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Estimating peak power involves optimization of the circuit’s switching function. The switching of a
given gate is not only dependent on the output capacitance of the node, but also heavily dependent on
the gate delays in the circuit, since multiple switching events can result from uneven circuit delay paths
in the circuit. Genetic spot expansion and optimization are proposed in this paper to estimate tight peak
power bounds for large sequential circuits. The optimization spot shifts and expands dynamically based
on the maximum power potential (MPP) of the nodes under optimization. Four genetic spot
optimization heuristics are studied for sequential circuits. Experimental results showed an average of
70.7% tighter peak power bounds for large sequential benchmark circuits was achieved in short
execution times.

Keywords: Power estimation; Peak power; Non zero delay; Genetic optimization; Low-power design

INTRODUCTION

The continuing decrease in feature size, increase in chip

density, and increase in clock frequency in recent years

have given rise to concerns about excessive power

dissipation in VLSI chips. Since the failure rate for

components roughly doubles for every 108C increase in

operating temperature [1], circuits become less reliable as

large instantaneous power dissipation can cause over-

heating (local hot spots). Furthermore, the growing market

of portable computing products such as cellular phones

and portable computers demands low-power consumption

for long operational lifetime.

The power dissipated in CMOS circuits is a complex

function of the gate delays, clock frequency, process

parameters, circuit topology and structure, and the input

vectors applied. Once the processing and structural

parameters have been fixed, the measure of power

dissipation is dominated by the switching activity (toggle

counts) of the circuit. It has been shown in Refs. [2–4] that

power estimation can be extremely sensitive to different

gate delays, since multiple toggles at internal nodes can

result due to uneven circuit delay paths. Both Refs. [2,3]

computed the upper bound of maximum transition (or

switching) density of individual internal nodes of a

combinational circuit via propagation of uncertainty

waveforms, while Ref. [4] computed the sensitivity of

internal nodes due to a switch on the primary input. While

these measures are useful to compute the bounds for

individual signals, they cannot be used to compute a tight

bound of peak power dissipation on the entire circuit.

Unlike average power estimations [15–22] in which

signal switching probabilities are sufficient to compute the

average power, peak power is associated with a specific

starting circuit state and a specific sequence of vectors that

produce the power. Furthermore, as there are significantly

more flip-flops than primary inputs in larger circuits, most

activity is caused by switching between the initial and the

intermediate states. Thus, both the initial and intermediate

states traversed play significant roles in determining

maximum power.

Several approaches to measuring maximum power in

CMOS VLSI circuits have been addressed in the recent

years. The problem of worst-case power computation was

transformed to a weighted max-satisfiability problem on a

set of multi-output boolean functions, obtained from the

logic description of a combinational circuit [5]. Its

limitations include the difficulty of incorporating delay

information to this already very complex problem and the

inability to handle large circuits efficiently. Peak current

estimation for combinational circuits was addressed in

Refs. [6,7]. The authors’ approach was to find the time
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window during which a gate in the circuit could switch.

Partial input enumerations were performed to resolve

correlations and to make the time window smaller. A third

approach using symbolic transition counts to compute

maximum power cycles was introduced in Ref. [8], in

which the state transition diagram (STG) is used to find

the maximal average length cycle in the graph. The dual

graph necessary to compute the power dissipation in a

small circuit, s208, already exceeded 71 million edges [8].

An automatic-test-generation (ATG)-based estimation

technique for sequential circuits was proposed in

Ref. [9], in which the aim is to create toggles in the

circuit for gates with the greatest numbers of fan-outs.

However, only zero-delay power estimates were used,

since ATG techniques are not easily adaptable to handle

delay parameters. Ref. [10] extended the ATG approach to

handle gate delays by circuit expansion in which multiple

copies of internal gates are added at various propagation

times for each gate. For small combinational circuits, the

expanded circuit exceeds more than 500% increase in gate

count. The expansion is even more significant as circuits

become larger because the number of possible propa-

gation times of its internal nodes increases with larger

circuits. No results were reported for sequential circuits.

A continuous optimization approach was proposed in

Ref. [11], in which maximum power for combinational

circuits is computed by transforming the circuit into a

continuous function over a unit hypercube in the

Euclidean space. Finally, a genetic-algorithm (GA)

based approach was proposed in Refs. [12–14] in which

the GA is used to maximize switching activity in both

combinational and sequential circuits over various

sequence lengths.

