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by 

KWANG-SUZ lEN 

A.A. (Louis) Beex (chairman) 

ELECTRICAL ENGINEERING 

(ABSTRACT) 

Digital Signal Processing (DSP) is a technologyadriven field which develops as early as mid-1960 

when computers and other digital circuitry became fast enough to process large amounts of data 

efficiently. Since then techniques and applications of DSP have been expanding at a tremendous 

rate. With the development of large-scale integration, the cost and size of digital components are 

reducing, and speed of digital components is increasing. Thus the range of applications of DSP 

techniques is growing. Almost all current discussions of speech bandwidth compression systems 

are directed toward digital implementation, because these are now the most practical. The 

importance of DSP appears to be increasing with no visible signs of saturation. 

This thesis provides the description and results of designing laboratory experiments for the 

illustration of basic theory in the field of DSP. All experiments are written for the Texas 

Instruments TMS320 I 0 digital signal processing microcomputer and based on softwares provided 

by Atlanta Signal Process, Inc. (ASPI). The use of the 320/pc Algorithm Development Package 

(ADP) and Digital Filter Design Package (DFDP) developed by ASPI is introduced. The basic 

concepts, such as linear convolution, Finite Impulse Response (FIR) and Infmite Impulse 

Response (IIR) filter design, Fast Fourier Transform (FF1), are demonstrated. The IBM PC AT 

is interfaced with the TMS32010 processor. The experiments and their introductions in the thesis 

also serve as a manual for the DSP Laboratory; to complement the introductory signal processing 

course. 
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1. INTRODUCTION 

The purpose of the Digital Signal Processing (DSP) Laboratory is to help the student (a) get 

acquainted with the use of the IBM Personal Computer AT; (b) learn basic techniques in the design 

and evaluation of DSP algorithms in a real-time environment; (c) experimentally verify some of the 

theory he/she has learned, and (d) experience how inter-processor communication (IBM PC AT 

and TMS3201 0) can be done. The experiments in this thesis are designed toward this purpose. 
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1.1 Backgrollnd Information 

The features of the 320/PC Algorithm Development Package and Digital Filter Design Package 

(DFDP) from Atlanta Signal Processors Incorporated (ASPI) are described. The 320/PC Algorithm 

Development Package (ADP) is aimed at applications involving the TMS32010 digital signal 

processing (DSP) microcomputer from Texas Instruments Incorporated, and includes the 320/pc 

board and associated software for the IBM PC AT. The software system is developed for three 

types of application in conjunction with the Personal Computer/TMS32010. First, the system can 

be used as a program development tool for realizing DSP applications on TMS32010·based 

systems, using ASPI software products such as DFDP. Second, the system is useful as a signal 

processing workstation for interactive algorithm development. Finally, the system can be utilized 

directly to run programs in real time, such as one of ASPI's voice coding programs specifically 

written to take advantage of capabilities of the 320/PC board. 

DFDP is a powerful package of interactive programs for the design of digital filters as well as the 

subsequent implementation of such filters on the Texas Instruments TMS32010 DSP 

microcomputer. DFDP has modules for the design of recursive and nonrecursive digital filters. 

Recursive or IIR filters are designed by the module IIR which uses the method of bilinear 

transformation of Butterworth, Chebyshev, and Cauer (elliptic) analog filters. Nonrecursive or FIR 

filters are designed using either module KFIR, which uses the Kaiser-window method {I], or the 

design module PMFIR, which uses the Parks-McClellan algorithm (2). In each case, a wide variety 

of frequency-selective filters can be designed; in the FIR case, differentiators and Hilbert 

transformers can be designed also. A unique feature of the software package is module CGEN, 

which produces assembly language code for filters designed by modules IIR, KFIR, or PMFIR [3]. 

The 320/PC ADP is a powerful combination of hardware and software for developing and 

implementing DSP algorithms for the Texas Instruments TMS32010 DSP microcomputer. The 
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package is based on the 320jPC board, which contains a TMS32010 processor, an 8-ki1obyte 

dual-port memory, a programmable clock, and very high-quality 12-bit AID and 12-bit D/A 

conversion systems. Because of the unique dual-port memory architecture, the 320/PC can be used 

as a real-time development and debugging tool of unprecedented performance [4]. Because of its 

high-qUality AID and D/A systems, and its high computational capacity, the 320/PC board alone 

can tum a personal computer into a powerful signal processing workstation. It also can make a 

personal computer into a real-time speech coder, an audioband spectrum analyzer, a voice mail 

station, a signal generator, a real-time digital filter, a digital equalizer, or a signal conditioner. 

A variety of useful software is available to facilitate the use of the 320/PC board in the ADP. 

These programs include: HEAR, which samples, stores, reconstructs, and edits signals using AID 

and D/A subsystems; VIEW, which displays and edits a sampled waveform from data files stored 

on the system disk; BUG, a multi-breakpoint debugger for programs being executed in the 

TMS32010; PATCH, a real-time program for interactively patching a program while executing on 

the TMS32010 processor and for monitoring the efficiency of the TMS32010 in a real-time 

operation; and TI_LOAD, a utility program for loading programs into the TMS32010's 

programming memory and controlling the state of the 320/PC board [51. 
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1.2 Preview of Material Included in this Thesis 

This thesis serves as a manual for the DSP Laboratory course accompanying the course 

"Introduction to Signal Processing". The experiments are written in the order of the material 

covered in 'Digital Filters and Signal Processing'" by Leland B. Jackson (1]. Since most of the 

experiments must be done in a fIXed period of time, new software, laboratory instruments and 

techniques are introduced in every experiment except the last one, experiment VII. Some software 

such as the TMS32010 MS/PC-DOS CrossWare and link editor will not be explained until Chapter 

4, Section 111.1 and 111.2. The following paragraphs summarize the contents of this thesis. 

Chapter 2 presents the use of some software associated with the AD P. The linear convolution 

of an impulse response with an input from a specified data memory location in the TMS320 10 

processor is implemented and verified. This TMS320 1 0 assembly program can serve as a FIR filter 

when the digital filter is represented by its impulse response. A simple notch filter is designed and 

implemented, and subsequently run in real time. 

Chapter 3 discusses how inter-processor communications (IBM PC AT and the TMS32010) can 

be done. Digital filters (FIR and IIR) are designed to demonstrate and enhance the theory that 

students are learning. 

Chapter 4 shows the use of the TMS32010 MS/PC-DOS CrossWare and link editor, and Model 

3202 solid-state variable-frequency filters. Aliasing is demonstrated with an input from the external 

waveform generator. Next we show how aliasing can be reduced with the aid of Model 3202 filters. 

The phase response of the filter is measured with an oscilloscope. The utilization of the TMS320 10 

processor, under real-time operating conditions is measured. 

Chapter 5 describes the procedure of using the DFDP as well as a discussion of the limitation 

of the DFDP. 
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Chapter 6 discusses the Fast Fourier Transform (FFT) (which is implemented in both 

FORTRAN and the TMS32010 assembly language) of an input signal which is created from a 

FORTRAN program or obtained directly from the AID converter. The purpose of zero padding 

is demonstrated. The FFT result is provided by the FORTRAN program or the TMS32010. 

Chapter 7 gives an opportunity to design digital filters according to specifications. InfInite 

Impulse Response (IIR) rtIters are designed by using a bilinear transformation of analog filters; 

Finite Impulse Response (FIR) filters are designed using different windowing methods. 

The experiments are intended to be completed within a specific time period, but several require 

reading/preparation prior to performing the experiment. It is important that each experiment be 

performed with care and thought, not just to obtain data and write a report, but rather to become 

familiar with the principle demonstrated and the techniques employed. 
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2. LINEAR CONVOLUTION 

Convolution is one of the most frequently used signal processing operations. Linear convolution 

of sequences, one of which is of finite length, can be implemented as an FIR ftl.ter with an 

N-sequence unit pulse response, driven by the other sequence an input. In spectral estimation, the 

basic operation of autocorrelation is simply the convolution of the signal with a reversed-time 

version of itself. 

LCONV.ASM is a TMS32010 assembly program that implements linear convolution defined 

as follows 

N-l 

yen) = L x(n - m)h(m). 
m=O 

(2-1) 

where yen) is the result of the linear convolution of the unit pulse response hem) and an input 

sequence x(n). N is the length of the unit pulse response. The input sequence ~ is convolved with 

the pennanent sequence~. In this program, the latter is an 8-point sequence with the first four 

points equal to one and the remainder equal to zero. The input is read sequentially from port 6 

(A/D), and the output is written to port 6 (D/A). The program will load the unit pulse response 

at location 0009 through OOOF and initialize the input function (that is, XII-I' X'n-l' ••• , X-I) to zero 
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at location 0001 through 0008. Students are asked to check both locations to ensure that the unit 

pulse response has been loaded and that the input function has been initialized. The program is 

then activated into its first loop, where a new data point is received from port 6 (A/D). In 

experimental procedures 1.1 and 1.2, students will input data points of a specific function to location 

0001, one at a time, to simulate time domain sampling. Finally, the program goes into the second 

loop where the main computation takes place. 

The main computation in the convolution is done using one of the most powerful instruction 

pairs, LTD and MPY, in the TMS32010 assembly language, which multiplies the sequences point 

by point and shifts the input in preparation for the next input data point. Students will have an 

opportunity to see exactly how the linear convolution works. Experimental procedure 1.1 serves 

this propose. The result will be at location 0011 and it will output to port 6 (D/A). The real-time 

signal processing result can be viewed on an oscilloscope connected to port 6 (D/A). Experimental 

procedure 1.3 demonstrates this real-time signal processing. After presenting the result, the program 

goes back to the first loop to get the next input data point. The flowchart of this program is shown 

in Figure 1. 

Since LCONV.LOD (an object file generated by the TMS32010 MSJPC-DOS CrossWare and 

link editor, which will be discussed in Chapter 4) is downloaded with three switches (flags, 

parameters) S, G and B (TI_LOAD program switches will be discussed later in this chapter). 

BUG is the TMS32010 debugger utility supplied with the 320/pc Algorithm Development 

Package (ADP). Because of the unique architectural features of the 320/pc board, BUG can 

perform many functions not normally available in a debugging package. For example, programs 

and data can be loaded and extracted from the dual-port memory, while the TMS32010 is 

executing. There is, however, a problem associated with multiple breakpoints; that is, after a 

breakpoint is reached several times within a program loop, the data-page pointer changes from 0 

to 1. (Usually the second page of data memory contains infrequently accessed system variables, 

such as those used by the interrupt routine). Once the data-page pointer is changed, BUG is no 
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No 

CALL BEGIN 

load iinpulse 
response 10 d ••• 

memory 1XX>9-OO10 

+- BREAK POINT 

Initialize input 
function at data 

memory CXX)1..Q008 

+-- BREAKPOINT 

Read from pO" 6 

+-- BREAKPOINT 

Multiply. Shift. 
add and OUlpUI 

resun 

Figure 1. The flowchart of linear convolution program. 
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longer looking at the same program as before. Near the end of LCO NY .ASM, there is a statement 

LDPK to set the data-memory page pointer register to 0, which is not needed in this program if 

there is no breakpoint set withln the loop. 

The TMS32010 has a 32-bit ALU/accumulator and a 16-bit instruction/data word. A Q15 

format [10] for number representation is assumed for all data and coefficient values. The format 

involves one sign bit plus 15 fractional bits and the absolute value of all represented numbers is less 

than two. It simplifies calculations in a fixed-point machine such as the TMS32010 digital signal 

processor. In other words, all the input data which have been left-shifted for 14 bits must be within 

± 2 in decimal. 

The LCONV.ASM program can also function as an FIR filter if the permanent sequence 

represents the unit pulse response of a filter. In experimental procedure 1.2, students will find the 

unit pulse response of a notch filter and its hexadecimal representation. The hexadecimal value 

will be found from the absolute value discussed above. The unit pulse response of the notch filter 

is loaded into location 0009 through 0010 by using the function key for editing the data memory. 

This experiment shows students how to use an FIR filter for linear convolution. The filtering is 

demonstrated by entering data point by, point at location 0001 and recording the result of equation 

(2-1) from 0011. The characteristic of a notch filter is also demonstrated by using two sinusoidal 

signals with different frequencies as input. One of these frequencies is the notch frequency. In 

experimental procedure 1.3, this notch filter is demonstrated in real-time. 
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2.1 EXPERIMENT I 

The purpose of this experiment is to acquaint the student with some of the software, principles, 

and pitfalls associated with the Algorithm Development Package (ADP). Programs TI_LOAD, 

and BUG are studied. The linear convolution of a finite length unit pulse response with an input 

from a specified data memory location, is implemented and verified. 

2.1.1 Programs in the ADP 

• TI_LOAD: To down-load the unit pulse response program (LCONV.LOD) to the 

TMS32010. 

• PA TCH : To measure the utilization of the TMS320 10 processor in real time, and to install 

TMS320 1 0 program patches, such as for changing the sampling rate. 

• BUG: To start the program in a specific location, in order to demonstrate the linear 

convolution. 

2.1.1.1 TI_LOAD 

The purpose of TI_LOAD is to load the TMS32010 program, which has been assembled and 

linked by the TMS32010 Assembler and Linker, onto the 320jPC board for execution. 

TI_LOAD is the 320jPC utility program, downloading programs and data into the program 

memory of the TMS32010 processor. It can also set the state of the 320jPC processor and the rate 

of the sampling clock. If the program name 'II_LOAD'" is typed without arguments, then the 
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program will type as Figure 2 to remind the user of the fonnat of the command line. The first letter 

of the switch names is used by TI_LOAD. Note that all programs in this manual are under the 

control of the BIO flag. 

To down-load the program, type the following command line: 

TI_LOAD[/S](/GlI/I][/B][/C] INPUTFILE SAMPLING·RA TE 

For example: 

TI_LOAD/S/O/B LCON 8000. (2-2) 

This TI_LOAD command contains switches (Le. IS), and file labels (Le. LeON and 8000). 

1.1.1.1 Program Switches 

IStop (Abbreviation /S as in 2-2). Stop TMS32010 before loading. This is accomplished by 

holding the TMS320 10 processor in a reset condition. 

/Go (Abbreviation /0 as in 2-2). Start TMS32010 after loading. This is accomplished by 

releasing the TMS320 1 0 processor from a reset condition. 

IInterrupt Enable external interrupts (XIN1). This has the effect of closing the XINT switch so 

that the TMS32010 interrupt input (lNT) is connected to the external source. 

IBIO (Abbreviation /B as in 2-2). Enable the external flag (XBIO). This has the effect of 

closing the XBIO switch so that the TMS32010 I/O flag input (BID) is connected to 

the external source. 
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£: z 
~ 
" (") 
o z 
~ o r­
c:: 
~ 
o z 

-w 

320/PC DOWNLOADING UTILITY 

(C) COPYRIGHT 1985: ATlANTA SIGNAL PROCESSORS INC -- VERSION 1.0 

TI_LOAD(/STOP)l/GO)(/INTERRUPT)(/BI01 FILENAME (SAMPLING-RATE) 

STOP: 

GO: 

INTERRUPT: 

BIO: 

FILENAME: 

SAMPLING-RATE: 

Stop (reset) TMS32010 processor before load 

Start (relerase reset) TMS32010 processor after load 

Enable external interrupt (XINT) 

Enable extemall/O flags (XBIO) 

Filename (.LO D) of program to be loaded 

Sampling rate in Hertz 

Figure 2. The fonnat of the TI_LOAD command line. 



