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Abstract 
 
 

Space Time Trellis Coding (STTC) is a unique technique that combines the use of 
multiple transmit antennas with channel coding. This scheme provides capacity benefits 
in fading channels, and helps in improving the data rate and reliability of wireless 
communication. STTC schemes have been primarily designed assuming perfect channel 
estimates to be available at the receiver. However, in practical wireless systems, this is 
never the case. The noisy wireless channel precludes an exact characterization of channel 
coefficients. Even near-perfect channel estimates can necessitate huge overhead in terms 
of processing or spectral efficiency. This practical concern motivates the study of the 
impact of channel estimation errors on the design and performance of STTC. 
 
The design criteria for STTC are validated in the absence of perfect channel estimates at 
the receiver. Analytical results are presented that model the performance of STTC 
systems in the presence of channel estimation errors. Training based channel estimation 
schemes are the most popular choice for STTC systems. The amount of training however, 
increases with the number of transmit antennas used, the number of multi-path 
components in the channel and a decrease in the channel coherence time. This 
dependence is shown to decrease the performance gain obtained when increasing the 
number of transmit antennas in STTC systems, especially in channels with a large 
Doppler spread (low channel coherence time). In frequency selective channels, the 
training overhead associated with increasing the number of antennas can be so large that 
no benefit is shown to be obtained by using STTC. 
 
The amount of performance degradation due to channel estimation errors is shown to be 
influenced by system parameters such as the specific STTC code employed and the 
number of transmit and receive antennas in the system in addition to the magnitude of the 
estimation error. Hence inappropriate choice of system parameters is shown to 
significantly alter the performance pattern of STTC.  
 
The viability of STTC in practical wireless systems is thus addressed and it is shown that 
that channel estimation could offset benefits derived from this scheme. 
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1. Introduction to STTC 
 
Band-limited wireless channels provide an impediment to high data rates and 
consequently constrain attempts to improve the reliability of wireless communications by 
using error correction codes along with high data rate services. One method of increasing 
the capacity of wireless channels is the use of multiple transmit and receive antennas 
[Fosc1]. This additional capacity can be thought of as channel “broadening” which can be 
used to improve system performance in band-limited environments.  
 
Space Time Trellis Coding (STTC) is a unique coding scheme that integrates channel 
coding and modulation with the use of multiple transmit antennas and optional receiver 
diversity. This scheme offers increased performance, and helps in improving the data rate 
and the reliability of communication over fading channels. However, most of the research 
on the design and performance analysis of STTC assumes the availability of perfect 
channel estimates at the receiver. In practical wireless systems this is almost impossible 
to achieve. This concern motivates the study of the impact of channel estimation errors 
on the design and performance of STTC. This thesis investigates the validity of design 
criteria for STTC, and attempts to characterize its performance in the presence of channel 
estimation errors. It also tries to resolve the factors that influence the way channel 
estimation errors affect STTC performance. 
 
In this chapter, an introduction to Space Time Trellis Codes (STTC) and a description of 
the basic framework of a system that implements this coding technique is presented. 
 
1.1. Diversity in Wireless Systems 
 
Wireless channels are prone to large fluctuations. The channel may suffer attenuation due 
to destructive addition of multi-path components of the transmitted signal. This increases 
the burden on the receiver in determining the transmitted signal. Multiple, possibly less-
attenuated copies of the transmitted signal, can improve the receiver decisions 
significantly. This is termed diversity and is the primary tool against fading. Diversity 
uses alternate independent or highly uncorrelated paths for communication. Hence if one 
of the paths undergoes a deep fade, a different path may have a stronger signal and can be 
exploited by the receiver. Diversity can be provided in different dimensions as described 
below. 
 

• Time Diversity: This is achieved by transmitting copies of the signal in different 
time slots. This technique is not as effective in slow fading channels. Channel 
coding is also a form of temporal diversity. 

 
• Frequency Diversity: Transmitting the same information over carriers of different 

frequencies achieves this. This exploits the fact that different frequencies 
experience different multi-path fading in the propagating media. This technique 
cannot be used when the delay spread is small. Equalizers exploit this type of 
diversity. 
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• Spreading the Signal: A signal that has a bandwidth much greater than the 

coherence bandwidth of the channel is used. Such a signal resolves the multi-path 
components and provides the receiver with several independent fading signal 
paths. This is a form of frequency diversity. Equalizers or Rake receivers are 
needed for this technique.  

  
• Antenna Diversity: This can be achieved in different ways. Examples are, 

 
o Polarization Diversity: The independence of orthogonal polarizations is 

exploited. 
o Space Diversity: The antennas are spatially separated such that received 

signals are uncorrelated. This technique incurs no bandwidth penalty. 
 
1.2. Motivation for Transmit Diversity 
 
Receive diversity can be used at the base station or any at receiver that permits fixed 
complex structures for reception. But for the downlink, receive diversity is not as 
practical. Receive diversity is too expensive to be implemented in handsets because of the 
additional processing power and RF circuitry required. It might also not be very useful 
because of the electromagnetic interaction of antenna elements on small platforms and 
the resultant correlation between antenna components. These reasons form the motivation 
for the study of transmit diversity schemes. 
 
Multiple transmit antennas are used to provide the required diversity advantage over a 
channel. This helps to shift the diversity burden from the mobile to the base station. It has 
been shown that the diversity gain provided by the use of transmit diversity scheme is 
comparable to that provided by Maximum Ratio Receive Combining (MRRC) techniques 
without the 3dB aperture gain (unless feedback is used). The same is verified in course of 
this thesis as well. 
 
The transmit diversity schemes found in the literature can be broadly divided into two 
categories: those with and those without feedback. For schemes with feedback, 
transmitter sequences are weighted before transmission to ensure maximum benefit. 
Weights are chosen adaptively based on the information feedback from the receiver. An 
example of this scheme is switched diversity proposed in [Wint1]. The schemes without 
feedback use linear processing at the transmitter to spread the information across 
antennas. At the receiver, information is obtained by linear processing or Maximum 
Likelihood(ML) techniques. An example of this technique is the delay diversity scheme 
proposed in [Sesh1]. In this scheme, copies of the same symbol are transmitted through 
multiple antennas at different times. At the receiver these delays introduce a multi-path 
like distortion. This distortion can be resolved by using a Minimum Mean Square Error 
(MMSE) equalizer or a ML scheme to obtain a diversity gain. Space Time Block Codes 
(STBC) proposed in [Alam1] and generalized in [Taro3] is another example of this 
technique. These codes are defined by a mapping operation of a block of input symbols 
into space and time domains creating orthogonal sequences that are transmitted from 
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different transmit antennas. The receiver uses a ML detection rule to decode the 
transmitted information. STTC is also a transmit diversity scheme that does not require 
feedback from the receiver. It provides coding gain in addition to the diversity advantage 
and is essentially an extension of the Trellis Coded Modulation scheme to multiple 
transmit antennas.  
 
1.3. Trellis Coded Modulation 
 
Channel coding and modulation are traditionally considered as two separate blocks in 
communication system design. Channel coding adds redundancy to the information bits 
and modulation maps these bits into appropriate symbols from the chosen signal 
constellation. The redundancy in the data bits can be accommodated either by increasing 
the bandwidth of the channel or by expanding the signal set over the un-coded system. 
Increasing the bandwidth is often not allowable. An expansion of the signal set requires 
additional power to maintain the same error rate as the Euclidean distance between code-
words is otherwise reduced. Codes with large performance gains are required to 
overcome this power penalty.  
 
Trellis coded modulation is a novel technique that combines coding and modulation into 
a composite operation. A conventional convolutional code is used and the redundancy for 
coding is provided by using an expanded signal set. Symbols are chosen from this 
expanded constellation such that the Euclidean distance (as opposed to Hamming 
distance in conventional channel code design) between code-words is maximized. This 
leads to significant performance gains and does not require an increase in the transmit 
power for the expanded signal set. Thus neither bandwidth nor power efficiency is 
compromised.  
 
The general strategy for encoding for TCM schemes is as follows, [Wick1], 

• Add one bit of redundancy for every m source bits 
• Expand the signal constellation from 2m to 12m+ signals 
• Encode the sequence using trellis code 
• Use the 1m + -bit encoded source blocks to select a signal from the expanded 

signal constellation. 
 
The most important part of the encoding process is the mapping of m  information bits to 

12m+  symbols from the expanded signal set. This mapping is achieved through set 
partitioning of the expanded signal constellation. The partitioning is done such that the 
resulting sub-constellations have larger minimum distances than the original 
constellation.  Figure 1-1 shows the signal partitioning for the 8-PSK constellation. The 
binary labels at the leaf nodes provide a means for partition selection by coded 
information bits. The binary labels are arrived at by denoting each rightward branch by 
one and each leftward branch by a zero. 
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Figure 1-1: Partitioning of the 8-PSK constellation 
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Figure 1-2: A TCM encoder 

 
A TCM encoder is shown in Figure 1-2. k  bits are selected from a block of 

m information bits, 1 2, , , mx x x… and fed to a rate
( )1

k
k +

encoder. The resulting 1k + bits 

are then used to select a partition from the ( )1k st+ level of the constellation’s partition 
tree. The remaining ( )m k− bits are used to select a signal within the partition. For 
example, consider a system which encodes information in blocks of two bits using a 
TCM encoder (thus 2m = ). Let the symbol constellation used be 8-PSK and let 1k = . The 
first information bit is fed to the convolutional encoder and the resulting 1 2k + = coded 
bits are used to select a particular constellation from the last partition level of Figure 1-1. 
The second information bit is used to choose a particular symbol from the selected 
partition. 
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The resulting sequences have a trellis structure due to convolutional coding used in the 
encoder. Hence the encoder is called a Trellis Coded Modulation system. The trellis 
restricts the allowable sequences and thus increases the Euclidean distance between code 
words compared to an un-coded system. Additional design rules that maximize the 
distance between signals are given by: 
 

• Signals in the same, lowest partition in the partition tree are assigned to parallel 
transitions 

• Signals in the preceding partition are assigned to transitions that start or stop in 
the same state 

• All signal are used equally often 
 

Parallel transitions result in a reduction of the Euclidean distance between code-words 
and can be eliminated by passing all m information bits through the convolutional 
encoder. All m+1 bits are then used to select a symbol from a constellation. The design 
rules except for the rule dealing with parallel transitions remain relevant. The elimination 
of parallel transitions also increases the achievable coding gain.  
  
As a consequence of the trellis structure imparted to TCM codes, the Viterbi decoder can 
be used for decoding TCM sequences. The Euclidean distance between symbols at a 
particular transition is used as the decision metric.  
 
Reference [Bigl1] provides a more detailed study of TCM 
 
1.4. Space-Time Trellis Codes 
 
STTC combines the advantages of transmit diversity and TCM in an ingenious way to 
obtain reliable, high data rate transmission in wireless channels. Channel coding by using 
convolutional encoders adds redundancy to the information sequence. In TCM, the 
resulting coded bits are then used to choose symbols from an expanded signal 
constellation. But in STTC, the encoded data is used to select symbols from tN separate 
but identical constellations, where tN  is the number of transmit antenna employed by the 
MIMO system. These tN  symbols are then simultaneously transmitted from the 

tN transmit antennas. The choice of symbols, as in the TCM case, is made such that the 
Euclidean distance between code-words is maximized. Thus TCM principles are 
exploited to add channel coding without penalizing the information rate, decreasing the 
power efficiency or increasing the bandwidth of the system. The scheme concurrently 
introduces diversity by using multiple transmit antennas in the system. The coding across 
transmit antennas also aids in providing maximum benefit of the offered system diversity. 
 
A system model for a Multi Input Multi Output (MIMO) system employing a Space Time 
Trellis Code (STTC) is shown in Figure 1-3. The system has tN transmit and rN receive 
antennas. Consider the signal constellation size of the system to be M . An encoder is 
used to map k (=log2M) data bits to tN  separate but identical constellations of 
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size M after applying a convolutional code to it. The STTC encoder is dependant on the 
number of input data bits ( k ), the number of states of the convolutional encoder ( v ) and 
the number of transmit antennas ( tN ). A generator matrix of size ( ) tk v N+ × can entirely 

define the STTC. It can also be represented by a trellis diagram with 2v states. Each 
transition of the trellis defines the symbols transmitted from tN transmit antennas. It also 
defines the beginning and end states of the encoder. The encoder is implemented by a 
feed forward shift register structure with memory order v . The Calderbank-Mazo 
algorithm can be used translate the trellis diagrams into closed form expressions [Taro2], 
which are very useful in designing the implementation. 
 
 
 
 
 
 

Figure 1-3: System model for a MIMO system employing an STTC 

 
Some examples are used to illustrate the encoder. Consider the 4-state trellis code shown 
in Figure 1-4 (from [Taro1]). Each trellis transition defines the symbols to be transmitted 
from each transmit antenna (two in this case) for a particular combination of the state and 
input bits. The trellis also shows the start and end states after a transition. It can also be 
noticed that there are M ( 4M = in this case) transitions from each state corresponding to 
all possible combinations of k  ( 2k = in this case) input bits. The symbols are chosen 
from the QPSK constellation shown in Figure 1-5. The encoder can be represented in a 
closed analytical form by the equations (from [Goza1]), 
 

( ) ( ) ( )
( ) ( ) ( )

2 2 1

1 4 3

2

2

x t a t a t

x t a t a t

= +

= +
 

 
1-1 

 
where, ( )1x t  and ( )2x t are the symbols transmitted from the first and second transmit 

antennas. ( ) ( ) ( ) ( )1 2 3 4, , ,a t a t a t a t are the input and state bits respectively. The generator 

matrix of the given code is therefore given by
2100
0021

T
 
 
 

and the given code can be 

implemented by the feed forward structure shown in Figure 1-6. 
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Figure 1-4: Trellis for a 4-state STTC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1-5: QPSK symbol constellation 
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Figure 1-6: Feed forward encoder structure for 4-state STTC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1-7: Trellis for 8-state STTC 

 
The trellis diagram of an 8-state code (from [Taro1]) is shown in Figure 1-7. The encoder 
for the same can be represented by a closed analytical form given by 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 5 2 1

1 5 4 3

2 2

2 2

x t a t a t a t

x t a t a t a t

= + +

= + +
 

 
1-2 

 
and implemented by feed forward structure as shown in Figure 1-8. The corresponding 

generator matrix of the code is 
1 200 2
001 22
 
 
 

T

. 

State 
Bits 

a5 a4 a3 
a2    a1   
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 0  1  0 
 0  1  1 
 1  0  0 
 1  0  1 
 1  1  0 
 1  1  1 
 
 

 00          01          02           03 
 10          11          12           13 
 20          21          22           23 
 30          31          32           33 
 22          23          20           21 
 32          33          30           31 
 02          03          00           01 
 12          13          10           11   

Transmitted Bits Ant 1 Ant 2 

(0,0)      (0,1)      (1,0)       (1,1) 

Input Bits
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a4
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a2
2 QPSK

Mapping

T
2

T

T

QPSK
Mapping

 
Figure 1-8: Feed forward encoder structure for 8-State STTC 

 
The tN  symbols generated by the encoder are simultaneously transmitted from the tN  
transmit antennas. The transmission occurs in frames of length L . The receiver front end 
consists of rN  receive antennas and the signal at each receive antenna is a noisy linear 
superposition of simultaneously transmitted tN  symbols weighted by the fade 
coefficients of the channel. The noise is assumed to be Additive White Gaussian Noise 
(AWGN). Consider ( )ic t  to be the symbol transmitted from the thi transmit antenna at 

time instant t . Then, the received signal ( )jr t at the thj  receive antenna at any time 
instant t  is given by, 
 

( ) ( ) ( ) ( )
1

;1
tN

j ij i j r
i

r t t c t t j Nα η
=

= + ≤ ≤∑  1-3 

 
( )η j t is the Gaussian noise at time instant t  and is modeled by zero mean complex 

Gaussian random process with variance 
2

oN per dimension. The channel is modeled by 

an t rN N× matrix ( )tΩ , whose entries ( )ij tα  represent the complex Gaussian fading 

coefficient from the thi transmit antenna to the thj receive antenna at time instant t . The 
fade coefficients are assumed to have zero mean (for a Rayleigh fading channel) and 
variance of 0.5 per dimension. The receiver estimates the channel and uses a Maximum 
Likelihood Sequence Estimation (MLSE) decoder to decode the information bits. The 
MLSE decoder computes the lowest accumulated Euclidean distance metric over an 
entire frame to extract the most likely transmitted sequence. The branch metric used by 
the MLSE decoder in the presence of perfect channel estimates is given by 
 

( ) ( ) ( )
2

1 1

tr NN

j ij i
j i

r t t e tα
= =

−∑ ∑  
1-4 
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where ( ) , 1, 2,i te t i N= … is a candidate codeword. 
 
The design of a STTC scheme seeks to maximize the Euclidean distance between code-
words transmitted from different transmit antennas. A detailed discussion on the design 
criteria and optimal code-construction techniques for STTC over different fading 
channels is presented in the next chapter. The basic design principles involved in STTC 
are seen to be similar to TCM. 
 
1.5. Organization of Thesis 
 
This thesis analyzes the influence of channel estimation errors on the design and 
performance of STTC over different Rayleigh fading channels. It specifically investigates 
any alterations caused in the design criteria or the performance behavior due to the 
presence of estimation errors.  
 
Design and code-construction criteria for STTC over different flat fading channels are 
presented in Chapter 2. The analyses in this chapter assume perfect channel estimates to 
be available at the receiver. The performance of various STTC schemes adhering to 
different design criteria are compared via simulations. An analytical method that 
determines the exact pair-wise error probability of STTC assuming perfect channel 
estimates and thus supplements the simulated performance analysis is also presented. 
Chapter 3 introduces several channel estimation schemes for multiple antenna systems 
and discusses their relative merits. It also presents a capacity analysis of the multi-input 
channel in the presence of channel estimation errors. This work is the summary of several 
previously published results. 
 
Chapter 4 discusses the impact of channel estimation errors on the performance of STTC. 
It reevaluates the design criteria derived in Chapter 2 in the absence of perfect channel 
estimates at the receiver. The chapter derives an exact expression for the pair-wise error 
probability of STTC in the presence of channel estimation errors. It also attempts to 
identify and characterize factors (such as code-choice, the number of transmit/ receive 
antennas in the system, the amount of training used and the coherence time of the 
channel) that influence the extent of performance loss due to channel estimation errors in 
STTC systems.  
 
Chapter 5 analyzes the performance of STTC in frequency selective channels. It presents 
a new design criterion for STTC that ensures a better performance than existing schemes 
over multi-path channels. It also evaluates the influence of channel estimation errors on 
the performance of STTC over multi-path channels.  
 
Chapter 6 discusses the results and conclusions formed by the thesis and points to 
directions for future work. 
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2. STTC Performance Analysis and Design Criteria 
 
Space Time Trellis Codes (STTC) are intended to exploit diversity in both space and time 
to improve the reliability of communications over fading channels using multiple 
antennas. A comprehensive study and analysis of the design criteria for STTC, which 
draws on the extensive literature available on the subject, is presented in this chapter. 
These code-construction criteria attempt to allow STTC to derive maximum benefit over 
different fading channels and are in general formulated by analyzing the expressions for 
pair-wise error probability of the codes. Some of the seminal work in this area was done 
by Tarokh et al in [Taro1]. Their paper dealt with design criteria for STTC over slow flat 
fading,  fast flat fading and spatially correlated channels assuming high SNRs. Alternate 
criteria for STTC in channels with large possible diversities (larger number of 
transmit/receive antennas) were derived in [Chen1]. This chapter discusses these key 
results and their extensions. The performance of various STTC schemes adhering to 
different design criteria are compared via simulations. An analytical method of 
determining the exact pair-wise error probability of STTC derived in [Turi1], which 
provides a tool to verify and supplement the simulated performance analysis, is also 
presented. This chapter provides the necessary context for the main work in this thesis 
presented in Chapter 4.  
 
2.1. System Model 
 
A generalized model for Multi Input Multi Output (MIMO) systems employing STTC is 
presented in this section. All subsequent analyses in this thesis follow some form of this 
basic model.  
 
A MIMO system with Nt transmit and Nr receive antennas is considered. The STTC 
encoder is defined by a generator matrix G  and combines the encoding and symbol 
mapping procedure into a composite operation. The generator matrix is implemented by a 
feed-forward shift register with memory order v . According to the symbol constellation 
used, the input bit stream is subdivided into blocks of appropriate length and fed to the 
encoder. The input data is thus encoded and modulated into tN  parallel streams of 
symbols. The symbols are transmitted in frames of length L . The channel is modeled by 
an t rN N× matrix ( )tΩ , whose entry ( )ij tα  represents the complex fading coefficient 
from the ith transmit antenna to the jth receive antenna at time instant t . The receiver 
consists of Nr receive antennas and a Maximum Likelihood Sequence Estimation 
(MLSE) decoder. The MLSE decoder computes the lowest accumulated Euclidean 
distance metric over an entire frame to extract the most likely transmitted sequence. The 
signal at the receiver is a noisy superposition of simultaneously transmitted symbols 
weighted by the fade coefficients. The noise is assumed to be Additive White Gaussian 
Noise (AWGN).  
 
Consider ( )ic t  to be the symbol transmitted from the thi transmit antenna at time instant 
t . To allow the validity of the following analysis to any modulation scheme, each symbol 
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in the signal constellation is contracted by average symbol energy sE , such that the 
average energy of the signal constellation is 1.  
 
The received signal ( )jr t at the thj  receive antenna at any time instant t  is given by, 
 

( ) ( ) ( ) ( )
1

;1
tN

j ij i s j r
i

r t t c t E t j Nα η
=

= + ≤ ≤∑  2-1 

 
where, ( )η j t  is the Gaussian noise at time instant t  and is modeled by zero mean 

complex Gaussian random process with variance 
2

oN  per dimension. sE  is the received 

energy per symbol per transmit and receive antenna. The average signal power at each 
receive antenna from each transmit antenna is assumed to be the same. 
 