The GA-based technique [12,14] gave very tight lower-

bounds on peak power. Comparisons with 100 million

random state-vector tuples (more than 23 CPU hours of

computation on the largest of the eight circuits) were

made, and the best peak power estimates from 100 million

tuples still lagged 4.4% behind the GA-based approach,

which took less than 1 min for the all of the eight circuits.

This suggests that if random-based methods were to

achieve similar tightness on peak power bounds as the

GA-based approach, several orders of magnitude higher in

execution times would be needed. Although GA-based

techniques significantly out-perform the random

approach, it is unclear whether the lower-bounds can

still be tighter for larger circuits.

Two major obstacles are faced when trying to achieve

tight peak power bounds for large circuits. The first is in

avoiding local maxima in the huge search space, and the

second is in methods to get out of local maxima once the

search is stuck at these points. Since peak power

estimation attempts to maximize total switching activity

in the circuit, there may exist many local maxima. Search

algorithms may be stuck on these local maxima because

the algorithms generally explore the search space in a

fixed fashion. For instance, fewer toggles on more gates

may dissipate more power than having more toggles on

fewer high-output-capacitance gates. Moreover, switching

activity of a given node in the circuit is not only dependent

on the output capacitance of the node, but also heavily

dependent on the gate delays in the circuit, since multiple

switching events can result due to uneven circuit delay

paths in the circuit. These added factors make peak power

even more difficult to estimate.

This paper proposes various genetic spot optimization

techniques in which we try to optimize activity on a spot

(group of nodes) at a time. The optimization spot can shift,

shrink, and expand based on the maximum power

potential (MPP) of the spot. Unlike maximum switching

density, which is based on signal probabilities in the

circuit, MPP takes both the number of possible transitions

and output capacitance into consideration.

Four genetic spot-optimization techniques are proposed

and studied: (1) node-based, (2) path-based, (3) cone-

based, and (4) distance-based. The first three techniques

aim to maximize switching on nodes, paths, or cones with

the highest MPP, respectively. The fourth technique

follows from the observation that the initial and

intermediate states play important roles and aims to

exploit weighted distances of these two states. All four

genetic spots can change and grow dynamically during the

optimization process. Experiments show that genetic spot-

optimization techniques are very effective for obtaining

tighter bounds for larger circuits.

The remainder of the paper is organized as follows. The

second section explains the delay model, peak power

model, and genetic algorithm used in this work; third

section describes the MPP and the various heuristics used

for estimating peak power; experimental results are

reported and discussed in the fourth section; finally, fifth

section concludes the paper.

PRELIMINARIES

Delay Model

Since glitches and hazards are not taken into account in a

zero-delay framework, the power dissipation measures

may be off greatly from the actual powers [13]. Peak

power measures can be very sensitive to the delay model

used when peak powers are high [13]. Thus, it is important

to use an accurate delay model during power estimation.

However, it should be noted that any delay model can be

handled by our framework.

Variable delay model is chosen for this work.

Traditionally, a simple variable delay model based on

the number of fan-outs has been used [10]. Though more

accurate than the unit-delay model (e.g. every gate is

assigned identical delay of one unit), fan-outs that feed

larger gates are not taken into account, resulting in

inaccuracies. A different variable delay model based on

fan-outs of a given node as well as fan-ins of its successor

nodes is used [13]. The gate delay data for various types

and sizes of gates are obtained from a VLSI library.
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The difference between the two types of variable delay

models for a typical gate is shown in Fig. 1. From this

figure, the output capacitance of gate G1 is estimated to be

2 units (the number of fan-outs) in the traditional variable

delay model, while the delay calculated using the new

variable delay model is proportional to the delay

associated with driving the successor gates G2 and G3,

or simply 2 þ 1 ¼ 3 units. Since traditional variable delay

of a given gate does not consider the size of its succeeding

gates, the delay calculations may be less accurate.

