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Jihad Ibrahim

Abstract

Impulse-based Ultra Wideband (UWB) radio technology has recently gained significant research attention

for various indoor ranging, sensing and communications applications due to the large amount of allocated

bandwidth and desirable properties of UWB signals (e.g., improved timing resolution or multipath fading

mitigation). However, most of the applications have focused on indoor environments where the UWB chan-

nel is characterized by tens to hundreds of resolvable multipath components. Such environments introduce

tremendous complexity challenges to traditional radio designs in terms of signal detection and synchro-

nization. Additionally, the extremely wide bandwidth and shared nature of the medium means that UWB

receivers must contend with a variety of interference sources. Traditional interference mitigation techniques

are not amenable to UWB due to the complexity of straight-forward translations to UWB bandwidths.

Thus, signal detection, synchronization and interference mitigation are open research issues that must be

met in order to exploit the potential benefits of UWB systems. This thesis seeks to address each of these

three challenges by first examining and accurately characterizing common approaches borrowed from spread

spectrum and then proposing new methods which provide an improved trade-off between complexity and

performance.
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Chapter 1

Introduction

1.1 Research Motivation and Scope

Impulse-radio ultra wideband (UWB) technology has been attracting a great deal of research attention in

recent years as a candidate for various communication and position-location applications. Attractive prop-

erties of UWB include fine time resolution, high penetrability, low probability of intercept, and low fading

margin in dense multipath. Additionally, in 2002, the FCC issued a first report and order allowing the

unlicensed use of UWB devices, overlaid with existing devices, subject to a power spectral mask in a 7.5

GHz swath of spectrum. This has generated wide interest in potential UWB applications, and led to a rapid

increase in the number of companies and governmental agencies working in UWB.

Many investigated applications for UWB are designed to operate in indoor environments. Indoor UWB

systems must contend with dense multipath channels, which are characterized by tens or even hundreds of

resolvable multipath components, and delay spreads typically orders of magnitude larger than the UWB

pulse duration. Additionally, due to stringent FCC regulations, UWB systems are required to operate at

a very low power emission level. These facts have led to several challenges pertaining to UWB transceiver

design. Specifically, there are open challenges to be met in the areas of (a) UWB signal detection, (b)

synchronization, and (c) interference mitigation.

The objective of this research effort is to characterize the design difficulties in these three fields, study
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their causes, identify the shortcomings of traditional proposed solutions, and investigate the design of new

algorithms, specifically tailored for efficient performance in dense multipath environments at low transmit

power. Summarizing the challenges in each of the three areas of interest:

(1) Signal detection: Recent research has mainly concentrated on the Rake receiver and variants of the

transmitted reference receiver as candidates for UWB detectors in dense multipath. However, both receivers

have severe performance limitations. Specifically, the energy capture of the Rake receiver is relatively low

for a moderate number of fingers, making its implementation impractical for UWB systems. Transmitted

reference receivers suffer from a “noise-cross-noise” term, caused by the use of a noisy signal as a correlation

or matched filter template. Consequently, a prohibitively large number of pilot symbols are required to

overcome this limitation.

(2) Synchronization: Traditional synchronization techniques applied to UWB result in prohibitively long

acquisition times due to the extremely large search space caused by the use of the very short UWB pulse.

Additionally, in dense multipath environments there exist a larger number of cells within the uncertainty

region that can lead to acquisition lock. Locking to an arbitrary multipath component may result in unac-

ceptable performance for many applications (large range error in positioning systems for example).

(3) Interference mitigation: UWB systems must co-exist with narrowband systems. Even though UWB sys-

tems may enjoy a high spreading gain due to their large bandwidth, stringent FCC power restrictions make

them susceptible to strong narrow band interference (NBI), which can severely degrade performance. The

subject of NBI mitigation has only received limited research interest until recently. Some NBI mitigation

methods have been proposed for UWB, primarily relying on classic techniques used in spread spectrum.

However, the implementation of most of these methods is problematic, because they require prohibitive

complexity, need prior knowledge of the interferer’s spectral content, and/or assume synchronization prior

to interference mitigation, which might be infeasible in the presence of strong NBI.
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1.2 Thesis Statement

The goal of this thesis is to address each of these open research areas. To state the goals of this research

succinctly, we provide the following thesis statement:

The goal of this thesis is to develop receiver architectures and algorithms for UWB impulse radio including

signal detection, synchronization and interference mitigation techniques in order that we might improve the

complexity-performance trade-off of UWB receivers in dense multipath channels.

1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 presents a brief overview of UWB systems

and signals, and provides background information. Multiple access, modulation types and pulses shapes

are discussed. Since the communication channel plays a fundamental role in defining the framework of

this research, an overview of the channel measurements and the channel models on which analytical and

simulation results in this work are based is also included.

Traditional signal detection is discussed in Chapter 3. The well-known Rake and pilot-assisted receivers

are analyzed, and expressions for their probability of bit error are derived. It is shown that both techniques

are inadequate when applied to UWB in dense multipath: On one hand, Rake receivers are hindered by

unacceptably low energy capture for a moderate number of fingers. On the other hand, pilot-assisted

receivers suffer from the use of a noisy template, and an unacceptably heavy training load is required to

hinder its effect. These shortcomings are discussed, mathematically formulated and then validated through

simulations.

Two new signal detection algorithms specifically tailored for UWB in dense multipath are presented in

chapter 4. First, an iterative data-aided, pilot-assisted receiver is discussed. In this receiver, the heavy

training load required by traditional TR systems is reduced by incorporating the data symbols into channel

estimation. The convergence of the iterative process at low SNR is guaranteed by the use of forward error

correction. The system jointly exploits the improved channel estimation and coding gains to yield good

performance at light pilot overhead. Then, a receiver based on sequence optimization is proposed and
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analyzed, where the transmit pulse sequence and the receiver template are jointly optimized to maximize

SNR at the correlator output. The system achieves very high energy capture by forcing the multipath

components to add up coherently, or interfere constructively, at the receiver. This receiver is also applied to

a multi-user application and to a NBI mitigation scenario, where the objective is maximizing SINR rather

than SNR. The implementation complexity of the above UWB receivers is also discussed, and a comparison

is provided, stressing the tradeoff between system resources and performance for each.

Chapter 5 deals with synchronization. Acquisition (or coarse synchronization) is first studied, then

tracking (or fine synchronization) is discussed. The problem of UWB acquisition in dense multipath is

clearly defined, and previous research work is summarized. The rationale behind the need for a two-stage

algorithm is explained. A mathematical framework for the analysis of acquisition systems which incorporates

multipath into the analysis is described. Then, the proposed two-stage system is discussed. The first

stage (coarse acquisition) consists of a fast version of traditional serial search, termed jump-phase search,

where acquisition time is drastically reduced by uniformly spreading the cells corresponding to multipath

components over the uncertainty region. Jump-phase search is shown to yield an order of magnitude reduction

in the mean acquisition times compared to traditional serial search. The second stage (fine acquisition) is then

mathematically described using the UWB IEEE P802.15 channel model. Fine acquisition takes advantage

of coarse acquisition to calculate a more ”intelligent” threshold, then robustly detects the LOS path, by

taking advantage of the clustered nature of multipath. Two case studies are included which illustrate

the performance of the proposed acquisition algorithm for ranging and communications applications. It is

shown that the introduction of fine acquisition leads to drastic reduction in range error. The expression

for probability of error of a pilot-assisted receiver in the presence of timing error is derived, and then the

improvement brought by two-stage acquisition is verified through simulation.

Tracking for UWB systems is then analyzed. The inefficiency of traditional tracking algorithms applied to

UWB, most notably for generalized pilot-assisted receivers, is stressed. Then, a proposed tracking algorithm

for pilot-assisted receivers, loosely based on the popular early-late gate approach, is presented. Contrary

to classical tracking which employs the transmit pulse shape as a template, the proposed tracking circuit

achieves robust continuous estimation of the LOS component by fully exploiting the received pulse shape.
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The tracking system is statistically analyzed, and its effect on the probability of error is derived. Simulation

results validate the theoretical expressions and illustrate the algorithm’s performance.

NBI mitigation is discussed in Chapter 6. The detrimental effect of NBI on UWB systems and the

need for new, simple front-end NBI mitigation techniques are first presented, then previous work in NBI

mitigation applied to UWB is summarized. The proposed scheme, based on selection diversity (SD) in a

multiple-receiver antenna system, is then described and mathematically formulated. The proposed method

achieves interference diversity gains by exploiting the low spatial fading of UWB signals compared to NBI

signals. This method is attractive, because it does not assume signal synchronization or knowledge of the

NBI’s spectral content prior to interference mitigation. The system is analyzed for Rayleigh and Ricean NBI

fading, and probability of bit error expressions are derived for both scenarios. Two other combining methods

(EGC and MRC) are also investigated. It is shown that doubling the number of antennas potentially yields

a 3-dB performance gain for SD and EGC under NBI Rayleigh fading. Smaller gains are observed for Ricean

fading in general, although EGC outperforms SD. MRC only provides limited additional gains at the expense

of increased complexity.

This dissertation is finally concluded in Chapter 7, where a synthesis of the research is presented, and

future work is recommended.
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Chapter 2

Overview of UWB Signals and

Systems

2.1 Introduction

UWB communication systems can be defined as wireless communication systems whose instantaneous band-

width is much larger than their information bandwidth, i.e., the minimum bandwidth required to deliver

information.

UWB systems are commonly characterized by a very large fractional bandwidth. Fractional bandwidth

is defined as the ratio of the bandwidth occupied by the signal to the center frequency of the signal:

BW =
2 (fh − fl)

fl + fh
(2.1)

where fl and fh are the lower and upper frequency components in the signal measured at the -10 dB level,

respectively. Traditional communication systems have a fractional bandwidth of the order of 0.01. Wide-

band CDMA (W-CDMA) has a fractional bandwidth of about 0.02. According to a DARPA report which

coined the term ”ultra wideband”, a UWB system is a system with fractional bandwidth exceeding 0.25 [1]

(Figure 2.1). In its first report and order allowing and regulating the commercial use of UWB, the FCC
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defined UWB systems as any system with fractional bandwidth exceeding 0.20, or any system with a -10 dB

bandwidth exceeding 500 MHz [2].

Figure 2.1: Fractional bandwidth comparison of narrowband and UWB signals.

The FCC’s UWB classifications and specifications do not specify a particular technology to be used

in the implementation of UWB systems. One investigated technology is multi-band orthogonal frequency

division multiplexing (OFDM), which is being considered for UWB devices in wireless personal area networks.

However, the term UWB in the research literature has been practically synonymous with impulse-radio

technology, which is based on the transmission of very short duration (sub-nsec) pulses, as opposed to

sinusoidal based signals. The sharp rise and fall of the pulse causes the pulse’s energy to be spread over a

large bandwidth (in the gigahertz range). This work concentrates on performance aspects of impulse-radio

UWB, and thus, unless otherwise specified, the use of the term UWB will also imply impulse-radio.

A general overview of UWB systems is presented in this chapter. Various operational aspects, such as

pulse shapes, modulation schemes and multiple access methods commonly used in UWB are introduced. An

overview of the channel measurements and the channel models on which analytical and simulation results in
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this work are based is also included.

2.2 Attractive Features of UWB Systems

The key potential of UWB systems lies in a fundamental result from information theory, which may be

formulated as:

C = Wlog2

(
1 +

P0

N0

)
(2.2)

where C is the system’s channel capacity in bits/seconds, W is the system bandwidth in Hz, P0 is the

signal power spectral density in watts/ Hz, and N0 is the noise power spectral density in watts/Hz. Since

UWB is characterized by a very large bandwidth, UWB system can potentially achieve very high data rates

at moderate signal-to-noise ratio (SNR, SNR = P0
N0

). Alternatively, medium and low data rate may be

achieved at relatively very low SNR.

Since energy is spread over a large bandwidth, the system’s power spectral density is low, often of the

same order as the noise spectral density. Thus, a narrowband system operating in a band that overlaps a

small portion of a band within which an UWB device is operating will only suffer negligible interference,

since UWB interference will only slightly raise the noise level.

With a low PSD, UWB systems are less vulnerable to covert interceptors or detectors. This Low Proba-

bility of Intercept (LPI) characteristic is especially attractive for a host of military applications.

In radar, the achievable resolution (and ranging accuracy) is proportional to the signal’s bandwidth.

UWB’s large instantaneous bandwidth enables fine time resolution, which offers fine position location and

radar capabilities.

In traditional spread spectrum systems operating in dense multipath, the energy from different multipath

components may be coherently harnessed, typically through the use of a Rake receiver. However, any two

paths that are separated by less than a chip duration may not be resolved. For UWB systems, paths that are

separated by more than a pulse duration may be resolved. Since the pulse duration is typically very short

(on the order of the inverse of the bandwidth), UWB can resolve a large number of multipath components,

making it robust against multipath fading compared to narrowband systems.
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Finally, an advantage of UWB system is the low cost of UWB communication hardware components. In

fact, since the generated pulses are transmitted directly, the need for oscillators, mixers and other costly RF

components is eliminated.

These key properties make UWB an attractive candidate for wireless systems where any combination

of data communication, high precision position location, and radar applications is desirable. Moreover, in

2002, the FCC issued a first report and order [2], allowing the unlicensed use of UWB devices, overlaid with

existing devices, subject to a spectral power mask (see Figure 2.2). For example, unlicensed UWB indoor

communications and sensor systems are allowed to operate in the 3.1-10.6 GHz with an emission limit of -41.3

dBm/MHz. This has generated wide interest in potential UWB applications, and led to a rapid expansion

of private companies and governmental agencies working in UWB. Currently investigated UWB systems

include wireless personal area networks, sensor networks, imaging systems, and vehicular radar systems (for

a more thorough discussion of these applications, see [3] and the references therein).

Figure 2.2: FCC spectral mask for communications and measurements applications.
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2.3 General UWB System Model

A multi-user impulse-radio system based on time-hopping (TH) and pulse position modulation (PPM) was

introduced in the seminal reference by Scholtz [4] in 1993. Consider a system with U users, and let sk(t) be

the transmit signal of the k-th user. Then:

sk (t) =
∑

j

√
Epw

(
t − jTf − c

(k)
j Tc − ∆d

(k)
�j/Np�

)
(2.3)

where:

• w(t) is the unit-energy transmit UWB pulse, of duration Tw.

• Ep is the pulse energy.

• Np is the pulse repetition number, or the number of pulses used to represent one data symbol.

• ∆ is the PPM time delay parameter.

• d
(k)
i is related to the i-th data element of the k-th user (In case of binary PPM, d

(k)
i = {0, 1}).

• c
(k)
j is the j-th chip of user k’s TH sequence.

• Tf is the frame repetition time.

• Tc is the chip duration (Tc << Tf ).

• �.� is the floor operator.

The overall transmit signal can then be written as:

s(t) =
U∑

k=1

sk (t) . (2.4)

The system is illustrated for binary PPM in an arbitrary frame in Figures 2.3 and 2.4, respectively. In this

example, Tf = 5Tc. Therefore, each frame contains five chips, and there are five possible hop positions

(c(k)
j = {0, 1, 2, 3, 4}). Assume c

(k)
j = 2. If the information bit d

(k)
�j/Ns� is equal to zero, no extra delay is
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inserted, and the pulse w(t) is placed at the start of the third chip (Figure 2.3). If d
(k)
�j/Ns� = 1, an extra

delay ∆ is inserted (Figure 2.4). The information is thus modulated through the delay of the pulse inside

the TH chip.

TH codes are used to allow multiple access. This is illustrated for a simple 3-user system in Figures 2.5 and

Figure 2.3: TH-PPM example, d
(k)
�j/Ns� = 0, c

(k)
j = 2. Pulse shifted to the third hop position in a frame with 5 hop

positions. No extra delay ∆.

Figure 2.4: TH-PPM example, d
(k)
�j/Ns� = 1, c

(k)
j = 2. Pulse shifted to the third hop position in a frame with 5 hop

positions, plus extra delay ∆.

2.6. Two consecutive frames are displayed for each user. In the absence of TH codes, pulses of different users

are transmitted at the same time, and collisions occur (Figure 2.5). Collisions may be prevented by assigning

judiciously selected TH codes to each user, so that simultaneous pulse transmissions do not occur within

the same chip (Figure 2.6). The hopping codes could be based on pseudo-noise (PN) sequences or sequences

designed to minimize interference between users. TH sequences are also used in UWB systems to remove

spectral components from the UWB spectrum, and smoothen the PSD, therefore reducing interference caused

by UWB on other systems operating in the same frequency range, and reducing its probability of intercept
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[5]. Other multiple access or spreading methods may be used instead of TH sequences. For example, the use

of SS-DS has been proposed for UWB in [6] [7] [8].

Figure 2.5: 3-user system with no TH. Collisions occur between different users.

Other variations of this PPM system are also possible. For example, modulation based on block waveforms

with desired cross-correlation properties is proposed in [9][10][11], where ∆ is no longer necessarily a constant.

Other modulation types are also possible, such as on-off keying (OOK, Figure 2.7) and pulse amplitude

modulation (PAM, Figure 2.8). Higher order (M−ary) modulation is possible, as well as combinations of

different modulation techniques. For example, PPM and PAM may be combined to create biorthogonal

modulation.

2.4 Pulse Shapes

The most commonly used family of pulses to model w(t) is the Gaussian pulse and its derivatives. Gaussian

pulses are easy to analyze and manipulate, because they are based on the well known Gaussian PDF. The
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Figure 2.6: 3-user system with TH. No collisions occur.

Gaussian pulse (Figure 2.9) is defined as:

w(t) =
1√

2πσ2
e−

(t−µ)2

2σ2 (2.5)

where σ is the standard deviation of the pulse in seconds, and µ is the location in time of the midpoint of

the Gaussian pulse in seconds [5]. The pulse width, and thus the pulse bandwidth, is controlled by σ. The

pulse width is usually approximated by Tw = 2πσ. The pulse may be written in a slightly different form by

letting k = 1√
2σ2

. Then:

w(t) =
k√
π

e−k2(t−µ)2 (2.6)

and Tw = π
√

2
k

.

The first derivative of the Gaussian pulse (Figure 2.10) is also widely used, since the transmit antenna is

commonly assumed to differentiate the original pulse shape (assumed to be Gaussian). It may be written as:

w(t) =
(

32k6

π

)
te−(kt)2 . (2.7)
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Figure 2.7: Example of binary OOK. Data sequence = {1, 1, 0}. No pulse for zero-bit.

Figure 2.8: Example of binary PAM. Data sequence = {1, 1, 0}. Pulse is inverted for zero-bit.

The second derivative of a Gaussian pulse (Figure 2.11) is also used, and incorporates the differentiating

effect of both transmit and receive antennas (when the generated pulse is Gaussian). It is expressed as:

w(t) =
(

32k2

9π

) 1
4 (

1 − 2 (kt)2
)

e−(kt)2 . (2.8)

Note that the spectrum of these three pulses extends to DC, which does not confirm with the FCC power

mask. The pulses may be passed through a bandpass filter, or modulated by a sine wave, to move their
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Figure 2.9: Gaussian pulse in the time domain (above) and its frequency spectrum (below). k = 5e9 sec−1.

spectrum to the allowable band. The modulated wave (Figure 2.12) may be expressed as:

w(t) =
(

8k

π

) 1
4 1√

1 + e
2π2f2

c
k

e−(kt)2cos (2πfct) (2.9)

where fc is the desired center frequency of the pulse.

2.5 The UWB Channel

Classical analysis of single-user communication systems in AWGN assumes that the received signal is an

attenuated, delayed and undistorted version of the transmitted signal, plus noise and (possibly) interference.

Assuming pulse w(t) was transmitted, and ignoring any interference sources, the received signal may be

written as:

r(t) =
√

Epw(t − τ0) + n(t) (2.10)

where τ0 is the propagation delay (proportional to the distance between transmit and receive antennas), and

n(t) is an AWGN process. Note that no spreading or data modulation are considered. The loss in received

signal power versus distance (and possibly frequency), usually referred to as large scale fading, is subsumed
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Figure 2.10: First derivative Gaussian pulse in the time domain (above) and its frequency spectrum (below).
k = 5e9 sec−1.

into
√

Ep.

This simplistic model does not hold in most wireless communication applications, which are the focus of this

work. In fact, due to the presence of reflectors, diffractors and scatterers in the environment, the received

pulse shape is the sum of attenuated, delayed, and possibly overlapping versions (or multipath components)

of the transmit pulse w(t). These multipath components combine vectorially at the receiver, and may result

in signal distortion, or small scale fading [12]. Assuming a realistic channel model, the received signal is then

written as:

r(t) = v(t) + n(t) (2.11)

where v(t) is given by:

v(t) = w(t) ∗ h(t, τ ) (2.12)

where ∗ is the convolution operator, and h(t, τ ) represents the time-varying communication channel impulse

response between the transmitter and receiver antennas. The channel may vary in time due to the motion

of the transmitter and/or the receiver, or to changes in the environment. Since the received signal in a

multipath channel consists of a sum of delayed, attenuated and phase-shifted replicas of the transmitted
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Figure 2.11: Second derivative Gaussian pulse in the time domain (above) and its frequency spectrum (below).
k = 5e9 sec−1.

signal, the communication channel impulse response is typically modeled using a tap-delay model, and is

generally expressed as [12, 13, 14, 15, 16]:

h(t, τ ) =
L(t)−1∑

l=0

βl(t)pl(t)δ(τ − τl(t)) (2.13)

where δ(t) is the Dirac-Delta function, L(t) is the (time-varying) number of multipath components, and βl(t),

pl(t) = ±1 and τl(t) are the real amplitude, polarity and delay of the lth multipath component, respectively.

The varying nature of the multipath amplitude and delay is due to time-dependent changes in the channel,

such as relative motion between the transmitter and receiver, or motion of foreign objects in the environ-

ment. If the transmit and receive antennas are stationary, and changes in the environment occur at a slow

rate compared to the data rate, then the channel is assumed to be ”quasi-static”. That is, the channel

impulse response is assumed to be time-invariant over a particular time interval of interest. This quasi-static

assumption plays an important role in simplifying analytical and simulation models [17]. The time-invariant

channel model is widely used in the analysis of UWB systems [5], and will also be adopted in this research.
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Figure 2.12: Bandpass Gaussian pulse in the time domain (above) and its frequency spectrum (below). k = 5e9 sec−1,
fc = 5 GHz.

The time-invariant channel impulse response may then be written as:

h(τ ) =
L−1∑
l=0

βlplδ(τ − τl). (2.14)

Let αl = βlpl. Then:

h(τ ) =
L−1∑
l=0

αlδ(τ − τl) (2.15)

and the received pulse may then be written as:

v(t) =
L−1∑
l=0

αlw(t − τl). (2.16)

2.5.1 Small Scale Channel Statistics

The communication channel can be characterized by coarse statistics, such as mean excess delay, RMS delay

spread, maximum excess delay and number of paths. Although these statistics do not completely define

the paths’ amplitude and delay statistical distributions, they provide a useful tool for the analysis and
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comparison of different channel environments [12].

The mean excess delay is the first moment of the power delay profile and is given by:

τm =
∑L−1

l=0 α2
l τl∑L−1

l=0 α2
l

. (2.17)

The RMS delay spread is given by the square root of the second central moment of the power delay profile,

and can be written as:

τRMS =

√√√√∑L−1
l=0 α2

l τ
2
k∑L−1

l=0 α2
l

− τ2
m. (2.18)

The maximum excess delay is defined as the delay of the last occurring multipath component. The number of

paths is the number of significant multipath components. A ”significant” component is one whose absolute

amplitude is attenuated by less than X dB compared to the strongest available path. X is a design parameter,

and depends on the required system precision. Typical values of X are 10, 15 or 20.

2.5.2 Channel Measurements Used in this Work

Most of the simulation results in this work are based on real measured indoor channel models. It is therefore

essential to provide a precise characterization of these measurements. A large set of indoor (as well as

outdoor) measurements was taken by Virginia Tech as part of the DARPA NETEX (NETworking in EXtreme

environments) program [18][19][20]. The indoor measurement data analyzed represents various indoor line-

of-sight (LOS) and non-line-of-sight (NLOS) environments. Measurements were taken with two different

antennas, a wideband biconical and a TEM horn antenna. For a complete description of the measurement

procedure and locations, the reader is referred to Chapter 3 of [19]. The generated pulse used to probe the

channel is plotted with its corresponding spectrum in Figure 2.13. The pulse is Gaussian in shape with a

pulse width of approximately of 200 psec.

By pooling together all the indoor time domain data (which consists of 800 time domain profiles), time

dispersion statistics were calculated for the indoor UWB channel. Specifically mean excess delay, maximum

excess delay, RMS delay spread, and the number of paths were calculated. Also of interest were the number

of inverted paths and the amount of inverted energy. These two statistics are of interest to the pulse-based
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Figure 2.13: Generated time-domain pulse (left), and corresponding spectrum (right). Source: [5] ( R.M. Buehrer,
Chapter 3, Channel Modeling).

Bicone TEM
15 20 15 20
NLOS LOS NLOS LOS NLOS LOS NLOS LOS

Mean Excess Delay (nsec) 16 5.19 20.1 10.5 2.36 0.552 5.59 1.22
Max Excess Delay (nsec) 65.7 28.4 78.6 56.8 16.1 2.65 43.1 12.4
RMS Delay Spread (nsec) 13.7 5.41 16.2 8.5 3.27 0.753 7.09 1.70
Number of Paths 72.84 24.27 153.95 64.58 28.73 6.41 99.15 15.76
Inverted Paths 49.00% 47.61% 49.30% 48.68% 50.71% 39.54% 49.81% 43.93%
Inverted Energy 44.23% 45.02% 45.36% 45.63% 34.26% 24.19% 37.67% 25.97%

Table 2.1: Small scale statistics for indoor channel measurements. CLEAN algorithm was run with 15 and 20 dB
thresholds. Source: [5] ( R.M. Buehrer, Chapter 3, Channel Modeling).

UWB systems since pulse polarity is very important in certain modulation schemes (PAM for example). The

statistics were classified by the measurement environment (LOS or NLOS) and by the particular antenna used

(TEM or Bicone). In order to calculate these statistics, an impulse response was first extracted from each

received signal, and then the pool of impulse response profiles was statistically studied. The impulse response

extraction process was based on the CLEAN algorithm, which is an iterative deconvolution technique in which

a template LOS pulse is used to extract the channel impulse response from a received signal. For a detailed

analysis of the CLEAN algorithm, the reader is referred to [21] or [22].

The measured channel small scale statistics are summarized in Table 2.1.
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2.5.3 Common Channel Models

The main goal of small-scale channel modeling is to provide robust statistical characterization of the ampli-

tudes and delays of the channel multipath components. Accurate channel models are extremely important

for the design of communication systems, since they provide the engineer with a valuable testing and analysis

tool. Understanding and modeling the channel characteristics are especially paramount within the context

of this work, since the statistical properties of the channel provide information about small-scale fading,

signal distortion and correlation, and energy dispersion, which should be taken into account in the design of

detection, synchronization, and interference mitigation algorithms. Although actual channel measurements

may be sufficient to conduct computer simulations, mathematical channel models are required to derive

analytical expressions which more accurately predict system performance. This section briefly introduces

the most common statistical models for indoor UWB systems.

The Saleh-Valenzuela Model

The Saleh-Valenzuela (SV) model [23] is one of the most commonly used indoor channel models. The

SV model was originally designed for NLOS channels. The channel impulse response is given by a double

-clustered tapped delay line, and may be written as:

h(t) =
K∑

k=1

L∑
l=1

αk,lδ(t − Tk − τk,l). (2.19)

The arriving paths are grouped into K clusters, with L paths each. αk,l and τk,l are the amplitude and delay

of the l − th path in the k − th cluster, respectively. The cluster arrivals are modeled by a Poisson process,

and thus, the cluster inter-arrival times Tk are modeled by exponential random variables, such that:

p (Tk|Tk−1) = Λexp [−Λ (Tk − Tk−1)] , k > 0 (2.20)
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where Λ is the mean cluster arrival rate. Within a particular cluster, the path arrival times τk,l are also

modeled with a Poisson process. The distribution of the inter-arrival times is given by:

p (τk,l|τk,l−1) = λexp [−λ (τk,l − τk,l−1)] , l > 0 (2.21)

where λ is the mean path arrival rate. The average power of both the clusters and the multipath components

within the clusters are assumed to decay exponentially, such that the average power of a multipath component

at delay Tk + τk,l is given by:

¯α2
k,l = ¯α2

0,0e
− Tl

Γ e−
τk,l

γ (2.22)

where ¯α2
0,0 is the expected value of the power of the first arriving multipath component, Γ is the decay

exponent of the clusters and γ is the decay exponent of the rays within a cluster. In the original model,

the path amplitudes αk,l are assumed to follow a Rayleigh distribution about the expected value given in

the equation above. However, research shows that the Rayleigh assumption is not suitable for UWB signals,

and log-normal fading is rather used to provide a better model. When lognormal fading is used [24], the

amplitudes may be expressed as:

αk,l = pk,l10
µk,l+Xσ,k,l

20 (2.23)

where pk,l = ±1 is an equi-probable binary random variable (modeling the path polarity), and:

µk,l =
20ln

(
¯|α|0,0 − 10Tl

Γ
− 10 τk

γ

)
ln(10)

− σ2ln(10)
20

(2.24)

Xσ,k,l = N
(
0, σ2

)
(σ in dB). (2.25)

The SV model parameters which provided the best fit (in terms of the CDF of mean excess delay, RMS delay

spread, and number of paths) to the Virginia Tech indoor Bicone NLOS channel measurements are shown

in Table 2.2. The parameters which fit the remaining measurements (Bicone LOS, TEM NLOS, and TEM

LOS) may be found in [19].
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Parameter Value
1
Λ 0.4 nsec
1
λ

0.04 nsec
Γ 1250 nsec
γ 25 nsec
σ 9.2

Table 2.2: SV model parameters for indoor Bicone NLOS channel measurements.

The ∆− K Model

The ∆-K model has also been used to model mobile and indoor wideband channels and like the SV model,

assumes that multipath components arrive in clusters. In this model, the probability that a path arrives

at any given delay is higher by a factor of K if a path has arrived within the past ∆ seconds. The arrival

times thus follow a modified, two-state Poisson process and the inter-arrival times follow an exponential

distribution where the arrival rate is based on a state model. When in state 1, (S−1), the mean arrival rate

is given by λ. Transition to state 2, (S−2), is triggered when a path occurs. In (S−2), the mean arrival rate

is given by Kλ. If after ∆ seconds, a path has not arrived, transition back to (S − 1) occurs. Exponential

energy decay is assumed here to describe the expected value of the energy in a path at a given delay. The

polarity is assumed to be ±1 with equal likelihood, and amplitude fading is assumed to be lognormal such

that the amplitude of a path is given by the same equations as the SV model.

The ∆-K model parameters which provided the best fit to the Virginia Tech indoor Bicone NLOS channel

measurements are shown in Table 2.3.

Parameter Value
K 2.3
1
λ

2.5 nsec
∆ 0.7 nsec
γ 19 nsec
σ 2.5

Table 2.3: ∆ − K model parameters for indoor Bicone NLOS channel measurements.

The Single-Poisson Model

The single-Poisson model a simplistic version of both of the previously introduced models and assumes that

only one cluster is present in the impulse response (or equivalently, no clustering of paths). The arrivals of

paths are treated as a Poisson process with arrival rate λ. Also, the decay of the paths is assumed to be
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exponential, with a decay time constant of γ. The amplitudes of the paths are modeled as a log-normal

random variable with parameter σ.

The single-Poisson model parameters which provided the best fit to the Virginia Tech indoor Bicone NLOS

channel measurements are shown in Table 2.4.

Parameter Value
1
λ 0.9 nsec
γ 20 nsec
σ 4

Table 2.4: Single-Poisson model parameters for indoor Bicone NLOS channel measurements.

The Split-Poisson Model

The SV model is based on the generation of multiple exponentially decaying clusters. However, processing of

Virginia Tech channel measurements indicates that the average channel impulse response basically consists

of two clusters, where the first short cluster contains a limited number of relatively strong, fast decaying

components, and the second longer cluster contains relatively attenuated paths that decay at a slower rate.

Based on these observations, the Split-Poisson model was proposed in [25][26]. This model assumes two

clusters of Poisson arrivals, one delayed by τ1 seconds relative to the other. The clusters are generated based

on the parameter sets (λ1, γ1, σ1) and (λ2, γ2, σ2), respectively. Also, in order to maintain continuity in the

energy decay in the overall impulse response, the first cluster is weighted higher than the second cluster by

a factor α.

The split-Poisson model parameters which provided the best fit to the Virginia Tech indoor Bicone NLOS

channel measurements are shown in Table 2.5.

Parameter Value
t1 0
1

λ1
0.4 nsec

γ1 17 nsec
σ1 4.3
t2 20 nsec
1

λ2
0.8 nsec

γ2 21 nsec
σ2 5.7
α 3

Table 2.5: Split-Poisson model parameters for indoor Bicone NLOS channel measurements.
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2.6 Note on Monte Carlo Simulations

Throughout this work, traditional and proposed algorithms are mathematically analyzed and theoretical

expressions quantifying their performance are derived. The validity of these expressions is then checked

by standard Monte Carlo simulations [17]. Monte Carlo simulations are also used to illustrate system

performance when theoretical results are not available. This section presents a brief overview of the simulation

methodology used in this work. Specifically, a derivation of the corresponding confidence intervals is included.

Most of the Monte Carlo simulations in this work estimate bit error probabilities (note that the same

approach is used for the estimation of other metrics). The procedure is as follows. The simulation is run for

N bits∗. The estimate of the probability of error Pe is then:

P̂e =
Ne

N
(2.26)

where Ne is the number of independent bit errors. Note that Ne may be written as:

Ne =
N∑

i=1

Xi (2.27)

where Xi, 1 ≤ i ≤ N are independent binary random variables (Pr(Xi = 1) = Pe and Pr(Xi = 0) = 1 − Pe

∀i) . The expected value of Ne is easily found to be:

E [Ne] = NPe. (2.28)

Then:

E
[
P̂e

]
= Pe (2.29)

and the estimator is unbiased.

The variance σ2
e of P̂e is now derived. Note that:

E
[
N2

e

]
= NPe + N (N − 1)P 2

e . (2.30)

∗The independence of error events is guaranteed by the use of independent noise and fading samples across bits.
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Then:

E
[
P̂ 2

e

]
=

Pe

N
+

(N − 1)P 2
e

N
. (2.31)

Thus:

σ2
e =

Pe (1 − Pe)
N

. (2.32)

Note that the estimator P̂e is consistent. The quality of P̂e is traditionally expressed in terms of its confidence

interval [17], defined as:

Pr
(
Pe − βσe ≤ P̂e ≤ Pe + βσe

)
= 1 − α. (2.33)

Note that based on the Gaussian approximation (for large N), P̂e may be expressed as a Gaussian random

variable with mean Pe and variance σ2
e . Then, β may be expressed as[17]:

β = Q−1
(α

2

)
(2.34)

where Q(.) is the standard Q-function, defined as:

Q(x) =
1√
2π

∫ ∞

x

e−
−t2
2 dt. (2.35)

In this work, N is set to 100
Pe,min

, where Pe,min is the minimum simulated probability of error (corresponding

to the highest signal-to-noise or signal-to-noise-plus-interference ratio). In this work, Pe,min is set to 10−4.

N is then equal to 106, and the confidence interval may be written as:

Pe − Q−1
(α

2

)√Pe (1 − Pe)
106

≤ P̂e ≤ Pe + Q−1
(α

2

)√Pe (1 − Pe)
106

(2.36)

At Pe = 10−4, the 95% confidence interval (α = 0.05) is:

8.040× 10−5 ≤ P̂e ≤ 1.1960× 10−4. (2.37)

Confidence intervals for other values of Pe are shown in Table 2.6.
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Pe Confidence Interval
10−1 0.0994 ≤ P̂e ≤ 0.1006
10−2 0.0098 ≤ P̂e ≤ 0.0102
10−3 9.3805× 10−4 ≤ P̂e ≤ 0.0011
10−4 8.040× 10−5 ≤ P̂e ≤ 1.1960× 10−4

Table 2.6: 95% confidence interval. N = 106.

27



Chapter 3

UWB Signal Detection in Dense

Multipath: Traditional Approaches

3.1 Introduction and Motivation

Indoor UWB systems have to contend with extremely frequency-selective communication channels. As seen

in section 2.5, the channel delay spread is typically orders of magnitude larger than the UWB transmit

pulse width. Moreover, due to UWB’s fine time resolution, the received signal is very rich in resolvable

multipath; the signal energy is usually spread over tens or even hundreds of multipath components. Figure

3.1 illustrates the effect of the communication channel on the UWB pulse. The transmit pulse (left hand side

plot) has a time duration of 500 psec, whereas the multipath components of the received pulse (right hand

side plot) extend to about 80 nsec. The received pulse shape is severely distorted compared to the transmit

pulse shape. From a matched filter point of view, a simple correlator receiver matched to the transmit pulse

shape is highly inefficient, since such a receiver would only capture a small fraction of the available signal

energy. The optimal receiver in the matched filter sense is the correlator where the template is matched to

the received pulse shape. However, such a receiver requires perfect channel knowledge, which is not readily

available.

The main challenge of UWB signal detection in dense multipath is therefore to design simple (low-cost,

28



0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (nsec)

w
(t

)

0 20 40 60 80 100
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (nsec)

r(
t)

Figure 3.1: Transmit pulse shape (left) and received pulse shape (right).

low-complexity) receivers that can achieve high energy capture (and thus good performance).

Research has mainly concentrated on Rake receivers as candidates for efficient UWB detectors, because

of the inherent fine time resolution of the UWB pulse [27]-[38] and their use in SS systems. However, because

of the large number of available resolvable paths, the Rake energy capture is relatively low for a moderate

number of fingers. Tens of fingers might be needed for acceptable energy capture, making the implementation

of a Rake receiver impractical for UWB systems.

Another popular investigated receiver structure is the generalized autocorrelation, or transmit-reference

(TR) receiver (also named pilot-assisted receiver in this report), which aims at gathering all the signal energy

by using the received pulse shape itself as a correlation template [35],[39]-[48]. TR receivers achieve complete

energy capture, but suffer from a “noise-cross-noise” term, caused by the use of a noisy signal as a correlation

or matched filter template. Consequently, a prohibitively large number of pilots is required to overcome this

limitation.

The main objective of this chapter is to analyze traditional signal detection techniques for UWB systems

in dense multipath channels. The limitation of Rake and TR receivers are mathematically analyzed and

characterized . New receiver structures that overcome those limitations are proposed and studied in Chapter

4.
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3.2 List of Contributions

The two main contributions of this chapter are:

• An accurate characterization of existing/traditional signal detection approaches for UWB systems in

dense multipath channels.

• An analysis of the probability of error of Rake receivers in dense multipath taking channel estimation

error (which is usually ignored in the literature) into account.

3.3 Chapter Organization

The rest of this chapter is organized as follows. The general signal detection system model is introduced in

section 3.4. Throughout this chapter analysis is performed for both binary PAM and binary PPM modulation.