IClock Enable interrupts from the programmable clock (XCLK). This has the effect of closing 

the XCLK switch so that the TMS32010 interrupt input (INT) is connected to the 

output of the programmable clock. 

2.1.1.2 File Labels 

INPUTFILE This is the file to be loaded into TMS32010 program memory for execution; if no 

extension is given, the .LOD extension is assumed. 

SAMPLING-RATE A numerical value for the sampling rate in Hertz. The maximwn sampling 

rate is 30 kiloHertz. 

2.1.1.2 BUG 

BUG is a highly interactive debugging tool which allows the user to effectively, and dynamically, 

access all the features of the 320/PC. The debugger features include a line-by-line symbolic 

assembler, an inverse assembler, multiple breakpoints, and a single-step operation feature. The user 

also can directly edit the registers, data memory, and program memory of the TMS32010 processor. 

To execute the program, type BUG. Figure 3 shows the command screen that will appear as 

soon as BUG is initiated. The screen is divided into three sub-screens: command menu, 

command-data area and status line. 

Only eight of the Bug commands are used in this experiment, and these commands are described 

below. 

EDIT REGISTER (Ft): The purpose of the EDIT REGISTER command is to edit an internal 

register of the TMS32010 processor. Since the intent is to change the current TMS32010 register 
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FI EDIT REGISTERS F6 ASSEMBLE SI CHANGE XBIO 
F2 EDIT DATA MEMORY F7 INY ASSEMBLE S2 CHANGE BIO 
F3 EDIT PROGRAM MEMORY F8 LOD IN S3 CHANGE XINT 
F4 EDIT BREAKPOINTS F9 BIN IN S4 CHANGE XCLK 
FS EDIT CLOCK/PROCESSOR FlO BIN OUT SS CHANGE INT 

001 BRKEN RESET XBIO CLR BIO CLR XINTCLR XCLKCLR 

Figure 3. The initial fonn of the command screen . 

S6 GO 
S7 STOP 
S8 RESET 
S9 SINGLE STEP 
SIO EXIT 

INTCLR 



values, this command only operates when the processor is STOPPED or RESET. If this command 

is requested while the processor is RUNNING, an error message will appear. 

EDIT DATA MEMORY (F2): The purpose of the EDIT DATA MEMORY command is to 

display and modify the data memory of the TMS32010 processor. Since the data memory is 

internal to the TMS32010 processor chip, the processor must either be STOPPED or RESET to 

use this command. If the processor is RUNNING when this command is initiated, an error 

message will be displayed. 

The command begins by requesting a data-memory address in hexadecimal. Once that number 

has been entered by the user, a total of 64 data-memory locations is displayed, beginning at the 

specified address. The left- most column of the numbers is the address of the fIrst memory location 

in the row. 

The user modifies the contents of the data-memory location by editing the numbers shown on 

the display. To change an entry, first move the cursor to the number to be changed. The fields 

are changed by the'" Up-Arrow' and "Down-Arrow· keys, while the position within the number 

is changed by the 'Left-Arrow' and "'Right-Arrow'" keys. Once the number has been correctly 

modified, the 'Enter' key must be pressed. (The register value will not change until the 'Enter' 

key has been pressed). 

The user can exit from the EDIT DATA MEMORY command either by exiting from the end 

of the register display or by pressing a function key to initiate another command. 

EDIT BREAKPOINTS (F4): The purpose of the EDIT BREAKPOINTS command is to 

display and modify the list of breakpoints. There can be a maximum of ten breakpoints in the 

program at any time. Since 0000 denotes no breakpoint, a breakpoint is set by entering the desired 

location for a breakpoint,and pressing the Enter key. An example breakpoint is shown in Figure 

4. 
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F I EDIT REGISTERS 
F2 EDIT DATA MEMORY 
F3 EDIT PROGRAM MEMORY 
F4 EDIT BREAKPOINTS 
FS EDIT CLOCK/PROCESSOR 

MODIFY BREAKPOINTS 

BREAKPOINT 1: 0090 
BREAKPOINT 2: OAlO 
BREAKPOINT 3: 0020 
BREAKPOINT 4: 0000 
BREAKPOINT 5: 0000 
BREAKPOINT 6: 0000 
BREAKPOINT 7: 0000 
BREAKPOINT 8: 0000 

F6 ASSEMBLE SI CHANGE XBIO 
F7 INV ASSEMBLE S2 CHANGE BID 
F8 LOD IN S3 CHANGE XINT 
F9 BIN IN S4 CHANGE XCLK 
FlO BIN OUT S5 CHANGE INT 

001 BRKEN RESET XBIOCLR BIO CLR XINTCLR XCLK CLR 

Figure 4. Typical display during EDIT BREAKPOINTS command. 

S6 GO 
S7 STOP 
S8 RESET 
S9 SINGLE STEP 
SIO EXIT 

INTCLR 



GO (S6) (SHIFT F6): The GO command serves to start the TMS32010 processor. If the 

processor is in the STOPPED or RESET state prior to issuance of the GO command, the 

TMS32010 processor is started and goes into the RUNNING condition, the GO command does 

nothing but check for a BROKEN condition caused by a breakpoint. If a breakpoint has occurred, 

the TMS32010 is STOPPED, and the EDIT REGISTER command is entered automatically. 

INV ASSEMBLE (Fi): The INV ASSEMBLE initiates the inverse assembler. After this 

command is initiated, it prompts the user for a starting address in hexadecimal. The starting address 

is preset to the current value of the program counter. Once the starting address is chosen, a total 

of 48 inverse assembled instructions is display in three columns. An example is shown in Figure 

5. 

STOP (S7) (SHIFT Fi): The STOP command tenninates TMS32010 processing. It has no effect 

if the processor is in the RESET mode. If the processor is RUNNING, it is forced into the 

STOPPED mode. 

SINGLE STEP (S9) (SlllFT F9): The SINGLE STEP command is to execute a single 

instruction on the TMS32010 processor. The address of the instruction being executed is found in 

the program counter register. To operate the SINGLE STEP command, the processor must be in 

either the STOPPED or RESET mode. When the SINGLE STEP instruction has been completed, 

BUG automatically executes an EDIT REGISTER command. From this command, the user can 

easily see the results of the single-step operation, change any register, and initiate another SINGLE 

STEP operation. Note that memory locations 0 and 128 are set to zero during the single-step 

operation. 

EXIT (SIO) (SHIFf FlO): The EXIT command terminates BUG and returns control to the 

operating system. 
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FI EDIT REGISTERS F6 ASSEMBLE SI CHANGEXBIO S6 GO tJ!t 

~ F2 EDIT DATA MEMORY F7 INV ASSEMBLE S2 CHANGE BIO S7 STOP 

a F3 EDIT PROGRAM MEMORY F8 LODIN S3 CHANGEXINT S8 RESET 

z F4 EDIT BREAKPOINTS F9 BIN IN S4 CHANGE XCLK S9 SINGLE STEP 
<: FS EDIT CLOCK/PROCESSOR FlO BIN OUT SS CHANGEINT S10 EXIT 
0 
r-
C": 
:f 0000: MPYK 07F8 0010: IN ·+,2 0020: rrm (F8FO) 
0 0001: SACL • + ,7,0 0011: LTA .+ •. 0021: SUB ·+,C,I z 

0002: LAR 0,68 0012: MPYK 07C4 0022: MPYK OAOC 
0003: MPYK IE73 0013: rrm (F303) 0023: LARK 2,75 
0004: rrm (07EC) 0014: MPYK 08CO 0024: ????? (F904) 
0005: SUBS 13 0015: rrm (F031) 0025: MPYK 13AB 
0006: SACH • ... 7 0016: SAR 4,lD 0026: SUB 44,0 
0007: MPYK IlF3 0017: SAR 7,32 0027: rrm (E388) 
0008: LT •• 0018: OUT ·,1,0 0028: rrm (FAAF) 
0009: SACL .+ ··.4,1 0019: MPYK 136A 0029: ADD • + ··,3,1 
OOOA: rrm (OlFC) 00IA: MPYK IEEE oo2A: MPYK OA40 
0008: LARK S,AD 001B: LAR 4,7F 0028: BGEZ 60EF 
oooc: ????? (F7B3) OOIC: rrm (0380) 0020: SAR 6,31 
0000: SUB .+ ··,1,0 0010: ADD ·,C 002E: ????? (DFD6) 
OOOE: MPYK 13DC OOIE: ????? (F38E) oo2F: SACL 72,5 
OOOP: ADDS 57 OOlF: OR 02 0030: BGEZ A41F 

001 BRKEN RESET XBIO CLR BID CLR XINTCLR XCLKCLR INTCLR 

Figure S. Typical display duringlNV ASSEMBLE command. 
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2.1.2 Experimental Procedure 1.1 

1. LCONV.ASM is a TMS320 assembly program for an S-point-length linear convolution. The 

unit pulse response is depicted in Figure 6. Copy LCONV.ASM to EXPI.ASM by typing 

NCOPY LCONV.ASM EXPI.ASMM', 

2. Assemble and link EXPI by typing ~SM3 EXPI;M' and ·LINKER EXPI;*, respectively. 

Print EXPI.LST, a listing ftl.e. Load EXPI.LOD to the 320/PC board with a specified 

sampling rate by using TI_LOAD. 

3. Change the directory to BUG and execute the BUG program, Use INV ASSEMBLE (F7) 

to find the starting location with the aid of the EXPI.LST listing file that you printed. 

4. Use EDIT REGISTER (F1) to set the program counter at the beginning of the linear 

convolution and use SINGLE STEP (S9) to that location. 

5. Set breakpoints at locations 00A9, OOAE, and OOBO. Use the GO (S6) command to run the 

program. Note that the GO (S6) command can be used only after EDIT REGISTER (F1) 

is used. 

6. Check the data memory at locations 0009 through OOOF by using EDIT DATA MEMORY 

(F2) after the break at 00A9. These locations should contain the impulse response. If not, 

restart with the beginning of the linear convolution as the starting position. Note that the 

values of the unit pulse response have been left-shifted 14 bits. 

7. Use GO (S6) to run the program and check data-memory locations 0001 through OOOS by 

using EDIT DATA MEMORY (F2) after the break at OOAE' The data in location 0001 

through 0008 should initialize the input function Xn- 1, Xn-ll ••• , X_I to zero. If not, use GO (S6) 

again starting with location OOA9. 
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o 12345678 n 

Figure 6. The unit pulse response. 
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8. Use GO (86) with starting location OOAE; a break at OOBO should occur. Use EDIT DATA 

MEMORY (F2) to enter the first point of the input function into location 0001. Make sure 

that the input point data is always in location 0001 and Enter one data point at a time. The 

input function is as follows: 

x(n) = 1 

x(n) = 0 

Contents of the data memory must be in hexadecimal. The TM8320 10 has a 32 .. bit 

ALU/accumulator and a 16-bit instruction/data word. Data can only be output from either 

the upper part, the most significant 16 bits, or the lower part, the least significant 16 bits. In 

order to maximize the usage of the 32-bit ALU/accumulator, and to ensure data output from 

the accumulator, the data words have been left shifted 14 bits. The input data and the result 

will be between -2 and 2. For example: decimal 1 can be represented by 4000 in hexadecimal. 

9. Use EDIT REGISTER (Fl) to ensure that the input data are entered, then use GO (S6) to 

run the program. 

10. After the program breaks at OOBO, use EDIT DATA MEMORY (F2) starting at location 

000 I, to check where the previous data are stored, and to enter the second data point into 

location 0001. Record the result Yo from location 0011. Note that the result in location 0011 

may not be the value you "expect"; there is a (computable/lmown) scaling factor. 

11. Repeat step 10 until the last data point is entered and use GO (S6) to get the last result y,_ 

Draw the resulting wave form. Is this what you expect? Explain. 

12. Enter the new input function 

x(n) = 1 
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x(n) = 0 2SnS7 

point-by-point as in steps 7 through 9. Record the result and draw the resulting wave fonn. 

Is it different from the result obtained from the fust input function? What is the significance 

of the present result? 

13. Use EXIT (SI0) to tenninate BUG. 
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2.1.3 Experimental Procedure 1.2 

1. EXPI.ASM can be used as a digital IDter if the fIXed sequence represents a unit pulse response. 

Suppose that we have a notch m.ter with a unit pulse response 

hen) = ben) - 2 cos 8b(n - 1) + b(n - 2), 8 = 45°. 

2. The input function is as follows: 

1 where w = 11' and T =-. 
o 4 

x(n) = sin ; wonT O:S:n:s:12 

3. In order to implement the linear convolution with the unit pulse response hen), both the unit 

pulse response h(n) and the input function x(n) should be converted to hexadecimal form. 

Note that for good results, six digits after the decimal point should be carried. (5 decimal digits 

equal to 16 bits approximately.) 

4. The hexadecimal form can be obtained from either a calculator or computer program. 

a. Under the DOS operating system, type BASICA. Load the TEST.BAS program; list the 

program and run it. Input hen) and x(n) in decimal, and record the result (which must 

be in hexadecimal). 

b. Return to the DOS operating system. 

5. Change the directory to BUG, and execute BUG. 
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6. Find the beginning of the linear convolution as in experimental procedure 1.1, and use 

SINGLE STEP (S9) to start the program in that location. 

7. Use EDIT BREAKPOINTS (F4) to set a break point at location OOBO, and use GO (S6) to 

run the program. 

8. A break should occur at location OOBO. Use EDIT DATA MEMORY (F2) to input the unit 

pulse response in hexadecimal into locations 0009 through 0010, and enter the flrst data point 

of XII into location 0001. 

9. Use GO (S6) to run the program again. A break should occur at location OOBO. Record the 

result from location 0011 and enter the next input data point into location 0001. 

10. Repeat the above step until all input-data points have been entered and the results have been 

recorded. What do you observe from the result? 

11. Set the program counter at the beginning of the linear convolution. Repeat steps 4 through 

II with the following input function: 

x(n) = sin (J)o'lT 

where (J) 0 = 1f and T = !. Explain any difference between the present and the former result. 

12. Use EXIT (SI0) to terminate BUG. 
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2.1.4 Experimental Procedure 1.3 

1. Connect the wavefonn generator to the input of the 320/pc board (lower BNC connector) and 

one channel of an oscilloscope, and connect the output of the 320/pc board (upper BNC 

connector) to the other channel of the oscilloscope. 

2. Use EDLIN or DVED to edit EXPI.ASM. Note that DVED.COM has an on-line manual. 

3. Change the unit pulse response to that for a notch futer. that is, input the coefficients of a 

notch futer into the unit pulse-response section in the EXPI.ASM, and keep the same unit 

pulse-response length as before. Take off the command star (.) in front of the instruction 

NCALL 0 UTA' at the end of the program. 

4. Assemble and link as in experimental procedure 1.1. Down-load to the TMS32010 with 16 

kHz sampling rate. 

5. Tum on both the oscilloscope and the wavefonn generator. 

6. Vary the frequency in the range from 1 to 20 kHz and sketch the magnitude response of the 

filter. Explain. 
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3. NOTCH FILTER DESIGN 

Finite-Impulse-Response (FIR) and Infinite-Impulse-Response (IIR) filters form two classes of 

digital ftIter. The unit pulse response of the FIR filter has nonzero values only for a finite duration. 

