
DEVELOPMENT OF EXPERL\1ENTS FOR THE DIGITAL SIGNAL PROCESSING

TEACHING LABORATORY

by

KWANG-SUZ lEN

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

A.A. (Louis) Bee

Kai-Bor Yu

July, 1988

Blacksburg, Virginia

~o
SlDSS
"e~s
\q~~

j~(p4
c.;l

To my aunt Laney and uncle Jim

for their support

DEVELOPMENT OF EXPERIMENTS FOR THE DIGITAL SIGNAL PROCESSING

TEACHrnNGLABORATORY

by

KWANG-SUZ lEN

A.A. (Louis) Beex (chairman)

ELECTRICAL ENGINEERING

(ABSTRACT)

Digital Signal Processing (DSP) is a technologyadriven field which develops as early as mid-1960

when computers and other digital circuitry became fast enough to process large amounts of data

efficiently. Since then techniques and applications of DSP have been expanding at a tremendous

rate. With the development of large-scale integration, the cost and size of digital components are

reducing, and speed of digital components is increasing. Thus the range of applications of DSP

techniques is growing. Almost all current discussions of speech bandwidth compression systems

are directed toward digital implementation, because these are now the most practical. The

importance of DSP appears to be increasing with no visible signs of saturation.

This thesis provides the description and results of designing laboratory experiments for the

illustration of basic theory in the field of DSP. All experiments are written for the Texas

Instruments TMS320 I 0 digital signal processing microcomputer and based on softwares provided

by Atlanta Signal Process, Inc. (ASPI). The use of the 320/pc Algorithm Development Package

(ADP) and Digital Filter Design Package (DFDP) developed by ASPI is introduced. The basic

concepts, such as linear convolution, Finite Impulse Response (FIR) and Infmite Impulse

Response (IIR) filter design, Fast Fourier Transform (FF1), are demonstrated. The IBM PC AT

is interfaced with the TMS32010 processor. The experiments and their introductions in the thesis

also serve as a manual for the DSP Laboratory; to complement the introductory signal processing

course.

Acknowledgements

I thank my advisor, Dr. A.A. (louis) Beex, for his skillful guidance and encouragement during

my thesis work. I have greatly enjoyed the opportunity to work independently and learn from him.

I am grateful to Dr. Ting-Chung Poon and Dr. Kai-Bor Yu for being my committee members.

Most importantly, I would like to take this opportunity to thank my aunt Laney C. Jen and

my uncle Jim Jen for their support and encouragement, without their support this degree would

not be possible. This thesis is dedicated to them. And also, I want to thank my parents, for their

understanding, loving, and caring.

Recognition is extended to my friend, Dr. Richard P .E. Tymerski, who has enriched my stay in

Blacksburg.

I appreciate the help from Professor Y. A. Liu in the Department of Chemical Engineering for

the initial editing of this thesis.

It has been a pleasure to work with the excellent faculty, staff, and students at Vlfginia

Polytechnic Institute and State University. I thank many of them who, in their own way, have

enriched my educational experience.

Acknowledgements iv

Table of Contents

1. WfR.ODUCTlON ••••..•.••....••••.•.••••••.•••.•••.• • • • . • • • • • • • • • .• 1

1.1 Background Infonnation .. 2

1.2 Preview of Material Included in this Thesis 4

2. L~"EAR CONVOLUTION •.•••••..•.•.••...•.....••.•...•.••••.•.•••••. 6

2.1 EXPERIMENT I .. 10

2.1.1 Programs in the ADP .. 10

2.1.1.1 TI_LOAD ... 10

2.1.1.2 BUG ..•...•.......•.. 13

2.1.2 Experimental Procedure 1.1••............. 19

2.1.3 Experimental Procedure 1.2 .. 23

2.1.4 Experimental Procedure 1.3•............. 2S

3. NOTCH mUR DESIGN •••••••••••.• "................................ 26

3.1 EXPERIMENT II ... 29

3.1.1 Noise Rejection Using Notch Filter 31

3.1.2 Analysis and Design the Notch Filter 32

Table of Contents y

3.1.3 Implementation of the Notch Filter 34

3.1.3.1 Experimental Procedure 11.1 34

3.1.3.2 Experimental Procedure IL2 36

4. ALIASIN G ••••••••••••••••••••••••••• II •• 38

4.1 EXPERIMENT III ... 40

4.1.1 TMS32010 MS/PC .. DOS CrossWare 40

4.1.2 Link Editor .. 42

4.1.3 PATCH .. 44

4.1.3.1 Program Switch .. 44

4.1.3.2 Patching A Real~time Program 45

4.1.3.3 Set Sampling Rate (S) ... 45

4.1.3.4 Patch Message (L) .. 46

4.1.3.5 External File Input (X) .. 46

4.1.3.6 Direct Patch (#) .. 48

4.1.3.7 Measuring TMS32010 Efficiency 48

4.1.4 The Model 3202 Filter .. 49

4.1.4.1 Frequency Dials ... SO

4.1.4.2 Frequency Range .. 50

4.1.4.3 Cutoff-Frequency Calibration Accuracy•.....•......••.••...•.. SO

4.1.4.4 Bandwidth ..•.. 50

4.1.4.5 Response Characteristics ... 51

4.1.4.6 Panel Control ...•..... 52

4.1.4.7 Operation .. 52

4.1.4.8 Phase Response ... 55

4.1.5 Experimental Procedure 111.1 ... 57

4.1.6 Experimental Procedure 111.2 ... 60

Table of Contents vi

S. FIR AND IIR FILTER DESIGN .•.•........•••....•.••••......••...•.•.. 62

5.1 EXPERIMEN"f IV ...•..... 65

5.1.1 Programs in the DFDP ... 65

5.1.2 To Execute the Software Package 66

5.1.3 Instruction for use of the IIR Design Module 68

5.1.3.1 Executing program IIR .. 68

5.1.3.2 IIR Main Menu .. :.. 68

5.1.3.3 The Samp1i:n.g Rate ... 71

5.1.3.4 The Cutoff Frequencies .. 71

5.1.3.5 Approximation Errors ... 71

5.1.3.6 Selection of Approximation Type 72

5.1.3.6 Coefficient Quantization ... 72

5.1.3.7 Verification of the Characteristics of the Designed Filter 73

5.1.3.8 Manipulation and Plotting of Designed Filter 73

5.1.3.9 Capabilities and Limitations of the program IIR 76

5.1.4 Experimental Procedure IV.l ... 78

5.1.5 Instruction For Use of FIR Design Module 79

5.1.5.1 Executing the program KFIR 79

5.1.5.2 KFIR Main Menu•.............................. 79

5.1.5.3 Specification of Filter Parameters 81

5.1.5.4 Coefficient Quantization ... 81

5.1.5.5 Verification of Characteristics of Designed Filter 81

5.1.5.6 Manipulation and Plotting of the Designed Filter 81

5.1.5.7 Capabilities and Limitations of KFIR•. 82

5.1.6 Experimental Procedure IV.2 ... 83

5.1.7 Experimental Procedure IV.3 ... 84

6. FAST FOIJRIER TRANSFORM ••.•...•..••••••...•...•••....•.••••••••• 85

Table of Contents vii

6.1 EXPERIMENT V 0 • 0 •• 89

6.1.1 HEAR ... 90

6.1.1.1 Program Switches 0 • • 0 • • • • 0 • • • 0 • • • • • • 0 • • • • • • 0 •• 0 •••• 0 90

6.1.1.2 File and Parameter Labels 0 •• 0 0 ••• 0 ••••• 0 • • • •• 90

6.1.1.3 A-to-D Mode - Setting Input Signal Levels . 0 • 0 • 0 0 •••••• 0 •••••••• 0 •• 00' 93

6.1.1.4 A-to-D Mode - Capturing A Signal .0. 0 • 0 ••••••••••••••••••••••••••• 93

6.1.1.5 D-to·A Mode ... 95

6.1.2 Experimental Procedure V.l .. 96

6.1.3 Experimental Procedure V.2 .. 97

6.1.4 Experimental Procedure Vo3 0 ••••••••••••••••••••••••••••••••• 98

6.1.5 Experimental Procedure V.4 . 00, •••• 0 ••••••••••••••••••••••••••••••••• 99

7. DIGITAL FILTER DESIGN•..•......•..•...•.•........... 101

7.1 EXPERIMENT VI 0 •••••••••••••••••••••••••••••••••••••• 103

7.1.1 Filter Specification .. 103

7.1.2 Experimental Procedure VI.I 0 0 •• 0 •• 0 • 0 •••••••• 0 ••• 0 104

7.1.3 Experimental Procedure VI.2

7.1.4 Experimental Procedure VI.3

105

106

RE:FERENCES ...• " ..•.••••••.•.•••••••••••••••••• " .•• "" .• " ..••.. "... 1m

Appendix A. Program Source Code List 109

I...in.ear convolution•............ 0 • • 0 • • • • • • •• 109

Appendix B. Program Source Code List •••••••.•••••••••••••••••.••••••.•.... 111

Exchange data between PC and the TMS32010 0 • • • •• III

Appendix C. Program Source Code List•..•.•.•....••.•...•.••..•.•..••. 112

Table of Contents viii

Interface with the TMS32010 ... 112

Appendix D. Program Source Code List ••.•••••••••.•...•••••.•..•.••••••..•. 113

Fast Fourier Transform .. 113

VITA •••••••••••.•.•.....•.••••••.•.••••••..••••••••..••••• ••••••••. 116

Table of Contents ix

List of Illustrations

Figure 1. The flowchart of linear convolution program. 8

Figure 2. The fonnat of the TI_LOAD command line. 12

Figure 3. The initial fonn of the command screen. 14

Figure 4. Typical display during EDIT BREAKPOINTS command. 16

Figure 5. Typical display during INV ASSEMBLE command. 18

Figure 6. The unit pulse response. .. 20

Figure 7. Typical example of a PATCH screen. 47

Figure 8. Normalized phase characteristics. 56

Figure 9. Characteristics of designed KFIR filter. 58

Figure 10. System diagram of digital filtering of an analog signal. 63

Figure 11. The menu of DFDP. .. 67

Figure 12. IIR bilinear transformation design program. 69

Figure 13. IIR bilinear transformation main menu. 70

Figure 14. Manipulation and plotting designed filter. 74

Figure 15. Kaiser-window main menu. 80

Figure 16. Digram of four-point decimation-in-frequency FFT. 88

Figure 17. Screen display in initializing stage. 92

Figure 18. Screen display during the A-to-D stage 94

List of lJIustrations x

1. INTRODUCTION

The purpose of the Digital Signal Processing (DSP) Laboratory is to help the student (a) get

acquainted with the use of the IBM Personal Computer AT; (b) learn basic techniques in the design

and evaluation of DSP algorithms in a real-time environment; (c) experimentally verify some of the

theory he/she has learned, and (d) experience how inter-processor communication (IBM PC AT

and TMS3201 0) can be done. The experiments in this thesis are designed toward this purpose.

1. INTRODUCTION 1

1.1 Backgrollnd Information

The features of the 320/PC Algorithm Development Package and Digital Filter Design Package

(DFDP) from Atlanta Signal Processors Incorporated (ASPI) are described. The 320/PC Algorithm

Development Package (ADP) is aimed at applications involving the TMS32010 digital signal

processing (DSP) microcomputer from Texas Instruments Incorporated, and includes the 320/pc

board and associated software for the IBM PC AT. The software system is developed for three

types of application in conjunction with the Personal Computer/TMS32010. First, the system can

be used as a program development tool for realizing DSP applications on TMS32010·based

systems, using ASPI software products such as DFDP. Second, the system is useful as a signal

processing workstation for interactive algorithm development. Finally, the system can be utilized

directly to run programs in real time, such as one of ASPI's voice coding programs specifically

written to take advantage of capabilities of the 320/PC board.

DFDP is a powerful package of interactive programs for the design of digital filters as well as the

subsequent implementation of such filters on the Texas Instruments TMS32010 DSP

microcomputer. DFDP has modules for the design of recursive and nonrecursive digital filters.

Recursive or IIR filters are designed by the module IIR which uses the method of bilinear

transformation of Butterworth, Chebyshev, and Cauer (elliptic) analog filters. Nonrecursive or FIR

filters are designed using either module KFIR, which uses the Kaiser-window method {I], or the

design module PMFIR, which uses the Parks-McClellan algorithm (2). In each case, a wide variety

of frequency-selective filters can be designed; in the FIR case, differentiators and Hilbert

transformers can be designed also. A unique feature of the software package is module CGEN,

which produces assembly language code for filters designed by modules IIR, KFIR, or PMFIR [3].

The 320/PC ADP is a powerful combination of hardware and software for developing and

implementing DSP algorithms for the Texas Instruments TMS32010 DSP microcomputer. The

1. INTRODUCTION

package is based on the 320jPC board, which contains a TMS32010 processor, an 8-ki1obyte

dual-port memory, a programmable clock, and very high-quality 12-bit AID and 12-bit D/A

conversion systems. Because of the unique dual-port memory architecture, the 320/PC can be used

as a real-time development and debugging tool of unprecedented performance [4]. Because of its

high-qUality AID and D/A systems, and its high computational capacity, the 320/PC board alone

can tum a personal computer into a powerful signal processing workstation. It also can make a

personal computer into a real-time speech coder, an audioband spectrum analyzer, a voice mail

station, a signal generator, a real-time digital filter, a digital equalizer, or a signal conditioner.

A variety of useful software is available to facilitate the use of the 320/PC board in the ADP.

These programs include: HEAR, which samples, stores, reconstructs, and edits signals using AID

and D/A subsystems; VIEW, which displays and edits a sampled waveform from data files stored

on the system disk; BUG, a multi-breakpoint debugger for programs being executed in the

TMS32010; PATCH, a real-time program for interactively patching a program while executing on

the TMS32010 processor and for monitoring the efficiency of the TMS32010 in a real-time

operation; and TI_LOAD, a utility program for loading programs into the TMS32010's

programming memory and controlling the state of the 320/PC board [51.

I. INTRODUCfION 3

1.2 Preview of Material Included in this Thesis

This thesis serves as a manual for the DSP Laboratory course accompanying the course

"Introduction to Signal Processing". The experiments are written in the order of the material

covered in 'Digital Filters and Signal Processing'" by Leland B. Jackson (1]. Since most of the

experiments must be done in a fIXed period of time, new software, laboratory instruments and

techniques are introduced in every experiment except the last one, experiment VII. Some software

such as the TMS32010 MS/PC-DOS CrossWare and link editor will not be explained until Chapter

4, Section 111.1 and 111.2. The following paragraphs summarize the contents of this thesis.

Chapter 2 presents the use of some software associated with the AD P. The linear convolution

of an impulse response with an input from a specified data memory location in the TMS320 10

processor is implemented and verified. This TMS320 1 0 assembly program can serve as a FIR filter

when the digital filter is represented by its impulse response. A simple notch filter is designed and

implemented, and subsequently run in real time.

Chapter 3 discusses how inter-processor communications (IBM PC AT and the TMS32010) can

be done. Digital filters (FIR and IIR) are designed to demonstrate and enhance the theory that

students are learning.

Chapter 4 shows the use of the TMS32010 MS/PC-DOS CrossWare and link editor, and Model

3202 solid-state variable-frequency filters. Aliasing is demonstrated with an input from the external

waveform generator. Next we show how aliasing can be reduced with the aid of Model 3202 filters.

The phase response of the filter is measured with an oscilloscope. The utilization of the TMS320 10

processor, under real-time operating conditions is measured.

Chapter 5 describes the procedure of using the DFDP as well as a discussion of the limitation

of the DFDP.

1. INTRODUCfION 4

Chapter 6 discusses the Fast Fourier Transform (FFT) (which is implemented in both

FORTRAN and the TMS32010 assembly language) of an input signal which is created from a

FORTRAN program or obtained directly from the AID converter. The purpose of zero padding

is demonstrated. The FFT result is provided by the FORTRAN program or the TMS32010.

Chapter 7 gives an opportunity to design digital filters according to specifications. InfInite

Impulse Response (IIR) rtIters are designed by using a bilinear transformation of analog filters;

Finite Impulse Response (FIR) filters are designed using different windowing methods.

The experiments are intended to be completed within a specific time period, but several require

reading/preparation prior to performing the experiment. It is important that each experiment be

performed with care and thought, not just to obtain data and write a report, but rather to become

familiar with the principle demonstrated and the techniques employed.

1. INTRODUCTION 5

2. LINEAR CONVOLUTION

Convolution is one of the most frequently used signal processing operations. Linear convolution

of sequences, one of which is of finite length, can be implemented as an FIR ftl.ter with an

N-sequence unit pulse response, driven by the other sequence an input. In spectral estimation, the

basic operation of autocorrelation is simply the convolution of the signal with a reversed-time

version of itself.