The perfect matched filter receiver, where the receiver template is matched to the received pulse shape, is

analyzed in section 3.5. Although this is an idealized receiver, since it requires perfect channel knowledge, it

provides a useful performance benchmark for the other UWB receivers. A simple matched filter where the

template is matched to the transmit pulse shape is investigated in section 3.6. This receiver achieves very low

energy capture, and illustrates the inefficiency of traditional detection algorithms applied to UWB in dense

multipath. Traditional Rake receivers are analyzed in section 3.7. Previous work in UWB Rake receivers

is first summarized. Then, the probability of error of a UWB Rake receiver employing maximum ratio

combining (MRC) is mathematically derived. Moreover, the effect of channel estimation on Rake receivers,

which is usually neglected in the literature, is analyzed. Simulation results based on real indoor channels

illustrating the limited energy capture of Rake receivers are also provided. Then, generalized TR receivers

are analyzed both theoretically and through simulations in section 3.8. The effect of the noise-cross-noise

term is emphasized. The expression for the probability of error of a TR system utilizing a front-end bandpass

filter is derived. Simulation results illustrate the heavy training overhead required by TR receivers. This

chapter is finally concluded in section 3.9.
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3.4 General System Model

We assume a single-user UWB impulse-radio system [55][56] operating in an indoor multipath channel

corrupted by AWGN. The analysis is applied to two modulation techniques: binary PAM (2-PAM), and

binary PPM (2-PPM). Note that this work may be easily extended to other modulation techniques, as well

as multilevel (M -ary) modulation. Since TH (which generally provides interference mitigation) does not play

a role in the analysis, the TH sequence which is traditionally included in UWB systems is omitted. Note

that TH may be inserted with no significant change in the derivation of performance. For 2-PAM, we write

the transmitted signal as:

sPAM (t) =
√

Ep

∞∑
j=−∞

bjw(t − jTf ) (3.1)

where bj = ±1 is the jth data bit, w(t) is the unit-energy UWB transmit pulse, of duration Tw, and Ep is the

transmit pulse energy. The transmitter and receiver antenna transfer functions are assumed to be included

in w(t). Tf is the symbol duration time (Tf >> Tw).

The transmitted signal for 2-PPM is given by:

sPPM (t) =
√

Ep

∞∑
j=−∞

w(t − jTf − bj + 1
2

∆) (3.2)

where ∆ << Tf is the delay associated with PPM.

The shape of the transmit pulse w(t) does not affect the analysis. However, note that, for all simulations, a

Gaussian pulse is used as the transmit pulse, and is given by:

w(t) =
k√
π

e−k2t2 (3.3)

where k is a parameter controlling the pulse width. It is usually assumed that Tw ≈ π
√

2
k

(see section 2.4).

For all simulations, a pulse of length 500 psec is used. The normalized autocorrelation function of w(t) is

given by:

R(τ ) =
∫ ∞

−∞
w(t)w(t − τ )dt. (3.4)
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For the pulse used in the simulations, R(τ ) is:

R(τ ) =
k2

π

∫ ∞

−∞
e−k2t2e−k2(t−τ)2dt. (3.5)

Further calculations show that:

R(τ ) =
k2

π

∫ ∞

−∞
e
−2k2

(
t2−tτ+ τ2

2

)
dt

R(τ ) =
k2

π

∫ ∞

−∞
e
−2k2

[
(t−τ

2 )2
+ τ2

4

]
dt

R(τ ) =
k2

π
e−

k2τ2
2

∫ ∞

−∞
e−2k2(t− τ

2 )2

dt =
k2

π
e−

k2τ2
2

∫ ∞

−∞
e−2k2t2dt.

Thus:

R(τ ) =
√

π

2k2

k2

π
e−

k2τ2
2 =

k√
2π

e−
k2τ2

2 .

R(τ ) is plotted versus time for k = 5e9 sec−1 (which corresponds to Tw ≈ 880 psec) in Figure 3.2. Note that

R(τ ) ≈ 0 for |τ | > Tw.
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Figure 3.2: Autocorrelation function R(τ). k = 5e9. Energy in pulse normalized to unity.

The indoor multipath channel is given by a linear tap-delay model. The channel impulse response is
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defined as:

h(τ ) =
L−1∑
l=0

αlδ (τ − τl) (3.6)

where δ(t) is the Dirac-delta function, and αl and τl are the magnitude and delay of the lth path, respectively.

Note that, since the channel is spatially-varying, αl and τl are random variables whose respective distributions

depend on the channel’s statistical properties. However, for slowly fading (or quasi-static) channels, the

channel may be assumed to be stationary over the analysis, i.e. αl and τl may be treated as constants.

The received signals for 2-PAM and 2-PPM are written as:

rPAM (t) =
√

Ep

∞∑
j=−∞

bjv (t − jTf ) + n(t) (3.7)

rPPM (t) =
√

Ep

∞∑
j=−∞

v

(
t − jTf − bj + 1

2
∆
)

+ n(t) (3.8)

respectively, where:

v(t) =
L−1∑
l=0

αlw(t − τl) (3.9)

and n(t) is a zero-mean AWGN random process, with double sided PSD equal to No

2 . We assume that Tf is

longer than the channel maximum delay spread τL−1, so that any ISI effects may be ignored.

3.5 Optimal Matched Filter Receiver

If a signal v(t) is corrupted by AWGN, the filter (or receiver) with impulse response matched to v(t) maximizes

the output SNR at the optimal sampling time [57]. Thus, from a matched filter perspective, the optimal

receiver is simply a correlator template is matched to the received pulse shape v(t). Knowledge of v(t) assumes

perfect knowledge of the channel h(t), which is not usually readily available, making this receiver practically

infeasible. However, it provides a performance benchmark, and thus provides a good reference against which

we can test the performance of other UWB receivers. In this section, we derive an expression for the bit

error probability performance of an optimal matched filter receiver. Note that such a receiver is studied

in [58] for PPM modulation, where, by averaging performance over multiple indoor channel realizations, it
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is shown that UWB achieves a low fading margin, due to the ability of the UWB pulse to resolve a large

number of multipath components. UWB’s strong immunity to multipath fading will also be illustrated in

this section’s simulation results.

3.5.1 2-PAM Performance

Assuming 2-PAM, the decision statistic for the jth transmitted bit may be written as:

gj =
∫ (j+1)Tf

jTf

r(t)v(t − jTf )dt (3.10)

which can be expressed as:

gj =
√

EpbjdPAM + nj (3.11)

where:

dPAM =
L−1∑
l1=0

L−1∑
l2=0

αl1αl2R (τl1 − τl2) (3.12)

and nj is a zero-mean Gaussian random variable with variance σ2
n:

σ2
n =

N0

2

L−1∑
l1=0

L−1∑
l2=0

αl1αl2R (τl1 − τl2) =
N0

2
dPAM . (3.13)

The decision is based on the sign of gj. If gj > 0, then the estimated bit is b̂j = 1. Else, b̂j = −1. Since gj is a

Gaussian random variable, then, based on classical error probability analysis in AWGN [57], the probability

of error is given by:

Pe|h(t) = Q

(√
EpdPAM√

σ2
n

)
. (3.14)

After some basic manipulations, we get:

Pe|h(t) = Q

(√
2EpdPAM

N0

)
. (3.15)

Note that Pe|h(t) is the probability of error conditioned on a specific channel realization, i.e. by treating

h(t) as a constant. In order to obtain a more precise error probability expression, Pe|h(t) must be integrated
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over the channel’s statistical distribution. Analytical expressions for this distribution depend on the specific

channel characteristics, and are not readily available. However, the integration operation may be approxi-

mated by averaging Pe|h(t) over multiple channel impulse response profiles obtained from measurements (i.e.

Monte Carlo integration).

Note that, in the case where dPAM = 1, performance is equivalent to classical performance of binary phase

shift keying (BPSK) corrupted by AWGN [57]. For a specific channel realization, dPAM may be greater or

smaller than 1, depending on how the various multipath channel components add up. For example, Figure

3.3 shows the performance of the 2-PAM optimal receiver for a specific Bicone NLOS indoor channel, taken

from measurements. The theoretical curve is obtained by numerically evaluating Equation (3.14) (dPAM for

the specific channel profile is calculated and used in the equation). First, notice that the simulated and the-

oretical performance curves are practically identical. Second, Note that the proposed system’s performance

is about 1 dB better than the AWGN BPSK bound. This can be explained by the fact that the multipath

components added up coherently, resulting in a boost in the signal energy level. However, when performance

is averaged over ten NLOS channel realizations (Figure 3.4), the probability of error of the studied system

approaches the classical BPSK bound.
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Figure 3.3: Optimal receiver performance for a specific Bicone NLOS indoor channel profile. 2-PAM.
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Figure 3.4: Optimal receiver performance averaged over 10 Bicone NLOS indoor channel profiles. 2-PAM.
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3.5.2 2-PPM Performance

We now look at the performance of the optimal receiver for 2-PPM. Since information is conveyed through

the position of the pulse, the template is formed of a linear combination of two shifted versions of v(t), and

may be written as:

vPPM (t) = v (t − ∆) − v (t) . (3.16)

The decision statistic for the jth bit is:

gj =
∫ (j+1)Tf

jTf

r(t)vPPM (t − jTf )dt. (3.17)

The decision is based on the sign of gj. If gj > 0, then the estimated bit is b̂j = 1. Else, b̂j = −1. We

assume bj = 1 for ease of notation. Then, gj can be written as:

gj =
√

EpdPPM + nj (3.18)

where:

dPPM =
L−1∑
l1=0

L−1∑
l2=0

αl1αl2 (R (τl1 − τl2) − R (τl1 − τl2 + ∆)) (3.19)

and nj is a zero-mean Gaussian random variable, given by:

nj =
∫ Tf

0

n(t + jTf ) [v(t − ∆) − v (t)]dt. (3.20)

The variance σ2
n of nj may be calculated as follows:

σ2
n =

∫ Tf

0

∫ Tf

0

E [n(t + jTf )n(λ + jTf )] (v(t − ∆) − v (t)) . (v(λ − ∆) − v (λ)) dtdλ

σ2
n =

N0

2

∫ Tf

0

(v(t − ∆) − v (t))2 dt

σ2
n = N0|dPPM | (3.21)
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where E [.] is the expectance operator.

Thus, gj conditioned on bj = 1 is a Gaussian random variable with mean
√

EpdPPM and variance N0|dPPM |.

Calculations are identical for bj = −1. By symmetry, and along the lines of the previous section, the error

probability is then given by:

Pe|h(t) = Q

⎛⎝√Ep|dPPM |
N0

⎞⎠ . (3.22)

Note that, in the case where dPPM = 1, performance is equivalent to classical performance of any binary

orthogonal modulation corrupted by AWGN, such as binary FSK, or binary ASK [57].

Figure 3.5 tests the validity of Equation (3.22), and compares performance to the binary orthogonal bound,

for a specific NLOS indoor channel, where ∆ is set to Tw. Notice that the theoretical and simulated curves

match, and that performance is slightly better than the AWGN bound. Performance is averaged over ten

Bicone NLOS channel realizations in Figure 3.6, and is practically identical to the AWGN bound, as expected.
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Figure 3.5: Optimal receiver performance for a specific Bicone NLOS indoor channel profile. 2-PPM. ∆ = Tw.
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Figure 3.6: Optimal receiver performance averaged over 10 Bicone NLOS indoor channel profiles. 2-PPM. ∆ = Tw.

3.6 Simple Pulse-Matched Filter Receiver

Traditional analysis of narrowband systems in AWGN assumes that the received pulse shape is identical to

the transmitted pulse shape, or that they are at least highly correlated. Indeed, assuming a multipath-free,

pure AWGN channel, a matched filter employing the transmitted pulse shape w(t) as a template would

achieve the theoretical operational lower bound (such a system is studied in [59]). However, since the indoor

UWB communication channel is extremely frequency selective, the received signal is very rich in resolvable

multipath, which makes a simple correlator matched to the transmit pulse shape highly inefficient from an

energy capture perspective. The limitation of such a simple matched filter is mathematically formulated for

both 2-PAM and 2-PPM in this section (a study for the PPM case may also be found in [60]).

3.6.1 2-PAM Performance

Assuming 2-PAM, the decision statistic for the jth bit is:

gj =
∫ (j+1)Tf

jTf

r(t)w(t − jTf )dt (3.23)
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where the decision is based on the sign of gj. gj can be written as:

gj =
√

EpbjdPAM + nj (3.24)

where:

dPAM =
L−1∑
l=0

αlR (τl) (3.25)

and nj is a zero-mean Gaussian random variable of variance σ2
n = N0

2
. Then, along the lines set in the

previous section, the probability of error conditioned on a specific channel realization is:

Pe|h(t) = Q

(√
Epd2

PAM√
σ2

n

)
(3.26)

which can be written as:

Pe|h(t) = Q

⎛⎝√2Epd
2
PAM

N0

⎞⎠ . (3.27)

The limitation of such a receiver may be observed by considering the factor dPAM , which is a measure of

the system’s energy capture. In fact, recall that, for any delay τl larger than the pulse width Tw, R(τl) = 0.

Since the channel delay spread is typically much larger than the pulse width, the energy in almost all the

multipath components is lost. Figure 3.7 shows the performance of the simple matched filter for a specific

channel realization. First, notice that the error between theoretical (obtained by evaluating Equation (3.27))

and simulated error curves is negligible. Moreover, performance is highly suboptimal, as can be seen by

comparison with the BPSK lower bound. Figure 3.8 shows performance averaged over 10 different channel

realizations, demonstrating that such a receiver wastes almost all of the available signal energy.

40



0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

EbNo (dB)

P
e

Simple Receiver, Simulation
Simple Receiver, Theoretical
AWGN BPSK Bound

Figure 3.7: Simple receiver performance for a specific Bicone NLOS indoor channel profile. 2-PPM.
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Figure 3.8: Simple receiver performance averaged over 10 Bicone NLOS indoor channel profiles. 2-PPM.
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3.6.2 2-PPM Performance

The decision statistic for the j − th bit, assuming 2-PPM, can be written as:

gj =
∫ (j+1)Tf

jTf

r(t) [w(t − jTf − ∆)− w(t − jTf )] dt. (3.28)

gj is a Gaussian random variable, whose mean depends on the transmitted bit. Let
√

EpdPPM,1 and√
EpdPPM,−1 be the mean values of gj for bj = 1 and bj = −1, respectively. We can write:

gj =
√

EpdPPM,bj + nj (3.29)

where

dPPM,1 =
L−1∑
l1=0

αl1 [R (τl1) − R (τl1 + ∆)] (3.30)

dPPM,−1 =
L−1∑
l1=0

αl1 [R (τl1 − ∆) − R (τl1)] (3.31)

and nj is a zero-mean Gaussian random variable, whose variance is found to be σ2
n = N0 [1 − R (∆)]. Then,

the performance is given by:

Pe =
1
2

[
Q

( √
EpdPPM,1√

N0 [1 − R (∆)]

)
+ Q

( √
EpdPPM,−1√

N0 [1 − R (∆)]

)]
. (3.32)

Again, most of the signal energy will be lost due to w(t) autocorrelation properties, and the multipath

channel’s large delay spread. Simulation for an individual channel profile is shown in Figure 3.9. Figure 3.10

shows performance averaged over 10 different channel realizations. The same observations made for 2-PAM

apply.
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Figure 3.9: Simple receiver performance for a specific Bicone NLOS indoor channel profile. 2-PPM. ∆ = Tw.
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Figure 3.10: Simple receiver performance averaged over 10 Bicone NLOS indoor channel profiles. 2-PPM. ∆ = Tw.
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3.7 The Rake Receiver

3.7.1 Introduction

Research in UWB signal detection has mainly concentrated on Rake receivers as candidates for efficient UWB

detectors, because of the inherent fine time resolution of the UWB pulse, and its potential to resolve a large

number of multipath components. Rake receivers are widely used in SS communication systems to accumulate

the energy content of the signal replicas corresponding to the different received multipath components.

A Rake receiver consists of a bank of correlators, where each correlator (or finger) is synchronized to a

multipath component. Multipath energy may be coherently added at the receiver using different finger

combining techniques. In equal gain combining (EGC), for example, the signals from different fingers are

equally weighted and added. Selection combining (SC) consists of choosing the finger with maximum SNR.

Maximum ratio combining (MRC) weights each finger corresponding to its SNR (or the strength of its

corresponding multipath). For a detailed analysis of Rake receivers for traditional communication systems,

the reader is referred to [57] or [62].

UWB Rake receivers suffer from two major drawbacks. First, the signal energy is spread over tens, even

hundreds of multipath components, which leads to a low energy capture when a moderate number of fingers

is used. Second, because of the low energy level per path, estimation of the fingers delays and weights is a

challenging task at low SNR [27, 28, 29, 30, 31, 32].

Several papers have focused on UWB Rake receivers in recent years. In [33], the performance of an MRC

Rake receiver in an indoor multipath environment based on the ∆−K channel model is studied. The finger

delays are uniformly spread over the symbol duration, and the MRC weights are assumed to be known. In

[34], a semi-analytical study of three types of MRC Rake receivers is presented, based on indoor office channel

measurements: a partial Rake receiver, where the first F arriving multipath components are combined, an

improved, selective Rake receiver, where the F strongest paths are selected, and an all-Rake receiver, where

all the available paths are combined perfectly. Rake receivers based on square law combining (SLC), where

the signals from different Rake fingers are first squared then added, are compared to MRC Rake receivers

in [35]. Indoor channel measurements are used, and perfect channel estimation is assumed, i.e., the MRC
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weights are known. An analysis of the probability of error of MRC Rake receivers based on tap-delay channel

models is presented in [36], assuming perfect channel estimation. It is shown that the increase in energy

capture becomes negligible for diversity orders exceeding 100. The impact of imperfect channel estimation

is studied in [37]. However, the path delays are assumed to be known, and only the path amplitudes (or

the finger weights) are estimated. The impact of the UWB pulse width on Rake receiver performance is

investigated in [38]. It is found that shortening the pulse width drastically increases the number of resolvable

multipath components, therefore enhancing the energy capture, if enough fingers are used.

In this section, the performance limitation of Rake receivers is mathematically formulated for 2-PAM.

Performance for 2-PPM is also included for completeness. Specifically, the effect of channel estimation on

Rake receivers, which is usually neglected, is analyzed. Simulation results, based on real indoor channel

measurements, are also included to validate the analysis.

3.7.2 Channel Estimation

Since no a priori channel information is available, the Rake receiver must first estimate the delays and

weights of the fingers before forming the decision statistic. We assume channel estimation is performed using

Np unmodulated pulses, or pilots. The received training sequence can be written as:

rtr(t) =
√

Ep

Np−1∑
k=0

v(t − kTf ) + np(t) (3.33)

where np(t) is zero-mean AWGN, with PSD No

2 . In the channel estimation stage, the Rake receiver estimates

the correlations, or weights, α̂f , between the received pilot signal and a stored transmit pulse shape delayed

by τf , 1 ≤ f ≤ Fmax. The F fingers are then selected based on the F strongest weights among the Fmax

available weights. Moreover, any two fingers are separated by at least Tw, to ensure time diversity.

The estimated, normalized weight at delay τf can be written as:

α̂f =
1

Np

√
Ep

Np−1∑
n=0

∫ nTf+Tw

nTf

rtr(t).w(t − nTf − τf)dt (3.34)
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which evaluates to:

α̂f =
L−1∑
l=0

αlR(τl − τf) + nf (3.35)

where nf is a zero mean Gaussian random variable with variance No

2NpEp
. Note that, due to the noise and

the paths cross-correlations components, there is no guarantee that the F strongest weights will strictly

correspond to the F strongest multipath components.

Let α̂fi be the weight of the ith selected finger at delay τfi, and α
′
fi

=
∑L−1

l=0 αlR(τl − τfi). Then, the

template constructed by an F - finger Rake receiver is:

v̂(t) =
F−1∑
i=0

[
α

′
fi

+ nfi

]
w(t − τfi), (3.36)

where nfi, ∀i is a zero mean Gaussian random variable with variance No

2NpEp
.

3.7.3 2-PAM Performance

The decision statistic for the jth bit, formed by the Rake receiver based on MRC, can be written as:

gj =
∫ (j+1)Tf

jTf

r(t).v̂(t − jTf )dt. (3.37)

The bit decision is made based on the sign of gj. Assuming bj = 1, without loss in generality, we write gj as:

gj =
√

EpU + X1 + X2 + X3 (3.38)
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where:

U =
F−1∑
i=0

L−1∑
j=0

αjα
′
fi

R(τj − τfi ) (3.39)

X1 =
∫ (j+1)Tf

jTf

n(t).
F−1∑
i=0

α
′
fi

w(t − τfi − jTf )dt (3.40)

X2 =
∫ (j+1)Tf

jTf

n(t).
F−1∑
i=0

nfiw(t − τfi − jTf )dt (3.41)

X3 =
√

Ep

∫ Tf

0

L−1∑
l=0

αlw(t − τl).
F−1∑
i=0

nfiw(t − τfi )dt (3.42)

where X1, X2 and X3 are zero-mean Gaussian random variables. The variance of gj is given by E(X2
1 ) +

E(X2
2 ) + E(X2

3 ). The calculations are listed below:

E(X2
1 ) = E

⎡⎣∫ Tf

0

∫ Tf

0

n(t).n(λ)
F−1∑
i=0

α
′
fi

w(t − τfi).
F−1∑
j=0

α
′
fj

w(λ − τfj )dtdλ

⎤⎦
=

∫ Tf

0

∫ Tf

0

E [n(t).n(λ)]
F−1∑
i=0

α
′
fi

w(t − τfi ).
F−1∑
j=0

α
′
fj

w(λ − τfj )dtdλ

=
No

2

∫ Tf

0

F−1∑
i=0

α
′
fi

w(t − τfi).
F−1∑
j=0

α
′
fj

w(t − τfj )dt

=
No

2

⎡⎣F−1∑
i=0

α
′2
fi

+
F−1∑
i=0

F−1∑
j=0,i �=j

α
′
fi

α
′
fj

R(τfi − τfj )

⎤⎦ . (3.43)

E(X2
2 ) = E

⎡⎣∫ Tf

0

∫ Tf

0

n(t).n(λ)
F−1∑
i=0

.
F−1∑
j=0

nfinfj w(t − τfi)w(λ − τfj )dtdλ

⎤⎦
=

F−1∑
i=0

.

F−1∑
j=0

∫ Tf

0

∫ Tf

0

E
[
n(t).n(λ)nfinfj

]
w(t − τfi)w(λ − τfj )dtdλ

=
F−1∑
i=0

∫ Tf

0

∫ Tf

0

E
[
n(t).n(λ)n2

fi

]
w(t − τfi)w(λ − τfi )dtdλ

=
N2

o

4EpNp

F−1∑
i=0

∫ Tf

0

w2(t − τfi)dt = F.
N2

o

4EpNp
. (3.44)
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E
(
X2

3

)
=

No

2Np

∫ Tf

0

∫ Tf

0

L−1∑
l1=0

L−1∑
l2=0

F−1∑
i=0

αl1αl2w(t − τl1)w(λ − τl2)w(t − τfi)w(λ − τfi )dtdλ

=
No

2Np

∫ Tf

0

L−1∑
l1=0

L−1∑
l2=0

F−1∑
i=0

αl1αl2R(τl1 − τfi)w(λ − τl2)w(λ − τfi )dλ

=
No

2Np

L−1∑
l1=0

L−1∑
l2=0

F−1∑
i=0

αl1αl2R(τl1 − τfi )R(τl2 − τfi). (3.45)

We get the following expression for the probability of bit error:

Pe = Q

⎛⎜⎝√√√√2Ep

No
.

U2

Y1 + Y2
Np

+
(

2Np

F
Ep

No

)−1

⎞⎟⎠ (3.46)

where:

Y1 =
F−1∑
k=0

α
′2
fk

+
F−1∑
i=0

F−1∑
j=0,j �=i

α
′
fi

α
′
fj

R(τfi − τfj ) (3.47)

Y2 =
L−1∑
l1=0

L−1∑
l2=0

F−1∑
i=0

αl1αl2R(τl1 − τfi)R(τl2 − τfi). (3.48)

Let:

ZF =
U2

Y1 + Y2
Np

+
(

2Np

F
Ep

No

)−1 . (3.49)

ZF represents the effective receiver energy capture. ZF increases as more fingers are added. However, it

has been shown that a typical indoor NLOS channel may have hundreds of resolvable dominant specular

components (see Table 2.1). Even if a Rake receiver with so many fingers is realizable, it would only be

able to capture part of the signal energy [27][28]. Also, in the absence of a priori channel information,

estimation of the fingers’ delays and weights is a challenging task in dense multipath. In fact, the term

Y2
Np

+
(

2Np

F
Ep

No

)−1

degrades performance for a small number of pilots at low SNR values, which are the

typical operating conditions for an UWB system.
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3.7.4 2-PPM Performance

Derivation of the 2-PPM Rake receiver performance is straightforward, and is similar to the derivation in

the 2-PAM. It is somewhat cumbersome, and results in more complex notations, but does not provide any

additional insight compared to 2-PAM. Nonetheless, the analysis is included here for completeness. The

decision statistic for the jth bit can be written as:

gj =
∫ (j+1)Tf

jTf

r(t). [v̂(t − jTf − ∆) − v̂(t − jTf )] dt. (3.50)

Let gj,1 and gj,−1 be the decision statistics corresponding to bj = 1 and bj = −1, respectively. Then:

gj,1 =
√

EpU1 + X1 + X2 + X3,1 (3.51)

gj,−1 =
√

EpU−1 + X1 + X2 + X3,−1 (3.52)

where:

U1 =
F−1∑
i=0

L−1∑
j=0

αjα
′
fi

[R(τj − τfi ) − R(τj − τfi + ∆)]

U−1 =
F−1∑
i=0

L−1∑
j=0

αjα
′
fi

[R(τj − τfi − ∆) − R(τj − τfi)]

X1 =
∫ (j+1)Tf

jTf

n(t).
F−1∑
i=0

α
′
fi

[w(t − τfi − jTf − ∆) − w(t − τfi − jTf )] dt

X2 =
∫ (j+1)Tf

jTf

n(t).
F−1∑
i=0

nfi [w(t − τfi − jTf − ∆) − w(t − τfi − jTf )]dt

X3,1 =
√

Ep

∫ Tf

0

L−1∑
l=0

αlw(t − τl − ∆).
F−1∑
i=0

nfi [w(t − τfi − ∆) − w(t − τfi )] dt

X3,−1 =
√

Ep

∫ Tf

0

L−1∑
l=0

αlw(t − τl).
F−1∑
i=0

nfi [w(t − τfi − ∆) − w(t − τfi )]dt.
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X1, X2, X3,1 and X3,−1 are zero-mean Gaussian random variables. The calculations for their second moments

are listed below:

E(X2
1 ) = E

⎡⎣∫ Tf

0

∫ Tf

0

n(t).n(λ)
F−1∑
i=0

α
′
fi

[w(t − τfi − ∆) − w(t − τfi)] .
F−1∑
j=0

α
′
fj

[
w(λ − τfj − ∆) − w(λ − τfj )

]
dtdλ

⎤⎦
=

No

2

∫ Tf

0

F−1∑
i=0

α
′
fi

[w(t − τfi − ∆) − w(t − τfi )] .
F−1∑
j=0

α
′
fj

[
w(t − τfj − ∆) − w(t − τfj)

]
dt,

=
No

2

⎡⎣F−1∑
i=0

F−1∑
j=0

α
′
fi

α
′
fj

[
2R(τfi − τfj ) − R(τfj − τfi − ∆) − R(τfj − τfi + ∆)

]⎤⎦ .

E(X2
2 ) = E[

∫ Tf

0

∫ Tf

0

n(t).n(λ)
F−1∑
i=0

.

F−1∑
j=0

nfinfj [w(t − τfi − ∆) − w(t − τfi + ∆)] .
[
w(λ − τfj − ∆) − w(λ − τfj )

]
=

F−1∑
i=0

.
F−1∑
j=0

∫ Tf

0

∫ Tf

0

E[n(t).n(λ)nfinfj [w(t − τfi − ∆) − w(t − τfi ] .
[
w(λ − τfj − ∆) − w(λ − τfj )

]
]dtdλ

=
F−1∑
i=0

∫ Tf

0

∫ Tf

0

E[n(t).n(λ)n2
fi

[w(t − τfi − ∆) − w(t − τfi )] . [w(λ − τfi − ∆)− w(λ − τfi)]]dtdλ

=
N2

o

4EpNp

F−1∑
i=0

∫ Tf

0

[w(t − τfi − ∆) − w(t − τfi )]
2
dt

= [F − R (∆)] .
N2

o

2EpNp
.

E
(
X2

3,1

)
=

No

2Np

∫ Tf

0

∫ Tf

0

L−1∑
l1=0

L−1∑
l2=0

F−1∑
i=0

αl1αl2w(t − τl1 − ∆)w(λ − τl2 − ∆)

[w(t − τfi − ∆) − w(t − τfi)] [w(λ − τfi − ∆)− w(λ − τfi)] dtdλ

=
No

2Np

∫ Tf

0

L−1∑
l1=0

L−1∑
l2=0

F−1∑
i=0

αl1αl2 (R(τl1 − τfi ) − R(τl1 − τfi + ∆))w(λ − τl2 − ∆)

[w(λ − τfi − ∆) − w(λ − τfi )]dλ

=
No

2Np

L−1∑
l1=0

L−1∑
l2=0

F−1∑
i=0

αl1αl2 . [R(τl1 − τfi) − R(τl1 − τfi + ∆)] . [R(τl2 − τfi) − R(τl2 − τfi + ∆)] .
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E
(
X2

3,−1

)
=

No

2Np

∫ Tf

0

∫ Tf

0

L−1∑
l1=0

L−1∑
l2=0

F−1∑
i=0

αl1αl2w(t − τl1)w(λ − τl2)

[w(t − τfi − ∆) − w(t − τfi + ∆)] [w(λ − τfi − ∆) − w(λ − τfi )]dtdλ

=
No

2Np

∫ Tf

0

L−1∑
l1=0

L−1∑
l2=0

F−1∑
i=0

αl1αl2 (R(τl1 − τfi − ∆) − R(τl1 − τfi))w(λ − τl2)

[w(λ − τfi − ∆) − w(λ − τfi)] dλ

=
No

2Np

L−1∑
l1=0

L−1∑
l2=0

F−1∑
i=0

αl1αl2 . [R(τl1 − τfi − ∆) − R(τl1 − τfi)] . [R(τl2 − τfi − ∆) − R(τl2 − τfi)] .

We get the following expression for the probability of bit error:

Pe =
1
2

[
Q

(√
EpU2

1

E (X2
1 ) + E (X2

2 ) + E
(
X2

3,1

))+ Q

(√
EpU2−1

E (X2
1 ) + E (X2

2 ) + E
(
X2

3,−1

))] .

3.7.5 Simulation Results

The performance of MRC Rake receivers using 2-PAM is analyzed through simulation in this section. Recall

that a Gaussian pulse of length 500 psec is used.

Figure 3.11 validates the theoretical 10-finger Rake performance (Equation (3.46)) for an arbitrary Bicone

channel profile by simulation. Perfect channel knowledge is assumed (i.e. Np is infinite). When numerically

evaluating Equation (3.46), it is assumed that the ten strongest resolvable paths are selected. First, note that

the theoretical and simulated curves match with negligible error. Second, note that performance is about 3

dB worse than the theoretical lower bound (BPSK performance in AWGN). The robustness of the theoretical

expression is tested for imperfect channel estimation in Figures 3.12 (Np = 100) and 3.13 (Np = 10). Notice

the performance degradation brought by errors in channel estimation. Moreover, note that the error between

simulated and theoretical curves grows as Np decreases, because the assumption that the 10 strongest paths

are selected no longer holds. In fact, in the presence of estimation errors, the fingers are no longer set at

delays strictly corresponding to specular components. At the limit of the system’s operation (very low SNR,

very low Np), the multipath components are completely covered by noise, and fingers are chosen randomly.
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Figure 3.11: MRC-Rake Performance. 2-PAM. 10 Fingers. Perfect channel estimation. Dotted line represents BPSK
performance in AWGN.
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Figure 3.12: MRC-Rake Performance. 2-PAM. 10 Fingers. 100 pilot-channel estimation. Dotted line represents
BPSK performance in AWGN.
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Figure 3.13: MRC-Rake Performance. 2-PAM. 10 Fingers. 10 pilot-channel estimation. Dotted line represents
BPSK performance in AWGN.

Figures 3.14 and 3.15 compare theoretical and simulated performance for 20 fingers (perfect channel

estimation and Np = 100, respectively ), for the same channel profile. Note a gain of about 1 dB compared

to the 10-finger case. Moreover, the error between theory and simulation is negligible for 100-pilot channel

estimation.

Figure 3.16 compares performance of 10, 20 and 50-finger Rake receivers for Np = 100. Notice the

diminishing returns when increasing the number of fingers from 10 to 20, and from 20 to 50, respectively.

50 fingers yield a performance that is about 1.5 dB worse than the BPSK lower bound. The effect of the

training load for 10, 20 and 50 fingers is investigated in Figure 3.17. Note that the error probability is high

for all three receivers for low training; performance improves with increasing Np, until it reaches a floor

(which is the perfect estimation case). The floor is determined by the achievable finger energy capture. The

receiver with less fingers reaches the floor for a smaller Np (45 pilots for 10 fingers, 80 pilots for 20 fingers,

100 pilots for 50 fingers), because fingers corresponding to low amplitude paths require more averaging to

surpass the noise level. Finally, Figure 3.18 shows the energy capture (the energy in the selected paths)

versus the number of Rake fingers. Notice that 70 fingers are required to achieve 90% energy capture. 10

fingers achieve less than 50% energy capture.
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Figure 3.14: MRC-Rake Performance. 2-PAM. 20 Fingers. Perfect channel estimation. Dotted line represents BPSK
performance in AWGN.
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Figure 3.15: MRC-Rake Performance. 2-PAM. 20 Fingers. 100 pilot-channel estimation. Dotted line represents
BPSK performance in AWGN.
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Figure 3.16: Performance of 10, 20 and 50 finger-Rake, averaged over 10 Bicone NLOS realizations. 2-PAM. 100
pilot-channel estimation.
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NLOS realizations. 2-PAM. Eb
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Figure 3.18: Energy capture versus number of fingers, averaged over 30 Bicone NLOS channel realizations.
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3.8 The Pilot-Assisted Receiver

3.8.1 Introduction

The pilot-assisted receiver is a widely studied type of receiver which aims at gathering all the signal energy

by using the received pulse shape itself as a correlation template. This system can be thought of as a gen-

eralization of traditional autocorrelation, or TR receivers. In the original form of a TR system, a pair of

unmodulated and modulated signals is transmitted, and the former is employed to demodulate the latter.

This receiver can capture the entire signal energy for a slowly varying channel without requiring channel

estimation. However, it suffers from the use of a noisy received signal as a template for demodulation (the

noise-cross-noise term).

TR systems were first proposed in the 1920s [35]. However, fundamental system weaknesses, such as band-

width inefficiency and high noise vulnerability, coupled with the advent of stored reference and matched filter

implementations in the 1950s and 1960s largely diminished research interest in TR schemes [61]. Research in

UWB autocorrelation receivers has been relatively active recently, fueled by the need for receivers that can

achieve high energy capture in dense multipath. A delay-hopped, TR Communications system was recently

built by the research and development center in GE. Experiments show the viability of such a system in

an indoor multipath environment [39][40]. An analytical characterization of the performance of an UWB

autocorrelation TR system can be found in [41]. Experimental results comparing the TR receiver with Rake

receiver structures can be found in [35]. It is shown that the TR receiver performs slightly better than a

single finger Rake receiver with MRC. The effect of the noise-cross-noise term is also illustrated. A general

framework for the analysis of TR systems in arbitrary fading channels is presented in [42]. A general pilot

waveform assisted modulation (PWAM) scheme, which subsumes TR as a special case, is introduced in

[43]. The values of the systems parameters are derived to minimize the channel′s MSE and maximize the

average capacity. The circumstances under which the UWB autocorrelation-TR system is optimal are also

analyzed. In [44], the performance of a TR system is derived with and without averaging many pilot signals.

A differential TR system is also proposed. However, it is difficult to average many signals when differential

modulation is used. In [45], an improved TR template is introduced, where both pilot and data symbols are
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used to reconstruct the template, based on a generalized likelihood ratio test. A combination of differential

and traditional TR systems, coupled with the use of linear block codes instead of the standard repetition

code, in suggested in [46], in order to reduce the training load. The effect of the integration time on system

performance is investigated in [47]. It is shown that excessive integration time, which introduces more noise

to the system, is less harmful than short integration times, which results in reduced energy capture. A

generalization of TR systems, where the correlator template is multiplied by weighting functions, obtained

based on the average likelihood test, is suggested in [48].

In this section, a general pilot-assisted system is mathematically analyzed. Analysis is performed based

on an arbitrary number of pilot symbols Np. Note that the system degenerates into a standard TR system

for Np = 1. The detrimental effect of the noise-cross-noise term is emphasized. The need for a noise bandlim-

iting filter at the receiver front end is demonstrated. The section is concluded by simulation results, which

illustrate various performance aspects of pilot-assisted systems. A proposed improvement on this system is

proposed in the following section.

3.8.2 Receiver Template

We assume a frame structure comprising a preamble of Np unmodulated pilot symbols, followed by Nd

data symbols. The Np pilots are processed to generate a template estimate. This estimate is then used to

demodulate the Nd data symbols. Assuming the pilot structure of Equation (3.33), the estimated, normalized

template is:

v̂(t) =
1√

EpNp

Np−1∑
k=0

rtr (t + kTf) , 0 ≤ t ≤ Tf (3.53)

which can be written as:

v̂(t) = v(t) + ntr(t) (3.54)

where ntr(t) is a zero-mean AWGN process with PSD N0
2NpEp

.
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3.8.3 Signal Detection in the Absence of a Bandlimiting Filter

In this section we show that the correlation operation results in a noise term with infinite power in the

absence of a front-end bandlimiting filter. Assuming 2-PAM, the decision statistic for the jth bit is:

gj =
∫ jTf+Tint

jTf

v̂(t)r(t)dt (3.55)

where Tint ≤ Tf is the integration time. The expression may be written as:

gj =
√

Ep

∫ Tint

0

v2(t)dt +
∫ jTf+Tint

jTf

v(t − jTf)n(t)dt +

√
Ep

∫ jTf+Tint

jTf

v(t − jTf)ntr(t)dt +
∫ jTf+Tint

jTf

n(t)ntr(t)dt. (3.56)

Let gn be the problematic noise-cross-noise term:

gn =
∫ jTf+Tint

jTf

n(t)ntr(t)dt. (3.57)

The variance σ2
g of this zero-mean term is calculated as follows:

σ2
g =

∫ Tint

0

∫ Tint

0

E [n(t).ntr(t)n(λ).ntr(λ)] dtdλ

σ2
g =

∫ Tint

0

∫ Tint

0

Rn(t − λ).Rntr(t − λ)dtdλ (3.58)

where Rn(τ ) and Rntr(τ ) are the autocorrelation functions of n(t) and ntr(t), respectively, and are given by:

Rn(τ ) =
No

2
δ(τ ) (3.59)

Rntr(τ ) =
No

2Np
δ(τ ) (3.60)
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where δ(τ ) is defined as:

δ(0) = ∞ (3.61)

δ(τ ) = 0, τ 
= 0 (3.62)∫ ∞

−∞
δ(t)dt = 1 (3.63)

where ∞ represents infinity. Therefore:

σ2
g =

∫ Tint

0

∫ Tint

0

No

2
δ(t − λ).

No

2Np
δ(t − λ)dtdλ

σ2
g =

N2
o

4Np

∫ Tint

0

∫ Tint

0

δ(t − λ).δ(t − λ)dtdλ.

