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ACADEMIC ABSTRACT 

 

Biological systems offer novel and efficient solutions to many engineering applications, 

including marine propulsion. It is of interest to determine how fish interact with the water around 

them, and how best to utilize the potential their methods offer. A stingray-like fin was chosen for 

analysis due to the maneuverability and versatility of stingrays.  

The stingray fin was modeled in 2D as a sinusoidal wave with an amplitude increasing from 

zero at the leading edge to a maximum at the trailing edge. Using this model, a parametric study 

was performed to examine the effects of the fin on surrounding water in computational fluid 

dynamics (CFD) simulations. The results were analyzed both qualitatively, in terms of the pressure 

contours on the fin and vorticity in the trailing wake, and quantitatively, in terms of the resultant 

forces and the mechanical power requirements to actuate the desired fin motion. The average thrust 

was shown to depend primarily on the relationship between the swimming speed and the frequency 

and wavelength (which both are directly proportional to the wavespeed of the fin), although 

amplitude can be used to augment thrust production as well. However, acceleration was shown to 

significantly correlate with a large variation in lift and moment, as well as with greater power 

losses. 

Using results from the parametric study, the potential for power regeneration was also 

examined. Relationships between frequency, velocity, drag, and power input were determined 

using nonlinear regression that explained more than 99.8% of the data. The actuator for a fin was 

modeled as a single DC motor-shaft system, allowing the combination of the energetic effects of 

the motor with the fin-fluid system. When combined, even a non-ideal fin model was able to 

regenerate more power at a given flow speed than was required to swim at the same speed. Even 

in a more realistic setting, this high proportion of regenerative power suggests that regeneration 

and energy harvesting could be both feasible and useful in a mission setting.  
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GENERAL AUDIENCE ABSTRACT 

 

Animals interact with the world much differently than engineered systems, and can offer new 

and efficient ways to solve engineering problems, including underwater vehicles. To learn how to 

move an underwater vehicle in an environmentally conscious way, it is useful to study how a fish’s 

movements affect the manner in which it moves through the water. Through careful study, the 

principles involved can be implemented for an efficient, low-disturbance underwater vehicle. The 

particular fish chosen for in-depth study was the stingray, due to its maneuverability and ability to 

travel close to the seafloor without disturbing the sediment and creatures around it. 

In this work, computational analysis was performed on a model of a single stingray fin to 

determine how the motion of the fin affects the water around it, and how the water affects the fin 

in turn. The results were analyzed both in terms of the wake behind the fin and in terms of how 

much power was required to make the fin move in a particular way. The speed of the fin motion 

was found to have the strongest effect in controlling swimming speed, although the lateral motion 

of the fin also helped with accelerating faster. 

Additionally, the potential for a robotic stingray fin to harness power from the water around it 

was examined.  Based on results from simulations of the fin, a mathematical model was formulated 

to relate energy harvesting with the flow speed past the fin. This model was used to determine how 

worthwhile it was to use energy harvesting. Analysis of the model showed that harvesting energy 

from the water was quite efficient, and would likely be a worthwhile investment for an exploration 

mission.
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1. Introduction 

Mankind has long turned toward nature as an inspiration for invention. When combined with 

our current scientific understanding of the world and computational capabilities, the potential for 

understanding the way biological systems interact with the world and using those principles to 

design new ways of approaching engineering problems is enormous. This thesis will explore the 

capabilities of a bio-inspired underwater propulsive system in terms of its dynamics and power 

characteristics, and attempt to both explain aspects of the biological system and applications for 

robotics. 

One of the best applications for an underwater bio-inspired propulsor is for exploration. Using 

fish-like fins would not only make a vehicle feel less intrusive to other fish, as observed in robotic 

experiments [1], it also provides the potential for drastically reducing local disturbances near the 

ocean floor, which could otherwise kick up too much sediment to take useful data or even destroy 

local wildlife. As such, let us consider bio-inspired propulsors in terms of niches most useful for 

exploration. 

Fish morphology and movement varies drastically depending on niche. Typically, fish can be 

categorized by specialization for different movement types: namely, acceleration, cruising, and 

maneuverability [2]. This specialization is related to their particular niche, and does affect both 

morphology and the manner in which fish use their fins and body to propel themselves through the 

water. For exploring the seafloor, maneuverability is arguably the most useful of the three because 

it would allow finer precision of movement. As such, let’s consider what characteristics fish in the 

“maneuverability” specialization tend to have. These fish tend to use median-paired fins (MPF) 

[3], which could either be short-based oscillatory fins or long-based undulatory fins. In this study, 

I opted for the long-based fin type, which also provide the opportunity to take advantage of 

kinematic capabilities of sprinters/cruisers. In particular, I chose to study the rajiform mode of 

locomotion, which uses long-based pectoral fins with undulatory motion, and is typically exhibited 

by batoids, fish of the superorder Batoidea, including rays and skates. 

The fin motion of batoids are typically categorized by the number of waves, or wave number, 

present on their fins at a given time. If this value is greater than one, it is considered undulatory; if 

less than 0.5, it is oscillatory. Of course, the wave numbers of these fish fall along a spectrum, with 

higher wave numbers corresponding to rajiform locomotion while lower wave numbers correspond 

to mobuliform locomotion [4]. The wave number is correlated to the fin motion, morphology, and 
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the niche of the particular species, although not always in an obvious way. Typically, a lower wave 

number corresponds to pelagic rays, or those that live in the open ocean, which use lower 

frequency, higher amplitude flapping motions, and have longer, triangular shaped fins. Meanwhile, 

a higher wave number typically corresponds to benthic rays, or those that live near the seafloor, 

and typically use a higher frequency, lower amplitude fin motion, and have shorter, rounder fins. 

To understand the fin kinematics of rajiform batoids better, consider the blue-spotted stingray 

Taeniura lymma (T. lymma) studied by Rosenberger [5] and the freshwater stingray Potamotrygon 

orbignyi (P. orbignyi) studied by Blevins and Lauder [6]. Rosenberger found that T. lymma 

demonstrated a strong correlation between propulsive wavespeed (how quickly the fin wave 

travels from anterior to posterior, and controlled with both wavelength and frequency) and 

swimming speed, with individuals showing different wave amplitudes but without significant 

modification in amplitude to adjust the swimming speed. Additionally, electromyographic (EMG) 

data showed that the fin motion was actuated by alternate firing of the dorsal and ventral muscles, 

with muscle activity in all parts of the fin from the anterior to the posterior. This result suggests 

that the fin wave is actively controlled, rather than passively, as the wave propagates from the front 

to the rear. Blevins, meanwhile, found that for P. orbignyi, the swimming speed was predominantly 

controlled by frequency, with constant parameters for wavelength and amplitude. Figure 1 shows 

an example of the wave along the stingray’s fins during swimming in this experiment. This study 

also found that for P. orbignyi, the amplitude increased approximately linearly on a subset of the 

fin (from approximately 0.2 disc lengths from the front to about 0.7), and was approximately 

constant elsewhere. 

 

Figure 1-1: A freshwater stingray swimming through the water by propagating an 

undulatory wave of increasing amplitude along the length of the fin. 

Next, let us turn toward the more general topic of what is known about the hydrodynamics and 

energetics involved for general fish swimming, as well as for batoids specifically. Researchers 

have approached this problem in a wide variety of ways over the years. The most widely-used 
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model for the propulsion of swimming fish is the elongated body theory (EBT) put forward by 

Lighthill [7]. The theory assumes inviscid flow over a slender fish with small amplitude tail 

movements, and determines approximate relationships between the kinematics of the fish and the 

resulting thrust, power, and efficiency. Although limited in scope, expansions have been made to 

the model to account for large amplitude [8] and added-mass terms [9] to make it significantly 

more general. The simple formula used for efficiency 𝜂 is: 

 𝜂 =
1

2
(1 +

𝑈

𝑉
) (1) 

where  𝑈 is the swimming speed and 𝑉 is the wavespeed of undulation, which assumes that a fish 

would keep the wave amplitude constant at the trailing edge. However, as shown by Cheng and 

Blickhan [10], efficiency calculated for fish with a variable amplitude at the tail could be as much 

as 20% lower than the true value. Additionally, the model of the forces still relies upon a coefficient 

of drag 𝑐𝐷 that would not only need to be experimentally determined for specific applications, but 

could also change depending on the motion of the fish body itself. To fill in the gaps of the model, 

much research has been done both experimentally and numerically to better understand the 

mechanics and hydrodynamics of fish locomotion. 

One way in which the mechanics can be better understood is through study of the 

hydrodynamics of the wake, either through a flow visualization experiment or through CFD. As 

shown by Triantafyllou et al [11], a wake pattern behind an oscillating fin will produce a von 

Karman vortex street when in drag, and a reverse von Karman vortex street when in thrust. In other 

words, during each flap cycle, two vortices of opposing rotation are shed behind the tail, producing 

a wake with a propulsive jet if in net thrust, but a low pressure region if in net drag. For fish, the 

regime for which this wake produces optimal efficiency is typically associated with a Strouhal 

number 

 𝑆𝑡 = 𝑓𝐴/𝑈 (2) 

in the range 0.25-0.35. As shown more recently by Eloy [12] using principles from EBT, the 

optimal Strouhal number is not limited to a strict interval, but rather shows a consistent trend with 

a dimensionless parameter termed the Lighthill number  

 𝐿𝑖 =
𝑆

ℎ2 𝐶𝑑 (3) 

where 𝑆 is the wetted surface area, 𝐶𝑑 is the drag coefficient, and ℎ is the height of the tail. 
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Although the reverse von Karman street is considered the classical representation of the wake, 

different wake patterns can also emerge. Depending on the kinematics and Reynolds number, one 

could also observe vortex dipoles [13], symmetry-breaking patterns [14], or double-row vortices 

[15], to name a few. In three dimensions, shed vortices can interlace in complex ways for both an 

oscillating fin [16] and an undulatory one [17], even for relatively simple fin structures. The 

particular wake that develops for a particular set of kinematics is likely based on the hydrodynamic 

wake resonance, as proposed by Moored et al based on eigenvalue analysis through vorticity 

perturbations in the wake [18]. This notion of a resonant frequency of the wake has also been 

experimentally supported through flow visualization with a flexible fin observed for several wake 

types [19]. 

The existence of multiple modes for a wake suggests that a control system may need to take 

fairly complex flow patterns into account. However, full numerical simulations of the fluid flow 

in an optimal controller require restrictively time-intensive computations [20]. Faster dynamic 

simulations are possible, as demonstrated by the eel-like robot of Porez et al [21]–[23]. However, 

designing higher performance controllers still requires a more general understanding of the 

underlying physics. By assuming sufficiently small or non-chaotic flow structures in the 

surrounding environment, a controller could also to focus on a single mode for optimization. 

Because steady swimming shows a balanced vortex street [14], with regular and reverse von 

Karman vortex streets obtained through perturbations of kinematic parameters and swimming 

speed, the classic vortex streets are the most likely to arise in a forward swimming context, 

rendering them the most useful for control analysis. 

