CHAPTER 17 Finite dement method

The direct stiffness method presented in chapters 15 and 16 devel oped matrix structural analyses for the linear
elastic response of truss and frame members connected at a finite number of joints. Engineering bar theory mod-
eled the frame members so that the deflection and stresses were readily computed in the member once the gener-
alized displacements of the joints were determined by matrix methods. The direct stiffness method is afinite
element method applied to trusses and frames. In the finite element method the joints are called nodes and the
members are called elements. The development of the finite element method arose out of the need to determine
influence coefficients for semimonocogque construction used in aerospace structures. Stiffened shells and flat
plates are continuum structures an with an infinite number of interconnection points. In this chapter we present
the finite element method to continuum structures in one dimension. Developments for two- and three-dimen-
sional continuum formulations are found in the large literature on the finite element method. We mention only
two of the many references on finite elements for engineering students: Reddy (2019), and Huebner, Thornton,
and Byrom (1995).

17.1 Elastic bar subject to axial loads
The presentation in this section follows, in part, that given by Szabo and Babuska (1991). A prismatic bar of

c z<z'<z+Az [(z") —cw(z¥)]Az

A>E=I
|—|>z, w(z) ——— — .(2) | N ea— N+ —Az

sz T z+Az
- =
@ (b)
Fig. 17.1 (a) Elastic bar subject to axial loading. (b) Free body of a segment of length Az.

length L and a cross-sectional area A is shown in figure 17.1(a). The bar is made of ahomogeneous, linear elastic
material whose modulus of elasticity is denoted by E and its coefficient of thermal expansion by a. Let the axial
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displacement function be denoted by w(z) where zisthe axial coordinate and 0 <z < L . Prescribed external
loads consist of an axial distributed load with intensity £.(z) (F/L) and achange in temperature that is indepen-

dent of the contour coordinate s but a function of the axial coordinate z (i.e., AT(s, z) = t,(z)). Thebar is
restrained by a distributed spring proportional to the axial displacement with an intensity given by —cw(z) and

c=0 (F/Lz). A free body diagram of a segment of the bar is shown in figure 17.1(b). The internal axial normal
forceisdenoted by N(z) . Axial equilibrium of the segment as Az — 0 leadsto the differential equation

(dN) +tew = f.(z2) O0<z<L. (17.1)
dz
Hooke's law including the prescribed thermal forceis N+ N, = EAdw/dz , where N, = EAat(z). Thus,
dw
= EA(=— - . 17.2
N <dz OH:O) a2

Substitute (17.2) for the axial force in equilibrium equation (17.1) to get the governing differential equation for
axial displacement w(z) as

SZ[EA(Z;—‘; —at ﬂ tew = f(z). (17.3)

The boundary conditions at z= 0 and z= L areto prescribe either the displacement w or the axial normal force

N. The displacement prescribed at the boundary is also called the essential boundary condition and the force pre-
scribed at the boundary is called the natural boundary condition.

Multiply (17.3) by an arbitrary axial displacement function ;v(z) and integrate:

L L
f{gz[EA(%v - O"Coﬂ—CW}W(Z)olz = fﬁ(z);v(z)dz : (17.4)
0

0
Integrate the left-hand side of the previous equation by parts:

— L

I {[EA( )J%— + cww} ff (Z)w(z)dz (17.5)

— NW‘Z:L—

Rearrange thetermsin eq. (17.5) to get

L —

L
f{EA%V%V + cww}dz = fj;(z);v(z)dz + N;v‘z . —N;v‘z o +f(EA%V) otydz . (17.6)

0 0 0

If the governing boundary value problem for w(z) (17.3) is satisfied, then (17.6) is aso satisfied for any

;v(z) for which the operationsin (17.6) are defined. Notethat in (17.6) the highest derivative of the displacement
2

is dw/dz , whereasthe highest derivativein the differential equation (17.3) is g%v . Integration by partsresultsin
Z
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Elastic bar subject to axial loads

aderivative of onelessin w(z) than what occursin the differential equation. Equation (17.6) is called the weak
form of the differential equation (17.3).

In the finite element method the function w(z) iscalled atrial function. The function ;v(z) iscalled atest

function or avirtual displacement, and dw/dz isthevirtua strain. Function w(z) iscalled avirtual displace-
ment becauseit is not the actual physical displacement, but merely a hypothetical, admissible displacement. Each
termin (17.6) represents virtual work, that is, the work done by the internal action E4Adw/dz through the virtual

strain, work done by the distributed spring through the virtual displacement, work done by the prescribed distrib-
uted load and boundary forces through the virtual displacement, and the work of the virtual thermal force

EAdw/dz dueto the prescribed thermal strain at,, . Define

B[w, w] f{EAgZLV@—V + cww}dz and 7.7
L - - - L
FTw] = [f2)w(z)ds + Nw| _ —Nw| _, f(EAilw) atyds . 17.8)

0
Thebilinear form B[ w, ;v] associates areal number with any two functions w(z) and ;v(z) , and the linear form
F[;v] associates areal number for any function ;v(z) . The bilinear form B[ w, ;v] represents the internal virtual

work and the linear form F[;v] represents the external virtual work. Let U[w] denote the portion of the strain
energy due to mechanical strai n' and that from the distributed spring. The expression for the strain energy is
L
Ulw] = %f{EA(ilw) +cw2}dz = %B[w, w]. (17.9)
0
All continuous functions w(z) defined on the openinterval Q = {z|0 <z < L} have afinite strain energy

0<U<ow,and U = 0 onlyif w(z) = 0 on Q. The conditions that restrict the set of all continuous functions
having afinite strain energy are called displacement, kinematic, and essential boundary conditions. For example,
if it is prescribed that thetrial function w(0) = ¢, where ¢, hasanumerical value, and the total displacement at

z=0is w(0)+;v(0) = ¢, , then the virtual displacement ;v(O) = 0. Theexternal virtual work for ;v(O) =0
reducesto

L L _
F[;v] = fﬂ(z);v(z)dz + N;v‘z -1 +f<EA %) oTydz . (17.10)
0

For displacement prescribed boundary conditions the virtual displacement must vanish at the boundaries. Kine-

matically admissible trial functions w(z) are continuous, single valued, and equal the prescribed displacement
boundary conditions.

1. Refer to eg. (5.81) on page 145.
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The principle of virtual work isto find a kinematically admissible displacement function w(z) such that

B[w, ;v] = F[;v] for all kinematically admissible ;v(z) ) (17.11)
The principle of virtual work (17.11) is a statement of equilibrium for the linear elastic bar, and it depends on the
boundary conditions. Thetrial function w(z) is selected to satisfy displacement boundary conditions, if any, on

the closed domain Q = {z|0 <z <L} . Inthe applications of the principle of virtual work it is not practical to

consider an infinite number of kinematically admissible test functions. Instead, a subset of kinematically admis-
sible functionsis assumed. For example, polynomialsin z are often selected because they are easy to differentiate

and integrate. Consider an approximate polynomial for thetrial function w(z) and asimilar polynomial for the

test function ;v(z) by selecting

w(z) = a, +a,z +a;z? and w(z) = by +byz+byz?. (17.12)

Unknown coefficients g in the trial function are determined from the principle of virtual work for every choice of
the coefficients by, i = 1, 2, 3, in the test function. Coefficients b; are independent of the coefficients g; in the trial
function.

Example 17.1 An approximate solution by the principle of virtual work

Dimensional and material datafor the bar shown in figure 17.1 are L = 500 mm, A = 400 mm2, E = 70,000 N/
mm?, o = 23.x10_6/(°C) ,and ¢ = 5x10° N/mm?2 . Uniform external loads are prescribedasf,(z) = 0 anda
prescribed change in temperature t,(z) = 40°C for 0 <z < L . Boundary conditions are

w(0) = ¢, = =0.20 mm and N(L) = F, = —40, 000N . Assumethetrial and test functionsfor the displace-
ments as

w(z) = ¢, +a,z and ;v(z) = bz. (a)
Note that the trial function w(z) satisfies the prescribed displacement boundary condition at z= 0, and that the
test function, or virtual displacement function, ;v(z) vanishes at z= 0. Theinterna virtual work (17.7) is

L
B[w, ;v] = f{EA(al)(bl) +c(q, +a,z)(b,z)}dz = b [(EAL +cL3/3)a, +(cL?*/2)q,], (b)
0

The external virtual work (17.8) is

L _
Flw] = N(L)(w(L)) +f(EA‘z;W

z

)arodz = b[LF, +EALaz,]. (c)
0
The principle of virtual work (17.11) for the assumed displacement functionsis
b\[(EAL +cL3/3)a, +(cL?>/2)q,] = b|[LF, + EALat,] Vb, =0. (d)

Hence, the equation to determine coefficient a, is
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(EAL + (cL3)/3)a, +(cL?*/2)q, = LF, + EALax,. (e)
Solve (e) for a; to get
_ 3(2FL—-cLq, +2EAo,)

2(3EA +cL?)

Note that a, is dimensionless. The following equations are the results for the axial displacement in eg. (a), axia
normal force in eg. (17.2), and the strain energy in eq. (17.9):

= 530.195x10°°. ®

a)

w(z) = —0.20 + (530.195x10°)z 0=z=500 mm. @

N = EA[530.195x10° —(23.x107°/°C)40°C] = —10,914.5 N 0=<z=<500 mm, )
L L

Ulw] = 1 EA<d—W>2+cw2 dz = L ({EA(a,)? +c(q, +a,2)?}dz = 14,975.3 N-mm. 0
2f dz 2f
0 0

The exact solution to the differential equation (17.3) subject to the prescribed external |oads and the pre-
scribed boundary conditionsis

we(z) = —0.20coshAz +0.199904 sinh Az 0=<z=500 mm, )
where A = Je/(EA) = 0.0133631 mm~!. The axial normal force and strain energy for the exact solution are
Ny = —25,760 + 74, 797.2coshhz — 74, 833.1sinh Az 0<z<500 mm, and (k)

Uy = 7,754.26 N-mm . ()
The strain energy of the approximate solution exceeds that of the exact solution. The error in the strain energy is

(U-U,,)100
U

ex

= 93.1%. (m)

Atz=L, N,, = —40,000 N and for the approximate solution N = —10, 914.5 N, an error of —72.7 percent.

Graphs of the axial displacement distribution and axial force distribution are shown in figure 17.2 and figure
17.3, respectively.