2.2. Design Criteria for STTC 
 
2.2.1. Upper Bound on Pair-wise Error Probability and TSC Criteria 
 
Design criteria for STTC over slow frequency non-selective, fast frequency non-selective 
and spatially correlated channels were presented in [Taro1]. These criteria were derived 
by examining expressions for the upper bound on pair-wise error probability. This 
analysis is presented below.  
 
The transmitted codeword is assumed to be given by  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 21 1 1 2 2 2
t t tN N Nc c c c c c c c L c L c L= … … … …  

and the MLSE decoder is assumed to decide erroneously in favor of codeword  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 21 1 1 2 2 2

t t tN N Ne e e e e e e e L e L e L= … … … … .  
 
2.2.1. A. Quasi-static Channel with Independent Fade Coefficients 
 
A quasi-static channel where the fade coefficients are constant over a frame and vary 
over consecutive frames is assumed. The sub-channels (from each transmit antenna to 
each receive antenna) are assumed to be mutually independent and are modeled as 
independent samples of a zero mean complex Gaussian random process with variance 0.5 
per dimension. 
 
Let ijα  be the fade coefficient over a frame between transmit antenna i and receive 
antenna j. Assuming perfect channel estimation, the Chernoff bound for the conditional 
pair-wise error probability is, 
 

( ) ( )2

0

,
| , 1, 2, , , 1, 2, , exp

4
s

ij t r

d c e E
P c e i N j N

N
α

 −
→ = = ≤  

 
… …  

 
2-2 
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where, 
 

( ) ( ) ( )( )
2

2

1 1 1

,
tr NN L

ij i i
j t i

d c e c t e tα
= = =

= −∑∑∑  
 

2-3 

 
Equation (2-3) can be rewritten as 
 

( ) ( ) ( )( ) ( ) ( )( )' ' '
'

*2 *

1 1 11

,
t tr N NN L

ij i ii j i i
j i ti

d c e c t e t c t e tα α
= = ==

= − −∑∑∑ ∑  
 

2-4 

 
where, *x denotes the complex conjugate of x . Substituting ( )1 2, , ,

tj j j N jα α αΩ = …  and 

( ) ( ) ( )( ) ( ) ( )( )*
1

, , 1, 2, , , 1, 2, ,
L

pq p p q q t t
t

A c e c t e t c t e t p N q N
=

= − − = =∑ … … , 

( )2 *

1
,

rN

j j
j

d c e A
=

= Ω Ω∑  
 

2-5 

 
By definition, ( ),A c e  is a Hermitian matrix. It can be written as ( ) *, eVA c e V D= , where 

V  is unitary matrix, whose rows are made of the eigenvectors of ( ),A c e  and De is a 

diagonal matrix whose elements are given by the eigenvalues , 1, 2, ,i ti Nλ = …  of ( ),A c e . 

By construction, the square root of ( ),A c e  is given by the difference matrix, 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 11 1

( , )

1 1
t t t tN N N N

e c e L c L

B c e

e c e L c L

− − 
 
 =  
 

− −  

" "
# % #
# % #

" "

 

 

2-6 

 

 
Hence the eigenvalues of ( ),A c e  are nonnegative real numbers. 

Let ( ) *
1 2, , ,

tj j N j jVβ β β = Ω… , then 
 

( ) 22

1 1

,
tr NN

i ij
j i

d c e λ β
= =

=∑∑  
 

2-7 

 
As ijα  are samples of a complex Gaussian random process with zero mean and V is a 
unitary matrix, ijβ  are also independent samples of a complex Gaussian random process 
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with zero mean and variance 0.5 per dimension. ijβ  follows a Rayleigh distribution 
given by  
 

( ) ( )2
2 expij ij ijp β β β= − for 0ijβ ≥  2-8 

 
The upper bound on the pair-wise error probability is the statistical average of  

2

1 1

0

exp
4

tr NN

s i ij
j i

E

N

λ β
= =

 
− 

 
 
 
 

∑∑
with respect to the distribution of ijβ and is given by, 

 

( )

1 0

1

1
4

r

t

N

N
s

i
i

P c e
E
N

λ
=

 
 
 → ≤   

+     
∏

 

 
 

2-9 

 

 
If r  is the rank of A , then the matrix A  has r nonzero eigenvalues, , 1, 2, ,i i rλ = … . 

At high Signal to Noise Ratios (SNRs), 
0

1
4

s
i

E i
N

λ >> ∀ , Equation (2-9) can be written as  

 

( )
1 04

rr rNNr
s

i
i

EP c e
N

λ
−−

=

  
→ ≤   

   
∏  

 
2-10 

 
The diversity advantage is equivalent to the power of the SNR in the denominator of the 
expression. The coding advantage is a measure of the gain of the system over an un-
coded system offering the same level of diversity. It is seen from Equation (2-10) that the 
diversity advantage obtained is rrN  and can be increased by increasing the rank of the 
distance matrix or the number of receive and transmit antennas. The coding advantage 

obtained is given by 
1

rNr

i
i

λ
−

=

 
 
 
∏ . It can be improved by increasing the product of 

eigenvalues of the distance matrix. This leads to the following design criteria, 
 
Rank Criterion: In order to maximize the diversity gain over the Rayleigh fading channel, 
the minimum rank of the distance matrix ( ),A c e over all pairs of distinct code-words c  
and e is to be maximized. Maximum diversity advantage of t rN N× is obtained if the 
matrix is full rank. Otherwise a diversity advantage of rr N× is obtained where r is the 
rank of the matrix. 
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Determinant Criterion: The minimum of the product of eigenvalues , 1, 2, ,i i rλ = …  
taken over all pairs of distinct code-words c and e must be maximized. For a full rank 
matrix this is equivalent to maximizing the minimum determinant of the distance matrix 
( ),A c e over all possible code-word pairs.  

 
These will be referred to in this thesis as the TSC–RD (Tarokh, Seshadri, Calderbank - 
Rank and Determinant) criteria. 
 
It is seen from Equation (2-10) that the rank of the distance matrix is an exponent in the 
probability expression. Hence the minimum rank criterion becomes more important than 
the minimum determinant criteria in determining the code performance.  
 
2.2.1. B. Fast Fading Channel with Independent Fade Coefficients 
 
A fast-fading channel is assumed where the fade coefficients vary from one symbol to the 
next. The pair-wise error probability is approximated by 
 

( )( ) ( )2

0

,
| , 1, 2, , , 1, 2, , , 1, 2, , exp

4
s

ij t r

d c e E
P c e t i N j N t L

N
α

 −
→ = = = ≤  

 
… … …  2-11 

 
where, 
 

( ) ( ) ( ) ( )( )
2

2

1 1 1

,
tr NN L

ij i i
j t i

d c e t c t e tα
= = =

= −∑∑∑  2-12 

 
The channel coefficients ( )ij tα are assumed to vary independently from one symbol to the 
next in a fast fading channel and are hence included in the summation over the length of 
the frame in Equation (2-12) (unlike in Equation (2-4) ).  
Let ( ) ( ) ( ) ( )( )1 2, , ,

tj j j N jt t t tα α αΩ = …  and ( ) ( ) ( )( ) ( ) ( )( )*pq p p q qC t c t e t c t e t= − −  
 
From Equation (2-12), 
 

( ) ( ) ( ) ( )2 *

1 1

,
rN L

j j
j t

d c e t C t t
= =

= Ω Ω∑∑  2-13 

 
 
Since ( )C t is Hermitian, it can be written as ( ) ( ) ( ) ( )*

eV t C t V t D t= , where V(t) is a 

unitary matrix whose rows are made of the eigenvectors of ( )C t and ( )eD t  is a diagonal 

matrix whose elements are given by the eigenvalues ( ) , 1, 2, ,i tt i Nλ = …  of ( )C t . As 

( )C t  is a Hermitian matrix, its eigenvalues are real. 
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Let ( ) ( ) ( )( ) ( ) ( )*
1 2, , ,

tj j N j jt t t t V tβ β β = Ω… , then 
 

( ) ( ) ( ) ( ) ( ) 2*

1

tN

j j i ij
i

t C t t t tλ β
=

Ω Ω =∑  2-14 

 
 
As ( )i j tα  are samples of a complex Gaussian random variable with mean zero and V is 

a unitary matrix, ( )ij tβ  are independent samples of a complex Gaussian random process 

with mean zero and variance 0.5 per dimension. ( )ij tβ  follows a Rayleigh distribution 
given by 
 

( )( ) ( ) ( )( )2
2 expij ij ijp t t tβ β β= − for ( ) 0ij tβ ≥  2-15 

 
The upper bound on the pair-wise error probability is found by averaging  
 

( )
( ) ( ) 2

1 1 1

0

exp
4

tr NN L

s i ij
j t i

E t t
P c e

N

λ β
= = =

 
− 

 → ≤
 
 
 

∑∑∑
 

 
 

2-16 

 

 
with respect to the distribution of ( )ij tβ and is given by, 
 

( )

1 1 0

1

1
4

tNL
s

i
t i

P c e
E
N

λ
= =

 
 
 → ≤   

+     
∏∏

 

 
 

2-17 

 

 
The columns of ( )C t  are multiples of 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 2 2, , ,
t tN Nc t e t c t e t c t e t c t e t− = − − −… . Hence ( )C t has rank 1 only 

if ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2t tN Nc t c t c t e t e t e t≠… …  and rank zero otherwise. Thus the only 

possible nonzero eigenvalue of ( )D t is ( ) ( ) 2
c t e t− . Substituting in Equation (2-17),  

 

( )
( ) ( ) 2

1 0

1

1
4

L
s

t

P c e
Ec t e t
N=

 
 
 → ≤   

+ −     
∏

 2-18 
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Let l be the number of time instances in a frame that ( ) ( ) 0c t e t− ≠ , then Equation 
(2-18) can be expressed as 
 

( ) ( ) ( ) 2

1 04

rr lNNl
s

t

EP c e c t e t
N

−−

=

  
→ ≤ −   

   
∏  

 
2-19 

 
Diversity advantage is seen to be governed by rlN . The design criteria follow as, 
 
Distance Criterion: The diversity gain can be maximizing the number of time instances 
for which the strings ( ) ( ) ( )1 2 tNc t c t c t… and ( ) ( ) ( )1 2 tNe t e t e t… of any pair of distinct 
code-words differ during the duration of a frame. If the code-words differ for l  time 
instances in a frame, a diversity advantage of rl N× is obtained. 
 
Product criterion: To maximize coding gain, the minimum of the product of the distances 
between all pairs of code-words at, time instances when the distances are not zero, should 
be maximized. 
 
These will be referred to as the TSC–DP (Tarokh, Seshadri, Calderbank – Distance and 
Product) criteria. 
 
2.2.1. C. Dependent Quasi-static Fade Coefficients 
 
The channels are assumed to be correlated and channel coefficients are modeled by 
samples of dependent zero mean complex Gaussian random variables with variance 0.5 
per dimension. Let ( ),Y c e be a block diagonal matrix with dimension t rN N×  whose 

diagonal elements are A(c,e) and let ( )1 2, , ,
rNΩ = Ω Ω Ω… . The Pair-wise error 

probability is then given by 
 

( ) ( ) *

0

,
| , 1, 2, , , 1, 2, , exp

4
s

ij t r

Y c e E
P c e i N j N

N
α

 −Ω Ω
→ = = ≤  

 
… …  

 
2-20 

 
Let Θ be the correlation matrix ofΩ , *E  Θ = Ω Ω  . Θ is assumed to be full rank. AsΘ is 
a nonnegative definite Hermitian matrix, it has a square rootΨ . The diagonal elements of 
Θ are equal to unity. Hence the rows of Ψ are also of length one. Let ( ) 1*ω

−
= Ω Ψ , then 

the elements of ω are samples of uncorrelated complex Gaussian random process with 
variance of 0.5 per dimension. ω  thus follows the Rayleigh distribution. From Equation 
(2-20), 
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( ) ( )* *

0

,
exp

4
sE Y c e

P c e
N

ω ω − Ψ Ψ
→ ≤  

 
 

 
2-21 

 
This is similar to the case of independent fading coefficients with ( ),A c e  replaced 

by ( )* ,Y c eΨ Ψ . 
 

( )
1 04

rr rNNr
s

i
i

EP c e
N

λ
−−

=

  
→ ≤   

   
∏  2-22 

 
Where r  is the rank of ( )* ,Y c eΨ Ψ and , 1,2, ,i i rλ = …  are the eigenvalues of 

( )* ,Y c eΨ Ψ . From Equation (2-22), asΨ is full rank, maximizing the rank 

of ( )* ,Y c eΨ Ψ  is equivalent to maximizing the rank of ( ),Y c e , which is in turn 

equivalent to maximizing the rank of ( ),A c e . Maximizing the determinant of 

( )* ,Y c eΨ Ψ is also equivalent to maximizing the determinant of ( ),A c e . Thus comparing 
with the first case (Section 2.2.1.A), it is seen that the design criteria for the case of 
independent quasi-static channel coefficients also holds for the case of dependent quasi-
static channel coefficients. 
 
2.2.2. Generalized Design Criteria 
 
Generalized design criteria were formulated in [Gama1] that determined the diversity and 
coding advantage achieved by STTC in MIMO block-fading channels.  By fixing the size 
of the blocks to appropriate values, the design criteria in [Taro1] (Section 2.2.1) for 
quasi-static and fast fading MIMO channels were derived as special cases of the new 
criteria. 
Consider that each frame of size L has M blocks over which the channel coefficients are 

constant. Then the fade coefficients are constant over L
M

consecutive symbol durations. 

Let ( )ij mα be the fading coefficient for the thm fading block. The other parameters can 
also be expressed accordingly over a fading block. 
 

[ ] ( )
1

1
1 , ,j j j

L
M

m L mLR m r r
M M

×

 −   = +    
    

…  

[ ] ( )
1

1
1 , ,j j j

L
M

m L mLN m
M M

η η
×

 −   = +    
    

…  

[ ] [ ] [ ]1 1
, ,

t
t

j j N j N
H m m mα α

×
 =  …  
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[ ]

( )

( )

1 1

1
1

1
1

t t

t

N N
LN
M

m L mLc c
M M

c m

m L mLc c
M M

×

 −   +    
   

 =
 
 −   +    

    

"

# % #

"

 

 
Then, for 1 m M≤ ≤ , the received signal can be expressed as, 
 

[ ] [ ] [ ] [ ]j j jR m H m c m N m= +  2-23 

 
The pair-wise error probability of transmitting a code word c and deciding erroneously in 
favor of a code-word e can be approximated by 
 

( ) ( )2

0

,
| , 1, 2, , , 1, 2, , exp

4ij
s

t r

d c e E
P c e i N j N

N
α

 −
→ = = ≤  

 
… …  2-24 

 
where, 
 

( ) [ ] [ ] [ ]( ) 22

1 1

,
r

j

N M

j m

d c e H m c m e m
= =

= −∑∑  
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For a matrix X, 2 *=X XX . Following the approach in [Taro1], the upper bound on the 
pair-wise probability of error can be written as 
 

( )
1 04

m rd NM
m s

m

EP c e
N

µ
−

=
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∏  
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where,  

[ ] [ ]( )md rank c m e m= − , [ ] [ ] [ ]( )
1

1 2
m

m

d
m dm m mµ λ λ λ= … and [ ] [ ] [ ]1 2, , ,

mdm m mλ λ λ…  

are eigenvalues of [ ] [ ] [ ]( ) [ ] [ ]( )H
A m c m e m c m e m= − − .  

 
The diversity order of the system is given by  
 

[ ] [ ]( )
1 1

M M

m
m m

d d rank c m e m
= =

= = −∑ ∑  2-27 

 
 
and the coding gain of the system is given by, 
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Hence the design criterion for block fading channels is as follows. 
 
 Block Fading Sum of Ranks Criterion 
To maximize the diversity advantage, d is to be maximized over all pairs of distinct 
code-words c and e. 
 

 Block Fading Product Distance Criterion 
To maximize the coding gain, µ is to be maximized over all pairs of distinct code-
words c and e . 

 
The design criteria for quasi-static and fast fading channels can be obtained from the 
block fading criteria by letting 1M and M L= = respectively. 

 
2.2.3. Trace Criterion 
 
It was shown in [Taro1] (Section 2.2.1) that the rank criterion is more important than the 
determinant criterion in determining code performance. However, the difference 
matrix, ( ),B c e  (defined in Equation (2-6)) of dimension tN L× , has a maximum rank 

given by the ( )min ,tN v where v is the constraint length of the code. Hence a full rank 
value of tN is not always achievable. A new design criterion for STTC was introduced in 
[Chen1] which did not require the difference matrix to have full rank.  It was shown in 
[Chen1] that when STTC is used in systems with a large product of the number of 
transmit and receive antennas (>3), the multiple fading sub-channels converge to an 
additive white Gaussian channel. The new design criterion (described below) takes 
advantage of this approximation.  
 
Assume that a maximum likelihood receiver decides erroneously in favor of a signal  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 21 1 1 2 2 2
t t tN N Ne e e e e e e e L e L e L= … … … … assuming that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 21 1 1 2 2 2
t t tN N Nc c c c c c c c L c L c L= … … … … was transmitted. Let 

( )tr r N≤  be the rank of the difference matrix B(c, e) and let iλ  be the eigenvalues of the 
distance matrix ( , )A c e . As mentioned earlier, ( , )A c e  is the square of matrix B(c, e) by 
construction. 
 
2.2.3. A. Quasi-static Channel 
 
The conditional pair-wise probability is upper bounded by (from [Gama1] and Equation 
(2-2)), 
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where, 
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2

2
,

1 1 1

( , )
tr NN L

i j i i
j t i

d c e c t e tα
= = =
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The conditional probability can also be expressed as (from [Taro1] or substituting 
Equation (2-7) in Equation (2-2)), 
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N

α λ β
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 
→ ≤ − 

 
∑∑  2-29 

 
 

2

ijβ  follows the central chi square distribution since ijβ  is Rayleigh. Its mean and 

variance is equal to 1 (From [Gama1]). For a large t rN N (>3) value, according to Central 

Limit Theorem, the expression 
2

1 1

tr NN

i ij
j i

λ β
= =
∑∑ approaches a Gaussian random variable D 

with mean 
 

1

tN

D r i
i

Nµ λ
=

= ∑  
 

2-30 

 and variance  
2 2

1

tN

D r i
i

Nσ λ
=

= ∑  
 

2-31 

 
Thus, the unconditional pair-wise error probability can be upper bounded by [Taro1],  
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where, p(D) is a Gaussian distribution. 
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The pair-wise error probability can be minimized by maximizing the sum of the 
eigenvalues of the matrix ( , )A c e . For a square matrix the sum of the eigenvalues equals 
the trace of the matrix. The trace of matrix ( , )A c e  can be written as 
 

( ) ( )
t L 2

i=1 t=1
tr(A)= e

N

i it c t−∑∑  2-35 

 
 
Thus the pair wise error probability can be minimized if the minimum Euclidean distance 
between any two code words is maximized. Hence it is shown that when the diversity 
order 3rrN ≥ the maximum coding gain is governed by the Euclidean distance between 
any two code-words over all transmit antennas. This criterion was referred to by the 
authors of [Chen1] as the trace criterion.  It is also noted that when the number of 
transmit antennas is equal to two, it is important for the distance matrix ( , )A c e  to be full 
rank.  If 3tN ≥ , then the full rank criterion is not necessary.  
 
2.2.3. B. Fast-Fading Channels 
 
An extension of the design criteria for systems with large diversities to fast fading 
channels was presented in [Vuce1] and is described in this section.   
From the analysis for STTC over a fast fading channel discussed before, expression 

(2-14), ( ) ( ) ( ) ( ) ( ) 2*

1

tN

j j i ij
i

t C t t t tλ β
=

Ω Ω =∑ , can be written as 

 

( ) ( ) ( ) ( ) ( ) ( ) 22*

1

tN

j j ij
i

t C t t c t e t tβ
=

Ω Ω = −∑  
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as the only possible nonzero eigen value of ( )D t is ( ) ( ) 2

c t e t− . By averaging (2-36) 
over the Gaussian random variable, the PWEP can be upper bounded by, 
 

( )
2 2

4 2 4

4
0 0 0

1 1exp
2 2 4 4 4

r Es s s
r r E r

N dE E Ep c e N D N d Q N D
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where, ( ) ( ) 22

1

L

E
t

d c t e t
=

= −∑ and ( ) ( ) 44

1

L

t

D c t e t
=

= −∑ . Hence it is seen that in the 

presence of a large diversity order, the Trace criterion is valid for fast fading channels as 
well. 
 
2.3. Code Construction 
  
In this section an overview of the code construction methods employing the design 
criteria derived in the previous sections are given.  
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The STTC Encoder can be modeled by a feed-forward shift register with a memory order 
of v . This structural representation helps in code-construction and is described below. 
Consider a QPSK system with Nt transmit antennas. The encoder has two branches with 
memory orders v1 and v2. At any given time two binary inputs, I1(t) and I2(t) are fed to the 
encoder. These input streams are passed through their respective shift register branches 
and multiplied by coefficient vectors given by, 
( ) ( ) ( ) ( )( )1 2, , ,

tNa p a p a p a p= … and ( ) ( ) ( ) ( )( )1 2, , ,
tNb q b q b q b q= … respectively, 

 where, ( ) ( ) { } 1, 0,1, 2,3 , 1, 2, , , 1, 2, , ,i i ta p b q i n p v∈ = =… … 21, 2, ,q v= … .  
 
The symbol transmitted on the thi antenna at time t  is computed as 
 

( ) ( ) ( ) ( )
1 2

1 2
0 0

mod 4
v v

i
t i i

p q
c I t p a p I t q b p

= =

 
= − + − 
 
∑ ∑  
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The associated feed forward structure is illustrated in Figure 2-1. The generator matrix G 
is formed by the branch weights and is given by, 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 10 0

0 0
t t t t

T

N N N N

a b a v b v
G

a b a v b v

 
 
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"
# # % # #

"
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where, ( )1 2max ,v v v= .  