Parametric studies of the kinematics of undulation provide one of the best ways in which to 

understand the mechanics behind the vortex streets present in undulatory systems. The most 

comprehensive study of undulatory kinematics studied interactions between amplitude, 

wavespeed, wave number, and amplitude envelope on a 2D wavy plate [24]. Dong et al found that 

the net drag was approximately zero at a phase velocity 𝑉/𝑈 of 1, suggesting that for an undulatory 

fin, steady swimming will tend to occur when the wavespeed is approximately equal to the 

swimming speed. Additionally, the root-mean-square (RMS) of the drag was minimized at 𝑉/𝑈 = 

1, and the RMS lift increased monotonically with wavespeed, suggesting that kinematics can be 

varied in such a way as to reduce the variation of forces, thereby reducing the motion of the center 

of mass (COM) of a vehicle. Amplitude variation at 𝑉/𝑈 = 1.5 also showed that increasing 
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amplitude significantly increased the average thrust, but also increased the total power of the 

system, suggesting that there exists an amplitude which would yield the highest efficiency for the 

system. Similar results have also been observed in later works, even for 3D simulations [25–29]. 

Another fascinating result of Dong’s study was the presence of a regime in which negative 

power input was observed, implying that the fin motion was driven by the flow and not the other 

way around. Although researchers frequently assess the efficiency of bioinspired flows, and 

regularly quantify the energetics involved, the majority of the work on efficiency focuses on the 

peaks of efficiency [11, 19, 26, 27, 30, 31]. However, the investigation of the region of negative 

power, in which the flow actuates the fin, shows potential for implementation of regenerative 

schemes. In an underwater environment, in which currents and flows are very common, a properly 

designed exploratory vehicle could consistently take advantage of power regeneration to improve 

its mission life indefinitely. To exploit this phenomenon, however, requires a prescribed waveform 

for a fixed long-based fin. Currently, most full-fledged undulatory robots use a series of servo 

motors to achieve a highly variable, controllable waveform, which would be unsuitable for 

regeneration from a fixed waveform. For regeneration, each fin would ideally be driven by a single 

motor, with the prescribed motion achieved either through a geared system [16] or a crankshaft. 

An example of such a single-motor undulatory system, developed by Clark and Smits is shown in 

Fig 1. The circuitry itself would require a DC motor, a rechargeable battery, and an H-bridge for 

the most effective implementation [32]. To the author’s knowledge, no other studies on power 

regeneration for robotic applications in a bioinspired undulatory system have been investigated. 

 

Figure 1-2: An undulatory fin driven by a single motor using a gear train attached 

to stiff rods [16]. 
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The first manuscript in this thesis, in Section 2 [33], also uses a 2D wavy plate structure for a 

parametric study. However, the Reynolds number for this study ranged from 4 × 104 to 4 × 105, 

almost two orders of magnitude higher than the wavy plate experiment. Based on the suppression 

of separation and turbulence of fish even up to a Reynolds number of 107 [34], a laminar model 

was used for simulation. The higher Reynolds number resulted in a relative decrease of friction 

forces, allowing the focus of the work to be on the inertial effects. Additionally, the leading edge 

of the waveform is fixed, which forces the fin to rely on the added-mass effect for thrust production 

with minimal augmentation from a leading edge vortex (LEV) [35]. In this way, the effects of the 

fin kinematics on the added-mass phenomenon can be separated from effects on LEV formation.  

For the simulations, the fin location and deformation was prescribed, as was a constant, 

uniform flow parallel to the centerline of the fin. Because the fin motion was prescribed and the 

2D cross-section chosen was along a midline of a 3D fin, the tail, which was outside of the range 

of the 2D cross-section, was not included in these simulations. The prescribed fin motion utilized 

a travelling wave with linearly increasing amplitude to approximate the midline of a stingray’s fin 

motion. Although a stingray fin wave propagates radially along a disk, the cross-section chosen 

assumes linear propagation to represent the most likely scenario for implementation of a robotic 

fin. In a long-based robotic fin, actuation is commonly achieved through a linear, not radial, 

propagating wave due to its simplicity of implementation. Based on the analysis of Wu [34] in a 

review of fish swimming, the acceleration potential of the wake goes to zero at the edge of long-

based fins, suggesting that the vorticity is bound to the side edge of a finite length fin and goes to 

zero at the trailing edge. As such, results of a 2D analysis of the wake can be used to develop a 

better understanding of the response of a 3D fin system. For the analysis, the kinematic parameters 

were varied individually around a steady swimming condition for the simulated fin to determine 

their effects on the resultant forces and energetics. The results are then interpreted in the context 

of robot design for exploration mission applications. For example, we have developed a prototype, 

shown in Figure 3, which could greatly benefit from the results of the parametric study in terms of 

its control development and implementation. 
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Figure 1-3:A prototype of an undulatory robot developed by CRASH Lab designed 

to implement fin kinematics similar to those used in the CFD simulations of this 

manuscript. 

The second manuscript, in Section 3 [36], uses results from the Section 2 to design a parametric 

study into the interaction between frequency and velocity regarding drag and power characteristics. 

The objective of this study was to develop a methodology and a model for estimating the 

regenerative capacity of an undulatory fin in flow for a non-ideal system. By assuming the presence 

of a theoretical fin design using only a single motor for actuation, possibly using a gear train or 

crankshaft to prescribe the fin wave, the fluid model was combined with an electromechanical 

model for analysis. Using the resultant model, a case study is also used to demonstrate the 

effectiveness of a regenerative fin in a mission context. Ultimately, the goal of this thesis is to 

improve the understanding of undulatory fin dynamics for the purpose of designing an efficient 

robot and control strategy. 
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2. Paper #1: Dynamics and Propulsive Efficiency of Bio-Inspired Undulatory Marine 

Locomotion 

2.1. Abstract 

Computational fluid dynamics (CFD) was used to investigate the fluid mechanics for 

undulatory stingray locomotion. This method of undulatory propulsion can be utilized to generate 

non-turbulent thrust with minimal disturbance to the immediate environment, ideal for exploratory 

vehicles for underwater environments. Undulatory locomotion was modeled as a two-dimensional 

fin in free flow with a deforming non-slip boundary to represent a propagating sinusoidal wave 

with a linearly increasing amplitude, constant frequency, wavelength and flow velocity. In the 

presented computational study, we varied the amplitude, wavelength, frequency, and flow velocity 

parametrically and examined the effect on thrust, lift, and pitching moment. Average net thrust 

was found to increase with wavelength and frequency, whereas for this two-dimensional case 

amplitude showed negligible effects. For the parametric cases, a theoretical efficiency for forward 

propulsion was then calculated for a continuous fin. The amplitude was found to increase the input 

power required for actuation, but decreased output power for forward thrust. Variation of the other 

parameters showed that the output power depends nearly linearly on the input power, regardless 

of the particular kinematics or swimming speed. 

 

2.2. Introduction and Motivation 

Recent technological advancements in computing and control methods have facilitated the 

development and feasibility of robotic vehicles for exploratory purposes. While many advances 

have been made to the field of ocean engineering, the need for more efficient propulsion to allow 

for longer dives necessitates research into alternative mechanisms. In response to this need, 

research has begun to turn to aquatic life for inspiration. These animals have evolved over millions 

of years to best navigate their prospective aquatic environments. In general, fish morphology 

directly relates to the specialization toward cruising, acceleration, and maneuverability [1]. 

Perhaps the most challenging of these is maneuverability, which in fish morphology corresponds 

to the undulation of long-based fins. One of the solutions to this issue of maneuverability present 
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in nature is batoid locomotion, which utilizes two large fins leveraging undulating waves passing 

from the anterior to the posterior of the animal [2]. 

Batoids typically move by propagating sinusoidal waves along the length of their fin, but the 

amplitude, frequency, and wave number vary depending on the species [2]. Analytical models have 

been developed to approximate the effect of these parameters on swimming dynamics, as in 

Lighthill's elongated body theory applied to balistiform and gymnotiform locomotion [3]. 

Additionally, studies of the vortical shedding from swimming suggest an optimal range of 

kinematics for particular swimming speeds corresponding to a Strouhal number between 0.2 and 

0.4 [4] However, the particulars of undulatory batoid locomotion are still under investigation. The 

biological kinematics for Taeniura lymma and Potamotrygon orbignyi have been particularly 

investigated [5,6], lending some insight into the parameters used by these species. Of special note 

is the amplitude envelope found by Blevins and Lauder [6], which increased along the length of a 

portion of the fin. 

The most common approach to understanding undulatory locomotion is to design and build a 

robotic system approximating one or two fins. Typically, these fins are mechanically discretized 

with a finite number of oscillating rods supporting transverse motion of the fin [7-14] Visualization 

of the flow has been done with particle image velocimetry (PIV), which can show the vortical 

shedding and amplitude of the resulting von Karman wake structure [15,16]. Another approach is 

to numerically solve the flow with computational fluid dynamics (CFD) for a continuous fin, 

typically with approximately constant amplitude along the length of the fin [17-20]. 

The previous study by Sharp et al [21] used CFD to investigate the effect of inlet speed on 

thrust production for a given set of kinematic parameters. The net thrust tended to vary nearly 

linearly with inlet velocity, with the thrust and drag balancing out around 0.76 m/s. Expanding on 

those results, Gater et al [22] discussed the general trends associated with each of the kinematic 

parameters in an initial parametric study. 

This study focuses on using two-dimensional computational fluid dynamics to model the 

locomotion of a continuous robotic batoid fin during various kinematic motions and velocities. 

The amplitude envelope is approximated as linearly increasing along the entire length of the fin. 

The effect of kinematic parameters on the resulting forces and moments was investigated for the 

two-dimensional case. Using the force distributions, power characteristics for the system were also 

quantified and examined. 
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2.3. Theory and Procedure 

2.3.1. Numeric Methodology 

The velocity and pressure fields around a dynamic two-dimensional cross-section of a fin are 

solved using the commercial software ANSYS Fluent (v. 15). Assuming an unsteady, 

incompressible flow, the continuity equation is: 

 ∇ ⋅ 𝑣⇀ = 0 (1) 

where 𝑣⇀ is the velocity vector. Neglecting gravitational effects, the incompressible unsteady 

momentum equation is: 

 𝜌 [
𝜕 𝑣⇀

𝜕𝑡
+ 𝑣⇀ ⋅ (∇ 𝑣⇀)] = −∇𝑝 + ∇ ⋅ 𝜏̿ 

where 𝜌 is the fluid density, 𝑡 is time, 𝑝 is the pressure, and 𝜏̿ is the fluid stress tensor. 

The presented incompressible flow is solved using the segregated pressure-based Navier-

Stokes (PBNS) solver [23] with the semi-implicit method for pressure linked equations (SIMPLE) 

algorithm used to resolve pressure-velocity coupling. The gradients are discretized using the least 

squares cell based (LSCB) method. The momentum equations are discretized using the second-

order upwind scheme and time is discretized using a first-order implicit method. The absolute 

convergence criteria are set to 10−7 for continuity, U and V. The time step was determined using 

the Courant-Fredrichs-Levy (CFL) number: 

 𝐶𝐹𝐿 =
𝑈∞Δ𝑡

Δ𝑥
 (3) 

where Δ𝑡 is the time step and Δ𝑥 is the smallest cell size. For all simulations, the CFL was less 

than one, with a maximum of 0.90 and a minimum of 0.13. Additionally, the Reynolds number 

varied between 4 × 104 and 4 × 105 for all cases. Because the Reynolds number remained less 

than the critical Reynolds number and the solution converged for all cases, no turbulence model 

was implemented. 

An unstructured finite-volume mesh is generated around the cross-section and is updated with 

each time step to retain simulation accuracy at all times, using a combination of diffusive 

smoothing and domain remeshing functions. At the beginning of each time step the diffusion 

function is applied first, with the remeshing function occurring directly afterwards to correct for 

extreme mesh deformation. The diffusive smoothing is defined as 

 ∇ ⋅ (𝛾∇ 𝜓⇀) = 0  (4) 
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where the diffusion coefficient 𝛾 defines the degree to which the boundary motion 𝜓⇀ propagates 

through the surrounding fluid mesh. 𝛾 is calculated using the cell distance from the deforming 

boundary 𝑑. 

