea about how the information

is going to flow in the program in the form of possible paths through different branch nodes

in the code which is also called data flow analysis. The extent of analysis varies from only

considering the behavior of individual statements and declarations to include the complete

source code of a program. The uses of information obtained by the analysis vary from

highlighting possible coding errors to formal methods that mathematically prove properties

about a given program. Some of the implementation techniques of formal analysis include

[13] abstract interpretation, data flow analysis, symbolic execution etc.

Data flow analysis is performed on the control flow graph of a program. A combination

of control flow graph and data flow analysis has shown to be useful and complementary in

identifying important sections of the program which implements the functionality of a system

[14]. From the control flow graph, a data dependency graph can be generated. The data

dependency graph depicts the dependencies between different variables, inputs, outputs and

constants in the program.

Akash Agrawal Chapter 1. Introduction 4

In RTL descriptions, the behavior of the circuit is often controlled by a state machine which

triggers different behavior for each of the defined states. An easy way of defining a state

machine is through constant assignments. Each of the states is given a unique constant

number. The controlling variable of the state machine will change its value through constant

assignments of these identifiers. “Case” statements in RTL are also worked on constant

assignments most of the times. As hardware works on a per cycle basis, each of these

constant assignments in a given cycle has an effect on the next cycle.

In this work, we propose a way to generate data dependency graph and control flow graph

out of an RTL description of a circuit which can be processed further to extract useful

information about its behavior. It helps to improve the performance of existing methods for

test vector generation and reachability analysis for the branches.

1.2.2 Relational Mining

Due to the growth in circuit complexity, conventional test methodology, such as scan-based

testing, is no longer sufficient to ensure proper post-manufacturing behavior. Complex and

transient defects may require high-quality at-speed tests to adequately cover all defects [15].

To address these issues, functional tests are being used more frequently for testing across the

entire design process [16, 17]. However, high quality functional/sequential automatic test

pattern generation is extremely computationally expensive, particularly for large circuits.

Test patterns that simultaneously provide a high level of coverage for RTL verification and

at-speed coverage stand to yield significant savings in time and monetary costs of test and

verification.

Akash Agrawal Chapter 1. Introduction 5

Gate level sequential ATPG techniques, such as [8], have used swarm intelligence and evo-

lutionary techniques to generate vectors. However, for circuits with deep sequential paths,

the lack of guiding information causes these techniques to fail to generate vectors which ad-

equately exercise the circuit. To gain more accurate information at the RTL [18] represents

the RTL as assignment decision diagrams to utilize formal techniques for test generation.

PACOST [19] uses a formal model to generate an onion-ring guidance model for simulation.

In [20] a data-mining based approach to learn about cross cycle transitions which are used

to guide the test generation towards specific targets. To target the gate level from the RTL,

mixed level generation is used in [21, 22, 5], these methods generate vectors at RTL and then

refine the generation process using gate level simulation or test generation. However, the

invocation of gate-level fault simulation requires the generation of a structural model and the

invocation of gate-level simulation significantly slows these methods restricting the gained

benefit from generation at RTL. Recently, significant advances in RTL state justification

have been made utilizing swarm intelligence and hybrid-stochastic models. BEACON [12],

utilized an evolutionary ant colony optimization to generate functional verification vectors

targeting branch coverage.

In this work, we propose a method to improve the performance of BEACON [12] by adding

static analysis to aid the guidance of the swarm intelligence based test pattern generation

engine. Initially, we convert the circuit from Verilog to a fast, optimized cycle accurate

C++ model using Verilator [23]. While performing this conversion, we also extract a data

dependency graph and a list of single cycle mutually exclusive branches. This information

is further processed to generate a control flow graph for the design and to learn predictable

relationships between cycles. Using this as a feedback the ant colony is able to target sections

Akash Agrawal Chapter 1. Introduction 6

of the code with low levels of excitation and propagation.

1.2.3 Improved Reachability Analysis

High-quality automatic test pattern generation (ATPG) has become essential for both pre-

silicon validation and post-manufacture functional testing in modern nanoscale integrated

circuits. The increased circuit complexity is making it more difficult to ensure proper behav-

ior, especially for validating the deep corners of the design. Likewise, post-manufacturing

defects are more likely to occur with smaller feature sizes. If the defects are hidden in the

corner cases, they would be hard to be activated and/or detected. High quality function-

al/sequential automatic test pattern generation (ATPG) techniques, however, are extremely

computationally expensive and time-consuming. These techniques suffer from huge search

spaces, in which the complete state space may be required to reach a conclusion in the worst

case. As such, RTL ATPG has become an important area of interest to generate high-quality

test stimuli with reduced effort compared with gate-level approaches. The added guidance

from the RTL can help to prune the search.

Sequential ATPG techniques using genetic algorithms that operate at the gate level have

been proposed in the past [8]. However, these methods may be limited in its ability to

produce proper test vectors when faced with deep sequential paths as there is a lack of

guidance that can be obtained from the RTL. To utilize this extra information obtained

from the RTL, there are several prior proposed techniques such as PRINCE [24] and other

early RTL based methods that utilize line coverage as the primary metric. Line coverage,

however, may saturate early at a sub-optimal level without proper guidance in the search.

Other methods utilizing RTL to get as assignment decision diagram [18] or other types of

Akash Agrawal Chapter 1. Introduction 7

hybrid methods using polynomial circuit model and formal models may fail to reach deep,

narrow states due to the inherent nature of bounded model checking.

In all of these aforementioned methods, determining the reachability of corner cases have

been specifically noted to be a very hard problem as the search space can be very large at

times. One technique that tried to reduce the complexity has been noted in [25]. Instead

of systematically exploring the reachability from the entry point of the design, it follows a

backward search from the target in question. In addition, rather than using a branch-and-

bound search (such as depth-first or breadth-first traversal), it embeds all assignments into

the constraint irrespective of the execution path information and only uses the depth infor-

mation to reduce the complexity. Because no enumeration of paths is performed, significant

speedups have been achieved. However, this method tries to perform reachability analysis

for all the branches and therefore suffers from large run times in large circuits.

In this work, we present a new method of utilizing static analysis to generate both, the control

flow graph and the data flow graph out of the RTL description of a circuit, to determine if a

branch needs to be considered for the reachability analysis or not. Essentially, if a previously

considered branch was found to be reachable, we can prune several related branches, thereby

reducing the effort for unreachability analysis of the whole circuit.

1.3 Thesis Organization

Rest of the thesis is organized as follows.

• Chapter 2 describes the background concepts used in explaining this work.

Akash Agrawal Chapter 1. Introduction 8

• Chapter 3 describes the contributions of this thesis in detail.

• Chapter 4 includes the experimentation’s and their results.

• Chapter 5 concludes the work with a summary of findings and possible future directions

for the research.

Chapter 2

Background

In this chapter, we present the details of RTL representation of circuits along with other

concepts which are used in this work and will be useful to understand it.

2.1 Register Transfer Level Description

In digital circuit design, register transfer level or widely known as RTL is a form of design

abstraction which describes a digital circuit in terms of the signals, registers and logical

operations between them without going into much of the implementation details of these

signals and registers. Hardware description languages like Verilog and VHDL are used in

RTL to create high-level representations of a circuit. Using this high-level description, a

low-level description can be derived which will be converted into actual wiring eventually.