T

T

T

T

I1(t)

I2(t)

a0

a1

av1

b0

b1

bv2

c(t)

 
Figure 2-1:  STTC feed forward encoder structure 
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If any branch has memory order less than v, then some of its columns are allowed to be 
absent. For instance, if the first branch has memory order v-1, then its column with 
elements ai(v), i=1,2,…,Nt, is absent. 
 
2.3.1. TSC Criteria 
 
2.3.1. A.  Quasi-static Channel 
 
The TSC-RD criteria discussed earlier requires the code distance matrix to be full rank to 
guarantee full diversity advantage. The geometric uniformity of the code trellis can be 
used to ensure full rank for any given code. Two heuristic design rules were described in 
[Taro1] that guaranteed full rank and hence maximum diversity for a system with two 
transmit antennas.  
 
• Design Rule 1: Transitions departing from the same state differ in the second symbol. 
• Design Rule 2: Transitions arriving at the same state differ in the first symbol 
 
When these rules are followed, the code-word difference matrix ( , )B c e has the form 

( ) ( )
( ) ( )

1 1

2 2

0 * *
( , )

1 2 * * 0
e L c L

B c e
e c

− 
=  − 

"
"

, which guarantees full rank. Hence the 

space-time code achieves two-level spatial diversity. The example codes in [Taro1] are 
constructed using these design rules and will be referred to as the TSC codes in this 
thesis.  
 
The design rules in [Taro1] were generalized in [Grim1] to any level of diversity. A code 
that has the property of zeros symmetry (i.e. every code-word difference matrix is upper 
and lower triangular) is full rank. This criterion ensures full rank and reduces the search 
for good codes. However, this rule might be overly restrictive at times. Example codes 
constructed according to this symmetry property are given in [Grim1]. 
  
Space Time Trellis Codes were represented by a much more amenable “Generator” form, 
than the trellis form in [Baro1]. A systematic code search was then carried out by varying 
the values of the generator matrix and generating code and error sequences specific to a 
generator matrix. As the rank criterion is predominant, a generator matrix was discarded 
as soon as it did not achieve full rank for any pair of sequences. It was found that 
geometric uniformity could be used to limit computer searches for good space-time 
codes, but could not be treated as a necessary condition for good codes. Codes were 
presented that have coding gain larger than the codes presented in [Taro1] for the same 
decoder complexity. These codes are referred to here as the BBH (Baro, Bauch and 
Hansmann) codes. 
 
2.3.1. B.  Fast Fading Channels 
 
Space Time Trellis Codes which best satisfy the TSC-DP criterion were presented in 
[Firm1] (These codes will be referred to here as the FVY -Firmanto, Vucetic and Yuan 
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codes). The STTC encoder was represented by a feed forward shift register with 
appropriate memory order. An exhaustive and systematic search was done by varying the 
multiplication coefficients of the shift registers. The new codes were shown to have a 
much larger minimum product distance than the TSC or BBH codes for the same memory 
order and give a better performance in fast fading channels while maintaining a 
comparable performance in slow fading channels. 
  
The TSC-DP criterion for fast fading channels was improved upon in [Safa1]. The paper 
also proposed a systematic construction procedure for STTC in fast fading channels. 
Example codes, constructed according the new criterion, were shown to give improved 
performance in fast fading channels.  
 
2.3.2. Trace Criterion 
 
STTC codes constructed according to the Trace criterion were presented in [Chen1] (for 
two transmit antennas) and in [Spas1] for higher numbers of transmit antennas. The feed 
forward structure with the generator matrix described previously was utilized for a 
systematic and exhaustive computer search to identify the codes. These codes will be 
referred to as the CYV codes in this thesis.  
 
2.4. Performance Results 
 
The performance of space time trellis codes designed using different criteria are 
compared by simulating them over different fading environments. In the simulations, the 
modulation scheme used is QPSK and the length of the frame is 130 unless otherwise 
mentioned. The encoder is required to be in the zero state at the beginning and end of 
each frame. Perfect knowledge of the channel is assumed at the receiver. The branch 
metric used by the MLSE Viterbi decoder is  
 

( ) ( )
2

,
1 1

tr NN

j i j i
j i

r t c tα
= =

−∑ ∑  
2-40 

 
The performance curves are plotted against SNR, the symbol energy to noise ratio per 
receive antenna. 
 
2.4.1. TSC Criteria 
 
The performance of the codes designed using the TSC criteria is compared over different 
fading scenarios in this section.  
 
2.4.1. A. Quasi-Static Channel with Independent Fade Coefficients 
 
The performances of different STTC codes designed for optimum performance in Quasi-
Static fading channels are compared. The generator matrices of the codes are given in 
Table 2-1. All the codes given in the table have full rank. The “Calderbank Mazo” 
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Algorithm described in [Goza1] is used to translate the code trellis structures in [Taro1] 
to closed analytical forms.  
 

Code Type tn  No: of States Generator Matrix Min Det 

TSC 2 4 
2 1 0 0
0 0 2 1
 
 
 

 2 

BBH 2 4 
2 0 1 3
2 2 0 1
 
 
 

 8  

TSC 2 8 
2 1 0 0 2
0 0 2 1 2
 
 
 

 12  

Table 2-1: STTC codes for quasi-static channel 

 
From Figure 2-2, it is clearly seen that diversity improves the performance of a system.  
The system with a diversity order of six (two transmit, three receive antennas) 
outperforms the system with a diversity of two (two transmit, one receive antenna) which 
is in turn better than a system with no diversity. Maximum Ratio Receive Combining 
(MRRC) scheme (without any coding) with two receive antennas is simulated to compare 
its performance with the corresponding STTC scheme with a diversity of two provided 
by two transmit antennas. The performance of the STTC scheme is about 3dB worse than 
the MRRC scheme. This can be attributed to the fact that in the case of STTC,  the power 
transmitted from the two transmit antennas is halved so that the total transmitted power is 
the same for both STTC and MRRC schemes. In other words, MRRC benefits from a 
3dB aperture gain. The BBH code has the same rank as the TSC code. Hence the 
diversity advantage of both codes is the same. This is confirmed by the identical slopes of 
their frame error rate curves. However, the BBH code has a larger minimum determinant 
value and hence is capable of providing more coding gain than the TSC code. This 
manifests itself as a horizontal shift in performance curve for the two receive antenna 
case. This performance improvement due to coding gain is not observed in the single 
receive antenna case, as the performance of low diversity systems is dominated by the 
rank criterion.  
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Figure 2-2:  Performance comparison of  4 state-STTC codes in quasi-static channel 

 
Figure 2-3 shows that the 8 State STTC performs better than the 4state STTC, due to the 
additional coding gain achieved by the 8 state STTC.  
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Figure 2-3: Performance comparison of  4 and 8 state STTC codes in quasi-static channel 
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2.4.1. B. Fast Fading Channel with Independent Fade Coefficients 
 

Table 2-2: STTC codes for fast fading channels 

 
The FVY code from [Firm1], designed for optimum performance in fast fading channels 
by using the TSC-DP criteria is analyzed in this section. The generator matrices of the 
codes are given in Table 2-2. The minimum product distances of the codes are also 
compared.  
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Figure 2-4: Performance comparison of STTC codes in fast fading channel 

 
It is seen from Figure 2-4 that the FVY code performs better than the BBH code which 
has a larger value of the minimum determinant but a smaller value of the minimum 
product distance. Hence it is seen that minimum product distance is very important in fast 
fading channels. The effect is seen to be more pronounced as the number of receive 
antennas is increased. A clearer picture is presented by the bit error rate plots (Figure 
2-5).  
 

Code Type tn  No: of 
States 

Generator 
Matrix 

Minimum 
Determinant 

Minimum 
Product 
Distance 

FVY 2 4 
3 2 2 0
1 2 1 2

 
 
 

 8  24 

BBH 2 4 
2 0 1 3
2 2 0 1
 
 
 

 8  8 



 29

SNR (dB)

0 5 10 15 20

B
it 

Er
ro

r P
ro

ba
bi

lit
y

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

FVY 2Tx-1Rx 
BBH 2Tx-1Rx 
FVY 2Tx-3Rx 
BBH 2Tx-3Rx 

 
Figure 2-5: BER comparison of STTC codes in fast fading channel 

 
2.4.1. C. Spatially Correlated Channel 
 
The transmit antennas are assumed to be correlated by a specified factor and the receive 
antennas are assumed to undergo independent fading.  The correlation across channels is 
modeled by the method given in [14, Appendix D]. The TSC code is simulated for a 
system with two transmit antennas and two receive antennas. 
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Figure 2-6: BER comparison of STTC codes in spatially correlated channel 
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From Figure 2-6, it is observed that for a correlation factor 0.75≤ , the diversity 
advantage is maintained but a loss in coding gain is observed. For a higher correlation 
factor the system performance degrades considerably and a loss is seen in the diversity 
advantage as well.  
 
2.4.2. Trace Criterion  
 
2.4.2. A. Quasi-Static Channel 
 
 

Code Type tn  No: of 
States 

Generator 
Matrix 

Minimum 
Determinant 

Minimum 
Trace 

TSC 2 4 
2 1 0 0
0 0 2 1
 
 
 

2 4 

CYV 2 4 
0 2 1 2
2 3 2 0
 
 
 

 2 10 

Table 2-3: STTC codes for quasi-static channel with large diversity order 
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Figure 2-7: Performance comparison of STTC codes in quasi-static channel 

 
The CYV code, designed according to the trace criteria, is analyzed in this section. Figure 
2-7 compares the performance of the TSC code and the CYV code given in Table 2-3 
over a quasi-static channel. Both codes have full rank.  
 
For systems with low diversity orders, the rank criterion is dominant. TSC and CYV, 
have identical ranks of two. Hence their performance is comparable in the system with 
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two-transmit and one receive antenna. However, in systems with diversity order >3, the 
CVY code is seen to outperform the TSC code. The advantage offered by the CYV code 
also increases with increasing number of receive antennas. Hence the trace criterion is 
appropriate for higher diversity order systems.  
  
2.4.3. Comparison of Trace and TSC Criteria 
 
When the diversity order of a system is very small, it becomes very important to 
maximize the diversity advantage offered by the code. Hence, in low diversity systems, 
the rank criterion is very important. It is seen through simulation analysis ([Gama1] and 
Figure 2-7) that after the rank of the code has been maximized, the determinant criterion 
offers very slight improvement in coding gain over the trace criterion in low diversity 
systems. A code that is not full rank but which has been optimized with respect to the 
trace criterion performs worse compared to codes that have full rank. This illustrates the 
significance of the rank criterion in low diversity systems. 
 
In contrast, improving the coding advantage is more important in higher diversity order 
systems as the system already has large diversity gains. Also, in the presence of large 
diversities, the composite fading channel tends towards an Additive White Gaussian 
Noise channel. Hence the design criterion for maximizing coding gain in an AWGN 
environment (the Euclidean distance criterion or the trace criterion), becomes valid in a 
system with large diversities. It is shown in [Gama1] that in a system with a large 
diversity order, a code that is not full rank but has been optimized with respect to the 
trace criterion gives a much better performance than a code that is full rank and has been 
optimized with respect to the determinant criterion (and has a lower trace value than the 
former code). It is also shown in [Gama1] that for a system with two transmit antennas 
the maximum value of the minimum trace is the same with or without the codes having 
full rank. But for more than two transmit antennas, the maximum value of the minimum 
trace is much larger for codes without full rank as compared to codes with full rank. 
Hence the trace criterion is much more significant than the rank and determinant criterion 
in systems with a large diversity order. 
 
2.4.3. B. Fast Fading Channel 
 
A comparison of the performance of the CYV, FVY and BBH codes in fast fading 
channel is given in Figure 2-8. The CYV code outperforms the BBH code and gives a 
performance comparable to the FVY code which is designed specifically for fast fading 
channels using the TSC-DP criteria. This is expected since both TSC-DP and the trace 
criteria essentially try to maximize the minimum Euclidean distance between code-
words. Also, the trace criterion is designed for high diversity order systems and the fast 
fading channel offers large temporal diversity. It is thus seen that the same design criteria 
can be used to give optimal performances in two different types of environments. This is 
unlike the design criteria suggested in [Taro1] that specifies different criteria for slow and 
fast fading channels. 
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Figure 2-8: Performance comparison of STTC codes in fast fading channel 

 
2.4.3. Performance Sensitivity of STTC to Coherence Time 
 
Coherence time is a statistical measure of the time duration over which the channel 
impulse response is invariant. Shorter coherence times correspond to channel coefficients 
that change after shorter time intervals. Hence a decrease in the coherence time of the 
channel increases the temporal diversity provided by the channel. The performance of 
STTC over different channel coherence times and its capacity to derive benefit from the 
additional available temporal diversity is discussed in this section. 
 
Equation (2-2) gives the Chernoff bound for the conditional pair-wise error probability. 
Consider that the fade coefficients are constant over 1l symbols in a frame of length L . 
Then, ( )2 ,d c e in Equation (2-2) can be expressed as, 
 

( ) ( )( ) ( ) ( )( )
1

1

2 2
2

1, , 2, ,
1 1 1 1 1

( , )
t tr N NN l L

i j i i i j i i
j t i t l i

d c e c t e t c t e tα α
= = = = + =

 
 = − + −
 
 

∑ ∑∑ ∑ ∑  
 

2-41 

 
where, 1, ,i jα  is the channel coefficient from the thi transmit antenna to the thj receive 
antenna over the first 1l symbols in the frame and 2, ,i jα is the corresponding channel 
coefficient over the last 1L l− symbols in the frame. Equation (2-41) can be rewritten as, 
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where, 
 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1

1
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1
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l
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t

L
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∑
 

( )1 1,1 1,2 1,, , ,
tj j j N jα α αΩ = …  and  

( )2 2,1 2,2 2,, , ,
tj j j N jα α αΩ = … . 

 
From the analysis in Section 2.2.2, the diversity order, is seen to be given by the sum of 
the ranks of matrices A1 and A2. Code construction criteria in Section 2.4.1, set up design 
rules for STTC based on the geometry of the code trellis, that ensure full rank for any 
given code. In the two transmit antenna case for instance, transitions from the same state 
are required to differ in the second symbol and transitions that arrive at the same state are 
required to differ in the first symbol. As the code sequence over a frame is required to 
start and end at the same state, the code difference matrix has the form  

( ) ( )
( ) ( )

1 1

2 2

0 * *
( , )

1 1 * * 0
e L c L

B c e
e c

− 
=  − 

"
"

, which guarantees full rank.  

However, consider matrix ( )1 ,A c e , which has square root 1( , )B c e  given by, 

( ) ( )
( ) ( ) ( ) ( )

1 1 1 1
1

1 1 2 1 2 1

0 * *
( , )

2 2 * *
e l c l

B c e
e c e l c l

− 
=  − − 

"
"

 

As the l1
th node and not the L1

th node is considered, an STTC that is designed the quasi-
static scenario (where the channel coefficients are assumed to be constant over the length 
of the frame) might not have differ in the first symbol. Hence B1(c,e)  and consequently 
A1(c,e)  might not be full rank. Similarly as the code words do not start from the same 
node in the (l1+1)th stage A2(c,e) might also not be full rank. Hence STTC codes designed 
for quasi-static channels might not be able to exploit the temporal diversity offered by 
slightly lower coherence times. A loss in spatial diversity might be seen due to the 
possible reduction in rank of the difference matrix between code-word block.  For 
instance, if the sum of the ranks of A1(c,e) and A2(c,e) do not add up to the rank of A(c,e), 
the spatial diversity offered by the code would be reduced. A loss in coding gain might 
also be observed if the product of the eigenvalues of A1(c,e) and A2(c,e) are less than the 
product of the eigenvalues of A(c,e).  
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Figure 2-9: Performance of  2Tx-1Rx 8State-TSC over Doppler spreads 

 
However, when the coherence times are very small, the performance of STTC is 
dominated by the number of time instances for which distinct code-words differ during 
the duration of a frame (Section 2.2.1.B). Hence higher gains are possible from the 
additional temporal diversity offered.  
 
These results are illustrated in Figure 2-9, which shows the performance of 8-state STTC 
designed for quasi-static channel over different Doppler spreads of the channel 
(corresponding to different coherence times, Transmission frequency is assumed to be 
around 10,000Hz. 4000Hz Doppler spread roughly corresponds to the channel being 
constant over one symbol and 30Hz to the channel being constant over a frame.). The 
performance of the code at high SNRs is seen to initially degrade with decreasing 
coherence time, but to eventually improve. For small reductions in coherence time, the 
STTC is not able to exploit the additional temporal diversity, as shown in the analysis.   
The performance degrades due to a loss in coding gain. However, the performance begins 
to improve for very small coherence intervals (about 20 symbol intervals in this case) and 
represents the scenario when the loss in coding gain is compensated by the increased 
available temporal diversity.  
 
2.5. Analytical Performance Analysis of STTC 
 
Design criteria for STTC have been derived based on an upper bound on the Pair-wise 
Error Probability (PWEP) as shown in previous sections. The upper bound is derived 
from the Chernoff bound for conditional PWEP. However, this upper bound tends to be 
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loose over the range of SNRs of interest and also over quasi-static channels in general. 
An exact measure of the exact PWEP is hence useful. An estimate of the bit error 
performance of a system can be calculated from the exact PWEP by taking in to account 
few dominant error lengths. 
 
Cavers and Ho derived an exact expression for the PWEP of TCM transmitted over 
interleaved Rayleigh (i.e. fast fading) fading channels in [Cave1]. This derivation made 
use of the residue technique combined with characteristic function approach illustrated in 
[Proa1]. The estimate of the bit error probabilities calculated from the expression for the 
exact PWEP in [Cave1] is seen to be very accurate for high SNRs but not as accurate for 
low SNRs. This analysis was extended in [Uysa1] to include multiple transmit and 
receive antennas. A more generalized expression for the exact PWEP of STTC over 
Rayleigh fading channels was derived in [Turi1] and is discussed in this section. The 
performance of STTC over quasi-static, fast fading and spatially correlated channels are 
obtained as special cases of this expression.  
 
2.5.1. Exact PWEP for STTC with Perfect Channel Estimates  
 
An expression for the exact PWEP was derived in [Cave1] for STTC over Rayleigh 
fading channels and assuming perfect channel estimation. The PWEP derivation is 
through a residual method based on the characteristic function of the quadratic form of 
complex Gaussian random variables [Turi1]. The result in [Turi1] allows for the 
derivation of the characteristic function for the more general case unlike [Proa1], which is 
restricted to the scalar form. 
 
From initial definitions, the received signal ( )jr t at the thj  receive antenna at a time 
instant t , can be expressed as, 
 

( ) ( ) ( )
1

;1
tN

j
t ij i j r

i
r t c t t j Nα η

=

= + ≤ ≤∑  
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Let, 
 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 2, ,..., , 1 , 2 ,...,

tNc l c l c l c l X diag c c c L= =  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 2, ,..., , 1 , 2 ,...,
t

T T

j j j N j j j j jl l l l Lα α α α α α α α= =  

( ) ( ) ( )( ) ( )1 21 , 2 ,..., , , ,...,
r

T

j j j j Nr r r r L r r r r= = and  

( ) ( ) ( )( ) ( )1 21 , 2 ,..., , , ,...,
r

T

j j j j NLη η η η η η η η= =  
 
The received signal can be written as, 
 

jj jr Xα η= +  2-45 
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 Assuming coherent detection, the decision metric to be minimized is, 
 

( )
2

1

,
r

j

N

j
j

r x r Xµ α
=
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The Pair-wise Error Probability (PWEP) ( )P c e→  represents the probability of 
incorrectly choosing sequence c , when in fact sequence e was transmitted. 
Let, ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 2, ,..., , 1 , 2 ,...,

tNe l e l e l e l X diag e e e L= =
�

and let a random 

variable D be defined as 
 

( )2 2

1

r

j j

N

j j
j

D r X r Xα α
=

= − − −∑
�
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The PWEP is given by,  
 

( ) ( ) ( )( ) ( ), , 0P c e P r X r X P Dµ µ→ = ≤ = ≤
�
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Let ( )D sφ , be the Laplace transform of D . Then the probability density function of D is 
given by an inverse transform, 
 

( ) ( ) ( )
, 0

0 /s
D RP

P c e P D residue e s sδ

δ
φ

=
 → = ≤ = −     
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Expression (2-47) can be expanded to, 
 

( ) ( ) ( ) ( ) ( )
1

rN H H HH H
j j j j j j

j

D X X X X X X X Xα α α η η α
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Defining, ( )j j jy X X α η = − 
�

 and 
0

L L

L L

I I
A

I
− 
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1
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D  is a summation over the quadratic form of complex variables and A  is a Hermitian 
matrix by definition. By virtue of the results in [Turi1], the characteristic function of D  
can be written as, 
 

( ) ( )1 2

1
det

r

j

N

D
j L y

s
I sC A

φ
=

=
+

∏  2-52 
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jyC is the covariance matrix of jy  and is given by, 
0

0

0
j

j

L
y

L L

C
C

N I
α 

=  
  

 where, 
j

Cα is the 

covariance matrix of ( ) jX X α−
�
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1 1

, , ,
t t

j

N N
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i q
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The expression for 

j
Cα can be simplified according to the channel type. Four different 

channels are discussed below.  
 
2.5.1. A. Fast Fading Channel 
 
The fade coefficients are assumed to be constant over a symbol interval and vary from 
one symbol to the next. The fade coefficients across symbols and across transmit/receive 
antenna pairs are assumed to be independent. 
 

( ) ( ) ( )( ) 2
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,
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as ( ) ( )( ) ( )*

ij ijE l k l kα α δ= − for fast fading channels. Consequently, jC
α

is a diagonal 

matrix, i.e. ( ) ( ) ( )( ) ( ) ( ) ( ) 2

1
1 , 2 ,...,

t

j

N

s i i
i

C diag L with l E e l c lα β β β β
=

= = −∑ . In this case, 
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The characteristic function can be reformatted in a product form, 
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Expanding the denominator and exploiting independency across antennas, 
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where Ω  is the number of times that the transmitted and decoded sequences differ. Let 
the Effective Code Length (ECL) of a code be defined as the length of the shortest error 
event. At high SNRs the code performance is dominated by the probability of the shortest 
error event. Hence from expression (2-57), it can be concluded that the diversity order 
will be dictated by the product of the ECL of the code and the number of receive 
antennas being used in the system. It is also seen from Equation (2-57) that in fast fading 
channels, the number of transmit antennas contributes to the coding gain achieved and 
does not affect the diversity order. Hence in fast fading channels, the temporal diversity 
offered by the channel dominates performance rather than the spatial diversity offered by 
transmit antennas.  
 