0.05¢ exact
‘ [ ‘ ‘ .z, mm
0 300~ 400~S00

Fig. 17.2 Axial displacement
distribution for example 17.1. The w,mm  _0 05
exact solution iscompared to the '
approximate solution by the -0.10¢}

principle of virtual work. —015" \_ approximate

-0.20¢
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40000
Fig.17.3 Axial normal force exact
distribution in Newtons for ) 20000}
example 17.1. The exact Axial force

solution compared to the in Newtons ‘ ‘ ‘ ‘ ‘
approximate solution. 20000 \1_ 200—300—400—600
-40000} approximate

The displacement and axial force in the approximate solution do not compare well with the exact solution.
Including polynomial terms of higher degree for the trial function and test functions (a) results in improved
approximate solutions. Rather than selecting polynomials of higher degreein the principle of virtual work, con-
sider afinite element approximation using piecewise, linear polynomials asis discussed next in article 17.2. |l

Z, mm

17.2 Finite e ementsin one dimension

Asstated in eg. (17.11) the principle of virtual work applies over the whole domain Q of the bar. However, the
principle of virtual work can also be applied to subdomains of the bar. In the finite element method we partition
Q into subdomains called finite elements. Partitions are called meshes, and finite element meshes are character-
ized by the selection of nodal points. Consider the mesh

0=z<zy<zz3<...<zy<zy, =L, (17.13)
where M denotes the number of elements and M+ 1 is the number of nodes. The kth element is denoted by
Q, ={z|z;=z=z,,.,} k=1,2,..,M. (17.14)
Each element is mapped onto a standard element denoted by

Q.={C|-1<C<1}. (17.15)
The standard element is mapped onto the kth element by
z = N (C)z + My(Q)zp 1y, Where m () = (1-C)/2 and n,(T) = (1+C)/2. (17.16)
Theinverse mapping is
g = 2272 5 o 2205 0 ZEQ,. 17.17)
k17 % hy

The length of the element is denoted by 4, where i, = z,,, —z,. Functions n,(T), i =1, 2, are called shape
functions or inter polation functions, which have the properties

n(-1) =1 (1) =0 ny(=1) =0 (1) = 1. (17.18)

Kinematic admissibility requires the displacement function w(z) to be continuous between elements and
within an element. Continuity insures the derivative of the displacement is a square integrable function on Q so
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that the strain energy (17.9) isfinite. The displacement in the kth element is denoted by w(¥(z), z € Q, . Let the

displacements at the nodes z, and z,, ; bedenoted by w¥)(z,) = ¢, and wH(z, ) = g, respectively. A

linear polynomial in the axial coordinate with two coefficients is sufficient to interpolate the displacement at the
two nodes, and it meets the continuity requirement within the element. The simple choice is to use the samelin-

ear interpolation functions for the displacement of the kth element as were used to interpolate coordinate z € Q,
(17.16). Hence, the trial function for the axial displacement of the kth element is

wk) = (D)g; +M2(C)gp g teQ,. (17.19)

Atnode z, , , the displacement from the end of the kth element is w(¥(z, , ;) = My(1)q4+; = g4+, andthe

beginning displacement of the k+1 elementis w**(z, . ) = N (=1)g,+, = g4+ - Thus, interelement conti-

nuity is satisfied. The virtual displacement for the kth element is assumed to be the same functional form as the
trial function:

w = (@b Dby, CLEQ, (17.20)

where coefficients b, areindependent of the trial function.

k
The axial strain in the kth element is ¢ = lev_() . By the chain rule and the inverse mapping (17.17) we
z

transform the derivative with respect to z to the derivative with respect to € by

d[] _ dJdc _ (2\d]
= a - (= . 17.21
dz ~ dCdz (h) dc .21
Thus, the strain in the kth element is
_ dw® _ rawlhy rdty _ sdny o dny 2\ _ q
() = GW - (4W_ = (—g, + =2 £) = | k. 17.22
¢ el dC (%) (d@qk dcq“l)(h) =1/ 11 o (17.22)
Note that the strain (17.22) is spatially uniform in the element. The virtual strain €% is
gk) = d_;v(k) = (d_nlb +&b ><_2_ = [ 1/h 1/}1} bk (17.23)
dz dg * o dg ! h) T ] |
The bilinear form (17.7), or internal virtual work, for the kth element is
_ Zk+1 Zk+17
B [ww, w1 = [ EWEAd: + fw(k)cw(k)dz. (17.29)

Substitute (17.22) and (17.23) for the strains, and (17.19) and (17.20) for the displacements, into the internal vir-
tual work (17.24) to get

1

S+ [ b, by, ] H{m nzw K %d@ (17.25)
N2 9r+1

-1

1
o (7 _ —1/hk q
Bw®O, w = [[b by, | o EA[~1/hy 1/h]
e k i +1

where dz = (h,/2)dt . Perform the matrix algebrain the latter equation to get
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EA —EA

1
— 2 2 |k 2 h
Bk[w(k), w( )] — [bk bk+1} f k k Ek+c ni anZ]Z _k dC 9k | - [bk bk+1} [K(kﬂ
S| | =E4 E4 M, M3 Die+1

w2

T | (17.26)
9k +1

Perform the integration in eq. (17.26) to determine the element stiffness matrix [K(k)} . Theresult is

EA , ¢h —E4 , chy
)
[K(k)] L N U 17.27)
0] |Ea o g oh

(k)

Take the virtual displacement equal to thetrial displacement, or w = k| in (17.26), whichimplies b, = ¢,

and b, ., = g4+, - Then, multiply the result by one-half to identify the strain energy in the kth element as

U® = %(Bk[W"‘)’ wih]) = %[qk Gie) [K9)

T | (17.28)
Dk +1

The linear form (17.8), or the external virtual work, for the kth element is

Zk+1 Zk+1
w1 = f 10w (2)dz + N O f(EAé(k))at{)k)(z)dz . @729
2= Zpy4 Z=Z
Zk Zk

Substitute (17.20) for the virtual displacement and (17.23) for the virtua strain into the external virtual work
(17.29), followed by employing the mapping of z — T (17.16). Theresult is

1 1
DT = A+ o Wy D+ [ (b (F) + b5 ))]m&k)(@)( 2)dc+
— -1
N("‘)(zk+ Dby —N(k)(zk)bk

. (17.30)
where

SOT) = £In(D)zp + My (D)zg 4] T(C) = [ (T)zp + M5(T)zg 4] ceQ. (17.31)
Arrange thetermsin (17.30) to

1

Fylw H-b{fﬁ“@)m(c Fc+ fEA( =) o) - M“(zk)}
-1
1

bk+l{ff§k) 2(8)= dz;"‘(fEA( )(1176]‘)(@ ) )(zkH)J
- . (17.32)
The last expression for the external virtual work iswritten as
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FIwY = b0+ FP1+ b [0 4+ F, T, (17.33)
where we define
1
Fib = fﬂ“(c n,(g)2 kdz+ fEA( )arak> Q)dC, Of) = -N®(z,) (17.39)
FiR, = fﬂ“(@)m(@) e+ fEA( )ar5k>(z;>dz; and 0, = NW(z,,,). (17.35)

The forces acting on the element separated from the nodes, and the forces acting on the nodes are depicted in fig-
ure 17.4.

0 o
2 e— Py Bt G e v -— 02
Z N(k)(Zk) Nt (Zk) N(k)(zkﬂ) N(k)(zk+ 1) Zk+1
| .
Fig.17.4 Forcesacting on the bar and the nodesfor element Q.
Finally, the external virtual work expression (17.33) for the kth element iswritten as
FIw™] = {b,}7({0W} + {F®})  where (17.36)
k) k)
{byt = b |, {ow} = ok ,and {F} = FP (17.37)
be L'k'zl F2k+)1
The axia forcein the kth element is
2dwh
NW) = [ k) } EQ,. 17.38
I dT atf(T) teQ, (17.38)
The virtual work expressions for the M-elements spanning Q are
M M
- — (k) - — (k)
Blw,w] = B [w®, w'] Flw] = F[w™]. (17.39)
121 kzl

Consider in the summation of the external virtual work the terms from the k-1 element and the kth element. From
(17.33) these terms are

by ([FF 3D+ Off 3D+ by [Fii=D + Q=D + b [F{O+ O]+ by, \[FIR, + O]

element k-1 element k

(17.40)
Combine the terms multiplying virtual displacement by in eq. (17.40) to write the external virtua work as

Flw] = ...+ b,[F{k=D+ Q=D+ F(O + Q] + .. | (17.41)
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At the common node z let
O = O =D+ 00 = NE=1(z,) = NW(z,), (17.42)

where Q, isthe external axial force at node z,. The definition of force Q, isbased on equilibrium at node z, as
shown by the free body diagram in figure 17.5. Force Q, is prescribed if displacement g is unknown, or it isan

Oy
-— @ =«
Fig.17.5 Freebody Ofk=b Of¥
diagram of node z. i — ——— —— — — @ —DZ
Z Qi Q oz

unknown reactive force if displacement gy is prescribed. At node z, the total external axial force consists of the
contribution from the axial force O, plus the distributed loading from the k-1 element and the kth element (i.e.,

O, +F,,where F, = F{¥=1) + F{®). A depiction of afinite element model with amesh consisting of four nodes
and three elementsis shown in figure 17.6.

q1, (0, + F(D) 92 (O + F) 93, (O3 + F3) 94 (Qy + F))
— —_— s —_—
@ @ @ @
z; =0 Q, z, Q, Z3 Q; zy =L

Fig. 17.6 A mesh consisting of four nodes and an assembly of three elements. Displacementsand the
corresponding external forces are shown at each node.

If at node z, there is no prescribed externally applied point force, then we have the following relation from
eqg. (17.42):

0, = 0 = Nk=I)(z,) =NW¥)(z,). (17.43)

Equation (17.43) implies that the axial force is continuous at the node connecting the k-1 element to the kth ele-
ment if O, = 0. Displacement continuity at the common nodes is imposed in the finite element method. How-
ever, for the linear interpolation functions (17.20) the axial forceis, in general, discontinuous at the common
nodes (i.e., Nk=1)(z,) = N¥)(z,) = 0). The jump in the axial force at common nodes decreases with mesh refine-
ment asisillustrated in example 17.2 below.

Example 17.2 Solution of example 17.1 using two finite elements

First consider a uniform mesh with M = 2 using the interpolation functions (17.16). Thenodesarez, = 0,

z, = L/2,and z; = L. Thelengthsof theelementsare 7, = h, = L/2.Thetotal displacementsfor each ele-
ment are

w(T) = M (Q)g; + My (Q)g,, and w(T) = n(Q)g, +M,(T)gs. ()
The virtual displacements for each element are
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w Q) = my(Q)b, and w?(2) = M,(2)b, + M,y (2)bs. )

Note that virtual displacement in the first element at node one ;v(l)(—l ) = 0, since the displacement g, is pre-
scribed at node onein thetrial function.