In a synchronous circuit, typically there are two parts, one is combinational and the other is

register. Registers are used to transfer the values from one cycle to another cycle thus making

the circuit synchronous. Transfer of value from one cycle to another typically happens at

a clock edge. Combinational logic is responsible for handling all the logical functionality of

9

Akash Agrawal Chapter 2. Background 10

the design and will be converted into logic gates eventually.

A hardware description language is conceptually similar to any other software languages like

C, C++ etc. The only difference between these two worlds of software and hardware is that

in software everything is sequential whereas in hardware everything is executed in parallel.

This makes a little difference in the languages as well. The hardware language has to handle

the assignments in such a way that in any given cycle, one assignment value should not

affect other assignment values. There are two types of assignments available in HDLs. One

is blocking assignment and the other is non-blocking assignment. In blocking assignments,

an immediate assignment will happen while in non-blocking assignments, the statement will

be evaluated and the value will be assigned at the end of the cycle.

For example, Figure 2.1 shows a simple synchronous circuit diagram. In the circuit, com-

binational part consists of an inverter which inverts the output of the register and feeds it

back to the input after inverting it. The register will trigger this behavior on each positive

edge of the clock.

Akash Agrawal Chapter 2. Background 11

Figure 2.1: A Simple Synchronous Circuit

Corresponding Verilog description of the circuit is shown in Figure 2.2. At each positive edge

of clock, “in” will be assigned to “out”. While as part of the combinational logic, outside

the “always” block, “in” is been assigned as NOT of “out” through an inverter.

RTL design in Verilog

in <= not out ;
always @ (posedge c l o ck)
begin

out <= in ;
end

Figure 2.2: Verilog description for Figure 2.1

Akash Agrawal Chapter 2. Background 12

2.2 Verilator

Verilator [23] is a cross compiler which converts a synthesizable Verilog code into a cycle

accurate optimized model written in C++ or SystemC. For this work, we are using it to

convert the Verilog description into a C++ description which is referred by “Verilated C++”

in this thesis. It is also the fastest free Verilog HDL simulator and has been designed for

large projects where fast simulation performance is of primary concern. Figure 2.3 shows an

example of an RTL design and its corresponding Verilated C++ model.

RTL design in Verilog

always @ (posedge c l o ck)
begin

i f (r e s e t == 1 ’ b1) begin
outp <= 1 ’ b0 ;

end
else begin

case (inp)
1 ’ b0 : outp <= 1 ’ b1 ;
1 ’ b1 : outp <= 1 ’ b0 ;

endcase
end

end

Converted C++ code

void Vtop : : sequent TOP 1
(Vtop Syms∗ r e s t r i c t vlSymsp) {

Vtop∗ vlTOPp = vlSymsp−>TOPp;
i f (vlTOPp−>r e s e t) {
++(vlSymsp−> Vcoverage [0]) ;
vlTOPp−>outp = 0 ;

} else {
++(vlSymsp−> Vcoverage [3]) ;
i f (vlTOP−>inp) {
++(vlSymsp−> Vcoverage [2]) ;
vlTOPp−>outp = 0 ;

}
else {

++(vlSymsp−> Vcoverage [1]) ;
vlTOPp−>outp = 0 ;

}
}

}

Figure 2.3: Sample Verilog code to C++ conversion using Verilator

Other than just converting Verilog into C++, the Verilator also optimizes the code to make it

run faster. Verilator also instruments the code with respect to line coverage, toggle coverage

and signal coverage. For the purpose of this research work, we are using line coverage

Akash Agrawal Chapter 2. Background 13

option from Verilator. With line coverage, Verilator provides a way to track that whether

a block of code has been executed or not, at least once during simulation. A block of code

is decided by the entry and exit points in the form of decision-making statements such as

if-else-if or case statements. All the statements with a single same entry and exit points are

grouped in a single block. Each block is assigned a counter variable in the form of vlSymsp-

> Vcoverage[3] and the same will be incremented using ++(vlSymsp-> Vcoverage[3]);.

Each of the counters is an index in the array of coverage counter initialized to “0”. At the

end of each cycle of simulation, we can read this array to figure out what all blocks were

executed during the current simulation.

Verilator converts all the branches in the Verilog RTL design into a branch of C++ code,

which means that none of the original branches are lost. All different types of branches in-

cluding if-else and case statements are converted into C++ if-else statements in the Verilated

C++ code.

2.3 Control Flow Graph and Data Flow Graph

Many compiler-level optimization and static analysis tools utilize the concept of Control

Flow Graphs (CFG) proposed by Allen [26]. The CFG is represented using a graph G(V, e).

The vertices, V , represent the basic blocks of the code, and the flow of executing between

these basic blocks is represented by the edges e. A basic block in a computer program is a

set of program statements that meet the following conditions:

1. Each block can only be entered via the first statement.

2. Each block may only contain one exit statement that leads to another basic block.

Akash Agrawal Chapter 2. Background 14

3. All statements must execute sequentially within a block.

To form the CFG, the final statements of each block are taken as execution targets and are

used to create the graph edges. Many core analysis of a program like loop optimization and

identifying unreachable program segments can be performed by utilizing this transformation

and formation of the CFG.

Operations that rely on the data assigned to an operand during a prior operation are known

as data dependency. Control dependencies on the other hand are the dominance frontier of

a node in the reverse CFG. This represents the necessary control path required to active a

specific operation. A Data Dependency Graph, DDG, can be generated by conducting data

flow analysis on the CFG of a program. Dependencies between register assignments, control

statements and previously assigned data can be elaborated using DDG. Data dependency

analysis can be used to perform program scheduling, software change impact analysis and

compiler analysis [27, 28, 29].

2.4 Abstract Syntax Tree

In computer science, an abstract syntax tree or just syntax tree is a way to present the

abstract syntactic structure of the source code in the form of a tree. Each of the nodes in

tree denotes a construct occurring in the source code. AST structures are widely used in

compilers [30].

Compilers convert a source code in an AST after parsing it because AST offers many advan-

tages such as

Akash Agrawal Chapter 2. Background 15

1. It stores only abstract form of a syntax omitting all grouping parentheses, semicolon

etc.

2. AST usually contains extra information about the program due to the consecutive

stages of analysis by the compiler.

3. An AST can be easily enhanced or edited with information such as properties and

annotations for every element it contains.

An example of a code and its AST is given in figure 2.4. An AST is also very useful to

convert a source code from one programming language to the other. Verilator uses it to

convert Verilog into C++.

C++ code

i f a>b
a=b ;

else
b=a ;

return a ;

Figure 2.4: An example of AST conversion

Akash Agrawal Chapter 2. Background 16

2.5 Branch Coverage

Design validation at the RTL requires a large amount of time and resources. It encompasses

a big chunk of design life cycle of a circuit. A common metric is coverage, or the number of

executed lines, branches etc. of the RTL code [31, 32]. It is used to assess the quality of the

vectors generated using the suggested framework. At 100% branch coverage, we can conclude

that every control state described in the RTL has been visited. A branch is defined as any

decision point involved in the RTL design in the form of if-else statements. Each ‘case’ item

in any ‘switch-case’ statement involved in the design is also considered as a branch point.