 𝛾 =
1

𝑑𝑎 (5) 

Solving Eq. 4 for 𝜓⇀, the mesh distribution at the next time step 𝑥⇀𝑡+1 is solved using 𝜓⇀, Δ𝑡 and 

the present mesh distribution 𝑥⇀𝑡. 

 𝑥⇀𝑡+1 = 𝑥⇀𝑡 + 𝜓⇀ Δ𝑡 (6) 

The diffusion parameter was set to $a=$1.75 for this study. 

A remeshing function is implemented to resolve the extreme boundary motions present in 

undulatory locomotion. A secondary mesh is used to retain the consistency of the fluid data during 

remeshing. The remeshing function uses the nodal distance from the nearest boundary 𝑑𝑚𝑖𝑛 and 

the most remote node from the boundaries 𝑑𝑚𝑎𝑥 to normalize the boundary distance 𝑑𝑏: 

 𝑑𝑏 =
𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥
 (7) 

𝑑𝑏 is then used to determine the cell size at the location of interest 𝑠𝑖𝑧𝑒𝑖 

 𝑠𝑖𝑧𝑒𝑖 = 𝑠𝑖𝑧𝑒𝑏 × Γ (8) 

where Γ is the sizing function factor, defined by the size function variation 𝛼 and the size function 

rate 𝛽. Two different equations for Γ are implemented depending upon the sign of 𝛼: 

 
Γ = 1 + 𝑎𝑑𝑏

1+2𝛽
, 𝛼 > 0

Γ = 1 + 𝑎𝑑𝑏

1

1−𝛽 , 𝛼 < 0
 (9)  

Combining Eq. 8, 9 yields the allowable size of a cell in the fluid volume. Using the remeshing 

functions with diffusion smoothing yields a robust, highly refined mesh as can be seen in Fig. 1. 

The parameters used in this study were 𝛼 = 1.1 and 𝛽 = 0.15. Figure 1 shows the unstructured 

2D mesh immediately surrounding the fin cross-section after 7s of simulation. 
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Figure 2-1: The unstructured triangular mesh used in the domain around the fin. 

Using the aforementioned computational methods, the forces acting on an element along the 

fin surface 𝐹𝑖 are calculated using 𝑝 and 𝜏̿ 

 𝐹⇀
𝑖

= (∇𝑝𝑖 + ∇ ⋅ τ̿𝑖)(𝐴𝑟𝑒𝑎) (10) 

2.3.2. Computational Domain and Cases 

Water uniformly enters the computational domain along the left boundary with a specified 

uniform velocity 𝑈∞. The upper and lower boundaries of the fluid domain use a slip condition with 

the right side set at ambient pressure. It should be noted that the entire domain is 1.2m × 0.8m. 

The fin is modeled in two dimensions using the cross section of a batoid fin. To approximate 

the amplitude envelope for the kinematics determined by Blevins and Lauder [6], the centerline of 

the motion is modeled by a sine wave with linearly increasing amplitude propagating across the 

fin, given by 

 𝑦(𝑥, 𝑡) = 𝐴𝑥 sin (
2𝜋

𝜆
𝑥 − 𝜔𝑡) (11)  

and shown graphically in Fig. 2. 𝑦(𝑥, 𝑡) is the vertical coordinate at a particular point in the 

geometry, 𝐴 is the slope of the amplitude of the propagating wave, 𝜆 is the wavelength, 𝜔 is the 

angular frequency, 𝑥 is a spatial coordinate whose origin is at the front of the fin and increases 

rightward, and 𝑡 is time. The fin is 0.4m in length, with a constant vertical thickness of 0.01m and 

linear tapering of the thickness in the anterior and posterior 0.05m. 
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Figure 2-2: The spatial parameters varied in the parametric study. 𝐴, 𝜆, and 𝑈∞ 

are shown in relation to the fin. 

The cases run in the analysis are broken up into two parts: variations of 𝑈∞ for a given set of 

kinematic parameters to determine the net zero 𝐹𝑥 and parametric variation of kinematics for the 

𝑈∞ previously defined. The velocity variation cases use kinematics of 𝜆 = 0.335 m, 𝜔 = 15 rad/s, 

and 𝐴 = 0.25. The fin frequency and wave number (𝐿 𝜆⁄ = 1.2) were chosen to fit the range of 

the kinematics of the freshwater stingray Taeniura lymma investigated by Rosenberger [5]. The 

amplitude envelope slope was based on the region of increasing amplitude of the freshwater 

stingray Potamotrygon orbignyi, which showed approximately 1.5 cm amplitude developed over 

approximately 6 cm lengthwise, giving an amplitude slope of approximately 0.25 [6]. Based upon 

the 𝑈∞ variation cases, the net 0 𝐹𝑥 was determined to be approximately 0.7625 m/s. This velocity 

was used for 𝑈∞ for the other cases, which were each varied individually while keeping other 

parameters at their aforementioned values. 

2.3.3. Derivation of Power 

In general, the forces acting on the fluid from the body can be split into two categories: 

actuation and reaction. The actuation and reaction forces of a differential element of the body to 

the fluid can be quantified as follows, based on Newton's second law. 

 𝑚 𝑥⇀̈ = ∑(𝑓𝑓𝑙𝑢𝑖𝑑 + 𝑓𝑓𝑖𝑛 + 𝑓𝑟) (12) 

For the purposes of this this study, the characteristic of interest is the power imparted to the 

fluid. Additionally, the fin inertia depends heavily on the mechanical design of the system in 

question. As such, fin inertia was neglected in favor of examining an ideal system for its effect 

directly on the fluid. This results in the following. 
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 𝑓𝑖𝑛 + 𝑓𝑟 = − ∑ 𝑓𝑓𝑙𝑢𝑖𝑑 (13) 

However, because power is only consumed by inducing actuation forces (not reactionary ones), 

we will consider only the actuation force, which is acting in a direction defined by the unit vector 

𝑎⃑. We will also assume that because the body of a physical system in the fluid would be unfixed 

relative to the reference frame, the actuation forces can account for all forces in the actuation 

direction, while the reaction forces result only from fluid forces that cannot be counteracted by 

actuation. This would cause the reaction forces to act in a direction orthogonal to the actuation 

force. As such, our equation reduces to 

 𝑓𝑖𝑛 = [(− ∑ 𝑓𝑓𝑙𝑢𝑖𝑑) ⋅ 𝑎⃑]𝑎⃑ (14) 

Now with this definition for actuation force, we can determine the power required for this 

actuation. In general, power consumption can be measured based on the rate of change of work 

into the system. Mechanical work into the fluid from the differential element can be quantified as 

the actuation forces acting over a distance in the same direction, as in the equation for differential 

work. 

 𝜕𝑤𝑖𝑛 = 𝑓𝑖𝑛 ⋅ 𝑑𝑥⃑ (15) 

To measure the power characteristics, the work equation is then differentiated with respect to 

time, resulting in the following. 

 𝑤̇𝑖𝑛 = 𝑓𝑖𝑛 ⋅ 𝑣⃑ (16) 

Lastly, to measure the total power required to actuate the whole fin, we integrate the power for 

the differential element over the length of the fin. 

 𝑊̇𝑖𝑛 = ∫ 𝑓𝑖𝑛(𝑠) ⋅ 𝑣⃑(𝑠)𝑑𝑠
𝐿

0
 (17) 

For typical robotic implementations of undulatory fins, the fin is actuated using several rotary 

motors which rotate about the longitudinal axis of the fin base. In two-dimensions, this would 

result in actuation that only acts transverse to the fin (in the y-direction). As such, for this study, 

the direction of actuation force 𝑎⃑ was defined accordingly. 

In addition to power consumption, it is also useful to determine a measure for output power. 

This is done in a similar manner to the input power, but considers the whole-body velocity response 

rather than that of a differential element. As such, we will first find the net force on the body in the 

desired direction denoted by unit vector 𝑏⃑⃑ as follows, again neglecting inertia. 

 𝑓𝑜𝑢𝑡 = [(− ∑ 𝑓𝑓𝑙𝑢𝑖𝑑) ⋅ 𝑏⃑⃑]𝑏⃑⃑ (18) 
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 𝐹⃑𝑜𝑢𝑡 = ∫ 𝑓𝑜𝑢𝑡(𝑠)𝑑𝑠
𝐿

0
 (19) 

Then, differentiating output work with respect to time results in the following. 

 𝑊̇𝑜𝑢𝑡 = 𝐹⃑𝑜𝑢𝑡 ⋅ 𝑣⃑ (20) 

Note that for our computational setup, the velocity of the body relative to the fluid is equal and 

opposite to the prescribed inlet velocity of the fluid to the computational domain, resulting in our 

final power output equation. 

 𝑊̇𝑜𝑢𝑡 = −𝐹⃑𝑜𝑢𝑡 ⋅ 𝑈⃑⃑⃑∞ (21) 

2.4. Results and Discussion 

2.4.1. Forces and Moments 

For the kinematics considered in this study, the expected and desired output is a net horizontal 

force. To develop a better understanding of how the kinematics affect this horizontal force, the 

time-averaged horizontal force was investigated for various parameter levels, as shown in Figure 

3. Based on these results, this average horizontal force varies approximately linearly for both inlet 

velocity (swimming speed) and wavelength, with greater forward thrust for lower speeds and larger 

wavelengths. This average force also increases quadratically with frequency on this interval. 

Changes in amplitude, however, show negligible effects on the output force, suggesting that either 

amplitude does not significantly affect thrust on the interval studied1, or that any effects from 

amplitude will occur primarily due to three-dimensional effects. 

                                                 
1 Further research showed that this finding was a result of the interval studied. Further discussion of the amplitude 

effects can be found in Appendix C. 
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Figure 2-3: Effect 𝐴, 𝑈∞, 𝜔, and 𝜆 have on average 𝐹𝑥. Positive values indicate net 

drag; negative values, net thrust. 

For the purposes of this paper, the point at which these cases results in zero average horizontal 

force corresponds to the "steady-state" case. For a swimming body using this type of undulatory 

locomotion, this steady-state case would correspond to the average swimming velocity for the 

given set of kinematic parameters. This is not to say that the forces or velocities would not change 

at all for the swimming system, only that the average velocity would remain constant. The forces 

at this average velocity will vary sinusoidally at the frequency of vortex shedding, or twice the 

wave frequency of the fin. 

Although thrust and drag are the primary forces of interest, it is also important to investigate 

the net lift and moments acting on the fin for the purposes of stability and control. The average lift 

forces for each case are shown in Figure 4, with the same force scale as for the drag case of Figure 

3. The relatively low values for average lift suggest that these average vertical forces are negligible 
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relative to the horizontal ones. However, the average moments, shown in Figure 5, are not 

negligible. Although the pitching moment is small or close to zero near steady-state, there are 

significant non-random trends for the variation of moment with each kinematic parameter. This 

suggests that the pitching moment is significant, and should be accounted for when designing 

relevant control systems for stability. 

 

Figure 2-4: Effect 𝐴, 𝑈∞, 𝜔, and 𝜆 have on average 𝐹𝑦. 
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Figure 2-5: Effect 𝐴, 𝑈∞, 𝜔, and 𝜆 have on average 𝑀𝑧.2 

As mentioned previously, the forces present on the fin will vary periodically, meaning that the 

variance of forces should also be considered for analysis. This variance, for both forces and 

moments, was measured as the root-mean-square (RMS) value about the average. Note that for a 

sinusoidal signal, this will correspond to about 70.7% of the amplitude of the sinusoid. 