Then, using the sifting property [65],

∫ Tint

0

δ(t − λ).δ(t − λ)dt =
∫ Tint−λ

−λ

δ(x).δ(x)dx = δ(0) = ∞

Therefore, σ2
g = ∞, and the noise-cross-noise term’s power overwhelms performance.

3.8.4 2-PAM Performance in the Presence of Band-Limiting

In order to control the power in the noise-cross-noise, we assume that all received signals are processed by

a bandpass filter of bandwidth W and center frequency fc [5]. We also assume that W is large enough such

that negligible inter pulse and inter-symbol interference occur. The decision statistic for the jth bit is then:

gj =
∫ jTf+Tint

jTf

r
′
(t).v̂

′
(t − jTf )dt. (3.64)

Assuming bj = 1, gj can be written as:

gj =
√

EpU + X1 + X2 + X3 (3.65)

60



where:

U =
∫ Tint

0

v
′2(t)dt (3.66)

X1 =
∫ jTf+Tint

jTf

v
′
(t − jTf )n

′
(t)dt (3.67)

X2 =
√

Ep

∫ jTf+Tint

jTf

v
′
(t − jTf )n

′
tr(t)dt (3.68)

X3 =
∫ jTf+Tint

jTf

n
′
(t)n

′
tr(t)dt (3.69)

and r
′
(t),v

′
(t), v̂

′
(t), n

′
(t) and n

′
tr(t) are the filtered versions of r(t),v(t), v̂(t), n(t) and ntr(t), respectively.

Note that the autocorrelation functions of n
′
(t) and n

′
tr(t) are now given by [5]:

R
′
n(τ ) = NoWsinc(Wτ )cos(2πfcτ ) (3.70)

R
′
ntr(τ ) =

No

Np
Wsinc(Wτ )cos(2πfcτ ) (3.71)

where sinc(x) = sin(πx)
πx

.

Calculation of the second moments of X1, X2 and X3 are listed below:

E
(
X2

1

)
= E

(∫ jTf+Tint

jTf

∫ jTf+Tint

jTf

v
′
(t − jTf )n

′
(t)v

′
(λ − jTf )n

′
(λ)dtdλ

)

E
(
X2

1

)
= N0W

∫ Tint

0

∫ Tint

0

v
′
(t)v

′
(λ)sinc(W (t − λ)).cos(2πfc(t − λ))dtdλ.

E
(
X2

2

)
= E

(∫ jTf+Tint

jTf

∫ jTf+Tint

jTf

v
′
(t − jTf )n

′
tr(t)v

′
(λ − jTf )n

′
tr(λ)dtdλ

)

E
(
X2

2

)
=

N0W

Np

∫ Tint

0

∫ Tint

0

v
′
(t)v

′
(λ)sinc(W (t − λ)).cos(2πfc(t − λ))dtdλ.
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E
(
X2

3

)
= E

(∫ jTf+Tint

jTf

∫ jTf+Tint

jTf

n
′
(t − jTf )n

′
tr(t)n

′
(λ − jTf )n

′
tr(λ)dtdλ

)

E
(
X2

3

)
=

N2
0 W 2

NpEp

∫ Tint

0

∫ Tint

0

sinc2(W (t − λ)).cos2(2πfc(t − λ))dtdλ.

Then, since gj is a Gaussian random variable, the probability of error is given by:

Pe = Q

⎛⎜⎝√√√√Ep

No
.

U2

Np+1
Np

Z2 +
(

NpEp

NoZ1

)−1

⎞⎟⎠ . (3.72)

where

Z1 = W 2

∫ Tint

0

∫ Tint

0

sinc2(W (t − λ)).cos2(2πfc(t − λ))dtdλ (3.73)

Z2 = W

∫ Tint

0

∫ Tint

0

v
′
(t)v

′
(λ)sinc(W (t − λ)).cos(2πfc(t − λ))dtdλ. (3.74)

The degradation caused by the noise-cross-noise term is mathematically represented by
(

NpEp

NoZ1

)−1

. Simula-

tion results will show that a large number of pilots is required to hinder its effects.

3.8.5 2-PPM Performance

Similar to the Rake receiver case, derivation of performance for 2-PPM is straightforward, but leads to

cumbersome equations and calculations, without significant added insight. Although simulation results will

be solely based on 2-PAM, the steps of the 2-PPM analysis are included for completeness.

The decision statistic for the jth bit is given by:

gj =
∫ jTf+Tint

jTf

r
′
(t).

[
v̂

′
(t − jTf − ∆) − v̂

′
(t − jTf )

]
dt (3.75)

which can be written as:

gj =
∫ Tint

0

r
′
(t + jTf ).

[
v

′
(t − ∆) − v

′
(t) + n

′
tr(t − ∆) − n

′
tr(t)

]
dt. (3.76)
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Assuming bj = 1, gj can be written as:

gj =
√

EpU + X1 + X2 + X3 (3.77)

where:

U =
∫ Tint

0

v
′2(t)dt −

∫ Tint

0

v
′
(t − ∆).v

′
(t)dt (3.78)

X1 =
∫ Tint

0

v
′
(t) .

[
n

′
tr(t − ∆) − n

′
tr(t)

]
dt (3.79)

X2 =
∫ Tint

0

n
′
(t).

[
v

′
(t − ∆)− v

′
(t)
]
dt (3.80)

X3 =
∫ Tint

0

n
′
(t).

[
n

′
tr(t − ∆) − n

′
tr(t)

]
dt. (3.81)

Moments calculation are listed below:

E
(
X2

1

)
= E

(∫ Tint

0

∫ Tint

0

v
′
(t)v

′
(λ)

[
n

′
tr (t − ∆) − n

′
tr (t)

] [
n

′
tr (λ − ∆) − n

′
tr (λ)

]
dtdλ

)

E
(
X2

1

)
=

N0W

Np

∫ Tint

0

∫ Tint

0

v
′
(t)v

′
(λ)[2sinc(W (t − λ)).cos(2πfc(t − λ)) −

sinc(W (t − λ − ∆)).cos(2πfc(t − λ − ∆)) − sinc(W (t − λ + ∆)).cos(2πfc(t − λ + ∆))]dtdλ

E
(
X2

2

)
= E

(∫ Tint

0

∫ Tint

0

n
′
(t)n

′
(λ)

[
v

′
(t − ∆) − v

′
(t)
] [

v
′
(λ − ∆) − v

′
(λ)

]
dtdλ

)

E
(
X2

2

)
= N0W

∫ Tint

0

∫ Tint

0

[
v

′
(t − ∆) − v

′
(t)
] [

v
′
(λ − ∆) − v

′
(λ)

]
.sinc(W (t − λ)).cos(2πfc(t − λ))dtdλ

E
(
X2

3

)
= E

(∫ Tint

0

∫ Tint

0

n
′
(t)n

′
(λ)

[
n

′
tr(t − ∆) − n

′
tr(t)

] [
n

′
tr(λ − ∆) − n

′
tr(λ)

]
dtdλ

)

E
(
X2

3

)
=

N2
0 W 2

NpEp

∫ Tint

0

∫ Tint

0

sinc(W (t − λ)).cos(2πfc(t − λ))[2sinc(W (t − λ)).cos(2πfc(t − λ)) − sinc(W (t − λ − ∆))

.cos(2πfc(t − λ − ∆)) − sinc(W (t − λ + ∆)).cos(2πfc(t − λ + ∆))]dtdλ.

Although the terms are correlated because of the use of two delayed versions of the same noisy template, it

can be shown that gj may be approximated by a Gaussian random variable [35]. Then, by symmetry, the
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error probability is given by:

Pe = Q

(√
EpU2

E (X2
1 ) + E (X2

2 ) + E (X2
3 )

)
. (3.82)

3.8.6 Simulation Results

The performance of pilot-assisted receivers using 2-PAM is analyzed through simulation in this section. For

all cases, the front-end bandpass filter parameters are set to W = 7 GHz and fc = 3.5 GHz. A Gaussian

transmit pulse (Tw=500 psec) is employed.

Figure 3.19 compares the simulated and theoretical (Equation (3.72)) error probability performances for a

specific Bicone NLOS channel profile, for Np = 10, 50 and 100, respectively, and an integration time Tint

equal to Tf . First, note that the error between analysis and simulation is negligible. Moreover, diminishing

gains are observed as the number of pilot increases: a gain of about 3 dB when passing from 10 to 50 pilots,

and a gain of about 1 dB when passing from 50 to 100 pilots. Performance for Np = 100 is about 2 dB

worse than the BPSK lower bound in AWGN. Figure 3.20 illustrates performance averaged over 30 different
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Figure 3.19: Pilot-assisted receiver performance for an arbitrary NLOS channel profile. 2-PAM. Np = {10, 50, 100}.

NLOS channel profiles for varying Np between 10 and 1000. Notice that a load of 1000 pilots is about 0.5 dB
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worse than the lower bound. Figure 3.21 studies performance versus the integration time Tint (taken as a

fraction of the symbol time Tf ), for Np = 100 and Ep

N0
=5 dB. Notice that the error probability decreases with

increasing Tint, up to an optimal time (about 0.5Tf), after which performance deteriorates. In fact, short

integration times waste a significant fraction of the symbol energy, whereas long integration times introduce

more noise to the system while only capturing the energy in low amplitude paths. Moreover, note that short

integration times are more harmful than long integration times.

Figures 3.22, 3.23 and 3.24 plot the bit error probability versus Np and Tint = 0.5Tf , for Eb

N0
= 0 dB, 5 dB,

0 1 2 3 4 5 6 7 8 9 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Pilot−Based Matched Filter Performance

SNR (dB)

B
E

R

10 Pilots
100 Pilots
250 Pilots
500 Pilots
1000 Pilots
Lower Bound

Figure 3.20: Pilot-assisted receiver performance for different Np. 2-PAM. Tint=50 nsec.

and 10 dB, respectively. Note that performance converges to the lower bound faster for higher Eb

N0
, because

of the use of a cleaner template. Performance is especially unacceptable for low Eb

N0
and low training.

Figure 3.25 compares the performance of the pilot-assisted receiver to a 20-finger Rake receiver using MRC.

The number of training symbols used to set the Rake fingers is varied. Note that the Rake probability of

error reaches a floor for 100 pilot-training, at which performance is about 3 dB away from AWGN reception,

whereas the pilot-assisted receiver performance keeps improving with more training symbols. The Rake

receiver is inherently limited by its low energy capture, whereas the pilot-assisted receiver can only achieve

good performance by using a heavy training load.
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Figure 3.21: Pilot-assisted receiver performance for different Tint. 2-PAM. Np = 100.
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Figure 3.22: Pilot-assisted receiver performance versus number of pilots.
Ep
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Figure 3.23: Pilot-assisted receiver performance versus number of pilots.
Ep
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Figure 3.24: Pilot-assisted receiver performance versus number of pilots.
Ep
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= 10 dB.
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Figure 3.25: Comparing Rake and pilot-assisted receivers for different number of pilots.

3.9 Conclusions

This chapter presents a discussion of traditional signal detection for UWB in dense multipath. The fun-

damental weaknesses of TR and Rake receivers are mathematically formulated, and illustrated through

analysis. TR receivers suffer from the detrimental noise-cross-noise term, which requires an unacceptable

training load to limit its effects. Rake receivers are inherently impeded by the limited energy capture for a

moderate number of fingers.

Due to the inadequacy of traditional signal detection algorithms applied to UWB in dense multipath,

new and improved algorithms which circumvent those limitations are required. Two such modified systems

are discussed in the next chapter.
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Chapter 4

UWB Signal Detection in Dense

Multipath: New and Proposed

Approaches

4.1 Introduction

The limitations of Rake and pilot-assisted receivers were discussed in chapter 3. In this chapter, new receiver

structures which overcome these limitations are analyzed. Specifically, two new receivers are proposed:

First, an iterative data-aided TR receiver with low parity density check (LDPC) coding [49] is intro-

duced, where the training overhead traditionally required by TR systems is reduced by iteratively extracting

channel information from both the training and data signals. Convergence of the iterative algorithm is en-

sured by using a strong forward error correction code (FEC). Error correction coding is especially attractive

for systems employing low-duty cycle pulses, since coding can be added while maintaining the data rate by

reducing the symbol repetition time. This receiver exploits the synergy between error correction coding,

improved channel estimation and large available UWB bandwidth to yield large performance gains with

reduced training overhead.
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Second, a receiver based on sequence optimization [50][51][52] is proposed, where the transmit

waveform and receiver template are designed to force the channel multipath components to add up coher-

ently at the output of the receiver. The transmit waveform is made up of a train of delayed and scaled pulses,

the amplitudes of which can be represented by a real-valued sequence. The receiver template is modeled by

another real-valued sequence. The transmitter and receiver sequences are chosen such that the correlation

of the received signal (the sequence convolved with the multipath channel) with the receive template is

maximized. Contrary to a traditional Rake receiver, where performance is limited by the low energy capture

from a limited number of paths, the proposed technique results in constructive inter-path interference at the

receiver output. A transmit beamforming effect is achieved, resulting in very high energy capture with the

use of a relatively simple receiver.

4.2 List of Contributions and Publications

The main contributions of this chapter are:

• An accurate characterization of existing/traditional signal detection approaches for UWB systems in

dense multipath channels.

• A proposed iterative data-aided pilot-assisted receiver with LDPC, which reduces the training overhead

required by traditional TR receivers, and yet achieves high performance gains.

• A proposed sequence optimization receiver, which exploits the dense multipath structure and achieves

very high energy capture by forcing coherent combining of the multipath components in the channel

and at the output of the receiver. Performance is studied for single-user, multi-user and NBI scenarios.

Other contributions include:

• An analysis of the probability of error of Rake receivers in dense multipath taking channel estimation

error (which is usually ignored in the literature) into account.

• An analysis of the probability of error for generalized TR receivers (with an arbitrary number of pilot

symbols) for both binary PAM and PPM modulation.
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• A comparison of implementation complexity for key UWB receivers, with emphasis on the required

number of operations for channel estimation and signal detection. Specifically, we show that the

proposed receiver structures provide a better tradeoff between performance and complexity.

A list of relevant publications is included for reference:

• Co-author, An Introduction to Ultra Wideband Communication Systems, Chapter 6, Receiver Design

Principles, edited by Jeffrey H. Reed, Prentice Hall, 2005.

• J. Ibrahim, R. Menon, and R.M. Buehrer, “UWB Signal Detection Based on Sequence Optimization,”

IEEE Communications Letters, vol.10, issue 4, pp. 228-230, April 2006.

• R. Menon, J. Ibrahim, and R.M. Buehrer, “UWB Signal Detection Based on Sequence Optimization,”

in Proc. 2005 WirelessComm, vol.2, pp. 1231-1236, June 2005.

• J. Ibrahim and R.M. Buehrer, “A Data-Aided Iterative UWB Receiver with LDPC,” in Proc. 2005

VTC Fall, vol. 1, pp. 33-37, June 2005.

• J. Ibrahim, R. Menon, and R.M. Buehrer, “UWB Sequence Optimization for Enhanced Energy Capture

and Interference Mitigation,” in Proc. 2005 MILCOM, vol.4, pp. 2086-2092, October 2005

4.3 Chapter Organization

The proposed iterative data-aided pilot-assisted receiver is introduced in section 4.4. The improvement

brought by data-aided channel estimation is explained. The role of FEC is also discussed. Simulation

results show that the proposed model outperforms Rake and TR receivers, while reducing the required

overhead. The proposed sequence optimization receiver is discussed in section 4.5. The design mechanism

for the transmit and receive sequences is derived. The application of this method to a multi-user application

as well as a NBI mitigation scenario is also provided. Comparison with time-reversal, a popular method

which also incorporates the channel’s rich structure into the transmit pulse, is included as well. Simulation

results show that the proposed scheme yields significant improvement over traditional receiver structures

with substantially less complexity. It is also shown that this method may be further simplified (by reducing
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the feedback overhead), while still yielding good performance. A comparison between the design complexity

of the above studied receivers is then provided in section 4.6, and the tradeoff between system resources and

probability of error performance is also discussed. The chapter is concluded in section 4.7.

4.4 Proposed UWB Receiver: Iterative Data-aided Pilot-Assisted

Receiver with FEC

4.4.1 Introduction

Although its energy capture is significantly higher than that of a Rake receiver, the large number of pilots

required for the pilot-assisted detector makes it unattractive from a practical standpoint. Specific methods

must be devised to reduce its training overhead. A potential solution is developed by noting that the

modulated received signals contain information about the channel and can be used to construct an improved

estimate for the received pulse shape. A data-aided UWB pilot-assisted system is studied in [45], where the

template is estimated using all modulated (data) and unmodulated (pilot) symbols. The optimal strategy

to form the template is derived based on a generalized likelihood ratio test. This test is computationally

complex, which makes its implementation problematic. Moreover, in order for the algorithm to converge to

a satisfactory performance point, a good starting point for the iterative process is required (that is, a clean

initial template), which is not guaranteed. At low SNR, a heavy training load would then still be required.

We propose a modified, simplified model here, where a good starting point is provided through the use of

FEC, while maintaining a relatively small training overhead.

4.4.2 Iterative Data-Aided Template Estimation

We aim for a receiver where the entire received energy is captured, while maintaining a “clean” template

for a limited number of pilots. Since both pilot and data signals contain information about the channel, the

training overhead can be reduced by incorporating both into an iterative template construction algorithm.

The receiver works as follows. First, an initial template is generated using a training frame of Np pilots
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signals, based on the model in Equation (3.33):

v̂0(t) =
1√

EpNp

Np−1∑
k=0

rtr (t + kTf ) , 0 ≤ t ≤ Tf . (4.1)

Then, the data bits are iteratively estimated and used to construct an improved estimate. Assume a data

frame consisting of Nd data symbols, and let rd(t) be the data signal, written as:

rd(t) =
√

Ep

Nd−1∑
m=0

bmv(t − mTf ) + n(t).

Note b̂i,n as the estimated ith bit at the nth iteration. b̂i,n may be written as:

b̂i,n = sign

[∫ iTf+Tint

iTf

rd(t)v̂n−1(t − iTf )dt

]

where v̂n−1(t) is the (n − 1)-th template. The template at the nth iteration is then defined as:

v̂n(t) =
1√

EpNd

Nd−1∑
k=0

b̂k,nrd (t + kTf) , 0 ≤ t ≤ Tf .

Notice that each incorrectly decoded bit will ”cancel out” a correctly decoded bit. Then, if Nd is large

enough, v̂n(t) may be approximated as:

v̂n(t) ≈ (1− 2pn−1) v(t) + nd(t)

where pn−1 is the probability of bit error for the (n − 1)-th stage, and nd(t) has PSD N0
2NdEp

.

4.4.3 System Performance

Assuming bj = 1, the decision statistic for the jth bit at the n − th iteration can be written as:

gj,n =
∫ jTf+Tint

jTf

[
√

Epv
′
(t) + n

′
(t)][(1− 2pn−1)v

′
(t + jTf ) + n

′
d(t + jTf ))]dt, (4.2)
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where v
′
(t), n

′
(t) and n

′
d(t) are the filtered versions of v(t), n(t) and nd(t), respectively.

gj,n can be broken down into four components:

gj,n = (1 − 2pn−1)
√

Ep

∫ Tint

0

v
′2(t)dt

+
√

Ep

∫ Tint

0

v
′
(t)n

′
d(t)dt

+ (1 − 2pn−1)
∫ Tint

0

v
′
(t)n

′
(t + jTf )dt

+
∫ Tint

0

n
′
(t + jTf )n

′
d(t)dt

= µgn + z1 + z2 + z3. (4.3)

The variance of the three zero-mean terms z1, z2 and z3 is calculated as follows:

E
[
z2
1

]
= W

No

Nd

∫ Tint

0

∫ Tint

0

v
′
(t)v

′
(λ)sinc(W (t − λ))cos(2πfc(t − λ))dtdλ

E
[
z2
2

]
= (1 − 2pn−1)2WNo

∫ Tint

0

∫ Tint

0

v
′
(t)v

′
(λ)sinc(W (t − λ))cos(2πfc(t − λ))dtdλ

E
[
z2
3

]
= W 2 N2

o

EpNd

∫ Tint

0

∫ Tint

0

sinc2(W (t − λ))cos2(2πfc(t − λ))dtdλ.

The total noise variance is then:

σ2
z = E

[
z2
1

]
+ E

[
z2
2

]
+ E

[
z2
3

]
. (4.4)

We write:

σ2
z =

N2
o

EpNd
Z1 + NoZ2

[
1

Nd
+ (1 − 2pn−1)

2

]
. (4.5)

where Z1 and Z2 are given by Equations (3.73) and (3.74), respectively. The probability of error is then

given by:

pn = Q

⎛⎜⎜⎝ (1 − 2pn−1)
√

EpU√
N2

o

EpNd
Z1 + NoZ2

[
1

Nd
+ (1 − 2pn−1)

2
]
⎞⎟⎟⎠
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where U is given by 3.66. Moreover:

pn = Q

⎛⎜⎜⎝
√

(1 − 2pn−1)2EpU2√
N2

o

EpNd
Z1 + NoZ2

[
1

Nd
+ (1 − 2pn−1)

2
]
⎞⎟⎟⎠

pn = Q

⎛⎜⎜⎝
√

Ep

N0

√
(1 − 2pn−1)2U2√

No

EpNd
Z1 + Z2

[
1

Nd
+ (1 − 2pn−1)

2
]
⎞⎟⎟⎠ .

Let wn = 1 − 2pn−1. Then:

pn = Q

⎛⎜⎝√√√√w2
n

Ep

N0
.

U2

(w2
n + 1

Nd
)Z2 +

(
NdEp

NoZ1

)−1

⎞⎟⎠ , (4.6)

The expression for the ”starting-point” probability of error p1 is similar to the expression obtained for

traditional pilot-assisted receivers:

p1 = Q

⎛⎜⎝√√√√Ep

No
.

U2

Np+1
Np

Z2 +
(

NpEp

NoZ1

)−1

⎞⎟⎠ . (4.7)

Assume there are N iterations. Then, N template estimates are generated before the final bit decision is

made. In other words, the effective system probability of error is pN . Subject to a good starting point, each

iteration results in an improved template. This leads to more bits being detected correctly, which in turn

produces a cleaner template. Note that, if N = 1, the system degenerates into the pilot-assisted receiver

studied in the previous section.

4.4.4 Error Correction Coding

For the proposed scheme to operate efficiently, a good starting point is required. The quality of the initial

template v̂0(t) is limited by the low instantaneous signal energy due to the dispersive channel. This can be

solved by adding a strong error correcting code that guarantees good coding gains at low SNR. Note that

error correction coding has already been suggested for UWB in the literature. For example, application of

convolutional codes to 2-PPM and M -ary PPM is investigated in [83] and [84], respectively. FEC is shown
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to be an attractive option for UWB, since it does not require additional reduction in the data rate, because

of UWBs very large spreading gain. However, this characteristic is not exclusively specific to UWB, and is

indeed also valid for traditional SS systems. In this work, we use LDPC codes, which are linear block codes

based on a large, sparse parity check matrices. LDPC decoding is based on the iterative belief propagation

algorithm. LDPC codes have generated much interest lately, and have been shown to potentially outperform

turbo codes [63]. The proposed receiver uses an iterative decoding approach which takes advantage of the

systematic bits in the decoded message to re-estimate the template. Figure 4.1 illustrates the proposed

system. The incoming data signals are demodulated and decoded, and then the hard bit estimates are used

to construct a new template, as formulated in the equations above. If a systematic code is used, there is

no need for an encoder at the receiver, since the position of the signals corresponding to the data bits is

known. However, note that the hard estimates corresponding to the redundant bits introduced by coding

are not used in the template estimation in that case. The potential efficiency of the proposed system lies in

the following synergy: in order to yield significant coding gain, the decoding scheme requires an adequate

energy capture level, which is provided by the improved template. Moreover, the coding gains lead to more

bits being decoded correctly, thus forming a cleaner template.

It is important to note that the choice of LDPC codes is rather arbitrary. In fact, it is possible to use any

other systematic code, provided it yields sufficient coding gains and is useful at low SNR.

The effect of error correction coding on system performance is further illustrated with an example. Suppose

Figure 4.1: Data-aided, pilot-assisted LDPC receiver model.
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a rate 1
2 constraint length-4 convolutional code is used (Figure 4.2). The weight enumerator of this code can

be shown to be (see [64]):

T (X, Y ) =
X6Y 3 − X10Y 3 + X6Y

1 − 2X2Y 3 − 3X2Y + 2X6Y 3
. (4.8)

Assuming hard decision decoding, the bit error rate for this code over a binary symmetric channel with

Figure 4.2: Rate 1/2, constraint-length-4 convolutional encoder.

crossover probability p may be upper-bounded as follows:

Pb <
∂T (X, Y )

∂Y

∣∣∣∣
X=2

√
p(1−p),Y =1

. (4.9)

A lower bound for the code is given by:

Pb ≥ 10p3 (1 − p)3 + 15p4 (1 − p)2 + 6p5 (1 − p) + p6. (4.10)

An estimate of performance which falls between both bounds is [64]:

Pb ≈ 256 (p (1 − p))3 . (4.11)

Consider the uncoded ”starting-point” system probability of bit error p1 in (4.7). The equivalent coded bit

probability p1,c at the output of the convolutional decoder may approximated by:

p1,c ≈ 256 (p1 (1 − p1))
3
. (4.12)
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Based on (4.6), the probability of error for the second iteration at the input of the error-correction decoder

is then:

p2 ≈ Q

⎛⎜⎝√√√√w2
2,c

Ep

N0
.

U2

(w2
2,c + 1

Nd
)Z2 +

(
NdEp

NoZ1

)−1

⎞⎟⎠ (4.13)

where w2,c = 1 − 2p1,c. When coding gains are observed, p1,c < p1, and consequently the noise in the

template used to estimate bits in the second iteration is further mitigated, leading to lower probability of

bit error. The probability of error at the output of the decoder is then p2,c ≈ 256 (p2 (1 − p2))
3. After n

iterations, the output probability of error is given by pn,c.

The gains brought by FEC (in other words, the difference between uncoded pn given by (4.6) and pn,c) will

be shortly illustrated through simulation.

4.4.5 Simulation Results

The gains brought by the iterative approach are illustrated in Figure 4.3. A NLOS channel profile is used.

The initial template is based on 30 pilot symbols. The data frame holds 1000 data symbols. The integration

time is equal to the symbol duration Tf . Three iterations are performed, and the probability of error is

evaluated after each iteration. First, note that the theoretical curves (based on (4.6)) match the simulated

results. Also, note that performance based on the template obtained after one extra iteration yields more

than 4 dB gain compared to the performance based on the initial template. The gains seen after two iterations

are less substantial. Thus, a single iteration seems sufficient to limit the number of required pilots.

The performance of uncoded and coded data-aided pilot-assisted receiver are compared to the traditional

pilot-assisted receiver in Figure 4.4. The coded system employs a rate 1/2 systematic LDPC code. There

are 541 data bits per frame, and it is assumed that the initial template is constructed using a preamble

of 50 pilots. There are 5 iterations per frame, that is, for each set of 541 bits, the template is iteratively

estimated 5 times, before a final bit decision is made. First, notice that incorporating the data signals into

the template estimation, even in the absence of coding, yields significant gains. Second, at SNR values less

than 2.5 dB, the coding gain is not large enough to compensate for the energy lost due to redundancy,

and the uncoded scheme outperforms the coded scheme. However, as the SNR increases, the coded system

becomes largely superior to the uncoded system. Note that the probability of error is 10−4 at an SNR of 5
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dB, which represents a gain of about 3.5 dB over optimal uncoded detection (matched filter) in AWGN.

The effect of FEC is displayed in Figure 4.5. A rate 1
2 , constraint-length 4 convolutional code is assumed,

and the approximation from (4.11) is used. Notice that (4.11) is an extremely loose bound at low SNR, and

does not give insight into true system behavior. However, note that the improvement brought by coding is

apparent for higher values of SNR, both for one and three iterations. For three iterations, a probability of bit

error of 10−8 is achieved for an SNR of 8 dB. It is important to stress here that the observed improvement

is not solely due to error correction coding, but rather to the simultaneous use of coding and the data-aided

estimation method. In fact, note that performance of the coded system after one iteration is equivalent to

the expected performance of a conventional TR system (which does not use the data-aided iterative method)

employing error correction coding. Performance is very poor in that case because the template is too dirty

to yield any coding gains. The combination of FEC and data-aided estimation guarantees a clean template

and substantial coding gains for a small number of iterations.
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Figure 4.3: Data-aided iterative receiver. Np = 10, Nd = 100, Tint = Tf .
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4.5 Proposed UWB Receiver: The Sequence Optimization Re-

ceiver

4.5.1 Introduction

As was demonstrated in section 3.7, the Rake receiver suffers from a low energy capture for a moderate

number of fingers, making its implementation impractical for UWB systems. An alternative strategy that

is conceptually similar to Rake receivers, but offers significant complexity reduction, is pre-Rake diversity

combining, first studied for SS systems [66, 67, 68, 69, 70, 71], which achieves performance equivalent to Rake

diversity combining without increasing the receiver complexity. In this method, Rake combining is performed

before transmission, by delaying and scaling the transmitted signals accordingly to the delay and amplitude

of the channel multipath components. This assumes channel knowledge is available at the transmitter. An

alternative approach is to precode the transmit signal using a time inverse of the channel impulse response

[72]. This technique, called time-reversal, has the potential to perform like the perfect Rake receiver (a Rake

receiver with an infinite number of fingers) if perfect channel knowledge at the transmitter is available. A

different approach is suggested in [73], where a spreading sequence is transmitted, and signal detection at the

correlator-receiver is based on a fixed spreading sequence. The transmitted spreading sequence is optimized

in order to maximize the energy output after correlation. A multipath beamforming effect is achieved, where

the energy from several multipath components is coherently added at the receiver. However, the energy

capture in this method is limited by the use of a fixed sequence at the receiver. In [74] and [75], the receiver

and transmitter sequences are jointly optimized to maximize the output SNR in a SS system. However,

it does not apply directly to UWB, since it assumes a small number of paths, as well as perfect channel

estimation.

In this section, we propose an extension of the above sequence optimization technique for UWB systems,

which takes the effect of channel estimation into account. This work has been published in [50], [51] and

[52]. In [50], sequence optimization for the single user scenario is analyzed. The proposed technique results

in coherent combining of a substantial number of the multipath components at the receiver, resulting in very

high energy capture with the use of a simple receiver. The transmit waveform is made up of a train of delayed
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and scaled pulses, the amplitudes of which can be represented by a real-valued sequence. The transmitter

and receiver sequences are chosen such that the correlation of the received signal (the sequence convolved

with the multipath channel) with the receive template is maximized. The work in [50] is generalized in [51]

to a multi-user scenario, where the SINR for a particular user is maximized. Additionally, the applicability

of this method to signal detection in the presence of a high power NBI is analyzed.

The rest of this section is organized as follows. First, since the proposed method is derived from classical

transmit-pulse shaping techniques, previous work on time-reversal and pre-Rake combining is presented. The

general single user system model for the proposed system is then formulated. The transmitted signal-sequence

and the decision statistic after correlation are mathematically defined. The sequence optimization scheme

and the effect of channel estimation are described. A qualitative comparison between sequence optimization

and time-reversal is then included. Sequence optimization is then generalized to the multi-user scenario.

Application of the proposed scheme to NBI mitigation is also provided. Then, simulation results, based on

real measured indoor NLOS channel profiles, are presented. It is shown that the proposed method leads

to significant improvement in terms of effective energy capture and interference mitigation over traditional

receiver structures, with less complexity. Also, it is shown that quantizing the real-valued sequence to reduce

system complexity only leads to a slight degradation in performance even for a small number of quantization

bits.

4.5.2 Previous Work in Transmit-Pulse Shaping: Time-Reversal and Pre-Rake

Combining

Time-reversal is one of the most popular transmit-pulse shaping methods, and provides a valuable benchmark

against which the proposed sequence optimization receiver can be compared. Time-reversal was first applied

in the field of under-water acoustics and has recently attracted research interest in wireless communication,

particularly for UWB signal detection (see [72] and the references therein). Time-reversal solves the problem

of limited energy capture of UWB Rake receivers by pre-filtering the transmit pulse shape with the reversed

channel impulse response. Focusing of temporal energy ensues, and high energy capture can be obtained with

only a small number of taps. Note that feedback capability is required if channel estimation is performed
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at the receiver. Alternatively, in a time-duplexed system, channel estimation may be performed at the

transmitter, and the design complexity is then transferred from the receiver to the transmitter. Examples

of UWB receivers employing the time-reversal approach may be found in [53] and [54].

In order to fully appreciate the potential of time-reversal, the effect of channel estimation errors are first

neglected, and an idealized time-reversal receiver (where perfect channel knowledge is assumed) is discussed.

The effect of channel estimation on more realistic time-reversal structures is then presented.

The main assumption for idealized time-reversal is that the transmitter has infinite channel estimation

resolution. That is, a perfect copy of the channel impulse response is available at the transmitter. This

requires that the amplitudes and delays of all the multipath components are known, even if paths occur

within a fraction of a transmit pulse width. Moreover, ideal time-reversal assumes that the transmitter is

capable of applying an exact copy of the impulse response as a filter to the transmitted pulse shape. Any

realistic channel estimation algorithm would have to operate at a finite resolution and would not be capable

of estimating all paths metrics regardless of their respective delays. Nonetheless, this ideal assumption allows

us to assess the full potential of the algorithm.

Assuming the same channel model used in previous sections of this chapter, the time-reversed channel impulse

response may be written as:

h(−τ ) =
L−1∑
l=0

αlδ (τL−1 − τl) . (4.14)

The transmit pulse w(t) is pre-filtered using h(−τ ). Assuming a data bit equal to one, the transmitted pulse

of the time-reversal scheme is given by:

s(t) =
√

Ep

R0

L−1∑
l=0

αlw (t − τL−1 + τl) . (4.15)

where R0 is a normalizing constant applied to ensure the transmit energy is equal to unity:

R0 =
L−1∑
l=0

α2
l +

√
Ep

L−1∑
l1=0

L−1∑
l2 �=l1

αl1αl2R (τl2 − τl1) . (4.16)
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Consider the filter h(−τ ). When s(t) is transmitted, h(−τ ) is effectively convolved with h(τ ). A correlation

effect is thus obtained. The output of the convolution h(τ )
h(−τ ) is evaluated for a particular real measured

impulse response and shown in Figure 4.6. A peak value is observed due to the channel’s autocorrelation

properties. A similar effect is observed in classical matched filter analysis, where full energy capture is

obtained by applying the inverse of the received pulse shape as a filter at the receiver. In the context

of time-reversal, the communication channel thus plays the role of the matched filter. A low-complexity

receiver, which simply samples the output signal at its peak point, is therefore capable of harnessing a high

percentage of the available energy.

We now provide an example showcasing the energy capture boost brought by time-reversal. Consider the
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Figure 4.6: h(τ) � h(−τ) versus τ . Notice the large peak corresponding to all the multipath components aligning.

simple 3-path CIR in Figure 4.7. Assuming the transmit pulse width is shorter than the path inter-arrival

time, the energy gathered by the perfect matched filter of section 3.5 (which in this case is a Rake receiver

with 3 fingers) is equal to 1 + 0.52 + (−0.5)2 = 1.5.

The reversed CIR is shown in Figure 4.8. When the unit-energy transmit pulse is pre-filtered by the inverted

CIR, the received pulse shape is equivalent to the sum of three scaled and delayed versions of the signal in

Figure 4.8, as shown in Figure 4.9. Note that the pulse shape used is irrelevant for this discussion as long

as the transmit pulse is short enough to perfectly resolve all multipath components. The resulting received
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Figure 4.7: Simple 3-path CIR.

time-reversal signal is shown in Figure 4.10. Notice the presence of 2 additional multipath components

compared to the conventional perfect matched filter case. Now, assuming that the transmitted pulses for

time-reversal and the conventional Rake system have equal energy, the received time-reversal energy is equal

to (−0.5)2+0.252+1.52+0.252+0.52

1.5
= 1.916. Notice the increase in captured energy due to the constructive

multipath combination. Moreover, note that if only the main received multipath component is captured (i.e.

single-tap time reversal is used), the energy capture is then equal to 1.5 and thus equivalent to that of the

perfect matched filter.

Figure 4.8: Reversed CIR.
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Figure 4.9: Three delayed and scaled versions of the reversed CIR are added at the receiver.

Figure 4.10: Equivalent time-reversal received pulse shape.
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We now present a mathematical formulation of the above example. Assuming binary PAM modulation

and a transmit bit of 1, the received signal is:

r(t) =
√

Ep

R0

L−1∑
l1=0

L−1∑
l2=0

αl1αl2w (t − τL−1 + τl2 − τl1) + n(t). (4.17)

Notice that R0 is equal to the desired signal component dPAM (given by (3.12)) for the optimal matched

filter receiver in section 3.5.

The output of a single tap at delay t0 is given by:

g(t0) =
∫ ∞

t=−∞
r(t)w(t − t0)dt = d(t0) + n(t0) (4.18)

where

d(t0) =
√

Ep

dPAM

L−1∑
l1=0

L−1∑
l2=0

αl1αl2R (t0 − τL−1 + τl2 − τl1) (4.19)

and the noise metric n(t0) is zero-mean Gaussian with variance N0
2 .

Setting t0 = τL−1, we get:

d(τL−1) =
√

Ep

dPAM

L−1∑
l1=0

L−1∑
l2=0

αl1αl2R (τl2 − τl1) . (4.20)

d(τL−1) =
√

EpdPAM . (4.21)

Then probability of error of a single-tap time-reversal system is then:

Pe = Q

(√
EpdPAM

N0
2

)
= Q

(√
2EpdPAM

N0

)
. (4.22)

Note that the probability of error is equal to that of the perfect matched filter receiver given by (3.15). A

single-tap time-reversal system is thus equivalent to a perfect conventional Rake receiver capable of resolving

all multipath components. All the energy available for the conventional perfect matched filter may thus be

harnessed through a single-tap receiver using time-reversal. Also note that despite the fact that it captures
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the same amount of energy as the ”optimal” matched filter, the single-tap time-reversal receiver captures

only part of the available energy. More energy may be gathered by including more taps (at the expense of

increased receiver complexity). In fact, it can be shown that the peak tap holds about 50% of the available

energy (see [72]). Thus we can achieve a potential 3-dB performance improvement if the energy in the other

taps is harnessed. The decision statistic for time-reversal employing N taps may be written as:

dN =
N−1∑
n=0

γng(tn) (4.23)

where γn and tn are the weight and delay of the nth tap, respectively.

Figure 4.11 shows the time-reversal energy capture (averaged over multiple measured channels) as a per-

centage of the total available energy versus the number of taps used at the receiver. Notice that the energy

capture grows slowly with the number of taps beyond the main tap. With 40 taps, only half of the remaining

energy is captured (equivalently, 75% of the total energy is captured). Note that the position of these 40 taps

is not known a priori and must be estimated based on channel knowledge at the receiver, which increases

the design complexity. Figure 4.12 shows the temporal compression ratio (the inverse of the ratio of the

power in the main tap to the power in the remaining taps) averaged over multiple channel measurements.