2.5.1. B. Quasi-static Case 
 
The channel coefficients are assumed to be constant over a frame and to vary 
independently across from one frame to the next. They are also assumed to vary 
independently across transmit/receive antenna pairs. In this case, 

j
Cα  is given by, 
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j
Cα is not a diagonal matrix due to introduced temporal correlation between fading 
coefficients. Hence a derivation similar to the above cannot be done. The general formula 
is used instead. 
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where r is the number of non-zero eigenvalues iλ ,of 

jyC A . It is seen that the diversity 
order is determined by the product of r and the number of receive antennas in the system.  
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2.5.1. C. Spatially Correlated Fast-fading Scenario 
 
The channel coefficients are assumed to vary between consecutive symbols. The transmit 
antennas are assumed to be correlated and the correlation between transmit antenna i and 
q is given by *

, ,( )iq i j q jEρ α α= . The receive antennas are still assumed to be independent. 
 

( )
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1 1 1,
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t t t
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s i i s iq i i q q
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otherwise
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= = =

≠

  
− + − − =  =  




∑ ∑∑  
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It is seen that the cross-correlation terms tend to decrease the value of the diagonal 
elements of jC

α
and consequently the coding gain. But the presence of cross-correlation 

terms does not affect the diversity order of the system.  
 
2.5.1. D. Spatially Correlated Quasi-static Scenario 
 
The channel coefficients are assumed to be constant over a frame and to vary from one 
frame to the next. The transmit antennas are assumed to be correlated.  
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It is again seen that the presence of cross correlation terms does not affect the diversity 
order of the system.  
 
2.5.1. E. Pair-wise Error Probability and Average Bit Error Probability 
 
The probability density function of D  is the inverse Laplace transform of ( )D sφ .  
 

( ) ( ) ( )
, 0

0 /s
D RP

P c e P D residue e s sδ

δ
φ

=
 → = ≤ = −    2-62 

 
Due to the nature of the expression of PWEP, the calculation cannot be extended to give 
a closed form expression for the bit error probability. An estimate of the actual bit error 
probability, which is very useful in evaluating the performance of systems, can be 
obtained by averaging the PWEP over a limited number of dominant error events. The 
estimate of the bit error probability is given by the expression, 
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( ) ( )1
b

c e
P q c e P c e

b ≠

= → →∑  
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where, b is the number of input bits per trellis transition and ( )q c e→  is the Hamming 
distance between the code word and the error event. The estimate is obtained by only 
considering error events up to a particular error event length v . This represents a 
truncation of the infinite series used in the evaluation of the Union Bound. The choice of 
v  is very critical. It should be done such that all the dominant error events in a particular 
SNR range are included, while keeping a check on the computational complexity which 
exponentially increases with v . It is also noted, that expression (2-63), does not provide 
an upper bound on the bit error probability. The actual results could be lower or higher 
than the approximation. 
 
2.5.2. Analytical Performance Results 
 
The analytical performance of the 4-state TSC code described in the previous section is 
evaluated from expression (2-63) over error events of different lengths and different 
channel conditions. These are compared with corresponding performances obtained from 
simulations.  
 
The length of the shortest possible error event length of a code is called the Effective 
Code Length (ECL) of the code. The TSC code has an ECL of two. In fast fading 
channels, performance of the STTC code is dictated by the ECL of the code. This is 
reflected in Figure 2-10 which shows that the simulated performance is well-
approximated by the analytical evaluation for error events of length two. It is also seen 
that the analytical estimates for different error event lengths converge at asymptotically 
high SNRs. It is thus seen that an upper bound on the bit error probability can be obtained 
by taking into account error events of all lengths.  
 
Figure 2-11 shows the performance of the code for quasi-static fading channels. The 
diversity of the code over quasi-static channel is decided by the minimum rank of the 
code (the TSC-RD criteria). It is seen from the plots that in the system being considered 
(2Tx-1Rx with TSC code), the fast fading channel does not give the code any added 
diversity advantage over the quasi-static fading channel. As noted earlier, in fast-fading 
channels, diversity performance of the code is overseen by the ECL of the code. But in 
quasi-static channels it is overseen by the minimum rank of the code. In the case of the 
TSC code, the minimum rank of the code and the ECL are both equal to 2. Hence the 
diversity advantage offered by the code is the same in both cases. 
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Figure 2-10: Analytical and simulated performance comparison of  2Tx-1Rx TSC code over fast 

fading channels 
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Figure 2-11: Analytical and simulated performance comparison of  2Tx-1Rx TSC code over quasi-

static fading channels 
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Figure 2-12: Analytical and simulated performance comparison of  2Tx-2Rx TSC code over spatially 

correlated fading channels 
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Figure 2-13: Analytical and simulated performance comparison of  2Tx-2Rx CYV code over quasi-

static fading channels 
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The performance of the code is plotted over spatially correlated channel with different 
degrees of correlation in Figure 2-12. The analytical results are seen to provide good 
approximations of the simulated performance.  As can be expected, a loss in performance 
is observed with an increase in the correlation between antennas.  
 
The performance of the CVY code is analyzed in Figure 2-13. The predicted performance 
matches the simulated performance. It is also seen that the dominant error event length is 
3 compared to 2 in the case of the TSC code. This is because the Effective Code Length 
of the CVY code is 3 while the ECL of the TSC code is 2.  
 
2.6. Chapter Summary 
 
This chapter discussed and compared the code design criteria of space-time codes over 
different channel conditions and assuming perfect channel estimates to be available at the 
receiver. Codes are analyzed in quasi-static and fast fading channels. Quasi-static 
channels assume that fade coefficients remain constant over a frame and vary from one 
frame to the next. Fast fading channels assume that fade coefficients vary over 
consecutive symbols in a frame (thus offering additional time diversity compared to 
quasi-static channels). Both represent extreme scenarios and the actual channel response 
is expected to be in between. Code design criteria should thus ideally intend to construct 
codes that can achieve optimal performance (derive maximum benefit) in these two 
extreme channel conditions.  
 
Design criteria are derived by analyzing expressions for the upper bound on pair-wise 
error probability of STTC based on the Chernoff bound. When the diversity order of a 
system is small, the TSC-RD criteria (rank criterion) proposed in [Taro1], which 
recommends maximizing the minimum rank of the distance matrix between any two 
code-words to maximize the diversity gain of a scheme, is the most appropriate. In 
contrast, improving the coding gain is more important for systems with high diversity 
orders. The trace criterion which maximizes the Euclidean distance between code-words 
was proposed in [Chen1] for large diversity systems (diversity >3). The trace criterion 
betters the performance of the TSC-RD criteria in systems with a large diversity order. It 
also does better in fast fading channels irrespective of the diversity order of the system. 
This can be expected as fast fading essentially translates to large diversities. The trace 
criterion is thus found to be more useful than the TSC-RD criteria except for low 
diversity order systems operating over quasi-static channels.  
 
This chapter also presented an analysis of the exact pair-wise error probability of STTC. 
Estimates of the bit error rate of STTC systems operating over different channel 
conditions are obtained from the exact PWEP expression. This analytical performance 
analysis is useful in corroborating the simulated performance of the system and also 
provides additional insights into the performance of the code.  
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3. Channel Estimation Techniques for Multiple Transmit 
Antenna Systems 

 
Multiple Input Multiple Output (MIMO) systems help in increasing the capacity offered 
by a channel. But a MIMO channel also results in increased number of channel 
parameters to be estimated. This makes the scheme especially sensitive to channel 
estimation errors and the choice of an appropriate channel estimation technique is of 
particular importance. Also, as the signal at the receiver in a multiple transmit antenna 
system is a superposition of signals transmitted from the multiple antennas, single 
transmit antenna channel estimation schemes cannot be directly used and specialized 
schemes need to be designed. This chapter introduces several channel estimation 
techniques for multiple antenna systems found in the literature and discusses their 
associated tradeoffs and suitability. It also presents capacity analysis of the multi-input 
channel when training is used to perform channel estimation. 
 
3.1. Channel Estimation using Training Sequences 
 
For quasi-static or slowly varying channels, the most obvious and popular choice of 
channel estimation is by using training sequences. Also, current wireless packet 
communication systems provide for a training sequence to be inserted in each packet to 
aid in channel estimation at the receiver end. But as mentioned, multiple antenna systems 
impose additional constraints and properties on the training sequences as opposed to 
single antenna systems. These challenges in the design of training sequences are analyzed 
and discussed in this section.  
 
3.1.1. Training Model and Training Sequences 
 
3.1.1. A Flat fading Channel 
 
A system with tN  transmit and rN receive antennas is considered. The channel is assumed 
to undergo flat fading. It is constant over a frame of length L  and varies from one frame 
to the next. A known sequence ( )is t  of length tL  is transmitted from the thi transmit 
antenna at the beginning of each frame to estimate the channel. The multiple antenna 
channel model is given by, 
 

; 1, 2,...,j j j tr S j Nα η= + =  3-1 

 
where, 
 

( ) ( )1
T

j j j tr r r L =  … is the received vector, 
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is the transmitted training sequence matrix, 

( ) ( )1
T

j j j tLη η η =  … is the noise vector and 

1 t

T

j j N jα α α =  … are the channel coefficients.  
 
Sequences used for estimating single-input flat fading channels require impulse like auto-
correlation properties and have been widely investigated in the literature. But in the 
multi-input channel scenario, the receiver observes the super-position of training 
sequences transmitted from different transmit antennas. This necessitates the additional 
requirement of very low (ideally zero) cross-correlation between the sequences 
transmitted from different antennas. This result is reiterated by the following analysis. 
Let jα� denote linear least square channel estimates. These are calculated by, 
 

( ) 1H H
j jS S S rα

−
=�  3-2

 
Mean square channel estimation error is given by, 
 

( ) ( ) ( ) 1
α α α α

− = − − =  
� �H H

j j j j oMSE E N trace S S  3-3

 
Minimum mean square error is given by, 
 

= o

t

NMMSE
L

 
3-4

 
This is achieved if and only if,  
 

H
tS S L I=  3-5

 
It follows that optimal sequences which guarantee the minimum possible mean square 
error have impulse like auto-correlation properties and zero cross correlation.  
 
A simple solution for achieving zero cross correlation is to transmit training symbols only 
from one antenna at a time. But this leads to a large loss in bandwidth efficiency and high 
peak-to-average power ratio and is not preferred. Training sequences that satisfy the 
above properties can be classified into two categories. The first approach presented in 
[Spas1] constructed optimal sequences from an Nth root-of-unity alphabet, 

2exp ; 1,2,...,N
j kA k N

N
π  = =  

  
, without constraining the alphabet size N. For any 

training sequence length, there exist optimal training sequences that belong to an Nth 
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root-of-unity alphabet. But these Perfect Root of Unity Sequences (PRUS) might not 
belong to a standard constellation. The second approach constrains the training sequences 
to belong to a specific constellation (e.g. BPSK, QPSK) which aids in simple 
transmitter/receiver implementation. In this case, optimal sequences do not exist for all 
training lengths.  Instead, sub-optimal sequences are identified by an exhaustive search in 
a space of size t tN LC , where tL is the length of the training sequence and C is the alphabet 
size. The search space could be reduced by restricting the training sequence scheme to a 
particular constellation (when the data constellation is different). But this leads to an 
increase in the minimum achievable mean square error. The authors in [Frag1] introduced 
“L-Perfect” sequences. A single “L-Perfect” sequence could be used instead of multiple 
training sequences in a multiple transmit antenna system.  An alternative method to 
exhaustive search is also identified that could be used when optimal or “L-Perfect” 
training sequences do not exist for a particular constellation. Performance bounds show 
that these sequences achieve performances close to those produced by optimal sequences. 
In [Frag2], the problem of identifying multiple training sequences is reduced to that of 
identifying a single sequence with impulse like autocorrelation. This consequently 
reduces the search space to tLC . This scheme is discussed in the next section.  
 
The variance of the channel estimation error assuming that orthogonal sequences are 
transmitted can be determined in the following way. Expression (3-2) can be written as, 
 

( ) 1H H
j j jS S Sα α η

−
= +�  3-6 

 
The channel estimation error is seen to be given by ( ) 1H H

jS S S η
−

 which has zero mean. 
The variance of the estimation error for each channel coefficient, for a given training 

length, tL , is given by 
2

o

t s

N
L E

, where sE is the symbol energy.  

 
Figure 3-1, shows the performance of a training based channel estimation system for a 
two-transmit, one receive antenna MIMO system. The variance of the channel estimation 
error is plotted for varying training sequence lengths over a range of channel SNRs. It is 
seen that the variance of the channel estimation errors in the simulated system closely 

match the theoretical measure (calculated as
2

o

t s

N
L E

). It can also be observed from the 

figure that the variance of channel estimation error decreases with increasing training 
length and channel SNR. But at high SNRs, the performances are comparable and using 
longer training sequences does not necessarily provide an advantage. 
 



 47

Channel SNR

0 5 10 15 20

Er
ro

r V
ar

ia
nc

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Length = 4 Theo 
Length = 4 Sim 
Length = 8 Theo 
Length = 8 Sim 
Length = 16 Theo 
Length = 16 Sim 

 
Figure 3-1: Channel estimation error variance for different training lengths and channel SNRs 

 
3.1.1. B Training in Frequency Selective Channels 
 
Training sequences to be used in frequency selective channel have the additional 
requirement that the cross correlation between the tN training sequences be very low 
(ideally zero) over time lags equal to the channel memory in addition to good auto-
correlation properties. This requirement is illustrated in the following analysis [Frag3]. 
 
A quasi-static frequency selective channel with cL multi-paths is considered. The multi-
paths are assumed to arrive at multiples of the symbol time. tL  is assumed to be the 
length of the training sequence and 1t cL L+ − is the length of the training interval.  
The received signal can be represented as, 
 

( ) ( ) ( ) ( ),
0 1

, 1, 2,..., , 1, 2,..., 1
tNLc

j i i j j r t
l i

r t s t l a l t j N t L Lcη
= =

= − + = = + −∑∑  
3-7 

 
Further defining, 
 

( ) ( ) ( )1 2
T

j j j j tR r r r L =  … , 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 20 0 0 1 1 1
t tN NS S S S S Lc S Lc S Lc = − − − … … … , 

( ) ( ) ( ) ( )*10 1 2
T

i l i i i tS l s s s L l= −  … , 

( ) ( ) ( ) ( ) ( ) ( )1, 2, , 1, 2, ,0 0 0 1 1 1
t t

T

j j j N j j c j c N j ca a a a a L a L a L = − − − … … … , 
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and ( ) ( ) ( )1 2j j j j tLη η η η =  … , the received signal can be expressed in matrix 
notation as, 
 

j j jR Sa η= +  3-8

 
Linear least square estimates, assuming S has full column rank, are given by, 
 

( ) 1H H
j jS S S Rα

−
=�  3-9

 
The channel estimation Mean Square Error is given by, 
 

( ) ( ) ( )( )1
2α α α α

− = − − =  
� �H H

j j j j oMSE E N trace S S  3-10

 
The Minimum MSE is equal to  
 

2= c
o

t

LMMSE N
L

 
3-11

 
which is achieved only if  
 

H
tS S L I=  3-12

 
The training sequences for frequency selective channels are thus seen to require very low 
cross-correlation over time lags equal to the delay spread of the channel. PRUS are 
optimal over frequency selective channels as well, as they have zero cross correlation 
over time lags equal to the delay spread of the channel. Suitable sub-optimal sequences 
are identified by exhaustive searches. The variance of channel estimation error is similar 
to that calculated for the flat fading case as training sequences are designed to have low 
cross-correlation over time lags corresponding to multi-path delays.  
 
3.1.2. Complexity Reduction Techniques for Training Sequences 
 
The structure of space-time codes can be exploited to reduce the problem of identifying 
multiple training sequences to that of finding a single training sequence. A space-time 
encoder used in conjunction with a single training sequence can be used to generate 

tN sequences that though not always independent (depending on the space-time encoder 
used) are constrained in their mutual properties by the encoder.  
 
3.1.2. A Block Code for Training Symbols 
 
A sequence s with impulse like auto correlation properties is encoded by a space time 
block code to produce two sequences 1s  and 2s which have zero cross-correlation 
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properties. The training sequence for tN transmit antennas can be encoded by using any 
orthogonal matrixU of dimension t tN N× such that H

t nU U N I= , where nI is an identity 
matrix of dimension tN . The received signal at the thj receive antenna can be written as, 
 

j j jr sUα η= +  3-13 

 
The tN training sequences are given by the tN  rows of the signal matrix sU . The linear 
least square channel estimates are given by, 
 

( ) ( )
( ) ( )( )

( )
( ) ( )( )

H H

j j jH H

sU sU sU

sU sU sU sU
α α η= +� �  

3-14 

( ) ( )H H
tsU sU s s L= =  3-15

 
Let 
 

( )
( ) ( )( )

H

j jH

sU

sU sU
η η=�  

 
3-16

 
The mean square channel estimation error is given by, 
 

( )η η =� �H o
j j

t

NE
L

 
3-17 

 
This agrees with the lower bound for the MSE found earlier. Hence the tN  training 
sequences formed by passing a single optimal sequence through a space-time encoder are 
also optimal (have ideal correlation properties).  
 
Figure 3-2 compares the BER performance of an 8-state 8-PSK trellis code in an EDGE 
TU environment ( 26; 4t cL L= = ) with an optimal PRUS and the proposed scheme with a 
sub-optimal sequence [Frag2]. The BER results are for active states, M=16 and M=32. It 
is seen that the optimal and sub-optimal schemes achieve similar performance.  
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Figure 3-2: [Frag2] Performance of 8-state 8-PSK STC in a 2Tx-1Rx system with optimal and sub-

optimal training sequences of length=13. 

 
3.1.2. B. STTC Encoded Training Sequence 
 
Consider a multi-input system with two transmit antennas. Some specific space-time 
trellis codes used in conjunction with this system can transform it into an equivalent 
single input system with a data–dependent channel response. For example, the code 
shown in Figure 3-3 results in a response with a D-transform given by, 
 

( ) ( ) ( )1 2,STTC
eqvl kk D D p Dα α α= +  3-18 

 
where 1kp = ±  is data-dependent. Hence the input sequence determines the equivalent 
channel. By transmitting only even symbols from the constellation, the equivalent 
channel response is given by  
 

( ) ( ) ( )1 2e D D D Dα α α= +  3-19

 
By transmitting only odd symbols the equivalent channel is given by, 
 

( ) ( ) ( )1 2o D D D Dα α α= −  3-20

 
The channel can be calculated as 
 

( ) ( ) ( )
1 2

e oD D
D

α α
α

+
=  

 
3-21



 51

 and  
 

( ) ( ) ( )
2 2

e oD D
D

α α
α

−
=  

 
3-22

 
Hence only a single training sequence is required to be found instead of tN training 
sequences. The search space is restricted to tLC from t tN LC .  
 

 
Figure 3-3: [Frag3] Encoder for the 8-state 8-PSK STTC with 2 transmit antennas 

 
3.2. Information Theoretic Results for the Amount of Training 
 
Assuming perfect channel estimates, an increase in the number of antennas causes an 
increase in system capacity. But when training is used to estimate the channel, an 
increase in the number of antennas translates to an increase in the number of channel 
parameters to be estimated and also a reduction in the transmitted power (as transmission 
power is divided between tN transmit antennas). This results in an increase in the number 
of training symbols which could obviate any advantage in spectral efficiency offered by 
using STTC. 
 
An information theoretic approach is used in [Hass1] to find the amount of training that 
could provide maximum benefit to multiple antenna systems. The analysis identifies 
optimal system configurations (for e.g. the number of transmit antennas, the training 
sequence transmitted power).  
 
3.2.1. Flat Fading Scenario 
 
Foshini and Gans in [Fosc1] have shown that extraordinary capacity is available in 
MIMO systems with high probability. Compared to the 1tN =  case, which scales by one 
bit/hertz for every 3dB of SNR increase, the multi-antenna case scales by tN  bits for 
every 3dB of SNR increase. But these capacity predictions are based on the assumption 
of perfect channel estimation which is almost impossible to achieve in practical wireless 
systems. Hence a study of the effect of channel estimation errors on capacity is of import. 
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Hassibi and Hochwald in [Hass1] have shown how channel estimation using training 
sequences affects the capacity of fading channels. A lower bound on the information 
theoretic capacity achievable with training based schemes is computed and is maximized 
as a function of signal-to-noise ratio ( ρ ), fading coherence time (T ) and the number of 
transmitter antennas ( tN ). Consider that the training symbols of length tT  are transmitted 
with an SNR of tρ . Let dρ be the SNR of the data symbols and let dT be the length of the 
data symbols. The total transmitted energy of the system can be expressed by the relation, 
 

d d t tT T Tρ ρ ρ= +  3-23 

  

d tT T T= +  3-24

 
The capacity lower bound can be written as 
 

2 1 *

2
,

log det
1r

s

dt V SH
T N

d tH R

T T R H R HC E I
T N

ρ σ
ρ σ

−  −  ≥ +
  +  

�

�
 3-25

 
where, 
 
H is the normalized channel estimate matrix, 

2
Hσ � is the variance of the channel estimates. 

( )*
SR E S S= , S is the transmitted training sequence as mentioned earlier. 

( )( )2 *
,

1
s SH R

t r

E tr H R H
N N

σ =�
� � , H� is the channel estimate error matrix. 

 
This bound is maximized with respect to the training data ( S ), training SNR ( tρ ) and  
training length (Tt). It is shown that the optimal solution for the choice of training 
sequence is given by, H

tS S T I= . Hence the sequences must have zero cross-correlation. 
This agrees with results in the previous sections.  