Peak Power Model

The unit of power used throughout the paper is energy per

clock cycle and will simply be referred to as power. In

estimating peak power in combinational circuits, the task

is simply to search for a pair of two vectors (V1, V2) that

generates the most gate transitions. In a typical sequential

circuit, on the other hand, the switching activity is largely

controlled by the state vectors and less influenced by input

vectors, because the number of flip-flops far outweighs the

number of primary inputs. As shown in Fig. 2, the power is

controlled by both initial state S1 and input vectors V1 and

V2. The state S1 and input vector V1 initialize all gate

outputs and determine the next state S2. Then vector V2

and state S2 switch some of the gates, which accounts for

the power dissipation. We will obtain a three-tuple (S1, V1,

V2) that maximizes this power under the new variable

delay model. In fully-scanned circuits, the state S1 can be

initialized to any arbitrary value, and therefore, this bound

is attainable in practice. However, in cases where the

initial state is not fully controllable, we can only speculate

that during the operation of the circuit, the machine may

reach state S1, and only then we can be assured that the

bound is attainable.

The power dissipated in the combinational portion of

the sequential circuit can be computed as

P ¼
V2

dd

2 £ cycle period
£

for all gates g

X
½togglesðgÞ £ CðgÞ�; ð1Þ

where the summation is performed over all gates g, and

toggles(g ) is the number of times gate g has switched from

0 to 1 or vice versa within a given clock cycle; C(g ) is the

output capacitance of gate g. Switching frequency (SF)

per node is reported instead of total power in this paper,

and it is computed simply as the second portion of Eq. (1)

divided by the total number of capacitive nodes in the

circuit (computed as the total number of gate inputs in the

circuit),

SF ¼
for all gates g

P
½togglesðgÞ £ CðgÞ�

total number of capcacitive nodes
: ð2Þ

In this work, we made the assumption that the output

capacitance for each gate is equal to the number of fan-

outs; however, assigned gate output capacitances can be

handled by our optimization technique as well.

Genetic Algorithms

The GA framework used in this work is similar to the

simple GA described by Goldberg [23]. The GA contains a

population of strings, also called chromosomes or

individuals, in which each individual represents a state-

vector tuple. Peak power estimation requires a search for

the three-tuple (S1, V1, V2) that maximizes power

dissipation. This three-tuple is encoded as a single binary

string, as shown in Fig. 3. The population size depends on

the string length, which depends on the number of primary

inputs and flip-flops. Larger populations are desired to

accommodate longer individuals in order to maintain

diversity [23]. However, larger populations also imply

more simulation would be needed. In order to keep the

population small enough for short execution times, but

large enough to maintain diversity, the population size is

set equal to 128 £
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
string length

p
; as suggested by the

empirical results obtained in Refs. [12–14,27]. Finding

FIGURE 2 Power model for sequential circuits. FIGURE 3 Encoding of an individual.

FIGURE 1 Variable delay models.
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the optimal GA population size for each specific circuit is

not the goal of this research, and as the results will

illustrate that very tight bounds for peak power are

obtained with this population size.

Each individual has an associated fitness, which

measures the quality of the vector sequence in terms of

switching activity, indicated by the total number of

capacitive nodes toggled by the individual. The delay

model and the amount of capacitive-node switching are

taken into account during the evolutionary processes of

the GA via the fitness function. The population is first

initialized with random strings. A variable-delay logic

simulator is then used to compute the fitness of each

individual. The evolutionary processes of selection,

crossover, and mutation are used to generate an entirely

new population from the existing population. Evolution

from one generation to the next is continued until a

maximum number of generations is reached. In this work,

a maximum of 32 generations is allowed. To generate a

new population from the existing one, two individuals are

selected, with selection biased toward more highly fit

individuals. The two individuals are crossed to create two

entirely new individuals, and each character in a new

string is mutated with some small mutation probability.

A mutation probability of 0.01 is used in this work, and

since a binary coding is used, mutation is done by simply

flipping the bit. The two new individuals are then placed in

the new population, and this process continues until the

new generation is entirely filled. At this point, the previous

generation can be discarded. In our work, we use

tournament selection without replacement and uniform

crossover. In tournament selection without replacement,

two individuals are randomly chosen and removed from

the population, and the best is selected; the two individuals

are not replaced into the original population until all other

individuals have also been removed. Thus, it takes two

passes through the parent population to completely fill the

new population. In uniform crossover, bits from the two

parents are swapped with probability of 0.5 at each string

position in generating the two offspring. Because selection

is biased toward more highly fit individuals, the average

fitness is expected to increase from one generation to the

next. However, the best individual may appear in any

generation, so we save the best individual found.