Usually, FIR futers are implemented nonrecursively. In contrast with FIR filters, IIR filters are 

always implemented recursively, i.e. with feedback and their impulse responses have nonzero values 

for an infinite duration. 

The characteristics of both FIR and IIR filters can be demonstrated with two different transfer 

functions, each representing a second order filter. 

(3 - 1) 

and 

(3- 2) 

where the pole radius, r, is slightly less than unity. H1(z) and H,;.(z) are system functions of FIR and 

IIR filters, respectively. 
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In the first part of experiment II, students investigate the relationship between the input and 

output of a digital flJ.ter, including the unit pulse response, the system function, and the difference 

equation. Students are required to modify the FIR and/or IIR filter(s) so that the output is closer 

to the desired signal. From the viewpoint of system stability, all the poles of a system function 

must be inside the unit circle in the z-plane, i.e. 0 < r < 1. Students can modify the IIR notch 

filter by simply varying the value of r and comparing the magnitude and phase characteristics. 

When r > I, the system is unstable. In experimental procedure 11.2, this fact is demonstrated. 

DCONV.ASM is a TMS32010 assembly language program which implements the FIR notch 

futer. DCONV.ASM is the same as LCONV.ASM in experiment 11.2, except that data points are 

read from port 7 (PC dual-port memory) instead of from port 6 (A/D). The results will be in an 

individual file which is stored on the hard disk. Real-time filtering can also be demonstrated by 

changing the input data from port 7 to port 6 (A/D). Students are asked to find notch frequencies 

for both the FIR and the IIR futer running in real-time. DIIR.ASM is another TMS32010 

assembly language program which implements the IIR futer. An IIR filter (recursive filter) can be 

described as 

M N 

yen) = L bmX(n - m) - L akY(n - k) (3- 3) 
m=O k=l 

where the b". and ak are constant coefficients. The expression shows that the present output value 

yen) can be computed from the present and M past input values and N past output values. 

DCONV.ASM implements an FIR filter described by 

N 

yen) = L hen - m)x(m) (3 -4) 
m=O 

This expression is the same as the first part of the defmition of an IIR filter. The second part of 

an IIR filter is simply the same as the first part with bk being substituted for at and x(n - k) being 
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substituted for yen - k). and with the index number starting at 1. DIIR.ASM is a modified version 

of DCONV.ASM. 

The second part of the experiment demonstrates how inter-processor (between IBM PC AT and 

TMS32010) communication can be achieved. The heart of the 320/PC board is the dual-port 

memory. The dual port memory can be accessed by both processors simultaneously without 

causing wait states with both processors running. TIlls makes the dual-port memory a uniquely 

powerful structure for debugging real-time TMS32010 implementations as well as an extremely 

flexible medium for inter-processor communication. 

Experimental procedure II.l is about FIR filtering. It shows students how the TMS32010 

processor can implement an FIR filter. and how it can be run in both real-time and as a 

FO RTRAN program. IIR filt~rs with different poles inside or outside the unit circle in the z-plane, 

are demonstrated in experimental procedure II.2. It can be seen on an oscilloscope when the IIR 

notch filter becomes unstable. 
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3.1 EXPERIMENT II 

The purpose of this experiment is for students to work with digital filters, to demonstrate and 

enhance the theory they have learned, and to familiarize them further with programs such as 

TI_LOAD, and BUG, which they have used already during experiment I. 

There are two parts to this experiment. The rust part requires the student to be familiar with 

the IBM PC (or other personal computer). The second part of this experiment requires the student 

to understand the TMS32010 assembly program DCONV.ASM and the FORTRAN program 

TEST.FOR, which are used to demonstrate how inter-processor (between IBM PC AT and 

TMS32010) communications can be achieved. 

From the perspective of the TMS32010 processor, there are two methods which may be used 

for transferring data to and from the host processor. The first method is most appropriate for arrays 

and it uses table-read (TBLR) and table-write (TBLW) operations, done directly to the dual-port 

memory. This method is not used in this experiment. The second method is to use the IN 

instruction to channel 5 or 7 ( in this case, it is channel 7), and the OUT instructions from channel 

4, 5, or 6 ( in this case, it is channel 6). This method is essentially equivalent to operating an 

ordinary I/O channel to the host computer, and it makes the host computer act like a standard I/O 

device (AID converter, D/A converter, etc.) to the TMS32010. The advantage of this method is 

that it uses only IN and OUT instructions, which require but two cycles (400 nsec); and it allows 

for the generation of programs, which can use either the host computer or an actual I/O device as 

a data source. The disadvantage is that it is less flexible than TBLR and TBLW operations for 

arrays, and that it requires close coordination with the host processor for data transfers. 

From the perspective of the host processor, all communication with the TMS320 10 processor 

is performed through the dual-port memory. Thus, all memory operations available on the host 
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processor can be used for communications with the TMS320 1 O. The most efficient one of these 

is the block -move instruction available on the 8086 family of processors. 

DCONV.ASM, shown in Appendix A, is a TMS32010 assembly program that implements an 

8-point-length linear convolution. It reads data from port 7 and writes to port 6 of the TMS320 I O. 

INTER.ASM, listed in Appendix B, is a 8086 assembly program. This program is used to 

communicate with the TMS32010 under flag (BID) control. It transfers the data point from a 

FORTRAN program to port 7 of the TMS32010 and returns the corresponding data from port 6 

of the TMS32010 to the FORTRAN program. 

TEST.FOR, listed in Appendix C, is a FORTRAN program that creates the data to be 

transferred to the TMS32010. The interface is done in a subroutine called OUT320, which contains 

the data to be transferred to the TMS320 1 0 and returns the corresponding sample. 

The entire inter-processor demonstration can be implemented using the COM.BAT file. 

3. NOTCH FILTER DESIGN 30 



3.1.1 Noise Rejection Using Notch Filter 

Suppose that we have a signal 

(3- 5) 

with Wo = n rad/sec and sampling frequency w, = 30n rad/sec. This signal is subject to a 

disturbance 

(3 - 6) 

so that we actually measure XII = Sn + ~, which forms an input to a digital filter 

(3 -7) 

or alternatively to a filter 

(3 - 8) 

where r = 0.95. 

IT filters are designed correctly, the disturbance will be removed and the output ,,, will be a 

"'cleaned·up' version of the signal component in the input. The designed filter H(z) defmes what 

the term "'cleaned-up'" means. 
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3.1.2 Analysis and Design the Notch Filter 

1. Find the unit-pulse response hl,ll and ~,II by taking inverse Z-transforms of H1(z) and H1(z) , 

which are causal filters. 

2. Determine H1(z) and H2(z), that is, find 8 and use it. Plot pole/zero diagrams and sketch the 

frequency response, in order to clarify the significance of 8 . 

3. Write a computer program that implements the futer in a difference-equation form. 

4. Plot H1(w) and H2(W) in tenns of both magnitude and phase. In case that you do not have a 

graphing program, there is one BASIC graphing programs available in the DSP Lab. 

VID.BAS has an on-line manual. It requires the input file to contain two arrays. 

S. Drive the filters with x,,, and plot SIl' XII and Yfl' 

6. Determine the coefficients of the impulse response of the FIR ruter and convert them to 

hexadecimal as in experiment I. (Use either a calculator or the BASIC program TEST.BAS). 

7. Use the following relationship 

(3- 9) 

to determine bm and a/eJ and then convert them to hexadecimal. 
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8. How could you modify H1(z) and/or Hl(z) so that the output y,. is closer to the desired signal 

$11' Give your arguments. Are they based on the magnitude and/or the phase characteristic? 

9. Determine the coefficients of the new unit pulse response of the FIR filter and/or the new blft 

and Q. of the IIR ruter. Convert them to hexadecimal. 

10. Plot the new Hl(W) and/or Hl(W) in tenns of both magnitude and phase. Did you get the 

effects you intended; or additional undesired ones as well? 

11. Drive the new ruters with Xl11 and plot the new YI1' Compare to the results obtained under 5. 

Did things improve or deteriorate? What do you think you lost/gained in its place? 
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3.1.3 Implementation of the Notch Filter 

3.1.3.1 Experimental Procedure 11.1 

1. Copy DCONV.ASM to EXPII.ASM by typing ·COPY DCONY ASM EXPII.ASMN
• 

2. Use EDLIN or DVED to edit EXPII.ASM. Note that DYED.COM has an on-line manual. 

3. Input the coefficients of the unmodified unit pulse response of the FIR fIlter in hexadecimal 

to the unit pulse response section of the EXPII.ASM. Change all the parameters according 

to the order of the filter, that is, change the data-memory address and loop counters in the 

linear-convolution section of EXPII.ASM. 

4. Assemble and link the program by typing AASM3 EXPII;' and "LINKER EXPII;', 

respectively. 

5. Down-load the program with a "proper"" sampling rate. Explain how you determined. What 

is ·proper"? 

6. Copy TEST.FOR to EXPII.FOR as in step 1. 

7. Change the input signal and sampling rate in EXPII.FOR, that is, enter the input function 

x,. = d" + Sn and the sampling frequency. 

8. To run the filter, type COM EXPII. 

9. Plot Xn' Sn and Yn' The data files for plotting are ifuet sfuet and ofile, respectively. Are they 

what you expect? Compare with corresponding results from part I. 
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10. Connect the wavefonn generator to the input of the 320/pc board (lower BNC connector) and 

an oscilloscope, and connect the output of the 320/pc board (upper BNC connector) to the 

other channel of the oscilloscope. 

11. Change DIN from port 7 to port 6 in the beginning of the EXPIIASM. Assemble and link 

the program. Down-load the program with 15 kHz sampling rate. 

12. Vary frequencies from 1 to 20 kHz. Find the actual notch frequency and also sketch the 

magnitude response of the ruter. Does this filter meet the specification? Which are 

satisfied/violated? Why or why not? 

13. Is this filter stable? Give your arguments! 
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3.1.3.2 Experimental Procedure 11.2 

I. Copy DIIR.ASM to EXPII.ASM. 

2. Input the unmodified coefficients of the I1R filter to both ... coefficient Bm section'" and 

II coefficient Am section II in hexadecimal. 

3. Assemble, link and down-load the program. Since this program reads data from port 7, run 

the filter with the FORTRAN program EXPII.FOR. 

4. Plot X,,, SIt and 1", The data fues for plotting are ifue, sfue, and orue, respectively. Are they 

what you expect? Compare with results in part I. Is the output YII the same as that from the 

FIR futer? Explain why or why not? 

5. Input the modified coefficients of the IIR filter to the "'coefficient Am section'" in hexadecimal 

of the EXPII.ASM. 

6. Run the filter, plot XII' SIt and Yn as in step 4. Compare with the results from step 4. 

7. Connect the waveform generator to the input of the 320/pc board (lower BNC connector) and 

an oscilloscope, and connect the output of the 320/pc board (upper BNC connector) to the 

other channel of the oscilloscope. 

8. Change DIN from port 7 to port 6 in the beginning of the EXPII.ASM. Assemble and link 

the program. Down-load the program with a sampling rate of 15 kHz. 

9 . Vary the frequency from 1 to 20 kHz. Find the actual notch frequency and also sketch the 

magnitude response of the filter. Does this ruter meet the specification? Where is it 

violated/satisfied? Why? 
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10. Let r = 1.3. Calculate QA: in equation (3~9) and convert to hexadecimal. 

11. Change to the BUG directory. and execute the BUG program. Find the starting location for 

the calculation of the IIR filter and set the program counter at this location with the aid of 

EXPII.l.ST. 

12. Set the breakpoint at location 0078 and run the program by using GO (S6). 

13. After a break at location 007B. use EDIT DATA MEMORY (F2) to input the new a". in 

hexadecimal from step 10 into locations 0019 to 0020. 

14. Use EDIT REGISTER (Fl) to ensure the input and run the implementation by using GO 

(S6). 

15. Vary the frequency from the waveform generator from 1 to 20 kHz. 

16. What do you observe from the output? Is this filter stable? Explain why or why not? Give 

complete arguments! 
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4. ALIASING 

Aliasing is unavoidable in signal processing where an input signal is not a bandlimited 

continuous signal. In experiment III, aliasing is demonstrated with an input from an external 

waveform generator. The reduction of aliasing with the aid of the Model 3202 analog filter, as 

anti -aliasing ftIter, is also shown. 

The TMS32010 MS/PC-DOS CrossWare, the PATCH program from the Algorithm 

Development Package (ADP), and the Model 3202 solid-state variable filters are introduced. There 

are two unique functions of the PATCH program. It can be used: (a) to measure the utilization 

of the TMS32010 processor in a real-time operation; (b) to change the sampling rate without having 

to down-load the program again; and (c) to twn the algorithm, which has been down-loaded to the 

TMS320 1 0, on or off. These functions are all demonstrated in experimental procedure 111.1. The 

TMS32010 processor is utilized in a real-time operation. The "'theoretically highest'" order of a filter 

that can be implemented in the TMS32010 processor is calculated. The aliasing phenomenon is 

demonstrated in experimental procedure 111.1 by varying the frequency of an input signal generated 

by a waveform generator, and by varying the sampling rate of a sinusoidal signal which has a fixed 

frequency. 
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In order to prevent aliasing, the continuous-time signal must be bandlimited before sampling. 

although real-world signals are not strictly bandlimited. Usually, an analog prefilter is used before 

the analog-to-digital converter. Likewise, the output of a digital-to-analog converter is not 

band-limited. An analog postftlter is used to attenuate high-frequency images corresponding to 

sampled signals. In experimental procedure 111.2, students will gain experience with prefilters and 

postfuters. Also, they will measure the phase response of the designed filter by measuring on an 

oscilloscope the period of the output signal which is from the postftlter (analog filter). The output 

signal of the implemented digital futer is connected to a low-pass filter (postfuter) with an 

attenuation rate of 48 dB per octave. The phase response of the postfilter is given, and therefore, 

the phase response of a Kaiser window design 1inear phase'" FIR is measurable, and thus 

demonstrated. 

4. ALIASING 39 



4.1 EXPERIMENT III 

The purpose of this experiment is to acquaint the student with the use of the TMS320 1 0 

MS/PC-DOS CrossWare and Link Editor; and to become familiar with the PATCH program, from 

the Algorithm Development Package (ADP), and the Model 3202 solid-state, variable-frequency 

electronic ftIter. Aliasing is demonstrated with an input from the external waveform generator. 

Reduction of aliasing is achieved with the aid of the Model 3202 filter. The oscilloscope is used to 

view both input and output of the digital ftlter hardware. 

4.1.1 TMS32010 MS/PC-DOS CrossWare 

To execute the Macro Assembler, enter: 

XASM3 

The command-line parser prompts for the source, listing, and object-file names: 

Source File Enter the source-file name (if the source file does not have an extension, then type the 

file name with an explicit '. '). 

Listing File Enter the output-listing file name. 

Object File Enter the output-object file name. 

MS/PC DOS creates defaults for the listing and object files and/or their extensions. The default 

extensions are: 
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• Source rue .. ASM 

• Listing fue -.LST 

• Object fue ".MPO 

A source .. fue name can be followed by a semicolon, either on the command line or in response 

to a prompt; this will cause the Macro Assembler to generate the default file without displaying 

further prompts. 