The optimal power allocation d dT
T

ρα
ρ

=  is given by, 
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where, 
1

t

t

d

N T
NT
T

ργ
ρ

+
=

 
+ 

 

 

 
The optimum length of the training sequence is the minimum possible, t tT N=  provided 
that the training and data powers are allowed to vary. If the training and data powers are 
required to be the same, as is usually the case in practical wireless systems, the optimum 
training length might be larger than tN . The optimum value can be calculated by 
evaluating the capacity lower bound given below either analytically or via Monte Carlo 
simulations for the channel estimate matrix. 
 

( )
2 */log det

1 1 /t

t t t
T N

t t t

T T T N HHC E I
T T N N
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Figure 3-4: [Hass1] Optimal amount of training as a function of channel coherence time (Nt = Nr = 

10) 

 
Figure 3-4 shows the optimal amount of training tT  as a function of block length 
T (equivalent to the coherence time of the channel) for different SNRs, for 

10t rN N= = and constraining the data and training powers to be equal. It can be seen that 
when SNR decreases the amount of training increases. At low SNRs the length might be 
as much as half the coherence time (half the frame length). 
 



 54

 
 

 

 
Figure 3-5:[Hass1]Capacity of training based system as a function of  coherence time (Nt = Nr = 10)   

 

 
Figure 3-6: [Hass1]Capacity as a function of number of transmit antennas for  Nr = 12 coherence 

time of 100 symbols 
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Figure 3-5 shows the lower bound on capacity as a function of T and when 10t rN N= = . 
It is seen that higher capacity is achievable if the transmit and data powers are allowed to 
vary independently. Figure 3-6 and Figure 3-7 show capacity as a function of transmit 
antennas. The number of receive antennas is 12. The solid line is optimized over tT  for 
equal training and data powers. The dashed line is optimized over the power allocation 
and t tT N= . It is seen that when 100T = , the capacity curve peaks for 15tN ≈ and when 

20T =  for 7tN ≈ . It is thus shown that the number of transmit antennas that maximizes 
capacity is often relatively small and choosing the wrong number of antennas can reduce 
the maximum achievable data rates. 
 
 
 
 
 
 
 
 
 

 

Figure 3-7: [Hass1] Capacity as a function of number of transmit antennas for Nr = 12 and coherence 
time of  20 symbols  

 
3.2.2. Frequency Selective Scenario 
 
The following analysis attempts to find the optimal number of transmit antennas to be 
used in a frequency selective channel. Consider a frequency selective channel with 

cL multi-paths. To obtain a meaningful estimate of the channel, 
 

t r t c r

t t c

T N N L N
T N L

≥
≥
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By using the concept of virtual antennas, the capacity of a MIMO system with tN -
transmit antennas, rN receive antennas and training is given by 
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where, Nv = Nt Lc  is the number of virtual antennas. The transmit power for the data 
symbols and the training symbols is assumed to be the same ( d tρ ρ= ). The optimal value 
for tT  is obtained by evaluating the capacity bound via Monte Carlo simulations. The 
capacity for varying number of transmit-antennas is plotted in Figure 3-8. The plot is 
optimized for the length of the training sequence.  
 

 
Figure 3-8: Capacity as a function of number of transmit antennas for Nr = 12  and channel 

coherence time of 100 symbols in the presence of multi-path 

 
As can be expected, the optimal number of antennas is observed to decrease with an 
increase in the number of taps of the frequency selective channel. For the case of a two-
tap channel, the optimal number of transmit antennas is nine and for the three-tap case, it 
is five, both less than number of antennas for the flat fading case. Reduction in the 
optimal number of antennas translates into a reduction in the maximum achievable 
capacity of the channel. Hence it is seen that in the presence of multi-path and training, 
the maximum achievable capacity of a channel is further reduced.  
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3.3. Blind and Semi-Blind Techniques 
 
3.3.1. Iterative Channel Estimation 
 
Usually channel estimates are obtained by using training sequences. The estimates are 
assumed to perfect and are used to decode the transmitted information. This can result in 
a significant loss in performance. In the techniques presented here, the redundancy 
offered by a space time code is exploited to enhance the estimates obtained by 
employing training sequences. A small amount of training is initially used to obtain 
preliminary channel estimates. These estimates are then utilized to decode the received 
signal and yield data estimates. Coding at the transmitter end makes these estimates 
sufficiently robust and these are used as uncertain training sequences for improved 
channel estimates. This process can be continued iteratively until some criterion is met. 
The performance of the system is found to be very close to that obtained by using perfect 
channel estimates.  
 
The iterative receiver can be implemented in various ways. Figure 3-9 shows the 
structure of the receiver. ( )jr t is the received signal at receive antenna j at time t . 

( )ij tα� and ( )ic t�  are the channel and transmitted data estimates respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The receiver uses a small amount of training to form the initial channel estimates. These 
initial estimates are then used to decode the received sequence using the Viterbi decoder. 
The resultant data estimates are then used to compute new channel estimates according 
to the expression[Gran1], 
 

( ) ( ) ( ) ( ) ( )*
ij i j mj m

m i

t c t r t t c tα α
≠

 = − 
 

∑� �� �  
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This may be done in parallel or serially. If the channel estimates are constant over a time 
period L , then the channel estimate ijα�  over time period L is given by 

( )ij tα�

( )jr t

( )ic t�  

Sequence 
Estimator 

Channel 
Estimator 

Figure 3-9 : Model for an Iterative channel estimator 
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A linear Minimum Mean Square estimate [Ranh1], given below, may also be used to 
compute new channel estimates. 
 

( ) ( ) ( )( ) ( ) ( )1H H
ij i i i jt c t c t c t r tα

−
= � � ��  3-32

 
Figure 3-10 and Figure 3-11 compare the performance of the TSC scheme with and 
without perfect channel estimates. The system has two transmit and two receive antennas. 
For systems with two transmit antennas, a training sequence of length of at least eight is 
required to obtain the transmit diversity advantage of two over medium SNR range. This 
is illustrated in the figures, where, the performance slopes are similar for the two cases 
reflecting an equivalent diversity advantage. It is also seen that the case with the training 
sequence length of eight performs within 1dB of the case with perfect channel estimates.  
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Figure 3-10: Performance of  2Tx-2Rx TSC STTC with iterative training 
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Figure 3-11: BER performance of  2Tx-2Rx TSC STTC with iterative training 

 
A training sequence of length one gives an unacceptable performance degradation of 
more than 4dB (compared to the 3dB performance degradation incurred when a 
differential scheme is used and channel estimates are not required.). 
 
The performance using the iterative scheme with the initial channel estimates given by a 
training sequence of length one is also plotted in the figures. It is seen from the Frame 
Error Rate curves in Figure 3-10, that a performance comparable to that of the case using 
eight training symbols is generated in the first iteration. The second iteration leads to 
improved results and the performance is within 0.5dB of the case with perfect channel 
estimates. Convergence is weaker in the Bit Error Rate curves as frames in error will 
iteratively lead to poorer channel estimates and consequently a large number of bit errors.  
 
3.3.2. HMM Based Blind Channel Estimation 
 
Channel estimation using training sequences leads to considerable loss in bandwidth and 
power efficiency of space-time codes especially under low SNR conditions. A method 
that jointly estimates the channel and decodes the transmitted information without using 
training sequences or any statistical assumptions on the channel characteristics is 
presented in [Perr1]. The structure of the space-time codes is exploited to formulate a 
Hidden Markov Model. The MAP algorithm is then used to detect the transmitted bits. 
The fading coefficients are important parameters of this model and are computed using 
the Expectation-Maximization (EM) algorithm. The algorithm allows iterative estimation 
of the parameters of the model and its good parameter estimation properties make it 
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particularly suited to the HMM/MAP scheme. The algorithm can also exploit the 
information in training sequences if present. A description of the scheme is given below. 
 
The received signal ( )jr t at the thj  receive antenna at any time instant t  is given by, 
 

( ) ( ) ( ) ( )
1

;1
tN

j ij i j r
i

r t t c t t j Nα η
=

= + ≤ ≤∑  
3-33

 
j

tη is the Gaussian noise at time instant t  and is modeled by zero mean complex Gaussian 

variables with variance of 
2

oN per dimension. The transmitted symbols ( )ic t  can be 

expressed as functions of the non-coded sequence of information bits ( )b t  by 
 

( ) ( ) ( ) ( )( )1 1i ic t f b t b t b t M= − − +…  3-34

 
Functions if model the encoder with memory M and modulation. The received signal can 
now be written as 
 

( ) ( ) ( ) ( ) ( )( ) ( )
1

1 1 ;1
tN

j ij i j r
i

r t t f b t b t b t M t j Nα η
=

= − − + + ≤ ≤∑ …  
3-35 

 
Let, ( ) ( ) ( ) ( )1 1

T
B t b t b t b t M= − − +  … . It is seen that ( )B t can be a state of 

Markov chain. Assuming the knowledge of channel coefficients, the bits ( )b t can be 

detected by calculating the aposteriori probabilities for ( )B t  to be equal to one of the 

permissible state levels { }0,1 M
iε  conditioned on the set of past observations, 

( ) ( ) ( )( )1Y t y y t= …  using the forward recursions of the HMMs.  
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where, jiA  is the transition probability matrix associated with Markov chain ( )B t . Bit 

( )1b t M− + can be detected by evaluating the marginal probability 
 

( ) ( )( ) ( ) ( )( )
( ) ( )1 ,..., 2

Pr , Pr ,
b t b t M

b t Y t B t Y t
− − +

= ∑  3-37

 
These calculations require the knowledge of fading coefficients ( )ij tα which are 
iteratively estimated by using the Estimation-Maximization (EM) algorithm. 
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Figure 3-12: Comparison of the HMM/MAP based blind decoder performance with that of a decoder 

with perfect channel information 

 
The EM algorithm performs the estimation by recursively maximizing the cost function 
 

( ) ( )( ){ }
0

log ; |
t

t k
t k

k
J E N y f B Yεα λ α σ−

=

= −∑  
3-38

 
where ( );N εσ denotes the Gaussian function of mean zero and variance 2σ , and 
0 1λ< < is a forgetting constant which is chosen to permit tracking of the channel 
variations. The resulting algorithm has the form 
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where ( )B t

�
is the conditional mean estimate. The conditional moments are computed 

from the aposteriori probabilities in (3-37).  
 
It is seen from Figure 3-12, that this scheme provides performance comparable to the 
case with perfect channel estimates for SNRs greater than 4dB. The figure also shows the 
performance when a gradient scheme like LMS is used for estimation. This leads to 
considerable reduction in computational complexity but, as can be observed, significant 
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degradation in performance as well. The HMM/MAP scheme can be easily extended to 
multi-path channels as well. 
 
3.4. Chapter Summary 
 
This chapter provides an overview of channel estimation schemes for STTC. Training 
sequence based estimation schemes are widely favored as their implementation is 
relatively simple and most current wireless standards already provide for their use. The 
properties that are required by training sequences to be used in multiple transmit antenna 
systems in flat and frequency selective channels are derived and discussed. It is seen that 
the sequences transmitted from different transmit antennas must have zero (or very low) 
cross-correlation. Frequency-selective channels in addition necessitate zero (or very low) 
correlation between versions of the training sequence delayed by time intervals equal to 
the multi-path delays in the channel. The chapter presented capacitive analysis of the 
optimal amount of training required in MIMO channels and showed that the number of 
transmit antennas that can provide increased benefit in systems using training sequences 
to estimate the channel, is quite small. The chapter also presented a semi-blind iterative 
channel estimation scheme and a blind channel estimation scheme based on the 
Expectation-Maximization algorithm. Both schemes exploit the benefit provided by the 
redundancy and structure of a Space-Time Trellis code. The iterative scheme 
significantly reduces the amount of training required by a system. The EM based scheme 
requires no training, but can derive benefit from training, if present. The drawback of 
both schemes is the increased amount of processing at the receiver.  
 
This thesis analyzes the influence of channel estimation errors on the performance of 
STTC. The channel estimation errors used in the analyses are mostly modeled assuming 
training based channel estimation. This estimation technique is the most widely used and 
hence is a valid choice. Also, a majority of the performance results and observations in 
this thesis are general enough to make sense for any alternate channel estimation 
technique. 
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4. Design and Performance of STTC in the Absence of Perfect 
Channel Estimates 

 
The design criteria and performance analyses for STTC presented in Chapter 2 assume 
that perfect channel estimates are available at the receiver. However, in practical wireless 
systems, this is never the case. The noisy wireless channel precludes an exact 
characterization of channel coefficients.  Even near-perfect channel estimates can 
necessitate huge overhead in terms of processing or spectral efficiency (due to long 
training sequences) which could offset any benefit obtained by using STTC. Hence it 
becomes important to study and compare the robustness of space-time trellis codes to 
channel estimation errors. 
 
This chapter first re-evaluates the design criteria for STTC (Section 2.1) in the absence of 
perfect channel estimates at the receiver. Secondly, an expression for the exact pair-wise 
error probability of STTC in the presence of channel estimation errors is derived, which 
provides an analytical tool to evaluate the performance of STTC in the presence of 
imperfect channel estimates. Finally, the factors that influence the way channel 
estimation errors (CEEs) affect the performance of STTC are studied. 
 
4.1. Design Criteria in the Presence of CEE 
 
In chapter two, optimum design criteria were identified for STTC under different channel 
and system configurations. The TSC-RD and the TSC-DP design criteria were found to 
be appropriate for low diversity systems over quasi-static and fast, flat fading channels 
respectively. The trace criterion is found to be appropriate for systems with large 
diversity orders. The suitability of these criteria are re-examined here in the absence of 
perfect channel estimates.  
 
4.1.1. TSC-RD Criteria 
 
The TSC-RD criteria were proposed by Tarokh et al in [Taro1] (Section 2.2.1 A) for 
quasi-static flat fading channels. The authors also re-validated their design criteria in the 
presence of channel estimation errors in [Taro2]. This analysis is presented in this 
section.  
 
Let the estimates of the channel coefficients be represented by ij ij ijeα α= +� , where, ije  is 

the estimation error. ijα  represents the channel coefficient from the thi  transmit antenna 

to the thj  receive antenna and is modeled in baseband by a complex Gaussian random 
variable with mean zero and variance 0.5 per dimension. Estimation error ije  is assumed 

to be a complex Gaussian random variable with mean zero and variance 2
eσ . 

Consequently, ijα�  is also a zero mean complex Gaussian random variable. It is assumed to 

have a variance of 2σ  per dimension. ijα�  depends on ijα  with correlation µ given by 
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Conditioned on ijα� , the random variable ijα  has mean 
2

ijµα
σ

�
 and variance 

( )21

2

µ−
 per 

dimension. The pair-wise probability of error for quasi-static fading channels, 
considering the mean and variance of the received vector to be conditioned on the 
channel estimates, ijα�  is given by (from [Taro2]), 
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where, 
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,t rN N  and L denote the number of transmit antennas, the number of receive antennas and 

the length of the frame respectively. Let ,

2
i j

ij

α
γ

σ
=
�

. ijγ  is a Gaussian with zero mean and 

variance 0.5 per dimension.  
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( ),A c e  can be written as ( ) *,VA c e V D= , where V  is unitary matrix, the rows of which 

are made of the eigen vectors of ( ),A c e  and D is a diagonal matrix whose elements are 

given by the eigen values , 1, 2, ,i ti Nλ = …  of ( ),A c e . Let ( )1 ,..., *
tj N j jVν ν = Ω , then 
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The conditional probability can now be represented as, 
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By virtue of V being a unitary matrix, ijν  are independent complex Gaussian random 

variables with zero mean and variance 0.5 per dimension. Thus ijv  are also independent 
samples of a complex Gaussian random variable with mean zero and variance 0.5 per 
dimension and follows a Rayleigh distribution given by,  
 

( ) ( )2
2 expij ij ijp v v v= − for 0ijv ≥   

4-8 

 
The upper bound on the pair-wise error probability is the statistical average of Equation 
(4-7) with respect to the distribution of ijv and is given by, 
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At high SNRs,
0

1
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sE
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>>  and hence Equation (4-9) can be expressed as 
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where, r is the rank of the matrix ( ),A c e . From Equation (4-10) and Equation (4-1), it can 
be seen that for a given variance of the channel estimation error and a given channel 
SNR, the diversity gain and the coding gain can be maximized by maximizing the 
minimum rank and the minimum determinant of the distance matrix ( ),A c e  between any 
two code-words. Hence the design criteria for STTC derived assuming perfect channel 
estimation [Taro1] hold in the presence of channel estimation errors as well. It can also 
be seen from Equation (4-10) that the diversity advantage offered by the code does not 
change in the presence of channel estimation errors.  
 
The above conclusions are verified in Figure 4-1, which compares the simulated 
performance of a two-transmit and two-receive antenna system employing 4-state TSC 
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code with and without prefect channel estimates.  The channel is assumed to be constant 
over the length of the frame (130 symbols). Channel estimation is assumed to be done by 
appending a training sequence before the start of each transmitted frame. The training 
symbols are assumed to be transmitted at the same power as the data symbols. The length 
of the training sequence is a function of the channel SNR, the diversity order of the 
system and the coherence time of the channel, as determined from the capacity 

expression (3-27). The variance of the channel estimation error is equal to 
2

o

t t

N
L E

 where, 

tL  is the length of the training sequence and tE is the energy of each transmitted training 
symbol ([Taro2] and 3.1.1. A). The effect of channel estimation is modeled in the 
simulations by introducing errors of appropriate variance in the channel fade coefficients 
input to the receiver module. 
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Figure 4-1: Performance of 2Tx-2Rx TSC code over quasi-static channel with optimal training 

 
From Figure 4-1 it is observed that the diversity advantage, reflected in the slope of the 
performance curve, is preserved in the presence of channel estimation errors. However, a 
loss in coding gain is observed. Hence the TSC-RD criteria are appropriate for quasi-
static flat-fading channels with imperfect channel information as well as perfect channel 
knowledge. 
 
4.1.2. TSC-DP Criteria 
 
This section extends the previous analysis (Section 4.1.1 and reference [Taro2]) to the 
TSC-DP criteria for fast fading channels and examines its validity in the absence of 
perfect channel estimates at the receiver.  
 



 67

Fast fading channels are modeled by making the channel coefficients ijα  vary from one 
symbol to the next. The pair-wise error probability in the absence of perfect channel 
estimates can then be expressed as, 
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where, 
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Substituting, ( ) ( ),
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t
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 ( ( )ij tγ  is a Gaussian with zero mean and variance 0.5 per 
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Following the analysis in Section 2.2.1.B, the upper bound on the pair wise error 
probability can be written as, 
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where, l is the number of time instances in a frame that ( ) ( ) 0c t e t− ≠  
 
From expression (4-14) it can be seen the diversity advantage offered by the code is 
maximized, when the minimum number of time instances when any two code-words 
differ, is maximized. This translates into the TSC-DP criteria derived earlier for fast 
fading channels with perfect channel knowledge at the receiver. Thus the TSC-DP 
criteria hold in the presence of channel estimation errors as well. This is further 
illustrated by Figure 4-2 that compares the performance of the FVY code (designed 
according to TSC-DP criteria and introduced in the previous chapter) in the presence and 
absence of perfect channel estimates at the receiver. The variance of the channel 
estimation errors is assumed to be inversely proportional to the channel SNR and a 
proportionality factor of eight is arbitrarily chosen for the simulations. It is observed from 
the figure that CEEs do not cause a loss in the diversity advantage offered by the code.  
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Figure 4-2: Performance of 2Tx-2Rx FVY code over fast fading channel with optimal training 

 
4.1.3. Trace Criterion 
 
The trace criterion was proposed for designing codes for systems with high diversity 
orders operating over both quasi-static and fast, non-frequency selective fading channels 
([Chen1] and [Vuce1], Section 2.2.3) and assuming perfect channel estimates to be 
available at the receiver. This section evaluates the design criterion in the absence of 
perfect channel estimates.  
  
The conditional pair-wise error probability with imperfect channel estimates can be 
expressed as (from Section 4.1.1), 
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For a large t rN N value (>3), according to Central Limit Theorem, the expression 
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and variance 
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Thus the unconditional pair-wise error probability can be upper-bounded by, 
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Expression (4-20) shows that pair-wise error probability can be minimized by 
maximizing the sum of eigen values of the matrix ( , )A c e  or equivalently the trace 
of ( , )A c e , which is given by, 
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The trace of matrix ( , )A c e  is equivalent to the Euclidean distance between the code 
words. It can be concluded that the pair-wise error probability between two code-words 
can be minimized if the Euclidean distance between the code words is maximized. Hence 
the design criterion for diversity orders >3 shown in [Chen1], remains valid in the 
presence of channel estimation errors.  
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This is further illustrated by the simulation results in Figure 4-3. The CYV code is 
implemented in a system with two-transmit and two-receive antennas. Training 
sequences of optimal length are used to estimate the channel. In the presence of channel 
estimation errors, the slope of the curve and hence the diversity advantage of the code is 
preserved but a loss in coding gain is observed. Hence the trace criterion is appropriate 
for systems with high diversity order in the absence of perfect channel information at the 
receiver as well as with perfect channel knowledge.  
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Figure 4-3 : Performance of 2Tx-2Rx CYV code over quasi-static channel with optimal training 

 
4.2. Analytical Performance Analysis in the Presence of Channel 
Estimation Errors 
 
Performance criteria for STTC were re-evaluated in the presence of channel estimation 
errors in the previous sections. These criteria were derived based on the upper bound on 
pair-wise error probability (PWEP) for quasi-static and fast fading channels with 
imperfect channel estimation. But as noted previously, this upper bound might be loose 
over SNR ranges of interest and quasi-static channels. Hence an exact evaluation of the 
PWEP is useful as it can be utilized to calculate an estimate of the bit error probability. 
This could help in the efficient design of systems employing these codes.  The inclusion 
of channel estimation errors in an exact evaluation of PWEP is especially valuable, since 
this can be used to model real-world systems more closely. This section attempts to 
formulate an expression for the exact pair-wise error probability of STTC in the presence 
of channel estimation errors. From the exact probabilities, a good estimate of the overall 
bit error rate can be obtained by considering only a small number of dominant bit errors.  
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4.2.1. Exact PWEP for STTC with Imperfect Channel Estimates  
 
An expression for the exact PWEP of STTC assuming perfect channel estimates is 
derived in [Uysa1] (Section 2.5). The derivation makes use of the residue technique 
combined with the characteristic function approach. This technique is generalized here to 
include the effects of imperfect channel estimation. 
 