The fitness function is a simple counting function that

measures the amount of capacitive-node switching in a

given time period. Since the majority of time spent by the

GA is in fitness evaluation, parallelism among the

individuals can be exploited. Parallel-pattern simulation

[24] is used where 32 candidate sequences from the

population are simulated simultaneously by bit-packing

the sequences into 32-bit words.

GENETIC SPOT OPTIMIZATION

The main obstacles that peak power estimation have to

overcome are (1) avoiding local maxima in the huge

search space and (2) getting out of local maxima once the

search is stuck at those points. Since peak power

estimation attempts to maximize total switching activity

in the circuit, many local maxima exist inside the search

space. As circuit sizes become larger, finding a tight bound

on peak power becomes more difficult. Thus, instead of

maximizing the total power on the entire circuit all at

once, genetic spot optimizations are proposed. A spot is a

group of nodes on which the optimization is to be

performed. Genetic techniques allow the spot to shift,

shrink, and grow dynamically during the optimization

process.

In addition, peak power estimation must consider both

the number of toggles and the number of nodes with large

output capacitances simultaneously during the maximiza-

tion process. Maximization on either aspect alone is

insufficient to ensure a tight bound on peak power

measures; this is even more so with large circuits.

Optimizations which merely try to generate one transition

on as many gates with large output capacitances as

possible may miss the opportunity to produce larger power

consumption by generating more transitions on fewer

gates. Conversely, maximizing merely the number of

transitions may overlook the cases where greater power

dissipations may result from fewer transitions on more

nodes with larger output capacitances. Optimization of

either aspect alone is already a very difficult task, making

peak power estimation an even harder task, since both

aspects need to be considered at the same time. Finally, in

sequential circuits, getting to a right intermediate state is

crucial, since the power consumption in the second time

frame depends heavily on it.

Four genetic spot-optimization heuristics are used in

large circuits. All four heuristics try to maximize the

circuit’s switching activity by dynamically expanding

localized spots. These four heuristics are node-based,

path-based, cone-based, and distance-based, respectively.

In Ref. [9], the ATG-based approach tries to generate a

vector pair that produces a toggle on the gate(s) with most

number of fan-outs in combinational circuits. The node-

based heuristic is similar to that of Ref. [9] except that we

take delay information into account. The second and third

heuristics localize maximal switching on paths and cones.

The final heuristic aims to exploit state distance. All four

heuristics will be described in detail. Before the

explanations for each technique, the MPP with which

genetic expansion is based on will be discussed first.

Maximum Power Potential

All four heuristics require the knowledge of which nodes

have the maximum potential for switching. Instead of

merely relying on output capacitance or signal probability,

a node’s MPP takes into consideration both the output

capacitance and the number of possible transitions. The

delays in various paths that lead to a node contribute to

different possible times on which the node may toggle. For

instance, Fig. 4 shows the lists of possible transition times
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for each gate in the circuit. Variable delay model is used

and gate delays are indicated inside each gate.

Enumeration of possible transition times for each gate

can be done in a levelized fashion in O(n ) time, where n is

the number of gates in the circuit. All inputs to the

combinational portion of the circuit (i.e. primary inputs

and flip-flop outputs) have only one possible transition

time, namely 0. The set of transition times for any internal

node can simply be obtained from a two-step process.

First, we form a set union of the sets of transition times

from all the immediate input nodes. Next, we offset each

element in the set union by the gate delay of the current

node. For example, in order to compute the set of possible

transition times for node E, we first union the transition

time sets of its inputs A and C: < {{1},{2,4}} ¼ {1,2,4}.

Then, we add the gate delay of node E, 1, to each element

in the union, resulting in the set {2,3,5}. It should be noted

that the set of possible transition times for each node

varies with the underlying delay model, but all can be

computed in the same manner.

Once the transition times have been determined for all

gates in the circuit, the MPP for a given node is computed

as the product of the cardinality of its set of transition and

its output capacitance:

MPPðnÞ ¼ jSnj £ Cn: ð3Þ

Note that under the zero-delay assumption, jSnj ¼ 1

since a gate can transition at most once in a time frame, so

MPP of a gate is simply the output capacitance of that

gate.

Although transitions may not be possible to occur at all

the possible times in the set Sn for a given node n, the MPP

values computed in Eq. (3) can be done very quickly, and

they serve as good guidances to selecting groups of nodes

during spot optimization. A good guidance is one which

selects the initial spot as well as expands the spot in a way

that will least likely trap the search to a local maximum

during the search process.