LCONV.ASM is a TMS32010 assembly program that implements linear convolution defined

as follows

N-l

yen) = L x(n - m)h(m).
m=O

(2-1)

where yen) is the result of the linear convolution of the unit pulse response hem) and an input

sequence x(n). N is the length of the unit pulse response. The input sequence ~ is convolved with

the pennanent sequence~. In this program, the latter is an 8-point sequence with the first four

points equal to one and the remainder equal to zero. The input is read sequentially from port 6

(A/D), and the output is written to port 6 (D/A). The program will load the unit pulse response

at location 0009 through OOOF and initialize the input function (that is, XII-I' X'n-l' ••• , X-I) to zero

2. LINEAR CONVOLUTION 6

at location 0001 through 0008. Students are asked to check both locations to ensure that the unit

pulse response has been loaded and that the input function has been initialized. The program is

then activated into its first loop, where a new data point is received from port 6 (A/D). In

experimental procedures 1.1 and 1.2, students will input data points of a specific function to location

0001, one at a time, to simulate time domain sampling. Finally, the program goes into the second

loop where the main computation takes place.

The main computation in the convolution is done using one of the most powerful instruction

pairs, LTD and MPY, in the TMS32010 assembly language, which multiplies the sequences point

by point and shifts the input in preparation for the next input data point. Students will have an

opportunity to see exactly how the linear convolution works. Experimental procedure 1.1 serves

this propose. The result will be at location 0011 and it will output to port 6 (D/A). The real-time

signal processing result can be viewed on an oscilloscope connected to port 6 (D/A). Experimental

procedure 1.3 demonstrates this real-time signal processing. After presenting the result, the program

goes back to the first loop to get the next input data point. The flowchart of this program is shown

in Figure 1.

Since LCONV.LOD (an object file generated by the TMS32010 MSJPC-DOS CrossWare and

link editor, which will be discussed in Chapter 4) is downloaded with three switches (flags,

parameters) S, G and B (TI_LOAD program switches will be discussed later in this chapter).

BUG is the TMS32010 debugger utility supplied with the 320/pc Algorithm Development

Package (ADP). Because of the unique architectural features of the 320/pc board, BUG can

perform many functions not normally available in a debugging package. For example, programs

and data can be loaded and extracted from the dual-port memory, while the TMS32010 is

executing. There is, however, a problem associated with multiple breakpoints; that is, after a

breakpoint is reached several times within a program loop, the data-page pointer changes from 0

to 1. (Usually the second page of data memory contains infrequently accessed system variables,

such as those used by the interrupt routine). Once the data-page pointer is changed, BUG is no

2. LINEAR CONVOLUTION 7

No

CALL BEGIN

load iinpulse
response 10 d •••

memory 1XX>9-OO10

+- BREAK POINT

Initialize input
function at data

memory CXX)1..Q008

+-- BREAKPOINT

Read from pO" 6

+-- BREAKPOINT

Multiply. Shift.
add and OUlpUI

resun

Figure 1. The flowchart of linear convolution program.

2. LINEAR CONVOLUTION 8

longer looking at the same program as before. Near the end of LCO NY .ASM, there is a statement

LDPK to set the data-memory page pointer register to 0, which is not needed in this program if

there is no breakpoint set withln the loop.

The TMS32010 has a 32-bit ALU/accumulator and a 16-bit instruction/data word. A Q15

format [10] for number representation is assumed for all data and coefficient values. The format

involves one sign bit plus 15 fractional bits and the absolute value of all represented numbers is less

than two. It simplifies calculations in a fixed-point machine such as the TMS32010 digital signal

processor. In other words, all the input data which have been left-shifted for 14 bits must be within

± 2 in decimal.

The LCONV.ASM program can also function as an FIR filter if the permanent sequence

represents the unit pulse response of a filter. In experimental procedure 1.2, students will find the

unit pulse response of a notch filter and its hexadecimal representation. The hexadecimal value

will be found from the absolute value discussed above. The unit pulse response of the notch filter

is loaded into location 0009 through 0010 by using the function key for editing the data memory.

This experiment shows students how to use an FIR filter for linear convolution. The filtering is

demonstrated by entering data point by, point at location 0001 and recording the result of equation

(2-1) from 0011. The characteristic of a notch filter is also demonstrated by using two sinusoidal

signals with different frequencies as input. One of these frequencies is the notch frequency. In

experimental procedure 1.3, this notch filter is demonstrated in real-time.

2. LINEAR CONVOLUTION 9

2.1 EXPERIMENT I

The purpose of this experiment is to acquaint the student with some of the software, principles,

and pitfalls associated with the Algorithm Development Package (ADP). Programs TI_LOAD,

and BUG are studied. The linear convolution of a finite length unit pulse response with an input

from a specified data memory location, is implemented and verified.

2.1.1 Programs in the ADP

• TI_LOAD: To down-load the unit pulse response program (LCONV.LOD) to the

TMS32010.

• PA TCH : To measure the utilization of the TMS320 10 processor in real time, and to install

TMS320 1 0 program patches, such as for changing the sampling rate.

• BUG: To start the program in a specific location, in order to demonstrate the linear

convolution.

2.1.1.1 TI_LOAD

The purpose of TI_LOAD is to load the TMS32010 program, which has been assembled and

linked by the TMS32010 Assembler and Linker, onto the 320jPC board for execution.

TI_LOAD is the 320jPC utility program, downloading programs and data into the program

memory of the TMS32010 processor. It can also set the state of the 320jPC processor and the rate

of the sampling clock. If the program name 'II_LOAD'" is typed without arguments, then the

2. LINEAR CONVOLUTION 10

program will type as Figure 2 to remind the user of the fonnat of the command line. The first letter

of the switch names is used by TI_LOAD. Note that all programs in this manual are under the

control of the BIO flag.

To down-load the program, type the following command line:

TI_LOAD[/S](/GlI/I][/B][/C] INPUTFILE SAMPLING·RA TE

For example:

TI_LOAD/S/O/B LCON 8000. (2-2)

This TI_LOAD command contains switches (Le. IS), and file labels (Le. LeON and 8000).

1.1.1.1 Program Switches

IStop (Abbreviation /S as in 2-2). Stop TMS32010 before loading. This is accomplished by

holding the TMS320 10 processor in a reset condition.

/Go (Abbreviation /0 as in 2-2). Start TMS32010 after loading. This is accomplished by

releasing the TMS320 1 0 processor from a reset condition.

IInterrupt Enable external interrupts (XIN1). This has the effect of closing the XINT switch so

that the TMS32010 interrupt input (lNT) is connected to the external source.

IBIO (Abbreviation /B as in 2-2). Enable the external flag (XBIO). This has the effect of

closing the XBIO switch so that the TMS32010 I/O flag input (BID) is connected to

the external source.

2. LINEAR CONVOLUTION 11

!'-l

£: z
~
" (")
o z
~ o r­
c::
~
o z

-w

320/PC DOWNLOADING UTILITY

(C) COPYRIGHT 1985: ATlANTA SIGNAL PROCESSORS INC -- VERSION 1.0

TI_LOAD(/STOP)l/GO)(/INTERRUPT)(/BI01 FILENAME (SAMPLING-RATE)

STOP:

GO:

INTERRUPT:

BIO:

FILENAME:

SAMPLING-RATE:

Stop (reset) TMS32010 processor before load

Start (relerase reset) TMS32010 processor after load

Enable external interrupt (XINT)

Enable extemall/O flags (XBIO)

Filename (.LO D) of program to be loaded

Sampling rate in Hertz

Figure 2. The fonnat of the TI_LOAD command line.

IClock Enable interrupts from the programmable clock (XCLK). This has the effect of closing

the XCLK switch so that the TMS32010 interrupt input (INT) is connected to the

output of the programmable clock.

2.1.1.2 File Labels

INPUTFILE This is the file to be loaded into TMS32010 program memory for execution; if no

extension is given, the .LOD extension is assumed.

SAMPLING-RATE A numerical value for the sampling rate in Hertz. The maximwn sampling

rate is 30 kiloHertz.

2.1.1.2 BUG

BUG is a highly interactive debugging tool which allows the user to effectively, and dynamically,

access all the features of the 320/PC. The debugger features include a line-by-line symbolic

assembler, an inverse assembler, multiple breakpoints, and a single-step operation feature. The user

also can directly edit the registers, data memory, and program memory of the TMS32010 processor.

To execute the program, type BUG. Figure 3 shows the command screen that will appear as

soon as BUG is initiated. The screen is divided into three sub-screens: command menu,

command-data area and status line.

Only eight of the Bug commands are used in this experiment, and these commands are described

below.

EDIT REGISTER (Ft): The purpose of the EDIT REGISTER command is to edit an internal

register of the TMS32010 processor. Since the intent is to change the current TMS32010 register

2. LINEAR CONVOLUTION 13

!""
r-
2
~ ;;
n o
:2
< o
r:­
~

:i o
:2

...

FI EDIT REGISTERS F6 ASSEMBLE SI CHANGE XBIO
F2 EDIT DATA MEMORY F7 INY ASSEMBLE S2 CHANGE BIO
F3 EDIT PROGRAM MEMORY F8 LOD IN S3 CHANGE XINT
F4 EDIT BREAKPOINTS F9 BIN IN S4 CHANGE XCLK
FS EDIT CLOCK/PROCESSOR FlO BIN OUT SS CHANGE INT

001 BRKEN RESET XBIO CLR BIO CLR XINTCLR XCLKCLR

Figure 3. The initial fonn of the command screen .

S6 GO
S7 STOP
S8 RESET
S9 SINGLE STEP
SIO EXIT

INTCLR

values, this command only operates when the processor is STOPPED or RESET. If this command

is requested while the processor is RUNNING, an error message will appear.

EDIT DATA MEMORY (F2): The purpose of the EDIT DATA MEMORY command is to

display and modify the data memory of the TMS32010 processor. Since the data memory is

internal to the TMS32010 processor chip, the processor must either be STOPPED or RESET to

use this command. If the processor is RUNNING when this command is initiated, an error

message will be displayed.

The command begins by requesting a data-memory address in hexadecimal. Once that number

has been entered by the user, a total of 64 data-memory locations is displayed, beginning at the

specified address. The left- most column of the numbers is the address of the fIrst memory location

in the row.

The user modifies the contents of the data-memory location by editing the numbers shown on

the display. To change an entry, first move the cursor to the number to be changed. The fields

are changed by the'" Up-Arrow' and "Down-Arrow· keys, while the position within the number

is changed by the 'Left-Arrow' and "'Right-Arrow'" keys. Once the number has been correctly

modified, the 'Enter' key must be pressed. (The register value will not change until the 'Enter'

key has been pressed).

The user can exit from the EDIT DATA MEMORY command either by exiting from the end

of the register display or by pressing a function key to initiate another command.

EDIT BREAKPOINTS (F4): The purpose of the EDIT BREAKPOINTS command is to

display and modify the list of breakpoints. There can be a maximum of ten breakpoints in the

program at any time. Since 0000 denotes no breakpoint, a breakpoint is set by entering the desired

location for a breakpoint,and pressing the Enter key. An example breakpoint is shown in Figure

4.

2. LINEAR CONVOLUTION 15

~

t"'"
Z
rt'I

~
n
~
<: o
~
::J
o z

-C\

F I EDIT REGISTERS
F2 EDIT DATA MEMORY
F3 EDIT PROGRAM MEMORY
F4 EDIT BREAKPOINTS
FS EDIT CLOCK/PROCESSOR

MODIFY BREAKPOINTS

BREAKPOINT 1: 0090
BREAKPOINT 2: OAlO
BREAKPOINT 3: 0020
BREAKPOINT 4: 0000
BREAKPOINT 5: 0000
BREAKPOINT 6: 0000
BREAKPOINT 7: 0000
BREAKPOINT 8: 0000

F6 ASSEMBLE SI CHANGE XBIO
F7 INV ASSEMBLE S2 CHANGE BID
F8 LOD IN S3 CHANGE XINT
F9 BIN IN S4 CHANGE XCLK
FlO BIN OUT S5 CHANGE INT

001 BRKEN RESET XBIOCLR BIO CLR XINTCLR XCLK CLR

Figure 4. Typical display during EDIT BREAKPOINTS command.

S6 GO
S7 STOP
S8 RESET
S9 SINGLE STEP
SIO EXIT

INTCLR

GO (S6) (SHIFT F6): The GO command serves to start the TMS32010 processor. If the

processor is in the STOPPED or RESET state prior to issuance of the GO command, the

TMS32010 processor is started and goes into the RUNNING condition, the GO command does

nothing but check for a BROKEN condition caused by a breakpoint. If a breakpoint has occurred,

the TMS32010 is STOPPED, and the EDIT REGISTER command is entered automatically.

INV ASSEMBLE (Fi): The INV ASSEMBLE initiates the inverse assembler. After this

command is initiated, it prompts the user for a starting address in hexadecimal. The starting address

is preset to the current value of the program counter. Once the starting address is chosen, a total

of 48 inverse assembled instructions is display in three columns. An example is shown in Figure

5.

STOP (S7) (SHIFT Fi): The STOP command tenninates TMS32010 processing. It has no effect

if the processor is in the RESET mode. If the processor is RUNNING, it is forced into the

STOPPED mode.

SINGLE STEP (S9) (SlllFT F9): The SINGLE STEP command is to execute a single

instruction on the TMS32010 processor. The address of the instruction being executed is found in

the program counter register. To operate the SINGLE STEP command, the processor must be in

either the STOPPED or RESET mode. When the SINGLE STEP instruction has been completed,

BUG automatically executes an EDIT REGISTER command. From this command, the user can

easily see the results of the single-step operation, change any register, and initiate another SINGLE

STEP operation. Note that memory locations 0 and 128 are set to zero during the single-step

operation.

EXIT (SIO) (SHIFf FlO): The EXIT command terminates BUG and returns control to the

operating system.

2. LINEAR CONVOLUTION 17

!"
r--z

FI EDIT REGISTERS F6 ASSEMBLE SI CHANGEXBIO S6 GO tJ!t

~ F2 EDIT DATA MEMORY F7 INV ASSEMBLE S2 CHANGE BIO S7 STOP

a F3 EDIT PROGRAM MEMORY F8 LODIN S3 CHANGEXINT S8 RESET

z F4 EDIT BREAKPOINTS F9 BIN IN S4 CHANGE XCLK S9 SINGLE STEP
<: FS EDIT CLOCK/PROCESSOR FlO BIN OUT SS CHANGEINT S10 EXIT
0
r-
C":
:f 0000: MPYK 07F8 0010: IN ·+,2 0020: rrm (F8FO)
0 0001: SACL • + ,7,0 0011: LTA .+ •. 0021: SUB ·+,C,I z

0002: LAR 0,68 0012: MPYK 07C4 0022: MPYK OAOC
0003: MPYK IE73 0013: rrm (F303) 0023: LARK 2,75
0004: rrm (07EC) 0014: MPYK 08CO 0024: ????? (F904)
0005: SUBS 13 0015: rrm (F031) 0025: MPYK 13AB
0006: SACH • ... 7 0016: SAR 4,lD 0026: SUB 44,0
0007: MPYK IlF3 0017: SAR 7,32 0027: rrm (E388)
0008: LT •• 0018: OUT ·,1,0 0028: rrm (FAAF)
0009: SACL .+ ··.4,1 0019: MPYK 136A 0029: ADD • + ··,3,1
OOOA: rrm (OlFC) 00IA: MPYK IEEE oo2A: MPYK OA40
0008: LARK S,AD 001B: LAR 4,7F 0028: BGEZ 60EF
oooc: ????? (F7B3) OOIC: rrm (0380) 0020: SAR 6,31
0000: SUB .+ ··,1,0 0010: ADD ·,C 002E: ????? (DFD6)
OOOE: MPYK 13DC OOIE: ????? (F38E) oo2F: SACL 72,5
OOOP: ADDS 57 OOlF: OR 02 0030: BGEZ A41F

001 BRKEN RESET XBIO CLR BID CLR XINTCLR XCLKCLR INTCLR

Figure S. Typical display duringlNV ASSEMBLE command.

-00

2.1.2 Experimental Procedure 1.1

1. LCONV.ASM is a TMS320 assembly program for an S-point-length linear convolution. The

unit pulse response is depicted in Figure 6. Copy LCONV.ASM to EXPI.ASM by typing

NCOPY LCONV.ASM EXPI.ASMM',

2. Assemble and link EXPI by typing ~SM3 EXPI;M' and ·LINKER EXPI;*, respectively.

Print EXPI.LST, a listing ftl.e. Load EXPI.LOD to the 320/PC board with a specified

sampling rate by using TI_LOAD.

3. Change the directory to BUG and execute the BUG program, Use INV ASSEMBLE (F7)

to find the starting location with the aid of the EXPI.LST listing file that you printed.

4. Use EDIT REGISTER (F1) to set the program counter at the beginning of the linear

convolution and use SINGLE STEP (S9) to that location.