Following the definitions in Section 2.5.1, the received signal can be written as, 
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The channel estimates are given by,  
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Let a random variable D  be defined as 
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The Pair-wise Error Probability (PWEP) represents the probability of incorrectly 
choosing sequence c, when sequence e was transmitted. It is given by,  
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Let ( )D sφ , be the Laplace transform of D . Then the probability density function of D  is 
given by an inverse transform, 
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The channel estimate jα� can be written as, 
 

j j jα α ε= +�  4-27 

 
where, jε  is the estimation error in the calculation of the channel estimates. It is modeled 

as independent samples of zero mean Gaussian random variables with variance 2 / 2eσ  per 
dimension. Substituting and expanding for D , 
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Consider the following matrices defined as, 
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where, 0L and LI are zero and identity matrices respectively with dimension L . From the 
definitions, it can be seen that jy is zero mean and A  is a Hermitian matrix. D  can be 
written in a quadratic form of variable jy  as 
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From results in [Turi1], the characteristic function of D (given that jy is zero mean and 
A  is a Hermitian) is, 
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where, 

jyC is the covariance matrix of jy  and r is the number of non-zero eigen values, 

iλ , of 
jyC A . 

jyC can be expressed as, 
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where, 
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Different channel scenarios lead to different forms for the covariance matrix 

jyC and are 
discussed below.  
 
4.2.1. A. Quasi-static Flat Fading Scenario 
 
The fade coefficients are assumed to be constant over the length of the frame and to 
change from one frame to the next. The values of the covariance matrices in this scenario 
can be expressed as, 
 

( ),xaxaC l k = ( ) ( )( ) ( ) ( )( )*
1

tN

m m m m
m

c l e l c k e k
=

 
− − 

 
∑  

( ) ( ) ( )2 *

1
,

tN

xexe e m m
m

C l k c l c kσ
=

= ∑  

( ) ( ) ( )2 *

1
,

tN

xexe e m m
m

C l k e l e kσ
=

= ∑� �  

( ) ( ) ( )2 *

1
,

tN

xexe e m m
m

C l k c l e lσ
=

 
=  

 
∑�  

( ) ( ) ( )2 *

1
,

tN

xexe e m m
m

C l k e l c lσ
=

 
=  

 
∑�  

4-33 

 
The characteristic function is expressed as, 
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r is the number of non-zero eigen values, iλ , of 

jyC A  and gives the diversity order of the 
system. Comparing with results in Section 2.5.1.A , it can be seen that the diversity order 
is not reduced in the presence of channel estimation errors.  
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4.2.1. B. Fast Fading Scenario 
 
The fade coefficients are constant over a single symbol period and differ over 
consecutive symbol periods independently. Thus only the diagonal elements of, each 
covariance matrix, are non zero. 
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4.2.1.C.  Spatially Correlated Quasi-static Scenario 
 
The transmit antennas are assumed to be correlated. The correlation between transmit 
antenna m and q is given by *

, ,( )mq m n q nEρ α α= . The receive antennas are assumed to be 
independent and the channel quasi-static. 
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4.2.1. D. Spatially Correlated Fast Fading Scenario 
 
The channel is assumed to undergo fast fading and the transmit antennas are assumed to 
be correlated by a factor mqρ .  
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4.2.1. E. Pair-wise Error Probability and Average Bit Error Probability 
 
As mentioned earlier PWEP is the probability density function of D  which is given by a 
simple inverse Laplace transform of ( )D sφ .  
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As the PWEP is given in terms of a residue computation, it does not lend itself for an 
evaluation of the upper bound on the bit error probability using classical transfer function 
bound approach which implicitly takes into account error event of all lengths. An 
approximation of the actual bit error probability can be obtained by taking into 
consideration error events up to a particular pre-determined length.  
 
Probability of bit error is approximated by, 
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Where, b is the number of input bits per trellis transition and ( )q c e→  is the Hamming 
distance between the code word and the error event. An estimate for the bit error 
probability is obtained by only considering error events up to a particular error event 
length v . The choice of v  is very critical. It should be done such that all the dominant 
error events in a particular SNR range are included, while keeping a check on the 
computational complexity which exponentially increases with v .  
 
4.2.2. Analytical Performance Results 
 
Analytical performance-curves are generated for STTC systems with two transmit 
antennas and employing the TSC code in the presence channel estimation errors of a 
defined variance. Figure 4-4 shows the performance of the STTC scheme over a quasi-
static channel with two receive antennas and a CEE of 10dB. Figure 4-5 shows the code 
performance in a system with one receive antenna operating over a fast fading channel 
and with CEE variance of 20dB. The performance over spatially correlated channels is 
shown in Figure 4-6. These are compared to actual simulation results of the systems. 
Error lengths ( v ) up to two, three and four are considered. Performance is plotted over 
average energy per bit to noise ratio at each receive antenna. 
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Figure 4-4 : Performance of 2Tx-2Rx TSC code over quasi-static channel with 10dB CEE 
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Figure 4-5 :  Performance of 2Tx-1Rx TSC code over fast fading channel with 20dB CEE 
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Figure 4-6 : Performance of 2Tx-2Rx TSC code over quasi-static spatially correlated channel with 

20dB CEE 

 
The analytical results are seen to approximate the simulated performance of the code In 
the presence of channel estimation errors of defined variance, for error events of length 
two. This agrees with the previously observed fact that the dominant error length of the 
TSC code is two (Section 2.6). It is observed from the slopes of the curves in Figure 4-4 
and Figure 4-5, that the PWEP calculation converges to a union bound faster in the fast 
fading channel than in the quasi-static fading channel. Figure 4-6 shows the performance 
the TSC code in a spatially correlated channel with correlation factors of 0.75 and 0.95. It 
is seen that the performance advantage of using two transmit antennas over a single 
transmit antenna is lost when the correlation between the transmit antennas is 0.95.  
 
The discussion shows that the analytical results model the performance of STTC in the 
presence of CEE well and re-iterate earlier observations of the same.  
 
4.3. Effect of Channel Estimation Errors on STTC Performance 
 
In the previous sections it is seen that though the diversity advantage offered by space 
time trellis codes is maintained in the presence of channel estimation errors, they suffer 
significant loss in performance. This section attempts to characterize factors that 
influence the extent of this performance loss. The influence of code-choice, the number 
of transmit/ receive antennas in the system, the amount of training used and the 
coherence time of the channel on the performance degradation due to channel estimation 
errors is studied. This analysis highlights issues that must be taken into consideration for 
optimal design and choice of components for practical wireless communication systems.  
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4.3.1. Optimal Amount of Training 
 
An information theoretic approach to the amount of training required for multiple antenna 
systems is discussed in [Hass1] (Section 3.2). A lower bound for the performance of 
space-time codes is found based on the capacity that can be achieved by using training 
sequences to estimate the channel (Equation 3-27). This capacity expression is a function 
of the SNR of the system, the number of transmit and receive antennas, the coherence 
time of the channel and the length of the training sequence. The analysis also shows that 
if the SNR of the training sequence is allowed to vary independent of the SNR of the 
symbols, the optimal number of training symbols required is equal to the number of 
transmit antennas. But when the training sequence and the data sequence are required to 
be transmitted at the same power, the optimum training length might be larger than the 
number of transmit antennas. The former is seen to be more efficient than the latter case, 
but is not very feasible. Hence the analyses in this chapter assume data and training 
symbols to be transmitted at the same power. 
 
The optimal amount of training, when data and training symbols are transmitted at the 
same power, is calculated by finding the training sequence length that maximizes 
Equation (3-27) via Monte-Carlo simulations. Figure 4-7 plots the optimal amount of 
training for two-transmit, two-receive antenna MIMO systems as a function of the 
coherence time of the channel and for different channel SNRs.  
 
Figure 4-8 shows the simulated performance of a two-transmit, two-receive antenna 
system employing the CYV code, operating over a channel with coherence interval of 
120 symbols and an SNR of 12dB, for various training lengths. The energy spent on 
training is compensated by a reduction in the energy available for data transmission. The 
performance is seen to be the best for a training length of 16 and to degrade for shorter or 
longer training lengths. It can be observed from Figure 4-7, that the optimal amount of 
training for a two-transmit, two receive antenna system for a coherence interval of 120 
and a channel SNR of 12dB is 16. The optimal length results thus correspond to the 
maximum achievable performance of a system with training.  
 
It is observed from Figure 4-7 that the proportion of training compared to the length of 
the data sequence in a frame, increases with decreasing coherence time. It can also be 
seen that the optimal amount of training increases with channel SNRs. At low SNRs the 
required training interval might increase to as much as half the coherence time. This can 
be noticed in Figure 4-10 which shows the optimal training length for a MIMO system 
with eight transmit and two receive antennas.  
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Figure 4-7: Optimal training length for 2Tx-2Rx MIMO system over different channel coherence 

times and difference channel SNRs 

 
The dependence of the required training sequence length on the SNR of the system is 
further illustrated in Figure 4-9. The BER performance of a two-transmit, two-receive 
antenna system (of diversity order 4) employing a CYV code is plotted for varying 
training sequence lengths, over a quasi-static channel. These are compared with the 
performance of a diversity-two Maximum Ratio Receive Combining scheme (with one 
transmit and two receive antennas and a diversity order of 2) to highlight any diversity 
advantage obtained. The training symbols and the data symbols are transmitted at the 
same transmit power. The energy overhead due to training in a frame is not compensated 
for in these simulations. It is seen that at high SNRs the diversity-four scheme employing 
a training sequence of length two gives a better performance compared to that of the 
diversity-two scheme. But at low SNRs a training sequence of length of at least eight is 
required to achieve a better performance. 
 
Increasing the diversity of a system by adding transmit antennas increases the burden on 
the channel estimation scheme and longer training sequences are required. This can be 
observed in Figure 4-10 which shows the optimal amount of training required by a eight-
transmit, two-receive antenna system. The optimal amount of training compared to 
Figure 4-7, is considerably larger. 
 



 81

Training (symbols)

0 5 10 15 20

Fr
am

e 
Er

ro
r P

ro
ba

bi
lit

y

1e-2

1e-1

1e+0

2Tx-2Rx CYV 

 
Figure 4-8: Performance comparison with varying length of training, for a 2Tx-2Rx CYV Code at 

12dB channel SNR 
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Figure 4-9 : Performance of  2Tx-2Rx CYV Code over quasi-static channel with varying training 

lengths  



 82

Coherence Time (symbols periods)

0 50 100 150 200

Tr
ai

ni
ng

 L
en

gt
h 

(s
ym

bo
ls

)

5

10

15

20

25

30

35

40

SNR = 0dB 
SNR = 12dB 
SNR = 22dB 

 
Figure 4-10: Optimal training length for 8Tx-2Rx MIMO system over different channel coherence 

times and difference channel SNRs 

 
This required increase in training is further illustrated in Figure 4-11 which compares the 
performance of CYV codes for three and four transmit antennas [Chen2] in the presence 
and absence of perfect channel estimates, over a quasi-static channel. Two receive 
antennas are assumed. The training sequences for both systems are of length eight. The 
training symbols are transmitted at the same power as the data symbols from each of the 

transmit antennas. The variance of the channel estimation error is given by 0

2 t t

N
L E

, where 

0N is the channel noise variance, tE  is the energy of the transmitted training symbol and 

tL  is the length of the training sequence. The total transmitted energy for both schemes 
are the same in the simulations. Consequently, the CEE variance is larger for a four 
antenna system than a three antenna system and the performance of the four antenna 
system degrades much more than the three antenna system and this is reflected in Figure 
4-11. Hence an increase in the number of transmit antennas being used results in an 
increase in the required length of the training sequence.  
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Figure 4-11:   Performance comparison of CYV Code for different number of transmit antennas; in a 

system with two receive antennas and training length of eight 

 
It is also interesting to note in Figure 4-11 that when a training sequence of length eight is 
used, a system with transmit diversity of three starts to perform better than a system with 
a transmit diversity of four. This reveals the fact that it is possible for the diversity 
advantage offered by a system to be lost by an inappropriate choice of training sequence 
length.  In some cases, (for e.g. when there is a constraint on the length of the training 
sequence because of the required throughput), it might in fact be more beneficial to use 
lower diversity systems. 
 
4.3.2. Performance Degradation due to CEE 
 
 In the presence of channel estimation errors, the pair-wise error probability between two 
code-words is upper-bounded by, (Equation 4-20), 
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The above expression can also be written as 
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It is seen that for a constant channel SNR, a change in the variance of the channel 
estimation error will lead to a variation in the natural log of the probability, proportional 
to the minimum trace of the distance matrix. Thus performance loss is proportional to the 
Euclidean distance between code-words. Consequently, a scheme with a larger value of 
“minimum trace” will suffer a larger loss in performance when channel estimation errors 
are introduced or increased.  
 
The TSC code (Section 2.5.1) for two transmit antennas has a minimum trace of 4 and the 
corresponding CYV code has a minimum trace of 10. The BER performance of both 
codes in a system with diversity four is simulated and plotted in Figure 4-12. The channel 
is assumed to be quasi-static and the channel coefficients are estimated using a training 
sequence of length eight transmitted at the same power as the data sequence from the 
transmit antennas (A two-transmit antenna, two-receive antenna system has an optimal 
training length of eight at around 13dB). As predicted, the CYV code suffers a greater loss 
in performance in the presence of CEE than TSC. The performance of the CYV code 
degrades by around 1dB while the performance of the TSC code degrades by only about 
0.5dB. The FEP curves in Figure 4-1and Figure 4-3 exhibit similar behavior. The BER 
curves are used for comparison as the difference in performance is more perceivable. 
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Figure 4-12 : Performance comparison of  2Tx-2Rx CYV and TSC codes over quasi-static channel 

with training length of eight 

 
The performance of the BBH code, which has a minimum trace of 6, is compared in the 
presence and absence of perfect channel estimates in Figure 4-13. As expected, the 
degradation in performance is larger than the TSC code but less than the CYV code. 
 
For optimal training lengths, it can be observed from Figure 4-1 and Figure 4-3 that the 
CYV code always performs better than the TSC code. Figure 4-14 shows the 
performance of the TSC and CYV code using optimal amount of training over a range of 
coherence intervals. The energy spent on training is compensated by a reduction in the 
energy available for data transmission. It is seen that the performance in the presence of 
training degrades with decreasing coherence interval, though this not the case in the 
presence of perfect channel knowledge at the receiver. This is because low coherence 
intervals warrant additional training resulting in significant reduction of the energy 
available for data transmission. It should be noted that with perfect channel estimation 
coherence time is irrelevant. Imperfect channel estimates changes this dramatically. It is 
also observed that in the presence of optimal training, the CYV code performs better than 
the TSC code over the range of coherence intervals considered. However, constraints on 
the amount of training or the generation of good channel estimates might be present in 
practical systems. This prompts the study of these codes in the presence of large CEEs. 
The performance of the TSC and the CYV code in the presence of training sequences of 
different lengths is shown in Figure 4-15. A longer training sequence usually translates to 
better channel estimates and lower variance of channel estimation errors. As noted 
earlier, the performance degradation corresponding to an increase in channel estimation 
error is more pronounced in the case of the CYV code. It is also seen that at low CEE 
SNRs the CYV code performs worse than the TSC code though this is not the case at high 
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CEE SNRs or in the presence of perfect channel estimates. This is reiterated in Figure 
4-16, which plots the performance of the TSC and CYV code for varying CEE SNRs at a 
channel SNR of 8dB 
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Figure 4-13 : Performance comparison of  2Tx-2Rx BBH code over quasi-static channel with training 

length of eight 
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Figure 4-14: Performance comparison of  2Tx-2Rx, CYV and TSC codes over varying channel 

coherence times, 10dB channel SNR and optimal training 
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Figure 4-15 : Performance comparison of  2Tx-2Rx, CYV and TSC codes over quasi-static channel 

and for different training lengths 
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Figure 4-16 : Performance comparison of  2Tx-2Rx, CYV and TSC codes over quasi-static channel 

and for different CEE SNRs 

 
The performance results from Chapter 2 (Section 2.4), show that in the presence of large 
diversities and perfect channel estimates, the CYV codes performs better that the TSC 
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codes. But, as can be seen from the results presented in this section, large channel 
estimation errors alter the behavior of these codes and the TSC code is seen to perform 
better than the CYV code. 
 
The analysis in this section thus shows that results in the presence of perfect channel 
estimates do not necessarily translate into equivalent results in the absence of these 
perfect estimates. The accuracy of channel estimates should be an important 
consideration during the design of optimal codes for a practical communication system.  
 
4.3.3. Performance Sensitivity to Coherence Time 
 
Coherence time quantifies the similarity of channel responses at different times and is a 
statistical measure of the time duration over which the channel impulse response is 
invariant [Rapp1]. Hence shorter coherence times correspond to shorter intervals over 
which the channel coefficients have strong potential for amplitude correlation. This 
translates into an increase in the proportion of training in a frame with a decrease in the 
coherence time of the channel, as the receiver has to re-estimate the channel at smaller 
intervals. This relation between the required amount of training and the coherence time is 
reiterated in Figure 4-7 and Figure 4-10. As a result of this dependence the capacity of a 
channel can be predicted to decrease with decreasing coherence time of the channel, 
when the channel is estimated by sending training sequences. The capacity analysis of the 
channel in the presence of training carried out by Hassibi and Hochwald in [Hass1] 
reflects this result (Chapter 3). This section analyses the influence of this dependence on 
different diversity order systems and coding schemes and examines its role in altering the 
design choice. 
 
Different STTC schemes are simulated for a specific channel SNR and over coherence 
intervals of 10-200 symbols periods. Different coherence intervals are simulated by 
changing the Doppler spreads of the Rayleigh fading channel. The channel is assumed to 
be estimated by training sequences of lengths, optimized for the specific MIMO system, 
channel SNR and coherence time of the channel. The energy spent on training in a frame 
is compensated for, by reducing the energy available for sending the data bits in the 

frame. The new SNR of the system is given by, t
new actual

L LSNR SNR
L
−

= ×  where L is the 

frame length and tL is the required amount of training. The length of the frame is fixed at 
200 symbols. Normalizing the SNR thus, provides a tool to compare the performance of 
systems with different configurations and different training lengths.  
 
As noted before, the capacity of a MIMO system with training decreases with an increase 
in the coherence time of the channel. This capacity result is mirrored in the comparison 
between Figure 4-17 and Figure 4-19. Figure 4-17 shows the performance of one and two 
transmit antenna schemes over the coherence time of the channel assuming perfect 
channel estimates to be available at the receiver. Figure 4-19 shows the performance of 
these schemes with the channel assumed to be estimated by training sequences of optimal 
length. The loss in performance due to training increases with decreasing coherence time. 
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This roughly translates into a loss in capacity of a channel with training with decreasing 
coherence time of the channel.  
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Figure 4-17: Performance comparison of  2Tx and 1Tx Schemes over channel coherence time, with 

22dB channel SNR and perfect channel estimates at the receiver 

 
Figure 4-17, as mentioned before, compares the performance of one and two transmit 
antenna schemes over the coherence time of the channel assuming perfect channel 
estimates to be available at the receiver. The single antenna system employs a 64-state 

convolution channel code (with generator matrix
1 1 0 0 0 1 1
1 0 1 1 1 0 1
 
 
 

) and the QPSK 

modulation scheme. It is observed that the performance of the single antenna system 
improves with a decrease in the coherence time of the channel and hence takes advantage 
of the additional time diversity offered by a faster fading channel. But the performance of 
the 4-state STTC (CYV STTC code is used as previous results indicate that this code 
performs well over both fast and quasi-static flat fading channels) initially degrades with 
decreasing coherence time, but eventually starts to improve. This can attributed to the 
specific design methodology employed for STTC (Section 2.5.3). The STTC is unable to 
exploit the temporal diversity provided by coherence times slightly lower than the frame 
size and also suffers a loss in coding gain. However, the performance begins to improve 
for very small coherence intervals (about 20 symbol intervals in this case) and represents 
the scenario when the loss in coding gain is compensated by the increased available 
temporal diversity.  Figure 4-18 shows the performance of the CYV code with and 
without the inclusion of an interleaver in the system. The interleaver increases the 
temporal diversity of the system, hence enabling the system to compensate for the loss in 
coding gain at larger coherence intervals as compared to the system that does not use an 
interleaver.                                                                                                                                                           
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Figure 4-18: Performance comparison of 2Tx-2Rx CYV code over coherence time in the presence of 

perfect channel estimates, with and without an interleaver 

 
Figure 4-19 compares the normalized performance of an STTC scheme with transmit 
diversity of two with different single antenna systems with the channel assumed to be 
estimated by training sequences of optimal length. By comparing Figure 4-17 and Figure 
4-19, it is observed that the degradation of performance due to training and channel 
estimation is greater for the two-transmit antenna scheme than the single antenna scheme. 
This is attributed to fact that an increase in the number of antennas, increases the required 
amount of training and consequently increases the energy overhead of the system.  
 