A branch point is said to be covered if it is evaluated to ‘true’ at least once by using the

generated input vectors. A higher percentage of branch coverage for a design signifies a

high confidence in the generated vectors as the set ensure sufficient exercise for those many

decision points from the design.

In our work, we have used the open source tool Verilator [23]. This tool is able to convert a

Verilog RTL design into a cycle accurate C++ program. Verilator converts all the branches

in the Verilog RTL design into a branch of C++ code, which means that none of the original

branches are lost. All different types of branches including if-else and case statements are

converted into C++ if-else statements in the Verilated C++ code. Moreover, Verilator

instruments the C++ code by adding a counter at the start of each branch. So when

running the code, the number of times a branch is executed can easily be extracted any time

by reading the value of the corresponding counter.

Akash Agrawal Chapter 2. Background 17

2.6 BEACON

BEACON [12], a Branch-oriented Evolutionary Ant Colony OptimizatioN method is a bio-

inspired meta-heuristic for design validation and functional test generation. It combines

an evolutionary search technique with Ant Colony Optimization [33] for improved search

capability.

There are three steps in the process.

1. Convert RTL description from Verilog to C++ using Verilator and instrument the code

for branch coverage.

2. Generate interface with BEACON.

3. Generated test vectors using BEACON guidance framework.

Conversion from Verilog to C++ has been explained in section 2.2. Once we have the

Verilated C++ description, it is compiled with BEACON to generate a static library which

can simulate the circuit as well as generate test vectors. Figure 2.5 shows a simple flow of

the method.

Akash Agrawal Chapter 2. Background 18

Figure 2.5: A Simple flow for BEACON vector generation

The key part of the whole process is the BEACON guidance framework. It works around an

ant colony which is initialized with a random simulation at the start to get a basic idea of the

circuit. During this initialization, the ant colony will cover most of the easy to reach code

segments. Once the initialization is done, a search will begin again with all the ants. Each

of the ants will do its search and update pheromones on each of the path that is discovered.

Based on this pheromone, it updates the fitness for each of the ants. Again, based on the

fitness, ants with fitness level above than a threshold will go through an evolution phase and

rest of the ants will be dropped. This will be repeated until a steady state is reached. This

will end the local search and all the vectors will be dumped for all the saved ants till now.

Figure 2.6 shows a basic BEACON guidance framework.

Akash Agrawal Chapter 2. Background 19

Figure 2.6: BEACON guidance framework

2.7 SMT Solver

SMT solvers are the tools which can be used to check the satisfiability of logical formulas by

supplying a set of constraints to it. For example, if the constraints are

1. a is 2-bit variable

2. b < 10

3. a + b == 12

An SMT solver can be used to check if all the above clauses can be satisfiable together or

Akash Agrawal Chapter 2. Background 20

not. Each of the clauses will be supplied to the solver as a constraint and it will solve it

to determine its satisfiability. If the instance is satisfiable, then optionally, it can generate

a model also by listing one possible value for each of the variables in the constraints which

can satisfy all the clauses. SMT solvers have been used for test generation in [34, 35].

There is a limitation to SMT solvers. They can handle only boolean expressions, i.e. only

the expressions which can be evaluated to either true or false. Because of this limitation, an

assignment statement will have to be considered as an equality statement while converting

it into a constraint for SMT solver. For example, a=b is supplied as a==b. This conversion

does not modify the fundamental model implied by the assignment.

SMT solvers are of high computational complexity as they draw on the most problems of the

decision diagram, symbolic logic, completeness and incompleteness of logical theories and

complexities. Due to the nature of the problems, their wide scope, it is infeasible to build

an SMT solver which can solve any given set of constraints. It is possible at times that the

solver may not be able to find a solution. In the recent years, a lot of research has gone

into making it more and more robust due to the progress in algorithms, data structures,

heuristics and carefully considering the implementation details [36]. An important driving

factor behind the development of SMT solvers is the annual competition for SAT and SMT

procedures [37].

2.7.1 Z3

In this work, we have used Z3 [38] SMT solver which is an open source software published

by Microsoft Research. It is available with python and C++ implementations. We are using

Akash Agrawal Chapter 2. Background 21

C++ implementation for this work as we are using Verilated C++ description of the RTL.

Z3 imposes a restriction over the format of clauses that can be passed to it for solving a

problem. If a variable is added as part of a constraint, it has to be initialized also in that

constraint. The initialization can be left to Z3 by telling it bit-width of the variable or an

explicit assignment to a constant can also be used to initialize the variable.

2.8 Relations in the Design

There are relations, also known as invariants and implications, which exist in the design.

They can be of various forms, such as (a == 3), (a ¡ b), etc. These relations can be of

immense value to constraining the problem, since they help to steer the search away from

state spaces that violate them. Relations have been used in several other domains as well,

such as post-silicon validation [39], manufacturing test [40, 41, 42], design verification [43, 44],

software testing [45], etc. We will use relations mining in this thesis to help guide the test

generation as well. In addition, when the relations are used as constraints, the test sequences

generated can often be shorter, thereby reducing the cost for a post-process compaction [46].

Chapter 3

Contributions

In this chapter, we present the methods proposed for static analysis in details. Also, it talks

about their applications as well to improve some of the existing methods.

3.1 Static Analysis

In section 1.2.1, we have given a brief introduction to what is static analysis and how it can

be useful for our goal of cutting down on testing/verification efforts for a circuit design. In

this section, we present the framework which will be used for information extraction out of

a design at register transfer level.

In section 3.1.1, we will discuss what is a Data Dependency Graph (DDG), how it is being

represented in this work and the algorithm used to generate the DDG. In section 3.1.2, we

will discuss the details about the Control Flow Graph (CFG).

22

Akash Agrawal Chapter 3. Contributions 23

3.1.1 Data Dependency Graph Generation

A data dependency graph, or a DDG, is a graph representation generated for a program

where each node represents either a constant value or a variable which can be a direct input

in the program or an intermediate variable being used for some calculation. The edges of

the graph show the dependency between the nodes. An incoming edge to a node denotes a

dependency to that node from a node where the edge originates. The graph may or may not

be a connected one. Figure 3.1 shows an example of a small DDG.

C++ code

1 int f oo (int a , int b) {
2 int c = a ;
3 c = b + 1 ;
4 return c ;
5 }

Figure 3.1: An example of DDG for a C++ function

In figure 3.1, we have shown a small function definition written in C++ which has two input

variables “a” and “b” and one output variable “c”. At line 2, there is an assignment from

variable “a” to “c” which is denoted by an edge from node “a” to node “c”. Similarly, at

line 3, we again have an assignment to variable “c” from a mathematical expression. The

expression on the right-hand side involves a variable “b” and a constant “1”. Both of these

entities will have their share in the DDG as an edge from node “b” to node “c” and another

edge from node “1” to node “c”.

