EXPERIMENTAL AND ANALYTICAL STUDY OF VIBRATIONS IN LONG SPAN DECK FLOOR SYSTEMS

by

Telmo Andres Sanchez

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

> MASTER OF SCIENCE IN CIVIL ENGINEERING

> > Approved By:

Dr. Thomas M. Murray, Chairman

Dr. Finley A. Charney

Dr. W. Samuel Easterling

April 29, 2008 Blacksburg, Virginia

Keywords: Floor Vibrations, Long Span Deck Floor Systems, Natural Frequency, Accelerations

EXPERIMENTAL AND ANALYTICAL STUDY OF VIBRATIONS IN LONG SPAN DECK FLOOR SYSTEMS

by

Telmo Andres Sanchez Dr. Thomas M. Murray, Chairman Department of Civil and Environmental Engineering

(ABSTRACT)

Experimental and analytical research was conducted to address the vibration properties of Long Span Deck Floor Systems (LSDFS). The research comprised three stages. In the first part, experimental in-situ tests were conducted on thirteen bays of buildings under construction. The natural frequencies and acceleration responses were captured to observe the vibration behavior of the tested floors.

In the second part, a laboratory footbridge was constructed to determine the fixity level attained at the supports when a LSDFS is supported by CMU walls. For this purpose, the footbridge was tested with three support conditions, and a number of experiments were carried out to determine the dynamic properties of the structure. Static tests using both point and distributed loadings were conducted to measure the deflections at the footbridge midspan. The static test results were compared to the theoretical deflections for a pinned-end beam and a fixed-end beam. Dynamic tests using experimental modal analysis techniques were conducted to determine the natural frequencies and mode shapes of the structure. The measured fundamental natural frequency of the footbridge was compared to the frequencies calculated for a simply supported beam and a beam with fixed ends, to determine the degree of fixity attained in the connection between the LSDFS and the supporting walls.

In the last part of the research, three analytical procedures to predict modal characteristics of long span deck floor systems are studied. Floor frequencies are calculated using finite element analyses. Two design guides for floor vibration analysis were used to calculate natural frequencies and response accelerations. The predicted results obtained from the analytical methods are compared to the experimental results to determine their accuracy. Recommendations for the use of the analytical methods are provided.

ACKNOWLEDGEMENTS

I would like to extend my gratitude to my advisor, Dr. Thomas Murray, for his patience and guidance during these past two years. When I walked the through his office door the first time, I knew that I was going to meet a wonderful researcher. Now that I am leaving, I can say that that wonderful researcher is also a wonderful human being. His friendship and mentoring will be missed. I must also thank Dr. Samuel Easterling for accepting my invitation to be part of my committee and for supporting my application to the Masters program at Virginia Tech. In addition, I am grateful to Dr. Finley Charney for serving on my committee and for his encouragement to push my intellectual abilities to the limits. I will remember him as the most challenging professor that I have ever had during my student life.

The Fulbright Commission in Ecuador deserves my gratitude as well for giving me an opportunity to attain my professional goals. Without their sponsorship, I could not have pursued my graduate studies in Structural Engineering.

I would also like to thank Metal Dek®, the sponsor of the project, for their financial support.

I would like to recognize the efforts and help of the Structures and Materials Lab technicians, Brett Farmer and Dennis Huffman, during the experimental part of this research. I also want to express my special thanks to my friend and most active member of VTTFV, Brad Davis. His friendship and willingness to guide me during the conduction of my research is greatly appreciated. I would like to thank my friends in Blacksburg: Daniel Axon, Adam Bowland, Sudhir Dahal, Ben Dymond, Sneha Ghate, Stephanie Koch, Bryan Loflin, Justin Marshall, "The Mike," Jordan Pitt, Nick Redmond, Pratik Shah, Greg Snow, Rakesh Pathak, and Winston Yaw. You guys will be deeply remembered for all the great times we spent together.

My family deserves a special recognition. Their love and support have been my continual source of motivation to pursue my dreams. No matter how far I am from home, their presence is felt every day.

Finally, I thank the Lord for being my companion and guide during this phase of my life.

ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	V
LIST OF FIGURES	viii
LIST OF TABLES	xi
CHAPTER I INTRODUCTION AND LITERATURE REVIEW	1
1.1 INTRODUCTION	1
1.2 SCOPE OF RESEARCH	1
1.3 OVERVIEW OF FLOOR VIBRATION SERVICEABILITY	2
1.4 REVIEW OF CONCEPTS IN FLOOR VIBRATIONS	3
1.4.1 Vibrations of Mechanical Systems	4
1.4.2 Floor Natural Frequency	7
1.5 LITERATURE REVIEW	8
1.6 NEED FOR RESEARCH	9
CHAPTER II IN-SITU TESTS OF LONG SPAN DECK FLOOR SYS	ГЕМЅ10
2.1 INTRODUCTION	10
2.2 TESTING PROCEDURES	10
2.3 DESCRIPTION AND ANALYSIS OF TESTED FLOORS	12
2.3.1 Hampton Inn	12
2.3.2 Caribe Cove	
2.3.3 Concord and Cumberland	21
2.3.4 Royal Reef Resort	26
2.3.5 Seybold Flats	32
2.3.6 Regency	
2.4 SUMMARY OF RESULTS	44
CHAPTER III DYNAMIC BEHAVIOR OF A LABORATORY SPECIM	/IEN45
3.1 DESIGN AND CONSTRUCTION OF THE FOOTBRIDGE	45
3.1.1 Experiment Stages	45
3.1.2 Footbridge Description	46

TABLE OF CONTENTS

3.1.3 Footbridge Construction	49
3.2 EXPERIMENTAL PROCEDURES AND TEST RESULTS	52
3.2.1 Static Tests	52
3.2.2 Dynamic Tests	56
3.2.2.1 Impulse Hammer	56
3.2.2.2 Electrodynamic Shaker	62
3.2.2.3 Dynamic Tests of the Footbridge Components	65
3.2.3 Effects of Concrete Cracking in the Footbridge Dynamic Behav	vior
	67
CHAPTER IV ANALYTICAL PREDICTIONS AND COMPARISONS	68
4.1 INTRODUCTION	68
4.2 FINITE ELEMENT MODELS AND COMPARISONS	68
4.2.1 Modeling of the Floors	68
4.2.2 Finite Element Models of the Building Floors	71
4.2.3 Finite Element Models of the Laboratory Footbridge	77
4.3 AISC DG 11 PREDICTIONS, COMPARISONS, AND MODIFICATIO	NS
	82
4.3.1 Frequency and Acceleration Predictions for the Building Floors.	82
4.3.2 Analysis of Bay 5, Concord and Cumberland	83
4.3.2.1 Natural Frequency	83
4.3.2.2 Peak Acceleration	84
4.3.3 Comparison of Measurements and Predictions	85
4.3.4 Frequency Prediction for the Laboratory Footbridge	87
4.4 SCI DESIGN GUIDE PREDICTIONS AND COMPARISONS	88
4.4.1 Frequency and Acceleration Predictions for the Building Floors.	88
4.4.2 Example Calculations for Bay 5, Concord and Cumberland	92
CHAPTER V SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	94
5.1 RESEARCH SUMMARY	94
5.2 CONCLUSIONS	95
5.3 RECOMMENDATIONS	95
5.4 RECOMMENDATIONS FOR FUTURE RESEARCH	96

LIST OF REFERENCES	97
APPENDICES	
APPENDIX A ACCELERATION TRACES AND FREQUENCY SP	ECTRA OF
THE IN-SITU TESTS	
A.1 Bay 1, Hampton Inn	100
A.2 Bay 2, Hampton Inn	101
A.3 Bay 3, Hampton Inn	104
A.4 Bay 4, Caribe Cove	105
A.5 Bay 5, Concord and Cumberland	111
A.6 Bay 6, Royal Reef	117
A.7 Bay 7, Royal Reef	123
A.8 Bay 8, Seybold Flats	124
A.9 Bay 9, Seybold Flats	127
A.10 Bay 10, Seybold Flats	128
A.11 Bay 11, Regency	129
A.12 Bay 12, Regency	
A.13 Bay 13, Regency	134
APPENDIX B FOOTBRIDGE CONSTRUCTION DRAWINGS	137