5. Set breakpoints at locations 00A9, OOAE, and OOBO. Use the GO (S6) command to run the

program. Note that the GO (S6) command can be used only after EDIT REGISTER (F1)

is used.

6. Check the data memory at locations 0009 through OOOF by using EDIT DATA MEMORY

(F2) after the break at 00A9. These locations should contain the impulse response. If not,

restart with the beginning of the linear convolution as the starting position. Note that the

values of the unit pulse response have been left-shifted 14 bits.

7. Use GO (S6) to run the program and check data-memory locations 0001 through OOOS by

using EDIT DATA MEMORY (F2) after the break at OOAE' The data in location 0001

through 0008 should initialize the input function Xn- 1, Xn-ll ••• , X_I to zero. If not, use GO (S6)

again starting with location OOA9.

2. LINEAR CONVOLUTION 19

x(n)

• • •

o 12345678 n

Figure 6. The unit pulse response.

2. LINEAR CONVOLUTION 20

8. Use GO (86) with starting location OOAE; a break at OOBO should occur. Use EDIT DATA

MEMORY (F2) to enter the first point of the input function into location 0001. Make sure

that the input point data is always in location 0001 and Enter one data point at a time. The

input function is as follows:

x(n) = 1

x(n) = 0

Contents of the data memory must be in hexadecimal. The TM8320 10 has a 32 .. bit

ALU/accumulator and a 16-bit instruction/data word. Data can only be output from either

the upper part, the most significant 16 bits, or the lower part, the least significant 16 bits. In

order to maximize the usage of the 32-bit ALU/accumulator, and to ensure data output from

the accumulator, the data words have been left shifted 14 bits. The input data and the result

will be between -2 and 2. For example: decimal 1 can be represented by 4000 in hexadecimal.

9. Use EDIT REGISTER (Fl) to ensure that the input data are entered, then use GO (S6) to

run the program.

10. After the program breaks at OOBO, use EDIT DATA MEMORY (F2) starting at location

000 I, to check where the previous data are stored, and to enter the second data point into

location 0001. Record the result Yo from location 0011. Note that the result in location 0011

may not be the value you "expect"; there is a (computable/lmown) scaling factor.

11. Repeat step 10 until the last data point is entered and use GO (S6) to get the last result y,_

Draw the resulting wave form. Is this what you expect? Explain.

12. Enter the new input function

x(n) = 1

2. LINEAR CONVOLUTION 21

x(n) = 0 2SnS7

point-by-point as in steps 7 through 9. Record the result and draw the resulting wave fonn.

Is it different from the result obtained from the fust input function? What is the significance

of the present result?

13. Use EXIT (SI0) to tenninate BUG.

2. LINEAR CONVOLUTION 22

2.1.3 Experimental Procedure 1.2

1. EXPI.ASM can be used as a digital IDter if the fIXed sequence represents a unit pulse response.

Suppose that we have a notch m.ter with a unit pulse response

hen) = ben) - 2 cos 8b(n - 1) + b(n - 2), 8 = 45°.

2. The input function is as follows:

1 where w = 11' and T =-.
o 4

x(n) = sin ; wonT O:S:n:s:12

3. In order to implement the linear convolution with the unit pulse response hen), both the unit

pulse response h(n) and the input function x(n) should be converted to hexadecimal form.

Note that for good results, six digits after the decimal point should be carried. (5 decimal digits

equal to 16 bits approximately.)

4. The hexadecimal form can be obtained from either a calculator or computer program.

a. Under the DOS operating system, type BASICA. Load the TEST.BAS program; list the

program and run it. Input hen) and x(n) in decimal, and record the result (which must

be in hexadecimal).

b. Return to the DOS operating system.

5. Change the directory to BUG, and execute BUG.

2. LINEAR CONVOLUTION 23

6. Find the beginning of the linear convolution as in experimental procedure 1.1, and use

SINGLE STEP (S9) to start the program in that location.

7. Use EDIT BREAKPOINTS (F4) to set a break point at location OOBO, and use GO (S6) to

run the program.

8. A break should occur at location OOBO. Use EDIT DATA MEMORY (F2) to input the unit

pulse response in hexadecimal into locations 0009 through 0010, and enter the flrst data point

of XII into location 0001.

9. Use GO (S6) to run the program again. A break should occur at location OOBO. Record the

result from location 0011 and enter the next input data point into location 0001.

10. Repeat the above step until all input-data points have been entered and the results have been

recorded. What do you observe from the result?

11. Set the program counter at the beginning of the linear convolution. Repeat steps 4 through

II with the following input function:

x(n) = sin (J)o'lT

where (J) 0 = 1f and T = !. Explain any difference between the present and the former result.

12. Use EXIT (SI0) to terminate BUG.

2. LINEAR CONVOLUTION 24

2.1.4 Experimental Procedure 1.3

1. Connect the wavefonn generator to the input of the 320/pc board (lower BNC connector) and

one channel of an oscilloscope, and connect the output of the 320/pc board (upper BNC

connector) to the other channel of the oscilloscope.

2. Use EDLIN or DVED to edit EXPI.ASM. Note that DVED.COM has an on-line manual.

3. Change the unit pulse response to that for a notch futer. that is, input the coefficients of a

notch futer into the unit pulse-response section in the EXPI.ASM, and keep the same unit

pulse-response length as before. Take off the command star (.) in front of the instruction

NCALL 0 UTA' at the end of the program.

4. Assemble and link as in experimental procedure 1.1. Down-load to the TMS32010 with 16

kHz sampling rate.

5. Tum on both the oscilloscope and the wavefonn generator.

6. Vary the frequency in the range from 1 to 20 kHz and sketch the magnitude response of the

filter. Explain.

2. LINEAR CONVOLUTION 2S

3. NOTCH FILTER DESIGN

Finite-Impulse-Response (FIR) and Infinite-Impulse-Response (IIR) filters form two classes of

digital ftIter. The unit pulse response of the FIR filter has nonzero values only for a finite duration.

Usually, FIR futers are implemented nonrecursively. In contrast with FIR filters, IIR filters are

always implemented recursively, i.e. with feedback and their impulse responses have nonzero values

for an infinite duration.

The characteristics of both FIR and IIR filters can be demonstrated with two different transfer

functions, each representing a second order filter.

(3 - 1)

and

(3- 2)

where the pole radius, r, is slightly less than unity. H1(z) and H,;.(z) are system functions of FIR and

IIR filters, respectively.

3. NOTCH FILTER DESIGN 26

In the first part of experiment II, students investigate the relationship between the input and

output of a digital flJ.ter, including the unit pulse response, the system function, and the difference

equation. Students are required to modify the FIR and/or IIR filter(s) so that the output is closer

to the desired signal. From the viewpoint of system stability, all the poles of a system function

must be inside the unit circle in the z-plane, i.e. 0 < r < 1. Students can modify the IIR notch

filter by simply varying the value of r and comparing the magnitude and phase characteristics.

When r > I, the system is unstable. In experimental procedure 11.2, this fact is demonstrated.

DCONV.ASM is a TMS32010 assembly language program which implements the FIR notch

futer. DCONV.ASM is the same as LCONV.ASM in experiment 11.2, except that data points are

read from port 7 (PC dual-port memory) instead of from port 6 (A/D). The results will be in an

individual file which is stored on the hard disk. Real-time filtering can also be demonstrated by

changing the input data from port 7 to port 6 (A/D). Students are asked to find notch frequencies

for both the FIR and the IIR futer running in real-time. DIIR.ASM is another TMS32010

assembly language program which implements the IIR futer. An IIR filter (recursive filter) can be

described as

M N

yen) = L bmX(n - m) - L akY(n - k) (3- 3)
m=O k=l

where the b". and ak are constant coefficients. The expression shows that the present output value

yen) can be computed from the present and M past input values and N past output values.

DCONV.ASM implements an FIR filter described by

N

yen) = L hen - m)x(m) (3 -4)
m=O

This expression is the same as the first part of the defmition of an IIR filter. The second part of

an IIR filter is simply the same as the first part with bk being substituted for at and x(n - k) being

3. NOTCH FILTER DESIGN 27

substituted for yen - k). and with the index number starting at 1. DIIR.ASM is a modified version

of DCONV.ASM.

The second part of the experiment demonstrates how inter-processor (between IBM PC AT and

TMS32010) communication can be achieved. The heart of the 320/PC board is the dual-port

memory. The dual port memory can be accessed by both processors simultaneously without

causing wait states with both processors running. TIlls makes the dual-port memory a uniquely

powerful structure for debugging real-time TMS32010 implementations as well as an extremely

flexible medium for inter-processor communication.

Experimental procedure II.l is about FIR filtering. It shows students how the TMS32010

processor can implement an FIR filter. and how it can be run in both real-time and as a

FO RTRAN program. IIR filt~rs with different poles inside or outside the unit circle in the z-plane,

are demonstrated in experimental procedure II.2. It can be seen on an oscilloscope when the IIR

notch filter becomes unstable.

3. NOTCH FILTER DESIGN 28

3.1 EXPERIMENT II

The purpose of this experiment is for students to work with digital filters, to demonstrate and

enhance the theory they have learned, and to familiarize them further with programs such as

TI_LOAD, and BUG, which they have used already during experiment I.

There are two parts to this experiment. The rust part requires the student to be familiar with

the IBM PC (or other personal computer). The second part of this experiment requires the student

to understand the TMS32010 assembly program DCONV.ASM and the FORTRAN program

TEST.FOR, which are used to demonstrate how inter-processor (between IBM PC AT and

TMS32010) communications can be achieved.

From the perspective of the TMS32010 processor, there are two methods which may be used

for transferring data to and from the host processor. The first method is most appropriate for arrays

and it uses table-read (TBLR) and table-write (TBLW) operations, done directly to the dual-port

memory. This method is not used in this experiment. The second method is to use the IN

instruction to channel 5 or 7 (in this case, it is channel 7), and the OUT instructions from channel

4, 5, or 6 (in this case, it is channel 6). This method is essentially equivalent to operating an

ordinary I/O channel to the host computer, and it makes the host computer act like a standard I/O

device (AID converter, D/A converter, etc.) to the TMS32010. The advantage of this method is

that it uses only IN and OUT instructions, which require but two cycles (400 nsec); and it allows

for the generation of programs, which can use either the host computer or an actual I/O device as

a data source. The disadvantage is that it is less flexible than TBLR and TBLW operations for

arrays, and that it requires close coordination with the host processor for data transfers.

From the perspective of the host processor, all communication with the TMS320 10 processor

is performed through the dual-port memory. Thus, all memory operations available on the host

3. NOTCH FILTER DESIGN 29

processor can be used for communications with the TMS320 1 O. The most efficient one of these

is the block -move instruction available on the 8086 family of processors.

DCONV.ASM, shown in Appendix A, is a TMS32010 assembly program that implements an

8-point-length linear convolution. It reads data from port 7 and writes to port 6 of the TMS320 I O.

INTER.ASM, listed in Appendix B, is a 8086 assembly program. This program is used to

communicate with the TMS32010 under flag (BID) control. It transfers the data point from a

FORTRAN program to port 7 of the TMS32010 and returns the corresponding data from port 6

of the TMS32010 to the FORTRAN program.

TEST.FOR, listed in Appendix C, is a FORTRAN program that creates the data to be

transferred to the TMS32010. The interface is done in a subroutine called OUT320, which contains

the data to be transferred to the TMS320 1 0 and returns the corresponding sample.

The entire inter-processor demonstration can be implemented using the COM.BAT file.

3. NOTCH FILTER DESIGN 30

3.1.1 Noise Rejection Using Notch Filter

Suppose that we have a signal

(3- 5)

with Wo = n rad/sec and sampling frequency w, = 30n rad/sec. This signal is subject to a

disturbance

(3 - 6)

so that we actually measure XII = Sn + ~, which forms an input to a digital filter

(3 -7)

or alternatively to a filter

(3 - 8)

where r = 0.95.

IT filters are designed correctly, the disturbance will be removed and the output ,,, will be a

"'cleaned·up' version of the signal component in the input. The designed filter H(z) defmes what

the term "'cleaned-up'" means.

3. NOTCH FILTER DESIGN 31

3.1.2 Analysis and Design the Notch Filter

1. Find the unit-pulse response hl,ll and ~,II by taking inverse Z-transforms of H1(z) and H1(z) ,

which are causal filters.

2. Determine H1(z) and H2(z), that is, find 8 and use it. Plot pole/zero diagrams and sketch the

frequency response, in order to clarify the significance of 8 .

3. Write a computer program that implements the futer in a difference-equation form.

4. Plot H1(w) and H2(W) in tenns of both magnitude and phase. In case that you do not have a

graphing program, there is one BASIC graphing programs available in the DSP Lab.

VID.BAS has an on-line manual. It requires the input file to contain two arrays.

S. Drive the filters with x,,, and plot SIl' XII and Yfl'

6. Determine the coefficients of the impulse response of the FIR ruter and convert them to

hexadecimal as in experiment I. (Use either a calculator or the BASIC program TEST.BAS).

7. Use the following relationship

(3- 9)

to determine bm and a/eJ and then convert them to hexadecimal.

3. NOTCH FILTER DESIGN 32

8. How could you modify H1(z) and/or Hl(z) so that the output y,. is closer to the desired signal

$11' Give your arguments. Are they based on the magnitude and/or the phase characteristic?

9. Determine the coefficients of the new unit pulse response of the FIR filter and/or the new blft

and Q. of the IIR ruter. Convert them to hexadecimal.

10. Plot the new Hl(W) and/or Hl(W) in tenns of both magnitude and phase. Did you get the

effects you intended; or additional undesired ones as well?

11. Drive the new ruters with Xl11 and plot the new YI1' Compare to the results obtained under 5.

Did things improve or deteriorate? What do you think you lost/gained in its place?

3. NOTCH FILTER DESIGN 33

3.1.3 Implementation of the Notch Filter

3.1.3.1 Experimental Procedure 11.1

1. Copy DCONV.ASM to EXPII.ASM by typing ·COPY DCONY ASM EXPII.ASMN
•

2. Use EDLIN or DVED to edit EXPII.ASM. Note that DYED.COM has an on-line manual.

3. Input the coefficients of the unmodified unit pulse response of the FIR fIlter in hexadecimal

to the unit pulse response section of the EXPII.ASM. Change all the parameters according

to the order of the filter, that is, change the data-memory address and loop counters in the

linear-convolution section of EXPII.ASM.

4. Assemble and link the program by typing AASM3 EXPII;' and "LINKER EXPII;',

respectively.

5. Down-load the program with a "proper"" sampling rate. Explain how you determined. What

is ·proper"?

6. Copy TEST.FOR to EXPII.FOR as in step 1.

7. Change the input signal and sampling rate in EXPII.FOR, that is, enter the input function

x,. = d" + Sn and the sampling frequency.

8. To run the filter, type COM EXPII.

9. Plot Xn' Sn and Yn' The data files for plotting are ifuet sfuet and ofile, respectively. Are they

what you expect? Compare with corresponding results from part I.

3. NOTCH FILTER DESIGN 34

10. Connect the wavefonn generator to the input of the 320/pc board (lower BNC connector) and

an oscilloscope, and connect the output of the 320/pc board (upper BNC connector) to the

other channel of the oscilloscope.

11. Change DIN from port 7 to port 6 in the beginning of the EXPIIASM. Assemble and link

the program. Down-load the program with 15 kHz sampling rate.

12. Vary frequencies from 1 to 20 kHz. Find the actual notch frequency and also sketch the

magnitude response of the ruter. Does this filter meet the specification? Which are

satisfied/violated? Why or why not?

13. Is this filter stable? Give your arguments!

3. NOTCH FILTER DESIGN 35

3.1.3.2 Experimental Procedure 11.2

I. Copy DIIR.ASM to EXPII.ASM.

2. Input the unmodified coefficients of the I1R filter to both ... coefficient Bm section'" and

II coefficient Am section II in hexadecimal.

3. Assemble, link and down-load the program. Since this program reads data from port 7, run

the filter with the FORTRAN program EXPII.FOR.

4. Plot X,,, SIt and 1", The data fues for plotting are ifue, sfue, and orue, respectively. Are they

what you expect? Compare with results in part I. Is the output YII the same as that from the

FIR futer? Explain why or why not?

5. Input the modified coefficients of the IIR filter to the "'coefficient Am section'" in hexadecimal

of the EXPII.ASM.

6. Run the filter, plot XII' SIt and Yn as in step 4. Compare with the results from step 4.

7. Connect the waveform generator to the input of the 320/pc board (lower BNC connector) and

an oscilloscope, and connect the output of the 320/pc board (upper BNC connector) to the

other channel of the oscilloscope.

8. Change DIN from port 7 to port 6 in the beginning of the EXPII.ASM. Assemble and link

the program. Down-load the program with a sampling rate of 15 kHz.