Example: 

XASM3 <filename>; 

By using < ftlename > with a default extension .ASM, the Macro Assembler will generate 

defaults for the listing and object files as indicated above. 

XASM3 <filename>, <newname>; 

By using < filename> with a default extension ASM, the Macro Assembler will generate the 

listing file < newname > .LST and the object file < newname > .MPO. 

XASM3 <filename>, <newname> 

By using < ftlename > with a default extension .ASM, the Macro Assembler will generate the 

listing file < newname > .LST and prompt for the object-fue name [6]. 
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4.1.2 Link Editor 

To execute the link editor tenter: 

LINKER 

The command-line parser will prompt for the control-link map, and load-file names. 

Control File Enter the control-fl1e name with an extension ( if the control file does not have an 

extension, then type the fl1e name with an explicit ~. '). 

Map File Enter the link map fl1e name with extension. 

Load File Enter the load-module file name with an extension. 

MS/PC DOS creates defaults for the listing and object files and/or their extensions. The default 

extensions are: 

• Control file ... CTL 

• Linkmap file ... MAP 

• listing file -.LOD 

I A source-file name can be followed bya semicolon, either on the command line or in IeSpOnse 

to a prompt; this will cause the Macro Assembler to generate the default file without displaying 

further prompts. 

Example: 
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LINKER <filename>; 

By using < fllename > with default extension .CTL, the Macro Assembler will generate defaults 

for the link map and load flles as indicated above. 

LINKER <filename>, <newname>; 

By using < fI1ename > with default extension .CTL, the Macro Assembler will generate the link 

map file < newname > .MAP and the load file < newname > .LOD. 

XASM3 <filename>, <newname> 

By using < fllename > with default extension .CTL, the Macro Assembler will generate the link 

map Hie < newname > .MAP and prompt for the load file name. 

The link-control file is an input me that controls the operation of the Ilnk Editor. This file 

contains a set of link-control commands which define the modules to be linked and how they are 

to be linked. The Link Editor links the object modules in the order specified by the linker 

commands. 

The link-control file must be created ahead of time. Entering a pathname instructs the editor 

to look for a file containing the necessary control commands (7]. Since all the control rues have 

been created already t details of how to write a control me are not discussed here. 
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4.1.3 PATCH 

The PA TCH program has two basic purposes. The frrst is to install TMS320 1 0 program patches 

under user control. The second is to measure the utilization of the TMS32010 processor rea1·time 

operating conditions. 

To execute the program, type the following command line: 

PATCH[/S][/G][/I][/BlI/C][/P] PA TCHFILE [SCREEN-MESSAGE) 

For example: 

PATCH/S/G/P LCON.PCH (4-1) 

4.1.3.1 Program Switch 

IStop (Abbreviation IS as in 4-1) stop TMS320 1 0 before the patch is loaded. This is 

accomplished by holding the TMS320 1 0 processor in a reset condition. 

IGo (Abbreviation IG as in 4-1) start TMS320 1 0 after loading. This is accomplished by 

releasing the TMS320 1 0 processor from a reset condition. 

lIn terru pt Enable the external interrupt (XINT). This has the effect of closing the XINT switch 

so that the TMS32010 interrupt input (INT) is connected to the external source. 

IBIO Enable the external flags (XBIO). This has the effect of closing the XBIO switch so 

that the TMS32010 I/O flag input (BIO) is connected to the external source. 
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IClock Enable interrupts from the programmable clock (XCLK). 1ms has the effect of closing 

the XCLK switch so that the TMS32010 interrupt input (INT) is connected to the 

output of the programmable clock. 

IPatch (Abbreviation IP as in 4-1) skip patch-fue name in message. 

4.1.3.2 Patching A Real-time Program 

In order to patch a TMS320 1 0 program, the user must provide a patch file. The patch file is in 

ASCII format and is normally created with a text editor. 

The format of a line in a patch fIle is #Cx.xx:JtXX ... , where # is the number of the patch to which 

the line belongs (1-8), C is a one-letter command, and the rest of the line (x.xxxxx ... ) depends on 

the command . PATCH recognizes four commands: S, L, X, and a hexadecimal number (0 .. 9, 

A-F). 

4.1.3.3 Set Sampling Rate (S) 

The S command sets the sampling rate (in Hertz) of the programmable clock of the 320/PC 

board. In the example below, 

IS8000 (4-2) 

3S16000 

patch 1 sets the sampling clock to 8000 Hertz, and patch 3 sets the sampling clock to 16000 Hertz. 

Patches 2, 4, 5, 6, 7 and 8 (if they exist) do not change the sampling rate in (4-2). 
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4.1.3.4 Patch Message (L) 

The L command is used to associate a screen message with each of the patches. These are the 

messages which are displayed by the name of the function key for each patch. For example: 

lL Sampling Rate = 100 

2L Sampling Rate = 500 

3L Sampling Rate = 1000 

4L Sampling Rate = 2000 

5L Sampling Rate = 4000 

6L Sampling Rate = 8000 

7L Sampling Rate = 16000 

81 Sampling Rate = 30000 

these lead to the display of Figure 7. 

4.1.3.5 External File Input (X) 

The X command is used to input a patch which has been assembled by an assembly program. 

The argument for this command is the name of the file to be loaded. If no extension is given. the 

.LOD extension is assumed. An example of using this extemal file command is shown below 

4. ALIASING 
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ATLANTA SIGNAL PROCESSORS INC. 

0 20 40 60 80 100 

PERCENT TI\IS32010 UTILIZATION 

Fl I SAlV1PLING RATE= 100 I I F21 SAlVIPLING RA TE= SOO 

F31 SAlVtPLING RATE= 1000 I F41 SAMPLING RATE= 2000 

I FSI SAMPLING RATE= 4000 I F61 SMIPLING RATE= 8000 

I F71 SAMPLING RATE= 16000 F81 SAMPLING RATE= 30000 

F9: Toggle Algorithm On/Orf Condition F10: Exit 

Algorithm Active 

Figure 7. Typical example of a PATCH screen. 
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The fue FFT.LOD is loaded into patch number 1 and LCONV.MPO is loaded into patch 

number 2. The file DFT.LOD is added to patch number 1. 

4.1.3.6 Direct Patch (#) 

If the command field is a legal hexadecimal number (0-9, A-F), then the line is a direct patch. 

The form of a direct patch is #XXXXYYYY, where # is the patch number which is from 1 to 8, 

XXXX is a four-digit hexadecimal number for the patch (word) address in the dual-port memory, 

and YYYY is a four digit hexadecimal number for the data to be patched. The direct patch is not 

used in this experiment. 

4.1.3.7 Measuring TMS32010 Efficiency 

One of the most powerlhl features of the 320/PC board is its dual-port memory. Because this 

memory can be simultaneously accessed from both the TMS3201 0 processor and the host 

processor, and because the dual-port memory requires no wait states from either processor, a 

running TMS32010 program can be patched (that is, to change the sampling rate under user control 

through a host processor) and measured in real-time. 

The second function of PATCH is to measure the efficiency of the TMS32010 in real-time 

operation. PATCH computes the percent utilization by sampling the value of location 8 in the 

memory window, and taking averages of the results. The average utilization is displayed on the 

screen in real-time. 

The fmal function of PATCH is to signal the TMS320 10 program to deactivate the algorithm. 

Like the previous function, the TMS320 10 program must be written specifically to utilize this 
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function. PA TCH signals the TMS320 10 processor that an algorithm should be active by placing 

a 1 in location 10 of the TMS32010 assembly program. 

4.1.4 The Model 3202 Filter 

The Model 3202 filter is a solid-state, variable-frequency. electronic filter with cutoff frequencies 

continuously adjustable over a range from 20 Hz to 2 MHz [8]. The pass-band gain is unity (0 dB), 

with an attenuation rate of 24 dB per octave outside the pass-band. The maximum attenuation is 

greater than 80 dB and the output hum and noise are less than 1 00 microVolts. 

The Model 3202 filter can function as either a High-Pass or a Low-Pass Filter. In the High-Pass 

mode of operation, the maximum input signal is 3 Volts rms and the upper 3 dB point occurs at 

approximately 10 MHz. In the Low-Pass mode, the Filter is direct-coupled and the combined AC 

plus DC input signal should not exceed 4.2 Volts peak-to-peak. The Model 3202 Filter can also 

function as either a Band-Reject Filter with cutoff frequency limits from 20 Hz to 2 MHz, or to 

provide a sharp null at any frequency between 40 Hz and 800 kHz when the two channels are 

connected in parallel. When these two filter channels are switched to the same mode of operation 

and connected in series with both dials set to the same cutoff frequency, the Model 3202 Filter will 

function as a High-Pass or Low-Pass Filter with an attenuation rate of 48 dB per octave. If the two 

channels are connected in series, and one channel is operated in the Low- Pass mode and the other 

in the High-Pass mode, the Model 3202 Filter will function as a Band-Pass Filter with an 

attenuation rate of 24 dB per octave outside the pass-band. 

1ms filter has a maximally flat or Butterworth characteristic when the RESPONSE switch(s) 

located on the rear of the chassis, is in the MAX FLAT position. For pulse-type wave-forms, this 

switch should be in the SAMPLE RC position, optimum for transient-free filtering. 
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4.1.4.1 Frequency Dials 

Each channel has a single-decade. frequency dial ( calibrated from 19 to 210) and an associated 

high-pass/low-pass band switch that provides five multiplier ranges for each mode. 

4.1.4.2 Frequency Range 

High-Pass and ww-Pass cutoff frequencies continuously adjustable from 20 Hz to 2 MHz in five 

bands. IT frequency dials is set at 20. and frequency range is set at 100 Hz, the cutoff frequency is 

at 2000 Hz. 

4.1.4.3 Cutoff-Frequency Calibration Accuracy 

The cutoff-frequency calibration accuracy is about ± 5 % for bands one to four. and ± 10 % for 

band five, with Response Switch in Max. Flat (Butterworth) position; less accurate in R-C position. 

Relative to mid-band level, the filter output is down 3 dB at cutoff in Max. Flat position. and 

approximately 13 dB in the R-C position. 

4.1.4.4 Bandwidth 

Low-Pass Mode: Frequency response from DC to the cutoff frequency set within the range from 

20 Hz to 2 MHz. 

High-Pass Mode: Continuously adjustable between 20 Hz and 2MHz with upper 3 dB point at 

approximately 10 MHz. 
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Band-Pass Mode: Continuously variable within cutoff-frequency limits of 20 Hz to 2 MHz. For 

minimum bandwidth, the high-pass and low-pass cutoff frequencies are set equal. This 

produces an insertion loss of 6 dB, with the -3 dB points at 0.8 and 1.25 times the 

midband frequency. 

Band-Pass Mode: Continuously variable within cutoff-frequency limits of 20 Hz and 2 MHz or a 

sharp null at any frequency between 40 Hz and 800 kHz. The low-pass band extends 

to DC. The high-pass band has its upper 3 dB point at approximately 10 MHz. The 

null is sharper than that of a balanced "'parallel T'" fIlter, and is obtained by setting the 

high-pass cutoff at approximately twice the desired null frequency, and the low-pass 

cutoff at approximately one-half the desired null frequency. 

4.1.4.5 Response Characteristics 

Butterworth Each channel exhibits a maximally flat, fourth-order, Butterworth response for a 

optimum perfonnance in the frequency domain. 

Simple RC Fourth order RC response for transient-free time-domain performance. Higher-order 

characteristics may be obtained by cascading individual channels. 

Attenuation slope: Nominal 24 dB per octave per channel in high-pass or low-pass modes. 

Maximum attenuation: Greater than 80 dB. 
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4.1.4.6 Panel Control 

The front panel of the Model 3200 or each channel of the Model 3202 includes a frequency dial, 

a band multiplier/function switch, two BNC coaxial connectors for INPUT and OUTPUT signals, 

and a screwdriver control for the adjustment of the output DC level. A POWER-ON switch and 

an indicator light are used in both models. 

The rear chassis of each channel of the Model 3202 Filter has two switches; one for selecting the 

filter response of either the Butterworth type (Maximal flatness) or simple RC (Transient-free), and 

one for discoIUlecting the signal ground from the chassis ground. 

4.1.4.7 (Jperation 

1. Make appropriate connections to the INPUT and OUTPUT connectors of the futer. The nIlS 

INPUT voltage should not exceed 4.2 Volts peak-to-peak in the Low-Pass mode. The filter 

can sustain a combined AC and DC INPUT voltage of up to 200 Volts peak without causing 

permanent damage. In the event of an overload, the output waveform will appear distorted. 

2. Set the mode of operation and cutoff frequency by means of the band multiplier switch(es) and 

the frequency dial(s). 

3. Turn the power switch to ON. After a sufficient warm-up time, check the output DC level. 

If necessary, adjust DC LEVEL potentiometer(s) for zero Volts on the output(s). 

4. For normal filter operation, the floating/chassis ground switch(s), located on the rear of the 

chassis, should be in the chassis position. If the filter is used in a system where ground loops 

make ungrounded operation essential, this switch(s) should be in the floating position. 
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CAUTION: In FLOATING operation, the signal ground should be connected to system 

ground to prevent excessive hum and noise. 

5. When the ftltering operation consists principally of separating frequency components of a 

signal, the RESPONSE switch(s) located on the rear of the chassis should be in the 

MAX -FLAT position. If the fUter is used to separate pulse-type signals from noise (in the time 

domain), this switch should be in the RC position. 

6. BNC coaxial connectors are provided on the front panel and on the rear of the chassis for both 

INPUT and 0 UTPUT connections. 

High-Pass or Low-Pass operation with 48 dB per octave attenuation 

1. Link together the two channels in series by connecting the output of the left channel to the 

input of the right channel. 

2. Select identical mode of operation and multiplier position for both channels. 

3. Set both dials to the same cutoff frequency. Note that when two channels are in series and set 

to the same mode of operation with an identical cutoff frequency, the gain at the cutoff 

frequency will be down 6 dB from the pass-band gain with the two RESPONSE switches in 

the MAX- FLAT (Butterworth) position. In the simple R -C position, the gain at the cutoff 

frequency will be down approximately 26 dB. 

Band-Pass operation with 24 dB per octave attenuation 

1. Connect the two channels in series. 

2. Set the left channel to the High-Pass mode (this will control the Low-Cutoff frequency). Set 

the right channel to the Low-Pass mode (this will control the High-Cutoff frequency). 

4. ALIASING 53 



Band-Pass operation could also be obtained by setting the left channel to the Low-Pass 

mode and the right channel to the High-Pass mode. This method has the advantage that the 

Low Cutoff Frequency (High-Pass mode) is on the right, which is a logical arrangement since 

it coincides with our customary graphical representation of a Band-Pass futer. This may be 

disadvantageous, since the output is DC-coupled when the Low-Pass channel is on the right. 

If this method is used, the output is AC-coupled, which is desirable in some applications where 

no DC fluctuations on the output can be tolerated. 

3. The minimum Pass-Band is obtained by setting the high cutoff frequency equal to the low 

cutoff frequency. In this condition, the insertion loss is 6 dB, and the -3 dB cutoff frequencies 

occur at 0.8 and 1.25 times the mid-band frequency. 