The horizontal RMS forces, as shown in Figure 6, tend to be small, particularly near the steady-

state case. For higher magnitudes of average horizontal forces, the RMS forces do also tend to be 

higher, but are still small relative to the average values. However, the RMS lift forces, as shown 

in Figure 7, are consistently large relative to the average drag values. For a large planform area, 

the hydrostatic pressure on the planform would tend to reduce the effect of these forces on the 

overall body motion, but are still important design considerations for systems intending to use this 

type of locomotion. Lastly, the RMS moment, shown in Figure 8, also tends to be large relative to 

the average pitching moment. As with the RMS lift, the effect of this variance on the body motion 

                                                 
2 This is actually the average moment acting on the top side of the fin only; it is balanced out by the bottom side of 

the fin. The full average moment acting on the fin is much closer to 0. 
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would likely be reduced by a large planform area. Nevertheless, the varying pitching moments 

could be an important consideration for vehicle design or control system design. 

 

Figure 2-6: Comparison of 𝐹𝑋,𝐴𝑣𝑔 and 𝐹𝑋,𝑅𝑀𝑆. 

 

Figure 2-7: Effect 𝐴, 𝑈∞, 𝜔, and 𝜆 have on 𝐹𝑌,𝑅𝑀𝑆. 
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Figure 2-8: Effect 𝐴, 𝑈∞, 𝜔, and 𝜆 have on the pitching moment characteristics 

𝑀𝑍,𝑅𝑀𝑆 vs 𝑀𝑍,𝐴𝑣𝑔. 

 

2.4.2. Power and Efficiency 

Now that we have a general understanding of the forces and moments acting on the system, 

the next step is to determine the optimal performance range in terms of power and efficiency. These 

power characteristics can provide insight into the design of both the mechanical and control 

systems. Meanwhile, the efficiency characteristics can provide a baseline model for comparison 

with other types of propulsion, including both typical engineering solutions and bio-inspired ones. 

 

Using the methods discussed in the previous section, we calculated input and output power for 

a variety of cases to determine the parametric relationships between power and kinematic 

characteristics. Figure 9 shows these relationships for input power and each of the defined 

parameters. On the intervals investigated, we found that frequency and velocity each have 

approximately quadratic relationships with power. The wavelength and amplitude, meanwhile, 
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each appear to be directly proportional to power on this interval. One major point of note here is 

that for certain parametric values, it is possible to achieve a negative value for input power. 

Essentially, this means that it is possible to recover power from the surrounding fluid during 

motion. 

 

Figure 2-9: Effect 𝐴, 𝑈∞, 𝜔, and 𝜆 have on 𝑃𝑖𝑛. 

The parametric relationships for power output tend to be similar (though not identical) to those 

for power input, as seen in Figure 10. The general relationships (quadratic or linear) are the same 

for velocity, frequency, and wavelength, although they are shifted relative to the input power 

relationships. Additionally, the amplitude has negligible effect on the output power over the 

interval tested. This suggests that lower amplitude envelopes will tend to reduce power 

consumption with negligible effect on the output power of the system. 
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Figure 2-10: Effect 𝐴, 𝑈∞, 𝜔, and 𝜆 have on 𝑃𝑜𝑢𝑡. 

One common way to measure efficiency is the simple ratio of output power to input power. 

When this ratio is used for the previously given power characteristics, the resulting efficiency is 

as shown in Figure 11. On our given parametric intervals, the relationship between each parameter 

and the resulting efficiency is somewhat unclear due to the discontinuity corresponding to an input 

power of zero. A more clear depiction of the relationship between power input and output can be 

seen in Figure 12. 
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Figure 2-11: Effect 𝐴, 𝑈∞, 𝜔, and 𝜆 have on 𝑃𝑖𝑛/𝑃𝑜𝑢𝑡. 

Note from Figure 12 that the amplitude cases all show a direct effect on input power with 

negligible change in output, as previously discussed. However, for the other parameters (velocity, 

frequency, and wavelength), the relationship between power in and power out is nearly linear, 

regardless of the kinematics themselves. Based on this relationship, a more representative way to 

define efficiency 𝜂 near the origin could be according to 

 𝜂 =
𝜕𝑃𝑜𝑢𝑡

𝜕𝑃𝑖𝑛
 (22) 

Farther away from the origin, this relationship would be less useful, at which point the more 

typical ratio 𝑃𝑜𝑢𝑡/𝑃𝑖𝑛 would be more relevant and less affected by the discontinuity at 𝑃𝑖𝑛 = 0. 

Note also that this relationship does have a small negative concavity, meaning that the linear 

approximation around the origin will not hold for more extreme cases. Further study could be taken 

to determine the more representative relationship between the power characteristics for more 

extreme cases of input or output power. 
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Figure 2-12: A comparison of 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡 

2.5. Conclusion 

CFD was used to simulate a two-dimensional representation of an undulatory stingray fin. The 

fin was modeled as a sinusoidal wave with linearly increasing amplitude. Laplacian smoothing 

and diffusion remeshing were used to prevent mesh degradation around the deformable boundary. 

Based on the CFD results for a parametric study of the kinematics, the frequency, wavelength, 

and swimming speed each showed significant effects on horizontal force production (in the 

direction of the flow), whereas wave amplitude did not. When compared to the literature, this trend 

for the two-dimensional case suggests that amplitude affects thrust production primarily due to 

out-of-plane fluid dynamics. As the magnitude of the horizontal forces increases, the body 

experiences significant average and RMS pitching moments. Furthermore, the RMS lift was found 

to be quite large compared to the drag and thrust forces. Although the large planform typical for 

stingrays is expected to act like a flat plate, resisting the effects of the RMS moment and lift on 

the body, these effects should be considered when designing a robotic system using undulatory 

locomotion. Similarly, the average pitching moment should also be considered for stability when 

designing a control system utilizing undulatory fins. 
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In addition to the forces and moments, the power input and output were also considered for the 

system. Because the amplitude showed minimal effect on the horizontal force production, it also 

had minimal effect on the power output of the system. However, increasing the amplitude also 

increased the power input required to drive the fin, suggesting that amplitude changes may not be 

the most efficient method for controlling swimming speed. Meanwhile, for constant amplitude, the 

power output was found to correspond exclusively to the power input, regardless of the particular 

kinematics used to achieve that power input. This trend means that power losses for the system are 

independent of the particular kinematic parameters prescribed, and rather depend on the overall 

power input instead. Additionally, the results indicated that negative power input was possible 

when the system was subject to deceleration. Such results suggest that undulatory propulsion may 

provide an opportunity for regenerative braking, allowing a robotic system to recover power from 

the fluid. 

One last point of note is the method of determining efficiency for an undulatory propulsion 

system. For this study, power input was determined based on the vertical forces and speeds 

required to drive the system in the computed fluid flow (corresponding to a typical robotic system), 

while the power output was defined by the resulting horizontal forces at a given speed. The results 

suggested that there is a direct, nearly linear relationship between power input and output, but 

because the range of power input requirements can cross from positive to negative, and because 

the relationship is offset from the origin, a simple ratio of power output to input is not sufficient to 

define efficiency. One possible way to mitigate this issue is to use the derivative of power output 

with respect to power input when near the origin. This slope decreases with increasing power 

output, meaning that as with any system, there are trade-offs when designing for energetic 

efficiency versus for speed and performance. 

The aim of this parametric study was to demonstrate the effect of each kinematic parameter in 

the wave equation on the average and variance of resulting forces and moments on the undulatory 

body. Ultimately, these reactions and the observed power characteristics can be used to design and 

optimize a robotic system using undulatory propulsion. 
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3. Paper #2: Power Regeneration of a Bioinspired Electromechanical Propulsive Fin 

3.1. Abstract 

Bioinspired swimming methods have become highly attractive due to the potential for low 

environmental impact and high efficiency. However, although the efficiency has been quantified 

for select robotic and theoretical models, this paper explores more directly how requisite power 

consumption of an undulatory fin is affected by desired swimming speed. It further introduces and 

quantifies a method for recovering energy from the flow. First, CFD was used to simulate a cross-

section of a fish fin with a wave number of 1.2 and a linearly increasing amplitude envelope. Flow 

speed and fin wave frequency were varied to determine interactive effects on force production and 

power requirements. The data from these simulations was fitted with polynomial functions over the 

range used for the study. To determine the potential for power regeneration from the flow, the fin 

was augmented with a mathematical model of a DC motor and shaft driving it. By incorporating 

the motor model into the fin analysis, the authors analyzed the amount of power input, or power 

regeneration, into the system from a constant velocity fluid flow, and developed a relationship 

between flow velocity and power regeneration. This relationship provides insight into both the 

level of power regeneration for the fin if held fixed in constant flow, and the minimum flow speed 

to regenerate energy at a desired rate. The determination of the relationships between efficiency 

and mode of operation will provide insight into the energetic efficiency of robotic designs using 

this method. Furthermore, the possibility of power recovery could pave the way for longer lasting 

underwater robots in extended missions. The determination of both efficiency and power 

regeneration capability will provide insight into the energetic feasibility of using, and improving 

on, the current capabilities of bioinspired underwater propulsion. 

3.2. Introduction 

Recently, technological advances in computers, mechatronics, and control methods have 

facilitated the development and plausibility of using robotic vehicles for exploration. As the field 

of ocean engineering witnesses the development of new submersible vehicles that traverse and 

explore seas and oceans, the need for efficient propulsion and greater maneuverability for 

discovering the unknown undersea environment necessitates research into methods of transport 
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other than propellers and jets. To address the need, researchers have turned to biological 

mechanisms for inspiration. 

Commonly, biological mechanisms such as fish propulsion are thought to be more efficient 

than engineered mechanisms due to optimization through natural selection. However, nature 

selects for more than just propulsive efficiency, and biological actuation methods (e.g. muscles) 

are configured quite differently than engineered ones (e.g. DC motors). As such, it is of interest to 

quantify the force and power characteristics of the bioinspired systems to determine their utility 

during application. 

This particular study focuses on underwater fluid dynamics of a fin mechanism inspired by an 

undulatory stingray. Rays use their pectoral fins to pass an undulatory wave from anterior to 

posterior, thereby propelling themselves forward [1]. This wave can be modelled as a travelling 

sinusoid, and is similar in kind to a general fish model using motion parameters such as amplitude, 

frequency, and wave number to control motion and speed [2]. A variety of methods, ranging from 

analytical [2–4] to experimental to computational [5-7] can be used to make observations about 

fish swimming methods, wake development, force characteristics, and power requirements for this 

type of bioinspired propulsion. 