9 . Vary the frequency from 1 to 20 kHz. Find the actual notch frequency and also sketch the

magnitude response of the filter. Does this ruter meet the specification? Where is it

violated/satisfied? Why?

3. NOTCH FILTER DESIGN 36

10. Let r = 1.3. Calculate QA: in equation (3~9) and convert to hexadecimal.

11. Change to the BUG directory. and execute the BUG program. Find the starting location for

the calculation of the IIR filter and set the program counter at this location with the aid of

EXPII.l.ST.

12. Set the breakpoint at location 0078 and run the program by using GO (S6).

13. After a break at location 007B. use EDIT DATA MEMORY (F2) to input the new a". in

hexadecimal from step 10 into locations 0019 to 0020.

14. Use EDIT REGISTER (Fl) to ensure the input and run the implementation by using GO

(S6).

15. Vary the frequency from the waveform generator from 1 to 20 kHz.

16. What do you observe from the output? Is this filter stable? Explain why or why not? Give

complete arguments!

3. NOTCH FILTER DESIGN 37

4. ALIASING

Aliasing is unavoidable in signal processing where an input signal is not a bandlimited

continuous signal. In experiment III, aliasing is demonstrated with an input from an external

waveform generator. The reduction of aliasing with the aid of the Model 3202 analog filter, as

anti -aliasing ftIter, is also shown.

The TMS32010 MS/PC-DOS CrossWare, the PATCH program from the Algorithm

Development Package (ADP), and the Model 3202 solid-state variable filters are introduced. There

are two unique functions of the PATCH program. It can be used: (a) to measure the utilization

of the TMS32010 processor in a real-time operation; (b) to change the sampling rate without having

to down-load the program again; and (c) to twn the algorithm, which has been down-loaded to the

TMS320 1 0, on or off. These functions are all demonstrated in experimental procedure 111.1. The

TMS32010 processor is utilized in a real-time operation. The "'theoretically highest'" order of a filter

that can be implemented in the TMS32010 processor is calculated. The aliasing phenomenon is

demonstrated in experimental procedure 111.1 by varying the frequency of an input signal generated

by a waveform generator, and by varying the sampling rate of a sinusoidal signal which has a fixed

frequency.

4. ALIASING 38

In order to prevent aliasing, the continuous-time signal must be bandlimited before sampling.

although real-world signals are not strictly bandlimited. Usually, an analog prefilter is used before

the analog-to-digital converter. Likewise, the output of a digital-to-analog converter is not

band-limited. An analog postftlter is used to attenuate high-frequency images corresponding to

sampled signals. In experimental procedure 111.2, students will gain experience with prefilters and

postfuters. Also, they will measure the phase response of the designed filter by measuring on an

oscilloscope the period of the output signal which is from the postftlter (analog filter). The output

signal of the implemented digital futer is connected to a low-pass filter (postfuter) with an

attenuation rate of 48 dB per octave. The phase response of the postfilter is given, and therefore,

the phase response of a Kaiser window design 1inear phase'" FIR is measurable, and thus

demonstrated.

4. ALIASING 39

4.1 EXPERIMENT III

The purpose of this experiment is to acquaint the student with the use of the TMS320 1 0

MS/PC-DOS CrossWare and Link Editor; and to become familiar with the PATCH program, from

the Algorithm Development Package (ADP), and the Model 3202 solid-state, variable-frequency

electronic ftIter. Aliasing is demonstrated with an input from the external waveform generator.

Reduction of aliasing is achieved with the aid of the Model 3202 filter. The oscilloscope is used to

view both input and output of the digital ftlter hardware.

4.1.1 TMS32010 MS/PC-DOS CrossWare

To execute the Macro Assembler, enter:

XASM3

The command-line parser prompts for the source, listing, and object-file names:

Source File Enter the source-file name (if the source file does not have an extension, then type the

file name with an explicit '. ').

Listing File Enter the output-listing file name.

Object File Enter the output-object file name.

MS/PC DOS creates defaults for the listing and object files and/or their extensions. The default

extensions are:

4. ALIASING 40

• Source rue .. ASM

• Listing fue -.LST

• Object fue ".MPO

A source .. fue name can be followed by a semicolon, either on the command line or in response

to a prompt; this will cause the Macro Assembler to generate the default file without displaying

further prompts.

Example:

XASM3 <filename>;

By using < ftlename > with a default extension .ASM, the Macro Assembler will generate

defaults for the listing and object files as indicated above.

XASM3 <filename>, <newname>;

By using < filename> with a default extension ASM, the Macro Assembler will generate the

listing file < newname > .LST and the object file < newname > .MPO.

XASM3 <filename>, <newname>

By using < ftlename > with a default extension .ASM, the Macro Assembler will generate the

listing file < newname > .LST and prompt for the object-fue name [6].

4. ALIASING 41

4.1.2 Link Editor

To execute the link editor tenter:

LINKER

The command-line parser will prompt for the control-link map, and load-file names.

Control File Enter the control-fl1e name with an extension (if the control file does not have an

extension, then type the fl1e name with an explicit ~. ').

Map File Enter the link map fl1e name with extension.

Load File Enter the load-module file name with an extension.

MS/PC DOS creates defaults for the listing and object files and/or their extensions. The default

extensions are:

• Control file ... CTL

• Linkmap file ... MAP

• listing file -.LOD

I A source-file name can be followed bya semicolon, either on the command line or in IeSpOnse

to a prompt; this will cause the Macro Assembler to generate the default file without displaying

further prompts.

Example:

4. ALIASING 42

LINKER <filename>;

By using < fllename > with default extension .CTL, the Macro Assembler will generate defaults

for the link map and load flles as indicated above.

LINKER <filename>, <newname>;

By using < fI1ename > with default extension .CTL, the Macro Assembler will generate the link

map file < newname > .MAP and the load file < newname > .LOD.

XASM3 <filename>, <newname>

By using < fllename > with default extension .CTL, the Macro Assembler will generate the link

map Hie < newname > .MAP and prompt for the load file name.

The link-control file is an input me that controls the operation of the Ilnk Editor. This file

contains a set of link-control commands which define the modules to be linked and how they are

to be linked. The Link Editor links the object modules in the order specified by the linker

commands.

The link-control file must be created ahead of time. Entering a pathname instructs the editor

to look for a file containing the necessary control commands (7]. Since all the control rues have

been created already t details of how to write a control me are not discussed here.

4. ALIASING 43

4.1.3 PATCH

The PA TCH program has two basic purposes. The frrst is to install TMS320 1 0 program patches

under user control. The second is to measure the utilization of the TMS32010 processor rea1·time

operating conditions.

To execute the program, type the following command line:

PATCH[/S][/G][/I][/BlI/C][/P] PA TCHFILE [SCREEN-MESSAGE)

For example:

PATCH/S/G/P LCON.PCH (4-1)

4.1.3.1 Program Switch

IStop (Abbreviation IS as in 4-1) stop TMS320 1 0 before the patch is loaded. This is

accomplished by holding the TMS320 1 0 processor in a reset condition.

IGo (Abbreviation IG as in 4-1) start TMS320 1 0 after loading. This is accomplished by

releasing the TMS320 1 0 processor from a reset condition.

lIn terru pt Enable the external interrupt (XINT). This has the effect of closing the XINT switch

so that the TMS32010 interrupt input (INT) is connected to the external source.

IBIO Enable the external flags (XBIO). This has the effect of closing the XBIO switch so

that the TMS32010 I/O flag input (BIO) is connected to the external source.

4. ALIASING 44

IClock Enable interrupts from the programmable clock (XCLK). 1ms has the effect of closing

the XCLK switch so that the TMS32010 interrupt input (INT) is connected to the

output of the programmable clock.

IPatch (Abbreviation IP as in 4-1) skip patch-fue name in message.

4.1.3.2 Patching A Real-time Program

In order to patch a TMS320 1 0 program, the user must provide a patch file. The patch file is in

ASCII format and is normally created with a text editor.

The format of a line in a patch fIle is #Cx.xx:JtXX ... , where # is the number of the patch to which

the line belongs (1-8), C is a one-letter command, and the rest of the line (x.xxxxx ...) depends on

the command . PATCH recognizes four commands: S, L, X, and a hexadecimal number (0 .. 9,

A-F).

4.1.3.3 Set Sampling Rate (S)

The S command sets the sampling rate (in Hertz) of the programmable clock of the 320/PC

board. In the example below,

IS8000 (4-2)

3S16000

patch 1 sets the sampling clock to 8000 Hertz, and patch 3 sets the sampling clock to 16000 Hertz.

Patches 2, 4, 5, 6, 7 and 8 (if they exist) do not change the sampling rate in (4-2).

4. ALIASING 45

4.1.3.4 Patch Message (L)

The L command is used to associate a screen message with each of the patches. These are the

messages which are displayed by the name of the function key for each patch. For example:

lL Sampling Rate = 100

2L Sampling Rate = 500

3L Sampling Rate = 1000

4L Sampling Rate = 2000

5L Sampling Rate = 4000

6L Sampling Rate = 8000

7L Sampling Rate = 16000

81 Sampling Rate = 30000

these lead to the display of Figure 7.

4.1.3.5 External File Input (X)

The X command is used to input a patch which has been assembled by an assembly program.

The argument for this command is the name of the file to be loaded. If no extension is given. the

.LOD extension is assumed. An example of using this extemal file command is shown below

4. ALIASING

IX FFT

2X LCONV.MPO

IX DFT.LDD

46

ATLANTA SIGNAL PROCESSORS INC.

0 20 40 60 80 100

PERCENT TI\IS32010 UTILIZATION

Fl I SAlV1PLING RATE= 100 I I F21 SAlVIPLING RA TE= SOO

F31 SAlVtPLING RATE= 1000 I F41 SAMPLING RATE= 2000

I FSI SAMPLING RATE= 4000 I F61 SMIPLING RATE= 8000

I F71 SAMPLING RATE= 16000 F81 SAMPLING RATE= 30000

F9: Toggle Algorithm On/Orf Condition F10: Exit

Algorithm Active

Figure 7. Typical example of a PATCH screen.

4. ALIASING 47

The fue FFT.LOD is loaded into patch number 1 and LCONV.MPO is loaded into patch

number 2. The file DFT.LOD is added to patch number 1.

4.1.3.6 Direct Patch (#)

If the command field is a legal hexadecimal number (0-9, A-F), then the line is a direct patch.

The form of a direct patch is #XXXXYYYY, where # is the patch number which is from 1 to 8,

XXXX is a four-digit hexadecimal number for the patch (word) address in the dual-port memory,

and YYYY is a four digit hexadecimal number for the data to be patched. The direct patch is not

used in this experiment.

4.1.3.7 Measuring TMS32010 Efficiency

One of the most powerlhl features of the 320/PC board is its dual-port memory. Because this

memory can be simultaneously accessed from both the TMS3201 0 processor and the host

processor, and because the dual-port memory requires no wait states from either processor, a

running TMS32010 program can be patched (that is, to change the sampling rate under user control

through a host processor) and measured in real-time.

The second function of PATCH is to measure the efficiency of the TMS32010 in real-time

operation. PATCH computes the percent utilization by sampling the value of location 8 in the

memory window, and taking averages of the results. The average utilization is displayed on the

screen in real-time.

The fmal function of PATCH is to signal the TMS320 10 program to deactivate the algorithm.

Like the previous function, the TMS320 10 program must be written specifically to utilize this

4. ALIASING 48

function. PA TCH signals the TMS320 10 processor that an algorithm should be active by placing

a 1 in location 10 of the TMS32010 assembly program.

4.1.4 The Model 3202 Filter

The Model 3202 filter is a solid-state, variable-frequency. electronic filter with cutoff frequencies

continuously adjustable over a range from 20 Hz to 2 MHz [8]. The pass-band gain is unity (0 dB),

with an attenuation rate of 24 dB per octave outside the pass-band. The maximum attenuation is

greater than 80 dB and the output hum and noise are less than 1 00 microVolts.

The Model 3202 filter can function as either a High-Pass or a Low-Pass Filter. In the High-Pass

mode of operation, the maximum input signal is 3 Volts rms and the upper 3 dB point occurs at

approximately 10 MHz. In the Low-Pass mode, the Filter is direct-coupled and the combined AC

plus DC input signal should not exceed 4.2 Volts peak-to-peak. The Model 3202 Filter can also

function as either a Band-Reject Filter with cutoff frequency limits from 20 Hz to 2 MHz, or to

provide a sharp null at any frequency between 40 Hz and 800 kHz when the two channels are

connected in parallel. When these two filter channels are switched to the same mode of operation

and connected in series with both dials set to the same cutoff frequency, the Model 3202 Filter will

function as a High-Pass or Low-Pass Filter with an attenuation rate of 48 dB per octave. If the two

channels are connected in series, and one channel is operated in the Low- Pass mode and the other

in the High-Pass mode, the Model 3202 Filter will function as a Band-Pass Filter with an

attenuation rate of 24 dB per octave outside the pass-band.

1ms filter has a maximally flat or Butterworth characteristic when the RESPONSE switch(s)

located on the rear of the chassis, is in the MAX FLAT position. For pulse-type wave-forms, this

switch should be in the SAMPLE RC position, optimum for transient-free filtering.

4. ALIASING 49

4.1.4.1 Frequency Dials

Each channel has a single-decade. frequency dial (calibrated from 19 to 210) and an associated

high-pass/low-pass band switch that provides five multiplier ranges for each mode.

4.1.4.2 Frequency Range

High-Pass and ww-Pass cutoff frequencies continuously adjustable from 20 Hz to 2 MHz in five

bands. IT frequency dials is set at 20. and frequency range is set at 100 Hz, the cutoff frequency is

at 2000 Hz.

4.1.4.3 Cutoff-Frequency Calibration Accuracy

The cutoff-frequency calibration accuracy is about ± 5 % for bands one to four. and ± 10 % for

band five, with Response Switch in Max. Flat (Butterworth) position; less accurate in R-C position.

Relative to mid-band level, the filter output is down 3 dB at cutoff in Max. Flat position. and

approximately 13 dB in the R-C position.

4.1.4.4 Bandwidth

Low-Pass Mode: Frequency response from DC to the cutoff frequency set within the range from

20 Hz to 2 MHz.

High-Pass Mode: Continuously adjustable between 20 Hz and 2MHz with upper 3 dB point at

approximately 10 MHz.

4. ALIASING so

Band-Pass Mode: Continuously variable within cutoff-frequency limits of 20 Hz to 2 MHz. For

minimum bandwidth, the high-pass and low-pass cutoff frequencies are set equal. This

produces an insertion loss of 6 dB, with the -3 dB points at 0.8 and 1.25 times the

midband frequency.

Band-Pass Mode: Continuously variable within cutoff-frequency limits of 20 Hz and 2 MHz or a

sharp null at any frequency between 40 Hz and 800 kHz. The low-pass band extends

to DC. The high-pass band has its upper 3 dB point at approximately 10 MHz. The

null is sharper than that of a balanced "'parallel T'" fIlter, and is obtained by setting the

high-pass cutoff at approximately twice the desired null frequency, and the low-pass

cutoff at approximately one-half the desired null frequency.

4.1.4.5 Response Characteristics

Butterworth Each channel exhibits a maximally flat, fourth-order, Butterworth response for a

optimum perfonnance in the frequency domain.

Simple RC Fourth order RC response for transient-free time-domain performance. Higher-order

characteristics may be obtained by cascading individual channels.

Attenuation slope: Nominal 24 dB per octave per channel in high-pass or low-pass modes.

Maximum attenuation: Greater than 80 dB.

4. ALIASING 51

4.1.4.6 Panel Control

The front panel of the Model 3200 or each channel of the Model 3202 includes a frequency dial,

a band multiplier/function switch, two BNC coaxial connectors for INPUT and OUTPUT signals,

and a screwdriver control for the adjustment of the output DC level. A POWER-ON switch and

an indicator light are used in both models.

The rear chassis of each channel of the Model 3202 Filter has two switches; one for selecting the

filter response of either the Butterworth type (Maximal flatness) or simple RC (Transient-free), and

one for discoIUlecting the signal ground from the chassis ground.

4.1.4.7 (Jperation

1. Make appropriate connections to the INPUT and OUTPUT connectors of the futer. The nIlS

INPUT voltage should not exceed 4.2 Volts peak-to-peak in the Low-Pass mode. The filter

can sustain a combined AC and DC INPUT voltage of up to 200 Volts peak without causing

permanent damage. In the event of an overload, the output waveform will appear distorted.

2. Set the mode of operation and cutoff frequency by means of the band multiplier switch(es) and

the frequency dial(s).

3. Turn the power switch to ON. After a sufficient warm-up time, check the output DC level.

If necessary, adjust DC LEVEL potentiometer(s) for zero Volts on the output(s).

4. For normal filter operation, the floating/chassis ground switch(s), located on the rear of the

chassis, should be in the chassis position. If the filter is used in a system where ground loops

make ungrounded operation essential, this switch(s) should be in the floating position.