Notice the absence of any strong tap beyond the main tap.
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Figure 4.11: Energy capture (as percentage of total available energy) versus number of taps. Perfect channel
knowledge. Real measured channel profiles used.
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Figure 4.12: Temporal compression ratio versus number of taps. Perfect channel knowledge. Real measured channel
profiles used.
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Time-reversal may be thought of as a generalization of the pre-Rake receiver. In the pre-Rake scheme, the

transmitted pulse is pre-coded with the F strongest available multipath components, rather than the entire

impulse response. Assuming the delays and amplitudes of the F strongest paths are known, the transmitted

signal is given by:

s(t) =
F−1∑
i=0

αfiw (t − τL−1 + τfi) (4.24)

where αfi and τfi are the amplitude and delay of the ith strongest path, respectively, and energy normalization

is skipped for clarity. In the absence of channel knowledge, the complexity of channel estimation for this

method is identical to the complexity of channel estimation for a conventional Rake receiver with F fingers

employing MRC. Moreover, it can be easily shown that the performance of a single-tap Pre-Rake receiver is

identical to that of a conventional Rake receiver with F fingers employing MRC given by (3.46). Improvement

in performance is obtained if more taps are used at the receiver.

Performance with Channel Estimation

Perfect channel knowledge is an unrealistic assumption. We now study the performance of time-reversal when

channel estimation is performed. The objective is to estimate the channel h(τ ). We assume that estimation

is performed at the transmitter∗. Assume a training sequence of length Np. The received training sequence

can be written as:

rts(t) =
√

Ep

Np−1∑
j=0

L−1∑
l=0

αlw(t − τl − jTf ) + n(t). (4.25)

Since the transmitter has finite estimation resolution, channel coefficients cannot be feasibly estimated at

random delays. We assume that the transmitter estimates an equivalent channel coefficient every δt seconds

(where δt is defined as the estimation’s resolution). With δt = Tw, channel estimation constructs the

following CIR:

ĥ (τ ) =
L−1∑
l=0

β̂lδ(lTw) (4.26)

∗Note that for multi-tap time-reversal, additional channel estimation is required at the receiver in order to set the taps’
weights and delays.
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where the kth path amplitude is estimated as:

β̂k =
1√
Ep

1
Np

Np−1∑
j=0

∫ (k+1)Tw+jTf

kTw+jTf

rts(t)w(t − kTw − jTf )dt (4.27)

which gives

β̂k =
L−1∑
l=0

αlR (τl − kTw) + nk (4.28)

where nk is a zero-mean Gaussian random variable with variance N0
2EpNp

.

The transmitted signal is then:

sNp(t) =
√

Ep

L−1∑
l=0

β̂lw (t − τL−1 + lTw) (4.29)

where energy normalization is skipped for brevity.

Assuming a data bit equal to one, the received signal is then:

rNp(t) =
√

Ep

L−1∑
l1=0

L−1∑
l2=0

αl1β̂l2w (t − τL−1 + l2Tw − τl1) + n(t). (4.30)

The output of a single tap (at delay t0) of the receiver is then:

g(t0) =
∫ ∞

t=−∞
rNp(t)w(t − t0)dt = d(t0) + n(t0). (4.31)

At t0 = τL−1:

g(τL−1) =
√

Ep

L−1∑
l1=0

L−1∑
l2=0

αl1β̂l2R (l2Tw − τl1) + n (4.32)

g(τL−1) =
√

Ep

[
L−1∑
l1=0

∑
l2

αl1

L−1∑
l3=0

αl3R (τl3 − l2Tw)R (l2Tw − τl1) +
L−1∑
l1=0

∑
l2

αl1nl2R (l2Tw − τl1)

]
+n (4.33)
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where n is a zero-mean Gaussian random variable with variance N0
2 .

Let:

Y =
√

Ep

L−1∑
l1=0

∑
l2

αl1nl2R (l2Tw − τl1) . (4.34)

It is easy to show that the variance v of Y is given by:

v =
N0

2Np

∑
l2

(
L−1∑
l1=0

αl1R (l2Tw − τl1)

)2

. (4.35)

The probability of error is then given by:

Pe = Q

⎛⎜⎜⎜⎝
√√√√√√√Ep

[∑L−1
l1=0

∑
l2 αl1

∑L−1
l3=0 αl3R (τl3 − l2Tw)R (l2Tw − τl1)

]2
N0
2

[
1 + 1

Np

∑
l2

(∑L−1
l1=0 αl1R (l2Tw − τl1)

)2
]

⎞⎟⎟⎟⎠ (4.36)

As the number of pilots approaches infinity, the expression becomes:

Pe = Q

⎛⎜⎜⎝
√√√√2Ep

[∑L−1
l1=0

∑
l2 αl1

∑L−1
l3=0 αl3R (τl3 − l2Tw)R (l2Tw − τl1)

]2
N0

⎞⎟⎟⎠ (4.37)

where the term in the numerator represents the energy loss due to the mismatch between the adopted channel

model in (4.26) and the real channel.

In the case of idealized channels where the multipath delays are exact multiples of Tw, (4.26) faithfully

models the channel. Let:

A =
L−1∑
l1=0

∑
l2

αl1

L−1∑
l3=0

αl3R (τl3 − l2Tw)R (l2Tw − τl1) (4.38)

B =
∑
l2

(
L−1∑
l1=0

αl1R (l2Tw − τl1)

)2

. (4.39)
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Since the autocorrelation function is only evaluated at multiple of Tw , and since R(τ ) ≈ 0 for τ > Tw, we

get:

A =
L−1∑
l1=0

∑
l2

αl1αl2R (l2Tw − τl1) =
L−1∑
l1=0

α2
l1 (4.40)

B =
∑
l2

α2
l2. (4.41)

Assuming
∑

l α
2
l = 1, the expression collapses to:

Pe = Q

⎛⎜⎝√√√√ 2Ep

N0

(
1 + 1

Np

)
⎞⎟⎠ . (4.42)

Notice that at high Np we get the probability of error of the perfect matched filter obtained for idealized

time-reversal.

A qualitative comparison between time-reversal and the proposed sequence optimization method is later

provided in this section, along with simulation results.

4.5.3 Single User Sequence Optimization

Time-reversal achieves high concentrated energy capture by incorporating the channel impulse response into

the transmit pulse shape. We now propose a more generalized approach, which jointly optimizes the transmit

pulse and the receiver template for maximal energy capture.

Consider a single user system where the transmit waveform of the user consists of a real-valued sequence.

The transmitted signal has the form:

s(t) =
√

Ep

∞∑
i=−∞

bi

Nx−1∑
n=0

xnw (t − nTw − iTf ) (4.43)

where X = [x0 x1 ... xNx−1]
T is the real-valued transmit signal sequence. For mathematical simplicity, it is

assumed that Tf is an integer multiple of Tw.

Let τmax be the maximum channel spread (the maximum multipath delay). It is assumed that Tf >
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NxTw + τmax, eliminating any ISI effects at the receiver. The signal sequence is normalized, that is:

XT X =
Nx−1∑
n=0

x2
n = 1. (4.44)

We assume the same channel model used in the previous sections of this chapter. Then, without loss in

generality, the received signal in the time interval [0, Tf ] can then be written as:

r(t) =
√

Epb0

L∑
l=1

αl

Nx−1∑
n=0

xnw (t − nTw − τl) + n(t) (4.45)

where n(t) is a zero-mean AWGN process with PSD N0
2

.

The unit-energy template for the receiver correlator is:

s0(t) =
Ny−1∑
m=0

ymw(t − mTw), (4.46)

where Y =
[
y0 y1 ... yNy−1

]T is the normalized receiver template sequence, and Ny = Tf

Tw
. The decision

statistic for bit b0 can be written as:

r0 =
∫ Tf

0

r(t)s0(t)dt =
√

Epb0d + n (4.47)

where:

d =
∫ Tf

0

L∑
l=1

αl

Nx−1∑
n=0

xnw (t − nTw − τl) s0(t)dt (4.48)

n =
∫ Tf

0

n(t)s0(t)dt. (4.49)

It can be easily shown that n is a zero-mean Gaussian random variable with variance N0
2

. d can be rearranged

as:

d =
L∑

l=1

αl

Nx−1∑
n=0

Ny−1∑
m=0

xnymR (nTw − mTw + τl) . (4.50)
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The SNR of the received signal is given by

SNR =
2Epd

2

N0
. (4.51)

The probability of error conditioned on X and Y can then be expressed as:

Pe = Q

⎛⎝√Epd√
N0
2

⎞⎠ . (4.52)

Therefore:

Pe = Q

⎛⎝√2Epd2

N0

⎞⎠ . (4.53)

Consider the case where X = [1 0 0 ... 0]T and Y = [1 0 0 ... 0]T , which corresponds to a simple matched

filter receiver where the correlator template is matched to w(t). Then, d =
∑L

l=1 αlR (τl). Since R(τ ) = 0

for τ > Tp, the receiver only captures the energy contained in the interval [0, Tw], and the energy in the

subsequent multipath components is lost, resulting in poor performance (this receiver was studied in section

3.6).

Note that SNR depends directly on the value of d. d may be increased by choosing sequences X and

Y such that the energy from the different multipath components add up coherently at the receiver. This

sequence optimization technique is quite similar to a beamformer in which transmissions from different

antennas are weighted such that they coherently combine at the receiver.

The decision statistic d can be rearranged in the following form:

d =
Ny−1∑
m=0

ym

Nx−1∑
n=0

L∑
l=1

xnαlR (nTp − mTw + τl) . (4.54)

Since R (τ ) = 0 for τ > Tw, the above equation can also be re-written as,

d =
Ny−1∑
m=0

ym

m∑
k=max(0,m−Nx+1)

hkxm−k (4.55)
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where,

hk =
L∑

l=1

αlR (τl − kTw) . (4.56)

Here, hk can be interpreted as the equivalent channel coefficient obtained by transmitting w(t) and binning

the received signal after correlation with w(t), every Tw seconds.

In order to exploit all the channel multipath components, let Nx = 1 + � Tc

Tw

 (where �.
 is the ceil operator)

and Ny = 2Nx − 1. An intuitive interpretation for this choice is that the available degrees of freedom are

uniformly distributed over the channel spread. The expression for d can be more conveniently represented

using matrix notation as

d = Y T HX, (4.57)

where

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 ... 0

h1 h0 ... 0

...
...

. . .
...

hNx−1 hNx−2 ... h0

0 hNx−1 ... h1

...
...

. . .
...

0 0 ... hNx−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.58)

From a matched filter perspective, the optimal sequence used at the receiver is matched to the transmit

sequence convolved with the channel [74][75]. Hence Y = HX. d can now be written as,

d = XT HT HX. (4.59)

The sequence optimization process, which keeps the sequence normalized to one, can be formulated as the

following optimization problem.

P 1 : max
X

f(X) = max
X

XT HT HX

XT X
. (4.60)
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The channel correlation matrix HT H is symmetric and positive semi-definite. Hence, HT H can be diago-

nalized as,

HT H = UDUT (4.61)

where U is a unitary matrix whose columns are formed by the orthonormal eigenvectors of HT H , {u1, . . . , uNx},

and D is a diagonal matrix whose diagonal elements are the eigenvalues of HT H , {λ1, . . . , λNx}. Without loss

of generality, we assume that λ1 ≥ λ2 ≥ . . . ,≥ λNx . Since the eigenvectors of HT H form a complete basis,

there exists a set of coefficients βi, i ∈ {1, . . . , Nx} for any vector X such that X = β1u1+β2u2+. . .+βNx uNx .

Then, f (X) can be expressed as,

f (X) =
XT HT HX

XT X
=
∑Nx

n=1 λn|βn|2∑Nx

n=1 |βn|2
. (4.62)

Since λ1 ≥ λi for i ∈ {2, . . . , Nx}, we may write:

f (X) =
∑Nx

n=1 λn|βn|2∑Nx

n=1 |βn|2
≤ λ1

∑Nx

n=1 |βn |2∑Nx

n=1 |βn|2
= λ1. (4.63)

Note that f (X) = λ1 for X = β1u1. Hence, f (X) is maximized by u1, the eigenvector corresponding to

the maximum eigenvalue of HT H . This is also a well known result in linear algebra. f (X) is the Rayleigh

quotient for matrix HT H . The Rayleigh quotient is maximized by the eigenvector corresponding to the

maximum eigenvalue of HT H [76] [77].

4.5.4 Channel Estimation

Note that since channel knowledge is not readily available, a channel estimation procedure is required in order

to estimate H . After channel estimation is performed at the receiver, the optimal sequence is determined

and then fed back to the transmitter. It is assumed that the sequence is re-estimated periodically to account

for the time-varying channel.

The channel estimation procedure used for time-reversal is again used for sequence optimization. A training

sequence of length Np (given by (4.25)) is transmitted. Recall that the channel coefficients ĥi are estimated
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as:

ĥi =
1

Np

Np−1∑
j=0

∫ (i+1)Tw+jTf

iTp+jTf

rts(t)w (t − iTw − jTf ) dt (4.64)

for 0 ≤ i ≤ Nx − 1. These estimates are used to construct the matrix H at the receiver. It must be noted

that the channel estimation described above can be done in the analog domain with simple integrators and

does not require increased sampling rates. Also, notice that the same channel estimation technique was

applied for the time-reversal receiver.

In the presence of channel estimation errors, the calculated sequence is not the maximum eigenvector of H ,

but the maximum eigenvector of H + N , where,

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n0 0 ... 0

n1 n0 ... 0

...
...

. . .
...

nNx−1 nNx−2 ... n0

0 nNx−1 ... n1

...
...

. . .
...

0 0 ... nNx−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.65)

Here, ni, ∀i is a zero mean Gaussian random variable with variance N0
2Np

. This eigenvector mismatch

adversely affects the performance of the system. The effect of the number of pilots on performance will now

be studied, based on traditional eigenvector perturbation theory [78] [79].

Let V = [V1 V2 ... Vn] be the matrix formed of the eigenvectors of HT H . Then,

V −1HT HV = diag (λ1, λ2, ..., λn) (4.66)

where λ1, λ2, ..., λn are the eigenvalues of HT H , and diag(Z) is the diagonal matrix with Z as the diagonal.

Vi is the eigenvector corresponding to λi. Let A = HT H . Assume that A is perturbed by an error ∆A:

Â = A + ∆A. (4.67)
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Note that, in our system, H is perturbed by the noise matrix N and consequently, matrix HT H is perturbed

by,

∆A = HT N + NT H + NT N. (4.68)

The perturbed eigenvector V̂i can be written as:

V̂i = Vi + δVi . (4.69)

Without loss in generality, assume V1 is the desired eigenvector (the same analysis can be performed for any

eigenvector). Let ε be the greatest absolute value in the perturbation matrix, ∆A. Then it can be shown

that [79]:

δV1 = εY g1 + ε2Y g2 + ε3Y g3 + ... (4.70)

where Y = [V2 V3 ...Vn] and gi is an (n − 1)-dimensional vector.

The first order perturbation term is:

p1 = εY g1. (4.71)

It can be shown that p1 can be written as:

p1 = V ∆V T ∆AV1 (4.72)

where ∆ = diag
(
0, (λ1 − λ2)

−1 , ... (λ1 − λn)−1
)
. The mean of this term is given by

E[p1] = Nxσ2V ∆V T V1 (4.73)

and:

σ2 =
N0

2Np
. (4.74)

Since the eigenvalue of V ∆V T corresponding to eigenvector V1 is zero, E[p1] = 0. In most applications, the

first order perturbation is sufficient to characterize the error. However, simulation results do not show a zero
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mean for the perturbation error. Hence, the second order term for the perturbation error is considered here.

The second order perturbation can be written as [78]:

p2 = V ∆V T ∆AV ∆V T ∆AV1

− (
V ∆V T

)2
∆AV1V

T
1 ∆AV1

− 1
2
V1V

T
1 ∆A

(
V ∆V T

)2
∆AV1. (4.75)

Equations (4.72) and (4.75) can be used to calculate the resultant perturbation of the eigenvector of HT H .

The mean and variance of this perturbation may be expressed in the following form:

µp = E [p1 + p2] = A1σ
2 + A2σ

4 (4.76)

σ2
p = E

[
(p1 + p2)

2
]
− µ2

p = A3σ
2 + A4σ

4 + A5σ
6 + A6σ

8. (4.77)

A1 and A2 are (Nx × 1) matrices and A3, A4 and A5 are (Nx × Nx) matrices, that solely depend on the

channel. The variance of noise, σ2 is inversely proportional to the number of pilots used in the system. Hence,

it is expected that the effect of A2, A4, A5 and A6 will be significantly reduced even for a small number

of pilots. Also, it will be shown by simulation that the overall perturbation of the sequence (eigenvector of

HT H) is successfully limited for moderate values of training.

The perturbation error is simulated and compared to the theoretical error obtained with the first and second

order perturbations. Including the second order perturbation gives a good estimate of the mean (Figure 4.13)

and an improved estimate of the variance (Figure 4.14) of the transmit sequence error. In this example, a

sequence of length 50 was used.
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4.5.5 Sequence Optimization versus Time-Reversal

We now present a theoretical comparison between sequence optimization and time-reversal. First consider

idealized time-reversal, which is characterized by a probability of error given by (4.22). Recall that the

transmitted signal and receiver template for sequence optimization are formed of a stream of scaled Gaus-

sian pulses spaced by one pulse width. In the case of infinite channel resolution, the transmitted time-reversal

signal has a richer structure, since it pre-codes multipath components that occur at random times (poten-

tially within a pulse duration). The transmit time-reversal signal may be written as the sum of scaled and

delayed Gaussian pulses which need not be separated by multiples of a pulse width. The equivalent time-

reversal sequence thus does not belong to the group of sequences over which our proposed method optimizes

its sequence. Therefore, it is theoretically possible for the idealized time-reversal receiver to outperform the

sequence optimization receiver for a specific number of taps†.

As stated earlier, idealized time-reversal is infeasible, and finite-resolution channel estimation must be ap-

plied. Assume the same channel estimation process (consisting of estimating one channel coefficient every

transmit pulse width) is applied for both methods with the same estimation resolution. In the sequence op-

timization approach, the transmit sequence and receiver template are designed such that the received energy

capture is maximized. Denote the group of all possible transmit sequences and all possible receiver templates

constrained by a specific channel estimation resolution by GT and GR, respectively. The optimal transmit

sequence and receiver template are optimized over these two groups (in the maximal energy capture sense).

Since the time-reversal transmit sequence also belongs to GT , time-reversal employing a single tap cannot

outperform sequence optimization (since a single tap receiver may be modeled by a sequence belonging to

GR). Sequence optimization thus presents a lower bound on single-tap time-reversal performance. However,

multi-tap time reversal where taps are separated by random intervals (rather than multiples of a pulse width)

can potentially outperform sequence optimization, since the equivalent template of such a receiver does not

belong to GR.
†Note that although sequence optimization in this work is based on the design of sequences where pulses are separated by

multiples of a pulse width, the method may be extended to a finer resolution, where pulses are separated by sub-pulse width
durations. Higher energy capture levels are then possible.
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4.5.6 Multiple User Sequence Optimization

The sequence optimization scheme for the multipath channel is now extended to a multi-user UWB system.

Consider K users communicating with a centralized receiver. The transmission of each user is assumed to

be sequence-based. For simplicity of notation, the users’ received signals are assumed to be synchronized.

Following the notation in the previous section, let Hk be the channel matrix from the kth user to the receiver,

pk be the signal power of the kth user, Xk be the transmit sequence vector of the kth user and bk be the data

bit transmitted by the kth user. The signal vector at the receiver, R, in a single symbol interval is given by,

R =
K∑

k=1

√
pkHkXkbk + N (4.78)

where N is a vector of zero-mean Gaussian random variables with variance σ2 = N0
2 . Let Yi be the unit-

energy correlation template vector at the receiver for the ith user. The signal after correlation is given

by,

Y T
i R = Y T

i

K∑
i=k

√
pkHkXkbk + Y T

i N. (4.79)

The signal-to-interference-plus-noise ratio of the ith user at the receiver can be written as,

SINRi =
pi

(
Y T

i HiXi

)2
Y T

i ZiYi
(4.80)

where Zi is the interference-plus-noise correlation matrix defined as Zi =
∑

j �=i pjHjXjX
T
j HT

j + σ2.

The optimal sequence Yi (that corresponds to the optimal receiver), which maximizes SINRi is the solution

to the following maximization problem:

P 2 : max
Yi �=0

SINRi = max
Yi �=0

pi
Y T

i HiXiX
T
i HT

i Yi

Y T
i ZiYi

. (4.81)
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Since Zi is a Hermitian matrix, it can be diagonalized as Zi = UiΛiU
T
i , where Ui is a unitary matrix and Λi

is a diagonal matrix. Let Wi = Λ
1
2
i UT

i Yi. Then,

SINRi = pi
WT

i Λ− 1
2

i UT
i HiXiX

T
i HT

i UiΛ
− 1

2
i Wi

WT
i Wi

. (4.82)

The sequence Wi that maximizes SINRi is given by,

Wi = Λ− 1
2

i UT
i HiXi. (4.83)

The optimal Yi is therefore given by,

Yi = UiΛ−1
i UT

i HiXi = Z−1
i HiXi. (4.84)

The correlator output now becomes,

Y T
i R = XT

i HT
i Z−1

i HiXibi + Y T
i

∑
j �=i

HjXjbj + Y T
i N. (4.85)

The decision statistic d is given by

d = XT
i HT

i Z−1
i HiXi. (4.86)

Matrix HT
i Z−1

i Hi is symmetric and positive definite. Hence d is maximized if Xi is the eigenvector corre-

sponding to the maximum eigenvalue of HT
i Z−1

i Hi.

Note that Zi = E
[
RRT

]− piHiXiX
T
i HT

i , assuming bit transmissions from multiple users are uncorrelated.

Hence, in the absence of transmissions from the ith user, Zi can be estimated by computing and averaging

the received correlation matrices, with no additional load on the system.

4.5.7 Sequence Optimization in Presence of NBI

The above sequence optimization technique for the UWB system with multi-user interference can be ap-

plied to reject narrowband interference. In this framework, the interferer is modeled by a sinusoidal wave.
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Moreover, the interferer’s period is assumed to be an integer multiple B of the symbol duration of the UWB

user. B is assumed to be known at the receiver. Note that the interference in these B symbol intervals can

be viewed as transmissions from B separate interferers, where only one interferer transmits in each interval.

Let Ij , j ∈ {1, ..., B} be the interference vector in the jth symbol interval and rj be the received signal in

that interval. The interference-plus-noise correlation matrix Z can be written as,

Z =
B∑

j=1

IjI
T
j + σ2. (4.87)

From the analysis from the previous section, the optimal transmit sequence X is the maximum eigenvector of

HT Z−1H and the optimal receiver correlation template Y is Z−1HX, where H is the UWB user’s channel

matrix. Again, Z may be estimated at the receiver with no additional overhead.

4.5.8 Simulation Results

The performance of the proposed single-user scheme is compared to other signal detection methods in Figure

4.15. Performance is averaged over multiple NLOS profiles. The training overhead is equal to 250 pilots for

the proposed method. First, note that the simple matched filter (X = Y = [1 0 0... 0], employing w(t) as a

correlation template) leads to poor performance, since only the energy in the first arriving path is captured.

Using a non-optimized, random sequence also leads to similar performance, because the multipath energy

adds noncoherently, thus leading to a very low energy capture. A Rake receiver with 10 fingers (where it

is assumed that the energy in the strongest 10 paths is perfectly captured) gathers only a fraction of the

total received energy, and yields a performance that is about 4.5 dB worse than the perfect Rake case (Rake

receiver with an infinite number of fingers with perfect channel estimation). A pilot-assisted receiver with

250 pilots only achieves performance that is within 2 dB of the perfect Rake. The proposed receiver based

on the optimal sequence outperforms the perfect Rake by about 2 dB. The large performance gain brought

by the optimized sequence might seem counter-intuitive, since the perfect Rake captures all the received

energy, and one might think that it provides a limit on performance. However, the optimized sequence leads

to a boost in the received power level due to coherent multipath energy combining (d in Equation (4.50)

may be greater than one). Thus, there is essentially more energy available for the receiver to gather. This
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effect is similar to the gains seen when using transmit beamforming, or error correction coding.

The required training load for the proposed method is examined in Figure 4.16. Note that increasing the
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Figure 4.15: Performance of sequence adaptation receiver with Np = 250. Proposed scheme outperforms a 10-Finger
RAKE receiver, and a pilot-assisted receiver with 250 pilots. Performance is averaged over multiple NLOS measured
channel profiles.

training load from 50 to 100 pilots leads to significant gains (around 2 dB). Increasing the load from 100

to 250 pilots only leads to about 0.5 dB gain. The proposed method with 100 pilots therefore gives a good

tradeoff between training load and performance. Figure 4.17 compares the performance of the proposed

receiver with a 10-finger Rake receiver and a pilot-assisted receiver for different number of training pilots

with a constant Eb

N0
= 6 dB (where Eb is the bit energy). Notice that all three methods perform similarly

for a very light load, but the proposed method shows drastic gains as the number of pilots increases. The

proposed receiver outperforms the perfect Rake receiver with perfect channel knowledge for a training load

greater than 80 pilots.
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Figure 4.16: Performance of proposed method for different number of pilots. Performance is averaged over multiple
NLOS measured channel profiles.
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for varying number of pilots. Eb
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= 6 dB. Perfect Rake assumes perfect channel knowledge.
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Note that one limitation of the proposed method is the need to feedback the real-valued sequence from the

receiver to the transmitter. This additional overhead required by the feedback is now studied in terms of the

number of bits that could be used to quantize the sequence without significantly affecting the performance of

the system (Figure 4.18). In addition to quantization levels of 3, 5, 9 and 11 bits, a ternary code is also used,

where three levels, -1, 0 and 1, are used to quantify the sequence. It is seen that performance improvement

over the perfect Rake can be achieved even while using the simple ternary code. Note that 9-bit quantization

achieves a performance close to the perfect quantization case.

An additional way to reduce the feedback overload in the system is by the use of transmit sequences with
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Figure 4.18: System performance with quantized sequence at the transmitter.

length smaller than 1 + � Tc

Tw

. These reduced length sequences can be constructed by uniformly spacing the

sequence over the delay spread Tc or by clustering them at the beginning. Figure 4.19 shows the performance

of the system with different reduced length sequences. It is seen that clustering the sequence at the beginning

gives improved performance over equally spacing the sequence. This is intuitive since most of the energy of

the channel is concentrated at the beginning of the impulse response. The delay spread considered in the

simulation is equal to 160Tw. It is seen that a performance gain over the perfect Rake can be obtained by a

sub-optimal sequence of length 40.

Note that the proposed scheme finds a sequence of length 1 + �Tc

Tp

 optimized for the channel. We now
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Figure 4.19: Performance with reduced-length sub-optimal sequences.

consider using sequence lengths greater than 1 + �Tc

Tp

. It is seen in Figure 4.20 that increasing the sequence

length only leads to marginal improvements in performance. Also to be noted is the fact that increasing the

sequence length necessitates an increased guard interval between successive symbol transmissions.

Sequence optimization is next compared to time-reversal. The same channel estimation method (where

one channel coefficient is estimated every one transmit pulse duration) is applied to both methods. A single

tap is first used for time-reversal. Performance is averaged over multiple channel realizations for different

training loads and results are plotted in Figure 4.21. Notice that the time-reversal error probability does

not improve with increasing training length, whereas sequence optimization does considerably. A channel

estimation resolution of one pulse width does not faithfully approximate the real channel behavior, which

results in unacceptably low energy capture for time-reversal‡. Figure 4.22 presents the performance of

time-reversal when lower channel estimation resolution is used and infinite training is assumed. Notice

that the performance lower bound (BPSK in AWGN) is approached for a resolution of Tw

4 , beyond which

only negligible improvement is observed. Performance of time-reversal with 10 taps for different resolutions

is shown in Figure 4.23. Notice the same pattern in probability of error improvement as the resolution
‡Notice that we would obtain similarly unacceptable performance for a Rake receiver employing the same channel estimation

resolution (i.e. generating channel metrics every transmit pulse width and then selecting the F strongest metrics). Sub-pulse
resolutions are required for adequate performance. This is also the case for time-reversal.
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Figure 4.20: Performance with increased-length sequences.

decreases. Also, note that a 10-tap time-reversal with a resolution of Tw

8
still performs worse than sequence

optimization with a resolution of only Tw. The performance of 1-tap time-reversal for different resolutions

and Np = 200 is shown in Figure 4.24. Results are similar but slightly worse than the ones in Figure 4.22

because of the error ensuing from finite training.

Performance of a time-reversal scheme using a channel estimation resolution of Tw

8 and 50 taps is compared

to sequence optimization with a resolution Tw in Figure 4.25. Notice that the probability of error of the

time-reversal receiver approaches that of the sequence optimization receiver and outperforms it at high

SNR. However, note that this comes at the expense of a channel estimation process which is 8 times more

complex. Moreover, the estimation of the position of the 50 strongest taps in the received signal§ also

increases complexity.

Performance of Pre-Rake combining is displayed in Figures 4.26, 4.27, and 4.28 for 1, 10 and 50 taps

respectively, and a varying number of fingers F (F is the number of multipath components used to pre-code

the transmit pulse shape). Notice that the probability of error decreases with increasing number of fingers

and taps, because of the enhanced energy capture at the receiver. Also note that for a sufficient high number

of taps and fingers, time-reversal can outperform the proposed sequence optimization method (time-reversal

§The complexity of this operation is equivalent to channel estimation for a Rake receiver employing MRC and 50 fingers.
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with 100 fingers with 20 taps for example, or with 50 fingers and 50 taps).
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Figure 4.21: Time-reversal versus sequence optimization. Estimation resolution=Tw . Np = 5, 50, 200.
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Figure 4.22: Effect of channel estimation resolution on time-reversal performance. 1 tap. Infinite training.
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Figure 4.23: Effect of channel estimation resolution on time-reversal performance. 10 taps. Infinite training.
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Figure 4.24: Effect of channel estimation resolution on time-reversal performance. 1 tap. Np = 200.
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Figure 4.25: Time-Reversal versus sequence optimization. Channel resolution for time-reversal receiver is Tw
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Figure 4.26: Time-Reversal versus sequence optimization. 1-tap receiver. Infinite training.
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Figure 4.27: Time-Reversal versus sequence optimization. 10-tap receiver. Infinite training.
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Figure 4.28: Time-Reversal versus sequence optimization. 50-tap receiver. Infinite training.
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The performance of the optimization process for multiple users is illustrated in Figure 4.29. A load of

160 equal-power users using 160-length transmit sequences (obtained based on the single user optimization

procedure) is assumed. The single-user optimization procedure fails, because performance is dominated by

the high cross-correlation between the desired users and some other users channels. The process optimized

for multiple users (Section 3) effectively mitigates interference. Performance is close to that of a single-user

system with a perfect all-Rake receiver. The proposed system also outperforms a CDMA-like scheme where

each user is assigned a length-160 random spreading sequence. Note that the latter system increases the

effective symbol length by a factor of 160, whereas the proposed system does not require such an overhead.

Performance in the presence of NBI with data modulation, B = 5, and whose received power is 100 dB

above that of the UWB user, is shown in Figure 4.30. NBI is effectively avoided, and the performance of the

system is similar to that of the single user system with no interference in Figure 4.15.
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Figure 4.29: Performance of sequence adaptation optimized for multiple-users. 160 equal-power users. Performance
is averaged over multiple NLOS measured channel profiles.
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Figure 4.30: Performance of sequence optimization in presence of narrowband interferer. Interferer power is 100 dB
above signal power. Performance is averaged over multiple NLOS measured channel profiles.
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4.6 Complexity Analysis

The previous sections of this chapter have mainly studied performance of key UWB receiver structures from

a probability of error perspective. The implementation complexity of these receivers is discussed in this

section. Note that a study of the hardware implementation of UWB receivers is beyond the scope of this

research effort¶. Emphasis is rather put on the number of operations (multiply-and-add) required for chan-

nel estimation and signal detection for each receiver. The compromise between increased complexity and

improved performance (in terms of probability of bit error) is also tackled.

Since the studied UWB receivers cover a relatively wide range of detection and estimation algorithms, com-

plexity analysis calls for a unified receiver structure framework, within which comparison of implementation

requirements is feasible. A generalized digital receiver structure, which encompasses all relevant signal de-

tection algorithms, is thus presented. The receiver is shown in Figure 4.31. This receiver comprises a stored

reference signal vector s of length Ls and a stored vector of coefficients c of length Lc. Vectors s and c are

used to process the received signal vector r. The decision statistic is expressed as:

r =
Lc−1∑
n=0

cn

Ls−1∑
m=0

smrm+tn (4.88)

where tn is the delay (in number of samples) corresponding to cn.

It will be shown that the decision statistics of the key studied UWB receivers may be expressed using (4.88).

Figure 4.31: General Digital Receiver Circuit.

¶The reader is referred to [80] for an exhaustive discussion of hardware implementation of UWB systems
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The rest of this section is organized as follows. First, the complexity of the different UWB receiver structures

(Rake, time-reversal, pilot-assisted, and sequence-optimization receivers) is studied within the framework

defined above. Expressions for the required number of operations for channel estimation and signal detection

are derived. The compromise between increased complexity and enhanced performance is discussed and

illustrated through simulations. The section is then concluded by a brief qualitative complexity comparison

of the different receivers.

4.6.1 The Rake Receiver

We first discuss the implementation complexity of the general F -finger Rake receiver presented in section

3.7, where channel estimation is based on the training sequence given by (3.33).

Recall that the Rake receiver decision statistic may be written as:

r =
∫

Tf

r(t)
∑

f

αfw(t − τf )dt (4.89)

where r(t) is the received signal, Tf is the symbol duration, and αf and τf are the amplitude and delay

of the fth finger, respectively. Simple inspection of Figure 4.31 in the context of the Rake receiver reveals

that the stored reference vector s corresponds to the sampled version of the transmit pulse shape w(t), and

Ls = TwFs, where Tw is the duration of the transmit pulse, and Fs is the sampling frequency. Moreover,

the stored coefficients correspond to the weights of the F fingers, and Lc is equal to F .

Recall from (3.34) that channel estimation for the Rake receiver is based on generating channel coefficients

at multiple symbols delays, and then selecting the F largest coefficients. Assuming Np pilots, the number of

multiply-accumulate operations required for the computation of one channel coefficient is equal to NpTwFs.

Assuming such a coefficient is computed every δt seconds (defined as the estimation’s resolution), the average

number of multiply-accumulate operations required for Rake channel estimation is then equal to:

MRake,est = Np
Tf

δt
TwFs. (4.90)

120



As an example, let Np = 50, Tw = 1 nsec, Tf = 50 nsec, Fs = 15 GHz and δt = 0.2 nsec. Then,

MRake,est = 187, 500.

Note that in addition to the multiply-accumulate operations, at least F find-max and memory read-write

operations are required to select and store the F strongest components.

Signal detection for the Rake receiver is equivalent to applying F correlations with the transmit pulse used

as template at F different delays. Since each correlation requires TwFs operations, the total number of

multiply-add operations per data frame is then:

MRake,detect = NdFTwFs (4.91)

where Nd is the number of information bits per frame. For example, if Nd = 500 and F = 20, we get

MRake,detect = 150, 000.

The probability of error and complexity (in number of required operations) are plotted versus Np and F in

Figure 4.32. The system parameters are Fs = 8 GHz, Tw = 500 psec, δt =125 psec, Nd = 5000 and Eb
No = 7 dB.

First, note that the probability of error for a fixed number of fingers reaches a floor for a relatively low number

of training symbols, beyond which any increase in Np only causes detrimental increased complexity. Little

improvement is also eventually seen beyond 40 fingers, and only negligible additional energy is harnessed by

increasing F , at the expense of a more taxing signal detection process.

In order to assess the system operating point at which the best performance/complexity balance is achieved,

a joint metric reflecting both complexity and error probability must be devised. In this work, the metric is

simply set to:

m =
Pe

P̄e

Comp
¯Comp

(4.92)

where comp is the system complexity (in number of operations), Pe is the probability of error, and ¯comp and

P̄e are the average complexity and probability of error, computed over all parameter realizations, respec-

tively. Note that a small metric is desired. The joint metric is plotted versus system parameters Np and F in

Figure 4.33. Notice that for low F and large Np, the metric m is largest, since system resources are wasted

on channel estimation, and performance is limited by a small energy capture which does not improve with
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Figure 4.32: Complexity and probability of error versus system parameters Np and F . Rake receiver. Fs = 8 GHz,
Tw = 500 psec, δt =125 psec, Nd = 5000, Eb

No = 7 dB.

increased training. Also, m improves with decreasing Np for all values of F , which suggests that a relatively

light training load is required to render channel estimation errors negligible. Finally, notice that m decreases

substantially with increasing number of fingers for the range F < 40. Beyond 40 fingers, increased energy

capture is offset by added signal detection complexity, and the joint metric reaches a floor.

It is important to note that the above complexity analysis does not encompass the critical issue of synchro-

nization for Rake receivers. In fact, synchronization for a Rake receiver with tens of fingers is a daunting task.

Synchronization management of the different fingers is highly problematic. Initial synchronization of each

finger to a particular multipath component is required. Due to time jitter and slow changes in the channel,

subsequent tracking is required as well, where each finger must continuously adapt to the drifting of the

multipath component to which it is assigned. Moreover, due to timing errors, two fingers might lock to the

same multipath component, which affects time diversity. Some sort of super-structure, or finger management

unit, is therefore needed to organize the way fingers search for paths. If the number of fingers is large, these

requirements become too stringent. Fingers locked to low-power specular components will especially prove

challenging to maintain, since they might operate at very low SNR (a very reasonable assumption for UWB

in dense multipath). The energy capture gains will then be negated by the increasing parameter estimation

error, as suggested in [81] and [82].
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Figure 4.33: comp ×Pe versus system parameters Np and F . Rake receiver. Parameters are same as those in Figure
4.32.

4.6.2 Time-Reversal and Pre-Rake Combining

The complexity of time-reversal and Pre-Rake combining is now discussed. Multiple received taps are

assumed for both receivers. Similar to the Rake receiver, by examining Figure 4.31, it is easy to show that

the vector s stores the transmit pulse shape (Ls = TwFs), and c holds the tap coefficients (Lc is equal to

the number of taps used).

Recall that multi-tap time-reversal requires channel estimation both at the transmitter and receiver. The

channel is estimated at the transmitter in order to set the transmit pulse shape. The delays and multiplicative

coefficients of the taps then have to be estimated at the receiver. Both estimation processes are similar to

the one used for the Rake receiver and are based on the computation of a channel metric every δt seconds,

where δt depends on the estimation’s resolution. Let Np1 and Np2 be the number of training symbols used

for the transmit and receiver channel estimation, respectively. Also let δt1 and δt2 be the resolutions used

for the estimation stages‖. Then, the overall number of operations required for channel estimation may be

expressed as:

MTRev,est = Np1
Tf

δt1
TwFs + Np2

Tf

δt2
TwFs. (4.93)

‖Equivalently, it is possible that both estimation stages are performed at the transmitter (with the same resolution). The
tap metrics then have to be fed to the receiver.
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The number of operations required for signal detection of one data frame is:

MTRev,detect = NdLcTwFs. (4.94)

Note that the analysis also holds for pre-Rake combining.

The system parameters δt2 and Lc are varied and the corresponding probability of error and complexity

are evaluated and plotted in Figure 4.34. As δt2 decreases, the estimated channel coefficients approximate

the multipath channel more faithfully, and more signal energy is available at the receiver, leading to a lower

Pe. This comes at the expense of more complex channel estimation, since more channel coefficients are

computed. The same observations hold when increasing the number of receiver taps Lc. Note however that

Pe reaches a floor after a few dozen taps beyond which any additional taps would only yield marginal extra

energy capture and necessary additional channel estimation and signal detection operations.