Akash Agrawal Chapter 3. Contributions 24

In this work, we are generating DDG from a given RTL description of a circuit. Also, it

is defined per cycle of execution so that we can have a definite start and end point while

traversing any dependency path. In RTL, we have primary inputs and primary outputs for a

circuit. The way a DDG is defined, it is very easy to identify these nodes in the graph. Any

node with no incoming edge in the graph is either a primary input variable or a constant. All

other nodes in the graph will have at least one incoming edge. Similarly, a primary output

variable node cannot have an outgoing edge. Additionally, we are loading the DDG with

branch path annotations over the edges. The annotations over each edge represent the list of

branches needed to be executed to achieve the dependency denoted by that edge. An edge

can have multiple annotations as multiple paths can exist through which that dependency

can be achieved. Figure 3.2 shows an example of a DDG generated for a small RTL design.

RTL Design basicstyle

1 i f (s t a r t)
2 i n s t p t [0]++;
3 s t a to = 10 ;
4 else
5 i n s t p t [1]++;
6 i f (s t a t o == 10)
7 i n s t p t [2]++;
8 x <= y ;
9 s t a to <= 20 ;

10 else i f (s t a t o == 20)
11 i n s t p t [3]++;
12 z <= x ;

Figure 3.2: An example of DDG for an RTL design

In Figure 3.2, for simplicity we have clubbed both the constant into a single node named

“const”. In the code, inst pt[i] denotes the branch point index. A path annotation is made

Akash Agrawal Chapter 3. Contributions 25

up of the branch index separated by a hyphen. Variables “stato” can be assigned from a

constant in two ways and that’s why the edge in DDG has two annotations. It is to be noted

here is that variable “start” is not getting assigned to/from anything and that’s why it is

presented as an individual node in the DDG. Similarly, to achieve the dependency from “y”

to “x”, assignment at line 8, we will have to follow branch “0” followed by branch “2”. Any

other branch path will not help to achieve that dependency. The variable “inst pt” is part

of the instrumented code from Verilator and therefore not present in the generated DDG.

In order to generate DDG, we leverage the AST available through Verilator. It gives all

the information about each and every assignment statement in the design. While traversing

through the AST, we also have access to all branch point indices as Verilator has already

instrumented all the branches by then. While traversing the AST, we keep track of the

current branch. Whenever we reach an assignment statement, we add the node and edge to

the DDG if does not exist already. The details of the method are given in Algorithm 3.1.

Algorithm 3.1 Generating Data Dependency Graph

1: Initialize and read in Verilated C++
2: for all assignments do
3: Extract involved variables from assignments
4: for all variables do
5: if node NOT exist then
6: create node
7: end if
8: end for
9: Extract branch index
10: Add branch to path
11: Add edge lhs← rhs to the DDG
12: Add path as annotation to the edge
13: end for

Akash Agrawal Chapter 3. Contributions 26

3.1.2 Control Flow Graph Generation

A Control Flow Graph, or CFG, for a program is used to show the flow of control during a

program execution. In software, typically, CFG is in the form of a tree as software usually

has a single entry and exit points in the program execution. Opposed to this, in hardware,

an RTL design runs in parallel and thus can have multiple paths going from input to output,

all executing simultaneously. Therefore, CFG for an RTL design is usually a group of trees

instead of being a single tree.

For this work, instead of directly generating a CFG, we are extracting a list of single cycle

mutually exclusive branches. For a design, each entry in this list is a list of branches for which

we can guarantee that only one of them will be executed in any given cycle of execution.

By using this list we can generate all possible control paths in a design. Each entry of the

list also includes all the controlling variables for that entry. A controlling variable can be a

single or a group of variables that needs to be assessed in order to take decision for a branch.

An example of the generated list is given below in Figure 3.3.

Akash Agrawal Chapter 3. Contributions 27

RTL Design

1 i f (s t a r t)
2 i n s t p t [0]++;
3 s t a to = 10 ;
4 x = 1 ;
5 else
6 i n s t p t [1]++;
7 y = 0 ;
8 i f (s t a t o == 10)
9 i n s t p t [2]++;
10 s t a to <= 20 ;
11 i f (x == 1)
12 i n s t p t [3]++;
13 else i f (y == 0)
14 i n s t p t [4]++;

Figure 3.3: An example of CFG for an RTL design

For example, the code in Figure 3.3 is a snippet from a Verilated C++ code. There are five

branches in the example. The corresponding generated list has three entries “-0-1”, “-2” and

“2-3-4”. The first element for each of the entries is its parent node in the CFG. A blank first

element denotes that there is no parent branch for this entry. We can see here that branches

0 and 1 cannot be accessed in a single cycle as they are part of the if-else statement and

there is no parent branch for this set. Similarly branches 3 and 4 also cannot be accessed at

the same time but they have a parent branch which is branch 2 in this case. For the first

set of two branches, variable “start” plays a role of controlling variable. For branch 4, the

controlling variables are “x” and “y” and both of these variables are need to be accessed to

evaluate branch 4. It is to be noted here that variable “stato” will also need to be accessed

to reach branch 4 but that information can be easily extracted from the fact that branch 2

serves as a parent branch for this entry of the CFG.

To generate the CFG for an RTL, we again process it in the AST generated by the Verilator

Akash Agrawal Chapter 3. Contributions 28

while instrumenting the design for branch coverage. While traversing the branches, we keep

track of current branch. If a new branch exists inside the current branch, set the current as

parent for the newly found branch and also update the list of controlling variables for the

branch. The details of the method are given in Algorithm 3.2.

Algorithm 3.2 Generating Control Flow Graph

1: Initialize and read in Verilated C++
2: parent = NULL
3: for all branches do
4: again : Extract involved variables from branch− condition
5: if nested− branch exist then
6: Set parent
7: Add variables to activating list
8: goto again
9: else
10: Add parent to current branch list
11: Add sibling − branches to CFG
12: Add variables to activating variables
13: end if
14: end for

3.2 Use of Static Analysis

In this section, we present how we can use the information generated by the static analysis

explained in Section 3.1. For the scope of this thesis, we have shown the effectiveness of

static analysis with the following two ways.

1. Improvements in BEACON by doing relational mining to aid the search.

2. Improvements in the reachability analysis of the branches in RTL.

Akash Agrawal Chapter 3. Contributions 29

3.2.1 Relation Mining Algorithm

Once DDG and CFG are generated for the circuit, they are analyzed further to learn specific

information about the cross-cycle behavior for the circuit under test. There are always some

cycle exclusive paths exist in the circuit. They are formed by the conditional statements like

if-else-if or switch-case statements and they allow only one of those conditional blocks to get

activated in a single cycle. If we look closely, they are mostly the part where a state machine

is being defined in the circuit. Because of this, they offer an opportunity to learn more

about the circuit behavior. Using these paths and the generated DDG, we try to generate

cross-cycle dependencies for the circuit.