Band-Reject or Notch filter operation 

1. Arrange together the two channels in parallel by connecting the input signal to the BNC 

INPUT connector of both channels simultaneously. The OUTPUT from both channels 

should be added through two equal external resistors in series with each output. The junction 

of these resistors becomes the output of the futer. It is recommended that the resistors be 

approximately 1,000 Ohms and of the carbon or metal-film type if the filter is used at high 

frequencies. If the two resistors are not equal, the gain on one side of the notch will be 

different than the gain on the other side. The smaller the adding resistors, the greater the loss 

will be through the filter in the Pass-Band region, because of the loading effect of the filter 

output impedance of 50 Ohm. 

2. The first channel should be set for Low-Pass operation. The second channel should be set for 

High -Pass operation. 

3. It should be noted that the output impedance in the band-Reject mode will not be 50 Ohm, 

but approximately one half the resistance of one adding resistor. The maximum input should 
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not exceed 3 Volts nns, and the maximum output voltage in this mode will be I.S Volts nns 

open circuit. 

4.1.4.8 Phase Response 

The phase response of each channel of the Model 3202 filter can be obtained from Figure 4·2 

which gives the nonnalized phase response characteristic for either mode of operation in degrees 

lead (+ ) or lag (-) as a function of ratio of the operating frequency f to the low cutoff frequency 

h (High-Pass mode) or high cutoff frequency fH (Low-Pass mode). The solid curve is for the 

MAXlMALL y FLAT or Butterworth mode, and the dotted curve is for the transient-free or 

simple R-C mode. 

EXAMPLE: 

Detennine the phase shift of the filter in the MAXIMALLY FLAT or Butterworth mode. with 

the function switch set to the High-Pass mode at the X 1 position, and the cutoff frequency (fJ set 

to 100 Hz and an input frequency (j) of 300Hz. 

Since i = i~~ = 3 the output of the filter leads the input by 50 degrees, from Figure 8. 

The phase response of the Model 3202 filter could be obtained in the same manner by taking 

the algebraic sum of the phase response of each channel. 
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Figure 8. Normalized phase characteristics. 
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4.1.5 Experimental Procedure 111.1 

1. Connect the waveform generator to the input of the 320/PC board (lower BNC connector) 

and an oscilloscope, and connect the output of the 320/PC board (upper BNC connector) to 

the other channel of the oscilloscope. 

2. KFIR.ASM is a TMS32010 assembly program. It implements a nonrecursive lowpass filter 

designed by using the Kaiser window method. Its specification is listed in Figure 9. Use 

TMS32010 MS/PC-DOS CrossWare to assemble KFIR.ASM. 

3. KFIR.CTL is a link-control fue which has been written already. Use the linker to produce 

an object fIle with .LOD as the extension. 

4. Down-load KFIR.LOD to the 320/PC board, with a 10 kHz sampling rate. 

S. Measure the utilization of the TMS32010 processor in real-time operation, by using the 

PATCH program. 

6. The TMS32010 executes instructions at a speed of 200 ns per cycle. It takes 2 cycles to 

complete one multiplier and add; and it takes about 25 cycles to read data from the AID, write 

to the D/A and some other functions. If the filter you down-load to the TMS32010 processor 

has an order of 32, what is the 'theoretical' utilization of the TMS32010 processor for a 10 

kHz sampling rate? 

7. How do 5 and 6 compare with the implemented filter? 

8. If the maximum sampling rate is used to sample the input, what is the highest order filter that 

can be implemented with the TMS32010 processor? 
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••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Fl~lITEI:\IPULSE RESPONSE (FIR) 
LI:"mAR·PHASE DIGITAL FILTER DESIG~ 

KAISER· WI=" DOW ALGORITH;\l 

8A~DPASS FILTER 

FILTER LE~GTH - 32 
SA;\tPLI~G FREQUENCY - 10.00 KILOHERTZ 

DESIRED RIPPLE" 26.021 (DB) 
KAISER WINDOW PARAMETER, ALPHA - 2.146 

• •••• !:\fPULSE RESPONSE ..... 

12·BtT QUANTIZED COEFFICIENTS 

H( 1)" .112305E·0 1 ,. H( 32) 
H( 2) == .842285E·02 ... H( 31) 
H{ 3) == ·.610352E·03 ,. H( 30) 
H( 4)" .111084E-01 ,. H( 29) 
H( 5) = .817871E·02 ... H( 28) 
H( 6) = -.325928E·01 .. H( 27) 
H( 7) "" ·.386963E-OI ... H( 26) 
H( 8) - .137939E·Ol - H( 2S) 
H{ 9)'" .269775E-Ol ,. H( 24) 
H( 10)- -.207520E·02 ... H( 23) 
H( 11)= .443115E·Ol - H( 22) 
H( 12)- .913086E·01 - H( 21) 
H( 13)- ·.53833OE-Ol ... H( 20) 
H( 14)- -.230591E-00 - H( 19) 
H( 15)- -.845947E·Ol ,. H( 18) 
H( 16)- .240234E-00 .. H( 17) 

••• CHARACTERISTICS OF DESIGNED FILTER ••• 

BAND 1 BAND 2 

LOWER BAND EDGE .0000 1.5000 
UPPER BAND EDGE 1.0000 2.5000 
NOMINAL GAIN .0000 1.0000 
NOMINAL RIPPLE .0500 .0500 
MAXIMUM RIPPLE .0402 .0402 
RIPPLE IN DB ·27.9258 .3609 

BAND 3 

3.0000 
5.0000 
.0000 
.0500 
.0278 

·31.1267 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Figure 9. Characteristics of designed KFIR filter. 
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9. Vary the frequency of the input signal over the range of 1 kHz to 20 kHz. Record the 3 dB 

cutoff' frequencies from observation with the oscilloscope. Does this filter meet the 

specifications listed in Figure 4·3? Why or why not? 

10. Use PATCH to vary the sampling rate over the range of 100 Hz to 30 kHz. What do you 

expect the output to be? Over what frequency range, does the output not have aliasing 

theoretically and experimentally? How did you detennine this? Give complete arguments. 

11. Use the deactivate algorithm key (F9). What do you expect the output to be and why? What 

is actually happening? 

12. Use the exit key (FlO) to exit from the PATCH program. 
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4.1.6 Experimental Procedure 111.2 

1. Connect the waveform generator to the input of the 320/PC board (lower BNC connector) 

and an oscilloscope, and connect the output of the 320/PC board (upper BNC connector) to 

the other channel of the oscilloscope as in experimental procedure 1.3. 

2. Down·load KFIR.LOD to the TMS32010 board, with a sampling rate of 10 kHz. 

3. Slowly increase the frequency of the input signal until aliasing occurs. Adjust to the lowest 

frequency where the aliased signal has maximwn amplitude. What is the input frequency from 

the waveform generator? What is the output frequency seen from the oscilloscope? Explain 

how they are related to the sampling rate. 

4. Connect the waveform generator to the input of the Model 3202 filter, and the output of 

Model 3202 filter to the oscilloscope. Find the range of Low-Pass filter cutoff frequencies for 

which the designed passband is maintained. 

5. Proceed to connect the output of the Model 3202 ftlter to the input of 320 board. Adjust the 

Low-Pass filter cutoff frequency until the aliasing gain is down by 20 dB. Record the 

Low-Pass filter cutoff frequency. 

6. Connect the Low-Pass filters in series for an attenuation rate of 48 dB per octave to achieve 

an aliasing gain down by 40 dB. 

7. Explain how the Model 3202 filter can function as an anti-aliasing filter. Provide graphs to 

clarify your answer. 
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8. Connect the output of the TMS32010 to the input of the Model 3202 Low-Pass filter with an 

attenuation rate of 48 dB per octave, and connect the output of the Model 3202 to the 

oscilloscope. 

9. The Low-Pass f.U.ter functions as a postfilter to 'smooth out' the output of the TMS32010. 

Sketch the phase response of the KFIR filter. 

a. Set both channel 1 and channel 2 to overlap. 

b. The easiest way to measure the phase response is to vary the frequency until the phase 

shift is a multiple of 9oo. Slowly increase the frequency from the lower band edge until 

the input and output signals are on top of each other, that is, the phase difference is OO. 

c. Record the frequency, which is not read from the waveform generator dial but measured 

from the oscilloscope. 

d. Increase the frequency again until the difference between the input and output increases 

by 9oo and record the frequency. 

e. Repeat (d) until the frequency has increased to the upper band edge. 

Note that the phase response you measured is not the phase response of the KFIR filter. What 

is the relationship between the phase response of the KFIR filter, the postfilter, and the phase 

response you measured? Give arguments! 

10. What do you observe from the phase response of the KFIR filter and which property do you 

expect? Justify your answer. 
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5. FIR AND IIR FILTER DESIGN 

Filtering is one of the most useful and important operations in signal processing. In the context 

of analog signals and systems, the concept of filtering comes about due to the fact that Fourier 

transfonns of the input, X.( (J) ), and of the output, Yb( (J) ), of a linear time-invariant system are related 

as follows: 

(5 - 1) 

where H.(w) is the transfer function of the system. Analog filters can be implemented in a variety 

of ways; but, for many reasons, it may be of interest to filter an analog signal using digital methods. 

A general block diagram. of a system for digital filtering of analog signals is shown in Figure 10. 

There are five basic components: a prefilter, an analog-to-digital (A/D) converter, a numerical 

processor or a digital filter ( e.g., the TMS32010 microcomputer), a digital-to-analog (D/A) 

converter, and a posttilter. It is important to understand the issues that bear upon the use of the 

filter design/implementation package. 

The Digital Filter Design Package (DFDP) allows students to design recursive (IIR), 

Kaiser-Window Nonrecursive (KFIR), Parks-McOellan and Equiripple Nonrecursive (PMFIR) 

filters. The package also generates the TMS32010 assembly code for the designed ft1te~. Once the 
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designed ruter is down-loaded to the TMS32010, the whole system can act as a digital ruter. The 

instructions for use of both the IIR and FIR modules to design a futer are discussed step-by-step 

in experiment IV. Capabilities and limitations of both IIR and FIR ruters are described. Different 

procedures, such as bilinear transformation of Butterworth, Chebyshev and Cauer (elliptic) filters 

can be used to design an IIR ruter. The characteristics of each type of ruter are presented to the 

designer in the following plots of linear magnitude, log magnitude in dB, phase, pole and zero 

location in the z-plane, and unit pulse response. FIR filters using the Kaiser-Window method 

(KFIR), or the Parks-McClellan Equiripple method (PMFIR) can be designed as well. Students 

are asked to compare KFIR and P~fFIR ruters with the help of plots of magnitude, log magnitude, 

unit-sample response and frequency error. 
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5.1 EXPERIMENT IV 

The purpose of this experiment is to acquaint the students with the software, principles, and 

problems associated with the Digital Filter Design Package (DFDP). It allows the student to design 

recursive (IIR), Kaiser-Window Nonrecursive (FIR), and Parks-McClellan Equiripple 

Nonrecursive (FIR) Filters. It also generates TMS32010 assembly code for the designed filter. In 

this experiment, two modules are demonstrated; for IIR, and for FIR designs. Details of the 

execution of these programs are covered in this experiment. 

5.1.1 Programs in the DFDP 

DR To design recursive filters by the method of bilinear transformation of Butterworth, 

Chebyshev 1 or elliptic prototypes. 

KFIR To design nonrecursive filters by the method of windowing using a Kaiser window. 

PMFIR To design optimal nonrecursive filters by the Remez exchange algorithm as developed 

by Parks and McClellan. 

CGEN To generate assembly language programs for the Texas Instruments TMS32010 

microcomputer to implement both recursive and nonrecursive digital filters as designed 

by the above design modules. 

INSTALL This program allows the user to specify where each program module will reside. 

INSTALL writes a file named DFDP.PAR which contains the location of each of the 

program modules, and whether or not there is a graphics printer. In this and all other 

experiments, the INSTALL program has been run. 
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5.1.2 To Execute the Software Package 

After the INSTALL Program has been run, the user may type DFDP to execute the software 

package. The menu will appear on the screen as shown in Figure 11, after carriage return. 

The user may select one of the design modules by entering either I, 2, 3, or 4. Also, each of the 

design modules, HR, KFIR, PMFIR and CGEN, can be executed by simply typing the design 

module name in response to the DOS prompt. For example, C: KFIR (carriage return). This 

may be the most efficient method of operation when the user is only interested in one ftJ.ter type. 
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••• Digital Filter Design Package ••• 

(C) COPYRIGHT, 1984: ATLANTA SIGNAL PROCESSORS INC, VERSION 2.01 

ON: IBM20134 

PROGRAM SELECTION MENU 

ENTER THE NUMBER CORRESPONDING TO THE DESIGN TECHNIQUE DESIRED 

1. RECURSIVE (IIR) FILTER DESIGN 

2. KAISER WINDOW NON RECURSIVE (FIR) FILTER DESIGN 

J. PARKS-McCLELLAN EQUIRIPPLE (FIR) FILTER DESIGN 

4. TMS320 CODE GENERATOR 

S. QUIT 

OPTION DESIRED -

Figure 11. The menu of DFDP. 



5.1.3 Instruction for use of the IIR Design Module 

5.1.3.1 Executing program IIR 

The design module IIR uses the method of bilinear transformation of an analog filter of 

Butterworth, Chebyshev, or Cauer (elliptic) type. 

Once IIR is typed, the program begins with the message shown in Figure 12. 

The note (CT TO CONT) is used in several places in this and all other design modules to prompt 

the user to enter a carriage return to cause the program to proceed to its next step. 

5.1.3.2 IIR Main Menu 

After entering a carriage return, the menu will appear on the screen as shown in Figure 13. 

If a filter is to be designed, the first step is to decide on the type of filter, that is, lowpass, highpass, 

bandpass, or bandstop. 

If READ SAVED FILE action is selected, the program will ask for the name of a file containing 

a filter previously designed by typing 

ENTER FILENAME (IIR.FLT): ELLIPT.FLT 

The file name of a previously saved filter can be entered, or if a carriage return is entered without 

the rtIe name, the program will attempt to read the file which will contain the most recently designed 

filter that was saved. In the example above, it will be 'IIR.FLT'. 
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•• Digital Filter Design Package •• 

IIR BILINEAR TRANSFORM DESIGN PROGRAM 

(C) COPYRIGHT, 1984: ATLANTA SIGNAL PROCESSORS INC., VERSION 1.02 

SN: IBM20134 

THIS FILTER DESIGN PROGRAM DESIGN RECURSIVE DIGITAL 

FILTER FROM BUITERWORTH, CHEBYSHEV, AND ELLIPTIC 

ANALOG PROTOTYES. 

CRTOCONT 

Figure 12. IIR bilinear transfonnation design program. 



••• I1R BILINEAR TRANSFORM MAIN MENU ••• 

ENTER THE NUMBER CORESPONDING TO THE FILTER DESIGNED 

1. LOWPASS 

2. HIGHPASS 

3. BANDPASS 

4. BANDSTOP 

OR TAKE THE FOLLOWING ACTION 

5. READ SAVED FILE 

6. RETURN TO PROGRAM SELECTION MENU 

7. QUIT (RETURN TO DOS) 

OPTION DESIRED = 

Figure 13. IIR bilinear transfonnation main menu. 

s. FIR AND IIR FILTER DESIGN 70 



This option is very useful when it is desired to display the response characteristics of a previously 

designed ftlter, or to quantize the coefficients of a previously designed, but unquantized ftIter. If the 

name of a ftle containing an FIR ftlter is given, an error message will be typed, and no ftIe will be 

read. 