LIST OF FIGURES

Figure	Page
1.1 Resonant Response of a Low-Frequency Floor, $f_n = 6.16$ Hz, $f_{walk} = 1.54$ H	Iz5
1.2 Response of a High-Frequency Floor, $f_n = 16.25 \text{ Hz}$, $f_{walk} = 2.33 \text{ Hz}$	6
1.3 Recommended Peak Acceleration for Human Comfort for Vibrations Due t	o Human
Activities (Allen and Murray, 1993)	6
2.1 ONO SOKKI Handheld Analyzer	12
2.2 Hampton Inn Building at the Time of Testing	13
2.3 Test Measurements for Bay 1, Hampton Inn	15
2.4 Test Measurements for Bay 2, Hampton Inn	16
2.5 Test Measurements for Bay 3, Hampton Inn	17
2.6 Test Measurements for Bay 4, Caribe Cove	20
2.7 Concord and Cumberland Floor at Time of Testing	22
2.8 Connection Detailing at the Slab Support, Concord and Cumberland	23
2.9 Test Measurements for Bay 5, Concord and Cumberland	24
2.10 Royal Reef, Second Floor Layout	27
2.11 Test Measurements for Bay 6, Royal Reef	
2.12 Test Measurements for Bay 7, Royal Reef	
2.13 Room Layouts for Bays 8, 9, and 10, Seybold Flats	32
2.14 Units at Time of Testing, Seybold Flats	33
2.15 Tests Measurements for Bay 8, Seybold Flats	36
2.16 Test Measurements for Bay 9, Seybold Flats	
2.17 Test Measurements for Bay 10, Seybold Flats	
2.18 Test Measurements for Bay 11, Regency	41
2.19 Test Measurements for Bay 12, Regency	42
2.20 Test Measurements for Bay 13, Regency	43
3.1 Experiment Stages	45
3.2 CSi Deep-Dek 4.5, gauge 16	46
3.3 Connection Between the Slab, the CMU Wall, and the Slab-On-Grade	47
3.4 Reinforcement bars in the CMU walls	48

Figure	Page
3.5 Construction of the CMU Walls	49
3.6 Cold Formed Steel and Plywood Pour Stops	50
3.7 WWR and Pour Stop Bracing Rods	50
3.8 Left Upper Wall with Braces (Stage 2)	51
3.9 Right Upper Wall with Braces (Stage 3)	52
3.10 Static Tests, Point Load (Stage 2)	53
3.11 Static Tests, Distributed Load (Stage 3)	53
3.12 Point Load vs. Deflection	55
3.13 Distributed Load vs. Deflection	55
3.14 Strike in the Structure with the Impulse Hammer	57
3.15 Schematic of the Impulse Hammer Test	58
3.16 FRF Comparison for Tests Conducted with the Impulse Hammer	59
3.17 Imaginary Part of the FRF for Mode Shape Determination (Stage 3)	60
3.18 Mode Shapes Determined From EMA Using the Impulse Hammer	61
3.19 Electrodynamic Shaker	62
3.20 Schematic of the Dynamic Test Using the Shaker	63
3.21 FRF Comparison for Tests Conducted with the Shaker	64
3.22 Imaginary Part of the FRF for Mode Shape Determination (Stage 2)	64
3.23 Mode Shapes Determined from EMA Using the Shaker	65
3.24 Vibration Tests in the CMU wall	66
3.25 Vibration Tests in the Slab Section	66
4.1 Cross-Sections of a Composite Slab	69
4.2 Bay 5, Slab Cross Section and Deck Geometry	71
4.3 Definition of the Finite Element Model for Bay 5	74
4.4 First Mode Shape for Bay 5, $f_n = 12.14 \text{ Hz}$	75
4.5 Laboratory Footbridge Frequencies and Mode Shapes Determined from the FEM	M78
4.6 Laboratory Footbridge Frequencies and Mode Shapes Determined from EMA	79
4.7 Measured and Predicted Force-Displacement Relationships for Static Tests	79
4.8 Bay 5 Plan View, Equivalent Beam Concept	82
4.9 SCI Design Guide Nomenclature	88

Figure	Page
4.10 Excitation and Response Mode Shape Factors	90

LIST OF TABLES

Table	Page
2.1 Overview of Tested Floors	11
2.2 Summary of Measurements, Hampton Inn	14
2.3 Summary of Measurements, Caribe Cove, Fourth Floor, Bay 4	19
2.4 Summary of Measurements, Concord and Cumberland, Bay 5	23
2.5 Summary of Measurements, Royal Reef, Second Floor	27
2.6 Summary of Measurements, Seybold Flats	34
2.7 Summary of Measurements. Regency	39
2.8 Summary of Results for In-Situ Tests	44
3.1. Average Cracked Moment of Inertia, Point Load	67
3.2 Average Cracked Moment of Inertia, Distributed Load	67
4.1 Summary of Results Obtained from the Finite Element Models	76
4.2 Comparison of Fundamental Natural Frequencies	82
4.3 Predicted vs. Measured Natural Frequency	86
4.4 Predicted vs. Measured Peak Acceleration	86
4.5 Predicted rms Response Acceleration According to the SCI Design Guide	93