The joint metric m is shown in Figure 4.35. Notice that m is the largest (or worst) for high δt2 and low Lc

0 20 40 60 80 100

0
20

40
60

10
−4

10
−2

10
0

Est. Resol.(%Pulse Width)

Time−Reversal Receiver

Taps

P
e

0 20 40 60 80 100

0
20

40
60

0

2

4

x 10
6

Est. Resol.(%Pulse Width)Taps

# 
F

lo
ps

Figure 4.34: Complexity and probability of error versus system parameters δt2 and Lc. Time-Reversal. Fs = 8
GHz, Tw = 500 psec, Tf =80 nsec, Nd = 5000, Eb

No
= 7 dB., Np1=200, Np2=100.

due to the unacceptably high probability of error in that region. m decreases as the estimation resolution

and number of taps increases. Notice that decreasing resolution from Tw

4 to Tw

8 leads to higher m, because

the marginal drop in Pe is nullified by the more substantial increase in complexity.
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Figure 4.35: comp ×Pe versus system parameters δt2 and Lc. Time-Reversal. Parameters are same as those in
Figure 4.34.

4.6.3 The Pilot-Assisted Receiver

Consider the pilot-assisted receiver discussed in section 3.8. We restrict complexity analysis to the simple

pilot-assisted receiver, where the correlation template is obtained by averaging Np training symbols. Then,

in the context of the general digital receiver in Figure 4.31, vector s is set to the received pulse shape, and

Ls = TfFs. Note that the stored reference is much longer than the ones used for the other receivers, since

signal detection is based on the received pulse shape rather than the transmit pulse shape. The coefficient

vector c is redundant for the pilot-assisted receiver and need not be stored.

Recall that no explicit channel estimation is required for the pilot-assisted receiver, and the template is

rather obtained by simple averaging. Assuming the template length is T seconds (T ≤ Tf ), the number of

operations required to generate the template is approximated by:

MPA,est = NpTFs. (4.95)

For example, let Np = 250, T = 60 nsec and Fs = 15 GHz. Then, MPA,est = 225, 000.

The decision statistic is generated by directly multiplying the stored reference by the received signal (vector

c is all-ones). Then, the number of multiply-accumulate operations for signal detection over a frame of Nd
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bits is:

MPA,detect = NdTFs. (4.96)

As an example, for Nd = 500, MPA,detect = 450, 000.

The probability of error and complexity versus Np and T (as a fraction of Tf) are plotted in Figure 4.36.

Notice that Pe decreases with increasing T due to enhanced energy capture (as seen in section 3.8). If T

is increased beyond about half of Tf , negligible additional energy is captured, and considerable increased

complexity does not yield any performance improvement (performance in fact slightly deteriorates because

further noise is included in the template). Also, Pe only reaches a floor beyond a few hundred pilot symbols.

The joint complexity/error probability metric is displayed in Figure 4.37. As expected, the worst system
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Figure 4.36: Complexity and probability of error versus system parameters Np and T . Pilot-assisted receiver. Fs =
8 GHz, Tw = 500 psec, Tf =80 nsec, Nd = 5000, Eb

No
= 7 dB.

operating points occur at very low values of T coupled with high Np, since complex channel estimation is

nullified by extremely low energy capture. Moreover, at low training (Np < 300), the noise power in the dirty

template overwhelms performance regardless of energy capture. The optimal operating point is achieved for

relatively high training and long enough integration time. The concave shape is caused by the slight increase

of Pe at extremely high T .

Note that the main complexity burden for sophisticated TR systems (where multiple unmodulated signals
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Figure 4.37: comp ×Pe versus system parameters Np and T . Pilot-assisted receiver. Parameters are same as those
in Figure 4.36.

are averaged to produce a cleaner template) is the required storage of a potentially long signal∗∗. In this

research, simulation results were obtained based on a stored template composed of 6400 real numbers.

Storing and processing this large real sequence may result in a highly power-hungry device, with heavy

memory requirements.

4.6.4 Sequence Optimization Receiver

Recall that the computation of the transmit sequence X and template sequence Y for the sequence op-

timization†† receiver require estimation of the channel matrix H . The channel estimation procedure is

mathematically defined by (4.64), where a channel coefficient is computed every Tw seconds. Assuming Np

training symbols, the corresponding number of operations may be expressed as:

MSO,est = NpNxTwFs + Meig. (4.97)

∗∗The same problem applies for the proposed data-aided pilot-assisted system.
††Here, considering the general structure from Figure 4.31, s corresponds to w(t), and c is set to the template sequence Y .
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where Meig represents the overhead due to the eigenvector computation performed on H .

The complexity of the signal detection stage is found to be:

MSO,detect = NdNyTw (4.98)

where Ny is the length of vector Y .

The transmit sequence length and training load are varied, and the probability of error and complexity are

evaluated and shown in Figure 4.38. The joint metric is shown in Figure 4.39. Notice the complexity increase

and performance improvement as Nx and Np grow. A performance floor is reached, beyond which adding

training or increasing the sequence length is only detrimental to the overall system.
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Figure 4.38: Complexity and probability of error versus system parameters Np and Nx. Sequence-optimization
receiver. Fs = 8 GHz, Tw = 500 psec, Tf =80 nsec, Nd = 5000, Ny =160, Eb

No
= 7 dB.

4.6.5 Complexity Comparison

When considering the four main receiver structures studied in this section, selection of the most suitable

receiver is not a straightforward task. In fact, the receiver which presents the best compromise between

design complexity and probability of error performance depends on widely varying system characteristics

and requirements, such as target BER, available power, and allowed circuit complexity.
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Figure 4.39: comp ×Pe versus system parameters Np and Nx. Sequence-optimization receiver. Parameters are same
as those in Figure 4.38.

Since UWB systems are subject to stringent FCC power restrictions, receiver structures which guarantee

satisfactory probability of error at relatively low signal-to-noise ratios are required. The shortcomings of

traditional pilot-assisted and Rake receivers have been studied in this chapter, with emphasis on their

inefficiency in dense multipath at low transmit power level. In addition to its ineffectiveness from a probability

of error point of view, the pilot-assisted receiver presents a large memory and power requirement burden

caused by the need to store a relatively very long template. Channel estimation is more complex for Rake

receivers compared to their pilot-assisted counterparts, because of the need of generating channel coefficients

at sub-pulse intervals. The management of a large number of fingers (required for adequate energy capture)

is another serious design challenge.

More sophisticated receivers such as sequence optimization and time-reversal allow for higher energy capture

(and consequently better probability of error) by more efficiently exploiting the available multipath structure

(in fact both methods can potentially outperform the performance lower bound for Rake and pilot-assisted

receivers by coherently combining multipath components). This comes at the expense of a generally more

complex implementation and more stringent computational requirements.

Although both systems alleviate receiver design by shifting complexity to the transmitter, they require

receiver feedback capability and thus introduce an additional design burden. Channel estimation for multi-
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tap time-reversal is more complex than for sequence optimization, since two separate estimation operations

(for setting the transmit filter and evaluating the receiver’s taps) are required‡‡ . Moreover, both estimation

stages require sub-pulse resolutions to guarantee adequate performance, whereas sequence optimization was

shown to yield satisfactory results at a resolution of one transmit pulse width. Signal detection is more

complex for sequence optimization in general, because the sequence optimization template is based on a

relatively long sequence (a sequence of length 160 is used in the simulation results of this chapter) compared

to the number of taps used for time-reversal. This difference in complexity is however offset by the burden

of management of the time-reversal taps (similar to finger management in a Rake receiver). Moreover, as

was shown in section 4.5, the transmit sequence may be potentially shortened while maintaining acceptable

performance, and a similar simplifying procedure may potentially be applied to the receiver template.

4.7 Conclusions

This chapter presents two new UWB signal detection algorithms which circumvent the limitations of Rake

and TR receivers.

A modified system which solves the noise-cross-noise problem in TR receivers is proposed. The system

reduces the training overhead by incorporating the modulated data symbols into an iterative channel esti-

mation process. FEC is provided to achieve a good iterative starting point. It is shown that the proposed

model outperforms both Rake and TR receivers, while substantially reducing the training overhead.

A proposed system based on sequence optimization solves the problem of limited energy capture in Rake

receivers by more fully taking advantage of the multipath structure, and forcing the coherent addition,

or ”constructive interference” of the multipath components at the receiver output. The proposed system

achieves very high energy capture, with a low training overhead. The effectiveness of the model is also

displayed for multi-user and NBI scenarios.

‡‡Both channel time-reversal estimation stages may be bundled into one estimation stage performed at the transmitter.
Nonetheless, that stage would still require a finer resolution than sequence optimization, and would thus be more complex.
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Chapter 5

UWB Synchronization in Dense

Multipath

5.1 Introduction and Motivation

In a typical wireless communication system, the receiver does not have a priori information about the ar-

rival instant of the incoming signal. Prior to demodulation, the receiver must first sense the environment,

and recognize the presence of an information signal. Since classical demodulation is highly dependent on

the sampling instant, the receiver must accurately align any stored reference or template with the received

modulated signals.

Synchronization is the process of aligning the incoming waveform with a reference signal. The reference

signal might be a pulse shape or a spreading sequence in a SS system, for example. Synchronization misalign-

ment potentially results in catastrophic performance. For example, in a typical SS system, if the spreading

sequence used in demodulation is misaligned by more than a chip length from the received spreading se-

quence, the output receiver SNR is reduced by a factor equal to the spreading gain, due to the autocorrelation

properties of the sequence.

The synchronization process is usually divided into two phases: First, the acquisition phase achieves

coarse synchronization. Then, the tracking stage refines the timing estimation and achieves synchronization.
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Acquisition usually occurs once during initial synchronization and gives a starting point for tracking. Track-

ing is an ongoing process that continuously ensures correct synchronization [61][85][86].

Acquisition and tracking for indoor UWB systems are discussed in this chapter. The specific synchroniza-

tion challenges posed by UWB in dense multipath are investigated, and then solutions are proposed. Since

acquisition is the stage which has generated the most interest and drawn most of the UWB synchronization

research effort, emphasis is given to coarse synchronization. The application of fine synchronization to UWB

is treated at the end of the chapter.

5.1.1 UWB Acquisition

The design of fast and efficient acquisition schemes is a challenging aspect of UWB. Traditional synchroniza-

tion techniques used in SS systems are not suitable for UWB, mainly because they result in prohibitively

long acquisition times. In fact, due to the use of extremely short, low duty cycle UWB pulses, the delay

uncertainty region contains a huge number of potential timing offsets, or cells, compared to narrowband

systems. Designing efficient search algorithms that efficiently process those cells has been the main focus of

research in UWB acquisition to date.

In addition to the long acquisition time, the problem of UWB synchronization is further complicated in

indoor dense multipath channels, where energy dispersion makes it hard to generate reliable decision metrics.

Moreover, whereas traditional acquisition strategies for SS systems assume that there is a single correct cell

(termed an H1 cell [61][87]) within the uncertainty region which represents the correct signal delay, this

assumption does not hold for UWB in multipath, because of the large number of resolvable paths. Instead,

there will be a group of H1 cells corresponding to the different multipath delays which can terminate the

acquisition process. Previous work on indoor UWB acquisition assumes that synchronization is successful

if any H1 cell is selected. However, locking to an arbitrary multipath component may lead to unacceptable

performance (large ranging error in position location applications, and large symbol energy loss for commu-

nication applications, for example). Figure 5.1 illustrates this problem for a typical indoor multipath channel

profile. Correct ranging estimation based on time-of-arrival [88] is achieved by choosing, or locking to the

LOS path (the first arriving path). In this particular example, an arbitrary multipath component which is
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about 30 nsec away from LOS is selected. Since light travels at an approximate speed of 1 foot/nsec, this

timing error translates into a ranging error of approximately 30 feet, which is unacceptable for most indoor

position location applications.

The main challenge for UWB coarse synchronization in dense multipath is therefore to design acquisition
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Figure 5.1: Typical acquisition scenario for UWB in dense multipath. The selected multipath component is about
30 nsec away from the LOS component.

algorithms that are able to accurately detect the first arriving multipath, while minimizing the acquisition

time. One such algorithm is presented in this chapter. Specifically, a two-stage acquisition technique is pro-

posed (Figure 5.2), where the first stage termed coarse acquisition simply finds any of the many multipath

components (i.e., simply achieves rough symbol/code synchronization). The main requirement for this stage

is that it must detect a multipath as fast as possible. In the proposed implementation, the first stage is

a fast version of traditional serial threshold comparison test. Our proposed scheme is termed jump-phase

search, where the search time is drastically reduced by performing a non-consecutive search, where the order

in which cells are tested is set such that the H1 cells are uniformly spread over the uncertainty region. The

procedure does not add any significant complexity to the circuit compared to serial search, and knowledge

of the number of multipath components is not needed. Although this stage might not necessarily lock to the

desired path, it allows the uncertainty region (in which the desired path exists) to be reduced considerably.
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The second stage, termed fine acquisition, searches for the first arriving path in the reduced uncertainty

region. The second stage takes advantage of a robust estimate of the noise variance, obtained from the first

stage, to calculate a new, more reliable threshold. Moreover, it exploits the clustered nature of the multipath

to better segregate H0 cells (cells corresponding to incorrect delays) from H1 cells, and more reliably detect

the start of the signal, even when the LOS path is severely attenuated.

Figure 5.2: General two-stage acquisition model.

5.1.2 UWB Tracking

Research in UWB synchronization has mainly concentrated on the acquisition process. Tracking for UWB

signals has received relatively little research interest, and is usually based on the application of traditional

SS tracking methods [61].

In order for traditional tracking schemes to work properly, acquisition must give a reasonably good coarse

estimate of the timing delay (within a fraction of a chip duration for SS systems). This assumption is

suitable for a UWB Rake receiver, where a separate tracking circuit is assigned to each Rake finger, and

acquisition provides a good estimate of the delay of the multipath component corresponding to each finger.

However, the assumption is highly problematic for UWB pilot-based receivers in dense multipath, where the

objective of synchronization is to detect the LOS component. In fact, since the UWB received energy is

spread over tens or even hundreds of multipath elements, there will exist a group of delays corresponding to

the different multipath components which can terminate the acquisition process. The LOS path might be
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severely attenuated and need not be the strongest available path. Detection of the LOS component is thus not

guaranteed. Moreover, as we have already noted, most UWB acquisition techniques assume that acquisition

is successful if any of the available multipath components are detected, rather than the LOS component

(see [98] or [101] for example). The detected multipath might be tens of nanoseconds away from the start

of the signal due to the large channel delay spread. In this case, a traditional tracking algorithm would lock

on that selected multipath, and would fail in correcting the large delay error, resulting in significant energy

loss, and thus unacceptable performance degradation.

The main limitation of standard tracking techniques applied to UWB in dense multipath is that they are

based on the correlation of the received signal with a local stored reference matched to the transmit pulse

shape. Such circuits do not take advantage of the received pulse shape, and are thus unsuitable for correcting

delay errors which are large compared to the transmit pulse duration. Thus, there is a need for modified

fine synchronization algorithms which converge to the LOS component even when they are fed a large delay

error by the acquisition stage.

A modified tracking algorithm for pilot-assisted receivers is proposed in this chapter. It is assumed that initial

acquisition potentially results in the detection of an arbitrary multipath component, thus leading to a timing

error much larger than the transmit pulse duration. The tracking method is based on a modified early-late

gate approach [61], where the correlator uses an estimated template of the received pulse shape rather than

the transmit pulse shape, thus enabling much higher energy capture during tracking. The symbol intervals

preceding and succeeding the estimated delay are processed in order to measure their energy content. The

symbol delay is then corrected based on the difference in energy in the two intervals. The method does

not require any additional training overhead, and the algorithm is deployed iteratively, where the receiver’s

correlation template is re-evaluated after delay correction, and data bits are re-estimated using this new

template, leading to significantly improved performance.

5.2 List of Contributions and Publications

The main contributions of this chapter are:
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• A mathematical formulation for a general indoor UWB acquisition model, where the effect of dense

multipath and the existence of multiple H1 cells (which is usually neglected in the literature) is explicitly

included.

• A derivation for the mean acquisition time for serial search in dense multipath (with the existence of

multiple H1 cells), using a super-cell approach.

• A new two-stage acquisition approach, which combines fast acquisition time and robust timing estimate

in dense multipath, even when the LOS component is severely attenuated.

• A new coarse acquisition search pattern, termed ”jump-phase” search, where mean acquisition time is

drastically reduced by uniformly spreading H1 cells over the uncertainty region.

• A new fine acquisition stage, which robustly detects the LOS component, by taking advantage of the

clustered nature of the multipath components.

• A case study of the effect of timing error on the performance of a generalized TR system.

• A new tracking algorithm for generalized UWB pilot-assisted receivers, which can correct timing errors

much larger than the transmit pulse duration.

• A statistical analysis of an iterative version of the tracking method, where the pilot-assisted receiver’s

correlation template is iteratively re-evaluated after delay correction, and data bits are re-estimated

using this new template, leading to significantly improved performance.

Relevant publications are listed below for reference:

• J. Ibrahim and R.M. Buehrer, “Two-Stage Acquisition for UWB in Dense Multipath,” IEEE Journal

on Selected Areas in Communication, vol. 24, issue 4, part I, pp. 801-807, April 2006.

• J. Ibrahim and R.M Buehrer, “A Modified Tracking Algorithm for UWB Pilot-Assisted Receivers,”

in Proc. 2006 ICUWB, September 2006.

• J. Ibrahim and R.M. Buehrer, “Two-Stage Acquisition for UWB in Dense Multipath,” in Proc. 2005

MILCOM, pp. 1898-1904, vol.3, October 2005.
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5.3 Chapter Organization

The rest of this chapter is organized as follows. Since most previous work in UWB acquisition is based

on traditional SS acquisition techniques, a brief introduction to SS acquisition is included in section 5.4.

Relevant previous work on UWB and SS acquisition in dense multipath is summarized in section 5.5. The

general acquisition model is mathematically formulated in section 5.6. The model incorporates the existence

of multiple H1 cells into the analysis. Coarse acquisition is discussed in section 5.7. Traditional serial search

is first analyzed. An expression for the mean acquisition time of serial search in the presence of multiple

H1 cells is derived, using a ”super-cell” approach. Then, the proposed jump-phase search is introduced,

and an expression for its mean acquisition time is derived. The section is concluded by simulation results,

which show that jump-phase search speeds up mean acquisition time by about an order of magnitude as

compared to serial search by uniformly spreading the H1 cells over the uncertainty region. Although jump-

phase search efficiently reduces acquisition time, it nonetheless leads to a significant timing error, because

it locks into an arbitrary H1 cell, rather than the first H1 cell (corresponding to the LOS path)∗. This

timing error is mitigated by the fine acquisition stage, which is presented in section 5.8. The operation of

this two-step stage is mathematically described using the IEEE P802.15 model proposed for UWB, then

illustrated through numerical results. A study of the performance of the proposed two-stage acquisition

scheme is tested in the context of a ranging system through simulations in section 5.9. It is shown that

the introduction of the fine acquisition stage leads to a drastic reduction in range error. The expression for

the probability of bit error of a pilot-assisted receiver in the presence of timing error is derived in section

5.10, then the performance improvement brought by the proposed scheme is demonstrated by simulation.

Section 5.11 presents previous work on tracking for UWB and discusses the limitations of traditional tracking

methods applied to UWB in dense multipath. The proposed tracking model is presented in section 5.12. The

algorithm is based on the construction of ”early” and ”late” templates, which are used to measure the energy

content in the time intervals preceding and succeeding the estimated timing delay. The delay is fixed based

on a comparison of these two energy values. The iterative deployment of the algorithm is also discussed. The

model is statistically and mathematically analyzed in section 5.13. The first and second-order statistics of
∗Note that this is the case for all coarse acquisition methods discussed in this work
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the algorithm’s decision metrics are derived and used to formulate a probability of bit error for the system.

Simulation results which validated the theoretical expressions and illustrate the model’s performance are

included in section 5.14. Finally, section 5.15 concludes this chapter.

5.4 Traditional Acquisition for SS Systems

The primary function of a SS direct-sequence receiver is to despread the received spreading code. The

received signal is despread by multiplying it by a locally generated replica of the code. However, since the

signal’s time of arrival is generally unknown, the receiver must first estimate the timing delay, then align,

or synchronize, the generated and received codes. Acquisition is a part of the synchronization process that

occurs (ideally) once during initial synchronization. Acquisition produces a coarse alignment of the two

codes (typically less than a fraction of chip duration). The acquisition process searches a specific timing

uncertainty region for the correct delay. The uncertainty region is typically divided into discrete cells, where

each cell is associated with a specific delay. A training sequence or preamble is typically used to achieve

acquisition. Once this preamble is aligned with the stored reference (i.e. the cell that contains the real delay

is selected), the receiver is said to attain lock. If the correct cell is not detected, we say that the receiver

”missed” acquisition. A false alarm occurs when a wrong cell is selected. We label the probabilities of a hit

(or detection), false alarm and missed detection as Pd, Pfa and Pm respectively. The average time it takes

acquisition to terminate successfully is the mean acquisition time T̄acq . The four main performance measures

of a typical acquisition process are T̄acq, Pfa, Pm and Pd. A well designed acquisition process should ideally

yield low T̄acq , low Pfa, low Pm and high Pd. These measures are usually inter-dependent, and their relative

importance is closely related to the specifications of the application at hand. In a packet-based system, for

example, where the packet is either detected or all the information is lost, maintaining a high probability

of detection is paramount. In real-time applications, where high latency is damaging, special care is put

into reducing T̄acq . In this section, we introduce fundamentals of acquisition theory for SS systems. For an

exhaustive analysis of SS acquisition, the reader is referred to [61].
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5.4.1 Classification of Detector Structures

Coherent Versus Non-Coherent Detectors

For almost all acquisition detectors, the received and local spreading sequences are multiplied to produce

a measure of correlation between the two. This measure is then processed by a decision rule and search

strategy, to determine whether the two codes are in synchronism, and what to do if they are not. All

detectors thus make decisions based on some form of threshold comparison test [61]. Acquisition circuits

fall into two basic categories, namely, coherent and non-coherent. The non-coherent detector removes any

phase or frequency ambiguity before processing the metric (by squaring the metric, for example, or taking

its absolute value). The non-coherent detector is the most commonly used, because the carrier phase and

the frequency shifts caused by propagation delay and Doppler are usually unknown, and coherent methods

applied prior to carrier and frequency estimation are inapplicable. If good estimates of the carrier phase and

frequency shift are available, coherent acquisition is possible.

Fixed Versus Variable Integration Time

Another classification criterion is based upon the length of integration time in the detector. Fixed and

variable integration time detectors exist. Fixed integration time detectors may be further categorized as single

dwell or multiple dwell. In single dwell systems, detection of acquisition is based on a single integration. It is

based on multiple integrations for multiple dwell systems. Single dwell detectors can be further categorized

according to whether they use partial or full period code correlation. Multiple dwell detectors are categorized

depending on the way in which the additional integrations are used to verify the decision made based on

the first integration. For variable-integration detectors, the integration time required for threshold crossing

is allowed to vary.

5.4.2 Acquisition Techniques

The Maximum Likelihood Algorithm

In the maximum likelihood (ML) procedure (Figure 5.3), the received signal is correlated with all phases of

the local spreading code. In other words, assuming that the uncertainty region is divided into N cells (each
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Figure 5.3: Serial realization of the ML technique.

corresponding to a code phase, or delay), all N cells are tested. The cell yielding the greatest decision statistic

is selected. In a strict ML implementation, all decisions are made in parallel. In the serial implementation,

cells are tested successively and their statistics are stored (this assumes that the delay does not change during

the time it takes to test all the cells). A decision is only made after all cells are tested. The advantage of

the ML technique is that it tests all possibilities, which leads to a relatively reliable decision. However, it

suffers from an increased complexity (in the parallel implementation) or an increased search time (in the

serial implementation) which makes it infeasible in most applications.

Single Dwell Serial Search

Figure 5.4: Single dwell-time, non-coherent serial search.

In the serial search technique (Figure 5.4), cells are searched consecutively. If the decision from a cell
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exceeds a pre-defined threshold, acquisition terminates and switches to the verification stage. Else, the

search proceeds to the next cell. Compared to the ML technique, serial search trades off accuracy for shorter

acquisition time. The margin of the step (the time distance between two consecutive cells) is determined

by the desired acquisition precision. It is typically set to one half or one fourth of a chip. In the absence

of a priori information of the code phase, the sweep of the uncertainty region is uniform (i.e., the steps are

equal) and unidirectional. Alternatively, if a priori information is available, the search starts in the region of

highest certainty and expands to regions of lesser certainty. This is termed as an expanding window search.

However, the term ”serial search” usually refers to consecutive (linear) search, where cells are searched in

the order in which they occur in time. The single-dwell non-coherent serial search detector is the most

popular acquisition technique for practical DS systems. Its performance has been studied closely. Analysis

is typically based on generating flow graph models and the use of basic Markov chain theory. Although a

complete characterization of the probability distribution of the acquisition time is desirable, the literature is

often content with measuring performance in terms of the first two moments, T̄acq and σ2
acq. It is assumed

that a false alarm is detected in a verification stage performed after lock, and leads to a penalty time of

Tfa = Kτd, where τd is the dwell time (the time required for a single integration), and K is a parameter

depending on system characteristics. In traditional serial search analysis, it is commonly assumed that only

one cell holds the correct phase. Although this is a valid assumption in AWGN channels, it does not hold

in multipath environments, where multiple cells (corresponding to different multipath components) may

legitimately achieve lock. The definition of successful acquisition is then more subtle, and depends on the

particular considered application.

Multiple Dwell Serial Search

In the multiple dwell approach, the examination interval is divided into a sequence of short integration

times. Integrations are performed consecutively. If, at any time, the result of a particular integration

does not exceed the threshold, failure is declared, and acquisition proceeds to the next cell. Lock is only

achieved if all integrations exceed the threshold. The major advantage of such a strategy is that it enables

fast rejection of out-of-phase cells, therefore reducing acquisition time. However, this comes at the cost of
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increased complexity.

The MAX/TC Search

One of the disadvantages of the serial search criterion is that it is highly sensitive to the fixed threshold,

especially in extremely noisy environments. In fact, if the threshold is too low, many cells could terminate

the search, potentially causing a false alarm. If the threshold is too high, the search cannot be terminated,

and detection is missed. The threshold must therefore be optimized, which could be a complex process, since

it depends on the statistical properties of the communication channel.

An alternative strategy is to choose the largest decision metric from a group of cells, and only compare that

maximum value to the threshold. This is labeled the MAX/TC criterion. Since it requires fewer comparisons

with the threshold, it leads to a more robust, but more complex acquisition process. The MAX/TC criterion

can be performed in either a serial or parallel mode. Note that the MAX/TC approach is similar to the ML

approach, except that the final decision is preceded by a threshold comparison. This blocks acquisition from

making an incorrect decision in the absence of a signal (i.e. when choosing the maximum statistic among

noisy statistics). In a multiple-sector MAX/TC criterion, cells are grouped into sectors. The cell with the

maximum statistic is selected from a sector, and its statistic is compared to the threshold. If it exceeds the

threshold, acquisition is terminated. If it does not, acquisition moves to the next sector [89]. The number of

threshold comparisons is proportional to the number of sectors. A modified method is the global MAX/TC

criterion, where the maximum is selected after searching the whole uncertainty region, then compared to a

threshold. The global MAX/TC approach is the least sensitive to the threshold. However, it is characterized

by a fixed one-round search time, since all cells have to be searched before a decision is made.

The Matched Filter Technique

The previous techniques considered active correlation, that is, the received signal was correlated with a

locally generated spreading sequence, after which a decision was made. The matched filter technique (Figure

5.5) uses passive correlation; the filter is matched to a portion of the spreading sequence. Correlation is

performed as the received signal slides through the filter. The matched filter produces maximum correlation

when its impulse response matches the incoming sequence. A simple threshold device may be used to detect
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Figure 5.5: The matched filter implementation.

this peak. Since correlation is continuous in this case, the matched filter technique offers a reduced acquisition

time compared to serial search. The matched filter technique is not suitable for applications where the shape

of the received pulse is unknown (which is the case of UWB in dense multipath), since a unique, strong

correlation maximum cannot be achieved in that case.

5.5 Previous Work on SS and UWB Acquisition in Dense Multi-

path

The problem of acquisition in multipath has received some attention in SS research. One of the earliest

references to study the performance of an acquisition system considering multiple H1 cells is [90], where the

probability of successful acquisition is defined as the probability of detecting any multipath component. A

matched-filter acquisition approach that combines two consecutive matched filter output samples in order

to coherently gather multipath energy is proposed in [91]. An expression for the mean acquisition time in

multipath for an SS system is derived in [92]. In [93], the effect of the order in which cells are tested is

investigated. It is found that uniformly spreading the H1 over the uncertainty region yields lower acquisi-

tion times. This idea is extended in [94], where the uncertainty region is divided into sectors, each sector

containing exactly one H1 cell. However, the number of multipath components is assumed to be known and

relatively small. Acquisition for SS Rake receivers in multipath are studied in [95] and [96]. In [95], decision

statistics for all cells in the uncertainty region are produced, and then the first finger tap is set to the delay

corresponding to the greatest metric. The number of remaining fingers and their respective delays are set

based on a ratio-threshold test. In [96], Rake acquisition is divided to two stages. Initial acquisition locks

to an arbitrary multipath component, while post-initial acquisition searches the reduced uncertainty region
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around the selected cell to fix the position of the remaining fingers. While insightful, this work does not

directly apply to UWB due to the high energy dispersion and relatively large number of multipath compo-

nents in the UWB channel.

Recent research effort has focused on acquisition methods specifically tailored for UWB. Most of the

proposed solutions are based on variants of single dwell non-coherent serial search, because of its low com-

plexity, simplicity of implementation, and ease of analysis. A threshold crossing technique based on equal

gain combining to gather energy from different multipath components is proposed in [97]. The same ap-

proach is extended in [98], where two levels of signals spreading are used in order to reduce the acquisition

search space. Optimal cell search patterns in multipath are investigated in [99] [100] [101]. It is found that a

”bit reversal” search, that maximizes the distance between consecutive tested cells, yields significant reduc-

tion in mean acquisition time compared to a linear (serial) search where cells are searched in order, at the

expense of a more complex search mechanism. Bit reversal search is employed in [102] along with a double

dwell approach, which speeds up acquisition time by introducing parallelism. The use of the MAX/TC

approach [89] is proposed for UWB in [103], where the maximum metric from a group of parallel correlators

is chosen then compared to a threshold. The approach is more robust than serial search but introduces

significant complexity to the circuit. A system where acquisition is performed by selecting the peak of the

cross-correlation between consecutive pilot signals is studied in [104] and [105]. However, such a system is

highly sensitive to noise because of the use of a dirty template, and suffers from the ”noise-cross-noise” effect

seen in transmitted-reference receivers [35]. In [106] and [107], the authors take advantage of the inherent

cyclostationarity of UWB signals when spreading sequences are used, by picking the peak of a time-varying

correlation to estimate the delay. Acquisition based on spectral estimation techniques is investigated in [108]

and [109]. In [110], a joint channel estimation and synchronization method based on least squares is studied,

where a sub-spaced method first identifies the presence of multipath clusters, before performing a finer search

on the detected cluster. A two-stage acquisition approach, where a rough block search is first performed,

and then the search is refined by processing the selected block, is proposed in [111].

The above mentioned references assume that acquisition is successful if any H1 cell is detected. However,

this assumption is highly unsuitable for UWB applications operating in dense multipath (unless a Rake re-
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ceiver is used). In fact, for UWB ranging applications, the detected multipath might be tens of nanoseconds

away from the start of the signal due to the large delay spread, resulting in ranging errors in the tens of feet.

This approach is also inefficient in communication applications, since locking to an arbitrary multipath and

assuming it to be the earliest arriving path might lead to a loss of a large part of the symbol energy, resulting

in substantially higher symbol error probabilities. The problem is identified in the literature (see [92]), and

the need for some additional sweep stage is recognized, but a specific algorithm for robustly detecting the

first multipath has not yet been presented. The problem is not trivial, since the LOS path might not be the

strongest path. Moreover, it might be severely attenuated, which makes its detection with high probability

a challenging task.

5.6 General Acquisition System Model

The proposed acquisition model is based on a training sequence. For ranging applications, the training

sequence is part of a ranging packet and is used to estimate the signal’s time of flight, which is directly

related to the position of the first arriving path †. For communication applications, the training sequence

is followed by data transmission after acquisition terminates. The definition of some terms was provided in

the previous chapter, and is repeated here for convenience. The training sequence sts(t) is defined as:

sts(t) =
√

Ep

∞∑
i=−∞

Nc−1∑
n=0

anw (t − nTf − iNcTf) (5.1)

where an = ±1, 0 ≤ n ≤ Nc − 1 is a maximal length sequence of length Nc, and w(t) is a unit-energy UWB

Gaussian pulse shape, which is assumed to have non-negligible amplitude over a time duration Tw . It is

assumed that the effects of the transmit and receive antennas are incorporated into w(t). For mathematical

simplicity, it is also assumed that the symbol time Tf >> Tw is longer than the channel maximum delay

spread, and any ISI effects caused by the multipath channel are thus ignored‡. Ep is the pulse energy. R(τ )

†The exact algorithm for range estimation is not detailed here. Rather, we will assume that the range error is directly related
to the timing error.

‡Note that, although ISI is not included in the analysis, the system possesses inherent ISI mitigation capability, due to the
use of a spreading sequence. Specifically, the impact of ISI will be reduced by a factor Nc.
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is the autocorrelation function of w(t) evaluated at delay τ , and is given by:

R(τ ) =
∫ ∞

−∞
w(t)w(t − τ )dt (5.2)

The impulse response of the L-multipath channel is given by the following tapped delay model:

h(t) =
L∑

l=1

αlδ(t − τl). (5.3)

αl and τl are the real amplitude (including polarity) and delay of the lth path, respectively. The channel

is assumed to be time-invariant (quasi-static) over the analysis. After channel convolution, the received

training sequence can be written as:

rts(t) =
√

Ep

∞∑
i=−∞

Nc−1∑
n=0

an

L∑
l=1

αlw (t − τl − nTf − iNcTf ) + n(t). (5.4)

n(t) is a zero-mean white Gaussian noise process with PSD N0
2

.

At the receiver, rts(t) is correlated with a delayed version of the spreading sequence in order to detect the

presence of signal components. Since the length of the spreading sequence is Nc, the timing uncertainty region

is of length NcTf seconds. In other words, if the delay of the correlator-spreading sequence is incremented

on a time interval of length NcTf , the received and correlator sequences are guaranteed to align at some

delay. Thus, we shall assume that the true delay of the received signal is equal to 0 (τ1 = 0), and restrict

our analysis to the uncertainty interval [0, NcTf ] without loss of generality. If this interval is tested and

acquisition is not successful, intervals [iNcTf , (i + 1)NcTf ], i ≥ 1 are successively tested in a similar fashion,

until acquisition is successful.

The uncertainty region is divided into discrete cells, where each cell corresponds to a specific delay. The

time difference between two consecutive tested delays is given by ∆τ . A decision metric corresponding to a

specific cell is generated by correlating the received training sequence by a delayed version of the unit-energy

correlator template m(t), where:

m(t) =
1

Nc

Nc−1∑
n=0

anw (t − nTf ) . (5.5)
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Assuming the true delay of the received signal to be 0 (τ1 = 0), and varying the delay of m(t) from 0 to

NcTf , the correlator output corresponding to delay τ̂ can be written as:

dτ̂ =
∫ τ̂+NcTf

τ̂

rts(t)m(t − τ̂ )dt. (5.6)

We can express (5.6) as:

dτ̂ =

√
Ep

Nc

∫ τ̂+NcTf

τ̂

L∑
l=1

αl

∞∑
i=−∞

Nc−1∑
n=0

anw (t − nTf − iNcTf − τl)
Nc−1∑
m=0

amw (t − mTf − τ̂ ) dt + nd (5.7)

where nd is a zero-mean Gaussian random variable given by:

nd =
1

Nc

∫ NcTf

0

n(t)
Nc−1∑
m=0

amw (t − mTf ) dt. (5.8)

The variance of nd is found to be:

σ2 =
1

N2
c

∫ NcTf

0

∫ NcTf

0

E [n(t)n(λ)]
Nc−1∑
m1=0

Nc−1∑
m2=0

am1am2w (t − m1Tf )w (t − m2Tf ) dtdλ

=
N0

2N2
c

Nc−1∑
m1=0

a2
m1

∫ NcTf

0

w2 (t) =
N0

2Nc
. (5.9)

We can re-write dτ̂ as:

dτ̂ =

√
Ep

Nc

L∑
l=1

αl

Nc−1∑
n=0

Nc−1∑
m=0

anam

∫ NcTf

τ̂

w (t − nTf − τl)w (t − mTf − τ̂ ) dt

+

√
Ep

Nc

L∑
l=1

αl

Nc−1∑
n=0

Nc−1∑
m=0

anam

∫ τ̂+NcTf

NcTf

w (t − nTf − NcTf − τl)w (t − mTf − τ̂ ) dt + nd. (5.10)

Now, if τ̂ ≤ Tf , then:

dτ̂ =

√
Ep

Nc

L∑
l=1

αl

Nc−1∑
n=0

a2
nR (τl − τ̂ ) + nd =

√
Ep

L∑
l=1

αlR (τl − τ̂) + nd. (5.11)
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If Tf ≤ τ̂ ≤ NcTf , then:

dτ̂ =

√
Ep

Nc

L∑
l=1

αl

Nc−1∑
n=0

anan+� τ̂
Tf

� mod Nc
R

(
τl − τ̂ + � τ̂

Tf
�Tf

)
+ nd. (5.12)

Since a maximal length sequence is used, we can write:

dτ̂ =
−√Ep

Nc

L∑
l=1

αlR

(
τl − τ̂ + � τ̂

Tf
�Tf

)
+ nd. (5.13)

For a large spreading gain Nc, the self-interference component becomes negligible, and dτ̂ ≈ nd. Indeed,

the autocorrelation function of the spreading sequence is negligible if the delay between the template and

received sequence is greater than Tf , because of the inherent spreading gain. Then, we can write:

dτ̂ ≈
⎧⎨⎩
√

Ep

L∑
l=1

αlR(τl−τ̂)+nd, 0≤τ̂≤Tf .

nd, Tf≤τ̂≤NcTf

Note that traditional acquisition models assume the presence of a single H1 cell. The inherent multipath

structure is incorporated into the model by defining an H1 cell as any cell which falls in the interval [0, Tf ]

(labeled the H1 region). An H0 cell is any cell falling anywhere outside that interval (labeled the H0 region).

An H0 cell does not include any signal component, and its decision statistic is therefore purely a noise com-

ponent. Note that an H1 cell potentially holds a signal component. In fact, an H1 cell might fall in a region

where no multipath has occurred, and in that case it would be statistically identical to an H0 cell. We will

discuss the impact of this shortly.