Figure 4-19 also shows that though the two-transmit antenna scheme is penalized more 
than the single antenna system, it always performs better than a single antenna scheme 
with no channel coding. But the performance of the single antenna system employing 
some form channel coding approaches the performance of the two-transmit antenna 
system for small coherence times of the channel. This is observed from the plots of the 
normalized performance of the single transmit antenna system employing a 4-state code 

(with generator matrix
1 0 0
0 0 1
 
 
 

) and the 64-state code discussed earlier. The 

performance of the 64-state single antenna code is seen to be better than the two-transmit 
STTC over small coherence times and with perfect channel estimates from Figure 4-17, 
though over large coherence times the STTC scheme offers a benefit over the 64-state 
code. As noted earlier, the 64-state code profits from the temporal diversity available at 
small coherence times of the channel but the 4-state STTC does not seem to. However, it 
provides spatial diversity which is very helpful when no temporal diversity is available 
(i.e. at long coherence times). Figure 4-19 shows that increased cost of training for the 
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two-transmit antenna system, decreases the margin of this benefit rendering the 
performance of the two systems comparable. The increased temporal diversity offered by 
using an interleaver is seen to reduce the performance degradation suffered by the two 
transmit antenna system at low channel coherence times. However the performance is 
still worse than that of the 64-state code at low coherence intervals. In practical wireless 
systems, adding channel codes (and increasing the complexity of the channel code) for 
single transmit antenna systems is regarded to more cost-efficient than adding an extra 
antenna (and hence an extra RF chain) at the transmitter end. Hence the comparison of 
the two-transmit system employing a four state STTC to a single antenna system 
employing a 64-state convolution code is justified. It is thus seen that at low  coherence 
times and with the option of increasing the complexity of the channel codes employed 
available, channel training offsets the benefit of transmit diversity provided by STTC. 
 
Figure 4-20 compares the performance of multiple antenna systems with varying number 
of transmit antennas and employing STTC. It is seen that for very large Doppler spreads 
(fast fading channels), a system with four transmit antennas and a system with two 
transmit antennas give comparable performance. Hence using four transmit antennas in 
these channel conditions is of no benefit  
 
The capacity results from Chapter 3 [Hass1], show that the optimal number of antennas 
for a MIMO system decreases with decreasing coherence time of the channel. This trend 
can also be observed from Figure 4-20. Systems with larger number of transmit antennas 
suffer more degradation in channels with small coherence intervals as the comparative 
increase in training is larger. It is thus seen that the benefit due to increased diversity is 
offset by the penalty incurred due to the corresponding increase in training in channel 
with small coherence intervals. Hence the coherence interval over which the system is 
required to operate should be an important consideration in system design. 
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Figure 4-19: Performance comparison of different transmit schemes with 22dB channel SNR, 1 

receive antennas and optimal training  
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Figure 4-20: Performance comparison of different transmit schemes with 12dB channel SNR, 2 

receive antennas and optimal training 
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4.3.4. Performance Sensitivity to Varying Number of Antennas 
 
From the expression for the upper bound of PWEP of STTC in the presence of STTC 
4-20, it is observed that variation in probability of error due to changes in the variance of 
the channel estimation errors depends on the number of transmit and receive antennas in 
addition to the Euclidean distance between code-words (as seen in Section 4.3.1). This is 
investigated in this section. 
 
Figure 4-21 compares the performance of a two-transmit antenna and a four-transmit 
antenna system employing the CYV STTC code in the presence and absence of channel 
estimation error. The system has two receive antennas. The channel estimation error is 
assumed to be 15dB in both systems. It is seen that the performance degradation in the 
four-transmit antenna system is slightly more than the performance degradation in the 
two-transmit antenna system. Hence an increase in the number of transmit antennas is 
observed to cause an increase in the degradation due to channel estimation errors. The 
same can be inferred from Equation (4-20) as an increase in the number of transmit-

antennas generally leads to an increase in the factor
1

tN

i
i
λ

=
∑ . 
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Figure 4-21 : Performance of CYV code with different transmit antennas, over a quasi-static channel 

and CEE of 15dB 
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Figure 4-22: Performance of CYV code with different receive antennas, over a quasi-static channel 

and training of length eight 

 
It can also be noted from Equation (4-20) that an increase in the number of receive-
antennas will lead to similar results. This is verified in Figure 4-22, which compares the 
performance a two receive antenna and a three receive antenna system. Both have two 
transmit antennas and the CYV STTC code. The channel is estimated by a training 
sequence of length eight. The degradation in performance is much larger for the three-
receive antenna system than the one-receive antenna system. However, the large diversity 
benefits preclude any possibility of the single receive antenna system performing better 
than the system with three receive antennas.  
 
4.3.5. Performance Comparison with Differential-STBC 
 
The decoding complexity of STTC (measured by the number of trellis states at the 
decoder), increases exponentially as a function of both the diversity level and the 
transmission rate. A novel space time coding scheme for two transmit antennas is 
presented in [Alam1] by Alamouti that uses only linear processing the receiver. Space 
Time Block Coding (STBC) scheme introduced in [Taro3] generalizes Alamouti’s 
scheme to an arbitrary number of transmit antennas and also has low receiver complexity. 
Absence of perfect channel estimates at the receiver motivates the use of differential 
schemes. A differential scheme is presented in [Taro4] that utilizes the basic structure of 
a STB code. This scheme retains the STBC property of low receiver complexity.  
 
Figure 4-23 (from [Taro4]) compares the performance of this scheme with coherent 
STBC. The simulated system employs two transmit antennas. It is observed that the D-
STBC scheme exploits the diversity offered by the system but incurs a 3dB loss in 
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performance due to non-coherent detection. Both Differential STBC and STTC are thus 
seen to be capable of exploiting the diversity advantage offered by multiple transmit 
antenna systems. D-STBC schemes have the advantage of requiring a simple receiver 
structure that does not need to implement channel estimation.  But STTC schemes are 
still valuable as they (unlike STBC schemes) offer coding gain in addition to the diversity 
gain. It is observed in the earlier sections that channel estimation errors cause a loss in 
coding gain. Hence it becomes important to analyze the performance of STTC in the 
presence of CEE as compared to the D-STBC scheme.  
 
Figure 4-24 plots the performance the CYV STTC code and the D-STBC scheme in a two 
transmit and two receive antenna system. Channel estimation is done by using training 
sequences of length eight, two and one which result in appropriately increasing variance 
of the channel estimation error. It is seen that the performance of STTC degrades 
substantially when a training sequence of length one is used as a training sequence of 
length one is not sufficient to train a two transmit antenna system (Section 3.2.1). It is 
observed that in all the other cases, STTC outperforms the D-STBC scheme. Therefore in 
the presence of adequate training, STTC is better than D-STBC. 
 

 
Figure 4-23: [Taro4] Performance of 2Tx-2Rx D-STBC scheme with QPSK over quasi-static channel 
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Figure 4-24: Performance comparison of D-STBC with 2Tx-2Rx CYV Code over a quasi-static 

channel and different training lengths 

 
4.4. Chapter Summary 
 
The effect of channel estimation errors on the performance of STTC in flat fading 
channels is studied in this chapter. The design criteria for STTC are re-validated in the 
presence of channel estimation errors. The analysis in [Taro2] showed the validity of the 
TSC-RD criteria for quasi-static flat fading channels, in the presence of estimation errors. 
This analysis is extended in this chapter to show that the TSC-DP criteria for fast fading 
channels and the trace criterion for systems with a large diversity order also hold in the 
presence of channel estimation errors (CEEs). It is shown that the diversity advantage 
offered by these criteria is maintained even in the presence of CEEs.  
 
An exact expression for the pair-wise error probability of STTC in the presence of 
channel estimation errors is derived in this chapter. This expression can be used to find an 
approximate measure of the bit error probability of STTC codes in the presence of 
estimation errors of a specified variance.  
 
The performance of different coding schemes and system configurations is studied and 
compared in the presence of CEEs. The CYV code (designed according to the trace 
criterion) performs better than the TSC code (designed according to the TSC-RD 
criterion) in the presence of perfect channel estimates as seen in the previous chapter. 
This performance advantage is maintained when optimal training is used to estimate the 
channel. But in general, the degradation due to channel estimation errors is larger for the 
CYV code. Hence in the presence of large channel estimation errors CYV performs 



 97

worse than TSC code. Similarly, an increase in the number of transmit antennas is 
observed to increase the degradation due to estimation errors (even without compensating 
for the energy spent on training). In the presence large channel estimation errors, a 
system with a smaller number of transmit antennas performs better than a system with a 
larger number of transmit antennas. It is thus seen that CEEs could alter the performance 
behavior of codes and systems.  
 
The optimal amount of training required for channel estimation for different MIMO 
system configurations is also calculated. The optimal amount of training increases with 
an increase in number of transmit antennas, a decrease in channel SNR and a decrease in 
coherence interval of the channel. These dependencies are used to show that at low 
channel coherence intervals, increasing the number of transmit antennas might not benefit 
the system due to increased training overhead. At low coherence intervals (when 
sufficient temporal fading is available) and with the option of using convolutional 
channel coding available, a system with no spatial diversity is able to perform better than 
a system with transmit diversity of two, employing a four state STTC. Similarly, 
performance of a system with two transmit antennas and a system with four transmit 
antennas employing corresponding STTCs are comparable at low coherence intervals 
negating the need for increased transmit diversity.  
 
Hence the coherence interval of the channel over which a system is intended to operate 
and the channel estimation error variance (amount of training) possible within given 
system constraints should be important considerations in system design. 
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5. STTC in Frequency Selective Channels 
 
Space Time Trellis Codes have been designed primarily for flat fading channels. 
Therefore, it is necessary to analyze these codes in frequency selective channels 
particularly in the presence of channel estimation errors, as CEE has been seen to alter 
the performance pattern of STTC codes. This chapter presents a discussion on the design 
criteria for STTC in frequency-selective channels. The trace criterion is extended to 
derive a new design criterion for frequency selective channels that improves the 
performance offered by the TSC-RD criteria in the presence of multi-path. This criterion 
is derived by modeling multi-paths as virtual antennas. This chapter also analyzes the 
impact of channel estimation errors on the performance of STTC in frequency selective 
channels.  
 
5.1. Design Criteria in Frequency Selective Channels 
 
5.1.1. TSC-RD Design Criteria 
 
The TSC-RD criteria for STTC shows that diversity gain in a quasi-static flat fading 
Rayleigh channel can be maximized by maximizing the rank of the distance matrix 
between any two code-words and the coding gain, by maximizing the minimum 
determinant. This section follows the analysis in [Taro2] and examines the suitability of 
these criteria to frequency-selective channels. The analysis assumes a two-ray multi-path 
channel, but can easily be generalized to higher number of paths. 
 
The MIMO system considered has tN  transmit and rN  receive antennas. The channel is 
represented by t rN N×  sub-channels which are in turn modeled by the impulse function, 

( ) ( )t tαδ κδ τ+ − , where α  and κ  are independent complex Gaussian random variables 

with variances of 1 and 2
κσ  respectively. ( )δ  is the Dirac-Delta function. The delay 

parameter τ  is a random variable with a probability distribution function of ( )f τ . Let 
the signal transmitted from antenna i  at time t  be represented by 

( ) ( )
1

0

1
L

s i s
k

E c k u t kT
−

=

+ −∑  where, L  is the length of a frame and ( )u t  is a function time-

limited to [ ]0, sT , with total energy ( ) 2

0

1
T

u t dt =∫ . The channel coefficients ,i jα  are 

assumed to be constant for the duration of a frame and to vary between consecutive 
frames. The received signal at the thj  antenna at time t  is, 
 

( ) ( ) ( ) ( ) ( ) ( )
1

, , ,
0 1

1 1
tNL

j s i j i s i j i s i j
k i

r t E c k u t kT c k u t kT tα κ τ η
−

= =

= + − + + − − +∑∑  
 

5-1 

  
Consider that the transmitted code-word is 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 21 1 1 2 2 2
t t tN N Nc c c c c c c c L c L c L= … … … … . The decoder makes 

an error if it decides erroneously in favor of a code-word  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 21 1 1 2 2 2

t t tN N Ne e e e e e e e L e L e L= … … … … . 
 
From the standard approximation for the tail of the Gaussian distribution, the upper 
bound on the probability of the decoder making an error is given by, 
 

( )
*

, , ,
1 0

| , , , 1, 2, , , 1, 2, , exp
4

rN
j j j s

i j i j i j t r
j

E
P c e i N j N

N
α κ τ

=

 −Λ Η Λ
→ = = ≤   

 
∏… …  
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where, 
 

,1,
1, ,, , , , , t

t

N jj
j j N j

k k

κκ
α α

σ σ
 

Λ =  
 

… …  

( ) ( )
( ) ( )* 2

, , ,

, , ,
k

j
k k

A c e D c e

D c e A c e

σ τ

σ τ σ

 
Η =   

 
 

 
( ),A c e is as defined in Section  2.2.1 and ( ), ,D c e τ is any matrix which depends only on 

,c e and τ . An analysis similar to Section 2.2.1 can be followed to arrive at, 
 

( )
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1 0

1

1
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t

N

N
j s
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P c e
E
N
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=
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 
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∏
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where, ( ) , 1, 2, , 2k j tk Nλ Η = … , are the eigen values of jΗ counting multiplicities. 

It can be proved that the rank of jΗ is at least equal to the rank of ( ),A c e  (Section 2.2.1). 

Hence a minimum diversity advantage of ( )( ),rN rank A c e will be achieved in a multi-
path channel. Consequently, STC codes designed according to the TSC criteria for Quasi-
static channels will continue to perform well in frequency selective channels. The 
achievable diversity is not reduced in a frequency selective environment. 
 
The performance of a 4-state TSC-RD code in a two-tap multi-path channel is shown in 
Figure 5-1. The system has two transmit antennas and one or two receive antennas. 
Multi-path arrivals are assumed to occur at integral multiples of the symbol interval and 
the channels are assumed to be quasi-static. The transmitted symbols are decoded by 
using the MLSE Combined Trellis Equalizer and Decoder (CT-ED) [Heik1], which 
combines the equalizer and decoder trellis into a super trellis structure. Consider stN to be 
the number of states of the channel code. Then, the number of states of the super-trellis is 
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given by 1cL
stN M − , where M is the size of the symbol constellation used. Hence each 

state of the super trellis corresponds to a possible state of the code and 1cL −  previously 

transmitted. The branch metric is given by ( ) ( ) ( )
2

1 1 1

t cr N LN

j ij i
j i l

r t l e t lα
= = =

− −∑ ∑∑ , where cL is 

the number of multi-paths in the channel. The decoder chooses the sequence that 
minimizes the metric over the length of the frame. However, CT-ED might not be an 
appropriate choice when the number of multi-paths in the channel is higher as its 
complexity grows exponentially with channel tap length. A sub-optimal detector is 
proposed in [Heik1], which uses a reduced state-space method with decision feedback. 
Complexity can also be reduced by exploiting the structure of STTC as described in 
[Nagu1]. Performance can be improved in multi-path channels by using a channel 
interleaver. In this case, a Maximum Aposteriori Probability Equalizer/Detector (MAP-
ED) [Bauc1] is required at the receiver. A reduced complexity version of the MAP-ED is 
presented in [Frag4].  
 
It is seen from Figure 5-1, that diversity advantage does not decrease in frequency 
selective channels. The performance of the STTC scheme in fact improves because of the 
additional diversity offered by the multi-path components. But the TSC criteria might not 
be able to fully exploit the additional diversity offered by multiple paths in each sub-
channel. Fitz et al in [Youj1] present a design methodology aimed at utilizing this 
additional available diversity. The design criteria are referred to as the YFT criteria and 
are presented in the next section. 
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Figure 5-1: Performance of TSC code in a two-tap frequency selective channel 
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5.1.2. Modified RD Design Criteria  
 
Code design criteria are formulated for channels with Inter Symbol Interference (ISI) in 
[Youj1] by introducing the concept of virtual antennas. The criteria guarantee full 
diversity in frequency selective channels. The code design takes into consideration two 
scenarios: with and without a channel interleaver.  
 
The signal model used is described below. A t rN N×  multi antenna system with cL multi-
paths per sub channel is considered. The multi-paths are assumed to arrive at multiples of 
the symbol time (The analysis in the previous section takes into consideration fractional 
delays.). From previous definitions, the received signal can be represented as, 
 

( ) ( ) ( ) ( ),
0 1

, , 1, 2,..., , 1, 2,..., 1
tNLc

j i i j j r
l i

r t c t l a t l t j N t L Lcη
= =

= − + = = + −∑∑  
 

5-4 

 
Further defining, ( ) ( ) ( )1 2 1

T

j j j jR r r r L Lc = + − … , 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 20 0 0 1 1 1
t tN NX X X X X Lc X Lc X Lc = − − − … … … , 

( ) ( ) ( ) ( )( )*1 ( 1 )*10 1 2 0i l i i i Lc lX l diag c c c L − − =  … , 

( ) ( ) ( ) ( ) ( ) ( )1, 2, , 1, 2, ,0 0 0 1 1 1
t t

T

j j j N j j c j c N j ca a a a a L a L a L = − − − … … … , 

( ) ( ) ( ) ( ), , , ,1, 2, 1,
T

i j i j i j i ja l a l a l a L Lc l = + − …  

and ( ) ( ) ( )1 2 1j j j j L Lcη η η η = + − … , the received signal can be expressed in 
Matrix Notation as, 
 

j j jR Xa η= +  5-5 

 
The code word vector X  contains the code-word transmitted through the transmit 
antennas and zero-padded versions of the code-word transmitted through virtual 
antennas. The vector X will thus play the same role as the code-word matrix in flat fading 
channels. Let Z X Xα β= −  be the code difference matrix and H

cj j jC E α α =    be the 
covariance matrix of channel coefficients. 
 

H
sj cjC ZC Z=  5-6 

 
The pair wise error probability can be upper bounded by 
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where, r  is the number of non-zero Eigen values iλ  of sjC  and K  is a constant. The 
product of non-zero Eigen values gives the coding gain.  
 
If the multi-paths are assumed to be independent, the diversity advantage can be 
maximized by maximizing the minimum rank of the code difference matrix Z  for any 
two code-words. The maximum achievable diversity gain is t c rN L N× × (compared to the 
maximum achievable diversity t rN N×  by the TSC code). Hence this design criterion can 
lead to codes that exploit all the diversity possible in the multi-path channel. The coding 
gain can be maximized by maximizing the product of eigen values of the distance matrix 
taken over all pairs of distinct code-words.  These criteria are thus seen to be an extension 
of the TSC-RD criteria for frequency selective channels. The algebraic 0Σ -rank theory 
[Youj2] is used to design full diversity STTC codes. By utilizing the concept of Virtual 
antennas, similar representations can be used for signals transmitted in frequency 
selective fading and flat fading channels. This lends itself to similar code design 
procedures (illustrated in [Safa1]). Some additional constraints are also placed on code 
design to ensure r-level receive diversity.  
 
Theorem1: (without Channel Interleaver) 
The code must have at least ( )2 cR r L−  states, where R is the transmission rate in bits/symbol 
and the constraint length is at least 1cr L− − , where the constraint length is defined as 
minimum length of the error path of the original trellis code. 
 
Theorem2: (with Channel Interleaver) 

The code must have at least 
1

2 c

rR
L

 
− 

   states and the constraint length is at least
c

r
L

, where 

the constraint length is defined as minimum length of error path of the original trellis 
code. 
 
These constraints follow from similar constraints in [Taro1] for code-design in flat fading 
channels. Tarokh et al showed in [Taro1] that the constraint length of an r-space-time 
trellis code is at least 1r −  and that if b is the transmission rate, the trellis complexity of 
the code is at least ( )12b r− .  
 
For a given number of multi-paths, a code with a larger number of states is thus capable 
of exploiting the diversity advantage offered by a multi-path system. This is illustrated in 
Figure 5-2. The frequency selective channel is assumed to have two independent taps 
with equal powers.  The 16-state code (presented in [Youj1] and denoted here by “YFT”) 
has a larger slope than the 4-state code illustrating the fact that it is able to exploit 
additional diversity in a frequency selective channel. 
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Figure 5-2: (Adapted from [Youj1]) Performance comparison of 16-state YFT code and 4-state TSC-

code in a 2-tap multi-path channel 

 
These code design criteria thus lead to codes that have a larger number of states, 
depending on the multi-path components in the channel. An increase in the number of 
states leads to more complexity especially in a frequency selective channel with 
equalization requirements. In the next section a new design criterion is developed for 
STTC in frequency selective channels that gives improved performance as compared to 
the TSC-RD codes but does not necessitate an increase in the number of states. The 
analysis follows results in [Chen1] and is similar to the CYV criterion. The CYV 
criterion is subject to the constraint that the product of the rank of the code and the 
number of receive antennas, be greater than three. But by utilizing the concept of virtual 
antennas introduced in this section, the existence of even a single multi-path eliminates 
this requirement.  
 
5.1.3. New Design Criteria 
 
The design of STTC presented in Section 2.2.1 is based on the maximization of the 
minimum rank and minimum determinant of the distance matrices. It is shown here, that 
in the presence of multi-path, the design of STTC codes with maximum coding gain is 
governed by the minimum trace of the distance matrices, or the Euclidean distance 
between any two code words over all transmit antennas.  The trace design criterion for 
flat fading channels is derived by minimizing pair-wise error probability. This criteria is 
extended to for multi-path channels by introducing “Virtual Antennas” [Chen1]. 
 