Theinterna virtual work for elements one and two are

BiLw, W“”‘(ﬁf“( vl )”’“(%)}CW“M%:b2<ks}>ql+k55>q2>,and @

-1

_ {2} 1 _
B [w®, w?] = ( )fE (dW{Z})@V;C )d§+<%>fcw(2)w(2)d§ = by[k{Dq, + k(B g; 1+ bs[kDg, + kg5, (d)

-1

The element stiffness coefficientsin egs. (c) and (d) are given by eq. (17.27). For the assembly of the elements
the total internal virtual work is

B = B[w), ;V(l)] + B,[w(?), ;V(Z)] = bylkiDq, + (kY + k(D) gy + k3 q3]1 + b3[ kD q, + k3 g5]. (e)

In matrix notation the internal virtual work for the assembly is

B = [bz bs}[{kn k23] {%] + {k%)q ID , Where ®
ks k33| |95 0

chy
2 = KD+ kP kyy = k{3 kyy = k5D kyy = k) Ky = _iA 5 (9)
1
Usetherelationthat 2, = h, = L/2 tofind that the stiffness matrix of the assembly is
4EA | cL'22EA |
kpkysl | L 31 L 12 _ )
ki ks | 22E4 , LI 2E4  cL
L 121 L 6
The external virtual work (17.33) for thefirst element is
FIw'"] = by(04) + F{D). 0
The external force from the change in temperature (17.35) for thefirst element is
1
1 )
1) = = 1) =
Fy fEA(2> ot (0)de = Edar,. Q)
-1
The external virtual work for the second element (17.33) is
Fylwa] = by(Q)+ FP)) + by (0P + F). ®)

The external forces from the change in temperature for the second element are determined from egs. (17.34) and
(17.35):
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1 1
F) = fEA(_?l)ocrgz)(C)dC = —Edov,,and FQ) = fEA(%) atP(Q)dt = Edar,. 0)
-1 -1

The total external virtual work isthe sum of the contributions from egs. (i) and (k) is
Fiw] = Fi[w T+ Fylwa] = 5y(00 + F{D + 02)+ FR) + by(0) + F). (m)

At node 2 thereis no prescribed external force, so 0, = Q4! + Q§?) = 0.Also at node 2 the sum of the thermal
forces (j) and (1) iszero: thatis, F, = F{V) + F{?) = EAat,+ (-EAot,) = 0.Hence, thetotal external force at

node 2 vanishes. At node 3 the prescribed force O, = 0§?) = F,, and thethermal force F; = F{?) = Edorx,.
Thetotal external virtual work is

- 0
Flw] = . (n)
[bz bJ {FL +EA0L1:J
Equate expressions (f) and (n) to get the principle of virtua work:
kyy ky3| 42| 4 [KSDg ) _ 0
b, b + A= p Vb, bs| = 01x2- ©)
[ : J(L@Z k3| | 0 [ 2 3} F, + Eda, [ 2 3}

It follows from eq. (o) that the matrix equation to determine the displacementsis

ky ksl (92| = | —kiDg, where KD = - 2E4 | %’ ®)
kyy k33| | g3 F; +Edor, L 12

Note that the term involving displacement g, is known and so it is moved to the right-hand side of eg. (p).
Numerical evaluation of matrix equation (p) is

1.05733x10° 96, 333.3| | 92| = {19, 266.7} _ @
96, 333.3 528,667 |93 —14, 240
The solution to matrix equation (o) for the nodal displacementsis ¢, = 0.0210251 mm and

q; = —0.0307669 mm . The external forces acting on the bar modeled with two elements is shown in the free

body diagram of figure 17.7. Force O, = QO{!) isthe reactive force at node 1 where the displacement is pre-

scribed. Thethermal forceat node1 F, = F{) = —EAat, = -25, 760 N, which is evaluated from (17.34).
Fig. 17.7 External forces » ey a > 40. 000 N
acting on a two-element O o 1 () 2 ® ’

modd. z; =0 z, = L/2 zy = L

Thethermal forceat node 3is Fy; = F{?) = EAat, = 25,760 N, whichisevaluated from (17.35). Then, axial
equilibrium of the bar determines the reactive force Q; = 40,000 N.

Thetrial functions for the displacements of the two elements are
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w) = —0.1(1=C) +0.0105126(1 +¢) , and "
w@ = 0.0105126(1 =) —0.0153834(1 +T). s)

Theaxial coordinatein element 1isz = n,()(250 mm) andin element 2 it is

z = ;(T)(250 mm) +n,(T)(500 mm) . The axia displacement is plotted with respect to z from the exact solu-

tion given by eq. (j) in example 17.1 and from the finite element solution given by egs. (r) and (s) in figure 17.8.
The finite element representation of the axial displacement is a piecewise linear polynomial, whichisan
improvement with respect to the virtual work result shown in figure 17.2.

Fig. 17.8 Axial displacement. -0.05+¢
Exact solution and an
approximate solution using
two finite elements.

W, mm approximate

-0.10F

-0.15, exact

-0.20

The strain energy for the two element model is

M 1
1 dw( N 2
=1z + ()2 — : '
k=1 _ v
The error in the strain energy with respect to the exact value given by eq. (1) in example 17.1is
(U+€x)10(_) = 36.6%. )

ex

From (17.38) the axial forcesin each element are

dw® dw®
N = EA[ } = —1,005.19 N and N@ = EA[
( dc ) e ( dc
The distributions of the axia force N from the exact solution given by eq. (k) in example 17.1 and the finite ele-
ment solution (v) are plotted in figure 17.9. The finite element result for N is piecewise constant, which isa
improvement with respect to the virtual work result shown in figure 17.3. |l

o) - aro} = 31,560.7N. (@)

Fig. 17.9 Axial force. Exact 20000 approximate
solution and an approximate N in Newt
solution using two finite tniNewtons 0 : ‘ ‘ ‘ z, mm
elements. 1 200 300 Y00 500
-20000 -
-40000"t
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17.21 Resultsfrom 4, 8, and 16 finite element solutionsto example 17.1
Improved numerical solutions are obtained by considering uniform meshes of four, eight, sixteen, etc., elements.
As shown in figure 17.10, the piecewise polynomial approximation for the axial displacement using eight uni-

form elementsis, to the scale of the plot, very close to the exact solution. The axial force from the exact solution

Fig. 17.10 Axial displacement. Exact
solution and an approximate
solution using eight finite elements.

0.05¢

w,mm  0.00
-0.05¢
-0.10¢
-0.15¢
-0.20
-0.25¢

and from the finite element solution with eight uniform elementsis shown in figure 17.11. The piecewise con-
stant axial force from the solution with eight elements is an improvement with respect to the two element model

shown in figure 17.9.

Fig. 17.11 Axial force. Exact

solution and an approximate Nin
solution using eight finite

elements.

40000

20000 |

Newtons 0

-20000 |

-40000"

— FE.
— EXact

z, mm

200 300 400 500

The strain energy and the natural boundary condition at z= L are used to measure the error in the finite element
solutions with respect to the exact solution. Results for uniform meshes of one to sixteen elements arelisted in
table 17.1. The datain the table demonstrates that the strain energy converges faster than the natural boundary
condition to the exact solution as the number of elementsis increased.

Table 17.1 Errorsin the strain energies and natural boundary conditions of example 17.1 asthe

number of element isincreased.

Percentageerror in

Percentageerror in
theaxial forceat z=

M, number of the strain energy N(L), Axial L
uniform U, strain forcein
elements energy, N-mm  (U-Uex)100/Uex Newtons [FL -N(L)]100/F
12 14,975.3 93.1P -10,914.5 72.7¢
2 10,589.9 36.6 ~31,560.7 211
8,551.95 10.3 ~32,260.1 19.3
8 7,961.15 2.67 ~35,260.1 11.8
16 7,806.5 0.674 ~37,347.6 6.63
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a Fromexample 17.1.
b. Uex =7,754.26 N-mm
c. FL =—40,000 N

17.2.2 Convergence requirements

Heubner et al. (1995, p. 85) list the following requirements for mathematical convergence of the finite element
solution to the exact solution as an increasing number of smaller elements are used in the remeshng process.

* Theelements must be made smaller in such away that every point in the solution domain can always be
within an element regardless of how small the element may be.

* All previous meshes must be contained in the refined meshes.

e Theform of the interpolation functions must remain unchanged.

For example, the nodes in the mesh for M = 2 are also contained in the mesh for M = 4, nodes in the mesh for M
=4 are also contained in the mesh for M = 8, etc. The same linear interpolation functions (17.16) are used in each
discretization.

17.2.3 Apparent loadings from the 8- and 16-element solutions of example 17.1

Asillustrated in figure 17.11, the axial force exhibits jumps at the nodes between neighboring elements. These
jumps can be interpreted as a series of concentrated forces applied at the nodes, and these forces are called the

apparent loading (Szabo and Babuska, p. 63). Let O, denote the apparent axial force at node z;, . From (17.42),
the apparent axial force in the positive z-direction at an interior node is

0, = Nk=1(z,) =NK)(z;) k=273 ... M-1. (17.44)
The forces at the nodes computed from the jJump in the internal axial force are listed in table 17.2 for the 8-ele-

ment model and for the 16-element model. Note that the sum of these forces Q, vanishesin each model, which

is a consequence of the principle work as a statement of equilibrium. At common interior nodes the force Q, is
smaller in the 16-element model than in the 8-element model.
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Table 17.2 Apparent loading from thefinite element solutions of example 17.1.

8 elements, 9 nodes 16 elements, 17 nodes
z k Qk’ N k Qk’ N
0 1 —25,950. 1 —35,743.3
L6 1 0 - 2 21,139.1
L/8 2 29,906.9 3 13,889.4
3L/ | - 4 9,134.26
L/4 3 12,697.5 5 6,019.91
5L/16 | @ - 6 3,986.67
3L/8 4 5,510.35 7 2,669.461
7L/116 )} - 8 1,831.7
L/2 5 2,672.57 9 1,322.93
oL/16 | 0 - 10 1,051.76
5L/8 6 1,944.26 11 969.5
1L/ | e 12 1,061.37
3L/4 7 2,750.58 13 1,343.86
33L/16 | - 14 1,867.72
7L/8 8 5,727.95 15 2,727.03
5L/16 |00 e 16 4,076.14
L=500mm | 9 -35,250.1 17 -37,347.6
9 17
E 0, =0 E 0, =0
k=1 k=1

17.2.4 Adaptive mesh refinement beginning with the 8-element solution to example 17.1

A uniform mesh may converge slowly to the exact solution with continued refinement. In practice, finite element
simulations are performed on a structure where the exact solution is not known. For those structures whose exact
solutions are unknown, the apparent loading from the finite element solution can be used in adaptive procedures
to refine the mesh. Adaptive mesh refinement is based on assessing the relative error of the energy norm in each
element between the original loading and the apparent |oading (Szabo and Babuska, p. 63). The energy norm for

akinematically admissible function w(z) isdenoted by |w(z)| , and it is defined as the square root of the strain

energy (17.9) (i.e, |w| = JU[w]). The mesh and shape functions of the original model are not changed in the sec-
ond solution of the model subject to the apparent loading. Those elements exhibiting the largest discrepancy in
the energy norm between the original loading and the apparent |oading are subdivided to generate a new mesh.
The new mesh will not be uniform, and is called quasi-uniform. The adaptive mesh procedure is repeated with
respect to the new mesh. This repeated use of mesh refinement generates a sequence of meshes. An optimum
mesh is achieved when the local error is distributed uniformly through the mesh (Heubner et al., p. 514).
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Consider the eight-element model (M = 8) with nine nodes. The nine nodes in the uniform mesh are
{zo} = {0,1/8,1/4,3/8,1/2,5/8,3/4,7/8,1}L. (17.45)
Each element has the samelength #, = z,,,—z, = L/8,k = 1,2, ..., 8. Thedimensions of the restrained

structural stiffness matrix [Kw} is 8X8. The displacement degrees of freedom and the corresponding forces are

90} = [‘h 43 94 95 96> 97> 98> 619} T’ and {Q,} = [Qz Q3 Q4 Os, O O, O, Qo} " (17.46)

The nodal force vector for the original loading is
_ T _ T
{Qa} = [(8EA/L—cL/48)4,,0.0,0,0,0,0,0, Eday+ | = [-79,183.3,0,0,0,0,0,0,0,14240] - (17:47)

The matrix equation [KWJ {q,} = {0} issolved numerically to determine the displacement vector {g,,} .
The axial displacement w(® in each of the eight elementsis computed from {g,, } , followed by the computation
of the energy norm in each element ||w®)|| , k = 1,2, ..., 8.