It is possible to return to the main DFDP menu or to the DOS operating system by entering 6 

or 7, respectively. 

5.1.3.3 The Sampling Rate 

All frequencies are assumed to be in kHz. These units are used in labeling subsequent plots of 

response functions. All frequencies are entered in the same units as the sampling frequency. This 

is because of the scaling property of sampling (i.e., n = roT). 

5.1.3.4 The Cutoff Frequencies 

For lowpass or highpass filters, only a single passband or a single stopband frequency is requested. 

In any case, all of the passband and stopband frequencies must be less than one-half of the specified 

sampling frequency. 

5.1.3.5 Lfpprox~on l?rrors 

These errors are referred to as passband ripple and stopband ripple. Note that the gain in the 

passband is always normalized to one, and the magnitude of the frequency response of the designed 

ftIter will vary around one in the passband, and between zero and one in the stopband. Although 

the passband and stopband ripples can be different, the ripple must be the same in the two 
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stopbands. This is also true of the two passbands of a bandstop filter, except in a Parks-McClellan 

design. 

5.1.3.6 Selection of Approximation Type 

The entry of the approximation-error limits completes the specification of the futer. The 

program uses the specified cutoff frequencies and approximation-error limits to compute the filter 

order required to meet the specifications. The design equation for any of the approximation types 

will generally yield a non-integer filter order. If the order were rounded down, the specifications 

would probably not be met. Good ruter orders to work with are the smallest higher, or even bigger, 

integer. 

The Cauer (elliptic) approximation always meets the specifications with the lowest order. The 

Butterworth and Chebyshev filters may have more desirable phase characteristics. The desired 

approximation type can be selected by entering the appropriate number. If results of the order 

calculation are not satisfactory, the user can return to the beginning of the IIR program to enter a 

new set of specifications by entering S. It is possible to return to the DFDP menu or to the DOS 

operating system by entering 6 or 7, respectively. 

If one of the approximation types is selected, the program proceeds to compute the coefficients 

for the futer. While the computation is in progress, no key should be pressed (since that key wiD 

be interpreted as the answer to the next question asked by the program). 

5.1.3.6 Coefficient Quantization 

After the choice of approximation method is made and the futer coefficients have been computed, 

the following question appears: 
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DO YOU WISH TO QUANTIZE COEFFICIENTS FOR THE TMS320 ? (Y OR N) N 

The unquantized coefficients are represented with the full 32-bit floating-point representation 

of the IBM PC. If the user wishes to quantize the coefficients to 16-bits for use in a TMS32010 

program as produced by the design module CGEN or for other flXed point hardware 

implementations, enter Y followed by a carriage return. But quantization can be avoided by simply 

entering a carriage return. Note that no choice is given here for the number of bits of quantization. 

Because of all the issues associated with quantization in a recursive filter, and because of the limited 

scaling capabilities of the TMS32010, it was decided to work with 16-bit quantization. 

5.1.3.7 Verification of the Characteristics of the Designed Filter 

After responding appropriately to the quantization question, the program measures the 

approximation errors of the filter. Since this measurement requires the evaluation of the frequency 

response on a dense set of frequencies, it can require a significant amount of time. A summary of 

the characteristics of the designed filter is then printed on the screen. Note that the program asks 

DO YOU WANT RESULTS SENT TO THE LINE PRINTER? (Y OR N) N 

If Y is entered, all the infonnation concerning the characteristics of the designed filter is printed. 

If the filter specifications are not met (the measured passband or stopband ripple is too large), 

a warning message will appear. 

5.1.3.8 Manipulation and Plotting of Designed Filter 

After the filter has been designed and after the line-printer option has been selected, a message 

will be displayed as shown in Figure 14. 
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ENTER CORRESPONDING NUMBER FOR 

INSTRUCTION DESIRED 

1. AUTOMATICALLY INCREMENT FILTER ORDER 

2. PLOT RESPONSES 

3. DISPLAY FILTER COEFFICIENTS 

4. OUTPUT FILTER COEFFICIENTS 

5. QUANTIZE COEFFICIENTS 

6. RETURN TO IIR BILINEAR TRANSFORM MAIN MENU 

7. RETURN TO PROGRAM SELECTION MENU 

8. QUIT (RETURN TO DOS) 

OPTION DESIRED = 

Figure 14. Manipulation and plotting designed filter. 
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At this point, the user has several options for further manipulation and analysis of the designed 

filter. 

1. Automatic Incrementing of the Filter Order 

When the ruter does not meet specifications due to coefficient rounding, it may only fail 

by a small amount and the design may be acceptable otherwise. By using this option, the filter 

order can be increased systematically after quantization, until the specifications are met. Since 

the filter order is incremented by 1, this option may need to be selected repeatedly. 

2. Plotting of Response Functions 

When the plot response option is selected, a plot menu will be displayed. Entering the 

appropriate selection will cause the program to plot linear magnitude, log-magnitude in dB, 

phase, group delay, pole and zero locations in the z-plane, and unit pulse response, or all of 

the above in sequence. For all the plots except zero location in the z-plane and unit pulse 

response, the program has the following message at the top of the plot: 

DO YOU WANT AN EXPLODED VIEW? (Y OR N) N 

If N is entered, the program returns to the menu to permit another plot selection. If Y is 

entered, the program requests the upper and lower limits of the range of frequencies (in kHz) 

for which the characteristic is desired to be plotted. 'This feature is extremely useful for 

examining the frequency response at the edge of the stopband or passband when the filter does 

not meet specifications. If N is entered, the program returns to the plot menu. 

3. Display of Filter Coefficients 

The heading summarizes the approximation type, and also specifies whether or not the 

coefficients have been quantized. 
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4. Saving Designed Filter on Disk 

It is possible to output the futer coefficients to a disk fue. It is essential to save the filter 

coefficients if the automatic TMS32010 code generator CGEN is to be used. When using 

CGEN, it requests the name of the file in which the coefficients are stored. If no file name is 

given before pressing the enter key, the infonnation is written to the default file I1R.FL T. 

5. Quantization of Filter Coefficients 

If the coefficients were already previously quantized, this request for quantization will have 

no effect. The program proceeds to measure the response characteristic of the quantized filter, 

and then proceeds as if a new quantized design has just been completed. 

6. Tenninating the IIR Design program 

The IIR design can be tenninated in three ways: (a) to return to the beginning of the IIR 

design module to pennit entry of a new set of specifications; (b) to return to the main DFDP 

menu to permit the selection of one of the FIR design modules; or (c) to return to the DOS 

operating system. Options (a), (b) or (c) are implemented by entering 6, 7, or 8, respectively. 

5.1.3.9 Capahilities and Limitations of tlte program IIR 

The program IIR contains numerous checks to insure that the user enters a consistent set of 

specifications. In order to detect all conditions which might cause numerical problems in designing 

the filter, it would be necessary to greatly restrict the flexibility available to the user. The program 

will allow the user to ask for filter specifications that may be impossible to obtain using the 32-bit 

floating-point arithmetic of the PC, or that may be impossible to implement using 16-bit 

fixed-point arithmetic on the TMS320 10. 
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Some factors which may cause difficulties in the design of recursive futers are the following: 

1. Unreasonably low approximation-error specifications. It generally does not make sense to 

specify either passband or stopband approximation errors less than 0.00 I (0.0087 dB passband 

or -60 dB stopband ripple) for unity-gain, frequency-selective filters. 

2. Unreasonably narrow transition regions between passbands and stopbands. Since all 

frequencies are relative to the sampling frequency, a narrow transition region is one which is 

a small fraction of the sampling frequency, A transition region as small as 1 Hz might be 

unreasonably small if the sampling rate is 10kHz, but if the sampling rate were 10Hz, it would 

not be difficult to achieve a 1 Hz transition region. rus holds for unreasonably narrow 

passband or stopband specifications too. 

No computer program promises to perform the impossible; the user must always verify the 

results. The program IIR permits the user to specify filters which cannot be designed by using 

the arithmetic capabilities of the PC. 
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5.1.4 Experimental Procedure IV.l 

1. Design an IIR ftIter with the following specifications: Highpass, cutoff frequency 0.35iDrt 

passband ripple 0.1, transition width 0.5iD" stopband attenuation> 60 dB. Let iD, = 10 kHz. 

2. Use the method of bilinear transfonnation of a Butterworth, Chebyshev, or Cauer (elliptic) 

functions. 

3. Print characteristics for each of the above types of rtIter. Compare the order of each filter. 

4. Plot linear and log-magnitude (in dB), phase, pole and zero location in the z-plane and unit 

pulse response for each type of rtIter. Note that the plots can be obtained by using 

GRAPHICS in response to the DOS operating system. 

5. What do you observe from the plots above? Give a brief description of each type of filter. 
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5.1.5 Instruction For Use of FIR Design Module 

This program is capable of designing nonrecursive or fmite impulse-response digital filters of the 

frequency-selective type, as well as differentiators (FM detection) and Hilbert transformers (SSB 

generation). All ftIters designed by this program are generated to have an exact linear phase 

characteristics. This linear phase corresponds to a time delay through the filter of exactly M/2 

samples. The differentiator and the Hilbert transformer exhibit exactly 90-degree phase shifts in 

addition to a linear phase caused by the delay of M/2 samples. The design is based on the 

windowing approach, using the family of Kaiser windows. 

5.1.5.1 Executing the program KFIR 

The design module KF IR can be executed either by selecting it from the D FD P menu or by 

typing KFIR in response to the DOS operating system. Once this has been done, a similar message 

will appear on the screen as in the program HR. 

5.1.5.2 KFIR Main Menu 

After entering a carriage return while the previous screen is displaying, the menu will appear on 

the screen as shown in Figure 15. 

As can be seen, the user can select the type of filter, that is, lowpass, highpass, bandpass, 

bandstop, multiband, differentiator, Hilbert transformer and pulse-shaping filter (lowpass filters 

with raised cosine responses). Since multiband, differentiator, Hilbert transformer, and pulse 

shaping filters are not used in the experiments in the DSP Teaching Laboratory, they are not 

discussed here. Other options are the same as in the program IIR discussed before. 
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••• KAISER-WINDOW MAIN MENU ••• 

ENTER THE NUMBER CORESPONDING TO THE FILTER DESIGNED 

1. LOWPASS 

2. HIGHPASS 

3. BANDPASS 

4. BANDSTOP 

5. MULTIBAND 

6. DIFFERENTIA TOR 

7. HILBERT SHAPING FILTER 

OR TAKE THE FOLLOWING ACTION 

8. READ SAVED FILE 

9. RETURN TO PROGRAM SELECTION MENU 

10. QUIT (RETURN TO DOS) 

OPTION DESIRED = 

Figure 15. Kaiser-window main menu. 
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5.1.5.3 Specification of Filter Parameters 

The sampling rate, cutoff frequencies, and approximation errors are specified; the program 

computes an estimate of the required length of the unit pulse response of the fllter. The inherent 

linear phase of the ftIters imposes the constraint that the magnitude of the frequency response of a 

frequency-selective filter be zero at half the sampling frequency when the filter length is even. 

Problem 5-5 in [1]. Therefore, only odd lengths should be used when designing full-band highpass 

or bandstop futers. 

5.1.5.4 Coefficient Quantization 

The coefficient quantization is the same as in program HR. 

5.1.5.5 Verification of Characteristics of Designed Filter 

After the coefficients have been quantified, the program evaluates the frequency response on a 

dense grid and at the specified band edges. After that, the approximation errors are measured, and 

a summary of the desired and measured frequency response characteristics is displayed on the screen 

as in the IIR program. A warning message will appear when specifications are not met. 

5.1.5.6 Manipulation and Plotting of the Designed Filter 

1. Changing Filter Length 

This option is the same as changing the filter length in the program IIR. It can also be used 
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to fmd the smallest-length filter that will meet the specifications when the length predicted by 

the design fonnula is higher than necessary. 

2. Plotting of Response Functions 

The plot menu contains options as follows: linear magnitude, log-magnitude, unit sample 

response, and frequency error. Note that since the filter always has a precisely piecewise linear 

phase, there is no need for plots of phase or group delay. 

The procedure of using this plot menu and the other option, such as display of filter 

coefficients and saving designed coefficients, are discussed in detail under the IIR in the 

previous section. 

5.1.5.7 Capahilities and Limitations of KFIR 

The program KFIR contains numerous checks to insure that specifications are entered 

consistently by the user. In order to detect all conditions which might cause numerical problems 

in designing the filter, it would be necessary to greatly restrict the flexibility available to the user. 

Factors which may cause difficulties in the design of nonrecursive filters are the same as in the 

program HR. Note that the instructions for use of the PMFIR design module are very similar to 

those for the KFIR design module. 
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5.1.6 Experimental Procedure IV.2 

1. Design a KFIR filter with the same specifications as those for the IIR ftlter. 

2. Print ftlter coefficients and plot linear magnitude, log-magnitude, unit sample response and 

frequency error. 

3. What are the differences and similarities between IIR and KFIR filters? Explain! 
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5.1.7 Experimental Procedure IV.3 

1. Design a PMFIR ftIter with the same specifications as those for the IIR filter. 

2. The instructions for using the PMFIR module are the same as those for the KFIR module. 

3. Print ftIter coefficients and plot linear magnitude, log-magnitude, unit sample response and 

frequency error. 

4. Compare KFIR and PMFIR ftlters. 
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6. FAST FOURIER TRANSFORM 

The Fourier transform has been a principal analytical tool in such diverse fields as linear systems, 

optics, probability theory, quantum physics, antennas, and signal analysis. Historically, as use of 

computers increased, the overlap in the realms of applications of discrete- and continuous-time 

techniques grew t and this provided a natural connection between the two methodologies that 

heretofore had developed essentially independently. Analysis of many discrete-time systems 

requires the calculation of Fourier transforms, which traditionally presented a prohibitive 

computational burden. Nevertheless, the possibilities that were opened up by the digital computer 

were sufficiently tempting that active work began on the investigation of digital voice encoders, 

digital spectrum analyzers, and other all-digital systems, with the hope that eventually such systems 

would be practical. The Fast Fourier Transform (FFT) is an algorithm that proved to be perfectly 

suited for efficient digital implementation, as it reduced the computation time for discrete Fourier 

transforms by orders of magnitude. With this tool many interesting but previously impractical ideas 

suddenly became practical, and the development of discrete-time signal and system analysis 

techniques moved forward at an accelerated pace. 

In experiment V, the FFT of a sinusoidal signal, obtained from a signal generator, is evaluated 

and displayed. The basic radix-2 Cooley-Tukey decimation-in-frequency FFT algorithm [9] is 
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implemented in both FORTRAN and the TMS32010 assembly language. The Discrete Fourier 

Transfonn (DFT) is defmed as 

N-l 

X(n) = LXo(k)~k (6 - I) 
k=O 

where W = e-j2./N and n = 0,1, ... N - 1. For N = 4, k and n can be represent as 2·bit binary 

numbers. 

n=O,1,2,3 or n=(nl,no)=OO,Ol,lO,ll 

A compact method of writing k and n is: 

Using the representation (2) and (3); for N = 4, (1) can be rewritten as 

The basis of the FFT algorithm is shown as following: 
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The basic radix-2 Cooly-Tukey FFT algorithm 

N-l 

X(n) = Lxo(k)wn
k 

k=o 

1 

x2(no' nt) = L Xl (no' ko) U;<2n
l + flo)ko 

ko=O 

Equations (6-6) and (6-7) can be illustrated graphically as shown in Fig. 16. 