Node-based Heuristic

This is the most simple heuristic in which the optimization

spot begins at the node with the greatest MPP. This

approach is based on the assumption that peak power

consumed in the circuit will likely include toggles on

nodes with greatest MPP. This heuristic is similar to the

idea used in Ref. [9], except that only zero-delay model

was considered in Ref. [9].

Even though delay is considered in our case, by

considering only one or a few nodes with greatest MPP

there may still remain shortcomings during the optimi-

zation process, particularly if many switches on a high-

capacitive node may be less favorable than having more

low-capacitive nodes switch multiple times in the circuit.

To remedy this problem, the spot on which the

optimization focuses on expands steadily to include

more nodes that can potentially increase the peak power.

Genetic spot expansion is done by bringing additional

nodes of greatest MPP that are not currently in the

optimization spot. Note that additional nodes may not be

neighboring nodes. In doing so, the GA no longer works

on a static spot. Instead, the spot changes whenever

needed, as in the dynamic fitness objectives developed in

Ref. [25]. In the original dynamic fitness objective [25],

dynamic objectives are formed initially at the justification

and/or propagation frontier for automatic test pattern

generation (ATPG). The GA fitness function tries to

maximize the number of justification/propagation frontier

values justified. The fitness function aims to dynamically

advance the justification/propagation of fault-effects

beyond the current frontier by placing emphasis on the

nodes that are most critical to justify at this time.

With the fitness objectives gradually changing, the GA

is adapted to monotonically increase the peak power

obtained from a spot to an expanded spot. However, even

when the power within the spot increases, the overall

power dissipation may not increase since there are nodes

outside the optimization area that the GA is not working

on. The algorithm for the node-based heuristic is shown in

Fig. 5.

Path-based Heuristic

Node-based heuristic focuses on maximizing the switch-

ing activity on a set of nodes present in the optimization

spot. It is observed, however, that switching activity on a

given node heavily relies on the switching activity of its

predecessor nodes. If a gate n has two or more immediate

predecessor gates, the predecessor pi with higher MPP has

a greater influence on n since pi has potential for

producing more transitions that can propagate to its

FIGURE 5 Algorithm for node-based heuristic.

FIGURE 4 Computation of possible transition times.
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successor gates. Thus, by induction, one would prefer to

form a path from node n to a primary input or flip-flop via

a set of nodes with greater MPP. We call this path a

maximal MPP path. A maximal MPP path from n can be

constructed simply by depth-first search of a chain of

nodes with greatest MPP, starting from node n. Figure 6

shows construction of a segment on the maximal MPP

path. The number inside each gate indicates the MPP

value for that gate. If we start constructing the MPP path

from gate A, the first node to be added is gate C since it has

a higher MPP than gate B. The construction continues in a

depth-first manner from gate C by adding D to the path,

and so on.

The initial genetic spot consists of the maximal MPP

path containing the node with the greatest MPP. The spot

expands by adding other MPP nodes on the path(s) into the

spot. The construction of other MPP paths are done in a

similar fashion except that we made a restriction that no

two MPP paths should share any common segments. This

restriction can be relaxed, however, to allow paths to share

segments, with the disadvantage of slower spot expansion

since paths share segments. In our implementation, we

disallow segment sharing. Figure 7 shows the path-based

heuristic.

Cone-based Heuristic

The maximal path construction in the path-based heuristic

greedily forms a set of paths based on their MPP values.

However, peak switching activity may occur when the

nodes on one selected MPP path are not experiencing peak

activity. In other words, a tighter bound on peak power

may require peak activity along other paths from a given

node.

To remedy this problem, the cone-based heuristic is

proposed in which all paths which lead up to an MPP node

n are considered, and the optimization is focused on

producing maximum power inside the MPP cone. It

should be noted, however, that when large cones

comprised of many nodes are brought in for spot

optimization, the optimization becomes more susceptible

to the problems which small-spot optimizations did not

have to face before; that is, the search can be stuck at a

local maximum inside the cone if care were not taken.

Generally, the initial MPP cone includes less than 15%

of the entire circuit for most circuits. And each addition of

another MPP cone during expansion adds less than 15%

additional nodes since cones usually share a portion of

common nodes. Figure 8 shows the cone-based heuristic.