4. ALIASING 52

CAUTION: In FLOATING operation, the signal ground should be connected to system

ground to prevent excessive hum and noise.

5. When the ftltering operation consists principally of separating frequency components of a

signal, the RESPONSE switch(s) located on the rear of the chassis should be in the

MAX -FLAT position. If the fUter is used to separate pulse-type signals from noise (in the time

domain), this switch should be in the RC position.

6. BNC coaxial connectors are provided on the front panel and on the rear of the chassis for both

INPUT and 0 UTPUT connections.

High-Pass or Low-Pass operation with 48 dB per octave attenuation

1. Link together the two channels in series by connecting the output of the left channel to the

input of the right channel.

2. Select identical mode of operation and multiplier position for both channels.

3. Set both dials to the same cutoff frequency. Note that when two channels are in series and set

to the same mode of operation with an identical cutoff frequency, the gain at the cutoff

frequency will be down 6 dB from the pass-band gain with the two RESPONSE switches in

the MAX- FLAT (Butterworth) position. In the simple R -C position, the gain at the cutoff

frequency will be down approximately 26 dB.

Band-Pass operation with 24 dB per octave attenuation

1. Connect the two channels in series.

2. Set the left channel to the High-Pass mode (this will control the Low-Cutoff frequency). Set

the right channel to the Low-Pass mode (this will control the High-Cutoff frequency).

4. ALIASING 53

Band-Pass operation could also be obtained by setting the left channel to the Low-Pass

mode and the right channel to the High-Pass mode. This method has the advantage that the

Low Cutoff Frequency (High-Pass mode) is on the right, which is a logical arrangement since

it coincides with our customary graphical representation of a Band-Pass futer. This may be

disadvantageous, since the output is DC-coupled when the Low-Pass channel is on the right.

If this method is used, the output is AC-coupled, which is desirable in some applications where

no DC fluctuations on the output can be tolerated.

3. The minimum Pass-Band is obtained by setting the high cutoff frequency equal to the low

cutoff frequency. In this condition, the insertion loss is 6 dB, and the -3 dB cutoff frequencies

occur at 0.8 and 1.25 times the mid-band frequency.

Band-Reject or Notch filter operation

1. Arrange together the two channels in parallel by connecting the input signal to the BNC

INPUT connector of both channels simultaneously. The OUTPUT from both channels

should be added through two equal external resistors in series with each output. The junction

of these resistors becomes the output of the futer. It is recommended that the resistors be

approximately 1,000 Ohms and of the carbon or metal-film type if the filter is used at high

frequencies. If the two resistors are not equal, the gain on one side of the notch will be

different than the gain on the other side. The smaller the adding resistors, the greater the loss

will be through the filter in the Pass-Band region, because of the loading effect of the filter

output impedance of 50 Ohm.

2. The first channel should be set for Low-Pass operation. The second channel should be set for

High -Pass operation.

3. It should be noted that the output impedance in the band-Reject mode will not be 50 Ohm,

but approximately one half the resistance of one adding resistor. The maximum input should

4. ALIASING 54

not exceed 3 Volts nns, and the maximum output voltage in this mode will be I.S Volts nns

open circuit.

4.1.4.8 Phase Response

The phase response of each channel of the Model 3202 filter can be obtained from Figure 4·2

which gives the nonnalized phase response characteristic for either mode of operation in degrees

lead (+) or lag (-) as a function of ratio of the operating frequency f to the low cutoff frequency

h (High-Pass mode) or high cutoff frequency fH (Low-Pass mode). The solid curve is for the

MAXlMALL y FLAT or Butterworth mode, and the dotted curve is for the transient-free or

simple R-C mode.

EXAMPLE:

Detennine the phase shift of the filter in the MAXIMALLY FLAT or Butterworth mode. with

the function switch set to the High-Pass mode at the X 1 position, and the cutoff frequency (fJ set

to 100 Hz and an input frequency (j) of 300Hz.

Since i = i~~ = 3 the output of the filter leads the input by 50 degrees, from Figure 8.

The phase response of the Model 3202 filter could be obtained in the same manner by taking

the algebraic sum of the phase response of each channel.

4. ALIASING ss

+510

.500

+240
-' -II.

II. o
... +'10 a
t
..I

+120

+ 10

~------........ ~
..... -

....... ""- .
r--., ...
,

"-

'"
~ ,

"- ., " ,
"~

\''" .\\",

""~ "-, , '.,
~ " " ~ -, ~

:..... .. - 1-
~ ...

~ ~ t-;

o

-120
z -... ... o · '.0 s

u
z o

-240 i

-500

o
.I . 2 .S .4.5.1.7 2 , • , I " •• .0'10

INPUT fREOUENCY CO
LOW CUTOFF fL 0It HIIN cutor, 'M

Figure 8. Normalized phase characteristics.

4. ALIASING 56

4.1.5 Experimental Procedure 111.1

1. Connect the waveform generator to the input of the 320/PC board (lower BNC connector)

and an oscilloscope, and connect the output of the 320/PC board (upper BNC connector) to

the other channel of the oscilloscope.

2. KFIR.ASM is a TMS32010 assembly program. It implements a nonrecursive lowpass filter

designed by using the Kaiser window method. Its specification is listed in Figure 9. Use

TMS32010 MS/PC-DOS CrossWare to assemble KFIR.ASM.

3. KFIR.CTL is a link-control fue which has been written already. Use the linker to produce

an object fIle with .LOD as the extension.

4. Down-load KFIR.LOD to the 320/PC board, with a 10 kHz sampling rate.

S. Measure the utilization of the TMS32010 processor in real-time operation, by using the

PATCH program.

6. The TMS32010 executes instructions at a speed of 200 ns per cycle. It takes 2 cycles to

complete one multiplier and add; and it takes about 25 cycles to read data from the AID, write

to the D/A and some other functions. If the filter you down-load to the TMS32010 processor

has an order of 32, what is the 'theoretical' utilization of the TMS32010 processor for a 10

kHz sampling rate?

7. How do 5 and 6 compare with the implemented filter?

8. If the maximum sampling rate is used to sample the input, what is the highest order filter that

can be implemented with the TMS32010 processor?

4. ALIASING 57

•••

Fl~lITEI:\IPULSE RESPONSE (FIR)
LI:"mAR·PHASE DIGITAL FILTER DESIG~

KAISER· WI=" DOW ALGORITH;\l

8A~DPASS FILTER

FILTER LE~GTH - 32
SA;\tPLI~G FREQUENCY - 10.00 KILOHERTZ

DESIRED RIPPLE" 26.021 (DB)
KAISER WINDOW PARAMETER, ALPHA - 2.146

• •••• !:\fPULSE RESPONSE

12·BtT QUANTIZED COEFFICIENTS

H(1)" .112305E·0 1 ,. H(32)
H(2) == .842285E·02 ... H(31)
H{ 3) == ·.610352E·03 ,. H(30)
H(4)" .111084E-01 ,. H(29)
H(5) = .817871E·02 ... H(28)
H(6) = -.325928E·01 .. H(27)
H(7) "" ·.386963E-OI ... H(26)
H(8) - .137939E·Ol - H(2S)
H{ 9)'" .269775E-Ol ,. H(24)
H(10)- -.207520E·02 ... H(23)
H(11)= .443115E·Ol - H(22)
H(12)- .913086E·01 - H(21)
H(13)- ·.53833OE-Ol ... H(20)
H(14)- -.230591E-00 - H(19)
H(15)- -.845947E·Ol ,. H(18)
H(16)- .240234E-00 .. H(17)

••• CHARACTERISTICS OF DESIGNED FILTER •••

BAND 1 BAND 2

LOWER BAND EDGE .0000 1.5000
UPPER BAND EDGE 1.0000 2.5000
NOMINAL GAIN .0000 1.0000
NOMINAL RIPPLE .0500 .0500
MAXIMUM RIPPLE .0402 .0402
RIPPLE IN DB ·27.9258 .3609

BAND 3

3.0000
5.0000
.0000
.0500
.0278

·31.1267

••

Figure 9. Characteristics of designed KFIR filter.

4. ALIASING 58

9. Vary the frequency of the input signal over the range of 1 kHz to 20 kHz. Record the 3 dB

cutoff' frequencies from observation with the oscilloscope. Does this filter meet the

specifications listed in Figure 4·3? Why or why not?

10. Use PATCH to vary the sampling rate over the range of 100 Hz to 30 kHz. What do you

expect the output to be? Over what frequency range, does the output not have aliasing

theoretically and experimentally? How did you detennine this? Give complete arguments.

11. Use the deactivate algorithm key (F9). What do you expect the output to be and why? What

is actually happening?

12. Use the exit key (FlO) to exit from the PATCH program.

4. ALIASING 59

4.1.6 Experimental Procedure 111.2

1. Connect the waveform generator to the input of the 320/PC board (lower BNC connector)

and an oscilloscope, and connect the output of the 320/PC board (upper BNC connector) to

the other channel of the oscilloscope as in experimental procedure 1.3.

2. Down·load KFIR.LOD to the TMS32010 board, with a sampling rate of 10 kHz.

3. Slowly increase the frequency of the input signal until aliasing occurs. Adjust to the lowest

frequency where the aliased signal has maximwn amplitude. What is the input frequency from

the waveform generator? What is the output frequency seen from the oscilloscope? Explain

how they are related to the sampling rate.

4. Connect the waveform generator to the input of the Model 3202 filter, and the output of

Model 3202 filter to the oscilloscope. Find the range of Low-Pass filter cutoff frequencies for

which the designed passband is maintained.

5. Proceed to connect the output of the Model 3202 ftlter to the input of 320 board. Adjust the

Low-Pass filter cutoff frequency until the aliasing gain is down by 20 dB. Record the

Low-Pass filter cutoff frequency.

6. Connect the Low-Pass filters in series for an attenuation rate of 48 dB per octave to achieve

an aliasing gain down by 40 dB.

7. Explain how the Model 3202 filter can function as an anti-aliasing filter. Provide graphs to

clarify your answer.

4. ALIASING 60

8. Connect the output of the TMS32010 to the input of the Model 3202 Low-Pass filter with an

attenuation rate of 48 dB per octave, and connect the output of the Model 3202 to the

oscilloscope.

9. The Low-Pass f.U.ter functions as a postfilter to 'smooth out' the output of the TMS32010.

Sketch the phase response of the KFIR filter.

a. Set both channel 1 and channel 2 to overlap.

b. The easiest way to measure the phase response is to vary the frequency until the phase

shift is a multiple of 9oo. Slowly increase the frequency from the lower band edge until

the input and output signals are on top of each other, that is, the phase difference is OO.

c. Record the frequency, which is not read from the waveform generator dial but measured

from the oscilloscope.

d. Increase the frequency again until the difference between the input and output increases

by 9oo and record the frequency.

e. Repeat (d) until the frequency has increased to the upper band edge.

Note that the phase response you measured is not the phase response of the KFIR filter. What

is the relationship between the phase response of the KFIR filter, the postfilter, and the phase

response you measured? Give arguments!

10. What do you observe from the phase response of the KFIR filter and which property do you

expect? Justify your answer.

4. ALIASING 61

5. FIR AND IIR FILTER DESIGN

Filtering is one of the most useful and important operations in signal processing. In the context

of analog signals and systems, the concept of filtering comes about due to the fact that Fourier

transfonns of the input, X.((J)), and of the output, Yb((J)), of a linear time-invariant system are related

as follows:

(5 - 1)

where H.(w) is the transfer function of the system. Analog filters can be implemented in a variety

of ways; but, for many reasons, it may be of interest to filter an analog signal using digital methods.

A general block diagram. of a system for digital filtering of analog signals is shown in Figure 10.

There are five basic components: a prefilter, an analog-to-digital (A/D) converter, a numerical

processor or a digital filter (e.g., the TMS32010 microcomputer), a digital-to-analog (D/A)

converter, and a posttilter. It is important to understand the issues that bear upon the use of the

filter design/implementation package.

The Digital Filter Design Package (DFDP) allows students to design recursive (IIR),

Kaiser-Window Nonrecursive (KFIR), Parks-McOellan and Equiripple Nonrecursive (PMFIR)

filters. The package also generates the TMS32010 assembly code for the designed ft1te~. Once the

s. FIR AND IIR FILTER DESIGN 62

; ..

o -
•

63
5. FIR AND IlR FILTER DESIGN

designed ruter is down-loaded to the TMS32010, the whole system can act as a digital ruter. The

instructions for use of both the IIR and FIR modules to design a futer are discussed step-by-step

in experiment IV. Capabilities and limitations of both IIR and FIR ruters are described. Different

procedures, such as bilinear transformation of Butterworth, Chebyshev and Cauer (elliptic) filters

can be used to design an IIR ruter. The characteristics of each type of ruter are presented to the

designer in the following plots of linear magnitude, log magnitude in dB, phase, pole and zero

location in the z-plane, and unit pulse response. FIR filters using the Kaiser-Window method

(KFIR), or the Parks-McClellan Equiripple method (PMFIR) can be designed as well. Students

are asked to compare KFIR and P~fFIR ruters with the help of plots of magnitude, log magnitude,

unit-sample response and frequency error.

S. FIR AND IIR FILTER DESIGN 64

5.1 EXPERIMENT IV

The purpose of this experiment is to acquaint the students with the software, principles, and

problems associated with the Digital Filter Design Package (DFDP). It allows the student to design

recursive (IIR), Kaiser-Window Nonrecursive (FIR), and Parks-McClellan Equiripple

Nonrecursive (FIR) Filters. It also generates TMS32010 assembly code for the designed filter. In

this experiment, two modules are demonstrated; for IIR, and for FIR designs. Details of the

execution of these programs are covered in this experiment.

5.1.1 Programs in the DFDP

DR To design recursive filters by the method of bilinear transformation of Butterworth,

Chebyshev 1 or elliptic prototypes.

KFIR To design nonrecursive filters by the method of windowing using a Kaiser window.

PMFIR To design optimal nonrecursive filters by the Remez exchange algorithm as developed

by Parks and McClellan.

CGEN To generate assembly language programs for the Texas Instruments TMS32010

microcomputer to implement both recursive and nonrecursive digital filters as designed

by the above design modules.

INSTALL This program allows the user to specify where each program module will reside.

INSTALL writes a file named DFDP.PAR which contains the location of each of the

program modules, and whether or not there is a graphics printer. In this and all other

experiments, the INSTALL program has been run.

5. FIR AND IIR FILTER DESIGN 65

5.1.2 To Execute the Software Package

After the INSTALL Program has been run, the user may type DFDP to execute the software

package. The menu will appear on the screen as shown in Figure 11, after carriage return.

The user may select one of the design modules by entering either I, 2, 3, or 4. Also, each of the

design modules, HR, KFIR, PMFIR and CGEN, can be executed by simply typing the design

module name in response to the DOS prompt. For example, C: KFIR (carriage return). This

may be the most efficient method of operation when the user is only interested in one ftJ.ter type.

s. FIR AND IIR FILTER DESIGN 66

1-"

"'" ;;
~ o -;;
::I
~
[!I'J
::0
o
~
E z

Q\

••• Digital Filter Design Package •••

(C) COPYRIGHT, 1984: ATLANTA SIGNAL PROCESSORS INC, VERSION 2.01

ON: IBM20134

PROGRAM SELECTION MENU

ENTER THE NUMBER CORRESPONDING TO THE DESIGN TECHNIQUE DESIRED

1. RECURSIVE (IIR) FILTER DESIGN

2. KAISER WINDOW NON RECURSIVE (FIR) FILTER DESIGN

J. PARKS-McCLELLAN EQUIRIPPLE (FIR) FILTER DESIGN

4. TMS320 CODE GENERATOR

S. QUIT

OPTION DESIRED -

Figure 11. The menu of DFDP.

5.1.3 Instruction for use of the IIR Design Module

5.1.3.1 Executing program IIR

The design module IIR uses the method of bilinear transformation of an analog filter of

Butterworth, Chebyshev, or Cauer (elliptic) type.

Once IIR is typed, the program begins with the message shown in Figure 12.

The note (CT TO CONT) is used in several places in this and all other design modules to prompt

the user to enter a carriage return to cause the program to proceed to its next step.

5.1.3.2 IIR Main Menu

After entering a carriage return, the menu will appear on the screen as shown in Figure 13.

If a filter is to be designed, the first step is to decide on the type of filter, that is, lowpass, highpass,

bandpass, or bandstop.