Efficiency estimates for fish swimming have been approached in a variety of ways. For 

example, Moored et al [8] used both analytical and experimental methods to determine and verify 

that the peaks of propulsive efficiency occur when a fin flaps at the resonant frequency of the jet 

profile. An experimental study, Anderson et al [9] found experimentally that an oscillating foil in 

water with high angle of attack could produce a propulsive (Froude) efficiency as high as 87% in 

a case of net thrust. Rahman et al [5] determined a peak efficiency closer to 20% for their 

undulatory fin, again during a case of net thrust. As noted in Borazjani and Sotiropoulos [10], 

however, the Froude efficiency equation for propulsion is only meaningful when under equilibrium 

conditions, when the net average force acting on the body is 0. Their calculated efficiency, using 

a decomposition of forces to determine thrust at a total net force of 0, showed carangiform 

swimming efficiency at almost 50%. This sort of analysis in regards to power and efficiency is 

fairly typical, where only cases of net positive thrust (acceleration) or net 0 thrust (equilibrium) 

are considered. However, CFD results from [11] suggest that when experiencing net drag 

(deceleration of a free body), an undulatory fin may be able to recover power from the surrounding 

fluid, though this capability has not been explored in the literature. 
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Power recovery, or regeneration, is of interest primarily to lengthen the feasible timespan of 

robotic missions. By modelling the fin as being actuated via a single motor and crankshaft, the 

capacity for power regeneration can be explored more readily than typical multi-motor models. In 

the fields of electrical engineering and mechatronics, it is commonly accepted that by using an 

appropriate H-bridge configuration to control and provide power to the motor, it is possible for a 

back-driven motor to provide power back to a battery [12]. By combining the fluid model with an 

electronic motor model, we can quantify both the amount of power required to propel an 

undulatory fin through the water as well as the amount of power than can be regenerated by the 

same fin when fixed in the presence of constant flow. 

3.3. Methodology 

In this paper, CFD is used to gather data showing the effect of fin frequency and flow velocity 

interaction on drag and power production. Using empirical models to represent the data, the power 

input to the fin required to achieve a desired swimming speed was determined in the range 0 – 1 

m/s. Additionally, we determined the maximum power obtainable from using regeneration in the 

same range of flow speeds. The following subsections discuss in more detail the methods and 

theory used in the analysis. 

3.3.1. Fin Model 

A wavy plate was used as a 2D transverse cross-section representation of a stingray fin. The 

motion of the plate was modeled as a travelling wave equation such that the vertical displacement 

𝑦 at time 𝑡 of a point distance 𝑥 from the leading edge of the fin can be represented as 

 𝑦(𝑥, 𝑡) = 𝐴(𝑥) sin (2𝜋 (𝑛
𝑥

𝐿
− 𝑓𝑡)) (1) 

where 𝐴(𝑥) is the amplitude envelope, 𝐿 is the length of the fin, 𝑛 is the wave number (number of 

sinusoidal periods present on the fin at one time), and 𝑓 is the frequency. For this study, the 

amplitude envelope was chosen to be 𝐴𝑚𝑎𝑥 (
𝑥

𝐿
), such that the amplitude of the wave increases 

linearly from 0 at the leading edge to 𝐴𝑚𝑎𝑥 at the trailing edge. Figure 1 shows an annotated 

diagram of the travelling wave on the fin, where the flow speed 𝑈 encounters the leading edge on 

the left, and the wave number is given by 𝑛 = 𝐿/𝜆, where 𝜆 is the wavelength of the traveling 

wave. 
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Figure 3-1: Flow speed 𝑈 over the simulated fin of length 𝐿 with kinematic 

parameters wavelength 𝜆, maximum amplitude 𝐴𝑚𝑎𝑥, and frequency 𝑓. 

In this study, the flow speed 𝑈 was varied in the range 0.1 − 1 m/s, and the frequency was 

varied in the range 0.5 − 3 Hz. The wave number was held constant at 1.2, within the undulatory 

regime for stingrays. The slope of the amplitude envelope was 0.25, based on the region of 

increasing amplitude of the undulatory stingray Potamotrygon orbignyi [13]. The length of the fin 

was set at 0.4 m to represent the size of a feasible robotic design. For total fin power characteristics 

discussed in the regeneration section, the width of the fin was taken as 0.2 m for an aspect ratio of 

0.5, and the amplitude of the wave along the width at a particular point 𝑥 was assumed constant to 

simplify analysis and avoid 3D effects. 

3.3.2. Computational Fluid Dynamics 

The fluid mechanics resulting from the dynamic motion of the 2D fin cross-section were solved 

using ANSYS Fluent (v. 16.0). For the unsteady, incompressible flow of the water over the fin, the 

continuity and momentum equations are 

 ∇ ⋅ 𝑣⃑ = 0 (2) 

  𝜌 [
𝜕2𝑣⃑⃑

𝜕𝑡2 + 𝑣⃑ ⋅ (∇𝑣⃑)] = −∇𝑝 + 𝜇∇2𝑣⃑ (3) 

where 𝜌 is density, 𝑝 is pressure, 𝜇 is viscosity, and 𝑣⃑ is the velocity vector of the fluid. In Fluent, 

the flow was solved with the segregated pressure-based Navier-Stokes (PBNS) method with the 

semi-implicit method for pressure linked equations (SIMPLE) algorithm to resolve the pressure-

velocity coupling. Gradients were discretized with the least squares cell based (LSCB) method, 
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momentum equations were discretized as second order implicit, and time was discretized as first-

order implicit. The maximum time step for a particular simulation was chosen based on a version 

of the Courant-Fredrichs-Levy (CFL) number 

 𝐶𝐹𝐿 =
𝑉Δ𝑡

Δ𝑥
 (4) 

where 𝑉 is either the flow speed or the vertical velocity of the trailing edge of the fin (whichever 

was largest), Δ𝑡 is the time step, and Δ𝑥 is the smallest cell size. The Reynolds number ranged 

between approximately 4 × 104 and 4 × 105 for all cases. Because the Reynolds number remained 

below the critical Reynolds number (5 × 105) for all cases, a laminar flow model was used. 

The mesh domain was 11.2 × 8 m, with 7𝐿 in front of the leading edge of the fin, 20𝐿 behind 

the trailing edge of the fin, and 10𝐿 above and below the fin. Water enters the computational 

domain along the left boundary (-𝑥) with a specified uniform velocity 𝑈. The upper and lower 

boundaries of the domain are modelled as symmetric boundaries, and the right boundary is set at 

an ambient pressure of 𝑝 = 0. Within the domain, an unstructured finite-volume mesh is used 

around the cross-section and updated each time step using a diffusive smoothing method to retain 

conformity to the dynamic fin cross-section. The diffusive smoothing is modelled as 

 ∇ ⋅ (𝛾∇𝜓⃑⃑) = 0 (5) 

where the diffusion coefficient 𝛾 determines the extent to which the boundary motion 𝜓⃑⃑ propagates 

through the surrounding mesh region. 𝛾 can be calculated according to the cell distance 𝑑 from the 

deforming boundary 

 𝛾 = 1/𝑑𝑎 (6) 

where 𝑎 = 1.75 was the diffusion parameter used in these simulations. The mesh used a minimum 

of 266,262 cells for all simulations. Figure 2 shows the mesh near the fin at the beginning of the 

simulation. 

A grid convergence study was performed on the mesh to estimate the numerical accuracy of 

the solution by evaluating the relative difference of an increasingly fine mesh with respect to 

parameters of interest, such as average drag [14]. The mesh for this study showed 3rd order 

accuracy, with a 0.24% error in determining drag at 1.0 m/s, and a 6.65% error in determining drag 

at 0.1 m/s. 
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Figure 3-2: Mesh around the fin used for the CFD simulation. 

3.3.3. Mechanical Power Estimation 

By assuming that the fin is driven by actuators that act transverse to the fin (denoted as the 𝑦-

direction in accordance with the CFD model) the differential power input from the actuator(s) to 

the fin is 

 𝑑𝑃𝑓𝑖𝑛 = 𝐹𝑦𝑣𝑦𝑑𝐴 (7) 

and by integrating along the length, the total power input from the actuator(s) are 

 𝑃𝑓𝑖𝑛 = ∫ (𝐹𝑦𝑣𝑦)𝑤 𝑑𝑥
𝐿

0
 (8) 

Note that 𝑃𝑓𝑖𝑛 > 0 here indicates that the motor induces force from the fin into the fluid to act in 

the same direction as the velocity at a point, while 𝑃𝑓𝑖𝑛 < 0 indicates that the fluid induces force 

from the fluid to the fin in the same direction as the velocity at that point. 

3.3.4. Data Fitting 

The drag and power data from varying frequency and velocity (while holding length, wave 

number, and amplitude constant) were extracted from the CFD results to quantify the relationship 

between kinematics parameters and resulting fin force or required power input. Based on the data, 

the drag was modelled quadratically with frequency and velocity, and power was modelled as 
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varying cubically with frequency and velocity. Coefficients for the models were determined using 

regression analysis on the data. 

3.3.5. Motor – Regeneration  

Suppose that a fin with a specific prescribed wavelength and amplitude is driven by a single 

DC motor through a theoretical mechanism akin to a crankshaft. In this model, the rotational speed 

of the shaft of the motor is the same as the frequency 𝑓 of the fin, and the power and torque transmit 

between the fin and motor with 100% efficiency. Note that most DC motors are designed to 

produce relatively high velocity and low torque, so a gearbox would also be required to bring the 

velocity and torque into a range more appropriate for this application. In this analysis, the gearbox 

will also be assumed 100% efficient. 

For the motor model, transient responses resulting from the inner circuitry (such as inductance 

and capacitance) are assumed to be negligible. Instead, the analysis will focus on the 

electromagnetic force component of the motor, which is the basis for the conversion of electrical 

energy to mechanical energy (and vice versa). By focusing on this element, a relationship between 

motor power and rotational frequency is developed, incorporating losses from motor efficiency 

and internal resistance. 

This section will focus on regeneration, in which power flows from the fin into the motor, 

which will in turn provide power to the battery. Then the mechanical power from the fin into the 

motor 𝑃𝑚𝑒𝑐ℎ can be represented as 

 𝑃𝑚𝑒𝑐ℎ = 𝜏𝜔 (9) 

where 𝜏 is the torque on the motor and 𝜔 is the speed of the motor. The power provided to the 

motor from the fin can also be represented electrically by considering the circuitry, including 

internal resistance that causes power loss to heat: 

 𝑃𝑒𝑙𝑒𝑐 = 𝑃𝑟𝑒𝑔𝑒𝑛 + 𝑃𝑟𝑒𝑠 (10) 

 𝜂𝑃𝑚𝑒𝑐ℎ = 𝑃𝑟𝑒𝑔𝑒𝑛 + 𝐼2𝑅 (11) 

where 𝑃𝑟𝑒𝑠 is the power dissipated over the resistor, 𝐼 is the current flowing through the motor due 

to the input torque, and 𝑅 is the internal resistance of the motor.  

Due to the electromotive force from the motor, additional equations relating the mechanical to 

the electrical system can also be used: 



38 

 

 𝐼 =
𝜂

𝑘𝑔𝑘𝑡
𝜏 (12) 

where 𝑉 is the voltage across the motor due to its rotation, 𝜂 is the efficiency of the motor, 𝑘𝑔 is 

the gear ratio, 𝑘𝑡 is the torque constant, 𝑘𝑒 is the electromotive force (EMF) constant, and 𝑘𝑒 =

𝑘𝑡. Using these relationships, 𝑃𝑟𝑒𝑔𝑒𝑛 can be expressed in terms of the torque and frequency: 

 𝑃𝑟𝑒𝑔𝑒𝑛 = 𝜂𝜏𝜔 − (
𝜂

𝑘𝑔𝑘𝑡
𝜏)

2

𝑅 (13) 

Then, using the fitted model from the CFD data, we have a relationship between torque and 

frequency of the fin at a known flow speed 𝑈. This relationship from the CFD results in mechanical 

fin power due to the flow 𝑃𝑓𝑖𝑛(𝜔, 𝑈) = 𝜏𝜔 that can be substituted into the previous equation such 

that 

 𝑃𝑟𝑒𝑔𝑒𝑛 =  𝜂𝑃𝑓𝑖𝑛(𝜔, 𝑈) − 𝑅 (
𝜂

𝑘𝑔𝑘𝑡
)

2

(
𝑃𝑓𝑖𝑛(𝜔,𝑈)

𝜔
)

2

 (14) 

which at a given speed 𝑈 will allow a maximum value for 𝑃𝑟𝑒𝑔𝑒𝑛. The desired value of 𝑃𝑟𝑒𝑔𝑒𝑛 will 

determine the resulting fin frequency and torque, as well as the voltage and current across the 

motor. This analysis will determine the maximum 𝑃𝑟𝑒𝑔𝑒𝑛 at a given flow speed 𝑈. Alternatively, 

the equation could be solved to determine the minimum flow speed necessary to provide the 

desired 𝑃𝑟𝑒𝑔𝑒𝑛. 