Typically, there is always a variable in the RTL which is always being assigned from a

constant value. These type of variable form a state machine and are of the primary target

for our algorithm. With the help of these variables and assignments, the algorithm aims to

predict the branch that is guaranteed to be executed in the next cycle. From the DDG, we

lookup for such variables where all the incoming edges are from “constant” nodes. Once we

get the list of such variables, for each such variable, we apply the value to the dependent

conditional statements in the CFG. If this evaluates to “true” for a branch, we have found a

cross-cycle dependency from the assignment in cycle “i” to the branch in cycle “i+1”. Thus

we establish a dependency between the path for the assignment, necessary constraints to

activate that path and the branch. The details of the method are given in Algorithm 3.3.

Akash Agrawal Chapter 3. Contributions 30

Algorithm 3.3 Algorithm for Relation Mining

1: Initialize and read in Verilated C++
2: Read DDG
3: for all constant− assignments do
4: Mark lhs as constant assigned
5: for all assignments in basic block do
6: Mark any other constant assignment
7: again :
8: for all combinational assign do
9: if only constant assigned are used then
10: add lhs to constant assignment
11: end if
12: Scan for any assignment with constant assigns
13: end for
14: if new items added then
15: goto again
16: end if
17: end for
18: Extract branch index
19: Add branch to path
20: Add edge lhs← rhs to the DDG
21: Add path as annotation to the edge
22: end for
23: for all branches do
24: if Can be satisfied by constant assigns then
25: Check parent
26: else
27: stop
28: end if
29: if all parents can be taken by constant assigns then
30: Create relation between branch and constant assigns
31: end if
32: end for

Figure 3.4 is a sample DDG generated for an RTL description.

Akash Agrawal Chapter 3. Contributions 31

RTL Design basicstyle

1 i f (s t a r t)
2 i n s t p t [0]++;
3 s t a to = 10 ;
4 else
5 i n s t p t [1]++;
6 i f (s t a t o == 10)
7 i n s t p t [2]++;
8 x <= y ;
9 s t a to <= 20 ;

10 else i f (s t a t o == 20)
11 i n s t p t [3]++;
12 z <= x ;

Figure 3.4: An example of DDG for an RTL design

An example of the relations generated by applying the algorithm to Figure 3.4 are shown in

Figure 3.5.

[0]i ∧ (starti+1 = 0)⇒ [1, 2]i+1

[1, 2]i ∧ (starti+1 = 0)⇒ [1, 3]i+1

[1, 3]i ∧ (starti+1 = 0)⇒ [1, stato = 20]i+1

Figure 3.5: Relations generated for Figure 3.4

During the test vector generation using BEACON, generated DDG along with the relations

are supplied to the ant colony. While searching, each ant starts with a state according to

the relationship derived from static analysis and will try to target the code blocks with low

coverage. At each cycle, the ant will use the prior execution path along with the associated

relations to generate more input test vectors. Then, based on the predicted state from the

last cycle and the relations generated, all possible sub-paths will be analyzed. Each sub-path

Akash Agrawal Chapter 3. Contributions 32

is then graded on the basis of the pheromone levels present along that path. An ant will

prefer a sub-path will lower pheromone levels as that will signify a hard to reach code block.

Once a sub-path is selected, the constraints for that sub-path which can control a primary

input will be applied to the generated inputs. For example, in Figure 3.4 and the relations

in Figure 3.5, if “start” is a primary input, then ant will force it to be “0” is the sub-path

“1-2” or “1-3” have lower pheromone levels. Following this, the ant will simulate the circuit

and continue with the search in the same way until a steady state is reached. This effectively

helps the ant colony to reach code blocks which it was not able to reach previously.

3.2.2 Reachability Analysis

We aim to improve the previous low-cost analysis technique [25] to determine the reachability

of branches in RTL code using the information generated by static analysis.

In the existing method, first, the RTL code is instrumented for branch coverage, where each

basic block is a unique identifier. Each basic block is then used to extract assignments that

are present in those blocks and are labeled with corresponding block identifier. This set of

assignments gives an over-approximation for the relevant signals’ domains. It utilizes all the

activating conditions as well as all the assignments for all variables in these conditions. It

generates an assignment table to reason about all the possible assignment combinations that

can satisfy reaching a certain branch. Effectively, for each signal in the activating condition,

the assignments to the variables in question are added to the assignment graph. These

assignments form the first level of the graph. Next, each assignment added to the graph

is checked for references to other signals. Any new signals found in these references are

added as potential predecessor assignments to the first level assignment effectively creating

Akash Agrawal Chapter 3. Contributions 33

a new graph level. This is continued recursively until either a fixed point is reached or the

depth level limit is reached. This graph creates a representation of the possible assignments

relevant to a target activating condition. Finally, this assignment graph is used to generate a

unique SMT constraint. If the constraint is unsatisfiable, it means that no value assignment

to the relevant variables in question can satisfy the target condition, irrespective of which

execution path is taken. Because it generates only one constraint instead of enumerating

multiple constraints corresponding to various paths, significant speedups can be achieved.

It must be mentioned that, the reachability can be proved only if the assignment is acyclic,

i.e., there is no assignment where the signal updates its own value. The complete detail of

this method is given in Algorithm 3.4 and Algorithm 3.5.

Algorithm 3.4 Reachability Analysis Main Function

1: Initialize and read in Verilated C++
2: for all signal do
3: group assignments of signal with its branch number
4: end for
5: for all branch do
6: Extract preceding and activating conditions of branch
7: sig on decision← signal from branch
8: Append activating and preceding conditions to solver
9: recursive(sig on decision)
10: end for

Akash Agrawal Chapter 3. Contributions 34

Algorithm 3.5 Reachability Analysis Recursive Function

Require: sig to add, New signal to be added in solver
1: if sig to add is Input then
2: return pathsatisfiable
3: end if
4: if recursion depth > Max Depth then
5: solve
6: return solver result
7: end if
8: for all assignment of sig to add do
9: Apply SSA, if needed
10: Do bitvector extension, if needed
11: add assignment to solver
12: solve
13: if satisfiable AND new signal s in assignment then
14: recursive(s)
15: end if
16: end for

i f (y > 3) {
++cov [9] ; // branch 9
y = 7 ;
i f (x > 5) {

++cov [1 8] ; // branch 18
x = y ;

}
else {

++cov [5] ; // branch 5
}

}
else {

++cov [1 2] ; // branch 12
x = 4 ;

}

Figure 3.6: Verilated C++ code for Unreachability Analysis

For example, the code in Figure 3.6 shows a snippet of Verilated C++ code. In this example,

we are considering the reachability for branches 9, 18, 5 and 12. We can see the activating

condition for branch 18 is (x > 5) and it has the variable x in the expression. All the

assignments for this variable are used to build an assignment graph as shown in Figure 3.7.

Akash Agrawal Chapter 3. Contributions 35

From the activating and preceding condition of the branch and the generated assignment

graph, an expression can be generated that can be used as an SMT constraint. In this

example, the SMT solver would return satisfiable for branches 9, 18 and 5. The assignment

constraints y = 7, x = y ∧ y = 7 and x = 4 are the assignments that satisfy these branch

conditions respectively. However, branch 12 will be marked as unreachable since there is no

assignment to the variables that can justify the required condition y ≤ 3. In this cast the

SMT constraint expression for branch 12 would be (y < 3)∧ (y == 7), which is unsatisfiable

and hence branch 12 will be unreachable.