Distance-based Heuristic

In order for a given node to have maximal number of

transition times, many flip-flop values in the intermediate

state should have transitions. Indeed, results from the first

three heuristics suggest that greater Hamming distances

between the initial and intermediate states are favored

when estimating peak power, where Hamming distance is

the number of different flip-flop values between two

states. For instance, the states 101101 and 011001 have a

Hamming distance of 3 (with the flip-flop values differ in

the first, second, and the fourth bit positions). This is an

intuitive finding since having a greater Hamming distance

between two consecutive states suggests that more activity

can occur from the flip-flops in the second time frame,

resulting in higher dissipation in the circuit. By the same

token, the reverse is true as well: peak power unlikely

occurs when the initial and intermediate states are the

same (i.e. Hamming distance is 0).

Accounting for only the Hamming distance may be

misleading, however, since toggles on different flip-flops

in the circuit contribute differently to power consumption.

A toggle on a flip-flop may induce a controlling value to

some paths that block hyperactive activity from further

propagation. Moreover, a state transition from 000000 to

111111 has a maximum Hamming distance, but may not

generate a power that is even close to the peak. So instead

of merely counting the hamming distance, different

weights are placed on each flip-flop based on the

favorability of a transition on the flip-flop.

The optimization in this heuristic tries to maximize the

following function that computes a weighted-distanceFIGURE 7 Algorithm for path-based heuristic.

FIGURE 8 Algorithm for cone-based heuristic.

FIGURE 6 Construction of Max MPP path.
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function:

for all flip–flops

X
bi £ wi; ð4Þ

where bi is a Boolean variable and is equal to 1 when the

flip-flop values on bit position i differ between the initial

and intermediate states, and wi is the weight for flip-flop i.

The weight of a flip-flop i indicates the potential influence

on total power dissipation from a toggle on flip-flop i; it is

computed as the sum of MPP values on the reverse

maximal MPP path starting from flip-flop i. A reverse

maximal MPP path is similar to a maximal MPP path

except that construction of a reverse MPP path is done in a

forward manner, i.e. starting from a flip-flop and moves

forward to a primary output or flip-flop.

The advantage of this weighted distance-based heuristic

is that a zero-delay simulator is sufficient to evaluate the

maximization function, since we only need to know if a

transition can occur at each flip-flop. When the optimized

state-vector tuple is obtained, a variable-delay simulator is

then used to calculate the power consumed by the tuple.

Figure 9 shows the distance-based heuristic.

EXPERIMENTAL RESULTS

Peak powers under the new variable delay model were

estimated for large ISCAS89 sequential benchmark

circuits [26] and two synthesized circuits [27].

All computations were performed on a Sun Ultra-I with

64 MB RAM.

All power estimates are compared against the estimates

obtained from 262,000 randomly generated state-vector

tuples as well as those obtained using algorithms

presented in Refs. [12,14]. All powers are expressed in

peak switching frequency per node (PSF), which is the

average frequency of peak switching activity of the nodes

(ratio of the weighted 0-to-1 and 1-to-0 transitions on all

nodes to the total number of capacitive nodes) in the

circuit. No zero-width spikes are considered in our

approach. In evaluating peak power, we made the

assumption that the output capacitance for each gate is

equal to the number of fan-outs; however, assigned gate

output capacitances can be handled by our optimization

technique as well.

As indicated in Refs. [12,14], GA-based technique

obtains very tight lower-bounds on peak power for many

of the circuits, especially for the smaller circuits. Results

for 100 million random state-vector tuples were compared

in Ref. [14], and the GA technique outperformed the near-

exhaustive search for all eight circuits. Table I shows the

peak power estimates for the smaller ISCAS89 sequential

circuits. Because simple GA alone can obtain extremely

tight lower-bounds for these circuits, improvement

achieved by the genetic spot optimization techniques is

small. In addition, the difference among the four spot

optimization heuristics is very small; thus, only one

column is shown. For each circuit, the number of flip-flops

is given in parenthesis next to the circuit name. Then, the

maximum SF obtainable, maximum power potential

switching frequency (MPP SF), is reported; MPP SF

reports the maximum SF when every gate achieves the

MPP measure. Listed next in the table are the peak power

obtained from best of random simulations is given, finally

the results of Ref. [14] and our genetic spot optimization.

The MPP SF measure is a very loose upper bound, where it

FIGURE 9 Algorithm for distance-based heuristic.