For the apparent loading the nodal force vector from table 17.2 is

{Q.} = [29, 906.9 12, 679.5 5,510.35 2, 672.57 1,944.26 2,750.58 5, 727.95 =35, 260.1] - (1748)

Without changing the restrained structural stiffness matrix, the equation [Ko.ol {q,} = {Q,} issolved numeri-

cally for the displacement vector {g_} . Notethat {¢q_} = {q,} . From the displacement vector {¢_} theaxial
displacement in the kth element Kv(k) is determined. The energy norm for the displacement in each element from

the apparent loading is denoted by |w(®)|, k = 1,2, ..., 8 . Results for the energy norms from the original load-

ing and apparent loading are listed in table 17.3. Elements 1, 8, 2, 7, 3, 5, 4, and 6 have the largest to the smallest
discrepancy in the energy norms.

Table 17.3 Element energy normsfrom theoriginal and apparent loadings.

Original loading Apparent loading Discrepancy
Element [wil [ [will =[]
1 79.5058 120.577 —41.0708
2 33.5923 14.4801 19.1122
3 14.1945 12.1357 2.05885
4 6.01526 7.86369 —1.84843
5 2.76845 4.69067 —1.92222
6 2.84924 4.61159 —1.76235
7 6.26583 12.0038 -5.738
8 14.7925 34.9373 —20.1448

Aerospace Structures 505



Article 17.3

Based on the datain table 17.3, a quasi-uniform mesh is selected to increase the number of elementsin the
domain where the errors in energy norm are large. For example, amesh of fifteen nodes and fourteen elementsis

illustrated below:
{z45} = {0,1/24,1/12,1/8,3/16,1/4,3/8,1/2,5/8,3/4,13/16,7/8,11/12,23/24, 1}L, (17.49)

where the lengths of the elements are

L L L L LLLLLL L L L L
{hl4} TN T T T T Y o e T TS A (17.50)
24°24°24 16 16 8 8 8 8 16 16 24 24 24

The mesh with nine nodes and the mesh with fifteen nodes are depicted in figure 17.12. Nodes are clustered at the

15 nodes

9nodes @ [ ] [ ] [ o o ] [ [ ]

‘ ‘ ‘ ‘ ‘ . z/L
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 17.12 The nine-node uniform mesh and the fifteen-node quasi-uniform mesh.

beginning and end of the domain of the 14-element model where discrepancies in the energy norm were the larg-
est. A finite element analysis of this 14-element model resulted in a strain energy of the assembly of 7,788.23 N-
mm, and a natural boundary condition N(L) = —38, 164.2 N . Compared to the exact solution the percentage
error in the strain energy is 0.438 percent, and the error in the natural boundary condition is 4.59 percent. More-
over, compared to the results from the 16-element model with a uniform mesh in table 17.1, the 14-element
model has asmaller error in the strain energy and a smaller error in the natural boundary condition.

17.3 A beam element including transverse shear deformation

Theprincipleof virtual work isdeveloped for auniform beam of length L that is symmetric about the y-z plane
asshowninfigure 17.13. It is subject to alateral distributed load intensity 7,(z) (F/L) and achangein tempera-
ture AT = t,(z)y, 0<sz=<L,wheret(z) (°C/L)isthe prescribed through the thickness temperature gradient.
The y-direction displacement of the centroidal axisis denoted by v(z) (L), and the rotation of the cross section
about the x-axis is denoted by ¢.(z) (radians).

T

Ay Jy Tl
Fig. 17.13 (a) Symmetric ’ ~> y
beam subject to an = U *? |
external load and 4 i
temperature gradient. —> = Ll Sy O | M"(i )Mx
(b) Definition for positive |< L | V
shear and moment. > Y

@ (b)
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The governing equations are as follows.

—_ dv
equilibrium: 7Z¥+fy( -V, =0,0<z<L. (17.51)
Hooke's law: V, = 5,0, and M, = El (x—oT,). (17.52)

- d
strain-displacement: k = 49, ,and ¢, = dv +¢,. (17.53)
dz Yoo dz
The boundary conditionsatz=0and z=L areto

prescribe either v or ¥/, and to prescribe either ¢, or M, . (17.54)

For asymmetric cross section the transverse shear stiffness s, = 1/¢,,, where c,, (F1) isthe transverse shear

compliance. (Equations for the shear compliances are given by eg. (5.62) on page 142 for an open cross-sectional
contour and eg. (5.85) on page 145 for a closed cross-sectional contour.)

Combine the equations associated with the shear force to get

ff o)) 5 =0

Multiply (17.55) by the virtual displacement {/(z) and integrate over the domain. Then integrate the result by
parts to get

L - L

_ L dv dv -

vV, O—fsyy(E+¢x><Z>dz +ffyvdz =0. (17.56)
0 0

Combine the equations associated with the bending moment to get

Lo (28| (200 =0

Multiply (17.57) by the virtual rotation ¢,(z) and integrate over the domain. Then integrate the result by partsto
find

b~ (=) ) o o

0

Equations (17.55) and (17.57) are coupled in the dependent variables v(z) and ¢.(z) , asare (17.56) and (17.58).
To obtain the principle of virtual work for the two dependent variables we add (17.56) and (17.58) to find

L L L
i )[R () s 0. e
0 0

Rearrange thetermsin eq. (17.59) to get the weak form
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L L L
dq)x d&)x — _ = L, - L N d&)x
f[EIXX<E) (Z) + s, |d= = 97,0+ ot | + A f(EIxxE> at,dz, (17.60)
0 0 0
where the virtual shear strainis
__dv -
P, = 7 + oy (17.61)

The principle of virtual work is determined from (17.60) is written in the form

B¢, O, Vs {)] = Flé, ;1] for every kinematically admissible ¢, and v. (17.62)

Theinterna virtual work is

L _
Bldy, §ws vs v] = ﬂElxx<cij;x> (Zq:) + Syylple)y}dZ, (17.63)

0
and the external virtual work is

L L _
Fl[ oy, ;] = \’/Vy‘g + &)XMX‘ﬁ + ffy;dz + f(EI“‘xiitr) at,dz . (17.64)
0 0

Equations (5.81) and (5.82) on page 145 are the expressions for the strain energy. For the beam under con-
sideration the strain energy from the mechanical strainsis

L
U= (%) f[Elxx(‘thy + Syy(wy)ﬂdz = (%) B0y o v v]. (17.65)
0

Thefirst term in the integral (17.65) isthe contribution of the bending to the strain energy, and the second termin
theintegral isthe contribution of the transverse shear.

17.3.1 Element displacement functions and strains

The kth element isdenoted by Q, = {z|z,<z=<z,,,},where z, <z, , . The standard element
Q. ={C|—1<T<1} (17.15) is mapped to the kth element by eq. (17.16), and the inverse mapping is given by

eg. (17.17). Thelateral displacement of the kth element is denoted by v(*)(z) and therotation by ¢(¥)(z) . Define
the generalized nodal displacements as

v(z,) = gy OM(z,) = qa VO (zph1) = Qg Oz 41) = Gagar- (17.66)
Fig. 17.14 92k-1 92k +1 . . .
Generalized /1‘ See figure 17.14. Admissible functions v(z) and ¢.(z) must be
nodal 92k D2r+2

continuous within an element and be continuous between ele-
ments. The following basis functions will be used for the beam
element:

displacements. Zps 1
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no=0-02 we=0+02 nwo=3he-n we = Rue-n. e

Thebasisfunctions n,(T) and n,(C) aretheexternal shape functionswith the interpolation properties (17.18).
The basis functions n5(¢) and n,(C) arecalled internal shape functions. The internal shape functions vanish

at thenodes T = 1. The selection of the internal shape functionsis based on Legendre polynomials. From
Szabo and Babuska (1991, p. 38) the expressions for the internal shape function are

1 .
n(%) = m[f’j@)—f’j_l(@)] Jj =34, (17.68)

where P,(T) isthe Legendre polynomial of degreej in T .1 Graphs of these basis functions are shown in figure
17.15.

1.0t

M ’ N2
Ny )
Fig. 17.15 Graphs of the basis
functionsfor the beam element. .
. } 0.5 .0

Consider thestrain k = d¢,/dz appearing in the bending moment (17.52), and the rotation ¢, appearingin
the transverse shear strain ¢ (C) (17.53). As discussed by Reddy (2019, p. 294), in order to avoid the numerical
problem of “shear locking” in the thin beam limit where ¢, — 0, a consistent interpolation procedure is
employed. That is, aconsistent interpolation of the shear strain y,,(C) requiresthat the polynomial for the dis-
placement v(T) be one degree greater in T than the polynomial for the rotation ¢,(C) . The beam element devel-
oped hereis capable of representing alinear distribution of the bending moment A7, (T) and a constant shear
force V,. Then d¢,/dz islinear in T, which implies the rotation is quadratic in €. It follows that displacement
v(T) iscubicinC. Thetrial functions for the kth element are

OP(D) = Q)24+ Mp(C) 2 + M3(D)ath)

X (17.69)
V(k)(t) = nl(C)Q2k_1 + 7]2(@)‘]21” 1 T 7]3(@)4]{) + n4(C)a§k)

Internal degrees of freedom a (¥ and a{¥) are displacements with dimensions of length, and a{¥) isarotationin

radians. Theinternal degrees of freedom are not associated with a particular point in Q. That is, the beam ele-
ment under consideration does not have internal nodes. Equation (17.69) is written in the matrix notation as

1 P,=1,P, =C,P,=(302-1)/2,P; = (503-3L)/2, P, = (35C4-30%2+3)/8.
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oW _ (k) k
=N @ {a®+ N[ {aP} (17.70)
) = el te + el
where the 4X 1 and the 3X 1 vectors of generalized displacements are
T T
{g®W} = [qzk—l 92k 92k +1 q2k+2} {a®} = [aik) aih agk)} ) (a7.71)
The shape function matrices are
0 0 0 0
[Nq(t)} =Y Mm UM [NQ(C)} = |7 MY (17.72)
mn 0my 0 n; 0 my

This beam element has seven degrees of freedom. The virtual rotation and displacement for the kth element have
the same functional form as (17.70) but with different coefficients:

[¢§k] - [Nq(t)} (b} + [Na@} et} (17.73)
\4

where

T
)

{p} = [bZk—l bk o+ bzmz}T {eW} = [CV{) csh) Cgk} ) (17.74)

Virtual degrees of freedom [b are associated with the nodal displacements (external

2k—1 b2k b2k+1 b2k+2}
shape functions), and virtual degrees of freedom [Cik) P cgk)} are associated with the internal shape functions.

Elements of the virtual displacement vectors {b,} and {c¢(¥)} areindependent of the trial functions (17.69).