The coarse acquisition stage is based on the popular threshold crossing technique [112], where the de-

cision metric of a specific cell is compared to a pre-defined threshold. If the metric exceeds the threshold, a

lock is declared. If the metric does not exceed the threshold, the search moves to the next cell. The order in

which cells are tested and its impact on performance will be discussed shortly. It is also assumed that a lock

is followed by a verification stage, where the region in the vicinity of the selected cell is further tested. In this

framework, the verification stage consists of an extra test step, where the presence of additional multipath

components around the selected cell is checked. For example, the decision metrics for the M cells (M is a
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positive integer) occurring before and after the selected cell might be re-generated using a longer dwell time

(i.e. a more robust mechanism). If any of the M cells exceeds the threshold, the cell passes the test. If the

cell fails the verification stage, that is, if no signal components are detected around it, the lock is canceled,

and the search moves to the next cell. If it passes the test, the system proceeds to fine acquisition. It is

important to note that, although some H1 cells might be statistically identical to an H0 cell, it is assumed

that such a cell will pass the verification stage. This assumption holds in dense multipath scenarios. In fact,

although some H1 cell might not contain any signal component, one or more of its neighboring cells will

most likely hold a signal component, because of the large number of resolvable paths. It is therefore assumed

that all H1 cells pass the verification stage, and all H0 fail it. The rationale behind this assumption will be

further clarified in section 5.8.

The probabilities of the decision metric for an H0 and an H1 cells exceeding the threshold are now derived.

Since no information exists on the path polarity, the decision statistic is squared to remove the path sign un-

certainty. Let Zi and Yj be the acquisition decision statistics for the ith H1 and the jth H0 cells, respectively.

Then:

Zi =

(√
Ep

L∑
l=1

αlR(τl − τi) + nd

)2

(5.14)

Yj = n2
d (5.15)

where τi is the delay corresponding to the ith H1 cell. Zi is a noncentral chi-squared random variable with

one degree of freedom and noncentrality parameter
(√

Ep

∑L
l=1 αlR(τl − τi)

)2

. Yj is a central chi-squared

random variable with one degree of freedom. Let fzi(z) and fy(y) be the probability density functions (pdf)

of the ith H1 cell and any H0 cell, respectively. Then, we can write [114]:

fzi(z) =
1

2
√

2πzσ
e−

(
√

z−µi)
2

2σ2 +
1

2
√

2πzσ
e−

(
√

z+µi)
2

2σ2 , z ≥ 0 (5.16)

fy(y) =
1√

2πyσ
e−

y

2σ2 , y ≥ 0 (5.17)
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where:

µi =
√

Ep

L∑
l=1

αlR(τl − τ̂i). (5.18)

Note that the delay of an H0 cell does not play any role in its pdf definition. The respective cumulative

distribution functions (CDF) are then:

FZi(Z) =
1
2

[
erf

(√
Z − µi

σ
√

2

)
+ erf

(√
Z + µi

σ
√

2

)]
(5.19)

FY (Y ) = erf

( √
Y

σ
√

2

)
(5.20)

where erf(.) is the error function. The probability that the ith H1 cell exceeds a pre-defined threshold ζ is

then:

pdi = 1 − FZi(ζ) = 1 − 1
2

[
erf

(√
ζ − µi

σ
√

2

)
+ erf

(√
ζ + µi

σ
√

2

)]
. (5.21)

The probability that an H0 cell exceeds ζ (a false alarm) is:

pfa = 1 − FY (ζ) = 1 − erf

( √
ζ

σ
√

2

)
. (5.22)

Note that the above analysis assumes ∆τ ≥ Tw, which ensures independence among cell statistics.

5.7 Coarse Acquisition

The number of H1 cells is equal to Cin = � Tf

∆τ �. Similarly, the number of H0 cells is Cout = � (Nc−1)Tf

∆τ �. The

total number of cells is then C = Cin + Cout. The performance of the coarse acquisition scheme depends on

the order in which these C cells are searched. In this section, two coarse acquisition strategies are presented.

The popular serial (linear) search is first discussed. The proposed search method, termed ”jump-phase”

search, is then introduced. Mean acquisition time expressions for both these systems in dense multipath are

derived.
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5.7.1 Traditional Coarse Acquisition: Serial Search

Figure 5.6: Serial Search State Diagram. H1 cells occur consecutively in the uncertainty region.

Serial search is the most popular acquisition technique for practical systems. In serial search, the cells in

the uncertainty region are searched consecutively, in the order in which they occur in time (Figure 5.6). Since

no a priori timing information exists, it is assumed that the search start position is uniformly distributed

over the uncertainty region, that is, the probability of starting the search at an arbitrary cell is equal to 1
C

.

The mean acquisition time T̄acq is defined as the average effective number of cells that are tested before

coarse acquisition is terminated successfully. Serial search acquisition time has been studied thoroughly

for SS systems [87][61]. Analysis is typically based on generating flow graph models and basic Markov

chain theory, although brute force approaches are also sometimes used. The expressions that exist in the

literature usually assume the existence of a single H1 cell, which does not apply for UWB acquisition in dense

multipath. A simple method to efficiently approximate T̄acq based on the traditional expressions is proposed
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Figure 5.7: The Super Cell Approach. All H1 cell are bundled into one super-H1 cell.

here. In fact, since all H1 cells, as defined in this framework, occur consecutively, an approximate expression

for T̄acq may be obtained by collapsing all H1 cells into one super-H1 cell (Figure 5.7). The probability of

the super H1 cell exceeding the threshold is equal to the probability that at least one H1 cell exceeds the

threshold. The problem then degenerates into the classical single H1 scenario. Using this approach, T̄acq

can be expressed based on the key results in [112] [113], with negligible additional calculations. We get:

T̄acq =
2 + (2 − Pd)Cout(1 + pfaCfa)

2Pd
+

n̄0

Pd
(5.23)

where:

Pd = 1 −
Cin∏
i=1

(1 − pdi) (5.24)

and Cfa is the penalty time associated with the verification stage. n̄0 is the mean position of the selected

H1 cell within the super-cell, which is approximated by:

n̄0 =
Cin∑
i=1

i−1∏
j=1

i (1 − pdj) pdi. (5.25)

It will be shown by simulation that the error induced by the above approximations is negligible.
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For high signal-to-noise (SNR) scenarios, Pd = 1 and pfa = 0, and:

T̄acq =
Cout

2
+ n̄0 + 1. (5.26)

Therefore, at best, approximately half of the cells are searched on average, which leads to prohibitively long

T̄acq, even for moderate spreading lengths. Moreover, for low SNR values, since half the H0 cells are searched

on average before reaching the H1 region, performance will be severely limited by the high false alarm rate,

especially for large values of Cfa. Notice that T̄acq at high SNR is independent of the multipath structure.

Serial search does not take advantage of the multipath channel, which is a highly suboptimal approach. In

fact, serial search would result in almost the same acquisition time performance in a pure LOS channel.

A search pattern that exploits the multipath structure and spreads the H1 cells more uniformly over the

uncertainty region will yield significant gains. The next section discusses such a pattern.

5.7.2 Proposed Coarse Acquisition: The Jump-Phase Search

The key to reducing T̄acq in dense multipath is to search the multipath components in non-consecutive

order. In [99], a search pattern where the jump between consecutive cells is equal to the number of multipath

components is investigated. However, this assumes knowledge of the number of multipath components, which

is unrealistic. A modified strategy, termed bit reversal search, is introduced, where the binary representation

of the cell indices are ’bit-reversed’ and searched in a new order. This strategy maximizes the distance

between consecutively tested cells, and is shown to yield similar performance to the prior search at high

SNR. However, there is an inherent added complexity involved in performing the bit reversal and modifying

the delay from one cell to another, especially for a large number of cells. Moreover, the procedure is further

complicated when the number of cells is not a power of two, which is usually the case. We propose a simple

search algorithm, named jump-phase search, that does not add any significant complexity compared to serial

search, and does not assume knowledge of the number of multipath components. In the jump-phase search,

the jump between cells is equal to Cin, where Cin is the number of cells in one particular spreading code

symbol duration Tf . Note that Cin is independent of the channel profile. By using this search, the H1 cells

are uniformly spread over the uncertainty region (Figure 5.8). An H1 cell is visited every Nc cell (Figure
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Figure 5.8: Jump-Phase Search State Diagram. H1 cells are uniformly spread over the uncertainty region.

5.9). The search becomes more efficient as the number of resolvable multipath components increases, and

more H1 cells terminate the search. Since UWB inherently possesses a fine time resolution, we expect T̄acq

to be reduced drastically compared to serial search. However, it is important to note that, at low SNR,

performance is highly sensitive to the choice of threshold. In fact, on one hand, if the threshold is too high,

H1 cells will fail the test because energy is dispersed along many multipath components. On the other

hand, if the threshold is too low, the false alarm rate increases. The threshold setting should therefore

strike a balance between exploiting the multipath structure and minimizing the false alarm rate. Simulation

will also show that our approach results in only slight loss compared to the bit reversal search with better

implementation complexity.

An exact expression for the mean acquisition time using jump-phase search may be obtained by following

the general flow chart approach presented in [100] and [101]. After some basic mathematical manipulation,
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direct substitution gives:

T̄acq =
X1.Y1 − X2.Y2

Y 2
1

(5.27)

where:

X1 =
1
C

Cin∑
m=1

C∑
k=1

Cin∑
i=1

i−1∏
j=1

(
1 − pd(j+m) mod Cin

)
.pd(i+m) mod Cin

[i + [iC − i − k] (1 + Cfapfa)] (5.28)

X2 =
1

Cin

Cin∑
k=1

Cin∑
j=1

pd(j+k) mod Cin

j−1∏
i=1

(
1 − pd(i+k) mod Cin

)
(5.29)

Y1 = 1 −
Cin∏
i=1

(1 − pdi) (5.30)

Y2 = − (Cin + Cout (1 + Cfapfa)) .

Cin∏
j=1

(1 − pdj). (5.31)

Figure 5.9: Order of tested cells in serial (top) and jump-phase search (bottom). H1 cells uniformly spread over
uncertainty region for jump-phase search.

5.7.3 Simulation Results

The theoretical expressions for serial and jump-phase search mean acquisition time (Equations (5.23) and

(5.27)) are tested by simulation for a spreading code of length 32, and penalty times of 100 and 1000 cells,

respectively. NLOS channel profiles are used§. The results are plotted in Figures 5.10 and 5.11. The

threshold is set to 0.01, which corresponds to approximately one sixth of the average energy in the strongest

path. Note that the error between theoretical and simulated results is negligible. Also, the jump-phase

search significantly outperforms serial search. The mean acquisition time is reduced by more than an order
§For a detailed description of the statistical distribution of the channels used in these simulations, the reader is referred to

section 2.5 and the references therein.
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of magnitude.

The jump-phase search is also compared to the bit reversal search by averaging performance over 32

different channel profiles (Figures 5.12 and 5.13). Note that the bit reversal search slightly outperforms

our scheme, but that the gains observed when passing from serial to jump-phase search are much more

substantial than when passing from jump-phase to bit reversal search. The jump-phase search thus results

in only a slight degradation in mean acquisition time performance, in exchange of a much simpler search

mechanism.

The effect of the threshold ζ on the jump-phase search is illustrated in Figure 5.14. The number of

H1 cells that pass the threshold test at high SNR is plotted versus ζ. The probability of false alarm (the

probability that an H0 cell exceeds ζ, Equation (5.22) is also plotted versus ζ, assuming Nc = 32 and Ep

N0
=

10 dB. Notice that the number of detectable paths drops with increasing ζ. Thus, the mean acquisition time

at high SNR increases with increasing ζ, since less H1 cells terminate the search, as shown in Figure 5.15.

However, pfa decreases with increasing ζ. Thus, the performance at low and moderate SNR values improves,

since mean acquisition time at these energy levels is limited by the false alarm penalty time. The choice of

ζ therefore depends on the system’s operating point. ζ must be decreased at high SNR, and increased for

low SNR. If no a priori SNR information is available, the choice of ζ must strike a balance between fully

exploiting the multipath structure, and minimizing the false alarm rate.
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Figure 5.10: Simulation and theoretical mean acquisition time (in number of cells) for serial versus jump-phase
search. Nc = 32. Cfa = 100. Cell separation = Tw . Real NLOS measured channel profile used.
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Figure 5.11: Simulation and theoretical mean acquisition time (in number of cells) for serial versus jump-phase
search. Nc = 32. Cfa = 1000. Cell separation = Tw . NLOS Real measured channel profile used.
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Figure 5.12: Serial, Jump-Phase, and Bit Reversal Search. Nc=32, Cfa=100. Real measured NLOS channel profiles
used. Results are averaged over 32 different profiles.
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Figure 5.13: Serial, Jump-Phase, and Bit Reversal Search. Nc=32, Cfa=1000. Real measured NLOS channel profiles
used. Results are averaged over 32 different profiles.
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the average acquisition time at high SNR, but decreases the false alarm rate at low SNR.
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Figure 5.15: T̄acq at high SNR versus threshold. The number of detectable paths decreases with increasing threshold,
and therefore T̄acq increases.
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We now briefly discuss the mechanism used in setting the threshold ζ. As we have already noted, lower

values of ζ result in more H1 cells crossing the threshold test, thus more efficiently exploiting the channel

multipath structure, but lead to an increase in the probability of false alarm. The false alarm rate drops with

increasing ζ, at the expense of a longer mean acquisition time. The value of ζ should therefore be judiciously

selected in order to strike a balance between fully exploiting the multipath structure and minimizing the false

alarm rate. An optimal value of ζ may be derived if the noise variance (which completely defines the false

alarm rate) is known, and if perfect knowledge of the amplitudes of the specular components is obtainable.

In a practical system, neither is readily available. Many threshold setting strategies have been proposed for

SS acquisition in AWGN. Most techniques are based on a constant false alarm rate approach, where the

probability of false alarm is set to a desired value by design. This is achieved by first estimating the noise

variance, or including a system training phase.

The design of threshold setting techniques specifically tailored for UWB in dense multipath is not explicitly

dealt with in this work (the reader is referred to [115] and the references therein for example of thresholding

setting techniques for SS systems). Nonetheless, we present sample results of a straightforward training

stage, which guides the user in setting ζ. The procedure is as follows. For a specific system operating point

(here defined by the transmit power and spreading width), the mean acquisition time T̄acq,ζ is computed over

multiple realizations of the multipath channel for different values of ζ. The optimal threshold ζ0 is the value

which minimizes T̄aq,ζ . The procedure is simulated for four key IEEE UWB multipath channel models [24],

with Eb

No
= 20 dB and Nc = 64. Results are averaged over 200 channel realizations. T̄acq,ζ is plotted versus ζ

for the channel models CM1 (residential LOS), CM2 (residential NLOS), CM3 (office LOS) and CM4 (office

NLOS) in figures 5.16, 5.17, 5.18 and 5.19, respectively. Notice the presence of an optimal threshold beyond

which the acquisition time increases for all four cases, as expected. The optimal value is not the same for all

four cases, since the channel models have different statistical properties. Also, note that the optimal value

for the LOS models (CM1 and CM4) is smaller than its NLOS counterpart (CM2 and CM4, respectively).

In fact, since the early arriving paths for LOS channels have more energy compared to NLOS channels, more

H1 cells pass the threshold comparison test for the same low value of ζ.
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Figure 5.16: T̄acq versus ζ. SNR = 20 dB, Nc = 64. CM1.
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Figure 5.17: T̄acq versus ζ. SNR = 20 dB, Nc = 64. CM2.
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Figure 5.18: T̄acq versus ζ. SNR = 20 dB, Nc = 64. CM3.
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Figure 5.19: T̄acq versus ζ. SNR = 20 dB, Nc = 64. CM4.
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Although jump-phase search reduces acquisition time, it may lead to a large timing error, because it

locks into an arbitrary H1 cell, not the earliest H1 cell. In Figure 5.20, jump-phase search is performed on

542 different channel profiles at very high SNR (in order to neutralize the effect of noise on the error). The

computed mean timing error is 3.5057 nsec. In some severe cases, errors exceeding 20 nsec are observed.

This is an unacceptable error; it would lead to a ranging error of 20 feet in a position location application,

for example. An additional stage which reduces this error must be included. The next section discusses such

a stage.

0 100 200 300 400 500 600
0

5

10

15

20

25

Run #

E
rr

or
 (

ns
ec

)

EbNo =100  dB

Figure 5.20: Timing error produced by jump-phase search. 542 real channel profiles.
Ep

N0
= 100 dB.

5.8 Proposed Second Stage: Fine Acquisition

The coarse acquisition stage locks onto an arbitrary multipath component. This is unsuitable for both

ranging and communications applications, since it respectively leads to large ranging errors and significant

loss in symbol energy capture. We propose a method to capture the earliest arriving path in this section.

Let τ̂ be the delay estimated by the first stage. Since the H1 region spans Tf seconds, we know that the

first arriving path delay belongs to the interval [τ̂ − Tf , τ̂ ]. The fine acquisition stage performs an additional

search in this reduced uncertainty region. This stage is formed of two steps. First, a threshold crossing test
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is performed, using a newly calculated threshold. Then, an additional test is performed to segregate H0 cells

and detect the earliest H1 cell, by taking advantage of the clustered nature of the multipath channel. We

will discuss these two steps in the following subsections.

5.8.1 Step One: Second Level Threshold Crossing

In the coarse acquisition stage, the noise power is unknown, and the threshold setting mechanism cannot take

SNR information into account with a simple procedure. However, since the H1 region has been identified

to within Cin cells at the end of coarse acquisition, an estimate of the noise variance can now be obtained

by calculating the average of the decision statistics over the H0 region. Any bias can be eliminated by not

incorporating any cell within Tf of τ̂ in the averaging operation. The variance estimate is then given by:

σ̂2 =
1

‖Ĉ‖
∑

cn∈Ĉ

d2
τ̂n

(5.32)

where Ĉ is the set of cells ci, 1 ≤ i ≤ ‖Ĉ‖, tested in coarse acquisition such that |τ̂i − τ | ≥ Tf , where τ̂i is

the delay associated with ci. If the set is empty, the system is reset to the coarse acquisition stage, since a

reliable variance estimate may not be obtained.

Note that the large number of cells in the original uncertainty region is exploited to lead to a robust variance

estimate. The new threshold ζ
′

is set to ensure a constant false alarm rate. Assuming we require that any

H0 cell fails the test with probability Pe, we write:

P (d2
τ < ζ

′
) = erf

(√
ζ ′

σ
√

2

)
= Pe (5.33)

Then, the threshold is set as:

ζ
′
= 2σ̂2

(
erf−1(Pe)

)2
. (5.34)

All cells in the reduced uncertainty region with decision statistics falling below ζ
′
are eliminated. The second

step of the fine search takes the indices of the surviving cells as input.
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5.8.2 Step Two: H0 Cell Segregation

Let Cs be the number of cells that passed the first phase of the fine acquisition stage. We denote their indices

by Xj, 1 < j < CS . These cells are further tested as follows. For a particular cell Xk, we calculate tk, the

time difference between Xk and its closest neighboring survivor cell Xk+1. If tk exceeds a predefined constant

t0, then cell Xk is eliminated. After all cells are tested, the earliest surviving cell is selected. The rationale

behind this method is based on the clustered nature of multipath. Since multipath occurs in clusters, as will

be clarified shortly, it is most likely that the multipath cluster will result in a group of neighboring surviving

cells. If, on the other hand, an isolated cell exceeds the threshold, it is most likely an H0 cell. Assuming

∆τ = Tw and t0 = cTw , where c is an integer, the new false alarm probability is then:

pfa = 1 − Pe − (1 − Pe) (Pe)
c
. (5.35)

The probability of detecting the first path will only be slightly reduced by this method, because there is

most likely another path crossing the threshold in its vicinity. We shed light on the proposed algorithm by

adopting a realistic indoor channel model, based on the IEEE P802.15 model proposed for UWB [24]. The

model channel impulse response is given by:

h(t) =
U∑

u=1

L∑
l=1

αulδ(t − Tc − τul) (5.36)

The model assumes that multipath occurs in clusters. The number of clusters is U , and there are L paths

in each cluster. Since we are interested in the first arriving path, we restrict our analysis to the first cluster.

The path inter-arrival time in the first cluster follows an exponential distribution:

p (τk|τk−1) = λexp [−λ (τk − τk−1)] (5.37)

where λ is the path arrival rate,and τk−1 and τk are the delays associated with the (k−1)-th and k-th paths,

respectively. Assuming the first path arrives at time zero (τ1 = 0), the probability that the second path
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occurs before time T can be calculated as:

PT = P (τ2 < T |τ1 = 0) = 1 − exp [−λT ] . (5.38)

Moreover, the path amplitudes in the first cluster are given by:

αl = ±βl , (5.39)

where βl is a lognormal random variable, βl = 10
n
20 , where n is a Gaussian distribution with mean µl and

standard deviation σL. µl is given by:

µl =
10ln (Ω0) − 10 τl

γ

ln(10)
− σ2

Lln(10)
20

(5.40)

where γ is the ray decay factor, and Ω0 is the average received power in the first arriving path.

The pdf of βl can be shown to be:

fxl(x) =
1
r
x

1
r −1.

1
x

1
r

√
2πσ2

L

exp

[
−(20log10x− µ)2

2σ2
L

]
(5.41)

where r = ln(10)
20 .

By integrating Equation (5.21) over the PDF in Equation (5.41), the probability of the lth path exceeding

the threshold can be expressed as:

PDl =
∫ ∞

0

fxl(x).
[
1 − 1

2

[
erf

(√
ζ − x

σ
√

2

)
+ erf

(√
ζ + x

σ
√

2

)]]
dx (5.42)

The first path passes the fine acquisition test if its associated metric exceeds ζ
′

and another path occurs

before time T = cTw and also exceeds ζ
′
. We simplify the expression by assuming that at most one path

occurs before time T . Then, the new probability of detection is:

PD ≈ PT .PD1.PD2. (5.43)
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The delay of the second path is set to T when calculating PD2, ensuring the expression is an upper bound

for performance. Simulation will show that the probability of detecting the LOS path is only marginally

decreased, while the probability of false alarm falls substantially.

Finally, note that the optimal value of c depends on the multipath channel’s statistical properties. The

setting mechanism of this parameter must exploit any available a priori information. If no such information

is available, a training phase is required, where the statistical characteristics of the clustered multipath is

analyzed.

5.8.3 Numerical Results

The performance of the acquisition stage is tested through numerical evaluation. Parameter c for the fine

acquisition stage is equal to 7, and Pe = 0.999. The channel’s main characteristics matched to the 802.15

channel model are γ = 17 nsec, λ−1 = 0.5 nsec, σL = 5 dB, and Ω0 is 6% of the total received power.
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Figure 5.21: Probability for second path to occur before t seconds in the IEEE P802.15 channel model.

Assuming the first arriving path occurs at time zero, the probability of the second path occurring before

T seconds is displayed in Figure 5.21, by numerically evaluating Equation (5.38). The probability of the

path occurring before T = 7Tw (or 3.5 nanoseconds) is equal to 0.9991. We are therefore almost guaranteed

that the second path is within 7 cells of the first path. It remains to see if this path exceeds the threshold.
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Figure 5.22: Probabilities of false alarm and detection before and after second step in fine acquisition.

The probabilities of path detection and false alarm before and after the second step of fine acquisition are

obtained by numerically evaluating Equations (5.35) and (5.43) (Figure 5.22). Notice that the probability

of false alarm is reduced by more than an order of magnitude, while the probability of detecting the first

path only decreases slightly, especially for high SNR. Since the H0 cells are independent, and neighboring

H1 cells exhibit high correlation due to the clustering effect, the probability of detecting an H0 cell drops

significantly, while the probability of detecting the first H1 cell remains nearly constant. Note that Ep

N0
in

Figure 5.22 refers to the total pulse energy to noise ratio, that is, the energy of all the multipath components.

The energy in the first arriving path is only a fraction of the total energy, and therefore the effective path

energy to noise ratio is much smaller than Ep

N0
.

5.9 Case Study: Acquisition for a Ranging Application

The performance of the acquisition scheme in a ranging application is tested as follows. For a specific channel

profile, the timing error for traditional acquisition (no fine stage) and the proposed scheme are mapped to a

distance error, based on d = v.t, where v is the speed of light, and d and t are the range and timing errors

respectively. In a first experiment, 32 different channel profiles are examined. The system is first tested for
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the high SNR case (Figure 5.23). Notice that the ranging error caused by locking into an arbitrary multipath

in the traditional acquisition stage is drastically reduced when the proposed scheme is applied. In fact, the

mean ranging error (calculated over all simulated channel profiles) is reduced from 1.47 meters to less than

5 centimeters. For a more realistic setting where Ep

N0
= 15 dB and Nc=64 (Figure 5.24), the error is reduced

from 2.35 meters to around 40 centimeters. Note that Ep is the total energy in all multipath components;

only a fraction of this energy is contained in the LOS path.

Additional simulations are carried to illustrate the importance of the fine acquisition stage. The timing

error is simulated for three systems: A system employing coarse acquisition only, a system employing coarse

acquisition plus the first step of the fine acquisition stage (no H0 cell segregation), and the proposed system

(coarse acquisition, plus two-step fine acquisition). 542 different channel profiles are examined, and the

results are averaged over multiple noise realizations. The system is tested for Ep

N0
= 15 dB (Figure 5.25,

where only the ranging errors for the first 180 profiles are displayed, for clarity). First, notice that locking

onto an arbitrary multipath after the coarse acquisition stage leads to a relatively large error. The average

range error for the first system is 108.27 centimeters. Also, notice that the first step of the fine acquisition

stage leads to unacceptable error, because acquisition is erroneously locking into an H0 cell in the reduced

uncertainty region. The mean absolute error for that system is 387.85 centimeters. Finally, note that

the error is drastically reduced when the second step of fine acquisition is applied. H0 cells are efficiently

segregated by exploiting the clustered nature of the multipath. The mean ranging error for the proposed

model is 45.3 centimeters.

5.9.1 Optimization of Parameter c

The performance of the fine acquisition stage is highly dependent on the choice of parameter c. In fact, on

one hand, for very small values of c, the period t0 (against which the distance between consecutive surviving

cells is tested) drops below the average multipath inter-arrival time, and detection of the LOS component is

missed, causing large ranging errors. On the other hand, if c is too large, the probability of false alarm in

(5.35) grows, and the likeliness of locking on a noise cell increases.

In the case of perfect knowledge of the system’s parameters (such as transmit power, noise power, and the
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Figure 5.23: Performance of fine acquisition stage in ranging. High SNR Case. 32 real measured channel profiles
are used.

channel’s statistical properties), the optimal value of c may be numerically evaluated. In absence of such

knowledge, a training stage is required. The details of the training stage are not discussed here; we rather

rely on a generic training method which showcases the effect of c on the ranging error. The procedure is as

follows. For a specific set of system parameters, the acquisition algorithm is applied for different values of

c, and the ensuing ranging errors are recorded. The experiment is averaged over a large number of channel

realizations. The optimal value of c is the one which minimizes the average ranging error.

Simulations are run for the four basic channel types CM1, CM2, CM3 and CM4 (see simulation results in

section 5.7, and the results are plotted in Figures 5.26, 5.27, 5.28 and 5.29, respectively. Note the presence

of an optimal c for all four cases. Also, note that the optimal value varies across channel models, which is

expected, since the design of c largely depends on the statistical properties of the channel.
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Figure 5.26: T̄acq versus c. Pe=0.999, SNR = 10 dB (relative to entire received signal power), Nc = 256. CM1.
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Figure 5.27: T̄acq versus c. Pe=0.999, SNR = 10 dB, Nc = 256. CM2.
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Figure 5.28: T̄acq versus c. Pe=0.999, SNR = 10 dB, Nc = 256. CM3.

0 10 20 30 40 50
40

60

80

100

120

140

160
Pe=0.999, N=256, SNR=10, CM4

c

A
ve

ra
ge

 R
ag

in
g 

E
rr

or
 (

cm
)

Figure 5.29: T̄acq versus c. Pe=0.999, SNR = 10 dB, Nc = 256. CM4.
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5.10 Case Study: Acquisition for a Pilot-Assisted Receiver

5.10.1 Probability of Error in Presence of Timing Error

The impact of coarse acquisition on UWB communications is less intuitive than its impact on ranging. In

this section, we illustrate the effect of acquisition error on UWB communications and the effectiveness of

the proposed model by employing the pilot-assisted receiver (studied in section 3.8) as an example. Recall

that the main limitation of the pilot-assisted receiver is their reliance on a noisy template, which results in

a ”noise-cross-noise” term [35] after correlation. A large number of pilot symbols is required to limit this

effect.

In the following discussion, it is assumed that the pilot-assisted template is obtained by despreading

the length-Nc acquisition preamble after acquisition is terminated. Since the training sequence is formed of

Nc noisy copies of the received signal, the template is constructed by coherently adding these copies. No

additional channel estimation overhead is thus required.

Assume that the real symbol delay is 0, and the delay estimated by the coarse acquisition stage is τ̂ .

Then, the preamble will not sum coherently on the interval [0, τ̂ ], and its amplitude will be divided by Nc,

due to the spreading gain. The correlator template h(t) can be written as:

h (t) =

⎧⎪⎪⎨⎪⎪⎩
− 1

Nc

√
Epv (t) + np (t) , 0 ≤ t ≤ τ̂√

Epv (t) + np (t) , τ̂ ≤ t ≤ Tf

(5.44)

where v(t) =
∑L

l=1 αlw (t − τl) is the received pulse shape, and np(t) is a zero-mean white Gaussian noise

random process with PSD N0
2Nc

. Now, assuming binary bipolar data modulation, the received data signal is:

rd(t) =
√

Ep

∞∑
j=−∞

bjv(t − jTf ) + nd(t) (5.45)

where nd(t) is zero-mean white Gaussian noise with PSD N0
2 , and bj = ±1 are the data bits. Since the

noise-cross-noise term overwhelms performance in the absence of a front-end bandlimiting filter ([49], also

see section 3.8), we assume that the data and template signals pass through a bandpass filter of bandwidth
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W and center frequency fc before correlation is performed. Let Rnd(τ ) and Rnp(τ ) be the autocorrelation

functions of nd(t) and np(t) after filtering, respectively. Then:

Rnd(τ ) = NoWsinc(Wτ )cos(2πfcτ ). (5.46)

Rnp(τ ) =
No

Nc
Wsinc(Wτ )cos(2πfcτ ). (5.47)

Let gk be the decision statistic corresponding to bit bk. Then,

gk =
∫ Tf

0

h(t).rd(t + kTf + τ̂ )dt =
∫ Tf

τ̂

[√
Epv(t) + n

′
p(t)

]
.
[
bk

√
Epv(t) + n

′
d(t)

]
dt

+
∫ τ̂

0

[
−
√

Ep

Nc
v(t) + n

′
p(t)

]
.
[
bk+1

√
Epv(t) + n

′
d(t)

]
dt (5.48)

where n
′
p(t) and n

′
d(t) are the filtered versions of np(t) and nd(t), respectively. The distortion caused by the

filter on v(t) is neglected. gk can be expressed as:

gk = Epbk

∫ Tf

τ̂

v2(t)dt − 1
Nc

Epbk+1

∫ τ̂

0

v2(t)dt +
∫ Tf

0

n
′
d(t).n

′
p(t)dt +

√
Epbk

∫ Tf

τ̂

v(t)n
′
p(t)dt

+
√

Epbk+1

∫ τ̂

0

v(t)n
′
p(t)dt +

√
Ep

∫ Tf

τ̂

v(t)n
′
d(t)dt − 1

Nc

√
Ep

∫ τ̂

0

v(t)n
′
d(t)dt (5.49)

By noting that bk and bk+1 are independent (and thus the effect of the second term on the right hand side

of the equality is averaged out statistically), and that the last term on the right hand side of the equality is

negligible because of the spreading gain, we can write:

gk ≈ Epbk

∫ Tf

τ̂

v2(t)dt +
∫ Tf

0

n
′
d(t).n

′
p(t)dt +

√
Epbk

∫ Tf

τ̂

v(t)n
′
p(t)dt

+
√

Epbk+1

∫ τ̂

0

v(t)n
′
p(t)dt +

√
Ep

∫ Tf

τ̂

v(t)n
′
d(t)dt (5.50)

Assuming bk = 1 without loss of generality, the mean value of gk is given by:

µg = Ep

∫ Tf

τ̂

v2(t)dt. (5.51)
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After some tedious but straightforward calculations, the total variance of gk is found to be:

σ2
g =

N2
o

Nc
Z1 (0, Tf) + EpNo

1
Nc

[Z2 (τ̂ , Tf) + Z2 (0, τ̂)] + EpNoZ2 (τ̂ , Tf) (5.52)

where:

Z1 (τ1, τ2) = W 2

∫ τ2

τ1

∫ τ2

τ1

sinc2(W (t − λ))cos2(2πfc(t − λ))dtdλ (5.53)

Z2 (τ1, τ2) = W

∫ τ2

τ1

∫ τ2

τ1

v0(t)v0(λ)sinc(W (t − λ))cos(2πfc(t − λ))dtdλ. (5.54)

It can be shown that gk can be approximated by a Gaussian random variable [35]. Then, the probability of

bit error can be expressed as:

Pe = Q

⎛⎝ µg√
σ2

g

⎞⎠ = Q

⎛⎜⎜⎝
√√√√√√Ep

No
.

[∫ Tf

τ̂
v2(t)dt

]2
(

NcEp

NoZ1(0,Tf)

)−1

+ (Nc+1)Z2(τ̂ ,Tf )+Z2(0,τ̂)
Nc

⎞⎟⎟⎠ (5.55)

The probability of error of the iterative data-aided version of the pilot-assisted system (studied in section

3.8) may be derived along similar lines, and is found to be:

pn,τ = Q

⎛⎜⎜⎝
√√√√√√Ep

No
.

(1 − 2pn−1)
2
[∫ Tf

τ̂
v2(t)dt

]2
(

NdEp

NoZ1(0,Tf)

)−1

+
[

1
Nd

+ (1 − 2pn−1)
2
]
Z2 (τ̂ , Tf) + Z2(0,τ̂)

Nd

⎞⎟⎟⎠ (5.56)

where Nd is the number of data symbols per frame, and pn and pn−1 are the probabilities of error for the

nth and (n − 1)th iterations, respectively.

Notice that the numerator in both error probability expressions decreases with increasing τ̂ . The symbol

energy in the interval [0, τ̂ ] is lost. Moreover, the noise-cross-noise term X1 is independent of τ̂ . Thus, in the

presence of acquisition error, the energy capture of the pilot-assisted receiver drops, while the degradation

brought by X1 remains the same. Simulation results will show that the loss in energy capture is critical if

traditional acquisition methods are used, and performance is overwhelmed by the noise-cross-noise term. It
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will also be shown that the proposed acquisition method significantly increases energy capture by decreasing

τ̂ , thus bringing performance close to the perfect synchronization case.

5.10.2 Simulation Results

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

EbNo (dB)

P
e

Iteration 1, Simulation
Iteration 2, Simulation
Iteration 1, Theoretical
Iteration 2, Theoretical
Iteration 1, Perfect Timing
Iteration 2, Perfect Timing
All Rake

Figure 5.30: Data-aided iterative receiver. Np = 10. Nd = 100. Timing Error = 16 nsec. Symbol length = 80 nsec.

The communication systems tested in this section are the traditional and data-aided pilot-assisted re-

ceivers from section 3.8. The probability of error performance for an arbitrary NLOS channel profile with

an initial timing error of 16 nsec is simulated and compared to the theoretical expression (Equation (5.56))

in Figure 5.30. Note that the simulated and theoretical curves match with negligible error. Also, note the

severe performance degradation brought by the initial timing error.

The performance for the generic pilot-assisted receiver based on a template generated after acquisition using

only coarse acquisition and two-stage acquisition is simulated with Nc = 256 (Figure 5.31). Notice that

traditional acquisition results in a significant performance degradation in bit error probability (about 4 dB

compared to the perfect synchronization case), because a substantial part of the symbol energy is not cap-

tured by the template. Most of this energy is gathered by applying fine acquisition. In fact, performance

after fine acquisition is within half a dB from theoretical performance assuming perfect timing.
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Figure 5.31: Performance of pilot-assisted receiver in presence of acquisition error. Nc = 256.

5.11 Tracking for UWB Receivers

Tracking of UWB systems has received little research attention compared to acquisition, and is usually

based on the application of traditional SS methods. The most popular investigated tracking method is the

delay-lock loop, also called the early-late gate [61][86].

The early-late gate is formed of two correlators, matched to the transmit pulse shape. One correlator starts

integrating δ seconds before the estimated delay (initially obtained from acquisition), while the other cor-

relator starts integrating δ seconds after the estimated delay. The early-late gate exploits the symmetry

properties of the signal (or code) autocorrelation function. In fact, the autocorrelation function of any pulse

is even-symmetric around its maximum. With perfect synchronization, the output of the matched-filter can

be viewed as the autocorrelation function sampled at its peak. Therefore, if the estimated delay is correct,

the outputs of the early and late branches must be equal in the absence of noise. If the delay is off, however,

the branches will give different values. The tracker fixes the delay depending on these values: If the late

sample is greater than the early sample, the delay is increased. Else, it is reduced.

The early-late gate was initially analyzed for LOS scenarios in AWGN. The operation of the early-late circuit

in the more realistic multipath channel has also received some interest, specifically in the context of SS Rake
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receivers. The effect of multipath fading on tracking for a Rake receiver is studied in [81] and [82]. It is

shown that as the number of fingers increases, the increase in energy capture is counter-balanced by the error

increase in parameter estimation in the tracking stage, and a performance ceiling is observed for a specific

number of fingers. Many efforts have concentrated on developing modified Rake tracking circuits with inter-

ference mitigation or cancellation capability, where the combined effect of multipath on tracking is treated

as unwanted interference (see [116], [117], [118] and [119] for example). Although these references discuss SS

systems, their findings may be applied to tracking for UWB Rake receivers, since the problem’s framework

is essentially the same, except that more interference should be expected for UWB systems, because of the

rich multipath channel structure.

Analysis of tracking specifically applied to UWB has received limited attention lately. The effect of time

jitter on the classical early-late gate tracking circuit for a UWB receiver is investigated in [120], and the

performance of delay and phase-locked-loops applied to UWB monocycles is studied in [121]. However, both

works do not take the effect of multipath into consideration. The effect of multipath on UWB tracking is

analyzed in [122], where it is assumed that the tracking loop is already locked on the first arriving multipath

component at the start of the tracking process. In that case, the effect of multipath interference is found to

be negligible. The same assumption is made in [123], where it is assumed that the circuit is already locked

on the line of sight (LOS) component, and the effect of multipath is ignored.

In order for the traditional early-late method to work properly, coarse synchronization must provide a good

estimate of the timing delay. For SS systems, the delay must be within a chip of the correct time. For

UWB systems, the delay must be within one transmit pulse duration of the correct time. This assumption

is suitable for UWB Rake receivers where acquisition provides a good estimate of the delay of the multipath

component corresponding to each fingers, and a delay-lock loop with interference cancellation capability

such as the ones studied in [116]-[119] are applied. However, the assumption is highly problematic for UWB

pilot-based receivers in dense multipath, where the objective of synchronization is to detect the LOS compo-

nent. In fact, as we have already seen, the LOS path might be severely attenuated compared to other paths.

Detection of the LOS component is thus problematic. It is likely that the multipath component detected by

the acquisition stage is tens of nanoseconds away from the start of the signal due to the large channel delay
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spread. In this case, the classical early-late algorithm would lock on that selected multipath, and would fail

in correcting the large delay error, resulting in significant energy loss, and thus unacceptable performance

degradation, as studied in section 5.10.

The difference in tracking for Rake and pilot-assisted receivers may be formulated in another fashion. On

one hand, tracking for a Rake receiver with F fingers is equivalent to the continuous estimation of F delays

corresponding to F separate multipath components. An error in the estimation of one delay results in the loss

of energy in the corresponding finger. On the other hand, the tracking circuit of the pilot-assisted receiver

must estimate a single delay (corresponding to the LOS component). A large error in the estimation of that

delay results in a proportionally large error in template estimation and signal detection, which potentially

leads to severe loss in energy capture (the reader is referred to section 5.10 for a mathematical formulation

of this argument).