The probability of transmitting a signal c and deciding in favor of a signal e in a quasi-
static multi-path channel, assuming ideal channel state information, is given by, 
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0
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4
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ij t r c
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N

α
 

→ = = = = − ≤ − 
 

… … …  
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where 0 / 2N  is the noise variance per dimension and 
 

( ) ( ) ( )( )
21

2

1 1 0 1

( , )
c tr L NN L

ij i i
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Setting, 
 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 20 0 0 1 1 1
t tj j j N j j c j c N j ca a a a L a L a L Ω = − − − … … …  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, 0 0 0 1 1 1
t t

T

N NB c e X X X X Lc X Lc X Lc = − − − … … …
 

( ) ( ) ( ) ( ) ( ) ( ) ( )*1 ( 1 )*10 1 1 2 2 0i l i i i i i i Lc lX l e c e c e L c L − − = − − − …  

( ) ( ) ( )*, , ,A c e B c e B c e=  

( ) ( )2 *

1

, ,
Nr

j j
j

d c e A c e
=

= Ω Ω∑  

 
The code-word in the above case can be viewed as being sent through virtual antennas. 
There exists a real diagonal matrix D, whose diagonal elements are the Eigen values of 
A, such that,  
 

( ) *,VA c e V D=  5-10 

 
where the rows of V are the eigen vectors of A. Let, 
 

( )
*

1, 2, * ,* 1, t ct cj j N L j jN L j Vβ β β β−
  = Ω …  5-11 

( )
* 2*

1
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t cN L

j j i ij
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A c e λ β
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Thus the conditional pair-wise error probability can be expressed as, 
 

( )
* 2

1 1 0

| exp
4

t cr N LN
s

i ij
j i

Ep c e
N

α λ β
= =

 
→ ≤ − 

 
∑ ∑  
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2ijβ  follows the central chi square distribution. Its mean and variance is equal to 1.  
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Let r be the rank of the matrix A . For a large rrN (>3) value, according to Central Limit 

Theorem, the expression
2

1 1

tr NN

i ij
j i

λ β
= =
∑∑ approaches a Gaussian random variable D with 

mean 
 

1

tN

D r i
i

Nµ λ
=

= ∑  
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and variance  
 

2 2

1

tN

D r i
i

Nσ λ
=

= ∑  
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Let the code matrix be defined as,  
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 11 1

( , )

1 1
t t t tN N N N

e c e L c L
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 
 =  
 

− −  

" "
# % #
# % #

" "
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Let tr be the rank of the matrix Bt . Then, the rank of A will be t cr L . Thus in the presence 
of a full rank code and multi-path, rrN  is seen to be greater than 3 in all cases. The upper 
bound on the average probability of error can be obtained by averaging w. r. t the 
probability distribution function of D.  
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By using, ( )
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The pair-wise error probability can be minimized by maximizing the sum of the Eigen 
values of the matrix ( , )A c e . For a square matrix the sum of the Eigen values equals the 
trace of the matrix. The trace of matrix ( , )A c e  can be written as 
 

( ) ( )
L 2

c
i=1 t=1

tr(A)=L e
tN

i it c t−∑∑  
 

5-19 

 
Thus the pair wise error probability can be minimized if the Euclidean distance between 
code-words is maximized. 
 
The CYV code introduced previously maximizes the Euclidean distance and is used to 
demonstrate the performance of the new scheme in Figure 5-3 .  It is seen that in the 
frequency selective channel additional improvement is obtained as compared to the flat 
fading channel by exploiting the multi-path components.  
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Figure 5-3: Performance of the new scheme in a two-tap frequency selective channel 

 
Figure 5-4 and Figure 5-5 compare the performance of the TSC scheme and the new 
scheme. The system has two transmit antennas and one receive antenna. The TSC code 
and the CYV code have full ranks and equal minimum determinant values of 4. However, 
the minimum trace of the CYV code is 10 and that of the TSC code is 4. From the 
analysis it is observed that when the diversity order is greater than 3 or in the presence of 
multi-path, the dominant performance criterion is the maximization of the minimum trace 
between two code-words. When the diversity order is less than 3 and in the absence of 
multi-path, the dominant performance criterion is the minimum rank criterion. The 
simulations reflect this. 
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Figure 5-4: FER performance comparison of 2Tx-1Rx TSC code and the new scheme in multi-path 

channel 
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Figure 5-5: BER performance comparison of 2Tx-1Rx TSC code and the new scheme in multi-path 

channel 
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It can be seen from the figures that in the absence of multi-path the TSC and CYV codes 
perform almost similarly in the diversity-2 scheme considered above, as both have equal 
rank and determinant values. But in the presence of multi-path, the CYV code performs 
much better than the TSC code, as the CYV Code has a larger minimum trace than the 
TSC code. The above analysis and the theoretical results from before show that in the 
presence of multi-path the dominant performance criterion is the minimum trace 
criterion. 
 
5.2. Effect of Channel Estimation Errors on STTC Performance 
 
5.2.1. Optimal Amount of Training 
 
An expression for the available capacity of a MIMO channel utilizing training and 
assuming the training symbols and data symbols to be transmitted at the same power is 
derived in Chapter 3 (Section 3.3.2 and Equation 3-29). The optimal training required for 
a specific MIMO system over a frequency selective channel and for a given SNR can be 
evaluated from this expression by calculating the length that maximizes the capacity. 
Figure 5-6 plots the optimal amount of training required by two transmit and two receive 
antenna system operating over a two-tap channel for different channel SNRs and different 
coherence times. Figure 5-7 shows the simulated performance of a two-transmit, two-
receive antenna system employing the TSC code, operating over a two-tap channel with 
coherence interval of 120 symbols and an SNR of 12dB, for various training lengths. The 
energy spent on training is compensated by a reduction in the energy available for data 
transmission. The performance is seen to be the good for a range of training lengths from 
nine to twenty and to degrade for shorter or longer training lengths. It can be observed 
from Figure 5-6, that the optimal amount of training for a two-transmit, two receive 
antenna system over a two tap channel with a coherence interval of 120 and a channel 
SNR of 12dB is nine. The optimal length results thus give a conservative estimate of the 
training length that maximizes the performance of a system.  
 
Frequency selective channels have the additional constraint that the length of the training 
sequence cannot be less than the product of the number of multi-paths ( cL ) and the 
number of transmit antennas (Equation 5-20).  
 

t t cT N L≥  5-20 

 
This minimum length requirement considerably increases the amount of training required 
at small channel SNRs and coherence times compared to the training required in systems 
operating over flat fading channels. This can be observed by comparing Figure 5-6 with 
Figure 4-7. The proportion of the required training to the number of data symbols in a 
frame is seen to be significantly increased at small coherence intervals in frequency 
selective channels. But at larger coherence times the performance improvement caused 
by multi-path channels (because of the additional available diversity in time) is able to 
offset the demand for increased training. These observations are reiterated in Figure 5-8 
which shows the optimal training length for the two-transmit, two-receive antenna MIMO 
system over a frequency selective channel with three taps. The performance improvement 
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due to the additional available multi-path causes a decrease in the required training at 
large coherence intervals. But the optimal length of training increases at small coherence 
intervals, due to an increase in the minimum required training.  
 
Expression 5-20 also shows that increasing the number of transmit antennas would cause 
a considerable increase in the required amount of training in frequency selective channels 
(larger than the corresponding increase in flat-fading channels). This is illustrated in 
Figure 5-9 which plots the optimal required training for a system with four transmit 
antenna over a two-tap frequency selective channel. This large increase in training 
overhead could offset any diversity advantage offered by increasing the number of 
transmit antennas in frequency selective channels.  
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Figure 5-6: Optimal training length for 2Tx-2Rx MIMO system over multi-path channel with 2-taps 
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Figure 5-7: Performance comparison with varying length of training, for a 2Tx-2Rx TSC Code at 

12dB channel SNR and over a two-tap channel 
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Figure 5-8: Optimal training length for 2Tx-2Rx MIMO system over multi-path channel with 3-taps 
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Figure 5-9: Optimal training length for 8Tx-2Rx MIMO system over multi-path channel with 3-taps 

 
5.2.2. Performance Degradation due to CEE 
 
The performance loss caused by imperfect channel estimation on an STTC system 
operating over a frequency selective channel is studied. Figure 5-10 shows the 
performance of a two-transmit, two-receive antenna scheme over a two tap channel 
selective in the presence of CEE. A training sequence of length eight is used to estimate 
the channel. The training sequence length is twice the product of the number of transmit 
antennas and the number of multi-path components and hence sufficient to estimate the 
channel. It is observed that CEE causes a loss in coding gain of around 2dB but does not 
affect the diversity advantage offered by the code. The loss in performance due to CEE in 
a frequency selective channel is seen to be much larger than the corresponding 
performance loss in a flat fading channel. The CYV code, in the presence of multi-paths 
and channel estimation errors and at low channel SNRs, is seen to perform worse than the 
CEE affected code in a flat fading channel. This performance degradation is despite the 
additional time diversity offered by the multi-path channel. Estimation errors are thus 
seen to have a larger impact on performance in multi-path channels and sufficient care 
must be taken during system design such that they do not alter the required performance 
behavior.  
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Figure 5-10: Performance of 2TX-2Rx CYV code in a flat fading and 2-Tap multi-path channel with 

training length of 8 

 
Figure 5-11 and Figure 5-12 compare the performance of the TSC and CYV STTC in the 
presence of channel estimation errors and multi-paths. The system has two transmit 
antennas and one receive antenna. A training sequence of length eight is used to estimate 
the two tap multi-path channel. It is seen that the degradation due to CEE is larger for the 
CYV code than the TSC code. This is consistent with results in (Section 4.3.2), that 
shows that the CYV code degrades more, due to a larger value of the minimum trace of 
the code-word matrix. However, it still performs better than the TSC code when training 
of length eight is used. Figure 5-13 compares the performance of two codes for optimal 
training lengths over a range of coherence times. It is seen that the performance 
advantage of the CYV code over the TSC code is consistent.  
 
Figure 5-14 shows the performance of the two codes for varying values of channel 
estimation error SNR and reiterates the fact that the performance degradation caused by 
CEE is more pronounced for the CYV code. This leads to the CYV code performing 
worse than the TSC code for very large channel estimation errors, as can be seen from the 
figure. It is also noted by examining Figure 5-14 and Figure 4-15 that the crossover point 
occurs for a larger value of the channel estimation SNR.  
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Figure 5-11: FEP Performance Comparison of 2Tx-1Rx TSC code and the new scheme with training 

length eight 
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Figure 5-12: BER Performance Comparison of 2Tx-1Rx TSC code and the new scheme with training 

length eight 
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Figure 5-13: Comparison of 2TX-1Rx TSC and CYV code with optimal training and channel SNR of 

16dB 
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Figure 5-14: Comparison of  2Tx-2Rx TSC and CYV in 2-Tap channel with SNR of 10dB and 

varying channel estimation SNR 
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Figure 5-15: Performance of  2Tx-1Rx CYV over 2 Tap channel for varying gain errors of the 

channel estimates 
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Figure 5-16: Performance of  2Tx-1Rx CYV over 2 Tap channel for varying phase errors of the 

channel estimates 
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The performance of the CYV STTC scheme in frequency selective channels is analyzed 
in the presence of gain errors (Figure 5-15) and phase errors (Figure 5-16) in channel 
estimation. It is seen that the STTC scheme is robust to gain errors of up to 30% (the gain 
of a perfect channel estimate is assumed to be one in the graphs.).  The diversity offered 
the code does not decrease for gain errors less than 30% in magnitude. The code is also 
seen to be robust to phase errors of up to 10 degrees and deterioration in performance is 
seen for larger phase errors.  
 
5.2.3. Performance Sensitivity to Coherence Time 
 
The capacitive analysis in chapter three shows the proportion of training in a frame 
increases with a decrease in the coherence time of the channel. This leads to a decrease in 
the capacity of the channel for small coherence times. In a frequency selective channel, 
this dependence is pronounced. Frequency selective channels require larger training 
sequences than flat fading channel especially at low coherence times. Hence the loss in 
capacity is increased. 
 
Figure 5-18 shows the performance of different transmit antenna systems with the 
channel assumed to be estimated by training sequences of optimal length. The energy 
spent on training for a particular scheme is compensated for by reducing the energy 
available for transmitting data symbols. Figure 5-17 shows the performance of these 
schemes assuming perfect channel estimation. Comparing Figure 5-17 and Figure 5-18, it 
can be seen that schemes with a larger number of transmit antennas experience larger 
degradation in performance. This can be attributed to the comparatively larger training 
required for systems with larger number of transmit antennas. The increase in training 
caused by the increase in transmit antennas is also compounded by the number of multi-
paths in frequency selective channels (expression 5-20). This is reiterated by comparing 
Figure 5-19 and Figure 5-20.  
 
It is observed from Figure 5-18 that in the presence of optimal training, the performance 
of the single transmit antenna system using a four state code, is comparable with the 
performance of the two-transmit antenna system employing a four state CYV code over 
the range of lengths of the coherence interval.  It is also seen that the a single transmit 
antenna system employing an 8-state code betters the performance of the CYV code over 
the entire range of the coherence intervals considered when training is employed to 
estimate the channel. This is despite the fact that the single antenna eight state code 
performs worse than the two transmit antenna system when perfect channel estimates are 
assumed (Figure 5-17). It can also be observed from Figure 5-20 that the three and four-
transmit antenna systems start to perform worse than the two-antenna systems over the 
entire range of  the coherence interval when training is used to estimate the channel. In 
flat fading systems such behavior is noticed only for small coherence intervals. These 
results are a consequence of the comparatively larger training overhead associated with 
larger transmit diversity systems in frequency selective channels.   
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Figure 5-17: Comparison of different transmit schemes in a 2-Tap channel with SNR of 16dB and 

assuming perfect channel estimates 
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Figure 5-18: Comparison of different transmit schemes in a 2-Tap channel with SNR of 16dB and 

optimal training 
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Figure 5-19: Comparison of different transmit schemes in a 2-Tap Channel with SNR of 10dB and 

perfect channel estimates 
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Figure 5-20: Comparison of different transmit schemes in a 2-Tap channel with SNR of 10dB and 

optimal training  

 
It can thus be concluded from the analysis in this section that STTC schemes does not 
provide any benefit in frequency selective channels when training sequences are used to 
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estimate the channel and when the option of utilizing a low complexity channel code is 
available for the single antenna system.  
 
5.3. Chapter Summary 
 
The performance of STTC schemes operating over frequency selective channels in the 
presence and absence of channel estimation errors is studied in this chapter. A discussion 
of the design criteria of STTC over frequency selective channels is presented. The TSC-
RD design criteria are shown to be appropriate for frequency selective channels as well 
(from [Taro2]). A modified design criteria (based on the TSC-RD and introduced in 
[Youj1]) is presented that attempts to exploit the diversity offered by multi-path. The 
trace criterion is extended in this chapter to derive a new design criterion for frequency 
selective channels that improves the performance offered by the TSC-RD criteria in the 
presence of multi-path. This criterion is derived by modeling multi-paths as virtual 
antennas. CYV codes satisfy the new design criterion and are used for performance 
analyses.  
 
Channel estimation errors are shown to cause a larger degradation in multi-path channels 
than in flat fading channels. Hence sufficient care must be taken during system design 
such that the additional time diversity offered in multi-path channels is not lost. The CYV 
codes perform better than TSC codes when optimal amount of training is used. But for 
high error variances, it is shown that the behavior is inverted and TSC codes start 
performing better. The performance of STTC is also shown to be resistant to estimation 
errors up to 30% of the magnitude and 10 degrees of the phase of the channel 
coefficients. 
 
The optimal amount of training required for estimation of frequency selective channels 
for different MIMO configurations, specified SNRs and different number of multi-paths 
is calculated. The optimal length of training increases with an increase in the number of 
multi-paths and antennas. Hence the training overhead for frequency selective channels is 
seen to be larger than that for flat fading channels. Analyses show that transmit-diversity 
employing low complexity STTCs does not provide any benefit in frequency selective 
channels due to large capacity losses incurred due to training. Systems with no diversity 
and with the option of implementing low complexity channel codes are shown to perform 
better than a system with two-transmit antennas and employing a low complexity STTC. 
It is also shown that three-transmit and four-transmit antenna systems with STTC 
perform worse than a two-transmit antenna system with STTC. Hence transmit diversity 
employing STTC is seen to be unsuitable for frequency selective channels as large 
training overheads offset the diversity and coding benefits.  
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6. Thesis Summary and Future Work 
 
Space Time Trellis Coding is a technique than intends to provide high data rates and 
more reliable communication over wireless channels. However, STTC have been 
primarily designed assuming perfect channel estimates to be available at the receiver. 
This thesis studied the impact of channel estimation errors (CEEs) on the design and 
performance of STTC. It investigated the validity of design criteria for STTC in the 
presence of CEEs. A detailed analysis of the influence of channel estimation on the 
performance benefits provided by STTC was also presented. An overview of the results 
and conclusions formed by the thesis is presented in this chapter 
 
6.1. STTC Performance Analysis and Design Criteria 
 
A comprehensive study and analysis of design and code-construction criteria for STTC 
over different fading channels in the presence of perfect channel estimates was presented 
in Chapter 2. The TSC-RD criteria are shown to be appropriate for systems with low 
diversity orders and operating over quasi-static and spatially correlated quasi-static flat 
fading channels. The criteria recommend maximizing the minimum rank and minimum 
determinant of the distance matrix between any two code-words, to maximize the 
diversity and coding gain respectively of a scheme. The TSC-DP criteria maximize the 
number of times the corresponding symbols of two code-words differ and are appropriate 
for fast-fading channels. The Trace criterion maximizes the Euclidean distance between 
code-words and are optimal for systems with a large diversity order (>3). An analytical 
evaluation of the exact pair-wise error probability of STTC was also presented. The exact 
PWEP expression is useful in obtaining estimates of bit error rates of STTC systems over 
different channel conditions. 
 
6.2. Channel Estimation Techniques for Multiple Transmit Antenna 
Systems 
 
An overview of channel estimation schemes for multiple transmit antenna systems in 
general and STTC in particular was presented in Chapter 3. Training sequence based 
estimation schemes are widely favored as their implementation is relatively simple and 
most current wireless standards already provide for their use. Training sequences for 
multiple transmit antennas require properties of zero (or very low) cross correlation 
between sequences transmitted from different transmit antennas. Frequency-selective 
channels in addition necessitate zero correlation between versions of the training 
sequence delayed by time-lags corresponding to multi-path delays in the channel. 
Capacitive analysis of the optimal amount of training required in MIMO channels was 
also presented. 
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6.3. Design and Performance of STTC in the Absence of Perfect 
Channel Estimates 
 
Chapter 4 investigated the effect of channel estimation errors on the performance of 
STTC in flat fading channels. The design criteria for STTC were reevaluated in the 
presence of channel estimation errors. The analysis in [Taro2] that showed the validity of 
the TSC-RD criteria in quasi-static flat fading channels was discussed. This analysis was 
extended in the chapter, to show that both the TSC-DP criteria for fast fading channels 
and the trace criterion for large diversity order systems are valid in the presence of CEEs 
as well. The diversity advantage offered by these schemes is shown to be maintained 
even in the presence of estimation errors.  
 
An exact expression for pair-wise error probability of STTC in the presence of channel 
estimation errors, which provides an analytical tool to evaluate the performance of STTC 
in the presence of imperfect channel estimates, was derived. The performance of different 
coding schemes and system configurations was evaluated in the presence of CEEs. It was 
shown that the degradation due to channel estimation errors for a specific system, in 
addition to the magnitude of the error also depended upon the particular choice of STTC 
code, the number of transmit/ receive antennas in the system and the coherence time of 
the channel. For instance, the Trace criterion causes larger degradation than the TSC-RD 
criteria. The degradation also increases with the number of antennas used in the system. 
An inappropriate choice of system parameters and the resultant variation in the 
performance degradation due to channel estimation errors are shown to alter the expected 
performance pattern. 
 
This chapter also analyzed the capacity of STTC schemes using training to estimate the 
channel. The optimal amount of training required for channel estimation for different 
MIMO system configurations was calculated and was observed to increase with an 
increase in number of transmit antennas, a decrease in channel SNR and a decrease in 
coherence interval of the channel. These dependencies were used to show that for low 
channel coherence times and in the presence of training, increasing the number of 
transmit antennas leads to a decrease in the capacity offered by the system when 
employing STTC. 
  
6.4. STTC in Frequency Selective Channels 
 
Chapter 5 examined the performance of STTC schemes operating over frequency 
selective channels in the presence and absence of perfect channel estimates at the 
receiver. A new design criterion for STTC operating over frequency selective channels 
was derived by modeling multi-paths as virtual antennas. The criterion is based on the 
trace criterion. The new criterion is observed to perform better than existing schemes 
over multi-path channels. 
  
Channel estimation errors are shown to cause a larger degradation in multi-path channels 
than in flat fading channels. The new criterion was shown to offer better performance 
than the TSC-RD criteria when the channel was estimated by training sequences of 
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optimal length. But the degradation due to channel estimation errors was found to be 
more pronounced in the new criterion and for large estimation errors the new criteria 
performs worse than the TSC-RD criteria.  
 
The optimal amount of training required for estimation of frequency selective channels 
for different MIMO configurations and different number of multi-paths was calculated. 
The optimal length of training was observed to increase with an increase in the number of 
taps of the frequency selective channel. This leads to larger training overhead in 
frequency selective channels than flat fading channels especially at low channel 
coherence intervals. As a consequence, in the presence of training and when the option of 
using channel codes is available to single antenna systems, no improvement in capacity 
was shown to be obtained by using STTC in frequency selective channels.  
 
6.5. Conclusions and Directions for Future work 
 
This thesis validated the different design criteria for STTC in the presence of channel 
estimation errors. It presented analytical results that modeled the performance of STTC 
systems in the presence of CEEs. Training based channel estimation schemes are the 
most popular choice for STTC systems. The amount of training however, increases with 
number of transmit antennas used, the number of multi-paths in the channel and a 
decrease in the channel coherence time. This dependence was shown to decrease the 
performance gain obtained by increasing the number of transmit antennas in STTC 
systems, especially in channels with a large Doppler spread (low channel coherence 
time). In multi-path channels, the training overhead associated with increasing the 
number of transmit antennas was shown to be so large that no benefit is obtained by using 
STTC.  
 
The amount of performance degradation due to channel estimation errors was shown to 
be influenced by system parameters such as the specific STTC code employed and the 
number of transmit and receive antennas in the system in addition to the magnitude of the 
estimation error. Hence inappropriate choice of system parameters was shown to 
significantly alter the performance pattern of STTC.  
 
This thesis thus addressed the viability of STTC in practical wireless systems and showed 
that channel estimation could offset benefits derived from this scheme. Hence an 
investigation of differential schemes for STTC might be of import as these schemes can 
help avoid the capacity and performance losses due to channel estimation. Also, huge 
losses in capacity are incurred due to the use of training sequences to estimate the 
channel. Blind and semi-blind channel estimation schemes which exploit the redundancy 
offered by STTC provide interesting alternatives and are a promising area for future 
research. 
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