If READ SAVED FILE action is selected, the program will ask for the name of a file containing

a filter previously designed by typing

ENTER FILENAME (IIR.FLT): ELLIPT.FLT

The file name of a previously saved filter can be entered, or if a carriage return is entered without

the rtIe name, the program will attempt to read the file which will contain the most recently designed

filter that was saved. In the example above, it will be 'IIR.FLT'.

s. FIR AND IIR FILTER DESIGN 68

11'
"'f1 ;;
~ o -;;
"'f1 e
trl
~

o
~
c=;
Z

~

•• Digital Filter Design Package ••

IIR BILINEAR TRANSFORM DESIGN PROGRAM

(C) COPYRIGHT, 1984: ATLANTA SIGNAL PROCESSORS INC., VERSION 1.02

SN: IBM20134

THIS FILTER DESIGN PROGRAM DESIGN RECURSIVE DIGITAL

FILTER FROM BUITERWORTH, CHEBYSHEV, AND ELLIPTIC

ANALOG PROTOTYES.

CRTOCONT

Figure 12. IIR bilinear transfonnation design program.

••• I1R BILINEAR TRANSFORM MAIN MENU •••

ENTER THE NUMBER CORESPONDING TO THE FILTER DESIGNED

1. LOWPASS

2. HIGHPASS

3. BANDPASS

4. BANDSTOP

OR TAKE THE FOLLOWING ACTION

5. READ SAVED FILE

6. RETURN TO PROGRAM SELECTION MENU

7. QUIT (RETURN TO DOS)

OPTION DESIRED =

Figure 13. IIR bilinear transfonnation main menu.

s. FIR AND IIR FILTER DESIGN 70

This option is very useful when it is desired to display the response characteristics of a previously

designed ftlter, or to quantize the coefficients of a previously designed, but unquantized ftIter. If the

name of a ftle containing an FIR ftlter is given, an error message will be typed, and no ftIe will be

read.

It is possible to return to the main DFDP menu or to the DOS operating system by entering 6

or 7, respectively.

5.1.3.3 The Sampling Rate

All frequencies are assumed to be in kHz. These units are used in labeling subsequent plots of

response functions. All frequencies are entered in the same units as the sampling frequency. This

is because of the scaling property of sampling (i.e., n = roT).

5.1.3.4 The Cutoff Frequencies

For lowpass or highpass filters, only a single passband or a single stopband frequency is requested.

In any case, all of the passband and stopband frequencies must be less than one-half of the specified

sampling frequency.

5.1.3.5 Lfpprox~on l?rrors

These errors are referred to as passband ripple and stopband ripple. Note that the gain in the

passband is always normalized to one, and the magnitude of the frequency response of the designed

ftIter will vary around one in the passband, and between zero and one in the stopband. Although

the passband and stopband ripples can be different, the ripple must be the same in the two

s. FIR AND I1R FILTER DESIGN 71

stopbands. This is also true of the two passbands of a bandstop filter, except in a Parks-McClellan

design.

5.1.3.6 Selection of Approximation Type

The entry of the approximation-error limits completes the specification of the futer. The

program uses the specified cutoff frequencies and approximation-error limits to compute the filter

order required to meet the specifications. The design equation for any of the approximation types

will generally yield a non-integer filter order. If the order were rounded down, the specifications

would probably not be met. Good ruter orders to work with are the smallest higher, or even bigger,

integer.

The Cauer (elliptic) approximation always meets the specifications with the lowest order. The

Butterworth and Chebyshev filters may have more desirable phase characteristics. The desired

approximation type can be selected by entering the appropriate number. If results of the order

calculation are not satisfactory, the user can return to the beginning of the IIR program to enter a

new set of specifications by entering S. It is possible to return to the DFDP menu or to the DOS

operating system by entering 6 or 7, respectively.

If one of the approximation types is selected, the program proceeds to compute the coefficients

for the futer. While the computation is in progress, no key should be pressed (since that key wiD

be interpreted as the answer to the next question asked by the program).

5.1.3.6 Coefficient Quantization

After the choice of approximation method is made and the futer coefficients have been computed,

the following question appears:

s. FIR AND IIR FILTER DESIGN 72

DO YOU WISH TO QUANTIZE COEFFICIENTS FOR THE TMS320 ? (Y OR N) N

The unquantized coefficients are represented with the full 32-bit floating-point representation

of the IBM PC. If the user wishes to quantize the coefficients to 16-bits for use in a TMS32010

program as produced by the design module CGEN or for other flXed point hardware

implementations, enter Y followed by a carriage return. But quantization can be avoided by simply

entering a carriage return. Note that no choice is given here for the number of bits of quantization.

Because of all the issues associated with quantization in a recursive filter, and because of the limited

scaling capabilities of the TMS32010, it was decided to work with 16-bit quantization.

5.1.3.7 Verification of the Characteristics of the Designed Filter

After responding appropriately to the quantization question, the program measures the

approximation errors of the filter. Since this measurement requires the evaluation of the frequency

response on a dense set of frequencies, it can require a significant amount of time. A summary of

the characteristics of the designed filter is then printed on the screen. Note that the program asks

DO YOU WANT RESULTS SENT TO THE LINE PRINTER? (Y OR N) N

If Y is entered, all the infonnation concerning the characteristics of the designed filter is printed.

If the filter specifications are not met (the measured passband or stopband ripple is too large),

a warning message will appear.

5.1.3.8 Manipulation and Plotting of Designed Filter

After the filter has been designed and after the line-printer option has been selected, a message

will be displayed as shown in Figure 14.

s. FIR AND I1R FILTER DESIGN 73

ENTER CORRESPONDING NUMBER FOR

INSTRUCTION DESIRED

1. AUTOMATICALLY INCREMENT FILTER ORDER

2. PLOT RESPONSES

3. DISPLAY FILTER COEFFICIENTS

4. OUTPUT FILTER COEFFICIENTS

5. QUANTIZE COEFFICIENTS

6. RETURN TO IIR BILINEAR TRANSFORM MAIN MENU

7. RETURN TO PROGRAM SELECTION MENU

8. QUIT (RETURN TO DOS)

OPTION DESIRED =

Figure 14. Manipulation and plotting designed filter.

5. FIR Al~D IIR FILTER DESIGN 74

At this point, the user has several options for further manipulation and analysis of the designed

filter.

1. Automatic Incrementing of the Filter Order

When the ruter does not meet specifications due to coefficient rounding, it may only fail

by a small amount and the design may be acceptable otherwise. By using this option, the filter

order can be increased systematically after quantization, until the specifications are met. Since

the filter order is incremented by 1, this option may need to be selected repeatedly.

2. Plotting of Response Functions

When the plot response option is selected, a plot menu will be displayed. Entering the

appropriate selection will cause the program to plot linear magnitude, log-magnitude in dB,

phase, group delay, pole and zero locations in the z-plane, and unit pulse response, or all of

the above in sequence. For all the plots except zero location in the z-plane and unit pulse

response, the program has the following message at the top of the plot:

DO YOU WANT AN EXPLODED VIEW? (Y OR N) N

If N is entered, the program returns to the menu to permit another plot selection. If Y is

entered, the program requests the upper and lower limits of the range of frequencies (in kHz)

for which the characteristic is desired to be plotted. 'This feature is extremely useful for

examining the frequency response at the edge of the stopband or passband when the filter does

not meet specifications. If N is entered, the program returns to the plot menu.

3. Display of Filter Coefficients

The heading summarizes the approximation type, and also specifies whether or not the

coefficients have been quantized.

s. FIR AND IIR FILTER DESIGN 7S

4. Saving Designed Filter on Disk

It is possible to output the futer coefficients to a disk fue. It is essential to save the filter

coefficients if the automatic TMS32010 code generator CGEN is to be used. When using

CGEN, it requests the name of the file in which the coefficients are stored. If no file name is

given before pressing the enter key, the infonnation is written to the default file I1R.FL T.

5. Quantization of Filter Coefficients

If the coefficients were already previously quantized, this request for quantization will have

no effect. The program proceeds to measure the response characteristic of the quantized filter,

and then proceeds as if a new quantized design has just been completed.

6. Tenninating the IIR Design program

The IIR design can be tenninated in three ways: (a) to return to the beginning of the IIR

design module to pennit entry of a new set of specifications; (b) to return to the main DFDP

menu to permit the selection of one of the FIR design modules; or (c) to return to the DOS

operating system. Options (a), (b) or (c) are implemented by entering 6, 7, or 8, respectively.

5.1.3.9 Capahilities and Limitations of tlte program IIR

The program IIR contains numerous checks to insure that the user enters a consistent set of

specifications. In order to detect all conditions which might cause numerical problems in designing

the filter, it would be necessary to greatly restrict the flexibility available to the user. The program

will allow the user to ask for filter specifications that may be impossible to obtain using the 32-bit

floating-point arithmetic of the PC, or that may be impossible to implement using 16-bit

fixed-point arithmetic on the TMS320 10.

s. FIR AND IIR FILTER DESIGN 76

Some factors which may cause difficulties in the design of recursive futers are the following:

1. Unreasonably low approximation-error specifications. It generally does not make sense to

specify either passband or stopband approximation errors less than 0.00 I (0.0087 dB passband

or -60 dB stopband ripple) for unity-gain, frequency-selective filters.

2. Unreasonably narrow transition regions between passbands and stopbands. Since all

frequencies are relative to the sampling frequency, a narrow transition region is one which is

a small fraction of the sampling frequency, A transition region as small as 1 Hz might be

unreasonably small if the sampling rate is 10kHz, but if the sampling rate were 10Hz, it would

not be difficult to achieve a 1 Hz transition region. rus holds for unreasonably narrow

passband or stopband specifications too.

No computer program promises to perform the impossible; the user must always verify the

results. The program IIR permits the user to specify filters which cannot be designed by using

the arithmetic capabilities of the PC.

s. FIR Al~D IIR FILTER DESIGN 77

5.1.4 Experimental Procedure IV.l

1. Design an IIR ftIter with the following specifications: Highpass, cutoff frequency 0.35iDrt

passband ripple 0.1, transition width 0.5iD" stopband attenuation> 60 dB. Let iD, = 10 kHz.

2. Use the method of bilinear transfonnation of a Butterworth, Chebyshev, or Cauer (elliptic)

functions.

3. Print characteristics for each of the above types of rtIter. Compare the order of each filter.

4. Plot linear and log-magnitude (in dB), phase, pole and zero location in the z-plane and unit

pulse response for each type of rtIter. Note that the plots can be obtained by using

GRAPHICS in response to the DOS operating system.

5. What do you observe from the plots above? Give a brief description of each type of filter.

s. FIR AND IIR FILTER DESIGN 78

5.1.5 Instruction For Use of FIR Design Module

This program is capable of designing nonrecursive or fmite impulse-response digital filters of the

frequency-selective type, as well as differentiators (FM detection) and Hilbert transformers (SSB

generation). All ftIters designed by this program are generated to have an exact linear phase

characteristics. This linear phase corresponds to a time delay through the filter of exactly M/2

samples. The differentiator and the Hilbert transformer exhibit exactly 90-degree phase shifts in

addition to a linear phase caused by the delay of M/2 samples. The design is based on the

windowing approach, using the family of Kaiser windows.

5.1.5.1 Executing the program KFIR

The design module KF IR can be executed either by selecting it from the D FD P menu or by

typing KFIR in response to the DOS operating system. Once this has been done, a similar message

will appear on the screen as in the program HR.

5.1.5.2 KFIR Main Menu

After entering a carriage return while the previous screen is displaying, the menu will appear on

the screen as shown in Figure 15.

As can be seen, the user can select the type of filter, that is, lowpass, highpass, bandpass,

bandstop, multiband, differentiator, Hilbert transformer and pulse-shaping filter (lowpass filters

with raised cosine responses). Since multiband, differentiator, Hilbert transformer, and pulse

shaping filters are not used in the experiments in the DSP Teaching Laboratory, they are not

discussed here. Other options are the same as in the program IIR discussed before.

s. FIR AND I1R FILTER DESIGN 79

••• KAISER-WINDOW MAIN MENU •••

ENTER THE NUMBER CORESPONDING TO THE FILTER DESIGNED

1. LOWPASS

2. HIGHPASS

3. BANDPASS

4. BANDSTOP

5. MULTIBAND

6. DIFFERENTIA TOR

7. HILBERT SHAPING FILTER

OR TAKE THE FOLLOWING ACTION

8. READ SAVED FILE

9. RETURN TO PROGRAM SELECTION MENU

10. QUIT (RETURN TO DOS)

OPTION DESIRED =

Figure 15. Kaiser-window main menu.

5. FIR AND IIR FILTER DESIGN 80

5.1.5.3 Specification of Filter Parameters

The sampling rate, cutoff frequencies, and approximation errors are specified; the program

computes an estimate of the required length of the unit pulse response of the fllter. The inherent

linear phase of the ftIters imposes the constraint that the magnitude of the frequency response of a

frequency-selective filter be zero at half the sampling frequency when the filter length is even.

Problem 5-5 in [1]. Therefore, only odd lengths should be used when designing full-band highpass

or bandstop futers.

5.1.5.4 Coefficient Quantization

The coefficient quantization is the same as in program HR.

5.1.5.5 Verification of Characteristics of Designed Filter

After the coefficients have been quantified, the program evaluates the frequency response on a

dense grid and at the specified band edges. After that, the approximation errors are measured, and

a summary of the desired and measured frequency response characteristics is displayed on the screen

as in the IIR program. A warning message will appear when specifications are not met.

5.1.5.6 Manipulation and Plotting of the Designed Filter

1. Changing Filter Length

This option is the same as changing the filter length in the program IIR. It can also be used

s. FIR AND IIR FILTER DESIGN 81

to fmd the smallest-length filter that will meet the specifications when the length predicted by

the design fonnula is higher than necessary.

2. Plotting of Response Functions

The plot menu contains options as follows: linear magnitude, log-magnitude, unit sample

response, and frequency error. Note that since the filter always has a precisely piecewise linear

phase, there is no need for plots of phase or group delay.

The procedure of using this plot menu and the other option, such as display of filter

coefficients and saving designed coefficients, are discussed in detail under the IIR in the

previous section.

5.1.5.7 Capahilities and Limitations of KFIR

The program KFIR contains numerous checks to insure that specifications are entered

consistently by the user. In order to detect all conditions which might cause numerical problems

in designing the filter, it would be necessary to greatly restrict the flexibility available to the user.

Factors which may cause difficulties in the design of nonrecursive filters are the same as in the

program HR. Note that the instructions for use of the PMFIR design module are very similar to

those for the KFIR design module.

s. FIR AND IIR FILTER DESIGN 82

5.1.6 Experimental Procedure IV.2

1. Design a KFIR filter with the same specifications as those for the IIR ftlter.

2. Print ftlter coefficients and plot linear magnitude, log-magnitude, unit sample response and

frequency error.

3. What are the differences and similarities between IIR and KFIR filters? Explain!

S. FIR AND IIR FILTER DESIGN 83

5.1.7 Experimental Procedure IV.3

1. Design a PMFIR ftIter with the same specifications as those for the IIR filter.

2. The instructions for using the PMFIR module are the same as those for the KFIR module.

3. Print ftIter coefficients and plot linear magnitude, log-magnitude, unit sample response and

frequency error.

4. Compare KFIR and PMFIR ftlters.

S. FIR AND IIR FILTER DESIGN 84

6. FAST FOURIER TRANSFORM

The Fourier transform has been a principal analytical tool in such diverse fields as linear systems,

optics, probability theory, quantum physics, antennas, and signal analysis. Historically, as use of

computers increased, the overlap in the realms of applications of discrete- and continuous-time

techniques grew t and this provided a natural connection between the two methodologies that

heretofore had developed essentially independently. Analysis of many discrete-time systems

requires the calculation of Fourier transforms, which traditionally presented a prohibitive

computational burden. Nevertheless, the possibilities that were opened up by the digital computer

were sufficiently tempting that active work began on the investigation of digital voice encoders,

digital spectrum analyzers, and other all-digital systems, with the hope that eventually such systems

would be practical. The Fast Fourier Transform (FFT) is an algorithm that proved to be perfectly

suited for efficient digital implementation, as it reduced the computation time for discrete Fourier

transforms by orders of magnitude. With this tool many interesting but previously impractical ideas

suddenly became practical, and the development of discrete-time signal and system analysis

techniques moved forward at an accelerated pace.

In experiment V, the FFT of a sinusoidal signal, obtained from a signal generator, is evaluated

and displayed. The basic radix-2 Cooley-Tukey decimation-in-frequency FFT algorithm [9] is

6. FAST FOURIER TRANSFORM 85

implemented in both FORTRAN and the TMS32010 assembly language. The Discrete Fourier

Transfonn (DFT) is defmed as

N-l

X(n) = LXo(k)~k (6 - I)
k=O

where W = e-j2./N and n = 0,1, ... N - 1. For N = 4, k and n can be represent as 2·bit binary

numbers.

n=O,1,2,3 or n=(nl,no)=OO,Ol,lO,ll

A compact method of writing k and n is:

Using the representation (2) and (3); for N = 4, (1) can be rewritten as

The basis of the FFT algorithm is shown as following:

6. FAST FOURIER TRANSFO&\1

(6- 2)

(6- 3)

(6- 4)

(6- S)

86

The basic radix-2 Cooly-Tukey FFT algorithm

N-l

X(n) = Lxo(k)wn
k

k=o

1

x2(no' nt) = L Xl (no' ko) U;<2n
l + flo)ko

ko=O

Equations (6-6) and (6-7) can be illustrated graphically as shown in Fig. 16.