TABLE I Results for small ISCAS89 sequential circuits

Genetic spot opt.

Circuit (FF’s) MPP SF Random PSF PSF Ref. [14] PSF Time (s)

s298 (14) 2.447 1.045 1.095 1.096 1.24
s344 (15) 4.417 1.054 1.057 1.081 6.02
s382 (21) 2.652 1.045 1.129 1.129 3.65
s400 (21) 2.693 1.126 1.158 1.158 3.17
s444 (21) 3.325 1.187 1.198 1.198 3.70
s526 (21) 2.506 0.786 0.905 0.905 2.40
s641 (19) 13.431 1.110 1.206 1.641 25.70
s713 (19) 32.532 1.135 1.308 1.833 16.36
s820 (5) 2.142 1.001 1.013 1.013 7.59
s832 (5) 2.144 1.000 1.016 1.016 7.76
s1196 (18) 8.906 0.982 1.104 1.119 17.67
s1238 (18) 9.964 0.969 1.042 1.074 17.28
s1488 (6) 4.004 1.067 1.074 1.074 13.18
s1494 (6) 4.020 1.072 1.078 1.078 13.19

Impr 5.70% 12.3%

All powers expressed in PSF.
Impr: Avg. improvements over the best random estimates.
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assumes that all gates in the circuit can achieve the

maximum switching simultaneously.

Note that there is little difference between our results

and [14] for most circuits, indicating that simple genetic

technique alone is adequate to compute tight lower bound

for peak power in small circuits. Moreover, all of our peak

power measures are below the MPP SF measures. Results

for s641 and s713 (35 PI’s and 19 FF’s each) are more

significant due to their larger search spaces. Genetic spot

optimization obtained up to 61.5% tighter peak power

bounds over random and 40% over Ref. [14] in these two

circuits. On average, Ref. [14] achieved a 5.70%

improvement over best of random, while 12.3% improve-

ment was achieved by the proposed genetic spot opti-

mization. The execution times are consistently small for

all circuits.

Results are much more significant for larger circuits.

Every large circuit studied has at least 55 flip-flops, with

circuits s35932 and s38417 being the largest, each with

more than 1600 flip-flops. Table II first shows the circuit

characteristics, namely, for each circuit, the number of

flip-flops, the total number of capacitive nodes, and the

MPP SF. The peak power estimates for large sequential

circuits are shown in Table III using various approaches.

For each circuit, the MPP SF is first given in parenthesis

next to the circuit name. Then, the results of the random

approach (best of 262,000 random simulations) are

reported. Next, the peak powers obtained from Ref. [14]

are shown along with the improvements Ref. [14] has over

the random approach. Finally, the peak powers and their

corresponding improvements over the random approach

using the four proposed heuristics are reported in the table.

All powers are expressed in terms of PSF. The highest

power estimates are highlighted in bold. The number of

GA generations used for Ref. [14] was extended to be four

times the original number in order to match the number of

random simulations used in the random approach. Unlike

the algorithm described in Ref. [14], no seeding of the best

of random is used in our genetic spot optimization. Results

from the ATG-based approach used in Ref. [10] (based on

expanded combinational circuit) are not included, since

bounds obtained from Ref. [14] are better and large

sequential circuits were not reported in Ref. [10].

For all circuits, genetic spot-optimization heuristics

surpassed both random and the original GA-based [14]

approaches. Among the four dynamic heuristics, the cone-

based technique gave the tightest bounds most consist-

ently. For instance, in circuits s1423 and am2910, the

cone-based technique obtained 309 and 53% improve-

ments, respectively, over the random approach. However,

occasionally path-based and distance-based heuristics

outperformed the cone-based heuristic. On the average,

the node-based heuristic performed slightly better than the

algorithm proposed in Ref. [14]. Path-based heuristic

achieved an average of 61.9% improvement over the

random approach, an average 70.7% improvement for

cone-based heuristic, and 34.4% for the distance-based

heuristic.

It is not surprising that the cone-based heuristic

performed the best among the various heuristics in our

study. Since the node-based heuristic focuses only on a

few MPP nodes, path(s) that may have greater impact on

the overall switching activity may be ignored. The path-

based heuristic attempts to relieve this problem, but it still

cannot guarantee that the MPP path(s) chosen will be the

most influential path(s) on the overall power consumption.