The main limitation of standard tracking techniques applied to UWB pilot-assisted receivers in dense multi-

path is that they are based on the correlation of the received signal with a local stored reference matched to

the transmit pulse shape. Delay estimation is based solely on the energy available in the LOS component.

Most of the received energy is effectively squandered. An alternative and more efficient method is to use the

received pulse shape rather than the transmit pulse shape as the tracker’s template. This strategy parallels

the signal detection method used for the pilot-assisted receiver, where the received pulse shape was used as

a template for the correlator for signal detection. Such an algorithm is presented in the next section.

5.12 Proposed Tracking System

We use the notation used in section 5.10. Assume that the acquisition error τ̂ is much larger than the pulse

width Tw (τ̂ > nTw, where n is a positive integer). A traditional tracking circuit based on the transmit

pulse shape (such as the early-late gate [61]) would lock into the multipath component that is in the vicinity

of the estimated delay, and would not be able to track the LOS component. In this section, we propose a

modified tracking algorithm which will correct such a delay error.

The algorithm is presented in Figure 5.32. Consider the following two intervals:

• The interval [kTf + τ̂ − ∆τ, kTf + τ̂ ] (modulated by data bit bk), termed the kth early interval.
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• The interval [(k + 1)Tf + τ̂ , (k + 1)Tf + τ̂ + ∆τ ] (modulated by data bit bk+1), termed the kth late

interval.

Figure 5.32: Tracking algorithm diagram.

The algorithm produces two “mini-metrics” g−k and g+
k which measure the energy content of the kth early

and the kth late interval, respectively. An early metric G− and a late metric G+ are then computed by sum-

ming the mini-metrics of all early and late intervals. The timing delay is modified based on the magnitude

of the difference in energy G = G− − G+.

g−k and g+
k are generated as follows. First, data modulation is removed by multiplying both intervals by b̂k,

where b̂k is the current estimate of bk (note that b̂k = bk with probability Pe,τ̂ given by (5.55)). The early

and late intervals are then respectively multiplied by an early and late “mini-template” and integrated.

The early “mini-template” is estimated by coherently adding the demodulated early intervals [τ̂ − ∆τ + kTf , τ̂ + kTf ],

0 ≤ k ≤ Nd − 1:

v∆−(t) =
1

Nd

Nd−1∑
k=0

b̂kr (t + kTf + NcTf ) . (5.57)

The late mini-template is likewise defined on [τ̂ , τ̂ + ∆τ̂ ] as:

v∆+(t) =
1

Nd

Nd∑
k=1

b̂k−1r (t + kTf + NcTf) . (5.58)

Then:

g−k = b̂k

∫ τ̂

τ̂−∆τ

r(t + NcTf + kTf )v∆−(t)dt (5.59)
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g+
k = b̂k

∫ τ̂+∆τ

τ̂

r(t + NcTf + (k + 1)Tf)v∆+(t)dt. (5.60)

The early and late metrics are given by:

G− =
1

Nd

Nd−1∑
k=0

g−k (5.61)

G+ =
1

Nd − 1

Nd−2∑
k=0

g+
k . (5.62)

If G = G− − G+ exceeds a pre-defined positive threshold Ψ, then the symbol delay is decreased by a time

step δτ . If G < −Ψ, the delay is increased by δτ . Else, it is assumed that the intervals do not contain

sufficient energy, and the delay is not modified¶.

In this work, the algorithm is deployed iteratively. Let τ̂i be the estimated symbol delay at the ith iteration.

A new template v̂τ̂i is estimated based on the new timing delay:

v̂τ̂i(t) =
1

Nd

Nd−1∑
k=0

b̂kr
′
(t + kTf + NcTf + τ̂i), 0 ≤ t ≤ Tf . (5.63)

Then, new bit estimates are generated based on v̂τ̂i(t). The decision metric G is recalculated, and the delay

is fixed accordingly. Note that since the iterative template estimation employs Nd data symbols, the effect of

the noise-cross-noise term (see section 3.8) is reduced as more bits are estimated correctly (since Nd >> Nc

in general).

The system’s metric statistics are derived in the next section.

5.13 Tracking System Analysis

The early mini-template v∆−(t) can be written as:

v∆−(t) =

√
Ep

Nd

Nd−1∑
k=0

b̂kbkv (t) + n
′
d(t). (5.64)

¶Note that Ψ, δτ and ∆τ are system parameters set by the system engineer. The optimal parameter values depend on the
operating SNR point and channel statistics.
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where n
′
d(t) is a filtered Gaussian noise process with pre-filtered PSD N0

2Nd
. For Nd large enough, we can

write:

s∆−(t) ≈ (1 − 2Pe,τ̂)
√

Epv (t) + n
′
d(t) (5.65)

where Pe,τ̂ is given by (5.55).

Following a similar approach, and since bk−1 and bk are independent, v∆+(t) may be written as‖:

v∆+(t) ≈ n
′
d2(t), (5.66)

where n
′
d2(t) is filtered Gaussian noise with pre-filtered PSD N0

2Nd
.

The kth early mini-statistic can be written as:

g−k = Epb̂kbk (1 − 2Pe,τ̂)
∫ τ̂

τ̂−∆τ

v2(t)dt +
√

Epb̂kbk

∫ τ̂

τ̂−∆τ

v (t)n
′
d(t)dt

+
√

Epb̂k (1 − 2Pe,τ̂)
∫ τ̂+kTf

τ̂−∆τ+kTf

n
′
(t)v (t − kTf ) dt + b̂k

∫ τ̂+kTf

τ̂−∆τ+kTf

n
′
(t)n

′
d(t − kTf )dt. (5.67)

The mean of g−k is given by:

µg− = EpE

[
b̂kbk (1 − 2Pe,τ̂)

∫ τ̂

τ̂−∆τ

v2(t)dt

]
+ E

[
b̂k

∫ τ̂+kTf

τ̂−∆τ+kTf

n
′
(t)n

′
d(t − kTf )dt

]
. (5.68)

Note that µg− contains a non-zero mean noise term, because the noise in the early template is partially

correlated with the noise in the data symbol. The mean is found to be:

µg− = Ep (1 − 2Pe,τ̂)2
∫ τ̂

τ̂−∆τ

v2(t)dt +
NoW

Nd
∆τ. (5.69)

In a similar fashion, the mean of the kth late mini-statistic is:

µg+ =
N0W

Nd
∆τ. (5.70)

‖Note that v∆+ (t) is a noise-only template because τ̂ > 0. In the case τ̂ < 0, v∆− (t) ≈ n
′
d(t).
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Note that if ∆τ is increased, the observation interval is increased and more signal energy is captured, but

more noise is integrated into the metrics.

Note that based on (5.67), g−2
k may be written as the product of two expressions, each formed of the sum of

four integrals. The variance of g2−
k may then be computed by evaluating the expected value of each of the

resulting 16 elements. The details of the derivation are not included for brevity, and the variance is found

to be:

σ2
g− = E2

p (1 − 2Pe,τ̂)
2
S2 +

2
Nd

Ep.S. (1 − 2Pe,τ̂)2 N0X
−
2 +

Ep

Nd
N0X

−
2 +

2Ep

Nd
(1 − 2Pe,τ̂)2 N0X

−
2

+ Ep (1 − 2Pe,τ̂)
2
N0X

−
2 +

1
N2

d

X−
3 + N2

0

Nd − 1
N2

d

X−
1 − µ2

g− (5.71)

where S, X−
1 , X−

2 and X−
3 are defined as:

S =
∫ τ̂

τ̂−∆τ

v2(t)dt

X−
1 = Z1 (τ̂ − ∆τ, τ̂ )

X−
2 = Z2 (τ̂ − ∆τ, τ̂ )

X−
3 = E

[∫ τ̂+kTf

τ̂−∆τ+kTf

∫ τ̂+kTf

τ̂−∆τ+kTf

n
′2(t)n

′2(λ)dtdλ

]

and Z1 (τ1, τ2) and Z2 (τ1, τ2) are defined by (5.53) and (5.54), respectively. In a similar fashion, the variance

of the late mini-statistic is:

σ2
g+ =

1
Nd

EpN0X
+
2 +

1
N2

d

X+
3 + N2

0

Nd − 1
N2

d

X+
1 −

[
NoW

Nd
∆τ

]2

. (5.72)

where:

X+
1 = Z1 (τ̂ , τ̂ + ∆τ ) ,

X+
2 = Z2 (τ̂ , τ̂ + ∆τ ) .

X+
3 = X−

3 .
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Note that the individual mini-statistics g−k , 0 < k < Nd − 1 are not independent, because they are obtained

using the same noisy template. The expected value of the product of two arbitrary early mini-statistics g−i

and g−j is found to be:

E
[
g−i g−j

]
= E2

p (1 − 2Pe,τ̂)4 S2 +
2

Nd
Ep (1 − 2Pe,τ̂)2 SN0W∆τ +

3
Nd

Ep (1 − 2Pe,τ̂)2 N0X
−
2

+
(

N0W∆τ

Nd

)2

. (5.73)

The variance of G− is then:

σ2
G− =

σ2
g−

Nd
+
(

1 − 1
Nd

)
E
[
g−i g−j

]−(
1 − 1

Nd

)
µ2

G− . (5.74)

Using a similar analysis, the variance of G+ is:

σ2
G+ =

σ2
g+

Nd
+

Nd − 1
Nd

[(
N0W∆τ

Nd

)2

+
(

N0X
+
4

Nd

)2
]
− Nd − 1

Nd
µ2

G+ (5.75)

where

X+
4 = W

∫ τ̂+∆τ

τ̂

∫ τ̂+∆τ

τ̂

sinc(W (t − λ))cos(2πfc(t − λ))dtdλ.

Recall that the final statistic is G = G− − G+. The mean of G is equal to the sum of the means of G− and

G+ which is equal to:

µG = Ep (1 − 2Pe,τ̂)2 S. (5.76)

Since G− and G+ are independent, the variance of G is the sum of their respective variances:

σ2
G =

σ2
g−

Nd
+
(

1 − 1
Nd

)
E
[
g−i g−j

]−(
1 − 1

Nd

)
µ2

G− +
σ2

g+

Nd
+

Nd − 1
Nd

[(
N0W∆τ

Nd

)2

+
(

N0X
+
4

Nd

)2
]

− Nd − 1
Nd

µ2
G+ . (5.77)
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The probability that the timing delay is adjusted in the correct direction is then equal to:

P (G > Ψ) =
1
2
erfc

(
Ψ − µG√

2σ2
G

)
. (5.78)

5.14 Tracking Simulation Results

The theoretical expressions of the algorithm’s statistics are first tested for Np = 50 and Nd = 100. The

expressions for the mean values of g−k and g+
k given respectively by (5.69) and (5.70) are tested by simulation

in Figure 5.33. The expressions for their second moment given by (5.71) and (5.72) are tested in Figure 5.34.

Finally, the second moments of G− and G+ given by (5.74) and (5.75) are tested in Figure 5.35. Note that

the theoretical expressions match simulation results with negligible error.

The performance of the proposed system is then showcased for Nc = 64 and Nd = 512 and displayed in

Figure 5.36. First, note that the presence of a 16 nsec acquisition error results in a performance degradation

of 3 dB compared to the perfect synchronization case. Moreover, note that the theoretical probability of

error expressions given by (5.55) matches the simulation results. The performance of the receiver with the

iterative tracking algorithm is also shown, where 5 iterations per frame are performed before a bit decision

is made. Note that the tracker corrects the timing error. Moreover, the system outperforms a pilot-assisted

system with Np = 64 , because the improved template is iteratively estimated based on the 512 data symbols,

which drastically reduces the effect of the noise-cross-noise term. In fact, at moderate SNR values, few bits

errors occur, and performance converges to a traditional pilot-assisted receiver with Nc = 512 and perfect

synchronization.
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Figure 5.33: g− and g+ Mean. Nc = 50. Nd = 100
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Figure 5.34: g− and g+ second moments. Nc = 50. Nd = 100
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Figure 5.35: G− and G+ second moments. Nc = 50. Nd = 100.

0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

EbNo (dB)

P
e

64 pilots, Synch. Error = 16 nsec, Sim
64 pilots, Synch. Error = 16 nsec, Theory
64 pilots, Perfect Synch, Sim
64 pilots, Perfect Synch, Theory
512 pilots, Perfect Synch, Sim
512 pilots, Perfect Synch, Theory
Proposed Tracking Method
Lower Bound (BPSK in AWGN)

Figure 5.36: Proposed system performance. Nc = 64. Nd = 512.
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5.15 Conclusions

This chapter presents a novel two-stage UWB acquisition algorithm for dense multipath channels. The

algorithm takes advantage of the clustered multipath structure to reduce acquisition time and to robustly

resolve the earliest arriving path, even when it is severely attenuated. The coarse acquisition phase is shown

to perform much better than traditional serial search, and only cause slight increase in mean acquisition

time compared to the most efficient acquisition search technique in the literature, in return for a much

simpler search mechanism. The effect of the fine acquisition stage is illustrated using the realistic UWB

P802.15 indoor channel model. The impact of acquisition error on a pilot-assisted receiver is derived, and

the performance improvement brought by employing the proposed acquisition scheme is highlighted. The

proposed scheme is validated by simulation based on actual channel measurements for both ranging and

communication applications. The inclusion of fine acquisition is shown to yield a significant reduction in

ranging error compared to traditional acquisition. Moreover, it increased symbol energy capture for the

pilot-assisted receiver, therefore resulting in a performance that approaches the perfect synchronization case.

A tracking algorithm for pilot-assisted receivers based on a modified early-late gate approach is also presented.

The tracking circuit assumes that coarse synchronization locked into an arbitrary multipath component.

The correlation template is based on the received pulse shape rather than the transmit pulse shape. The

algorithm is deployed iteratively and is able to correct relatively large timing errors. A statistical analysis of

the method is included along with simulation results which validate the theoretical expressions and illustrate

system performance.
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Chapter 6

NBI Mitigation in Dense Multipath

6.1 Introduction and Motivation

UWB systems must share their large bandwidth with other co-existing narrowband (NB) systems. UWB

signals will thus encounter interference from various surrounding sources. UWB will also potentially affect

many NB systems. The interference caused by UWB on NB systems is an important issue. One of the

biggest concerns is the impact of UWB on GPS systems, since GPS is used in critical air traffic applications.

For this reason no UWB transmissions are currently allowed in the GPS spectrum. Since the majority of

UWB’s energy is outside the NB system’s bandwidth, the UWB interference seen by a typical NB system

is expected to be minor. Moreover, the FCC power mask is specifically designed to limit this interference.

Several research efforts have characterized and studied the impact of UWB on traditional existing systems

(see [124] or [130] for example).

NB interference (NBI) seen by UWB systems is a more critical issue. In fact, even though UWB signals

may enjoy a high spreading gain due to their large bandwidth, stringent FCC power restrictions (-41.3

dBm/MHz in the 3.1GHz-10.6GHz range) make them susceptible to strong NBI, which can severely degrade

performance. The extent of performance degradation depends on the number, power and spatial distribution

of the interferers relative to the UWB signal. NBI might be tens of dB stronger than the UWB signal, and can

completely overwhelm the receiver front end. Severe NBI could thus render the acquisition process impossible.
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Front end interference mitigation techniques must be therefore applied, which makes many traditional SS

interference mitigation methods inapplicable, because they require synchronization prior to NBI mitigation.

The subject of NBI mitigation in UWB systems has only recently started to receive significant research

interest. Some methods to mitigate NBI for UWB systems have been discussed, many of which are based

on SS techniques ([136] and [137] for example).

In this chapter, a novel NBI mitigation technique for UWB systems based on multiple receive antennas

is proposed. The method takes advantage of the great immunity to fading that UWB signals exhibit when

compared to narrowband signals [19, 144, 145, 146]. In fact, in indoor environments, whereas the total

captured UWB energy varies only slightly over a relatively small area, the NBI energy level tends to vary

wildly. This leads to a selection diversity (SD) scheme where the signal corresponding to the receive antenna

with the least measured power is selected. The rationale behind this choice is the following: The UWB

signal power is approximately constant from antenna to antenna, while the interference power effectively

varies independently from antenna to antenna (when the multipath angle spread is high), following a specific

distribution depending on the channel characteristics. Thus, any increase in received power level is due to

more NBI power. Therefore, the effective received signal-to-interference ratio (SIR) is maximized by selecting

the antenna with the lowest measured power (Figure 6.1). This is a potentially attractive method, since

it does not assume signal synchronization or knowledge of the NBI’s spectral content prior to interference

mitigation. Moreover, it does not require high sampling rates at the receiver’s front end. The technique was

first suggested and briefly discussed in [144]. A mathematical framework for the proposed NBI mitigation

scheme, which was not included in [144], is introduced in this chapter. Performance is discussed for both

classical Rayleigh and Ricean NBI fading, which together cover a wide range of scenarios. Moreover, the

method is extended to two other diversity techniques, equal gain combining (ECG), and maximum ratio

combining (MRC). Results from this chapter have been published in [147] and [148].

6.2 List of Contributions and Publications

The major contributions of this chapter are:
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Figure 6.1: Proposed SD NBI mitigation receiver.

• A mathematical formulation of a proposed NBI mitigation model, based on multiple antennas, which

achieves diversity by exploiting the difference between NBI and UWB spatial fading properties.

• A derivation of the probability of error for the proposed system for a perfect receiver (where the

correlator template is matched to the received UWB pulse shape) as well as for a Rake receiver with

a limited number of fingers, under Rayleigh and Ricean NBI fading.

• A derivation of the improvement in effective SIR brought by the use of multiple antennas, for Rayleigh

and Ricean NBI fading.

A list of relevant publications is included for reference.

• J. Ibrahim and R.M. Buehrer, “NBI Mitigation for UWB Systems Using Multiple Antenna Selection

Diversity,” to appear, IEEE Transactions on Vehicular Technology, 2007.

• J. Ibrahim and R.M. Buehrer, “A UWB Multiple Antenna System for NBI Mitigation under Rayleigh

and Ricean Fading, Proc. 2006 ICC, 2006.

• J. Ibrahim and R.M. Buehrer, “A Novel NBI Suppression Scheme for UWB Communications Using

Multiple Receive Antennas,” Proc. 2006 RWS, 2006.

192



• J. Ibrahim, B. Donlan, and R.M. Buehrer, “Interference Rejection Techniques for UWB Systems,”

Embedded Systems Conference, 2005.

• S. Venkatesh, J. Ibrahim and R.M. Buehrer, “A New Model for Ultra Wideband Indoor NLOS Chan-

nels,” in Proc. 2004 Antennas and Propagation Society Conference, 2004.

• S. Venkatesh, J. Ibrahim, R.M. Buehrer and D.R. McKinstry, “A Spatio-temporal Channel Model for

Ultra-Wideband Indoor NLOS Communications,” under review, IEEE Transactions on Communica-

tions.

6.3 Chapter Organization

The rest of this chapter is organized as follows. Previous work in NBI mitigation applied to UWB is

included in section 6.4. Spatial energy variation characteristics of NB and UWB signals are discussed in

section 6.5. It is shown that while UWB energy remains almost constant over a local area, NB energy

incurs large variations. Spatial diversity gains are thus possible, where NBI mitigation is performed by

judiciously combining received signals from different locations in a small area. Such a diversity system,

based on multiple antennas, is mathematically formulated in section 6.6. NBI is assumed to undergo either

flat Rayleigh or Ricean fading, and this choice is analytically justified. SD is discussed in section 6.7, and

the probability of error of a system employing M receive antennas and SD is derived for both NBI Rayleigh

and Ricean fading. Analysis is first applied to the general Rake receiver employing F fingers, then for the

ideal receiver (a perfect Rake or All-Rake receiver), where perfect channel knowledge is assumed. It is shown

that doubling the number of antennas potentially results in a 3-dB performance boost for the Rayleigh case.

Less substantial gains are seen for the Ricean case. These theoretical results are further checked through

simulation. Section 6.8 derives the effective SIR gain brought by this method under both fading scenarios.

EGC and MRC are introduced and analyzed in the context of the ideal receiver in section 6.9∗. EGC is

shown to perform similarly to SD for NBI Rayleigh fading. EGC is superior to SD for Ricean fading. MRC

provides additional gains at the cost of increased complexity. Simulation and numerical results are included
∗Note that, in this work, the MRC weights are calculated and set to maximize the output SIR. More details on the weight

setting procedure is included in section 6.9
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in section 6.10. In addition to providing validation of the theoretical findings of the previous sections, the

systems performance is compared to the Rake MMSE receiver, which is the most popular NBI mitigation

technique available in the literature. Finally, section 6.11 concludes this chapter.

6.4 Previous Work on NBI Mitigation for UWB systems

NBI mitigation for UWB systems has lately received some research interest. An analysis of the effect of

tone jammers on UWB systems is presented in [125]. The effect of partial-band interference on UWB is

analyzed in [126]. In [127], the effect of NBI on direct sequence-based impulse radio is derived, where

NBI is modeled as the sum of sinusoidal signals with variable power and frequency. The performance of

a generalized Rake receiver in the presence of MAI and NBI is analyzed in [8]. The impact of NBI on

DS-UWB, as well as single and multi-carrier multi-band UWB is discussed in [128] and [129]. The effect of

NBI in the GSM and UMTS/WCDMA bands on UWB is studied in [130]. It is shown by simulation that

performance degradation is most severe when the NBI bandwidth overlaps with the UWB nominal center

frequency. Various pulse shaping methods which introduce nulls in the UWB spectrum where NBI occurs

are investigated in [131][132][133][134]. However, these methods assume knowledge of the NBI spectrum.

NBI mitigation based on optimization of the PPM parameter ∆ is suggested in [135], along with two other

methods, based on passing the UWB signal trough a notch filter, and on a MMSE Rake receiver, respectively.

NBI mitigation based on the MMSE Rake is also studied in [136] and [137]. In [138], NBI is modeled by

a sine wave of unknown amplitude, frequency and phase, and these three parameters are first estimated,

then the reconstructed NBI wave is subtracted from the received signal. A spectral-encoded system for

NBI mitigation is introduced in [139], where spectral nulls are introduced in the UWB spectrum using SAW

devices. The use of SAW filters for transform-domain processing is also suggested in [140]. Another technique

is suggested in [140], where NBI is digitally estimated, and an RF estimate is produced to perform the NBI

in the analog domain (also studied in [141]).
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6.5 Spatial Energy Variation of UWB and NBI Signals

A number of indoor NLOS UWB measurements were taken as part of a campaign conducted at Virginia

Tech within the context of the DARPA NETEX (NETworking in EXtreme environments) program. The

details of the measurement campaign can be found in section 2.5 and the references therein.

Measurements were taken at multiple locations in an indoor office environment. Consider a specific

location, or position, and define its position-set as all the impulse responses recorded at that position.

Measurements were grouped into separate position-sets each consisting of 49 channel impulse responses.

Each position-set holds measured channel impulse responses at 49 uniformly distributed points in a 1 m2

local area. For a specific position-set, the total energy captured by a receiver is measured and recorded. The

49 energy-capture values are then divided by the mean energy-capture value over the position-set. Energy

averaging is performed because we are interested in the energy variation around the mean value, and not

in the mean value itself. The procedure is repeated over all position-sets, and data from all position-sets

is analyzed. The histogram of the total energy captured by a receiver over a 1 m2 spatial grid at multiple

locations for a pulse width of 500 psec is shown in Figure 6.2. The variance of the captured energy was

found to be only 0.0035. Thus, the total energy capture may be assumed to be constant over this local area

emphasizing the low spatial fading of UWB signals. While we base our technique on results from [19], it

should be noted that the lack of spatial fading for UWB is a well documented phenomenon (see [32] and

[142] for example).

In another experiment, separate transmissions of NBI and UWB signals over NLOS channels were

simulated based on actual channel measurements [145]. Two UWB monocycles of different duration (250

psec and 2 nsec) were employed. The received energy content of the NBI and the UWB signal over a 70 cm

linear segment was recorded and appears in Figure 6.3. Note that the energy over multiple distance values

is normalized such that it has unit mean over the segment. The received NBI energy varies wildly over the

linear region as compared to the received energy of the UWB signal. Further, the 250 psec UWB pulse shows

less variation in energy across the grid than the 2 nsec pulse due to the presence of more resolvable paths

(i.e., larger bandwidth). Thus, in terms of total received energy, UWB signals exhibit great immunity to

fading when compared to narrowband signals. We would like to exploit this unique characteristic of UWB
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Figure 6.2: Histogram of the normalized received UWB signal energy over a 1 m2 area. Perfect receiver.

signals in our NBI mitigation system.

In a multiple receive antenna system, the total measured UWB power can thus be assumed nearly

constant from antenna to antenna, whereas the NBI power is not. This leads to our proposed method. In

conventional SD systems, diversity is achieved by feeding the signal with highest average received power

to the demodulator. This is effective due to the fact that the noise power is constant from antenna to

antenna while the desired signal varies, and thus the signal with the greatest received power is most likely

to have the largest desired signal power. In the proposed interference diversity system, the weakest signal

is chosen to be fed to the demodulator. This can be explained as follows. Assuming adequate antenna

separation in a multipath environment, the UWB signal power is approximately constant across antennas

while the interference power varies independently from antenna to antenna, according to a certain statistical

distribution. The independence of NBI fading assumes a large multipath angular spread (which is typical for

an indoor environment) and that the distance between adjacent antennas is greater than λ
2 , where λ is the

wavelength of the NBI signal. Thus, an increase in the SIR of the system is equivalent to less interference

power and consequently lower overall received power.

Note that, in the proposed model, the antenna with the lowest power is selected and then signal detection

is performed, based on a decision statistic obtained at the output of a correlator-receiver. In the case of
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Figure 6.3: Received signal energies at different antenna separations.

perfect channel knowledge (i.e. the desired received pulse shape is known, or equivalently a perfect Rake with

infinite resources is used), the entire UWB signal energy is captured, and the desired UWB component in

the decision statistic is constant across all antennas (since it is a direct function of the total energy capture).

However, if only a subset of the multipath components delays and amplitudes is available or the receiver

complexity is limited, a more realistic Rake receiver structure (with a limited number of fingers) is used, and

only a fraction of the available energy is captured. In this case, more UWB energy variation may be expected

across antennas in the decision statistic. The energy capture for a Rake receiver employing F fingers was

thus also analyzed using the same procedure for Figure 6.3. Note that it is assumed that the position of the

F strongest multipath components is known. It is shown that the Rake energy level varies more significantly

than the total energy capture case. For example, the energy variance for a 10-finger Rake when normalized to

unit mean is equal to 0.0273, compared to a variance of 0.0035 for the perfect energy capture case. However,

the energy variance is still relatively small compared to the NBI. Moreover, it was found that the energy

capture, d, across multiple antennas may be approximated by a Laplace random variable (Figure 6.4) with

distribution given by:

fd(x) =
1

σdF

√
2
e
−

√
2|x−d̄F |

σdF (6.1)
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where d̄F is the average energy capture, σ2
dF

is the energy capture variance, and |.| is the absolute value op-

erator. A Kolmogorov-Smirnov statistical goodness of fit test was performed to test the Laplace distribution

hypothesis, and the hypothesis passed the test for 5, 10, 15 and 20 fingers (Table 6.1). Thus we will use a

Laplacian model for the captured Rake received energy with a variance dependent on the number of Rake

fingers†.

We now briefly describe the proposed model in Figure 6.1 in the light of the above discussion. A power

measurement device first measures the total power of the signals at each of the M receive antennas. Let Pj

be the measured power at the jth antenna. In the next section, we will show that Pj may be expressed as

the sum of the UWB total received power (which may be assumed to be constant across antennas, based on

the discussion in this section), the noise power, and the NBI received power. The signal corresponding to

the minimum measured power is selected. Acquisition, modulation and signal detection are then performed

on the selected signal. If a perfect Rake receiver is employed, complete energy capture is achieved, and the

desired UWB component d in the correlator decision statistic may be assumed constant across antennas.

If a Rake receiver with F fingers is used, the desired component of the decision statistic is modeled by a

Laplacian random variable with mean d̄F and variance σ2
dF

, where d̄F and σdF depend on F . Thus, antenna

selection is based on the entire received signal power whereas data detection depends on some fraction of

the received power based on the receiver structure used. The next section formulates a mathematical model

for this system.

It is important to note that the proposed method assumes slow NBI fading. That is, the NBI fading coef-

ficients on the receiver antennas remain constant during the power measurement-data detection cycle. This

is a valid assumption for indoor environments, where the coherence time is estimated at around 30 msec for

low mobility environments [143].

†Note that the Laplacian model fd(x) is clearly an approximation, since the Laplacian distribution extends to negative x.
However, for small σdF

, the ensuing error is negligible. Alternatively, we may use a truncated Laplacian distribution (only
defined for positive x)
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Figure 6.4: Normalized received UWB signal energy over a 1 m2 area. 10-Finger Rake receiver.

Receiver σ2
dF

Test statistic Passed Test?
Rake, F=5 0.0439 0.0548 YES
Rake, F=10 0.0273 0.0454 YES
Rake, F=15 0.0199 0.0540 YES
Rake, F=20 0.0155 0.0477 YES

Table 6.1: Kolmogorov-Smirnov test for Laplacian Fit of Rake receiver energy capture. 580 sample points. Significance level = 0.05. Test threshold =√
− 1

2×580 log
(
0.05
2

)
= 0.0564

6.6 General System Model

We assume a UWB system with one transmit antenna and M (M ≥ 1) receive antennas. For mathematical

simplicity, we assume perfect synchronization between the transmitter and receiver antennas ‡. The UWB

system employs binary PAM modulation, and is corrupted by an NBI signal sNBI (t) with center frequency

fc. The transmitted UWB signal can be written as:

s(t) =
√

Ep

∞∑
i=−∞

biw(t − iTf ) (6.2)

where bi = ±1 is the ith data bit, w(t) is the unit-energy UWB transmit pulse of duration Tw, and Ep is the

transmit pulse energy. The transmit and receive antenna transfer functions are assumed to be included in
‡Note that synchronization between different antennas is not required for the SD system. However, synchronization prior to

NBI mitigation is required for EGC and MRC, since these two techniques are based on the combination of decision statistics
from different antennas.
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w(t). Tf is the symbol duration time (Tf >> Tw). We assume that Tf is longer than the channel maximum

delay spread, so that any ISI effects may be ignored. Note that the same analysis may be applied to any

UWB modulation technique.

We restrict our analysis to the time interval [0, Tf ] for ease of notation. The received signal corresponding

to bit b0 at the jth receiver antenna can be written as:

rj(t) = b0

√
Epw(t) ∗ hj,d(t) + sNBI (t) ∗ hj,NBI(t) + n(t) (6.3)

where hj,d(t) is the channel between the UWB transmitter and jth receive antenna, hj,NBI(t) is the channel

between the NBI transmitter and jth receive antenna, and n(t) is white Gaussian noise with power spectral

density N0
2 .

Let sl,NBI (t) be the equivalent low-pass signal of sNBI (t). We can write:

sNBI (t) = Re
[
sl,NBI (t)ej2πfct

]
. (6.4)

The received bandpass signal at the jth antenna can be written as:

rNBI(t) =
∑

n

βj,n (t) sNBI (t − τj,n (t)) (6.5)

where βj,n (t) and τj,n (t) are the time-varying amplitude and delay of the nth multipath component of

hj,NBI , respectively. Then:

rNBI (t) =
∑

n

βj,n (t)Re
[
sl,NBI (t − τj,n(t))ej2πfc(t−τj,n(t))

]
. (6.6)

Therefore:

rNBI(t) = Re

[(∑
n

βj,n (t) sl,NBI (t − τj,n(t))e−j2πfcτj,n(t)

)
.ej2πfct

]
. (6.7)
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The lowpass equivalent of the received signal is therefore:

rl,NBI (t) =
∑

n

βj,n (t) sl,NBI (t − τj,n(t))e−j2πfcτj,n(t). (6.8)

We assume that the transmitted NBI is a continuous wave (CW) tone with power PI , center frequency fc

and phase Θ:

sNBI (t) =
√

2PIcos (2πfct + Θ) . (6.9)

Note that, due to UWB’s very large bandwidth, any narrowband interferer may be approximated by (6.9).

Consequently, sl,NBI (t) =
√

2PIe
jΘ, and:

rl,NBI (t) =
√

2PI

∑
n

βj,n (t) e−j(2πfcτj,n(t)+Θ). (6.10)

Let φj,n(t) = 2πfcτj,n(t) + Θ. Then:

rl,NBI (t) =
√

2PI

∑
n

βj,n (t) e−jφj,n(t). (6.11)

In indoor environments characterized by dense multipath, there exist a large number of identically distributed

paths, and the central limit theorem applies. rl,NBI (t) may then be modeled as a complex Gaussian random

variable. Assuming slow fading (quasi-static channel), we may write:

rl,NBI (t) = A + jB, (6.12)

where A and B are Gaussian random variables. In the classical case of Rayleigh fading, A and B are

zero-mean Gaussian random variables. Then:

rNBI (t) = Re
[
(A + jB) ej2πfct

]
(6.13)
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which gives:

rNBI(t) = Acos (2πfct) − Bsin (2πfct) (6.14)

rNBI (t) =
√

A2 + B2

[
A√

A2 + B2
cos (2πfct) − B√

A2 + B2
sin (2πfct)

]
. (6.15)

Thus:

rNBI (t) = αjcos (2πfct + φj) (6.16)

where αj =
√

A2 + B2 and φj = tan−1
(−B

A

)
. In the case of Rayleigh fading, αj is a Rayleigh random

variable, and φj is a uniform random variable on [−π, π]. In case a strong specular component exists

between the NBI transmitter and the UWB receiver antenna, αj is modeled by a Ricean random variable

[57].

rj(t) can then be written as:

rj(t) = b0

√
Epwrx(t) + αj

√
2PIcos(2πfct + φj) + n(t) (6.17)

where wrx(t) = w(t) ∗ hj,d(t) is the received UWB pulse shape. We assume that the NBI undergoes a

frequency-nonselective, slowly fading channel. φj is a random phase offset uniformly distributed over [−π, π],

which models the randomness in the time of arrival of the NBI signal, relative to the UWB signal. We shall

analyze NBI under both Rayleigh and the more general Ricean fading. In case of Rayleigh fading, the

multiplicative term αj is modeled by a Rayleigh random variable with pdf:

fαj (α) =
α

σ2
e−

α2

2σ2 , α ≥ 0 (6.18)

where σ depends on the average NBI received power.

In case of Ricean fading, the pdf of αj is given by:

fαj (α) =
α

σ2
e−

s2+α2

2σ2 I0

(
α

s

σ2

)
, α ≥ 0 (6.19)
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where I0 is a modified Bessel function of the first kind, and s is the noncentrality parameter. The ratio of

the LOS to the NLOS power is defined as K = s2

2σ2 .

6.6.1 Power Measurement

Recall that the SD algorithm is based on selecting the signal corresponding to the antenna with lowest

measured power. The measured power from the jth antenna in the interval [0, Tf ] can be written as:

Pj =
1
Tf

∫ Tf

0

r2
j (t)dt

Pj =
Ep

Tf

∫ Tf

0

w2
j,rx(t)dt +

2
Tf

α2
jPI

∫ Tf

0

cos2 (2πfct + φj) dt +
2
√

Epb0

Tf

∫ Tf

0

wj,rx(t)n(t)dt

+
2
√

2PIEp

Tf
b0αj

∫ Tf

0

wj,rx(t).cos (2πfct + φj) dt +
2αj

√
2PI

Tf

∫ Tf

0

n(t)cos (2πfct + φj) dt

+
1
Tf

∫ Tf

0

n2(t)dt. (6.20)

Note that, if the power is averaged over multiple bits, E [b0]=0 §. Moreover, we assume that signals are

passed through a band-limiting filter prior to power measurement, where the filter bandwidth W is large

enough not to cause distortion to the UWB signal and to the NBI signal ¶. Then, since noise is zero-mean,

Pj may be approximated by:

Pj ≈ Ep

Tf

∫ Tf

0

w2
j,rx(t)dt +

2
Tf

α2
jPI

∫ Tf

0

cos2 (2πfct + φj) dt + N0W. (6.21)

Therefore:

Pj ≈ Ep

Tf

∫ Tf

0

w2
j,rx(t)dt + N0W +

α2
jPI

Tf

∫ Tf

0

(1 + cos (4πfct + 2φj)) dt. (6.22)

§It can easily be shown that the variance of the third and fourth terms on the ride hand side in (6.20) is proportional to 1
N

,
where N is the number of bits over which power is averaged. The number of bits required for adequate estimation depends on
the strength of the NBI, but 10 to 20 bits should be sufficient to effectively limit the term’s effect.

¶The design of such a filter is beyond the scope of this paper. We note however that the filter is essential for limiting noise
power.
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Assuming 4πfcTf is large (a valid assumption considering UWB’s operating range), then we can write

[147][148]:

Pj ≈ Ep

Tf

∫ Tf

0

w2
j,rx(t)dt + N0W + α2

jPI . (6.23)

Thus, the measured power Pj is the sum of the total received UWB power (which is constant from antenna

to antenna as seen in section 6.5), the noise power, and the NBI power α2
jPI , where α2

j , 1 ≤ j ≤ M are

independent random variables whose distributions depend on the type of NBI fading (Rayleigh or Ricean).

This means that the signal with lowest NBI power corresponds to the signal with lowest measured power,

as expected. Note that the analysis assumes slow NBI fading, i.e the fading coefficients αj are assumed

constant during the process.

It is important to note that the power measurement procedure is independent of the type of correlator used.

That is, the signal with lowest measured power is selected for both the perfect correlator (matched to the

UWB received pulse shape) and the Rake receiver, since signal selection is done prior to demodulation and

detection, and is based on total received power.

6.6.2 Antenna Decision Statistic

We assume that a correlator is applied at the receiver after the signal corresponding to the lowest measured

power is selected. The template of the correlator is given by:

y0(t) =
F∑

f=1

γfw(t − τf ). (6.24)

In the case of perfect knowledge of hj,d(t), γf and τf are set to the amplitude and delay of the fth multipath

component of hj,d(t). Then, y0(t) is matched to the received pulse shape wj,rx(t), and F is equal to the

number of multipath components L. The same template structure may be used if a more realistic Rake

receiver is employed, where γf and τf are the weight and delay of the fth Rake finger, respectively, and

F ≤ L.
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The decision statistic corresponding to the jth antenna after correlation can be written as:

rj =
√

Epb0dj + ij + nj (6.25)

where:

dj =
∫ Tf

0

y0(t)wj,rx(t)dt (6.26)

ij = αj

√
2PI

∫ Tf

0

y0(t)cos(2πfct + φj)dt (6.27)

nj =
∫ Tf

0

y0(t)n(t)dt. (6.28)

Based on the discussion from section 6.5, we study two receiver cases:

• In the case of perfect knowledge of hj,d(t), perfect energy capture is achieved. The UWB power is

then constant over all antennas, and consequently dj = d̄, ∀j. This case is equivalent to a perfect

Rake receiver which can resolve all the available channel multipath components. In other words,

y0(t) = wj,rx(t).

• If a Rake receiver with F fingers is employed, only a fraction of the total available energy is captured,

and dj is no longer assumed to be constant across the M antennas, but rather follows a Laplace

distribution with mean d̄F and variance σ2
dF

, where d̄F and σdF depend on F .