Figure 3.7: Assignment Graph for branch 18 in Fig 3.6

In this work, we extend the existing reachability analysis method explained above. Our

improvements focus toward improving the speed of the analysis without affecting the result.

For this extension we first obtain the CFG of the RTL by applying the methodology described

in Section 3.1. As we already know that the CFG obtained is in the form of a tree. If we

traverse a tree, by the nature of it, a child node is only reachable of we first reach its parent

node. If we look at a tree from the bottom, it can be observed that if the leaf node is

reachable, it instantaneously applies that all branches in that path are reachable. In Figure

3.8, let us consider the reachability of the branches 1, 3 and 4 first, since they are all leaf

nodes of the CFG. In this scenario, it is found that branch 1 is reachable, and hence branch

Akash Agrawal Chapter 3. Contributions 36

0 can be quickly marked as reachable.

i f (x == 1) {
++cov [0] ;
i f (y == 1) {

++cov [1] ;
} else {

++cov [2]
i f (z == 1) {

++cov [3] ;
} else {

++cov [4] ;
}

}
}

Figure 3.8: Inferring Reachability of a Branch Node based on its Children Nodes

The main idea is to analyze all branch nodes that represent the leaf nodes of the CFG first.

All the nodes that can be identified as reachable, would guarantee their parent nodes to be

reachable as well. If a leaf node in the CFG is not reachable, its parent has to be analyzed

independently to determine its reachability. The leaf nodes that have been analyzed are

dropped from the CFG and the same analysis is run on the new CFG until the CFG is

empty. The process is described in Algorithm 3.6.

Akash Agrawal Chapter 3. Contributions 37

Algorithm 3.6 Reachability Analysis Extension

Require: G, Control Flow Graph of the HDL design
1: while G not Empty do
2: for all leaf node, g ε G do
3: if check reachable(g) OR reachable[g] then
4: reachable[g]← >
5: reachable[parent(g)]← >
6: end if
7: remove(G, g)
8: end for
9: end while

This process allows for performance boost because of the fact that in the majority of the

real circuits, most unreachable branches are the leaf nodes or close to them. Moreover, most

unreachable branches have at least one reachable sibling. As such, in a significant number

of cases it becomes sufficient to analyze only the leaf nodes, after which most of the parent

nodes can be inferred very quickly.

Chapter 4

Experimentation and Results

In this chapter, we present the details of the experimental setup used for this work along

with the results obtained for the static analysis and both the improvements explained in

Chapter 3.

4.1 Overview

The effectiveness of the proposed method is evaluated using the ITC99 benchmarks [47] and

the OR1200 system on a chip (SOC) [48]. The OpenRisc1200 circuit is a highly configurable

RISC microprocessor with a harvard-style architecture. We have configured OR1200 SOC

to include a power management unit, debug unit, tick timer, and programmable interrupt

controller in addition to the central processing unit. Within the OR1200 CPU, we include

support for division, multiplication and multiply-and-accumulate operators, addc and addic

instructions, and the ALU rotate instruction. We also use b10-b15 of the ITC99 benchmarks

to evaluate the algorithm. To prove the efficacy of the algorithm in traversing hard to test

paths we use b12 and b12word. B12word is an input-extended version of the b12 sequencing

38

Akash Agrawal Chapter 4. Experimentation and Results 39

guessing game, introduced in [19] utilizes sixteen buttons of input instead of four to greatly

increase the difficulty of justifying the games winning.

An overview of the base characteristics of each circuit, including Flip-flops, primary inputs

and outputs, total logic gates, the number of lines of RTL and stuck-at fault count. are

shown below in Table 4.1.

Table 4.1: OR1200 & ITC99 Core Characteristics

Circuit Lines PIs POs DFFs Gates Faults
b10 210 12 6 17 155 514
b11 131 8 6 30 353 1127
b12 614 6 6 121 987 2878

b12word 782 18 18 207 1648 4732
b13 361 11 10 53 289 937
b14 1030 33 54 247 3375 22802
b15 750 36 70 447 6826 20316

OR1200 14695 164 207 2234 31144 83885

4.2 Static Analysis

4.2.1 Experimental Setup

Our experiments were run on a single core of an Intel i7-6700k @ 4.00GHz with 32 GB of

RAM running Ubuntu Linux 14.04. To test the effectiveness of the DDG and the CFG

algorithm, the source code of Verilator [23] was modified to implement the algorithms. An

abstract syntax tree is kept internally in Verilator to represent the Verilated C++ code that

is finally given as output. By modifying the Verilator source code, we are able to access this

internal representation of the C++ code without having to worry about parsing the code.

Akash Agrawal Chapter 4. Experimentation and Results 40

4.2.2 Results

We have implemented the method described in Section 3.1 inside Verilator source code. A

DDG and CFG are generated by Verilator while instrumenting the RTL description and

converting into an equivalent C++ description. The time taken by Verilator with static

analysis enabled and disabled are shown in Table 4.2. We have observed that, it takes the

very small time to generate DDG and CFG from RTL. It is a very small fraction of the total

time taken by Verilator to perform the conversion from RTL to C++. As no simulation is

needed for static analysis, the time depends on the circuit size and number of branches it

has and comes out to be a very cheap on time.

Table 4.2: Time taken to generate DDG and CFG

Benchmark Time With
Static
Analysis
(ms)

Time
Without
Static
Analysis
(ms)

Difference
(ms)

b10 2ms 2ms <1ms
b11 2ms 2ms <1ms
b12 6ms 5ms 1ms

b12word 10ms 8ms 2ms
b14 12ms 11ms 1ms
b15 12ms 10ms 2ms

or1200 20ms 16ms 4ms

Akash Agrawal Chapter 4. Experimentation and Results 41

4.3 Improved BEACON

4.3.1 Experimental Setup

Our experiments were run on a single core of an Intel i7-6700k @ 4.00GHz with 32 GB of

RAM running Ubuntu Linux 14.04. The ant colony is initialized with K = 100 ants to

allow for a broad search within the colony. The maximum number of iterations is set to

R = 15 and Nsteadystate is set to 5. Pheromones on the code blocks are initialized to 0 and

the maximum amount of pheromones that can be dropped for detected points is Qd = 100,

potentially detected points release a maximum of Qpd = 30 and undetected but activated

points release a maximum Qa = 10. The evaporation rates are ρd = 0.05, ρpd = 0.1 and

ρbase = 0.2.

4.3.2 Results

We compare our methodology against prior sequential ATPG algorithms in Table 4.3. Com-

parisons are made against the RTL based ATPG [12]. In order to accurately compare, we

utilize the stuck-at coverage obtained by each method on the benchmark circuits. This high

level of coverage is obtained as more than 10x faster than the time required for gate-level

ATPG. Finally, our method is able to provide high-quality coverage in the presence of hard

to justify paths such as b12 and b12word. For example, in circuit b12, BEACON obtained

77.7% in 111 seconds, and our work achieved 90.11% in just 22.8 seconds.