3.3.6. Motor – Drive  

When analyzing a propulsive system, it is also practical to consider the necessary drive power 

to produce 0 net drag. Because 0 net drag occurs when the vehicle maintains a constant average 

swimming speed, the power characteristics at this point correspond to the typical requisite power 

consumption to maintain a desired swimming speed. In this case, 𝑃𝑚𝑒𝑐ℎ is the power acting on the 

fluid from the fin. Applying the motor efficiency in this direction,  

 𝑃𝑚𝑒𝑐ℎ = 𝜂𝑃𝑒𝑙𝑒𝑐 (15) 

such that 𝑃𝑒𝑙𝑒𝑐 is simply the power drawn from the battery. 

For the purpose of comparison, the motor model used for this paper is based on a 30 W 

brushless Maxon motor with 𝑘𝑡 = 2.54 mN⋅m, and maximum efficiency of 79%. For the purposes 

of this paper, the efficiency was set at 𝜂 = 0.75. The gear ratio 𝑘𝑔 was chosen to be 106 in this 

example to increase stall torque to 8 N⋅m and decrease maximum frequency to 7 Hz. 
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3.4. Results 

After processing CFD results from various combinations of velocity and frequency, useful data 

can be extracted from the time histories of the fluid flow over the fin, such as net horizontal force 

(drag or thrust, depending on the sign) and power input (the power required to drive the fin at that 

swimming speed and frequency). 

3.4.1. Fluid Force and Power Curves 

The resulting drag curves are shown at different velocities with respect to frequency in Fig 3, 

and can be modeled with quadratic curves with respect to both frequency and velocity (𝑅2 =

0.9986). These curves show that net drag is produced when the frequency is too low for the 

swimming speed, and net thrust when the frequency is relatively high for the given swimming 

speed. For constant kinematics (frequency), the fin would tend to come to a final “steady 

swimming speed” where the drag is approximately zero. (Note that body drag in this analysis is 

neglected). Because the drag is approximately quadratic with respect to both velocity and 

frequency, the steady swimming speed is approximately proportional to the frequency, as shown 

in Fig 4. 

Meanwhile, the power input as a function of frequency at different swimming speeds is shown 

in Fig 5. The power input here is modeled as approximately cubic with respect to velocity and 

frequency (𝑅2 = 0.9982). At high frequencies (which generally produce acceleration/thrust as 

shown in the drag results), the power input required is positive, meaning simply that a power 

supply must provide power to the motor to allow the fin to continue to move at the desired 

frequency. At low frequencies (generally corresponding to deceleration/drag), the power input is 

negative, suggesting that power can be recovered from the fluid. 
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Figure 3-3: Model quadratic fits for net average horizontal force (drag > 0) as a 

function of frequency at different flow speeds. 

 

Figure 3-4: Necessary fin frequency to maintain a desired steady average 

swimming speed. 

Using the relationship between frequency and steady swimming speed, the power input 

required to swim at an approximately constant speed can also be determined. Figure 6 shows the 

relationship between steady swimming speed and the ideal average input power (per width of fin) 

required to maintain that speed.  
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Figure 3-5: Model cubic fits for net average power input as a function of frequency 

at different flow speeds. 

 

Figure 3-6: Necessary power input per width of fin to maintain a desired steady 

average swimming speed. 

 

3.4.2. Regeneration 

From the motor model discussed previously, the power drawn by the motor from the fluid will 

be proportional to the square of frequency (for non-unity efficiency). Assuming that the fin is a 

particular width, such as 0.2 m wide, the power from the fluid can be calculated and compared to 

the power draw of the motor at different frequencies. Figure 7 shows the comparison of required 
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input power for constant velocity, as well as maximum regeneration in a constant velocity flow, 

where the solid curves correspond to the actual motor (75% efficient with internal resistance 𝑅 =

0.4 Ω) and an ideal motor (100% efficient with 0 resistance). 

 

Figure 3-7: Power needed to drive a 0.2 m fin at a steady swimming speed (blue), 

and power regeneration from a fin held fixed in a given flow speed (black). 

Interestingly, the maximum potential regenerative power in a constant flow speed is higher 

than the power required to travel at constant velocity at the same speed. Assuming the presence of 

a current, the power for the driving the motor to exactly counteract that flow speed will result in 

no net movement (relative to an inertial frame of reference). Meanwhile, the regeneration assumes 

that the fin is somehow fixed relative to the inertial frame, and the force of that fixed mount 

counteracting the force of the flow allows the fin to experience a higher net force (and thus 

regenerative power) than if the fin had to counteract the fluid force on its own. Additionally, when 

considering a real robot with significant body drag, this comparison would likely change 

significantly, since the robot would be operating in a higher thrust region that necessitates 

significantly more power to maintain constant velocity (note that the inclusion of a body would 

not significantly change the regenerative power). Additionally, as one would expect, inclusion of 

dissipative terms (such as efficiency and resistance) increase the power required for swimming at 

constant speed, and decrease the available power for regeneration. 

To better understand the implications of the results discussed in the previous sections, a 

behavior of a 0.2 m wide fin in a wide river that flows downstream at approximately constant 

velocity with uniform flow is considered (neglecting body drag once again). 
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Suppose the river flows at 0.25 m/s, and the fin travels at a groundspeed of 0.5 m/s in the 

desired direction during travel. Let us consider the relative regenerative capabilities when it wants 

to swim upstream, downstream, and across the river (neglecting the perpendicular current during 

swimming). In other words, consider the power requirements for traveling in a relative flow speed 

of 0.75 m/s upstream, 0.25 m/s downstream, and 0.5 m/s across. 

Based on previous results, the fin requires 0.94 W to travel upstream, 0.03 W to travel 

downstream, and 0.28 W to travel across the river. However, in all cases, the fin has approximately 

0.07 W available to regenerate from the flow. Assuming that the fin travels with periods of active 

travel to recharging time, the ratio of swimming to recharging time is 7% for the upstream case, 

188% for the downstream case (i.e. can swim for about twice as long as the charging time), and 

23% for the crossing case. 

Practically, the results indicate that although the theoretical regeneration is higher for the fin 

(with negligible body drag) for a particular flow speed than the power required to swim at the same 

swimming speed, the comparison is somewhat more complicated, because travel speed needs to 

be taken into account as well. If the fin regenerates in a flow speed 𝑈, then traveling against the 

same current will require a higher relative flow speed (swimming upstream), and thus, a higher 

required power for travel due to the presence of a current. 

3.5. Conclusion 

Based on data obtained from the 2D CFD solutions, the net average horizontal force (drag or 

thrust) can be modelled as quadratic with respect to both velocity and frequency. Similarly, the 

average power input can be modelled as cubic with respect to velocity and frequency. Based on 

the force results, the fin frequency required to achieve a desired swimming speed is approximately 

proportional to that desired speed. This results in a cubic function of velocity describing the power 

input required by the fin to achieve the desired swimming speed. 

Based on the regeneration results, it is indeed possible for a fixed undulatory fin to recover 

power from the surrounding fluid flow proportional to the cube of the flow speed. Although motor 

inefficiency and internal resistance reduce the maximum possible power regeneration, the overall 

power regeneration is still significant for a realistic motor, especially for high flow speeds. 

In practice, the drive power for a desired swimming speed will be higher due to the presence 

of non-negligible body drag. However, the body drag should not strongly affect power 
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regeneration, given a sturdy mounting point to fix the body to an inertial frame (such as a rock or 

a wall). Instead, power regeneration methods would need to account for a motor-crankshaft 

mechanism efficiency, and for the effect of including a real (rather than perfect theoretical) charger 

circuit to convert the power of the motor to a voltage and current level appropriate for the battery. 

Further research could also include deeper analysis into methodologies for quickest or most 

efficient travel against an upstream flow. 

The analysis presented in this paper offers insight into the feasibility of using power 

regeneration methods in a bio-inspired, undulatory fin mechanism designed for underwater travel. 

Such a method could provide a significant extension to mission lifetime and reduction of on-board 

power storage for a robot using undulatory fins for propulsion. 
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4. Conclusion and Future Work 

The results obtained from these studies are new and significantly add to the body of literature 

related to the understanding of bio-inspired swimming. The utility of a bioinspired system depends 

on an informed understanding of the underlying mechanics to make them efficient and competitive 

with current technologies. This work uses computational fluid dynamics to investigate these 

underlying mechanisms and apply them to understanding the energetics of the propulsor as well 

as harnessing them to harvest power from the environment for the most effective implementation. 

The first noteworthy result of the parametric study was the effect of amplitude changes on 

thrust production, or rather, the lack thereof. Although the RMS forces and moment increased, as 

well as the power required to enable the increase in amplitude, the average thrust showed no 

significant change. Because previous literature predicts an increase in thrust with amplitude, we 

can conclude that the primary role of amplitude changes in speed control is through the formation 

of a leading edge vortex through oscillation at the anterior section of the fin. When considering 

only the trailing edge effects for an undulatory fin in the inertial regime, the difference between 

swimming speed and wavespeed is the driving factor in determining whether or not the fin 

experiences a net thrust or a net drag. Amplitude changes serve to augment thrust production by 

amplifying effects in the wake, but near the steady swimming condition, it only amplifies a 

balanced system, resulting in no change in the average horizontal forces. Because undulatory fish 

use a larger amplitude at the trailing edge than the leading edge, this observation could explain 

why many species of fish tend to use higher amplitude motions during acceleration than during 

steady swimming, regardless of speed. For robotics applications, this result suggests that a vehicle 

should use frequency or wavelength, not amplitude, to control the swimming speed, but amplitude 

changes could be used to increase the magnitude of acceleration or reduce to energy losses. 

Another key result of the parametric study was the relationship between power input and output 

for the fin. The averaged energetic results for the velocity, frequency, and wavelength variation all 

lay along approximately the same curve. It is possible that the intercept, and even the slope, of this 

curve may depend on the amplitude of the fin wave. Given a particular amplitude envelope, 

however, the results suggest that the greatest determining factor in power output is the power input 

itself, regardless of the particulars of the swimming speed and waveform interactions. For robotic 

applications, the implication is that for a given geometry and amplitude envelope, a single power 

curve could be measured and incorporated into a closed loop controller to control average 
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swimming speed in a highly predictable way. Of course, these results may behave differently 

outside of this regime, as in the peaks of Froude efficiency often noted in other works. However, 

control systems may be far simpler to implement in this regime, and may be more viable when 

considered in light of different metrics of locomotor cost (such as cost of transport) where large 

accelerations are less necessary. 