Using the chain rule and the inverse mapping (17.17), the strains for the kth element are

do k) do o) (k)
¢x —_ (_2_ q)x (k) = (2 dV )(Ck)' (17.75)

= _....__+¢
dz h) dt 7 hy dC

Substitute (17.70) and (17.72) into the expressions for the strains (17.75) and write the strain-displacement rela-
tionship as

e | o 28h g 28L0 28 g |faf
e} =1z | = L SRR o ah| . 77
d d d d
wy(k) - M 250 N> Tk 220 N3 22 atk)
hy dT hy dT Gores| e 4T hy dT

In compact notation the strain-displacement relation (17.76) is

{e®} = [sq(l)} {g®™} + [sa(?;ﬂ {a®}, 17.77)

where the strain-displacement matrices associated with the external shape functions and internal shape functions
are
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-1 1 o
B 0 Z]: 0 Z;c 0 ( > 0
[8,1((@)} T o —n) 1 (1+0) [ﬁa( . (17.78)
2oy 2 ) (3 2@-n) (L fee-n)

The virtua strains are polynomials of the same degree as strains (17.77), but with independent coefficients:

a3
[E0} = | g | = [e, @] {80} + [e 0] LW} (779

T

17.3.2 Principleof virtual work for atypical element
The internal virtual work (17.63) for the kth element in matrix notation is

B, 6, v, ] f{ YT [p]{e®}dz, (17.80)

where the material matrix is defined by

[D] = {Eé” O} . (17.81)

Substitute the strain-displacement matrices (17.77) and (17.79) into (17.80) to get

B 890591 = 2 (000 e ]+ e e ) (0] 0] ) ] e ) - e

-1
Perform the matrix multiplicationsin (17.82) and arrange the result to

1 1

BLOW, 4, v, v M1 = (p(h1} {(h [ e, @) H[ﬁq@ﬂd@){qm}*(%f @] (1) [%(C)]){“(k)}}“L

-1 -1
1 1

{c<k>}T{(3"f[sa(z;)]T[D] [e,(0)] )q(k)} (hzfl[ ©)]"[o] [ea(cﬂ){a(k)}}

I . (17.83)

The expression for the internal virtual work (17.83) iswritten as

BLoW, o0, v, v] = {5} T{[K, 1{g W} +[K,, {a®}} + {c®}T{[K, [{g®} +[K,]{a®}}, a789)
where the stiffness matrices are defined by

1 1

Ky = h_ e, @) D[, @)% [k, :% [e,0)] " [D][e,(0)] - and (17.85)

—1 -1
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1 1

_ My T _ r
K] = 3 [le@)] [D[e, @) (K] = 5 f[ea@)] [] [ea@)] (17.80
-1 -1
Evaluate the stiffness matricesto find
Syy Sy Sy )
hy 2 hy 2
Swy Bl sy Sy ZELy | sy
[K,,] = 2 3 2 6 ,and (17.87)
Ty Syy Syy Syy
h, 2 h, 2
=Sy, —El, . hys, Syy Il“ N hys,
2 hy 6 2 b 3
r . ﬁ2s |
1 ! — 1
0 1 (5,/46) 10 n 00
1 1 1
k) =[x = o/ SO s,/ IO K, =0 Bl MiSwiSw | (a79)
0 1 (=s,/46) 10 he 5 115
! ! 12s
(5,07 /6) 1(=Iys,,/ (2./6) )1 0 0 o Sx Zw
) ' ’ o I J15 "y

Take {pM} = {¢®} and {c®} = {a®} in (17.84), and multiply the result by one-half, to find the strain
energy in kth element as

U = 1o, o0, v, 0] = (W}, 10} +2{g0}TIK, Ha®} + {aO K, {a®}) @789

From the mapping (17.16), the distributed line load intensity and the thermal gradient are evaluated in the
kth element as

Hlz(©)] = filzm(T) + 24 ma(0)] = f;k)(gg)
Tt [2(0)] = 7 [z0,(0) + 2, my(D)] = ©H(Q)
The external virtual work (17.65) for the kth element is

(17.90)

1 1

B _ _ Zkv1 o _ Zp, - h d&)(k) 2 h
FIOW, v 1 = Oyl g®mm ™+ (P n(e) g + (EI ) gk (—") . @791
[0 =V Py| e e T (U@ Fde [(EL T ar@)(F)de. - aren
-1 -1
The boundary terms for the kth element are expressed in the form
- (k) Zk+1 o _ Zpyy
v . + oMb . = Do 1Oy +bag 1 Oy + Doy, O, 5 + 05,080, (17.92)

where generalized forces acting on the cross sections at z = z, and z = 7, are defined by

O)_1 ==V ,(z)) Off) =—M(z;) O 1 =V, (z41) Oy =M (24 1). (17.93)
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The integral term with respect to theline load f{/(T) in (17.91) expandsto

1 1
- h h
fv(k)],«vk)(c,)'z‘kdﬁ = -j‘(f(bzk_m] +bopa My +ffing + Cgk)n4)ﬂ)k)(t’)dc) : (17.94)
-1 -1
The integral term with respect to the temperature gradient T(V(C) in (17.91) expandsto

1
e BB o3 0 b B B

-1
Combining (17.92), (17.94), and (17.95), the external virtual work (17.91) iswritten in the matrix form

FIO0, V] = {B0}T({QW} + {FEW}) + {cW}T{FI®}, (17.96)

where the generalized nodal force vector is denoted by {Q(¥} , the generalized force vector associated with the
external shape functionsby { FE(®} | and the generalized force vector associated with the internal shape func-
tionsby {FI(M} . These vectors are

- 1 -
hk
X (k) - 5
zfmfy dc ; 1
k) —zkfmf;k)dl
k)
ng—l FE&];-] fE]xxi GT(k)dZ F]gk)
0 FE dg
{Q{k}} = k2k , {FE(k)} = k , {F](k)} = F[&k) = fE[ di O(.’E(k)dc (17.97)
k) XX
Q2k+l FE£k+1 —L‘fnzﬂk)dt F[»)(k) ?;
of. reg.| | 2™ 3
i
(k) L -1 J
J‘EIWdC aty dc

Equate the internal virtual work (17.84) to the external virtual work (17.96) to get
{BOVI(K, Hq®} +[K, HatkHy) + {cV (K, Ha ) + (K, {a®)}) =
{BOIT{QW} + {FEW}) + {c(HT{FI0}

(17.98)

The principle of virtual work leads to the governing matrix relations for the kth element:
(K, {qg®}+ [an} {a®} = {QW} + {FE®)} V{60} =0,y (17.99)
[ij g} + [Kaa} {a®W} = {FIW} V{c®} =05y, . (17.100)
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17.3.3 Static condensation

Theinternal degrees of freedom a{, af®, and a{¥) associated with the internal shape functions do not affect

interelement continuity. To reduce the number of system equations to solve resulting from the assembly of ele-
ments, the internal degrees of freedom can be eliminated at the element level in the process called static conden-
sation. Further, the assembly algorithm is simplified if only the nodal displacements, or external degrees of
freedom are employed. The internal degrees of freedom are eliminated in terms of the nodal displacements

{¢®} and the generalized force vector { F1¥)} by solving (17.100). Thus, from (17.100)

(1 = Ly prion - (1 = g ()
{a } [Kua} {FI } [Kaa} [Kaq] {q } [Kaa} {FI } + [Gaq] {q } ) (17.101)
where
£ 0 0 0 hy 0 —hy
2s —_ —K
yy 2/\/8 2/\/8
3
- ‘h/%“ f 2. f 2
k) =]o0 P [5— (G,] = |2lBusuupe (3 E0M Johgs, i 3"E0H) a7 202)
Elxx E[XX EIXX EIXX EIX)C E])CX
— B2 h2s “h3s.u —h2s. w —h3s
5"k 30EL hy +3h}s, kSyytt By TSy R TSy 0
El,. 60El,s,, +5hs2, | J10EL,, 2J10E1, J10EI, 24/10E1, |

We define [G, q] as the Guyan matrix, because the method of static condensation was first proposed by Guyan
(1965), and it was aso introduced by Irons (1965). In eq. (17.102) we have introduced the dimensionless factor

El
W= —— (17.103)
12E1,, + his,,

Substitute the displacement vector {a(®} from (17.101) into eq. (17.99) and write the final result as

(k0] {0} = {00} +{F®}, (17.104)

where

&) = [k, * [, (6.

. (17.105)
{F0y = {FEWY [k |[x,| {F19)} = (FEW} + [, |"{FI®)

The 4X4 matrix [K(k)} is the condensed stiffness matrix for the kth element, and the 4X 1 vector {F(¥)} isthe

condensed generalized force vector for the kth element. The generalized forces acting on the beam element sepa-
rated from the nodes, and the generalized forces acting on the nodes, are depicted in figure 17.16.
The 4X4 condensed stiffness matrix is
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K FR Fo
oW, T V() S 1/F 5%
o ( BM (z) M (z,)( *

Fig. 17.16 Generalized forces acting on the beam and the nodes for element Q.

le]c{)+ 1

® )0

125 —-12s,,
—ﬂhk —6syy _Lhk —6syy
12E1 —12EI,
—6s,, h +4hs,, 6s,, p +2hs,,
[K@ =u k k (17.106)
—12s 125
6s.,, — 6s
hk Yy hk yy
—12EI, 12EL,
—6s,, P +2hs,, 06s,, p +a4hs,,
L k k ]
17.3.4 Bending moment and shear force
Substitute vector {a(®)} from (17.101) into the strain vector (17.77) to get
-1
{e®} = [e,(0)[{g®} + [e,(0)] {aW} = ([ @) *+[e][6 q]){q“’} +[e,(0)] [k, {FI®}. @707
The bending moment and shear force are determined from the matrix relation
(k)
{Mx = [D}({g(k)}_ {‘“ﬁk ) (17.108)
(k) 0
y
Substitute the strain (17.107) into (17.108) to find the matrix relation for the moment and shear:
M(k) -1 (x'c(k)
= (k) (Y —
o R R o A I g B
The previous equation is written as
M) o Fio ()
El
L/(k} [s,0)f| 1+ [s00)] | F] - { “ (C)} | o
92k +1 FIp 0
D2k+2
where the stress matrices are defined as
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—65, UG < Ei” +3hys yu§> 6s,,uC ( Ely +3hs yW;)

= k
[Sq(lﬂ 2ps, 12us , and (17.111)
r— 65,1 o 65,1
k k
2
0 6.fout -5 [Bhuae
. (17.112)
sr0)] = [C( fﬁhkswu) 3[20E1,(=1+3C%) +hs, (=1 +5C)u
2J10EI,

17.3.5 Requirements of the inter polation functions.

The remeshing procedure for an increasing number of elements presented in article 17.2.2 has the old mesh
embedded in the new mesh. Monotonic convergence of this sequence of finite element meshes also requires the
interpolation functions to be compatible and complete (Bathe, 1982). Compatibility means the displacements
must be continuous within the elements and between elements. Compl eteness means the displacement functions
of the element must be able to represent the rigid body displacements and uniform strain states. Consequently,
the beam element under consideration must be capable of representing zero strain states for rigid body displace-
ments when the element is not subject to external loads. Note that the determinate of the stiffness matrix (17.106)
is zero, since the element is not restrained against rigid body displacements. Now consider the response of the
beam element under the two rigid body modes:

T
{a®} = [1010 ad{g®} = [ns21-ns21] (17.413)

Generalized displacement vector {¢g(¥}, isavertica displacement of the element, and the generalized displace-
ment vector {¢(¥)}, isaclockwise rotation of the element about its center. In the absence of external loading the
generaized forcevectors {QW} = 0,y , {FE®} = 04y, {FI®} = 05y, ,and {FO} = 0,,,.Theinternal
degrees of freedom (17.101) for the rigid body modes and no external loading also vanish; i.e.,

{a®}, = [Gaq]{q(k)}l = 03y and {a®}, = [Gaq] {q®™}y = 03y (17.114)
Also, evaluation of eq. (17.104) for the rigid body displacements rewltsin[K(k)]{q(k)}l = 0,y and

[K(k)] {g®}, = 0, , which are consistent with vanishing external loads. Finally, the strains (17.77) in the ele-
ment vanish for the rigid body displacements:
{e®}, = [sq(C)} {gW0} = 0,y and {eW}, = [sq(ig)}{q(k)}z = 0,y (17.115)

Therefore, the beam element satisfies part of the completeness requirement of vanishing strains under rigid body
displacements. Constant strain states are demonstrated in the next two examples.
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Example 17.3 Pure bending

A simply supported, uniform beam is shown in figure 17.17(a). It is subject to equal and opposite moments M,
at each end, and atemperature gradient through the thickness <, that is uniform along the length of the beam.
The lateral distributed load intensity f, = 0, 0 <z < L. The beam is modeled with one finite element, and the

twonodesarez, = 0 and z, = L asshownin figure 17.17(b). The mapping (17.16) isz = %(1 +Q)L.

, = a,, (Q{" +F{Y) g3, (08" + FiV)
q4 (041 + FiD)
Ma ( ! | ) N & >
< L a z; =0 i 7, =L
@ (b)

Fig. 17.17 (a) Purebending of a simply supported beam. (b) Finite element model.

The generalized displacement vector {g(1)} = [q | 45 45 514} "is partitioned to unknown components {¢,,} and

known components {g;} :

{q0) = F%ﬂ g} = H and {q,} = H - ﬂ @
{gp} 4 45 0

The generalized displacement vector (17.69) is

0
{p;”(c)} _ {0 0 myl|gy, |0 M0 Zl _ i(©ar + ny(Q)as +15(Q)ay| o
V@) 0 my 010 |my 0 myl| n3(Q)a; +n4(Q)a;

94 3

Displacement boundary conditions v(—1) = 0 and v(1) = 0 aresatisfied by (b). Matrix (17.106) represents
the unrestrained structural stiffness matrix [Ku} . The rows and columns of [Ku} are interchanged to the order 2,

4,1, and 3 to facilitate partitioning it into submatrices:
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9, q4 91 q3
| 12E1, 121, ‘ |
= 4Ls,, +2Lsyy: —6s,, 65,
12EI 12E1 ‘
X +2L,s 2445 —6s 6s
[K} . L, k>yy L, K>y L »y vy (Kool [Ka[ﬂ
A T L e
6s,, 6s,, 125, 125 [Kpol [Kggl
L L
|
=125 12s
6syy 6svy I_LL r —ZZL
- - (c)
The restrained structural stiffness matrix is
12E1, —12EI,
[ } B E[XX ""'—L + 4Lsyy L + ZL (d)
K - - 5 1
el 12EI, +L%,,|_12E] 12EI

2F
—ll 2Ls,, —L--Yi‘ +4Ls,,

where w is defined in eq. (17.103). From (17.97) actions FI{!) = FI{V) = FI{V) = 0,sincef, = 0 and T, is
spatially uniform in €. Hence, from (17.105) the generalized nodal force vector is { F(V} = {FE(}  whichis
evaluated from (17.97). The generalized nodal force vector {Q(1)} = [Q{” 05D o) Qil)} " ispartitioned into

known components {Q,,} and unknown components {Q; } :

(0.} = H = {‘ ] and {0, } -{ ] @
Q4 Ma Q3

The generalized force vector {F(1} = [Fgl) F{D F{D Fglﬂ " (17.97) is prescribed and is partitioned as

1
| f (=EI,. ot )dC |
(F.} = FS§D _1 _ |-ElL o, and {Fy} = F| _ H 0
F{» (El o) El,ax, FOL (o

f

The matrix equation to determine the unknown displacementsis [K,,1{¢,} = {Q.} + {F.}.0or

12E1 . —12E1,

Elxx L 4L L 2L 9> — _Ma _E]xxatv
T+ I, ] ] v
x —12E1,, 2L 121LEI 4L qa M, + E]xxon:y
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The solution for {g,} fromeq. (g) is

L(M,+EIl_ot,))|_
{qa} = q; = ( u2 XX l) 1 . (h)
q, EIxx 1

The rotations are equal magnitude and of the opposite sense. The reactive force vector is determined from
[Kpol{ao) + [Kgpl{ap} = {Qp} + {Fp}, whichis

_ B =65, 63, L—Y_(Ma *tEL o) |- = LM, * El o)) 05y, =068y, | = [0 (i)
12E1 + Lzsyy 6s,, 6s 2EI 1 2(12EI , + Lzsyy) —6s,, + 65, 0

Hence, the reactive force vector {Q;} vanishes. The vector {a(1)} associated with internal shape function is
determined from (17.101) and (17.102). These computations are

Yy

0 L 0 i
2./6 2./6
0
-1 A/3L2u /\/ELZM q
{a(l)} - [Kaa} {F[(l)}+ [Gaq}{qk} = O3X1 + —/\/ELSWLL 2 /\/BLSWH 2 . . 0)
EIXX EIXX E[X.X EIX)C 0
L2s, u  —L3s,u —L%s u —L3s u 4
| J10EI, 2.J10EI,, J10EI,, 2,10EI
Since ¢, = —q,, we get
-L —L> (M, + El ot,)
{an) = |Volg, = 2.6EL, | ®
0 0
0 0
The generalized displacement vector in eq. (b) is
L(M,+EI . at,)C
o _ 2E1,, 0
v L2 (M, +EI  ot,)(1-C?)
8EI,
From (17.110) the bending moment and shear force are
0 5 0
M| _ q, El ot | _ -1 El_at
=S B S e ) ga—| 7 (m)
{Vj [ (J 0 [F} 0 0 } [ ‘I} 0 { 0 }
q4 1
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The matrix multiplication of [S,J times the 4X 1 vector in eq. (m) is

—6s, Ut (_ Lox 43 u;) 65, uC (Elxx+3LS u§> 0 EI EI
yy Yyt yy Yyt — = XX XX
12 ' 12 ' 01 - [ +3”CLSW)+< 2 3uELs,) | (o)
—12us us,
_Lxx 65,10 _Lu 65,10 | 0

Thefinal result for the bending moment and shear force is

{Mﬁ _ |2y L(Mu+E1mozrv){E1”aﬂ _ {M} o

L
v 2EL 0 0

v xx

0

The bending moment is constant in the element and it is equal to the prescribed external moment M, . The shear

force vanishes within the element. If M, = 0 and T, = 0, then bending moment A7, = 0. However, therotation
and displacement are not zero; i.e.,

(Lat,)T/2
M = “ ®)

12
v 3 at,(1-82)

M,=0
This one-element solution is the same as the exact solution. i
Example 17.4 Transver se bending
v I3 A cantilever, uniform beam of length L is subject to avertical force F, at
? f itsfree end as shown in figure 17.18. The distributed load intensity /, = 0,
s ] —> 2

- and the through-the-thickness temperature gradient t,(z) = 0, 0 <z<L.
One element models the entire beam as shown in figure 17.17(b). Since
Fig. 17.18 Transversebending s = 0 and 7 (z) = 0, prescribed actions (17.97) {FE()} = 0,,, and
of a cantilever beam. ’
{FIM} = 0,4, . It followsfrom (17.105) that {F(V} = 0,,, . The4X1

generalized nodal displacement vector {¢(1)} and the 4X1 generalized force vector { Q(1)} are partitioned into
known and unknown components as follows:

4
f L
I

A

{90} = [g5 0] 10} = [0, 0] = [F, 0] A} = [q, 0] = 0o @ {05} = [0, 0]+ @

Matrix (17.106) represents the unrestrained structural stiffness matrix [KJ . The rows and columns of [KJ are

interchanged to the order 3, 4, 1, and 2 to facilitate partitioning it into submatrices:
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q3 q4 q1 q,
125 125, |
_LZZ 65y, : 7 = 05y,
|
12E1,, | 12E1,
g ] BT T )]
—-12s,, 6s : 125, 6s [Kpol [Kppl
L Yy | L Yy
|
12E1, ‘ 12E1
0s,,, 7 2Lsyy1 —6s,, 7 +4Ls,,
- - . (b)
The matrix equation to determine the unknown displacementsis [K,,J{q.} + [Kos1{qs} = {Qq} . O
12s
vy 65,
—E]xx L . 43 = Fa . (c)
12E1, + L%, 12E1 q 0
x XX 4
6Syv -—-L—— + 4Lsyy
The solution of eg. (c) for the displacementsis
F,L3 F,L
+
q3 - 3E1xx Syy . (d)
q4 _FaL2
2ETL,,

The matrix formulation to determine the generalized reactive force vector is [Kp, 1{q, } + [Kppligp} = {Op}
or

12 12 1 —(12EI, .+ L%s,)
0 LS 08y 3EL. 5. L -F
1| = u xx vy FaL = MLFa xx = al (e)
0, —12E1 —L 12EI__+ L3s LF
XX XX Yy a
OSw T TS| g EIL.

The generalized displacement vector {a(!1)} associated with internal shape function is determined from (17.101)
and (17.102). Theresult is

F,L?
0 4.J6EI,
1 0 F L?
{aW} = | {FIV} + |G Hat = 030+ |G = . ®
kJ )+ o] o[p)] = | s
q4 —-F,L3
[12./10E1,|
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The generalized displacement vector (17.70) is

0 F L3
af! —(=3-20+0)
oM _ 10 m; 0 myl|0 0mny 0 _ 8EI,,
= + a$h| = ’ . (9)
v N 0m, 0(93] [m3 0 my . F,L(1+Q)[24EL + L%, (5+4C-0%)]
44 as 48EI_s,

xx®yy

The vector of the bending moment and shear force (17.110) is

0 F,L3 F,Ly  (EL, —F,L?
6 a7y a0) (X300 - -
{Mﬁ =15,11°] = ( MSWC)(3EIM syy> (Z=+3m ksy}/§><2E1xx> FLE1+9)
= 15,]|°| =
q3

: . = 2 )
FL3 FL FL

12us,) (357 + 55) + 6357 £

(12w (37 5y Ows )\ 35

).

n

The shear force is constant in the beam and is equal to the prescribed external force F,. For F, > 0 the bending

moment decreases linearly from zero at the free end to aminimum (—F,L ) at the clamped end. The finite ele-
ment solution for transverse bending is the same as the exact solution of the governing boundary value problem.