Akash Agrawal Chapter 4. Experimentation and Results 42

Table 4.3: Sequential Stuck-at Fault Coverage Results

Benchmark
BEACON Ours

FC(%) T (s) Size FC(%) T (s) Size
b10 85.5 11.4 3547 91.4 0.51 8344
b11 77.5 11.9 1235 92.54 1.07 20819
b12 77.7 111.4 37006 90.11 22.8 174382

b12word N/A N/A N/A 86.73 42.76 220556
b14 81.9 204.6 4381 85.7 40.90 176245
b15 77.0 255.9 12917 90.3 70.82 81290

or1200 41.4 300.40 7946 81.76 492.68 112369

4.4 Improved Reachability Analysis

4.4.1 Experimental Setup

Our experiments were run on a single core of an Intel i7-6700k @ 4.00GHz with 32 GB of

RAM running Ubuntu Linux 14.04. To test the effectiveness of the unreachability analysis,

the source code of Verilator [23] was modified to implement the algorithms. An abstract

syntax tree is kept internally in Verilator to represent the Verilated C++ code that is finally

given as output. By modifying the Verilator source code, we are able to access this internal

representation of the C++ code without having to worry about parsing the code. Z3 SMT

solver from Microsoft [38] is used as the SMT solver needed for the unreachability analysis

algorithm by calling the Z3 C++ API from withing the Verilator source code.

4.4.2 Results

We have implemented the method introduced in [25] inside Verilator source code. Moreover,

we implemented the extensions discussed here as well. We have run the experiments on the

Akash Agrawal Chapter 4. Experimentation and Results 43

benchmark circuits with both, the extensions enabled and disabled. We have also run the

experiment over FabScalar, which is a configurable out-or-order superscalar RISC processor.

Ckt A is an industry-size circuit containing more thn 25,000 branches. The cost of construct-

ing the CFG and DDG are included in the results as well. We have observed an average

speedup of 1.5× on the ITC99 circuits with our extension. On a larger circuit like the open

RISC processor, we have observed a speedup of 4.85× using our method. On the bigger

circuits like FabScalar and Ckt A, the speedup is even higher. The detailed timing data is

given in Table 4.4. For example, consider ITC99 benchmark circuit b14. From Table 4.4,

we can see that there are a total of 211 branches in the design out of which, 17 branches are

potentially unreachable. Method [49] is able to detect only 2 of them. Method [25] is able to

detect 12 of those 17 potentially unreachable branches in 445ms while our method detects

the same number of unreachable branches in 372ms which is 1.2× faster than method [25].

In all of the cases, the number of unreachable branches detected by [25] and our method

remained the same, as shown in Table 4.4.

Akash Agrawal Chapter 4. Experimentation and Results 44

Table 4.4: Reachability Analysis Results

Benchmark Total
No. of
Branches

Potentially
unreach-
able
branches

Proved
by [49]

Proved
by [25]

Proved
by our
method

Time
([25])

Time
(ours)

Speedup

b06 24 1 1 1 1 50ms 33ms 1.51
b07 20 2 1 1 1 43ms 33ms 1.30
b10 32 1 1 1 1 112ms 77ms 1.45
b11 33 1 1 1 1 84ms 53ms 1.58
b12 105 2 1 2 2 309ms 216ms 1.43
b14 211 17 2 12 12 445ms 372ms 1.20
b15 141 17 2 12 12 445ms 372ms 1.20

OR-1200-0 19 2 0 1 1 38ms 31ms 1.23
OR-1200-1 25 1 0 1 1 59ms 49ms 1.20
OR-1200-2 19 0 NA 0 0 43ms 43ms 1.00
OR-1200-3 47 1 NA 1 1 679ms 627ms 1.08
OR-1200 659 28 NA 7 7 483.6s 99.7s 4.85
FabScalar 1007 NA NA 21 21 193.6s 6.7s 28.89

Ckt A 25301 NA NA 436 436 6hr 637.4s >34

Chapter 5

Conclusion

In this chapter we are giving a concluding summary of the work presented in this thesis. We

are also providing a discussion on future directions of this work.

5.1 Concluding Summary

We have presented a method to perform static analysis on RTL description of a given circuit

and uses of the information extracted by the static analysis to further improve the existing

method for test generation and reachability analysis for the branches.

5.2 Future Work

Through this work, we have shown that data dependency graph and control flow graph can

enhance the test generation and branch reachability analysis. However, there is still a lot

of scope for other static analysis techniques available for software which can be applied to

RTL description to achieve even better results. Abstract interpretation, application of Hoare

logic, model checking using static analysis are some of the examples which can be studied

45

Akash Agrawal Chapter 5. Conclusion 46

to see their effect on RTL test generation or other analysis. Using Verilator, we have access

to an AST of the RTL design. Taking this advantage, additional analysis techniques can be

used which can provide more accurately timed input values to further aid the ATPG engines

to generate the test vector with improved efficiency.

Bibliography

[1] The Chip that Jack Built. http://www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml

[2] G. Moore, “Progress in digital integrated electronics”, in Electron Devices Meeting, 1975

International, vol. 21, pp. 11-13, 1975.

[3] P. Patra, “On the cusp of validation wall”, in Design & test of computers, IEEE, vol.

24, pp. 193-196, 2007.

[4] H. Foster, “The 2010 Wilson Research Group Functional Verification Study”, ed, 2011.

[5] K. Gent and M. S. Hsiao, “Dual-Purpose Mixed-Level Test Generation Using Swarm

Intelligence,” in Test Symposium (ATS), 2014 IEEE 23rd Asian, 2014, pp. 230-235.

[6] M. Mirzaei, M. Tabandeh, B. Alizadeh, and Z. Navabi, A new approach for automatic

test pattern generation in register transfer level circuits, in IEEE Design and Test, vol.

30, pp. 49-59, Aug 2013.

[7] L. Kuan-Yu, C. Po-Juei, L. Ang-Feng, J. C. M. Li, M. S. Hsiao and W. Laung-Terng,

“GPU-based timing-aware test generation for small delay defects,” in Test Symposium

(ETS), 2014 19th IEEE European, 2014, pp. 1-2.

47

Akash Agrawal Bibliography 48

[8] M. S. Hsiao, E. M. Rudnick and J. H. Patel, “Sequential circuit test generation using

dynamic state traversal,” in Proceedings. European Design & Test Conference, pp. 22-28,

1997.

[9] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Dynamic state traversal for sequential

circuit test generation,” in ACM Transaction Design Automation Electronics Systems,

vol. 5, pp. 548-565, 2000.

[10] D. Krishnaswamy, M. S. Hsiao, V. Saxena, E. M. Rudnick, J. H. Patel, and P. Banerjee,

“Parallel genetic algorithms for simulation-based sequential circuit test generation,” in

VLSI Design, 1997. Proceedings., Tenth International Conference on, pp. 475-481, 1997.

[11] W. Weixin and M. S. Hsiao, “Efficient Design Validation Based on Cultural Algorithms,”

in Design, Automation and Test in Europe, pp. 402-407, 2008.