Upon further examination of frequency-velocity interactions, low order nonlinear models were 

shown to explain more than 99.8% of the data. For these models, drag varied quadratically with 

both frequency and velocity, while power input varied cubically. By analyzing the drag model for 

zero average drag, the steady swimming speed was shown to be proportional to frequency, 

suggesting a linear relationship between wavespeed and swimming speed with a slope dependent 

on the geometry of the waveform alone. Interaction between this linear model and the power input 

was used to develop a quadratic predictive model of power input required to maintain a steady 

swimming speed with the fin. This predictive model could be useful for optimizing speed to 

minimize the cost of transport, or determining how much stored energy is required for a particular 

excursion.  

The last major result of this work was a model for the regenerative capability of a single-motor 

fin fixed in oncoming flow. The power input model discussed previously showed local minima for 

each velocity, representing the maximum possible power available for regeneration at the given 

flow speed. The model can also take into account motor efficiency and resistance, and predict the 

regenerative power and fin frequency for a given flow speed. For a realistic motor, the fin was 

shown to be capable of regenerating more power when fixed in a given flow then it would consume 

to move at the same flow speed. Although for a full robot the inefficiencies in the system would 

reduce the regenerative capability, this result does suggest that for a long-term mission, 

regeneration is a viable method for extending mission life indefinitely. 

Continuations to this work could follow several different avenues. The first is a parametric 

study about additional steady swimming points to investigate how the effects of wavelength in 

particular vary with steady swimming speed. Nonlinear models for force and power could then be 

developed to describe the interaction of the kinematic variables with the force production and 

energetics. Another direction, also computational in nature, involves the extension of this work to 

a three-dimensional simulation environment. The third dimension would provide an opportunity 
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to investigate a more realistic fin to determine how out of plane effects differ from the two-

dimensional findings, and relate the new findings more directly to a robotic system. 

Given the intention of application of this work to robotics, however, the most natural course of 

action is to build an undulatory robot for experimentation. Tests of a single-fin system could be 

used to validate results of the computational study, or to more quickly investigate the parametric 

space with regard to forces and energetics. Using a motor-shaft system for actuation of the fin, 

coupled with charging circuitry, the effectiveness of regeneration in the presence of further 

inefficiencies could also be tested. Additionally, the parameter effects could also be incorporated 

into the development of a control model. Using knowledge about the energetics behind it, the 

controller could also be designed for optimal efficiency or speed with numerical techniques. The 

presence of effective low-order models discussed in this work suggest that numerical computations 

could be quite effective without unreasonable levels of computational cost. I intend to pursue the 

development of optimal control for an undulatory robot as the focus of my doctoral dissertation. 

As the field progresses in its understanding of swimming, better design principles for robots using 

undulatory fins will be developed for optimization of efficiency, speed, and maneuverability. With 

advances in understanding regarding the efficiency and energetic capabilities of bioinspired 

technology, the future of robotics becomes ever more viable for application to long-term, 

exploratory marine missions. 
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A. Appendix A: Grid Convergence Study 

This appendix is for discussing the grid convergence study in more detail. This study was 

referenced in the body of the report, and is important for establishing the numerical accuracy of 

the CFD solution. 

In CFD and other computational techniques for representing mechanical systems, it is 

important to ensure that the computational model represents the real world well. Part of this 

involves ensuring that the discretization process uses adequately small elements when computing 

a solution. To ensure this, we can perform a grid convergence study to quantify the effect of the 

mesh on the results. Celik et al [1] outlines a methodology for quantifying and establishing a 

convergence metric for the uncertainty due to the discretization of the mesh. 

Briefly, the methodology for quantifying uncertainty involves examining the results for three 

or more mesh refinements and determining the level of convergence. For this study, three different 

mesh refinements were used (coarse, medium, and fine) with a ratio of element size of almost 3 

for the fine to medium mesh, and a ratio of about 1.5 between the medium and coarse mesh. The 

same simulation was run for each of these meshes, and a metric in the solution chosen for 

comparison of the meshes. Using the relative mesh size and the different solutions (based on the 

chosen metric), the apparent order of the method and the approximate error in the solution can be 

calculated. After that, the order and error were used to calculate the grid convergence index (GCI) 

to quantify uncertainty in the metric due to the mesh at the fine and mid-size refinement level. The 

choice can then be made as to which mesh refinement to use to achieve a satisfactory balance of 

computational cost and uncertainty.  

Because this study uses a range of parameters, I chose to study the grid convergence at the 

lowest and the highest flow speeds (0.1 m/s and 1.0 m/s), corresponding to the highest and lowest 

Reynolds numbers. The time step size was chosen to ensure that the CFL number remained less 

than one, and the reference size for remeshing was modified to match the minimum cell size for 

each mesh. Otherwise, parameters were unchanged for the different cases; remeshing and 

smoothing parameters were chosen as described in Section 2. 

For calculating the grid convergence index, the average horizontal force per meter depth (i.e. 

the drag in the 2D simulation) was used as the metric of interest. Table A-1 shows the convergence 

results for each set of cases. Here, 𝑁 refers to the number of elements in the mesh, 𝑟 is a measure 
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of the ratio of cell sizes between the meshes, 𝜙 = 𝐷𝑎𝑣𝑔 is the measured average horizontal force 

per meter depth (drag) from each case, 𝑝 is the approximate order of the solution method, 𝜙𝑒𝑥𝑡 is 

the estimated parameter value for an infinitely fine mesh, 𝑒𝑎 is the approximate error between the 

mid and fine mesh, and 𝐺𝐶𝐼𝑓𝑖𝑛𝑒 and 𝐺𝐶𝐼𝑚𝑖𝑑 refer to the grid convergence index (GCI) of the fine 

and mid-size meshes, respectively. 

Table A-1: Results of the GCI study at two flow speeds, using 𝐷𝑎𝑣𝑔 as the metric. 

 0.1 m/s 1.0 m/s 

𝑁1, 𝑁2, 𝑁3 1199021, 161300, 65305 1199021, 161300, 65305 

𝑟21 2.7264 2.7264 

𝑟32 1.5716 1.5716 

𝜙1 -59.6117 N/m 28.0290 N/m 

𝜙2 -62.8640 N/m 28.0830 N/m 

𝜙3 -76.4710 N/m 35.6380 N/m 

𝑝 3.59 10.94 

𝜙𝑒𝑥𝑡
21  -59.5205 N/m 28.0290 N/m 

𝑒𝑎
21 5.46% 0.19% 

𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21  0.19% 4.11e-6 % 

𝐺𝐶𝐼𝑚𝑖𝑑
32  6.65% 0.24% 

 

Based on the results in Table A-1, the fine mesh shows excellent accuracy in terms of the 

discretization, and the mid-size mesh shows fairly good results as well. To examine the results in 

a different way, consider a comparison of the time histories of each set of results. The drag (D) and 

lift (L) results for the low speed (0.1 m/s) case are shown in Figure A-1. Qualitatively, the fine and 

mid-size meshes produced very similar results for both lift and drag, with the most significant 

difference appearing to be the phase. The coarse mesh, however, showed significantly different 

averages, RMS values, and even frequency for the drag case.  
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Figure A-1: Lift and drag acting on the fin as a function of time for the three 

different mesh refinement levels with a 0.1 m/s flow speed. 

Next, the abridged convergence estimates for the low speed RMS lift and drag as well as the 

average lift are shown in Table A-2. The RMS drag shows fairly low error based on the GCI for 

both the fine and mid-size meshes. However, notice that the RMS drag for the coarse mesh (𝜙3) 

is about twice as high as for the fine and mid-size meshes (𝜙1, 𝜙2). This is likely related to the 

frequency difference for the coarse mesh, which showed a single force period per flap cycle rather 

than two, and thus showed a greater effect for that single high amplitude period rather than for the 

two smaller amplitude periods of the finer meshes. Meanwhile, the average lift was fairly close to 

the expected of zero for the fine and mid-size meshes, but was very different for the coarse mesh, 

resulting in a low 𝐺𝐶𝐼𝑓𝑖𝑛𝑒 but very high 𝐺𝐶𝐼𝑚𝑖𝑑. From these results, it can be concluded that while 

the mid-size mesh produces adequately accurate results for 𝐿𝑎𝑣𝑔, this measurement may be more 

susceptible to error than was the drag. Lastly, the RMS lift showed relatively more consistent 

results, with an excellent 𝐺𝐶𝐼𝑓𝑖𝑛𝑒 of less than 1%, and a decent 𝐺𝐶𝐼𝑚𝑖𝑑 of  about 13%. From this, 

it seems reasonable to conclude that the mid-size mesh performs acceptably well in computing the 

results, although the lift results may be more susceptible to error. 
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Table A-2: Results of the GCI study at a flow speed of 0.1 m/s for four force 

parameters as metrics.  

 𝐷𝑎𝑣𝑔 (N/m) 𝐷𝑟𝑚𝑠 (N/m) 𝐿𝑎𝑣𝑔 (N/m) 𝐿𝑟𝑚𝑠 (N/m) 

𝜙1 -59.6117 7.039 -1.024 49.228 

𝜙2 -62.8640 6.775 1.118 44.864 

𝜙3 -76.4710 13.813 -18.971 32.028 

𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21  0.19% 0.00350 % 2.31% 0.61% 

𝐺𝐶𝐼𝑚𝑖𝑑
32  6.65% 5.26% 301.05% 12.83% 

 

Figure A-2 shows the lift and drag histories for the high speed (1.0 m/s) case. The fine and 

mid-size meshes again appear to agree fairly well, but the coarse mesh shows drastically different 

results. In fact, an even coarser mesh showed far better agreement with the fine and mid-meshes 

than this coarse mesh did, although the reasons for this are unclear. The drag shows a similar 

average, but a very different RMS value and, again, a frequency that is half the value expected. 

The lift, on the other hand, showed a very different average, but a comparable RMS and frequency 

value. Meanwhile, the fine and mid-size meshes agree very well for the lift results, but the histories 

themselves show significant computational noise relative to the amplitude of the resultant sinusoid. 

From this, we can fairly safely conclude that the mid-size mesh shows sufficiently accurate results, 

with the understanding that computational noise (which results from the residuals of error in the 

solution, which ranged from 1e-7 to 1e-5) can result in a relatively high signal to noise ratio for 

the RMS drag. 
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Figure A-2: Lift and drag acting on the fin as a function of time for the three 

different mesh refinement levels with a 1.0 m/s flow speed. 

Before quantifying the computational noise, consider the GCI results for this 1 m/s case, as 

shown in Table A-3. As one would expect from considering the results qualitatively, the fine mesh 

shows an excellent GCI (less than 0.5%) due to its agreement with the mid-size mesh results, but 

the values for 𝐺𝐶𝐼𝑚𝑖𝑑 are quite large due to the poor results from the coarse mesh. Based on a 

combination of the qualitative and quantitative results, it can be concluded that the mid-size mesh 

generally shows excellent results in terms of convergence to a “true” value, but for extreme cases 

may be susceptible to error during force quantification. The time history results for both the low 

and high speed cases seem to indicate that this large error is correlated with incorrect frequency 

results for the drag force (which should be twice the flapping frequency 𝑓), suggesting that the 

drag force frequency results could be used to indicate whether the force results on the whole are 

trustworthy. Even when the frequency indicator shows an issue, however, the average drag and 

RMS lift forces appear to be generally comparable to the actual values (with less than 20% error 

for 𝐺𝐶𝐼𝑚𝑖𝑑). Because these two force values (average drag and RMS lift) are the primary forces 

of interest acting on the fin, it can be concluded that (1) the drag force frequency is a good indicator 
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of “poor” results, but (2) these “poor” results are still reasonably accurate for the two most 

important force parameters 𝐷𝑎𝑣𝑔 and 𝐿𝑟𝑚𝑠. 