Example 17.5 Cantilever wing spar

The wing spar of alight airplane described in example 6.6 on page 165 is modeled as a cantilever beam as shown
infigure 17.19(a). In asymmetric maneuver of the airplane thetotal lift L = 12,000 Ib., and the lift acting on each

S(2) ip
/ A qz’(Q2+F2) q4’(Q4+F4) }\ %’(Q(,+F6)
— Z ] @ 78
4 ) z, =0 Q z, = 60in. Q z, = 120 in.
120 in. 1 1 2 2 3
| -
@ (b)

Fig. 17.19 (a) Cantilever wing spar. (b) Finite element model.

wing isL/2. Assume the airload acts along the locus of shear centers so that spar bends without twist in torsion.
The airload is distributed elliptically over the wing, so that the airload intensity /,(z) per unit spanisgiven as

2
f,(z) = 2L l—<—z—> O<z=<z,,., (@

ﬂ:ZnHJX Zmax

where zis the spanwise coordinate, z= 0 at theroot, and z = z,,,. = 120 in. at thetip of the wing spar. The
transverse temperature gradient t,(z) = 0, 0 <z <z,,,, . Datataken from example 6.6 are: the modulus of elas-

522 Aerospace Sructures



A beam element including transverse shear deformation

ticity £ = 10.5x10° Ib./in.2 , the second area moment of the cross section about the x-axis I.. = 101.619 in.*,

and the transverse shear coefficient Sy = 2.4278x10° 1b.

The finite element model shown in figure 17.19(b) has three nodes {z;} = {0, 60, 120} in. , and two equal
length elements 4, = h, = 60 in.. The stiffness matrices (17.106) for each element are

q q3 q3 q4
24,048 721,441 -24,048 -721,441

[KU)} _ |=721, 441 3.94266x10" 721, 441 3.85991x10°
24,048 721,441 24,048 721, 441

—721, 441 3.85991x10° 721, 441 3.94266x10"
and (b)

q3 qy4 qy4 qs
24, 048 —721,441 24,048 —721,441

(ko] = —721, 441 3.94266x10" 721,441 3.85991x10°
24,048 721,441 24,048 721,441

=721, 441 3.85991x10° 721, 441 3.94266x10’ ©

The assembly process effects the matrix addition [KJ = [KU)] + [Ku)] to get the unrestrained structural stiff-

ness matrix as
91 /5 q3 d4 qs 96

[ 24,048 —721,441 | —24,048 —721441. 0 0o |

721,441 3.94266x10'| 721441, 385991x10° 0 0o

[K} _ | 24048 721,441 48,0961 0 24,048 —721441.
1721, 441 3.85991x10°0 0 7.88531x107 721,441 3.85991x10°

0 0 24,048 721,441 24,048 721,441
0 0 =721, 441 3.85991x10° 721, 441 3.94266x10'|

(d)
The generalized nodal displacement vector [q L4y 43 94 G %} "is partitioned into unknown components

{g.} and known components {g;} :

T T
{40} = |45 44 45 44 {ap} = |9, 4)) = Oaxr- ©)
We partition the unrestrained structural stiffnessin eg. (d) in theform
[K,] = [Kpp] [Kp] , Where ()
[Ka[‘}] [K(xa]
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q3 q4 qs 96 q, 9,
48, 096.1 0 24,048 —721, 441
1x107 721, 441 3.85991x10° oo LA
K, = 0 788331x ’ ' x (K, = |72 441 3.85991x10° = [k }T
24,048 721,441 24,048 721, 441 a . . i
721, 441 3.85991x10° 721, 441 3.94266x10’ 0 0 .
and
91 q,

e {24, 048 —721,441}
B

—721, 441 3.94266x10’ -

The generalized forces acting at the nodes of elements 1 and 2 are shown in figure 17.20. The external general-

ofY + Fi 0§l + F{D o)+ FiY 0P +FP
/T‘*Qé” + D /T" o) + D /T‘*Qi” R @+ Fp)
) [ ] ® [ ]

zy = 120 in.

z; =0 z, = 60 in. z, = 60 in.

@ (b)

Fig. 17.20 Generalized forcesacting on (a) element @4, and (b) element Q.

ized forces acting on elements Q, and Q5 from the distributed airload (a) are computed by numerical integration
because of the complexity of the integrands (17.97). (Refer to article 17.3.6 for details on numerical integration.)
The external generalized forces acting on each element are determined from eg. (17.105). The transpose of the

Guyan matrix used to compute the generalized force vectors { F(1} and {F(®)} in eg. (17.105) is the same for
each element in this example. It is given by

0 —0.016526 0.128289 |

[GU]7 = [GRT = | 122474 0496859 384866 | 0
0 0016562 —0.128289

~12.2474 0.496859 ~3.84866

Theresults for the generalized forces are

F{
1, 869 Ib. 1, 872.39 Ib.
-1, 499.03 Ib. FiD Ib1i
{FEW} = 0 (FIN) = 0 (FD} = — |18, 460.9 Ib.-in. )
1, 784.98 Ib. F{ 1,781.6 1b.
266.3992 Ib. .
1 ,257.7 1b.-in.
0 F§ 18,257.7 1b
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2
1,384.05 Ib. F{ 1, 400.17 Ib.
0 LTI b F) 12, 630.4 Ib-i
{FE®)} = {FI®) = 0 ,and {F)} = = e ()
961.96 Ib. F@ 945.848 1b.
125.595 Ib. .
0 F2) 11, 663.6 1b.-in.

Assembly of the two elementsis shown in figure 17.19(b). The external generalized force vectors for the assem-
bly are

F, F{Y [ 1,872391b. | o, of

F, F§Y ~18, 460.9 Ib.-in. 0, or)

Fy| _ [FD+F@| _ | 318177 Ib. Os _ |0+ 0P ()
Fyl |FW+FP| |5, 627.30 Ib-in. Qu |04+ 0f)

. FQ 945.848 Ib. 0s 0P

F o | 11, 663.6 Ib.-in. 0, 0

The 6X1 generalized nodal force vector [Q 10,050,050 } Tis partitioned into known components {Q,, }

6
and unknown components {Q;; } asfollows:

{Qa} = [Qz. 04 05 Qs}T = 4y and {Qg} = [Ql QJT- (m)

There are no generalized point forces acting at nodes 2 and 3. Generalized point forces acting at node 1 are reac-
tive. The generalized forces from the airload are also partitioned as

_ r_ r
{Fu} = [Fy Fy Fo B = [3,181.76 5, 627.37 945.848 11, 663.6] » ad ()
_ T_ r
{Fe} = [F, F)| = [1,872.39 -18,460.9] - (©)
The matrix equation to determine the unknown generalized displacementsis
[Kw} {g )+ [KarJ {g3} = {04} +{F,} Thesolution for the unknown displacement vector is

_ T
{aa} = [0.447103 —0.0091821 1.06555 —0.0101218] - ®)

The matrix equation to determine the unknown forcesis [Kﬁa} {qo}+ [Kﬁﬁ} {qp} = {0p} +{Fy}.or

0.447103

24,048 721,441 00||_0.0091821| , | 24,048 721,441 H _|o +{1,872.39}

721,441 3.85991x10° 0 0| | 1.06555 721, 441 3.94266x10"| (0] |Q,| [-18,460.9
—0.0101218

(@

Perform the matrix algebrain eqg. (q) to find that the generalized reactive forces are

0, = —6,00001b. O, = 305,577 Ib.-in. . "
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The external generalized forces acting on the two-element model of wing spar are shown in the free body dia-
gramin figure 17.21. |}

1,872.39 Ib. 3,181.77 Ib. 945.848 1b

Fig. 17.21 Generalized forces _ )
acting on the model with two 305, 577 Ib.-in. ,%18, 460.9 Ib.-in. 5,627.30 lb-'m-/?\l 1, 663.6 Ib.-in.
elements. &

[ ]
z;, =0 z, = 60 in. zy = 120 in.

6, 000 1b

17.3.6 Gaussian integration

Consider the integral to compute the external force component FEX), | in eqg. (17.97) for element two in exam-
ple 17.5. The expression for this force component is

1
hy o1 2L [ 1z@(2)2
2) = 222 _
FE( 5 2(1 +Z;)mmax 1 ( -~ ) dc, (17.116)
-1
where
z(2) = 1, (2)(60.) +M,(T)(120) = 90 + 30T . (17.117)

Numerical evaluation of eg. (17.116) leads to

1
FEQ) = f[954.930( 1 +©)4/0.4357 —0.375C — 0.0625C2]d% . (17.118)
-1

We carry out Gaussian integration of eq. (17.118) after a discussion of the method.

1
The method of Gaussian quadrature is to approximate theintegral 7 = f f(C)dC by
-1

Iz]appr = szf(cl‘)v (17.119)

i=1
where C; are the abscissas of the Legendre polynomial P;(T), and w, are the weight factors. The abscissas, or

roots, of the Legendre polynomial are symmetrically located in theinterval —1 <T < 1. The weight factors are
determined such that a polynomial of degree p is exactly equal to the sumin (17.119). Consider a polynomial of
second degree f(T) = ¢, +¢,C+¢,C%. Theexact integral is

1
I = f(c0+c1c+c2c2)d§ = 200+§c2. (17.120)
-1

The exact integral is determined by two coefficients, ¢, and c,. The Legendre polynomial for n=2is
P,(T) = (—1+3¢2)/2.Therootsof P,(T) = 0 are

—1/.J3 and 1/(./3). (17.121)
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Equation (17.119) forn=2is

-1 1
I=1,. = 2w f[—). .
apr. = Wif ( ﬁ) WJ(ﬁ> (17.122)
Evaluating eq. (17.122) we get
I'= Ly = 2(wy +wy)eg + Mcl + %(W1 +w,). (17.123)

Equate like coefficientsin (17.120) and (17.123) to get three linear equations for the weight factors wy, and ws:

2= w +w, 0= (wy—w,)/(J3) % = %(w1 +w,). (17.124)

The solution of eq. (17.124) is w; = w, = 1. Note that the weight factors of the positive root and the corre-
sponding negative root are the same because the term with the odd power of T does not contribute to | (17.120).

Thus, a polynomial of degree 2 can be integrated exactly by evaluating it at +1././3 and multiplying by the
appropriate equal weight factors.

Consider the cubic polynomial f(T) = ¢, + ¢, T+ c,T% + ¢;T° whoseexactintegral is7 = 2¢,+(2/3)c, .

The Legendre polynomial for n=3is P;(¢) = (=3¢ +5C3)/2.Therootsof P4(C) = 0 are 0, and F./3/5.
Equation (17.119) forn=3is

= Iy = wifl0) + wyf(=4/3/5) + wyfd3/5) = co(wy +w,) +¢,(6w,/5). (17.125)
Equating like coefficients between the last equation and the exact integral we find the weight factors w, = 8/9
and w, = 5/9.Ingeneral, apolynomial of degree p isintegrated exactly if n=(p +1)/2.