(6- 6)

(6-7)

In experimental procedure V.I, students are asked to compare the results from both the

FORTRAN program and the TMS32010 processor. Due to the different word lengths used by the

FORTRAN program and the TMS32010 processor the results may differ somewhat. The results

for the phase responses deviate from each other to a greater extent than those for the magnitudes,

because phase determination is more sensitive to word length. The Fourier Transform of a cosine

waveform, with and without a truncation interval equal to a multiple of its period, is demonstrated

in experimental procedure V.2. The use of zero padding to obtain more frequency interpolation is

demonstrated in experimental procedure V.3. Finally, the magnitude and phase of the FFT of an

input signal, obtained from the AID, is displayed on the screen. The laboratory station now serves

as a spectrum analyzer.

6. FAST FOURIER TRANSFORM 87

,..
..,
Fii ...; Xo(O). ~-I!~ _ _ ,,, ",\ ~c:::::::::

u '6ft. 6ft.'\. •• ... X(O) ..,
0
~

C!
~

" ...;

~
til Xo(1).)(rtf"'" ::It •• X(2) ..,

~ --, ,- ... " ~ 0 1- "

~

Xo(2). .. ,r)(1 _ _ to. ~"'" ,~ _to. .,' ... X(1)

"0(3)...-' ~ x..(1.1) ",(1,1) 1- -" -... •• X(3)

Figure 16. Digram of four-point decimation-in-frequency FFT.

=

6.1 EXPERIMENT V

The purpose of this experiment is to acquaint the student with the use of the Algorithm

Development Package (ADP) subprograms, such as HEAR and TI_LOAD, the TMS32010

MS/PC·DOS CrossWare, and the link editor. The Fast Fourier Transform (FFT) of an input

signal, which is generated by a FORTRAN program or measured through the Analog-to-Digital

(A/D) converter, is demonstrated.

The basic radix-2 Cooley-Tukey decimation-in-frequency FFT algorithm is implemented in

both FORTRAN and the TMS32010 assembly language. Both programs are very similar. The

complex input data resides in arrays X and Y, and the DFT is calculated in place. In other words,

the output is written back into the X and Y arrays over the input data, which are destroyed.

In the TMS32010 implementation of a single butterfly radix-2 Cooley·Tukey FFT, all data are

in an external data memory (1/0, i.e., an address is initially set to a data-instruction address counter

and then the data word read from or written to the memory). Because the real and imaginary parts

of the complex input data are in sequential locations, not in separate arrays, data index I has a value

twice that in the corresponding FORTRAN routine.

A TMS32010 normally supports eight input instructions (IN to channels 0-7), and eight output

instructions as well. One of the most useful I/O instructions is IN XX,PA 7 that inputs data from

dual-port memory location 007 and clears the SINT and SBIO flags. In the FFT.ASM program,

there is no checking for the SBIO flag to start the program. When FFT.LOD resides in the

TMS32010 with only two switches, ·S" and ·G·, the program will stop after the IN instruction, and

wait for BFFT.FOR (listed in Appendix D) to interface with it. After the 128 point FFT is

completed, the TMS320 1 0 processor will stop.

6. FAST FOURIER TRANSFORM 89

6.1.1 HEAR

Program HEAR samples an analog signal, stores the samples in a circular buffer in PC memory,

and writes the data to a disk m.e [5].

The program is executed by typing the following:

HEAR[/D][/N][/AUOUTPUTFILE/O][INPUTFILE/I][#/S][Text/Mj

6.1.1.1 Program Switches

/DELETE-OUTPUT Delete output file if it already exists.

/NO-LOAD Do not load TMS32010 sampling program (CIRCLE.LOD)

JASSUME-DEFAULT Use program defaults (8000 Hz sample rate and no message).

6.1.1.2 File and Parameter Labels

JOUTPUT Output file name.

/INPUT Input file name.

ISAMPLING-RATE Sampling rate in Hertz (less than 24000)

/LIMIT Limit on the number of blocks used, each with 2048 samples.

JMESSAGE Text of message to be included in the file header.

6. FAST FOURIER TRANSFORM 90

IREPEAT Repeat count for playback (default is infmite).

IPROCESSOR Processor number (for multiprocessor configuration).

HEAR has three modes of operation which are referred to as the initializing mode, the A-to-D

mode. and the D-to-A mode. In the initializing mode, the user specifies any parameters not

specified by the common line information. In the A-to-D mode, the program takes samples from

the AID converter and writes them into a circular buffer I i.e. when the end of the buffer is reached,

the pointer returns to the beginning of the buffer. In the D-to-A mode, the contents of the circular

buffer is read out sequentially to the D/A converter. If the command line information is not

sufficient to completely specify the operation of the A-to-D stage of the program, then the program

Enters the initializing stage as displayed in Figure 17.

Note that when the initializing mode is ftrst Entered, the values specified for the output ftle,

input ftle, sampling rate, and the message for the ftle header, will be displayed in the appropriate

space. These values (output ftle name, input ftle name, sampling rate and message) can be accepted

by pressing the Enter key. To change the ftle name, simply type the new name followed by the

Enter key. The default value for the sampling rate is 8000 Hz. The maximum number of characters

for the message is 32.

After the text is Entered, the program proceeds to either the A-to-D mode or the D-to-A mode.

If an input fue was specified, HEAR Enters the D-to-A mode. Otherwise, Hear Enters the A-to-D

mode. When all the information is desired, press the Enter key to past the 'Message' line, and the

program will proceed to the appropriate mode.

6. FAST FOURIER TRANSFORM 91

~

a
-'!l
~ o
~
~
~

~ z
(I)
"rl o
~

'0
W

320/PC SIGNAL SAMPLING SYSTEM

(C) COPYRIGHT 1985: ATLANTA SIGNAL PROCESSORS INC -- VERSION 1.01

Output Filename:
I nput filename:

Sampling Rate(Hertz): 008000
Message:
Fl to Exit from Program

H EA R[fD ELETE-OUTPUT](/NO-LOAD][/ A SSU M E· D EF AU L TJ [#I/OUTPUn (#2/INPUT)
[#3/SAMPING-RATEJ (#4/LIMIT)

DELETE-OUTPUT:
NO-LOAD:

ASSUME-DEFAULT:
OUTPUT:

INPUT:
SAMPLING-RA TE:

LIMIT:
MESSAGE:

REPEAT:
PROCESSOR:

1#5/MESSAGE) [#6/REPEA TJ
[#7/PROCESSORJ

Delete output file if it already exists
Do not load TMS32010 sampling program (CIRCLE.LOD)
Use defaults (Rate= 8000 Hertz and no message)
Output file name
Input file name
Sampling rate (less than 24000 Hertz)
Limit on number of 2048 sample block used
Message for output file header
Repeat for playback (default is infinite)
Processor number for multiprocessor configurations

Figure 17. Screen display in initializing stage.

6.1.1.3 A-to-D Mode - Setting Input Signal Levels

When HEAR enters the A-toaD mode, a display will appear as in Figure 18. The horizontal

bars in the top half of the display are "'meters· that display the periodically updated peak signal level,

energy, and position in the circular buffer. If an active signal source is connected to the AID

terminal of the ASPI 320/PC board, the solid horizontal bars in the upper two meters show the

instantaneous value of peak signal level and energy in dB. The small vertical bar in the third meter

shows the position of the circular buffer pointer at that time. The bars will be continuously moving

in actual operation.

The Peak Signal Level meter measures in bits. In order to get the AID converter accurate, it is

necessary to adjust the gain on the signal source until the Peak. Signal Level exceeds 10 bits while

not exceeding 11.

The energy meter displays the rms value of the signal in dB. The averaging is over 1024 samples,

and the display is up-dated every 1024 samples.

6.1.1.4 A-to-D Mode - Capturing A Signal

There are two ways to use the circular buffer of HEAR to capture a signal. Pressing the F 1 key

when HEAR is in the A-to-D mode, causes the buffer to be filled exactly once followed by a shift

to the D-to-A mode. Thus, the signal that occurs after pressing Fl is digitized and stored in the

buffer. The amount of signal that is captured depends on the length of the buffer.

Pressing F2 terminates the filling of the buffer immediately, so that the signal that occurred prior

to pressing F2 is captured.

6. FAST FOURIER TRANSFORM 93

9'
"!1

rn
~
"!1
o
c:
:::0
;;
:::0

~
C/)
"!1 o
~

'f

ATLANTA SIGNAL PROCESSORS INC.
-_ _ __ ... _ __ _ __ -

o 1 2 3 4 5 6 7 8 9 10 11

PEAK SIGNAL VALUE IN BITS

----- -- - - I
-36 ·25 ·14 -3 8 19 30

ENERGY IN 08

r-- -------------)
o 38

BUFFER LIMITS

Fl: Trigger Start for Signal Buffer F2: Trigger Stop for Circular Buffer

-----CiRCULAR -BUFFER-MODE - .~

File: Clock Rate: Buffer Size: 77 Blocks: 19.71 Sec.

Figure 18. Screen display during the A-to-D stage.

The length of the circular buffer is automatically set by HEAR to use all the memory space not

used by the program itself. The third meter shows the buffer limits. It is calibrated in blocks (one

block is 2048 samples). The entry in the bottom line shows the file name to be written, the

sampling rate, and the buffer size in blocks and in seconds. The latter value is simply 2048 times

the number of blocks in the buffer, divided by the sampling rate in samples/sec.

6.1.1.5 D-to-A Mode

If an input file is specified in the initializing mode, the program Enters the D-to-A mode. In this

mode, the captured signal can be played back repeatedly to determine if it is acceptable.

The captured signal is repeatedly played back to the D/A converter. The function keys FI-F4

can be used to move the playback limits to the left or to the right. Pressing once causes this limit

to move one block of 2048 samples.

Pressing F5 causes the program to leave the D-to-A mode and to return to DOS without writing

the captured data to the specified disk file.

Pressing F6 causes the program to write the captured data, delimited by the playback limit

marks, into the specified disk file.

Pressing F7 causes the program to exit the D-to-A mode and to return to the A-to-D mode.

This can be used when the signal segment captured was not satisfactory and the user wishes to go

back and try again to capture a suitable result to save in the specified output file.

6. FAST FOURIER TRANSFORJ\1 9S

6.1.2 Experimental Procedure V.l

1. Copy AFFT.FOR and BFFT.FOR to AEXPV.FOR and BEXPV,FOR.

2. Down·load FFT.LOD to the TMS32010 with two switches, 'Stop' and 'Go',

3. Use Microsoft FORTRAN to compile, and link to execute AEXPV.FOR.

4. Use VID.BAS to plot the input signal, and the magnitude and phase of the FFT of the input

signal.

5. Run BEXPV.FOR by typing "COM BEXPV

6. Use VID.BAS to plot the input signal, and the magnitude and phase of the FFT of the input

signal.

7. Compare the two sets of plots and explain similarities and differences.

6. FAST FOURIER TRANSFORM 96

6.1.3 Experimental Procedure V.2

1. Suppose we have an input signal

j(t) = cos(2nfot)

where 10 = ~, with sampling period T = 1.0 and N = 128 samples. Note that if the truncation

interval is chosen equal to a multiple of the period, the frequency domain sampling function

(i.e. H(j) = ~ 111: t5(f - ~ » is coincident with the zeros of the sin(j}/ffunction. As a result,

the side·lobe characteristics of the sin(/)/ffunction do not alter the discrete Fourier Transform.

results [9].

2. Change the input signal in BEXPV.FOR to j(t) = cos(2nJ.t) .

3. Plotj(t), and the magnitude and phase of its FFT.

4. Suppose that there is another signal!.(t) with!. = 36.~72' Run the implementation again.

5. Plot .h (t), and the magnitude and phase of its FFT.

6. Compare the two magnitude responses. Is it what you expect? Why or why not?

7. What do you suggest to improve the situation? Provide graphs to show that, and indicate what

supports your arguments.

6. FAST FOURIER TRANSFORM 97

6.1.4 Experimental Procedure V.3

1. F16T.ASM performs a 16 point FFT. Down-load F16T.LOD to the TMS32010 as you did

in experimental procedure II. L

2. Let f{ t) = cos(2nJ; t) + cos(2n};t) where J; = ! and h = !, with N = 16 samples and T = 1.0.

3. CFFT.FOR is a FORTRAN program which will communicate with F16T.ASM. It is the

same as BFFT.FOR, except that it is for a 16-point input signal. Copy CFFT.FOR to

CEXPV.FOR. Input the above function to CFFT.FOR and run the implementation.

4. Plot the magnitude of the 16-point FFT of the input signal.

5. Down-load FFT.LOD to the TMS32010.

6. Input the above function with zero padding of 112 points.

7. Run the implementation. Plot the magnitude of the 128 point FFT of the input signal.

8. Compare with the result from step 4. Explain if, and why, the two plots are the same; and in

which way.

6. FAST FOURIER TRANSFORM 98

6.1.5 Experimental Procedure V.4

1. Connect the signal generator to the Analog-to· Digital (A/D) converter and set the frequency

at 1000Hz.

2. Use HEAR to capture the signal from the AID converter, by using the default sampling

frequency. Note that every block represents 2048 bits, and try to make the signal file as small

as possible.

3. The signal file which has been generated with HEAR is in machine code and the first 128 bytes

are used for heading, which indicates the sampling rate, the name of the file and so on. The

data of the signal file is stored after the heading. APPEND.PAS strips off the first 128 bytes

from a signal fue which has been generated with HEAR. Upon running the program the

student is prompted to either (1) strip off a header or (2) append a file header. Both options

prompt the student for an input and output file name. In this experiment, the first option is

used, and the output file name must be OUT4.DAT. To strip off the heading, type 'append"

with option 1.

4. Link the FORTRAN program and plotting subroutine, and execute the program by typing:

go expv4.

S. The plot of the input signal will be displayed on the screen, and the magnitude and phase of

the FFT of that input signal will be displayed upon hitting the Enter key.

6. Use the printScreen key to plot these three waveforms.

7. Is it what you expected? Why or why not?

6. FAST FOURIER TRANSFORM 99

8. Use zero padding of 64 points and 96 points to increase frequency interpolation. Plot input

signal, magnitude and phase. Compare the three sets of wavefonns.

9. After fInishing all of the above, please delete the signal file OVT4.DAT.

6. FAST FOURIER TRANSFORM 100

7. DIGITAL FILTER DESIGN

In the previous chapters and experiments, the use of software associated with the Algorithm

Development Package (ADP), the TMS32010 MSjPC-DOS CrossWare and the Link Editor, the

Model 3202 solid-state, variable-frequency filters, and the Digital Filter Design Package (DFDP)

have been introduced and discussed. In experiment VI, students are given an opportunity to design

some digital filters based on the knowledge and experience they have gained in class, and from

previous experiments.

In experimental procedure VI. I , students will design four different types of IIR filter by using

the bilinear transformation of analog Butterworth, Chebyshev I, Chebyshev II, and elliptic designs.

The results are supported by graphs from DFDP. In experimental procedure VI.2, FIR filters are

designed by using the Kaiser window method and the Parks-McOellan method. If the specification

of the . filter allows ± 10 % of error in both stopband and passband, the number of bits for

quantization can be determined by choosing the number of quantization bits in the DFDP. The

differences between the Kaiser window method and the Parks-McClellan method are demonstrated,

and students are asked to draw conclusions there from. At the end, students are asked to design

the smallest order FIR and IIR filters for given specifications, both with 12 bits of quantization,

and to write them to an output file. The output file is used to generate the TMS32010 assembly

code by using CGEN, which is another module in DFDP. The programs are assembled, linked

7. DIGITAL FILTER DESIGN 101

and loaded to the TMS320 1 0 processor. A system for running both filters in real-time is designed.

In order to improve the aliasing and imaging attenuation by 20 dB, the Model 3202

variable-frequency, electronic fitter is used. Students will have an opportunity to design and then

implement this system, for real-time operation and verification.

7. DIGITAL FILTER DESIGN 102

7.1 EXPERIMENT VI

The purpose of this experiment is to give the student an opportunity to design some digital

filters with the use of all the software associated with the Algorithm Development Package (ADP),

the Digital Filter Design Package (DFDP), the TMS32010 MS/PC·DOS CrossWare, and the Link

Editor, and the Model 3202 solid-state variable-frequency, electronic futers.

7.1.1 Filter Specification

Lowpass, cutoff frequency = 0.25 W" passband ripple = 0.0 I, transition width = 0.05 £0" stopband

attenuation;::: 60 dB. £0, = 1 kHz.