Moreover, the interference component ij can be written as:

ij =
√

2NI [aαjcosφj − bαjsinφj ] (6.29)

where:

a =
√

1
Tw

∫ Tf

0

y0(t)cos(2πfct)dt (6.30)

b =
√

1
Tw

∫ Tf

0

y0(t)sin(2πfct)dt (6.31)

NI = PITw (6.32)
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where NI may be interpreted as the interferer’s one-sided power density, as defined in [61]‖.

6.7 Selection Diversity Probability of Error

6.7.1 Rayleigh Fading

In this section, we derive the probability of error expression for the proposed system when a Rake receiver

with F fingers is employed in the presence of NBI Rayleigh fading. The result may be easily extended to

the perfect energy capture case (All-Rake), as will be seen.

Assume that the signal corresponding to the mth antenna is selected. The decision statistic may be written

as:

rm =
√

Epb0dm + im + nm (6.33)

with:

im =
√

2NI [aαmcosφm − bαmsinφm] (6.34)

where αm and φm are the NBI Rayleigh fading term and phase at the m-th antenna, respectively.

Based on the power measurement derivation in the previous section, the antenna selection mechanism is

equivalent to selecting the minimum of M independent, identically distributed (i.i.d) random variables α2
1,

α2
2, ... α2

M . Then, based on classical order statistics [149], the distribution of αm is given by:

fαm (α) = M
[
1 − Fαj (α)

]M−1
fαj (α) (6.35)

where Fαj (α) is the CDF of αj. For Rayleigh fading, we get:

fαm (α) =
M

2σ2
αe−

Mα2

2σ2 . (6.36)

Thus, αm is also a Rayleigh random variable, where σ2 is replaced by σ2

M .

Now, let z = αmcosφm and w = αmsinφm. Note that the power measurement process is not affected by the

‖Here, the interference’s contribution to the decision statistic is expressed as a function of NI rather than PI to make the
notation consistent with classical jammer analysis in the literature.
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phase, and φm remains uniformly distributed over [−π, π]. Using the basic Jacobian method [114], the joint

distribution of z and w is found to be:

fz,w (z, w) =
M

2πσ2
e−

M(z2+w2)
2σ2 . (6.37)

z and w are thus uncorrelated, jointly Gaussian random variables. Consequently, z and w are independent,

zero-mean Gaussian random variables with equal variance σ2

M . Thus, im is also a zero-mean Gaussian random

variable, with variance:

σ2
I = 2NIE

[
(az − bw)2

]
= 2NI

(
a2 + b2

) σ2

M
. (6.38)

Note that the power selection process does not affect the distribution of dm (since power is measured before

modulation and detection, and is based on total received power). In other words, dm is selected randomly

from a group of M i.i.d Laplace random variables. Then, the pdf of dm is given by:

fdm(x) =
1

σdF

√
2
e
−√

2
|x−d̄F |

σdF . (6.39)

Assume b0 = −1. Then, a bit error occurs if rm > 0, or:

−√Epdm + im + nm > 0. (6.40)

Equivalently:

dm

im + nm
<

1√
Ep

. (6.41)

Let Z = dm

im+nm
. It is trivial to show that nm is a zero-mean Gaussian random variable with variance

σ2
N = N0

2 . Then, the CDF of Z is given by [114]:

FZ(z) = cz

∫ ∞

y=0

∫ zy

x=0

e
−

√
2|x−d̄F |

σdF
− y2

2σ2
T dxdy (6.42)
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where cz = 1
2σdF

σT
√

π
and σ2

T = σ2
I + σ2

N . From (6.41), the probability of error is equal to FZ

(
1√
Ep

)
.

The CDF of Z may be expressed as:

FZ(z) =
1

σdF

√
2

1√
2πσ2

T

∫ ∞

y=0

∫ zy

x=0

e
−

√
2|x−d̄F |

σdF e
− y2

2σ2
T dxdy. (6.43)

Then, we may write:

FZ(z) =
1√
2σd

1√
2πσ2

T

[∫ d̄
z

y=0

e
− y2

2σ2
T

∫ zy

x=0

e

√
2(x−d̄)

σd dxdy +
∫ ∞

y= d̄
z

e
− y2

2σ2
T

∫ d̄

x=0

e

√
2(x−d̄)

σd dxdy

+
∫ ∞

y= d̄
z

e
− y2

2σ2
T

∫ zy

x=d̄

e
−

√
2(x−d̄)

σd dxdy

] (6.44)

which is equivalent to:

FZ(z) =
1
2

1√
2πσ2

T

[∫ d̄F
z

y=0

e
− y2

2σ2
T

[
e

√
2(zy−d̄F )

σdF − e
−

√
2d̄F

σdF

]
dy +

∫ ∞

y=
d̄F
z

e
− y2

2σ2
T

[
1 − e

−
√

2d̄F
σdF

]
dy

+
∫ ∞

y=
d̄F
z

e
− y2

2σ2
T

[
1 − e

√
2(d̄F −zy)

σdF

]
dy

]
.

(6.45)

Re-ordering elements, we get:

FZ(z) =
1
2

1√
2πσ2

T

[∫ d̄F
z

0

e
− y2

2σ2
T

+
√

2(zy−d̄F )
σdF dy + 2

∫ ∞

d̄F
z

e
− y2

2σ2
T dy − e

−
√

2d̄F
σdF

∫ ∞

0

e
− y2

2σ2
T dy −

∫ ∞

d̄F
z

e
− y2

2σ2
T

+
√

2(d̄F −zy)
σdF dy

]
. (6.46)

Moreover:

FZ(z) = Q

(
d̄F

zσT

)
− 1

4
e
−

√
2d̄F

σdF +
1
2

1√
2πσ2

T

[∫ d̄F
z

0

e
− y2

2σ2
T

+
√

2(zy−d̄F )
σdF dy −

∫ ∞

d̄F
z

e
− y2

2σ2
T

+
√

2(d̄F −zy)
σdF dy

]
. (6.47)

We thus get the following expression:

FZ(z) = Q

(
d̄F

zσT

)
− 1

4
e
−

√
2d̄F

σdF +
1
2
e

z2σ2
T

σ2
dF

−
√

2d̄F
σdF

[
Q

(
−√

2zσT

σdF

)
− Q

(
d̄F

zσT
−

√
2zσT

σdF

)]

− 1
2
e

z2σ2
T

σ2
dF

+
√

2d̄F
σdF Q

(
d̄F

zσT
+

√
2zσT

σdF

)
.

(6.48)
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Then:

Pe = Q

(√
Epd̄2

F

σ2
T

)
− 1

4
e
−

√
2d̄F

σdF +
1
2
e

σ2
T

Epσ2
dF

−
√

2d̄F
σdF

⎡⎣Q

⎛⎝ −√
2σT√

Epσ2
dF

⎞⎠− Q

⎛⎝√Epd̄F

σT
−

√
2σT√

Epσ2
dF

⎞⎠⎤⎦
− 1

2
e

σ2
T

Epσ2
dF

+
√

2d̄F
σdF Q

⎛⎝√Epd̄F

σT
+

√
2σT√

Epσ2
dF

⎞⎠ .

(6.49)

Note that, in case of full energy capture (which is equivalent to a perfect Rake receiver with complete

knowledge of the desired received UWB pulse shape), the desired component of the decision statistic may

be assumed constant, as demonstrated in section 6.5. Equivalently, σd = 0, and the probability of error

becomes:

Pe = Q

(√
Epd̄2

σ2
T

)
= Q

(√
EpMd̄2

2NI (a2 + b2)σ2 + N0
2

)
= Q

(√
M × SIRSD

)
(6.50)

where SIRSD = Ep d̄2

2NI(a2+b2)σ2+
N0
2

is the SIR at the output of the correlator. Thus, for the perfect Rake

receiver, we expect a 3-dB performance gain in the probability of error every time we double the number of

antennas M . Moreover, simulation results will show that the gain in the case of the traditional Rake receiver

is also practically equal to 3-dB for a moderate number of fingers, because of the negligible UWB energy

variation across antennas (σ2
d ≈ 0).

6.7.2 Ricean Fading

The probability of error for the NBI Ricean fading case may be obtained following the same analysis per-

formed for Rayleigh fading. However, the calculations are more cumbersome, and the obtained expressions

do not always provide intuitive understanding of the gains yielded by the proposed system. We include the

basic strategy for the derivation of Pe, and note the fundamental results.

Keeping with the notation of the previous section, and based on (6.35), the distribution of the selected
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interference fading parameter after SD for Ricean fading is given by:

fαm (α) =
M

σ2
QM−1

1

( s

σ
,
α

σ

)
e−

s2+α2

2σ2 I0

(
α

s

σ2

)
(6.51)

where Q1(.) is the generalized Marcum’s Q function.

The Jacobian method used for Rayleigh fading yields complex expressions for the Ricean case, because the

random variables are no longer Gaussian. We thus follow a different approach for obtaining Pe. Note that

im may be written as:

im = Rαmsin (φm + Γ) (6.52)

where Γ = tan−1
(−a

b

)
and R =

√
2NI (a2 + b2). The distribution of βm = Rsin (φm + Γ) is given by [114]:

fβm(β) =
1

π
√

R2 − β2
, |β| < R. (6.53)

Similar to previous section, the probability of error is given by:

Pe =
∫ ∞

α=0

∫ R

β=−R

∫ ∞

n=−αβ

∫ αβ√
Ep

x=0

fd(x)fnm(n)fαm(α)fβm(β)dx dn dα dβ (6.54)

which may be written as:

Pe =
M

πσ2

√
1

πN0

∫ ∞

α=0

∫ R

β=−R

∫ ∞

n=−αβ

∫ αβ√
Ep

x=0

e
−

√
2|x−d̄F |

σdF e
− n2

N0
1√

(R2 − β2)
αQM−1

1

( s

σ
,
α

σ

)
e−

s2+α2

2σ2

.I0

(
α

s

σ2

)
dx dn dα dβ. (6.55)

In the case of full energy capture (σd = 0), and ignoring thermal noise (the case where performance is strictly

limited by high-power NBI), the probability of error becomes:

Pe =
∫ ∞
√

Epd̄

R

∫ −
√

Epd̄

α

−R

fαm (α) fβm (β) dαdβ. (6.56)
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After some manipulation, we get:

Pe =
M

πσ2

∫ ∞
√

Epd̄

R

(
sin−1

(
−√Epd̄

Rx

)
+

π

2

)
xQM−1

1

( s

σ
,
x

σ

)
e−

s2+x2

2σ2 I0

(
x

s

σ2

)
dx. (6.57)

Numerical evaluation of (6.57) shows that Pe drops with increasing M . However, the diversity gains are less

substantial as compared to the Rayleigh fading case. Moreover, the gain deteriorates for increasing power

ratio K = s2

2σ2 .

6.8 Diversity SIR Improvement

We have studied the system gain from a probability of error point of view in the previous section. We now

formulate the improvement in effective SIR provided by the SD method. Specifically, we are interested in

the average SIR required to guarantee a target probability of error. It will be shown that the required SIR

drops with increasing number of antennas. Analysis is provided for both Rayleigh and Ricean fading.

6.8.1 Rayleigh Fading

Let’s first consider NBI Rayleigh fading. In this case, the interference energy at the jth antenna, Ij = |αj|2

(where PI is subsumed into the random variable for notational simplicity), over a local area, is central

Chi-square distributed with 2 degrees of freedom, and may be expressed as:

fIj (x) =
1
I
e−

x
I (6.58)

where I is the average interference energy. Let S̄ be the average UWB signal energy over the local area.

Then, based on the arguments in section 6.5, the UWB energy may be approximated by a constant S̄ (since

power measurement is performed prior to demodulation and detection), and the distribution of the SIR at

the jth antenna, χj = S
Ij

may be written as:

fχj(χ) = fIj

(
S

χ

)∣∣∣∣ d

dχ

(
S

χ

)∣∣∣∣ =
χ

χ2
e−

χ
χ (6.59)
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where χ = S
I

is the average SIR.

The CDF of the SIR can then be easily shown to be:

Fχj(χ) = e−
χ
χ . (6.60)

Consider a diversity array with M receive antennas, i.e. M independent fading channel realizations (from

the NBI perspective). Let the instantaneous SIR in each branch be χi. The pdf of χi is given by (6.59). The

probability that a single branch has an instantaneous SIR less than or equal to some threshold χ is e−
χ
χ .

Since the diversity branches are independent, the probability that all M independent diversity branches

receive signals which are simultaneously less than or equal to some specific SIR threshold χ is:

PM (χ) = (Pr [χi ≤ χ])M = e−
Mχ

χ . (6.61)

The probability that at least one branch exceeds χ is then:

PS (χ) = 1− e−
Mχ

χ . (6.62)

Assume that we require at least one branch to exceed χ with a probability p (where 1− p an be interpreted

as an outage probability). Then, assuming the average SIR is equal to χ, the required number of antennas

is:

M =
⌈

χ

χ
log

(
1

1 − p

)⌉
(6.63)

where log(x) is the natural logarithm of x, and �.
 is the ceil operator. Equivalently, with a fixed M , the

required χ would be:

χ ≥ χ

M
log

(
1

1 − p

)
. (6.64)

Note that the required χ̄ drops directly with increasing M .
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6.8.2 Ricean Fading

Assume that the NBI goes through Ricean fading. The energy I = |αj|2 is now distributed following a

noncentral Chi-square distribution with 2 degrees of freedom:

fI(x) =
1

2σ2
e−

s2+x

2σ2 I0

(√
x

s

σ2

)
. (6.65)

Again, let χ = S
I

be the SIR. Then, using the same method as for Rayleigh fading, we get:

fχ(χ) =
S̄

2σ2

1
χ2

e−
s2+ S̄

χ

2σ2 I0

⎛⎝√ S̄

χ

s

σ2

⎞⎠ . (6.66)

The CDF may then be written as:

Fχ(χ) =
∫ χ

0

S̄

u2

1
2σ2

e−
s2+ S̄

u
2σ2 I0

(√
S̄

u

s

σ2

)
du. (6.67)

Let v = S̄
u . A basic change of variable gives:

Fχ(χ) =
∫ ∞

S̄
χ

1
2σ2

e−
s2+v

2σ2 I0

(√
v

s

σ2

)
dv. (6.68)

Using the well known formula for the CDF of a Ricean distribution, we get:

Fχ(χ) = Q1

⎛⎝ s

σ
,

√
S̄
χ

σ

⎞⎠ . (6.69)

Following the same analysis for Ricean fading, and based on Equation (6.69), the probability that at least

one branch exceeds χ is:

PS (χ) = 1 −
⎡⎣Q1

⎛⎝ s

σ
,

√
S̄
χ

σ

⎞⎠⎤⎦M

. (6.70)
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Assume that we require at least one branch to exceed χ with a probability p. Then, after some manipulation,

we get:

M =

⎡⎢⎢⎢⎢⎢⎢⎢
log

(
1

1−p

)
log

(
Q−1

1

(
s
σ ,

√
S̄
χ

σ

))
⎤⎥⎥⎥⎥⎥⎥⎥

. (6.71)

Note that Ī = s2 + 2σ2. Also, recall that K = s2

2σ2 . Then, after straightforward manipulation, (6.71) may

be written as:

M =

⎡⎢⎢⎢
log

(
1

1−p

)
log

(
Q−1

1

(√
2K,

√
2 (K + 1) χ̄

χ

))
⎤⎥⎥⎥ . (6.72)

If K = 0, it is easy to show that (6.72) degenerates to (6.63), which corresponds to the Rayleigh fading case.

Moreover, for K → ∞, we distinguish two cases:

• If χ < χ̄, then lim
K→∞

Q1

(√
2K,

√
2 (K + 1) χ̄

χ

)
→ 0, and M = 1 satisfies (6.72).

• If χ > χ̄, then lim
K→∞

Q1

(√
2K,

√
2 (K + 1) χ̄

χ

)
→ 1, and M > ∞ (in other words, no solution exists).

The above observation is intuitive. Indeed, as K grows, Ricean fading is dominated by the deterministic,

non-variable LOS component. For K → ∞, the NBI power is constant across antennas (χ = χ̄), and all

diversity gains vanish.

The proof is now included for completeness. Let’s define D as:

D = Q1

(√
2K,

√
2 (K + 1)

χ̄

χ

)
.

Let Z = χ̄
χ . Then, D may be written as:

D = Q1

(√
2K,

√
2ZK + 2Z

)
.

Suppose Z > 1. Then,
√

2K <
√

2ZK + 2Z. Then, based on [150],

D ≤ e−
(
√

2ZK+2Z−√
2K)2

2 .
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It is trivial to show that:

lim
K→∞

(√
2ZK + 2Z −√

2K
)2

2
= lim

K→∞
K
(√

Z − 1
)2

= ∞.

Then, since D ≥ 0, lim
K→∞

D = 0, and consequently:

lim
K→∞

log
(

1
1−p

)
log

(
Q−1

1

(√
2K,

√
2 (K + 1) χ̄

χ

)) = 0.

Thus, if Z > 1, M = 1 satisfies (6.72) as K → ∞.

Now, suppose Z < 1. Then, there exists a value K0 such that, for K > K0,
√

2K >
√

2ZK + 2Z. Then,

based again on [150], for K > K0:

1 − 1
2

[
e−

(
√

2K−√
2ZK+2Z)2

2 − e−
(
√

2K+
√

2ZK+2Z)2

2

]
≤ D.

It is trivial to show that:

lim
K→∞

1 − 1
2

[
e−

(
√

2K−√
2ZK+2Z)2

2 − e−
(
√

2K+
√

2ZK+2Z)2

2

]
= 1.

Then, since D ≤ 1, lim
K→∞

D = 1, and consequently:

lim
K→∞

log
(

1
1−p

)
log

(
Q−1

1

(√
2K,

√
2 (K + 1) χ̄

χ

)) = ∞.

Thus, if Z < 1, no value of M satisfies (6.72) as K → ∞.

Simulation results will show that, although performance improves with increasing M , the gains are less

substantial than the Rayleigh case.
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6.9 Other Combining Techniques

In this section, we describe two additional combining methods: EGC and MRC. These methods may not

be practical for the studied system, since they pose complexity issues, and require synchronization between

different antennas, which might not be achievable prior to NBI mitigation. Nonetheless, their analysis is

useful, since they provide a valuable comparison benchmark for the proposed SD method. We restrict the

analysis to the perfect receiver (all-Rake) case.

6.9.1 Equal Gain Combining

Rayleigh Fading

In EGC, diversity is achieved by simply averaging the signals from different antennas (and therefore their

equivalent decision statistics). Assuming the data bit is 1, The EGC decision statistic can be written as:

rEGC =
1
M

M∑
k=1

rk =
√

Epd +
1
M

M∑
k=1

ik + nEGC =
√

Epd + iEGC + nEGC. (6.73)

where nEGC is a zero-mean Gaussian random variable with variance N0
2

. From section 6.7, we know that ik

is a zero-mean Gaussian random variable with variance 2NI

(
a2 + b2

)
σ2, ∀ k (see section 6.7). Therefore,

iEGC is a zero-mean Gaussian random variable with variance 2NI

(
a2 + b2

)
σ2

M . Thus it is simply shown that

performance of EGC for this receiver is identical to that of SD and is given by Equation (6.50).

Ricean Fading

The decision statistic for EGC under NBI Ricean fading is given by (6.73). Obtaining a statistical distribution

of the interference term iEGC is not straightforward, because the terms ik, ∀ k are characterized by a

relatively complex distribution. However, since iEGC = 1
M

∑M
k=1 ik, and the individual terms of the sum are

independent, the pdf of iEGC may be written as:

fi(x) = fj1(x) ∗ fj2(x) ∗ fj3(x)... ∗ fjM (x) (6.74)
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Figure 6.5: Probability density function for EGC decision statistic under Ricean fading for 1, 2, 4 and 8 antennas.
K=3. Plots shifted for clarity. Gaussian approximation is acceptable for M ≥ 2.

where jk = ik

M
, and fjk(x) is the PDF of jk.

Note that jk, ∀ k are i.i.d Gaussian random variables. Therefore, for a sufficient number of antennas,

the central limit applies, and i may be approximated by a Gaussian random variable. In fact, numerical

evaluation of fi(x) for different antenna numbers suggests that the Gaussian approximation may be applied

with negligible error for a small number of antennas: Figure 6.5 shows that the PDF shape converges to

the Gaussian shape very fast for increasing M . Figure 6.6 provides the decision metric’s PDF along with

its Gaussian fit (a Gaussian distribution with equal mean and variance). The PDF is practically Gaussian

for M ≥ 2. The probability of error is then given by Equation (6.50). Simulation results will show that this

approximation results in negligible error.

6.9.2 Maximum Ratio Combining

In MRC, individual weights are assigned to each antenna. Neglecting thermal noise, The weights are selected

to maximize the system SIR. Assuming the data bit is 1, the MRC decision statistic can be written as:

rMRC =
M∑

k=1

ckrk =
√

Epd
M∑

k=1

ck +
M∑

k=1

ckik (6.75)
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Figure 6.6: Probability density function for EGC decision metric under Ricean fading for 1, 2, 4 and 8 antennas.
K=3. Gaussian fit provided. Gaussian approximation is acceptable for M ≥ 2.

where ck is the weight of the kth antenna. We define the SIR as:

SIR =
Epd

2
(∑M

k=1 ck

)2

∑M
i=1 c2

i Pi

(6.76)

where Pi is the interference power seen by the ith antenna. We find the optimal weight cj by partial

differentiation. We get:

δSIR

δcj
= Epd

2 num(
c2
jPj +

∑
i �=j c2

i Pi

)2 (6.77)

where:

num = 2

⎛⎝cj +
∑
i �=j

ci

⎞⎠⎛⎝c2
jPj +

∑
i �=j

c2
i Pi

⎞⎠− 2cjPj

⎛⎝cj +
∑
i �=j

ci

⎞⎠2

(6.78)

Setting num = 0 and solving for cj , we get:

cj =

∑
i �=j Pic

2
i

Pj

∑
i �=j ci

, 1 ≤ j ≤ M. (6.79)
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Notice that the optimal weight for the jth antenna is inversely proportional to the jth antenna power, and

proportional to a linear combination of the other antennas powers: On one hand, as the jth power grows,

the jth decision statistic becomes less reliable, and is thus weighted down. On the other hand, when the

other powers grow, more weight is given to the jth antenna.

Let’s take the case of 2 antennas. We get c1 = P2
P1

c2 and c2 = P1
P2

c1. By forcing c1 +c2 = 1, we get c1 = P2
P1+P2

and c2 = P1
P1+P2

.

6.10 Simulation Results

A simulation of the proposed system using UWB 2-PAM modulation was carried out based on actual NLOS

channel measurements recorded at MPRG. For a thorough analysis of the channel characterization, the

reader is referred to section 2.5 and the references therein. Measurements are grouped in separate position-

sets of 49 channel impulse responses. Each position-set holds measured channel impulse responses at 49

uniformly distributed points in a 1 m2 local area. In the simulation, M channel impulse responses from the

same position-set are selected randomly and assigned to the M receive antennas. The simulation is averaged

over a large number of channel realizations by repeating the procedure over multiple position-sets. NBI is

modeled by a 1 GHz tone (which is near the middle of the UWB band), and is assumed to undergo indepen-

dent Rayleigh or Ricean fading over M receive antennas. Power measurements are averaged over multiple

bits, such that (6.23) holds. A 500 psec UWB Gaussian transmit pulse is used. The symbol duration Tf is

equal to 80 nsec, which is longer than the channel maximum delay spread.

Figure 6.7 displays the performance of SD versus signal-to-noise-plus-interference (SINR) under Rayleigh

fading when perfect channel knowledge and full energy capture is available (i.e. a perfect Rake receiver

which captures all the available multipath components). Here, SINR is defined as the signal-to-noise-plus-

interference ratio at the output of the correlator. As expected, performance matches the theoretical expres-

sion of (6.50). Doubling the number of antennas yields a 3-dB gain.

Performance of the proposed SD system applied to a 20-finger Rake receiver employing MRC combining is

tested for NBI Rayleigh fading in Figure 6.8. The performance is plotted for simulation results, theoretical

results assuming a Laplacian distribution for the desired signal component (6.49), and theoretical results
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Figure 6.7: SD under NBI Rayleigh Fading. Perfect energy capture. 1, 2, 4 and 8 antennas.

assuming constant energy capture (6.50). Notice that, at low SINR values, diversity gains are practically

equal to 3-dB when doubling M , and that (6.49) and (6.50) yield almost the same performance. The vari-

ation in energy capture across antennas is negligible compared to the variation of the interference energy,

and gains are similar to the full energy capture case. However, for high SIR values, the energy capture

variation impacts performance, and the simulated probability of error is closer to (6.49). At high SINR, the

performance is more heavily influenced by the fluctuation in UWB energy. Note that since SIR is measured

at the output of the correlator, the average Rake energy capture d̄F is incorporated into SIR. In other words,

we are interested in the variance of the energy over a local area, and not in its mean value∗∗. Also, it is

important to note the distinction between the SD process applied at the power selection level, and the MRC

process which occurs at the Rake finger combination level; the two processes are independent and must not

be confused. Finally, note that similar diversity gains are observed for a Rake receiver with a smaller number

of fingers (10 fingers, or 5 fingers).

Performance for Ricean fading (K = 5) under SD and complete energy capture is displayed in Figure 6.9. It

is assumed that performance is limited by high-power NBI, and Gaussian noise is neglected. Notice that the

simulation results match the theoretical expression in (6.57). Moreover, for a specific number of antennas

∗∗The Rake average energy capture is an important issue for a practical system, but here we are only interested in the diversity
gains achievable by our system.
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Figure 6.8: SD under NBI Rayleigh Fading. 20-Finger Rake. 1, 2, 4 and 8 antennas.

M , Ricean fading yields a higher probability of error compared to Rayleigh fading. Less diversity gains are

observed when increasing the number of antennas (1-2 dB when doubling M). This is an intuitive result,

since the NBI power does not vary much across antennas compared to the Rayleigh case, because of the

dominant deterministic LOS power component, and thus less diversity gains are achievable.

Figure 6.10 compares the performance of SD and EGC under Rayleigh fading. Perfect channel knowl-

edge is assumed at the receiver, and the effect of thermal noise is ignored. As expected, performance of both

methods is similar, and matches that of Equation (6.50). Doubling the number of antennas yields a 3-dB

gain. Figure 6.11 compares performance of MRC and ECG (and consequently SD) with perfect channel

knowledge. Notice that MRC consistently outperforms ECG by about 1 to 2 dB, by individually optimizing

the weights of the received antennas.

Performance for EGC and SD under Ricean fading with perfect channel knowledge are compared in Figure

6.12. Notice that Ricean EGC outperforms Ricean SD, and performance is similar to that of Rayleigh fading

for 2 or more antennas. The decision statistic may be approximated as Gaussian for M ≥ 2, as suggested in

section 6.9, which explains this result.

MRC and EGC performance under Ricean fading with perfect channel knowledge are compared in Figure

6.13. Notice that gains brought by MRC vanish as the factor K increases. This is an intuitive result, since,
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Figure 6.9: SD performance under NBI Ricean Fading. Perfect energy capture. K = 5.

as K grows, the constant LOS component dominates NBI. The NBI power then varies less across different

antennas, and the MRC weighting factors are approximately equal to the same value. At the extreme case

of pure LOS NBI, all antennas are weighted equally, and the system converges to EGC.

The effect of increasing the power in the Ricean LOS component under full energy capture is illustrated

in Figure 6.14. Performance degrades with increasing K at low SIR, because of the diminishing diversity

gains. At high SIR, the dominant LOS component becomes negligible compared to the UWB power, and the

performance of the receiver is better with Ricean fading compared to Rayleigh fading (K = 0). As K → ∞,

the probability of error curve tends to a step function, where Pe = 0.5 at SIR < 0 dB, and Pe = 0 at SIR >

0 dB. However, note that we are more concerned with performance at low SIR, since practical UWB systems

will normally operate in the low SIR region.

The performance of a 20-finger Rake receiver under Ricean fading (K = 5) for high-power NBI is shown in

Figure 6.15. Notice that the diversity gains are limited compared to the Rayleigh fading case (around 1-dB

when M is doubled), because of the dominating LOS interference component.

The proposed system applied to a 20-finger Rake receiver is compared to a 20-tap MMSE receiver in Figure

6.16. The MMSE receiver is the most popular NBI mitigation technique in the literature. The MMSE

receiver has the structure of a Rake receiver, but the individual finger weights (or filter taps) are computed

222



−15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

SIR (dB)

P
b

SD, M=1
SD, M=2
SD, M=4
SD, M=8
EGC, M=1
EGC, M=2
EGC, M=4
EGC, M=8
Theory, M=1
Theory, M=2
Theory, M=4
Theory, M=8

Figure 6.10: SD and EGC under NBI Rayleigh Fading. 1, 2, 4 and 8 antennas.

to minimize the mean square error instead of maximizing the energy capture [137]. In this simulation, it

was assumed that the MMSE receiver has complete knowledge of the NBI’s center frequency as well as the

NBI average received power, which are not needed for our proposed system. The SIR is fixed at -10 dB, and

performance is studied for varying SNR. Notice that the MMSE receiver outperforms the proposed receiver

by about 2-dB when M = 8. With M = 16, the proposed receiver performs practically the same as the

MMSE receiver. Note that the MMSE receiver is substantially more complex than the proposed receiver (it

requires the inversion of a 20 × 20 covariance matrix), and simply provides a performance benchmark in the

context of this work.

The probability PS(χ) of at least one antenna SIR exceeding a threshold χ (see (6.62)) is plotted versus

χ in Figure 6.17. Rayleigh fading is assumed, with an average antenna SIR of 5 dB. For a fixed PS(χ), the

threshold χ increases by 3 dB when the number of antennas is doubled. Ps(χ) is plotted for Ricean fading

(with the same average antenna SIR) in Figure 6.18. The power ratio K is equal to 5. First, note that for

a fixed χ, Ricean fading yields a lower (worse) PS(χ) compared to Rayleigh fading. Second, the gains seen

from increasing M are less substantial (about 1 dB when doubling the number of antennas). Due to the

deterministic Ricean LOS power component, the SIR varies less across different antennas, and less diversity

gains are possible. This is illustrated in Figure 6.19, where performance degrades for larger K. As K grows,
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Figure 6.11: MRC and EGC under NBI Rayleigh Fading. 1, 2, 4 and 8 antennas.

the interference power across antennas becomes constant, and all diversity gains vanish.

224



−25 −20 −15 −10 −5 0
10

−4

10
−3

10
−2

10
−1

10
0

SIR (dB)

P
b

K =5

M=1, EGC, Ricean
M=1, Rayleigh
M=2, EGC, Ricean
M=2, Rayleigh
M=4, EGC, Ricean
M=4, Rayleigh
M=8, EGC, Ricean
M=8, Rayleigh
M=1, SC, Ricean
M=2, SC, Ricean
M=4, SC, Ricean
M=8, SC, Ricean

Figure 6.12: SD and EGC performance under NBI Ricean fading for varying M .
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Figure 6.13: MRC and EGC performance under NBI Ricean fading for varying K . M = 2.
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Figure 6.14: SD Performance under NBI Ricean Fading for varying K . M=4. Perfect energy capture.
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Figure 6.15: SD performance under NBI Ricean Fading. 20-Finger Rake. K = 5.
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Figure 6.16: Proposed system versus MMSE receiver. 20-Finger Rake. Rayleigh fading.
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Figure 6.19: PS(χ) vs. χ for different K . Average SIR =5 dB. M = 4.
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6.11 Conclusions

This chapter presents a novel NBI mitigation scheme for UWB based on multiple receive antennas, where

UWB’s low spatial fading characteristics are exploited to mitigate NBI. This method has relatively low

complexity, and does not assume synchronization prior to NBI cancellation. NBI diversity is studied under

NBI Rayleigh and Ricean fading. SD, EGC and MRC techniques are considered. Probability of error

expressions are derived for SD for both perfect (full) energy capture and partial energy capture. SD and

EGC are shown to yield a potential 3-dB performance gain when the number of antennas is doubled for

the Rayleigh fading case. Additional gains are observed for MRC. Gains are less substantial for the Ricean

fading case, because Ricean NBI fading provides less variation to exploit through diversity, but can still

provide some benefit. EGC outperforms SD for the Ricean fading case, because the EGC decision statistic

is smoothened out by the averaging EGC operation, and approaches a Gaussian random variable, which is

less detrimental to performance. MRC provides negligible gains compared to EGC in extreme Ricean fading

scenarios.
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Chapter 7

Conclusions and Recommended

Future Work

7.1 Research Synthesis

This document presented research work conducted for UWB signal detection, synchronization, and NBI

mitigation in dense multipath. The challenges posed in these three areas were discussed. Traditional solutions

were analyzed and their limitations were identified. New algorithms, specifically tailored for dense multipath

channels, were proposed.

Multipath is traditionally treated as a nuisance. Methods are usually devised to limit its effects, or remedy

its damages. However, when attempting to discern intersections between the various proposed algorithms in

this report, an interesting pattern immerges, which may define the underlying philosophy of this research. In

fact, in most cases, multipath is not viewed as a limitation, but rather as a resource which may be exploited to

our advantage. For example, the sequence optimization receiver achieves very high energy capture by treating

the available multipath components as potential degrees of freedom. Judicious manipulation of these degrees

of freedom (in this case, sequence optimization which forces multipath components to combine constructively

at the receiver) potentially leads to efficient, high-performance algorithms. The two-stage acquisition process

takes advantage of the existence of multiple H1 cells to reduce acquisition time. Moreover, it uses the clustered
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multipath structure to more robustly detect the LOS component. In the proposed interference mitigation

scheme, dense multipath again plays to our advantage, since it causes low UWB and high NBI spatial energy

fading, and thus creates diversity which may be utilized. From this viewpoint, multipath is transformed from

an inconvenience to a potential asset. Going further, it would be interesting to establish a framework where

it is possible to compare the performance of the proposed algorithms in dense multipath to the performance

of traditional methods in the absence of multipath. Taking acquisition as an example, it has been already

established that jump-phase search outperforms serial search in dense multipath. However, it is interesting

to also note that jump-phase search in a dense multipath environment would outperform serial search in

an environment deprived of multipath, since serial search would process half the available cells on average,

while jump-phase search would process less cells, depending on the number of available H1 cells.

7.2 Contributions and Publications

The main contributions of this research are listed below:

• An accurate characterization of existing/traditional signal detection approaches for UWB systems in

dense multipath channels.

• A proposed iterative data-aided, pilot-assisted receiver with forward-error correction, which reduces

the training overhead required by traditional TR receivers, and achieves high performance gains, by

exploiting the synergy between improved channel estimation and coding gain.

• A proposed sequence optimization receiver, which exploits the dense multipath structure and achieves

very high energy capture and efficient interference mitigation by forcing coherent combining of a large

number of multipath components at the output of the receiver.

• A mathematical formulation for a general indoor UWB acquisition model, where the effect of dense

multipath and the existence of multiple H1 cells (which is usually neglected in the literature) are

explicitly included.

• A proposed two-stage acquisition approach, which achieves fast acquisition and maintains reasonable

complexity by uniformly spreading the delays corresponding to the multipath components over the
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timing uncertainty region, and provides robust timing estimate by taking advantage of the clustered

nature of multipath, even when the LOS component is severely attenuated.

• A proposed UWB tracking algorithm which utilizes the dense multipath structure to achieve robust

continuous tracking of the LOS component or other multipath component.

• A NBI mitigation technique, based on multiple antennas, which exploits the low spatial fading of UWB

signals relative to NBI signals to achieve ”interference diversity”. A complete characterization of this

approach is also provided for various levels of multipath fading and receiver implementations.

Relevant publications resulting from this work are also listed for reference:

• Co-author, An Introduction to Ultra Wideband Communication Systems, Chapter 6, Receiver Design

Principles, edited by Jeffrey H. Reed, Prentice Hall, 2005.

• J. Ibrahim, R. Menon, and R.M. Buehrer, “UWB Signal Detection Based on Sequence Optimization”

IEEE Communications Letters, pp. 228-230, vol. 10, issue 4, April 2006.

• J. Ibrahim and R.M. Buehrer, “Two-Stage Acquisition for UWB in Dense Multipath,” IEEE Journal

on Selected Areas in Communication, vol. 24, issue 4, part I, pp. 801-807, April 2006.

• J. Ibrahim and R.M. Buehrer, “NBI Mitigation for UWB Systems Using Multiple Antenna Selection

Diversity,” to appear, IEEE Transactions on Vehicular Technology, 2007.

• S. Venkatesh, J. Ibrahim, R.M. Buehrer and D.R. McKinstry, “A Spatio-temporal Channel Model for

Ultra-Wideband Indoor NLOS Communications,” under review, IEEE Transactions on Communica-

tions.

• J. Ibrahim and R.M Buehrer, “A Modified Tracking Algorithm for UWB Pilot-Assisted Receivers,”

in Proc. 2006 ICUWB, September 2006.

• J. Ibrahim and R.M. Buehrer, “A UWB Multiple Antenna System for NBI Mitigation under Rayleigh

and Ricean Fading,” in Proc. 2006 ICC, vol. 10, pp. 4751-4756, June 2006.
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• J. Ibrahim and R.M. Buehrer, “A Novel NBI Suppression Scheme for UWB Communications Using

Multiple Receive Antennas,” in Proc. 2006 RWS, pp. 507-510, January 2006.

• J. Ibrahim, R. Menon, and R.M. Buehrer, “UWB Sequence Optimization for Enhanced Energy Capture

and Interference Mitigation,” in Proc. 2005 MILCOM, vol.4, pp. 2086-2092, October 2005

• J. Ibrahim and R.M. Buehrer, “Two-Stage Acquisition for UWB in Dense Multipath,” in Proc. 2005

MILCOM, pp. 1898-1904, vol.3, October 2005.

• R. Menon, J. Ibrahim, and R.M. Buehrer, “UWB Signal Detection Based on Sequence Optimization,”

in Proc. 2005 WirelessComm, vol.2, pp. 1231-1236, June 2005.

• J. Ibrahim and R.M. Buehrer, “A Data-Aided Iterative UWB Receiver with LDPC,” in Proc. 2005

VTC Fall, vol. 1, pp. 33-37, June 2005.

• J. Ibrahim, B. Donlan, and R.M. Buehrer, “Interference Rejection Techniques for UWB Systems,” in

Embedded Systems Conference, 2005.

• S. Venkatesh, J. Ibrahim and R.M. Buehrer, “A New Model for Ultra Wideband Indoor NLOS Chan-

nels,” in Proc. 2004 Antennas and Propagation Society Conference, 2004.

7.3 Recommendation for Future Work

This research has presented various physical layer algorithms which exploit UWB’s characteristics in dense

multipath. When evaluating the algorithms, emphasis was put on system performance metrics, such as

probability of error, acquisition time and timing error. Although the computational complexity of the major

UWB receiver structures was tackled in this work for comparison purposes, an in-depth study of the hardware

implementation of the studied algorithms is beyond the scope of this research effort.

Efficient digital implementations will be critical for proper operation of synchronization, signal detection and

NBI mitigation for UWB devices. Digital realizations of the proposed algorithms are required to harness their

full potential. Any realistic UWB transceiver will be hindered by the inherently high required sampling rate.

Power consumption, efficient ADC resolutions and memory requirements are other critical design challenges
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(the reader is referred to [80] for an in-depth analysis of these issues).

Although the design of low-cost, low-complexity UWB transceivers has received some research interest lately

(see [151] for a study of monobit UWB receivers for example), the implementation of such affordable devices is

still largely an open and crucial research issue upon lies which the full potential deployment of the technology.
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