(6- 6) 

(6-7) 

In experimental procedure V.I, students are asked to compare the results from both the 

FORTRAN program and the TMS32010 processor. Due to the different word lengths used by the 

FORTRAN program and the TMS32010 processor the results may differ somewhat. The results 

for the phase responses deviate from each other to a greater extent than those for the magnitudes, 

because phase determination is more sensitive to word length. The Fourier Transform of a cosine 

waveform, with and without a truncation interval equal to a multiple of its period, is demonstrated 

in experimental procedure V.2. The use of zero padding to obtain more frequency interpolation is 

demonstrated in experimental procedure V.3. Finally, the magnitude and phase of the FFT of an 

input signal, obtained from the AID, is displayed on the screen. The laboratory station now serves 

as a spectrum analyzer. 
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6.1 EXPERIMENT V 

The purpose of this experiment is to acquaint the student with the use of the Algorithm 

Development Package (ADP) subprograms, such as HEAR and TI_LOAD, the TMS32010 

MS/PC·DOS CrossWare, and the link editor. The Fast Fourier Transform (FFT) of an input 

signal, which is generated by a FORTRAN program or measured through the Analog-to-Digital 

(A/D) converter, is demonstrated. 

The basic radix-2 Cooley-Tukey decimation-in-frequency FFT algorithm is implemented in 

both FORTRAN and the TMS32010 assembly language. Both programs are very similar. The 

complex input data resides in arrays X and Y, and the DFT is calculated in place. In other words, 

the output is written back into the X and Y arrays over the input data, which are destroyed. 

In the TMS32010 implementation of a single butterfly radix-2 Cooley·Tukey FFT, all data are 

in an external data memory (1/0, i.e., an address is initially set to a data-instruction address counter 

and then the data word read from or written to the memory). Because the real and imaginary parts 

of the complex input data are in sequential locations, not in separate arrays, data index I has a value 

twice that in the corresponding FORTRAN routine. 

A TMS32010 normally supports eight input instructions (IN to channels 0-7), and eight output 

instructions as well. One of the most useful I/O instructions is IN XX,PA 7 that inputs data from 

dual-port memory location 007 and clears the SINT and SBIO flags. In the FFT.ASM program, 

there is no checking for the SBIO flag to start the program. When FFT.LOD resides in the 

TMS32010 with only two switches, ·S" and ·G·, the program will stop after the IN instruction, and 

wait for BFFT.FOR (listed in Appendix D) to interface with it. After the 128 point FFT is 

completed, the TMS320 1 0 processor will stop. 
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6.1.1 HEAR 

Program HEAR samples an analog signal, stores the samples in a circular buffer in PC memory, 

and writes the data to a disk m.e [5]. 

The program is executed by typing the following: 

HEAR[/D][/N][/AUOUTPUTFILE/O][INPUTFILE/I][#/S][Text/Mj 

6.1.1.1 Program Switches 

/DELETE-OUTPUT Delete output file if it already exists. 

/NO-LOAD Do not load TMS32010 sampling program (CIRCLE.LOD) 

JASSUME-DEFAULT Use program defaults (8000 Hz sample rate and no message). 

6.1.1.2 File and Parameter Labels 

JOUTPUT Output file name. 

/INPUT Input file name. 

ISAMPLING-RATE Sampling rate in Hertz (less than 24000) 

/LIMIT Limit on the number of blocks used, each with 2048 samples. 

JMESSAGE Text of message to be included in the file header. 
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IREPEAT Repeat count for playback (default is infmite). 

IPROCESSOR Processor number (for multiprocessor configuration). 

HEAR has three modes of operation which are referred to as the initializing mode, the A-to-D 

mode. and the D-to-A mode. In the initializing mode, the user specifies any parameters not 

specified by the common line information. In the A-to-D mode, the program takes samples from 

the AID converter and writes them into a circular buffer I i.e. when the end of the buffer is reached, 

the pointer returns to the beginning of the buffer. In the D-to-A mode, the contents of the circular 

buffer is read out sequentially to the D/A converter. If the command line information is not 

sufficient to completely specify the operation of the A-to-D stage of the program, then the program 

Enters the initializing stage as displayed in Figure 17. 

Note that when the initializing mode is ftrst Entered, the values specified for the output ftle, 

input ftle, sampling rate, and the message for the ftle header, will be displayed in the appropriate 

space. These values (output ftle name, input ftle name, sampling rate and message) can be accepted 

by pressing the Enter key. To change the ftle name, simply type the new name followed by the 

Enter key. The default value for the sampling rate is 8000 Hz. The maximum number of characters 

for the message is 32. 

After the text is Entered, the program proceeds to either the A-to-D mode or the D-to-A mode. 

If an input fue was specified, HEAR Enters the D-to-A mode. Otherwise, Hear Enters the A-to-D 

mode. When all the information is desired, press the Enter key to past the 'Message' line, and the 

program will proceed to the appropriate mode. 
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(C) COPYRIGHT 1985: ATLANTA SIGNAL PROCESSORS INC -- VERSION 1.01 
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Sampling Rate(Hertz): 008000 
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[#3/SAMPING-RATEJ (#4/LIMIT) 

DELETE-OUTPUT: 
NO-LOAD: 

ASSUME-DEFAULT: 
OUTPUT: 

INPUT: 
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PROCESSOR: 
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Delete output file if it already exists 
Do not load TMS32010 sampling program (CIRCLE.LOD) 
Use defaults (Rate= 8000 Hertz and no message) 
Output file name 
Input file name 
Sampling rate (less than 24000 Hertz) 
Limit on number of 2048 sample block used 
Message for output file header 
Repeat for playback (default is infinite) 
Processor number for multiprocessor configurations 

Figure 17. Screen display in initializing stage. 



6.1.1.3 A-to-D Mode - Setting Input Signal Levels 

When HEAR enters the A-toaD mode, a display will appear as in Figure 18. The horizontal 

bars in the top half of the display are "'meters· that display the periodically updated peak signal level, 

energy, and position in the circular buffer. If an active signal source is connected to the AID 

terminal of the ASPI 320/PC board, the solid horizontal bars in the upper two meters show the 

instantaneous value of peak signal level and energy in dB. The small vertical bar in the third meter 

shows the position of the circular buffer pointer at that time. The bars will be continuously moving 

in actual operation. 

The Peak Signal Level meter measures in bits. In order to get the AID converter accurate, it is 

necessary to adjust the gain on the signal source until the Peak. Signal Level exceeds 10 bits while 

not exceeding 11. 

The energy meter displays the rms value of the signal in dB. The averaging is over 1024 samples, 

and the display is up-dated every 1024 samples. 

6.1.1.4 A-to-D Mode - Capturing A Signal 

There are two ways to use the circular buffer of HEAR to capture a signal. Pressing the F 1 key 

when HEAR is in the A-to-D mode, causes the buffer to be filled exactly once followed by a shift 

to the D-to-A mode. Thus, the signal that occurs after pressing Fl is digitized and stored in the 

buffer. The amount of signal that is captured depends on the length of the buffer. 

Pressing F2 terminates the filling of the buffer immediately, so that the signal that occurred prior 

to pressing F2 is captured. 
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Figure 18. Screen display during the A-to-D stage. 



The length of the circular buffer is automatically set by HEAR to use all the memory space not 

used by the program itself. The third meter shows the buffer limits. It is calibrated in blocks ( one 

block is 2048 samples). The entry in the bottom line shows the file name to be written, the 

sampling rate, and the buffer size in blocks and in seconds. The latter value is simply 2048 times 

the number of blocks in the buffer, divided by the sampling rate in samples/sec. 

6.1.1.5 D-to-A Mode 

If an input file is specified in the initializing mode, the program Enters the D-to-A mode. In this 

mode, the captured signal can be played back repeatedly to determine if it is acceptable. 

The captured signal is repeatedly played back to the D/A converter. The function keys FI-F4 

can be used to move the playback limits to the left or to the right. Pressing once causes this limit 

to move one block of 2048 samples. 

Pressing F5 causes the program to leave the D-to-A mode and to return to DOS without writing 

the captured data to the specified disk file. 

Pressing F6 causes the program to write the captured data, delimited by the playback limit 

marks, into the specified disk file. 

Pressing F7 causes the program to exit the D-to-A mode and to return to the A-to-D mode. 

This can be used when the signal segment captured was not satisfactory and the user wishes to go 

back and try again to capture a suitable result to save in the specified output file. 
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6.1.2 Experimental Procedure V.l 

1. Copy AFFT.FOR and BFFT.FOR to AEXPV.FOR and BEXPV,FOR. 

2. Down·load FFT.LOD to the TMS32010 with two switches, 'Stop' and 'Go', 

3. Use Microsoft FORTRAN to compile, and link to execute AEXPV.FOR. 

4. Use VID.BAS to plot the input signal, and the magnitude and phase of the FFT of the input 

signal. 

5. Run BEXPV.FOR by typing "COM BEXPV .... 

6. Use VID.BAS to plot the input signal, and the magnitude and phase of the FFT of the input 

signal. 

7. Compare the two sets of plots and explain similarities and differences. 
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6.1.3 Experimental Procedure V.2 

1. Suppose we have an input signal 

j( t) = cos(2nfot) 

where 10 = ~, with sampling period T = 1.0 and N = 128 samples. Note that if the truncation 

interval is chosen equal to a multiple of the period, the frequency domain sampling function 

(i.e. H(j) = ~ 111: t5(f - ~ » is coincident with the zeros of the sin(j}/ffunction. As a result, 

the side·lobe characteristics of the sin(/)/ffunction do not alter the discrete Fourier Transform. 

results [9]. 

2. Change the input signal in BEXPV.FOR to j(t) = cos(2nJ.t) . 

3. Plotj(t), and the magnitude and phase of its FFT. 

4. Suppose that there is another signal!.(t) with!. = 36.~72' Run the implementation again. 

5. Plot .h (t), and the magnitude and phase of its FFT. 

6. Compare the two magnitude responses. Is it what you expect? Why or why not? 

7. What do you suggest to improve the situation? Provide graphs to show that, and indicate what 

supports your arguments. 
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6.1.4 Experimental Procedure V.3 

1. F16T.ASM performs a 16 point FFT. Down-load F16T.LOD to the TMS32010 as you did 

in experimental procedure II. L 

2. Let f{ t) = cos(2nJ; t) + cos(2n};t) where J; = ! and h = !, with N = 16 samples and T = 1.0. 

3. CFFT.FOR is a FORTRAN program which will communicate with F16T.ASM. It is the 

same as BFFT.FOR, except that it is for a 16-point input signal. Copy CFFT.FOR to 

CEXPV.FOR. Input the above function to CFFT.FOR and run the implementation. 

4. Plot the magnitude of the 16-point FFT of the input signal. 

5. Down-load FFT.LOD to the TMS32010. 

6. Input the above function with zero padding of 112 points. 

7. Run the implementation. Plot the magnitude of the 128 point FFT of the input signal. 

8. Compare with the result from step 4. Explain if, and why, the two plots are the same; and in 

which way. 
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6.1.5 Experimental Procedure V.4 

1. Connect the signal generator to the Analog-to· Digital (A/D) converter and set the frequency 

at 1000Hz. 

2. Use HEAR to capture the signal from the AID converter, by using the default sampling 

frequency. Note that every block represents 2048 bits, and try to make the signal file as small 

as possible. 

3. The signal file which has been generated with HEAR is in machine code and the first 128 bytes 

are used for heading, which indicates the sampling rate, the name of the file and so on. The 

data of the signal file is stored after the heading. APPEND.PAS strips off the first 128 bytes 

from a signal fue which has been generated with HEAR. Upon running the program the 

student is prompted to either (1) strip off a header or (2) append a file header. Both options 

prompt the student for an input and output file name. In this experiment, the first option is 

used, and the output file name must be OUT4.DAT. To strip off the heading, type 'append" 

with option 1. 

4. Link the FORTRAN program and plotting subroutine, and execute the program by typing: 

go expv4. 

S. The plot of the input signal will be displayed on the screen, and the magnitude and phase of 

the FFT of that input signal will be displayed upon hitting the Enter key. 

6. Use the printScreen key to plot these three waveforms. 

7. Is it what you expected? Why or why not? 
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8. Use zero padding of 64 points and 96 points to increase frequency interpolation. Plot input 

signal, magnitude and phase. Compare the three sets of wavefonns. 

9. After fInishing all of the above, please delete the signal file OVT4.DAT. 

6. FAST FOURIER TRANSFORM 100 



7. DIGITAL FILTER DESIGN 

In the previous chapters and experiments, the use of software associated with the Algorithm 

Development Package (ADP), the TMS32010 MSjPC-DOS CrossWare and the Link Editor, the 

Model 3202 solid-state, variable-frequency filters, and the Digital Filter Design Package (DFDP) 

have been introduced and discussed. In experiment VI, students are given an opportunity to design 

some digital filters based on the knowledge and experience they have gained in class, and from 

previous experiments. 

In experimental procedure VI. I , students will design four different types of IIR filter by using 

the bilinear transformation of analog Butterworth, Chebyshev I, Chebyshev II, and elliptic designs. 

The results are supported by graphs from DFDP. In experimental procedure VI.2, FIR filters are 

designed by using the Kaiser window method and the Parks-McOellan method. If the specification 

of the . filter allows ± 10 % of error in both stopband and passband, the number of bits for 

quantization can be determined by choosing the number of quantization bits in the DFDP. The 

differences between the Kaiser window method and the Parks-McClellan method are demonstrated, 

and students are asked to draw conclusions there from. At the end, students are asked to design 

the smallest order FIR and IIR filters for given specifications, both with 12 bits of quantization, 

and to write them to an output file. The output file is used to generate the TMS32010 assembly 

code by using CGEN, which is another module in DFDP. The programs are assembled, linked 
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and loaded to the TMS320 1 0 processor. A system for running both filters in real-time is designed. 

In order to improve the aliasing and imaging attenuation by 20 dB, the Model 3202 

variable-frequency, electronic fitter is used. Students will have an opportunity to design and then 

implement this system, for real-time operation and verification. 
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7.1 EXPERIMENT VI 

The purpose of this experiment is to give the student an opportunity to design some digital 

filters with the use of all the software associated with the Algorithm Development Package (ADP), 

the Digital Filter Design Package (DFDP), the TMS32010 MS/PC·DOS CrossWare, and the Link 

Editor, and the Model 3202 solid-state variable-frequency, electronic futers. 