Now consider the integrand in the definite integral (17.118). Theintegrand is

AT) = 954.930(1 +T)4/0.4357 —0.375C — 0.0625C2. (17.126)

Function f(C) iscontinuousin theinterval |C| < 1 asshown infigure 17.22. Its Taylor’'s formulais an infinite

series f(T) = E a,,c", wherethe a,, arerea numbers. Consequently if f(T) isreplaced by its Taylor series,
m=0

then the integrand is a polynomial of infinite degree. The integral of a polynomial of infinite degree implies an

infinite number of abscissas and weights for Gaussian quadrature, which, of course, isnot practical. Only afinite

number of abscissas and weightsin Gaussian quadrature are considered in the sequence of numerical integrations

to follow.

Gaussian quadrature of the integrand (17.119) forn=2is

L. = wfli—=1/3)+w f(1/3) = (1)(321.154) + (1)(673.889) = 995.043 Ib. (17.127)

appr.

Gaussian quadrature of the integrand (17.119) for n=3is

Loppr, = w1ﬂ0)+w2/(—ﬁ) +wzf(ﬁ) = (g)(631.627)+<g>(1784857)+<g>(560.829) = 972382 1b.  (17.128)
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Forn=2,3,4,5,6, 7,8, 9, and 10 the abscissa and weight factors are listed in table 17.4. Approximate val ues of
theintegrals of (17.126) arelisted in table 17.5 based on the datain table 17.4. The resultsin table 17.5 show the
integrals are slowly decreasing as the number of termsin the Gaussian integration increase. Apparently, the
approximate values of the integrals are asymptotically approaching the value of 961.96 Ib., which is the value of
the integral of (17.126) computed from the function NI ntegr ate[f(T), {C, -1, 1}] in Mathematica.

), Ib.

Fig. 17.22 Graph of function (17.126)
with thefilled circles corresponding to
the function evaluated at the abscissas
in Gaussian quadrature for n = 10.
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Table 17.4 Abscissas and weight factorsfor Gaussian integration

*(; w; =G, Wi
n=2 n =28
1/(/3) 1.0 0.18343 46424 95650 0.36268 37833 78362
n =3 0.52553 24099 16329 0.31370 66458 77877
0 8/9 0.79666 64774 13627 0.22238 10344 53374
NYE 5/9 0.96028 98564 97536 | 0.10122 85362 90376
n=4 n=9
0.33998 10435 84856 | 0.65214 51548 62546 | O 0.33023 93550 01260
0.86113 63115 94053 0.34785 48451 37454 0.32425 34234 03809 0.31234 7 0770 40003
n=>5 0.61337 14327 00590 | 0.26061 06964 02935
0 0.56888 88888 83889 0.83603 11073 26636 | 0.18064 81606 94857
0.53846 93101 05683 0.47862 86704 99366 0.96816 02395 07626 0.08127 43883 61574
0.90617 98459 38664 0.23692 68850 56189 n =10
n==6 0.14887 43389 81631 0.29552 42247 14753
0.23861 91860 83197 | 0.46791 39345 72691 0.43339 53941 29247 0.26926 67193 09996
0.66120 93864 66265 | 0.36076 157304 8139 | 0.67940 95682 99024 0.21908 63625 15982
0.93246 95142 03152 | 0.17132 44923 79170 0.86506 33666 83985 0.14945 13491 50581
n=7 0.97390 65285 17172 0.06667 13443 08688
0 0.417959183673470
0.405845151377397 0.381830050505119
0.741531185599395 0.279705391489277
0.949107912342759 0.129484966168870
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Table 17.5 Approximate integrals of (17.126).

I, lb.

appr.
995.043
972.382
966.61

964.443
963.443
962.917
962.613
962.426
962.304

© 00 N O O A W NS

=
o

17.4 Euler-Bernoulli beam element

The Euler-Bernoulli beam theory was discussed following table 4.4 on page 102, and in this theory we set the
transverse shear strain g, = 0. Hence, from eqg. (17.53) the rotation of the cross section is related to the rotation

of the centroidal axisby ¢, = —(dv/dz). The material law for the shear force (i.eVy in eg. (17.52) is not valid).

The shear force isreactive and it is determined by the first equilibrium equation (17.51). Combine the equilib-
rium equations (17.51) by eliminating the shear force to get

d’M,
= +f(z) =0 O0<z<L. (17.129)

The material law for the bending moment in eq. (17.52) becomes

_ d*v
M, = EIXXHE + aryﬂ . (17.130)
Substitute the material law for the bending moment (17.130) into the equilibrium equation (17.129) to find the
fourth order differential equation for the lateral displacement v(2):

dZ

2
o [Elxx(— ZZL} —aty)} +f(z) =0 0<z<L. (17.131)

72

The boundary conditionsat z=0and z=L in eq. (17.54) become

prescribe either v or V,,, and prescribe either (_Ldﬂ) or M,. (17.132)
zZ

Multiply (17.131) by the virtual displacement \;(z) and integrate over the domain. Then integrate the result
by parts twice with respect to z to get
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L

L - _
f[E]”<— % - myﬂ;%dz + {vdiZElxx[—(% + onzy” - ZL‘Z}EIXX[—(% + ot'cyﬂ}
0

0

L
+ f(fy;/)dz =0. (17.133)
0

Note that the shear force is determined from equilibrium and the material law for the bending moment; i.e.,

amM d d42v
V. = I = —F] |——+ 17.134
Y dz dz ”[ < 22 at)} ( )

Equation (17.133) isrearranged as follows:

L -

d*w\ 1d%v d
[t e -]
0

&Py -
+ f{ £l 0m) T +fyv}dz . (17.135)

L
d>vd>v
El —— = ——M
f[ Y dz2 dz? Jd [ V }
0
The principle of virtual work is determined from (17.135) and is written in the form

Blv, ;] = F [;] for every kinematically admissible V. (17.136)
Theinternal virtual work is

L

Bv, v] :ﬂ I”Z’ ‘z’j gd (17.137)
0
and the external virtual work is
~ L L L _
F[v] = \’/Vy‘g ( d;) ffvdz +f[EI ( zzzﬂm dz . (17.138)

0

17.4.1 Element displacement functionsand strains

The kth element isdenoted by Q, = {z|z,<z<z,,,},wWherez, <z, . Thestandard element
Q,={C|—-1<T<1} (17.15) ismapped to the kth element by (17.16), and the inverse mapping is given by
(17.17). The lateral displacement of the kth element is denoted by v(¥)(z) and the clockwise rotation by

k
—(d;( )) . Define the generalized nodal displacements as

z

viO(z,) = gy (dV(k)>

_ _ dv(®)
e = 49y VIO(z 1) = Gaga —< )

zZ=2Zp

= Goper- (17.139)

See figure 17.23. Admissible functions v(z) and its derivative

i e : Fig.17.23 D2k -1 92k+1
must be continuous within an element and be continuous between 5 ener alized /f\
elements. Interpolation functions that satisfy these continuity nodal Dk T2k+2
requirements are Hermite cubic interpolation functions, whichare  displacements. Zk+1
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denoted by ¢,(C),.i = 1,2, 3, 4. Theseinterpolation functions are
6,(€) = (2-3C+C3)/4 6,(8) = (h/8)(=1+C+T2-T%)
¢5(C) = (2+3C-C%)/4 04(T) = (h/8)(1+T-C2-0%)

Let the derivative di?);l be denoted by ¢, . The interpolation properties of the Hermite cubic functions are

(17.140)

¢ (1) =1 ¢;'(-1) =0 ¢, (1) =0 ¢,'(1) =0
d,(-1) =0 0, (=1) = —hy/2 d,(1) =0 d,'(1)

d5(-1) = 0 b;'(-1) = 0 b5(1) =1 ¢;'(1) =0
d4(-1) =0 b,/ (1) =0 d4(1) =0 6, (1) = =hy/2

Graphs of Hermite cubic functions are shown in figure 17.24. The displacement for element Qy is

11
(e}

(17.141)

Fig. 17.24 Hermite
cubic interpolation
functions. €)

(8 ¢,(0),
(b) ,—%}(%(c), 10 -05
(©) ¢5(2), and

(@ 26 (2). ©

hy 4

where-1=<C=<1. g
0.2

-1.0 -0.5

-1.0 -0.5

0.5 1.0

vi(g) = [N(C)] {q®} , where [N(C)] isthe 1X4 matrix of interpolation functions, and {¢(¥} isthe 4X1 vec-

tor of the generalized displacements at the nodes. The interpolation matrix and nodal displacement vector are

[N©)] = [61(2) 0,00) 03(2) 0,(0)] @ {09} = [g 1 4y dear daead] (17.142)

The virtual displacement is v(Z) = [N(g)| {6} where {b} = [bl b, b, bJT.The%ond derivative of the

displacement, or curvature k of the centroidal axisin bending, is expressed as
o (V) o (PW\(2)\? _ _(2\?d> 0V = (k)
=) =A@ =) vt = [t whee - aras

[NK(C)] = i%[—@}llk(—l +30), 6T /(1 + 3@)] : (17.144)

532 Aerospace Structures



Euler-Bernoulli beam element

(k)
dz?

Thethe virtual curvatureis k = —< ) = [NK(C)}{Z)} = {b}T[NK(QﬂT.Thebilinear form evaluates as

L 1
- h
BLv.v] = [(RELx)dz = {b}T( f[NK(z)}TEIXX[NK(C)]de){q“)} = {6}7[g]{a®}.  araes)
0 —1
The element stiffness matrix is

12 —6h, —12 —6h,

_ EL|~6h, 4h} 6h, 2k}
o = hi |12 6h, 12 6h,|
—6h, 2h Gh, 4h?

(17.146)

Referring to Fig. 17.16 on page 515, we express the boundary termsin the external virtual work (17.138) as

ny

= 030541~ b1(=Qpp 1) + 54 Qsp 4, =02 (=0y)) = {6}T{OW}

Zk

X

(&)1

|+ (L),

Zk+1
Zk+1

. (17.147)
The prescribed distributed load termsin the external virtual work are

L L 1

J_fv;dz +ﬁE1 ( Zlvﬂon: dz = {b}T(ff(")[ N©)| A "dc +fE [ gﬂ )(C)%‘dé), (17.148)
0

0
where the distributed loading in the element is

0 = £In1(Q)z, +My(C)zp 4] T = 7, [0, (Q)z, + 5 (D)zp 1] (17.149)

Thefina result for the external virtual work for element Q. is
FIv] = {b}7({0*} + {F®}), where (17.150)

_ T _ T
{oW} = [sz—l Ok Do+ 1 Q2k+2} and {F®W} = [FZk—l For Fopey F2k+2} ) (17.151)
Explicit expressions for the components of the generalized force vector from the distributed load are

1 1

Feo: f[ﬂ“(c 1o,(0) 2 + [lEn (‘@)}[aﬂ“(c)] 73 (17.152)
-1
f[f(“(i;)]%(i;) L+ ﬂm L o)1, a7153)
-1
1 1
Foger = fU(k)(C)]% C)hde +f[EI (h—(:’)}[atﬁﬁ@)]%‘d@, and (17.154)
k

-1
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1 1
h h
Foran = f[f}“(@)]%(@)zkd?; +f[E1xx£1;—:?;2}[at;k)(C)]5"dC. (17.155)
|

-1
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