[12] M. Li, K. Gent and M. S. Hsiao, “Design validation of RTL circuits using evolutionary

swarm intelligence,” in Proceedings International Test Conference, 2012

[13] V. D’Silva, D. Kroening and G. Weissenbacher, “A Survey of Automated Techniques

for Formal Software Verification,” in IEEE Transactions on CAD of Integrated Circuits

and Systems, pp. 1165-1178, Vol. 27, July 2008.

[14] H. Kuang, P. Mader, H. Hu, A. Ghabi, L. Huang, J. Lu, and A. Egyed, “Can method

data dependencies support the assessment of trace-ability between requirements and

source code?”, in Journal of software: evolution of process, vol. 27, pp. 838-866, 2015.

Akash Agrawal Bibliography 49

[15] E. J. McCluskey ans C.-W. Tseng, “Stuck-fault tests vs. actual defects,” in Proceedings

of the 2000 IEEE International Test Conference, ITC’00, (Washington, DC, USA), pp.

336-, IEEE Computer Society, 2000.

[16] L. Lee, L.-C. Wang, P. Parvathala and T. Mak, “On silicon-based speed path identifi-

cation,” in VLSI Test Symposium, 2005. Proceedings, 23rd IEEE, May 2005.

[17] R. McLaughlin, S. Venkataraman and C. Lim, “Automated debug of speed path failures

using functional tests,” in VLSI Test Symposium, 2009. VTS’09. 27th IEEE, May 2009.

[18] L. Zhang, I. Ghosh and M. S. Hsiao, “Efficient sequential ATPG for functional RTL

circuits,” in Proceedings International Test Conference, vol. 30, pp. 290-298, Sept 2003.

[19] Y. Zhou, T. Wang, T. Lv, H. Li and X. Li, “Path constraint solving based test generation

for hard-to-reach states,” in Proceedings Asian Test Symposium, pp. 239-244, Nov 2013.

[20] K. Gent and M. S. Hsiao, “Abstraction-based relation mining for functional test gener-

ation,” in VLSI Test Symposium (VTS), 2015 IEEE 33rd, pp. 1-6, April 2015.

[21] M. R. Krug, M. S. Lubaszewski and M. de S. Moraes, “Improving ATPG fate-level

fault coverage by using test vectors generated from behavioral HDL descriptions,” in

Proceedings VLSI Tech Symposium, pp. 314-319, Oct 2006.

[22] S. Ravi and N. Jha, “Fast test generation for circuits with RTL and gate-level views,”

in International Test Conference, pp. 1068-1077, 2001.

[23] Verilator, http://www.veripool.org/wiki/verilator.

[24] F. Corno, G. Cumani, M. S. Reorda and G. Squillero, “Effective techniques for high-level

ATPG,” in Proceedings 10th Asian Test Symposium, 2001, pp. 225-230, 2001.

Akash Agrawal Bibliography 50

[25] S. Bagri, K. Gent and M. S. Hsiao, “Signal domain based reachability analysis in RTL

circuits,” in 16th International Symposium on Quality Electronic Design, pp. 250-256,

March 2015.

[26] F. E. Allen. Control flow analysis, SIGPLAN Not., 5(7):1-19, July 1970.

[27] J. L. Henessey and D. A. Patterson, Computer Architecture: A Quantitative Approach.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd Edition, 2003.

[28] S. R. Arnold, Software Change Impact Analysis, IEEE Computer Society Press, Los

Alamitos, CA, USA, 1996.

[29] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Architecture: A

Dependence-based Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2002.

[30] Wikipedia page on Abstract Syntax Tree.

Available: https://en.wikipedia.org/wiki/Abstract syntax tree

[31] S. Devadas, A. Ghosh, and K. Keutzer, “An observability-based code coverage met-

ric for functional simulation,” in Proceedings International Conference Computer-Aided

Design, pp. 418-425, 1996.

[32] B. Beizer, Software testing techniques (2nd ed.). New York, NY, USA, Van Nostrand

Reinhold Co., 1990.

[33] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by a colony of

cooperating agents,” in IEEE Tran. Systems, Man, and Cybernetics, vol. 26, pp. 29-41,

Feb 1996.

Akash Agrawal Bibliography 51

[34] S. Prabhu, M. S. Hsiao, L. Lingappan and V. Gangaram, “Test generation for circuits

with embedded memories using SMT,” in Test Symposium (ETS), 2013 18th IEEE

European, 2012, pp. 1-1.

[35] S. Prabhu, M. S. Hsiao, L. Lingappan and V. Gangaram, “A SMT-based diagnostic test

generation method for combinational circuits,” in VLSI Test Symposium (VTS), 2012

IEEE 30th, 2012, pp. 215-220

[36] L. Moura and N. Bjorner, “Satisfiability Modulo Theories: An Appetizer,” in Formal

Methods: Foundations and Applications, V. Marcel, O. Clus and W. Jim, eds., ed:

Springer-Verilog, 2009, pp. 23-36.

[37] C. Barrett, M. Deters, L. Moura, A. Oliveras, and A. Stump, “6 Years of SMT-COMP,”

J. Autom. Reason., vol. 50, pp. 243-277, 2013.

[38] Z3 Home Page. Available: http://z3.codeplex.com/

[39] S. Prabhakar and M. S. Hsiao, “Using non-trivial logic implications for trace buffer-

based silicon debug,” in IEEE Asian Test Symposium, November 2009, pp. 131-136.

[40] X. Liu and M. S. Hsiao, “Constrained ATPG for broadside transition testing,” in IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems, November

2003, pp. 175-182.

[41] K. Chandrasekar and M. S. Hsiao, “Integration of learning techniques into incremental

satisfiability for efficient path-delay fault test generation,” in IEEE Design Automation

and Test in Europe Conference, March 2005, pp. 1002-1007.

Akash Agrawal Bibliography 52

[42] M. S. Hsiao, “Maximizing impossibilities for untestable fault identification,” in IEEE

Design Automation and Test in Europe Conference, March, 2002, pp. 949-953.

[43] L. Zhang, M. R. Prasad, and M. S. Hsiao, “Incremental deductive and inductive rea-

soning for SAT-based bounded model checking,” in IEEE International Conference on

Computer Aided Design, November 2004, pp. 502-509.

[44] R. Arora and M. S. Hsiao, “Enhancing SAT-based bounded model checking using se-

quential logic implications,” in IEEE VLSI Design Conference, January, 2004, pp. 784-

787.

[45] X. Cheng and M. S. Hsiao, “Simulation-directed invariant mining for software verifi-

cation,” in IEEE Design Automation and Test in Europe Conference, March 2008, pp.

682-687.

[46] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Fast static compaction algorithms for

sequential circuit test vectors,” in IEEE Transactions on Computers, vol. 48, no. 3, pp.

311-322, March, 1999.

[47] S. Davidson, “ITC99 benchmark circuits - preliminary results,” in Proceedings Interna-

tional Symposium, Circuits & Systems, p. 1125, 1999.

[48] “OpenRISC web page.” http://www.opencores.org.

[49] K. Gent and M. S. Hsiao, “Functional test generation at the RTL using swarm intelli-

gence and bounded model checking,” In 2013 22nd Asian Test Symposium, pp. 233-238,

Nov 2013.