7.1.1 Filter Specification 

Lowpass, cutoff frequency = 0.25 W" passband ripple = 0.0 I, transition width = 0.05 £0" stopband 

attenuation;::: 60 dB. £0, = 1 kHz. 
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7.1.2 Experimental Procedure VI.1 

1. Design IIR futers that satisfy the specifications above and in addition have respectively the 

following characteristics: 

a. The magnitude response is a smooth function of frequency. The filter has N zeros at 

Z= - 1 (CD = n/n, where N is the order of the denominator. 

b. The magnitude response exhibits equiripple behavior in the passband and decreases 

monotonically to zero in the stopband. The filter has N zeros at z = - 1. 

c. The magnitude response exhibits equiripple behavior in the passband and monotone 

decreasing behavior in the stopband. The filter has N poles and N zeros, with the zeros 

being positioned on the unit circle. 

d. The magnitude response exhibits equiripple approximations in both passband and 

stopband. The filter has N poles and N zeros, with the zeros being placed on the unit 

circle. 

2. Define each filter type, and plot the magnitude and phase response of each filter. 

3. Provide graphs to support your answers, by indicating where the specifications are met. 
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7.1.3 Experimental Procedure VI.2 

1. Design FIR m.ters that satisfy the specifications above using the Kaiser window method and 

the Parks-McClellan method. 

2. Plot the magnitude and phase response of the filters. 

3. How many bits do you need for quantized coefficients in order to satisfy the specification to 

within errors of:l: 10 %? Provide graphs to support your answer. 

4. What is the difference between the Kaiser window method and the Parks-McClellan Method? 

Explain why. 
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7.1.4 Experimental Procedure VI.3 

1. Choose the smallest order IIR filter and FIR filter that you designed in VI.l and VI.2. 

Quantize the coefficients to 12 bits for both filters. 

2. Use CGEN to generate the TMS32010 assembly language program to implement the above 

digital filters. 

3. Connect the waveform generator, oscilloscope, and TMS32010 board as in Experiment III. 

Use the Model 3202 electronic filter as needed. 

4. Assemble, link, and down· load the programs. 

5. Plot the magnitude and phase response of each filter from observations with the oscilloscope. 

6. Suppose that we want to improve the stopband attenuation by 20 dB without changing the 

order of the filters. Design and implement the system. 

7. What are the cutoff frequencies of the Model 3201 filter, for the IIR filter, and for the FIR 

filter? Do the deservations from the oscilloscope comborate the specification? Plot the 

magnitude response of each filter to support your answer. 
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Appendix A. Program Source Code List 

Linear cOllvolution 

)I 
)I 

)( 

)( 

)( 

)I 

XNEW 
DOUT 
DIN 
X 
H 
YOUT 
ONE 
• 

IDT 'LCONV' 

A general routine for a length-N linear convlution. 
For this particular implementation, n = 8. 

EQU 1 
EQU 6 
EQU 7 
EQU 8 
EQU 16 
EQU 17 
EQU 18 

)( NEWEST INPUT SAMPLE 
• OUTPUT TO PORT 6 (D/A) 
)( INPUT FROM PORT 7 (A/D) 
• END OF DATA POINTS X (N) 
• END OF IMPULSE RESPONSE SEQUENCE 
• OUTPUT LOCATION (2N+1) 
)( CONTAINS THE VALUE 1 (2N+2) 

(2M) 

AORG 0 )( BRANCH TO THE BEGINNING OF THE PROGRAM 
B LAST 

• • IMPULSE RESPONE TERMS. 
)( 

AORG SO 
HI DATA >4000 
H2 DATA >AAS8 
H3 DATA >4000 
H4 DATA >0000 
HS DATA >0000 
H6 DATA >0000 
H7 DATA >0000 
H8 DATA >0000 
)( 

)( MAIN PROGRAM 
• AORG 100 
LAST BIOZ GET )( CHECK FOR BIO FLAG SET 

B LAST )( IF BID IS NOT SET, CONTINUE TO HAlT 
)( 

)( 

)( 

)( 

GET 

BEGIN OF LINEAR CONVOLUTION 

LDPK 0 
LACK 1 
SACL ONE )( ONE = 1 
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LARK ARO,H 
LARK ARl,7 
LACK HI 

LOADH LARP ARO 
TBLR .-,ARl 
SUB ONE 
BANl LOADH 

LARK ARl,X 
lAC 

LOADX SACL. 
BANZ LOADX 

If 
TEST BIOl PUT 

B TEST 

• ARO ADDRESSES DATA LOCATIONS 
If ARl IS USED AS A LOOP COUNTER 

• LOAD THE IMPULSE RESPONSE 

• ARl USED TO ADDRESS DARA AND AS A COUNTER 

If INITIALIZE FILTER 

PUT OUT YOUT,DOUT 
LARP ARO 

If 

If 

IN XNEW,DIN. GET NEXT INPUT SAMPLE 

LARK ARO,X 
LARK ARl,H 

lAC 
LT .-,ARl 
MPY .-,ARO 

• ARO POINTS TO THE INPUT SEQUENCE 
• ARl POINTS TO THE IMPULSE RESPONSE 

LOOP LTD .,AR! • LOAD INPUT SEQUENCE, ACCMULATE RESULT 
)( MULTIPLY IMPULSE RESPONSE 

• 
• 

MPY .-,ARO 
BANl LOOP )( LOOP N TIMES 

APAC )( ACCUMULATE LAST MUTIPLY 
SACH YOUT,l • ACCJEZ-l=DMA 

B TEST )( GET THE NEXT INPUT SAMPLE 
END 
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Appendix B. Program Source Code List 

Exchallge data hetJveen PC and tile TMS32010 
J 
; 
; 
; 
; 
; 
; 
; 
DATA 
DATA 
DGROUP 
CODE 

; 
PUBLIC 
OUT320 

; 
110320. 
LP1: 

; 
EXIT~ 

; 

THIS PROGRAM IS TO COMMUNICATE WITH TMS32010 
PROCESSOR UNDER (BIO) CONTROL. AX CONTAINS 
THE DATA RECEIVEC FROM THE TMS32010 BX CONTAINS 
THE DATA TO BE TRANSMITTED TO THE TMS32010 AND 
ES THE SEGMENT POINTER TO 320/PC MEMORY WINDOW. 
THE CORRESPONDINE ON THE HOST PROCESSOR IS 
GIVEN IN THE FORM OF SUBROUTINE CALL OUT320. 

SEGMENT PUBLIC 'DATA' 
ENDS 
GROUP DATA 
SEGMENT 'CODE' 
ASSUME CS:CODE,DS.DGROUP, SS.DGROUP 

OUT320 
PROC 
PUSH 
MOV 
PUSH 
PUSH 
lES 
MOV 
MOV 

MOV 
MOV 

MOV 
TEST 
JZ 
MOV 
MOV 
PUSH 
MOV 
MOV 
POP 

POP 
POP 
MOV 
POP 
RET 

FAR 
BP ; SAVE FRAMEPOINTER ON STACK 
BP,SP ; SET BP = TO STACK POINTER 
DI 
SI 
BX,DWORD PTR [BP+61 ; GET PARAMETER ADDR IN IX 
AX, ES:[IXl ; GET PARAMETER VALUE IN AX 
IX, AX 

AX, 40960 
ES, AX 

Al, 2 
AL, ES:2000H 
lP1 
AX, ES:12 
ES:14, IX 
AX 
AL, 2 
ES:2000H, Al 
AX 

51 
DI 
SP,IP 
BP 
4 

; PREPARE TO SETUP ES 
; ES PTS TO SEG. START AT 6 

; SBIO STATUS BIT IS 2 
; CHECK FOR 1 IN STATUS BIT 
; 0 MEANS PRE. DATA NOT USE 
; GET DATA FROM ADDR 12 
; PUT DATA IN ADDR 14 
; SAVE RESULT FOR LATE 
; PUT A 2 IN AX FOR SBIO CTRL 
; OUTPUT CTRL BYTE TO SET BIO 
; RETRIEVE THE ANSWER 

RETURN TO CALLING PROGRAM 

NUM 1= NO. PARAMETER * SIZE 

OUT320 ENDP 
CODE ENDS 

END 
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Appendix C. Program Source Code List 

Illte'iace }vith the TklS32010 

$LARGE 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

THIS PROGRAM CREATES AN INPUT SIGNAL Y WHICH 
WILL COMMUNICATE WITH THE TMS32010 PROCESSOR. 
SINCE THE MAXIMUM BITS OF ACCUMULATE IS USED 
(LEFT SHIFTED FOR 14 BITS), THE VALUE OF Y 
WILL HAVE TO BE GREATER THAN -2 AND LESS THAN 
2. OUT320 IS A SUBROUTINE WHICH WILL INPUT 
THE DATA TO THE TMS32010 PROCESSOR AND RETURN 
THE CORRESPONDING 
sample is in INTER.ASM 

INTEGER~2 OUT320,K 
OPEN (UNIT = 10, FILE = 'SFILE', STATUS = 'NEW') 
OPEN (UNIT = 20, FILE = 'DFILE', STATUS = 'NEW') 
OPEN (UNIT = 30, FILE = 'OFILE', STATUS = 'NEW') 
OPEN (UNIT = 40, FILE = 'IFILE', STATUS = 'NEW') 

C Implement a sine wave with sampling frequency l/T 
C 

c 

T=1./3. 
PI=3.141S7 
DO 20 1=1,100 

X=SIN(PI~T~FLOAT(I» 

C Make the maximum value of input in accumulat. 
C 

C 
C Call OUT320 
C 

Y=FlOAT(OUT320(K»/(I024.-16.) 
C 
C Create output data file 
C 

HRITE(10,12) S,FlOAT(I) 
WRITE(20,12) D,FLOATCI) 
WRITE(30,12) Y,FlOAT(I) 
WRITE(40,12) X,FlOAT(I) 

12 FORMAT(2F20.9) 
20 CONTINUE 

STOP 
END 
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Appendix D. Program Source Code List 

Fast Fourier Tralls/OJ·,n 

tLARGE 
C 
C 
C 
C 
C 
e 
C 
e 
e 

C 

This program creates an input signal with 
real part XI and imaginary part VI, and 
it communicates with the TMS32010 
processor under control of the 8086 
assembly program INTER. ASH. All the 
value in this program must be within -7 
to 7 as discuessed in experiment II. 

REAL XI(640),YI(640),XO(640),YO(640),OUT(640), 
+T(640),P(640) 

OPEN (UNIT = 10, FILE = 'INFO', STATUS = 'NEW') 
OPEN (UNIT = 20, FILE = 'INFN', STATUS = 'NEW') 
OPEN (UNIT = 30, FILE = 'OTFN', STATUS = 'NEW') 

e Implement an input signal for 128 points 
C 

XI(O)=O.OO 
YI(O)=O.O 
DO 20 1=1,16 

YICI)=O.O 
IF (I .LE. 8) THEN 

XI(I)=O.OI+XI(I-I) 
ELSE 

XI(I)=XICI-1)-O.Ol 
ENDIF 
HRITE(10,12) FLOATCI), XICI) 

20 CONTINUE 
C 
C Call Subroutine Section 
C 

CALL FFT(XI,YI,XO,YO) 
C 
e Comput Magnitude and Phase Response 
e 

DO 40 K=I,16 
OUT(K)=SQRT(XO(K) •• 2+YO(K) •• 2) 
IF « -0.001 .LT. XO(K) .AND. 

+XO(K) .LT. 0.001 ) .AND. C -0.001 .LT. 
+YO(K) .AND. YOCK) .LT. 0.001 » THEN 

XO{K)=O.O 
YO(K)=O.O 
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c 

ELSE IF ( XOCK) .Eq. 0.0 .AND. 
+YOCK) .Eq. 0.0 ) THEN 

PCK)eO. 
ELSE IF ( XOCK) .EQ. 0.0 .AND. 

+YOCK) .OT. 0.0 ) THEN 
PCK)=90. 

ELSE IF C XOCK) .EQ. 0.0 .AND. 
+YOCK) .IT. 0.0 ) THEN 

PClO=-90. 
ELSE 

PCK)=ATAN2(YOCK),XOCK».180./3.l41S93 
ENDIF 
HRITE(20,12) FLOAT(K), P(K) 

12 FORMATCZF1S.6) 
HRITE(30,lZ) FLOAT(K), OUT(K) 

40 CONTINUE 
STOP 
END 

C SUBROUTINE SECTION 
C 

SUBROUTINE FFTCXI,YI,XO,YO) 
c 
C This subroutine communicates with TMS32010 
C processor when TMS32010 processor is running 
C a FFT program. Since the maximim bits of 
C accumulate is used, the value of XI and YI 
C have to be greater than -7 and less than 7. 
C The subroutine computs stage by stage, the 
C end results are still in XI and VI. XO 
C and YO which are the results of FFT are the 
C results after digital reverse. 
C 

c 

INTEGER-2 OUT320,KI(640),JIC640),IA,KL(640), 
+JL(640),II,lI,IO,lO 

REAL XI(640),YI(640),XO(640),YO(640),T(640) 
J=OUT320(IA) 

C First Stage 
C 

DO 25 I=1,8 
IA=OOOO 
II=INT(OUT320(IA)/2+l) 
JICII)=INTCXI(II)-1024 .• l6.) 
KleII)=INTCYI(II)*1024.-l6.) 
IA=OUT320eJI(II» 
LI=INTCOUT320(KICII»/2+1) 
JleLI)=INTeXI(LI)*1024.*16.) 
KI(LI)=INTCYICLI)*1024.*16.) 
IA=OUT320eJICLI» 
IA=OUT320CKIcLI» 
TCIO)=OUT320(IA) 
IO=INTCOUT320(IA)/2+l) 
JICIO)=OUT320(IA) 
KICIO)=OUT320CIA) 
XOCIO)=FlOATCJICIO»/CI024.-16.) 
YO(IO)=FLOAT(KI(IO»/(1024.*16.) 
LO=INTCOUT320(IA)/2+1) 
JlelO)=OUT320eIA) 
KICLO)=OUT320CIA) 
XOCLO)=FLOAT(JICLO»/(1024.*16.) 
YOelO)=FLOATeKIClO»/(1024.*16.) 

2S CONTINUE 
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e 
e eomput R •• t of Stage 
e 

C 

DO 30 L=1,3 

DO 101 Ma 1,a 
IA=OOOO 
II=INT(OUT320CIA)/2+1) 
IA=OUT320(JI(II» 
LI=INT(OUT320(KICII»/2+1) 
IA=OUT320eJleLI» 
IA=OUT320(KI(LI» 
TCIO)=OUT320(IA) 
IO=INTeOUT320(IA)/2+1) 
JI(IO)=OUT320CIA) 
KI(IO)=OUT320CIA) 
XO(IO)=FLOAT(JI(IO»/(1024.M16.) 
YOeIO)=FLOAT(KICIO»/(1024.MI6.) 
LO=INT(OUT320(IA)/2+1) 
JI(lO)=OUT320(IA) 
KICLO)=OUT320CIA) 
XOeLO)=FLOATCJI(LO»/C1024.M16.) 
YO(LO)=FlOATCKI(lO»/(1024.M16.) 

101 CONTINUE 
30 CONTINUE 

C Digital Reverse Counter 
C 

J=l 
Nl=15 
DO 50 I=l,Nl 

IF (I .GE. J) GOTO 60 
XT=XOeJ) 
XO(J)=XOCI) 
XO(I)=XT 
XT=YOeJ) 
YO(J)=YO(I) 
YOCI)=XT 

60 K=16/2 
70 IF CK .GE. J) GOTO ao 

J=J-K 
K=K/2 
GOTO 70 

ao J=J+K 
SO CONTINUE 

RETURN 
END 
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