7. DIGITAL FILTER DESIGN 103

7.1.2 Experimental Procedure VI.1

1. Design IIR futers that satisfy the specifications above and in addition have respectively the

following characteristics:

a. The magnitude response is a smooth function of frequency. The filter has N zeros at

Z= - 1 (CD = n/n, where N is the order of the denominator.

b. The magnitude response exhibits equiripple behavior in the passband and decreases

monotonically to zero in the stopband. The filter has N zeros at z = - 1.

c. The magnitude response exhibits equiripple behavior in the passband and monotone

decreasing behavior in the stopband. The filter has N poles and N zeros, with the zeros

being positioned on the unit circle.

d. The magnitude response exhibits equiripple approximations in both passband and

stopband. The filter has N poles and N zeros, with the zeros being placed on the unit

circle.

2. Define each filter type, and plot the magnitude and phase response of each filter.

3. Provide graphs to support your answers, by indicating where the specifications are met.

7. DIGITAL FILTER DESIGN 104

7.1.3 Experimental Procedure VI.2

1. Design FIR m.ters that satisfy the specifications above using the Kaiser window method and

the Parks-McClellan method.

2. Plot the magnitude and phase response of the filters.

3. How many bits do you need for quantized coefficients in order to satisfy the specification to

within errors of:l: 10 %? Provide graphs to support your answer.

4. What is the difference between the Kaiser window method and the Parks-McClellan Method?

Explain why.

7. DIGITAL FILTER DESIGN lOS

7.1.4 Experimental Procedure VI.3

1. Choose the smallest order IIR filter and FIR filter that you designed in VI.l and VI.2.

Quantize the coefficients to 12 bits for both filters.

2. Use CGEN to generate the TMS32010 assembly language program to implement the above

digital filters.

3. Connect the waveform generator, oscilloscope, and TMS32010 board as in Experiment III.

Use the Model 3202 electronic filter as needed.

4. Assemble, link, and down· load the programs.

5. Plot the magnitude and phase response of each filter from observations with the oscilloscope.

6. Suppose that we want to improve the stopband attenuation by 20 dB without changing the

order of the filters. Design and implement the system.

7. What are the cutoff frequencies of the Model 3201 filter, for the IIR filter, and for the FIR

filter? Do the deservations from the oscilloscope comborate the specification? Plot the

magnitude response of each filter to support your answer.

7. DIGITAL FILTER DESIGN 106

REFERENCES

1. Leland B. Jackson, DIGITAL FILTERS AND SIGNAL PROCESSING, Kluwer Academic

Publishers, Hingbam, MA., 1986, pp. 103-142.

2. T.W. Parks and J.H. Mcdellan, 'Chebyshev Approximation for Nonrecursive Digital Filters

with Linear Phase," IEEE Trans. Circuit Theory, Vol. CT-19, March 1972, pp. 189-194.

3. Digital Filter Design Package Manual, Atlanta Signal Processors Incorporated, Version 2.01,

1985.

4. TMS32010 User's Guide, Texas Instruments, Houston, TX., 1983.

S. The Algorithm Development Package Manual, Atlanta Signal Processors Incorporated,

Version 1.01, 1985.

6. TMS32010 CrossWare Installation Guide, Texas Instruments, Houston, TX., 1985.

7. Link Editor User's Guide, Texas Instruments, Houston, TX., 1985.

8. Model 3200 (R) & Model 3202 (R) Operating and Maintenance Manual, Avon, MA.,

Krohn-Hite Corporation, 1984.

REFERENCES 107

9. E. Oran Brigham, THE FAST FOURIER TRANSFORM, Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1974, pp. 172-178.

10. C. S. Burrus and T. W. Parks, DFT/FFT CONVOLUTION ALGORITHMS: THEORY

AND IMPLEMENTATION John \Vtley & Sons, 1985, pp. 145-221

REFERENCES 108

Appendix A. Program Source Code List

Linear cOllvolution

)I
)I

)(

)(

)(

)I

XNEW
DOUT
DIN
X
H
YOUT
ONE
•

IDT 'LCONV'

A general routine for a length-N linear convlution.
For this particular implementation, n = 8.

EQU 1
EQU 6
EQU 7
EQU 8
EQU 16
EQU 17
EQU 18

)(NEWEST INPUT SAMPLE
• OUTPUT TO PORT 6 (D/A)
)(INPUT FROM PORT 7 (A/D)
• END OF DATA POINTS X (N)
• END OF IMPULSE RESPONSE SEQUENCE
• OUTPUT LOCATION (2N+1)
)(CONTAINS THE VALUE 1 (2N+2)

(2M)

AORG 0)(BRANCH TO THE BEGINNING OF THE PROGRAM
B LAST

• • IMPULSE RESPONE TERMS.
)(

AORG SO
HI DATA >4000
H2 DATA >AAS8
H3 DATA >4000
H4 DATA >0000
HS DATA >0000
H6 DATA >0000
H7 DATA >0000
H8 DATA >0000
)(

)(MAIN PROGRAM
• AORG 100
LAST BIOZ GET)(CHECK FOR BIO FLAG SET

B LAST)(IF BID IS NOT SET, CONTINUE TO HAlT
)(

)(

)(

)(

GET

BEGIN OF LINEAR CONVOLUTION

LDPK 0
LACK 1
SACL ONE)(ONE = 1

Appendix A. Program Source Code List 109

LARK ARO,H
LARK ARl,7
LACK HI

LOADH LARP ARO
TBLR .-,ARl
SUB ONE
BANl LOADH

LARK ARl,X
lAC

LOADX SACL.
BANZ LOADX

If
TEST BIOl PUT

B TEST

• ARO ADDRESSES DATA LOCATIONS
If ARl IS USED AS A LOOP COUNTER

• LOAD THE IMPULSE RESPONSE

• ARl USED TO ADDRESS DARA AND AS A COUNTER

If INITIALIZE FILTER

PUT OUT YOUT,DOUT
LARP ARO

If

If

IN XNEW,DIN. GET NEXT INPUT SAMPLE

LARK ARO,X
LARK ARl,H

lAC
LT .-,ARl
MPY .-,ARO

• ARO POINTS TO THE INPUT SEQUENCE
• ARl POINTS TO THE IMPULSE RESPONSE

LOOP LTD .,AR! • LOAD INPUT SEQUENCE, ACCMULATE RESULT
)(MULTIPLY IMPULSE RESPONSE

•
•

MPY .-,ARO
BANl LOOP)(LOOP N TIMES

APAC)(ACCUMULATE LAST MUTIPLY
SACH YOUT,l • ACCJEZ-l=DMA

B TEST)(GET THE NEXT INPUT SAMPLE
END

Appendix A. Program Source Code List 110

Appendix B. Program Source Code List

Exchallge data hetJveen PC and tile TMS32010
J
;
;
;
;
;
;
;
DATA
DATA
DGROUP
CODE

;
PUBLIC
OUT320

;
110320.
LP1:

;
EXIT~

;

THIS PROGRAM IS TO COMMUNICATE WITH TMS32010
PROCESSOR UNDER (BIO) CONTROL. AX CONTAINS
THE DATA RECEIVEC FROM THE TMS32010 BX CONTAINS
THE DATA TO BE TRANSMITTED TO THE TMS32010 AND
ES THE SEGMENT POINTER TO 320/PC MEMORY WINDOW.
THE CORRESPONDINE ON THE HOST PROCESSOR IS
GIVEN IN THE FORM OF SUBROUTINE CALL OUT320.

SEGMENT PUBLIC 'DATA'
ENDS
GROUP DATA
SEGMENT 'CODE'
ASSUME CS:CODE,DS.DGROUP, SS.DGROUP

OUT320
PROC
PUSH
MOV
PUSH
PUSH
lES
MOV
MOV

MOV
MOV

MOV
TEST
JZ
MOV
MOV
PUSH
MOV
MOV
POP

POP
POP
MOV
POP
RET

FAR
BP ; SAVE FRAMEPOINTER ON STACK
BP,SP ; SET BP = TO STACK POINTER
DI
SI
BX,DWORD PTR [BP+61 ; GET PARAMETER ADDR IN IX
AX, ES:[IXl ; GET PARAMETER VALUE IN AX
IX, AX

AX, 40960
ES, AX

Al, 2
AL, ES:2000H
lP1
AX, ES:12
ES:14, IX
AX
AL, 2
ES:2000H, Al
AX

51
DI
SP,IP
BP
4

; PREPARE TO SETUP ES
; ES PTS TO SEG. START AT 6

; SBIO STATUS BIT IS 2
; CHECK FOR 1 IN STATUS BIT
; 0 MEANS PRE. DATA NOT USE
; GET DATA FROM ADDR 12
; PUT DATA IN ADDR 14
; SAVE RESULT FOR LATE
; PUT A 2 IN AX FOR SBIO CTRL
; OUTPUT CTRL BYTE TO SET BIO
; RETRIEVE THE ANSWER

RETURN TO CALLING PROGRAM

NUM 1= NO. PARAMETER * SIZE

OUT320 ENDP
CODE ENDS

END

Appendix B. Program Source Code List III

Appendix C. Program Source Code List

Illte'iace }vith the TklS32010

$LARGE
C
C
C
C
C
C
C
C
C
C
C

C

THIS PROGRAM CREATES AN INPUT SIGNAL Y WHICH
WILL COMMUNICATE WITH THE TMS32010 PROCESSOR.
SINCE THE MAXIMUM BITS OF ACCUMULATE IS USED
(LEFT SHIFTED FOR 14 BITS), THE VALUE OF Y
WILL HAVE TO BE GREATER THAN -2 AND LESS THAN
2. OUT320 IS A SUBROUTINE WHICH WILL INPUT
THE DATA TO THE TMS32010 PROCESSOR AND RETURN
THE CORRESPONDING
sample is in INTER.ASM

INTEGER~2 OUT320,K
OPEN (UNIT = 10, FILE = 'SFILE', STATUS = 'NEW')
OPEN (UNIT = 20, FILE = 'DFILE', STATUS = 'NEW')
OPEN (UNIT = 30, FILE = 'OFILE', STATUS = 'NEW')
OPEN (UNIT = 40, FILE = 'IFILE', STATUS = 'NEW')

C Implement a sine wave with sampling frequency l/T
C

c

T=1./3.
PI=3.141S7
DO 20 1=1,100

X=SIN(PI~T~FLOAT(I»

C Make the maximum value of input in accumulat.
C

C
C Call OUT320
C

Y=FlOAT(OUT320(K»/(I024.-16.)
C
C Create output data file
C

HRITE(10,12) S,FlOAT(I)
WRITE(20,12) D,FLOATCI)
WRITE(30,12) Y,FlOAT(I)
WRITE(40,12) X,FlOAT(I)

12 FORMAT(2F20.9)
20 CONTINUE

STOP
END

Appendix C. Program Source Code List 112

Appendix D. Program Source Code List

Fast Fourier Tralls/OJ·,n

tLARGE
C
C
C
C
C
e
C
e
e

C

This program creates an input signal with
real part XI and imaginary part VI, and
it communicates with the TMS32010
processor under control of the 8086
assembly program INTER. ASH. All the
value in this program must be within -7
to 7 as discuessed in experiment II.

REAL XI(640),YI(640),XO(640),YO(640),OUT(640),
+T(640),P(640)

OPEN (UNIT = 10, FILE = 'INFO', STATUS = 'NEW')
OPEN (UNIT = 20, FILE = 'INFN', STATUS = 'NEW')
OPEN (UNIT = 30, FILE = 'OTFN', STATUS = 'NEW')

e Implement an input signal for 128 points
C

XI(O)=O.OO
YI(O)=O.O
DO 20 1=1,16

YICI)=O.O
IF (I .LE. 8) THEN

XI(I)=O.OI+XI(I-I)
ELSE

XI(I)=XICI-1)-O.Ol
ENDIF
HRITE(10,12) FLOATCI), XICI)

20 CONTINUE
C
C Call Subroutine Section
C

CALL FFT(XI,YI,XO,YO)
C
e Comput Magnitude and Phase Response
e

DO 40 K=I,16
OUT(K)=SQRT(XO(K) •• 2+YO(K) •• 2)
IF « -0.001 .LT. XO(K) .AND.

+XO(K) .LT. 0.001) .AND. C -0.001 .LT.
+YO(K) .AND. YOCK) .LT. 0.001 » THEN

XO{K)=O.O
YO(K)=O.O

Appendix D. Program Source Code List 113

c

ELSE IF (XOCK) .Eq. 0.0 .AND.
+YOCK) .Eq. 0.0) THEN

PCK)eO.
ELSE IF (XOCK) .EQ. 0.0 .AND.

+YOCK) .OT. 0.0) THEN
PCK)=90.

ELSE IF C XOCK) .EQ. 0.0 .AND.
+YOCK) .IT. 0.0) THEN

PClO=-90.
ELSE

PCK)=ATAN2(YOCK),XOCK».180./3.l41S93
ENDIF
HRITE(20,12) FLOAT(K), P(K)

12 FORMATCZF1S.6)
HRITE(30,lZ) FLOAT(K), OUT(K)

40 CONTINUE
STOP
END

C SUBROUTINE SECTION
C

SUBROUTINE FFTCXI,YI,XO,YO)
c
C This subroutine communicates with TMS32010
C processor when TMS32010 processor is running
C a FFT program. Since the maximim bits of
C accumulate is used, the value of XI and YI
C have to be greater than -7 and less than 7.
C The subroutine computs stage by stage, the
C end results are still in XI and VI. XO
C and YO which are the results of FFT are the
C results after digital reverse.
C

c

INTEGER-2 OUT320,KI(640),JIC640),IA,KL(640),
+JL(640),II,lI,IO,lO

REAL XI(640),YI(640),XO(640),YO(640),T(640)
J=OUT320(IA)

C First Stage
C

DO 25 I=1,8
IA=OOOO
II=INT(OUT320(IA)/2+l)
JICII)=INTCXI(II)-1024 .• l6.)
KleII)=INTCYI(II)*1024.-l6.)
IA=OUT320eJI(II»
LI=INTCOUT320(KICII»/2+1)
JleLI)=INTeXI(LI)*1024.*16.)
KI(LI)=INTCYICLI)*1024.*16.)
IA=OUT320eJICLI»
IA=OUT320CKIcLI»
TCIO)=OUT320(IA)
IO=INTCOUT320(IA)/2+l)
JICIO)=OUT320(IA)
KICIO)=OUT320CIA)
XOCIO)=FlOATCJICIO»/CI024.-16.)
YO(IO)=FLOAT(KI(IO»/(1024.*16.)
LO=INTCOUT320(IA)/2+1)
JlelO)=OUT320eIA)
KICLO)=OUT320CIA)
XOCLO)=FLOAT(JICLO»/(1024.*16.)
YOelO)=FLOATeKIClO»/(1024.*16.)

2S CONTINUE

Appendix D. Program Source Code List 114

e
e eomput R •• t of Stage
e

C

DO 30 L=1,3

DO 101 Ma 1,a
IA=OOOO
II=INT(OUT320CIA)/2+1)
IA=OUT320(JI(II»
LI=INT(OUT320(KICII»/2+1)
IA=OUT320eJleLI»
IA=OUT320(KI(LI»
TCIO)=OUT320(IA)
IO=INTeOUT320(IA)/2+1)
JI(IO)=OUT320CIA)
KI(IO)=OUT320CIA)
XO(IO)=FLOAT(JI(IO»/(1024.M16.)
YOeIO)=FLOAT(KICIO»/(1024.MI6.)
LO=INT(OUT320(IA)/2+1)
JI(lO)=OUT320(IA)
KICLO)=OUT320CIA)
XOeLO)=FLOATCJI(LO»/C1024.M16.)
YO(LO)=FlOATCKI(lO»/(1024.M16.)

101 CONTINUE
30 CONTINUE

C Digital Reverse Counter
C

J=l
Nl=15
DO 50 I=l,Nl

IF (I .GE. J) GOTO 60
XT=XOeJ)
XO(J)=XOCI)
XO(I)=XT
XT=YOeJ)
YO(J)=YO(I)
YOCI)=XT

60 K=16/2
70 IF CK .GE. J) GOTO ao

J=J-K
K=K/2
GOTO 70

ao J=J+K
SO CONTINUE

RETURN
END

Appendix D. Program Source Code List liS

VITA

The author was born in Shanghai, China on February 26, 1961. She studied in textile

engineering at the Shanghai Textile Engineering Institute in 1979. After her sophomore year at the

Shanghai Textile Engineering Institute, she came to the United States. She graduated from

Savannah State College in Georgia with a degree of Bachelor of Science in Electronics Engineering

Technology in March 1985. During her studies at Savannah State, she worked as a tutor in

mathematics. She received the Sarah Mills Hodge Memory Scholarship 1984·1985.

She began her graduate studies at Virginia Polytechnic Institute and State University (VPI&S U)

in September 1985. She taught Electronics Devices, Electronic Circuits, Circuit Analysis and

associated laboratory courses at New River Community College.

VITA 116