Table A-3: Results of the GCI study at a flow speed of 0.1 m/s for four force 

parameters as metrics.  

 𝐷𝑎𝑣𝑔 (N/m) 𝐷𝑟𝑚𝑠 (N/m) 𝐿𝑎𝑣𝑔 (N/m) 𝐿𝑟𝑚𝑠 (N/m) 

𝜙1 28.0290 2.757 0.049 25.770 

𝜙2 28.0830 4.142 0.770 23.838 

𝜙3 35.6380 57.903 -120.872 34.591 

𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21  4.11e-6 % 0.02% 0.02% 0.31% 

𝐺𝐶𝐼𝑚𝑖𝑑
32  0.24% 41.81% 118.45% 15.07% 

 

We can estimate the approximate uncertainty for each parameter in the mid-size mesh as: 

 𝑢𝜙 = ±𝐺𝐶𝐼𝑚𝑖𝑑 × 𝜙2 (A-1) 

The results of such estimation are shown in Table A-4, with the maximum uncertainty estimate 

shown as well. Based on these uncertainty estimates, all force parameter estimates appear to have 

an uncertainty less than 6 N/m. 

Table A-4: Uncertainty in each force metric for the mid-size mesh based on the 

results for each flow speed and Eq. A-1. 

 𝐷𝑎𝑣𝑔 (N/m) 𝐷𝑟𝑚𝑠 (N/m) 𝐿𝑎𝑣𝑔 (N/m) 𝐿𝑟𝑚𝑠 (N/m) 

0.1 m/s: 𝑢𝜙 4.18 0.3564 3.3657 5.7561 

1.0 m/s: 𝑢𝜙 0.0674 1.7318 0.9121 3.5924 

Maximum 𝒖𝝓 4.18 1.7318 3.3657 5.7561 

 

[1] I. B. Celik, U. Ghia, P. J. Roache, and C. J. Freitas, “Procedure for Estimation and Reporting 

of Uncertainty Due to Discretization in CFD Applications,” J. Fluids Eng, vol. 130, no. 7, 

2008. 

  



55 

 

B. Appendix B: Validation 

Although not discussed previously in the thesis, validation is also a key part of numerical 

simulation. To validate the simulation, the CFD methods used must be shown to be capable of 

accurately solving similar flow physics. As discussed in Section 1, thin undulatory fins are known 

to produce a vortex street in the resulting wake. As such, the phenomenon we want to validate is 

this vortex street. One classic 2D case demonstrating a vortex street is a circular cylinder in cross-

flow, so this is the one that was chosen for validation. 

The validation case should match the system of interest in as many important details as is 

feasible. As such, the solver used was the same (e.g. unsteady incompressible Navier-Stokes, 

SIMPLE, PRESTO, QUICK!, etc.), and the mesh was a comparable level of refinement to the 

mesh used for the fin simulations. The cylinder had a 0.4 m diameter, and water was used for the 

simulation. To obtain the vortex street desirable for validation, the velocity was chosen to be 0.25 

mm/s for a Reynolds of approximately 99.5. 

Using these parameters, the simulation showed an average 𝑐𝐷 of 1.54, and average 𝑐𝐿 of -

0.0018. The amplitude for each of these are 0.01 for 𝑐𝐷, and 0.35 for 𝑐𝐿. The results for the main 

cylinder used in Mittal & Raghuvanshi showed that for 𝑅𝑒 = 100, the averages are 1.40 for 𝑐𝐷 

and 0 for 𝑐𝐿, while the amplitudes are about 0.01 and 0.35 respectively. Based on these results, the 

average drag 𝑐𝐷 shows an error of about 6.67%, while the average of 𝑐𝐿 (relative to its amplitude) 

amplitude of both drag coefficients appear to match quite closely. 

Lastly, a common parameter to examine during vortex shedding is the Strouhal number 𝑆𝑡 of 

the resulting wake. The simulations showed a frequency of about 0.112 mHz, resulting in a 𝑆𝑡 of 

0.179. The accepted value is approximately 0.168 [1]. As such, the error in 𝑆𝑡 is approximately 

6.5%. 

Based on this validation simulation, the methods and mesh used resulted in error less than 7% 

for both average drag coefficient and for the Strouhal number, while the average lift coefficients 

and amplitude of the drag and lift coefficient matched very well with the expected values. Although 

not perfect, this is an acceptable level of accuracy and suggests that the fin simulations used for 

the body of this work align well with reality. 

 

[1] S. Mittal and A. Raghuvanshi, “Control of vortex shedding behind circular cylinder for flows 

at low Reynolds numbers,” Int. J. Numer. Methods Fluids, vol. 35, no. 4, pp. 421–447, 2001. 
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C. Appendix C: Amplitude Effects 

 

In Section 2, varying the fin wave amplitude around the condition at which the average 

horizontal force was zero showed no significant effect on the average horizontal force. At the time 

of publication, it was unclear why this was the case, because the existing literature generally 

accepts that amplitude changes do have a significant effect on thrust. However, further study into 

this phenomenon provided insight into why there was no significant effect apparent for that 

parametric study. 

First, a different nominal flow speed was chosen for use with the same kinematics, in order to 

observe the effects when amplitude was perturbed around a point where a significant net thrust 

was already observed. For this study, the new nominal velocity was 0.4 m/s, which originally 

showed a net thrust of about 37 N/m for a maximum amplitude of 0.1 m. Figure C-1 shows the 

effect of varying amplitude about the nominal point. For this set of cases, amplitude does indeed 

show a significant effect on the average horizontal force, with a 70 N/m range over the same set 

of amplitudes as before. The RMS forces also increased in magnitude compared to the cases from 

Paper #1 by about 50%. 

 

Figure C-1: Average and RMS drag forces acting on the fin at different trailing 

edge amplitudes with conditions  𝑈∞ = 0.4, 𝑓 = 2.4 𝐻𝑧, and 𝜆 = 0.335 m. 

The fact that amplitude did show an effect for the new cases begs the question as to why 

there was no effect before. To better understand the reasons why, one can examine the vorticity 
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in the wake region. The vorticity measures the rotation in the wake, and is useful for better 

understanding what kind of effect the fin had on the surrounding fluid. If the flow speed is faster 

than the wave speed, then the flow will dominate the wake, causing a von Karman vortex street 

to form, in which negative vortices form on the top half and positive vortices on the bottom, 

causing a suction region in between to drag the fin backward. If the wave speed is faster than the 

flow speed, the opposite will occur, and a jet will form down the centerline of the wake to propel 

the fin forward. Based on the results of Section 2, the wake can show symmetry when the flow 

speed is approximately equal to the wave speed, resulting in approximately zero average 

horizontal force. 

Consider the vorticity in the wake for the following cases in Fig C-2. The original cases, 

where the wave speed is approximately equal to the swimming speed, show a vortex street where 

both positive and negative vortices each range from the top to the bottom of the wake, and are 

approximately vertically symmetric. Increasing the amplitude from 0.1 m to 0.15 m did increase 

the vertical length of those vortices as well as their magnitude, but did not change the overall 

flow structure. In other words, the wave speed and swimming speed balance each other out for 

these nominal cases, and while changing the amplitude of motion changes the wake, it does not 

affect the overall balance. For the 0.4 m/s cases, however, there was not vertical symmetry 

between the positive and negative vortices, and the positive vortices tended to lie above the 

centerline of the wake, and the negative vortices tended to lie below. When the amplitude 

increased, the wake increased in kind, amplifying the asymmetry in the wake. This interaction 

between wake symmetry and amplitude is ultimately at the root of the problem: when the effects 

of the fin and flow speed on the flow balance each other out, changes in trailing edge amplitude 

will preserve this balance. 

𝐴𝑚𝑎𝑥 𝑈 = 0.4 m/s 𝑈 = 0.7625 m/s  

0.1 m 

  

 

0.15 m 

 
 

Figure C-2: Vorticity contours in the wake of the fin motion for a swimming speed 

of 0.4 and 0.7625 m/s, with a trailing edge amplitude of 0.1 and 0.15 m. 

The reason this phenomenon may just now be coming to light is that the large majority of 

robotic and CFD studies of undulatory fin mechanics use a nonzero leading edge amplitude. 

When the leading edge is allowed to be nonzero, changes in amplitude of the fin wave will affect 

the leading edge vortex on the fin, causing changes in the perceived thrust. Holding the leading 

edge fixed prevents the leading edge vortex from forming, allowing one to examine the effects of 

the trailing edge amplitude alone. In practice, most fish do move the leading edge, but if those 
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oscillations at the leading edge are small or difficult to control, then it may be more useful to 

consider the added-mass effects controlled by the trailing edge motion. For fish using primarily 

the added-mass effect for propulsion, they would likely not be able to use amplitude to modulate 

swimming speed, as was the case here. Instead, they may modify the fin wavespeed to control 

the swimming speed, with amplitude changes limited to increasing the potential acceleration but 

not the swimming speed itself. In fact, Akanyeti et al [1] observed that in more than fifty species 

of fish, tail beat amplitude was significantly higher during acceleration than during steady 

swimming. Although this may not be the only factor at play, the phenomenon observed here may 

explain why fish use the trailing edge amplitude more for acceleration than for modulating 

swimming speed, and why robot designs may want to do the same. 

[1] O. Akanyeti, Y. R. Yanagitsuru, W. J. Stewart, G. V. Lauder, and J. C. Liao, “Undulatory 

fishes increase tail beat amplitude during acceleration for high propulsive efficiency,” in 

SICB 2017 Annual Meeting, 2017. 
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D. Appendix D: Free Body Diagram of the Simulated 2D Fin 

During simulation, the 2D fin experiences two types of forces: pressure and shear. The pressure 

forces act normal to the surface of the fin, while the shear forces act parallel to the fin surface. 

Both act along the length of the fin, as shown in the thrust-producing case of Figure D-1. The shear 

forces are approximately constant in magnitude along the length of the fin. However, the pressure 

forces vary considerably, with low pressure pockets on the front (−𝑥) edge of the wave and high 

pressure pockets on the rear (+𝑥) edge. 

 

Figure D-1: Fluid forces acting on the fin during a dynamic simulation in a case of 

net thrust. 

The CFD results yield pressure and shear forces for each node of the discretized mesh along 

the surface of the fin. Based on the angle of the differential element relative to the coordinate axes, 

these forces can then be separated into 𝑥 and 𝑦 components. In this way, each differential element 

has a net horizontal force 𝑓𝑥 and vertical force 𝑓𝑦. The moment 𝑚𝑧 is calculated from these forces 

about the center of gravity (CG) of the fin, at 𝑥 = 𝐿/2 from the leading edge. The total forces and 

moment for the fin can then be calculated as: 

 𝐹𝑥 =  ∑ 𝑓𝑥 (1) 

 𝐹𝑦 = ∑ 𝑓𝑦 (2) 

 𝑀𝑧 = ∑ 𝑚𝑧 (3) 

where the summation occurs over all nodes on the surface of the fin. Figure D-2 shows the net 

forces and moment acting on the fin at the CG for the case above. For this particular case, the net 

horizontal force was in the −𝑥 direction, indicating net thrust, the net vertical force was in the +𝑦 

direction, and the net moment was in the – 𝑧 direction.  
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Figure D-2: Net forces acting on the fin at a particular instant in time for a case of 

net thrust. 

Over the course of a full dynamic simulation, the net forces change in time. Once converged, 

the forces and moments vary approximately periodically. To quantify the unsteady effects of the 

fin motion, both the average and root mean square (RMS) forces were considered for analysis. 