The cone-based heuristic solves this problem by

considering all paths leading to a MPP node. The sizes

of cones considered are, on average, less than 15% of the

entire circuit size. If cone sizes were significantly larger,

the heuristic would be similar to that of the original

GA technique, where optimization was performed over

TABLE II Large sequential circuits statistics

Circuit FF’s Cap nodes MPP SF

s1423 74 1243 41.615
s5378 179 4440 6.715
s9234 228 8221 15.024
s13207 669 12031 12.088
s15850 597 14343 51.307
s35932 1728 30317 7.435
s38417 1636 33988 17.967
am2910 87 1998 138.483
mult16 55 1323 27.353

TABLE III Peak power estimates for large sequential circuits

Ref. [14] Node-based Path-based Cone-based Distance-based
Circuit (MPP SF) Random PSF PSF Impr PSF Impr PSF Impr PSF Impr PSF Impr

s1423 (41.615) 1.081 1.432 32.5 1.404 29.9 4.064 275.9 4.427 309.5 1.406 30.1
s5378 (6.715) 0.856 1.213 41.7 1.249 45.9 1.263 47.5 1.271 48.5 1.261 47.3
s9234 (15.024) 0.693 1.286 85.6 1.229 77.3 1.268 83.0 1.316 89.9 1.264 82.4
s13207 (12.088) 0.919 1.261 37.2 1.256 36.7 1.262 37.3 1.208 31.4 1.265 37.6
s15850 (51.307) 0.592 0.693 17.1 0.722 22.0 0.765 29.2 0.786 32.8 0.734 24.0
s35932 (7.435) 1.396 1.396 0.0 1.410 1.0 1.417 1.5 1.408 0.9 1.415 1.4
s38417 (17.967) 0.636 0.637 0.2 0.737 15.9 0.690 8.5 0.756 18.9 0.738 16.0
am2910 (138.483) 4.798 5.688 18.5 5.586 16.4 5.720 19.2 7.354 53.3 5.691 18.6
mult16 (27.353) 1.861 2.410 29.5 2.601 39.8 2.892 55.4 2.815 51.3 2.828 52.0

Impr 29.2 31.6 61.9 70.7 34.4

All peak powers expressed in peak switching frequency per node (PSF).
Impr: % Improvement over the best random estimate.
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the entire circuit all at once. Finally, the distance-based

heuristic performed better than the node-based heuristic;

however, due to focusing only on toggling of the flip-flops,

the search may be blind to propagating hyperactivity

across certain paths that can contribute peak power.

Even though the genetic spot-optimization heuristics

performed better than the algorithm presented in Ref. [14]

for most circuits, there are a few cases where Ref. [14] was

able to achieve tighter peak power bounds than one or two

genetic spot-optimization heuristics. For instance, in the

circuit s1423, the PSF obtained by Ref. [14] was higher

than both node-based and distance-based heuristics, etc. In

cases such as these, node-based and distance-based

heuristics narrowed the search too quickly, resulting in a

local maximum, and spot expansion did little to help the

search get out of the local maximum.

The execution times for various techniques are shown in

Table IV for each circuit. The execution times required for

the random simulations are very close to the original

GA-based technique [14] since similar numbers of

simulations were evaluated. However, Ref. [14] some-

times reaches a local maximum very quickly, requiring

only one-third to one-half of the time. The execution times

for the distance-based heuristic are consistently lower

because zero-delay simulation is sufficient during the

optimization process; significantly fewer event evalua-

tions are needed since a gate can switch at most once in a

time frame under this delay model. Execution times for the

other three heuristics are, in contrast, much higher. The

extra times needed are due to much more event

evaluations, and execution times are directly proportional

to the total number of events. As a result, the genetic cone-

optimization heuristic generally required higher execution

time, since tighter bounds were obtained.

CONCLUSIONS

Getting tight bounds on peak power requires efficient

search algorithms in enormous search spaces. In this

paper, four genetic spot-optimization heuristics are

proposed to avoid local maximums during the search

process by shifting and expanding the optimization spots

dynamically. The proposed heuristics have been shown to

be very effective in large sequential circuits. When

compared to the results of 262,000 random simulations,

the genetic spot-optimization heuristics achieved up to an

average of 70.7% improvement in large sequential

benchmark circuits. Significant improvements were also

observed when compared to the results using the

algorithm in Ref. [14].
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