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(ABSTRACT)

Presented in this paper is a scheme for minimizing the cost function of a three-source
power system. This scheme, the Line-Step Algorithm, uses an alternating direction step
technique to arrive at an approximation point (I,J) that is within one unit of the true
minimum. The Line-Step Algorithm is applied to several systems and is also compared to
other minimization techniques, including the Equal Incremental Loss Algorithm. Variations
are made on the Line-Step Algorithm for faster convergence and also to handle inequality

constraints.
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Chapter 1
INTRODUCTION

As the costs associated with generation and transmission of electric energy keep increas-
ing, optimal economic dispatch in electric power systems is gaining increasing importance.
Optimal Power Flow (OPF) is a generic name for constrained static scheduling calcula-
tions in power system transmission networks [4]. Many solution approaches, each with
particular mathematical and computational characteristics, have been developed to solve
the OPF problem. OPF methods vary considerably in their adaptablility to the modeling
and solution requirements of different engineering applications [1].

The objective of Optimal Power Flow is to improve power system efficiency by satisfying
a given set of loads at minimum generation costs and line losses. The OPF problem is defined
by the transmission system, the set of loads, and the available generation. The optimum
system state is achieved when all loads are supplied with power at total minimum line loss
and generation costs. Previous developments in the field of Optimal Power Flow have used
gradient methods, linear programming methods, and Lagrange Multiplier approaches [3].

By considering simple problems, new techniques for solving the Optimal Power Flow
problem are continually being developed. Such simple problems may by modeled by three-
source power systems. A general three-source power system, as illustrated in Figure 1.1, can
be given by three current sources, five line sections modeled as resistors, and three constant
current loads. Each line has a resistance labeled as “R” and each load has a current labeled
as “x”. The current travels from the source to the load through the line.

The cost function used here is a function that measures the loss which results from a

current traveling through a line [7]. This is given by
Cost = Rz?.
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Figure 1.1: General Three-Source System
Therefore, the total cost of the system in Figure 1.1 is
Cost = Ryz? + Ryx2 + Razi + R4a:§ + Rsx3.
However, this may be rewritten in three variables, corresponding to the sources, as
Cost = ﬁ'(z, ¥,2) = R12® + Ry(z — a1)2 + R3(y —a3)® + Ryy® + Rs22.

The only constraint on the system under consideration is that the sum of the loads must

equal the sum of the current sources. That is,

z+y+z=01+ a2+ as. (1.1)

2



Using this constraint, the problem may be reduced from minimizing a function of three
variables subject to an equality constraint to one of finding the minimum of a function of

two variables having no constraints. Solving equation (1.1) for z yields
z=ajt+ast+az—(z+y). (1.2)
Using this substitution, the cost function becomes
F(z,y) = Riz® + Ry(z — a1)? + Ra(y — a3)® + Ray® + Rs(a1 + ex + a3 —z —y)? (L.3)

and the problem restated as

f;ié‘o F(z,y).

Presented in this paper is a step algorithm which, by taking steps of unit length, con-
verges to an integer approximation to the minimum for a function of two variables subject
to no constraints. In a finite number of steps, the scheme produces an ordered pair of inte-
gers (I, J) that gives an integer approximation for the true point of minimization (z*,y*).
That is, [z*] < T < [z*] + 1 and [y*] < J < [y*] + 1, where [a] denotes the greatest integer
less than or equal to the real number a. This algorithm is later modified to take steps of
varying lengths. Although this paper investigates the behavior of a general three-source
power system, the results presented here should provide a foundation for similar results for
n-source systems.

Chapter 2 establishes that, for a typical three-source system, there is a unique mini-
mum. The Line-Step Algorithm is discussed and proven to work in Chapter 3. In Chapter
4, the Equal Incremental Loss Algorithm, another power flow minimization technique, is
introduced. Real models and inequality constraints are considered in Chapter 5.



Chapter 2

QUADRATIC FORMS WITH POSITIVE
DEFINITE MATRICES A

Solving equation (1.3) is equivalent to finding the point (z*,y*) that minimizes the
quadratic function
f(z,y) = a2’ + by’ + czy —dz —ey +h (2.2)

where a,b,c,d,e, and h are real numbers satisfying a > 0,5 > 0,c>0,d > 0, e > 0,
2a > ¢, 2b > ¢, d > ¢, and e > c. These inequalities are the results of further calculations
on equation (1.3). Clearly, R; > 0for 1 <i < 5and a;j > 1for1 < j < 3. Therefore,
since a = Ry + Ry + Rs, a > 0. Similarly, b= R3 + R4+ Rs > 0 and ¢ = 2R5 > 0. Also,
d = 2(Ryjo; + Rsa; + Rsag + Rsa3) 2 0 and e = 2(R3as + Rsa; + Rsas + Rsag) > 0.
The inequalities 2a > ¢ and 2b > c are determined by 2a = 2(R; + Rz + Rs) = 2R; +
2R; +2Rs > 2Rs = cand 2b = 2(R3 + Ry + Rs) = 2R3 + 2R4 + 2Rs > 2Rs = c.
Similarly, d > c and e > c follow from d = 2Ry + 2Rs(a; + a2 + a3) > 2Rs = ¢ and
e = 2R3a3 +2Rs(a1 + a2+ a3) > 2Rs = c. Notice that h may be ignored when considering
the problem of identifying the point (z*,y*) since the only role k plays is in obtaining the
minimum function value, f(z*,y*). Therefore, the problem of finding (z*, 3*) is equivalent
to minimizing the function F given by

F(x) = % T px — xTB 2.2)
2a ¢ d T
where A = ,B= , and x =
c 2 e Y

It is useful to examine the matrix A and determine that A is positive definite. First,



recall that a matrix G is positive definite if and only if xTGx > 0 for all nonzero x [6]. So,

2a ¢ T
warn o]
c 2b y

2azx + cy
[= 4]
cr + 2by

= 2az?+ cxy + czy + 2by?

= 2(az? + czy + by?).
The above inequalities on the coefficients of f yield
2(azx? + czy + by®) = 2azx? + 2czy + 2by?

> cz?+ 2cxy + cp?

= z+9)?220.
Therefore, A is positive definite. So, now F(x) is a quadratic function with a positive
definite matrix A.

To show that F(x) has a unique minimum, x* = | z* y* ]T, it will suffice to show

that there is a unique x* such that F(x) > F(x*) for all x # x* [9]. First, write the
Taylor expansion of F(x) about x*. Let x* denote the unique solution of VF(x) = 0. The

uniqueness of x* follows from the nonsingularity of the matrix A. It follows that
F(x) = F(x*) + VF(x*)(x = x*) + (x = x*)T Hp(x*)(x - x*) (2.3)

where Hp(x) is the Hessian matrix for F(x). Since VF(x*) = 0, the expansion of F(x)
about x* becomes
F(x) = F(x*) + (x - x*)THp(x*)(x — x*),
where
2a c

Hp(x*) =
c 2b



This is exactly the matrix A. It has previously been shown that A is a positive definite

matrix, and since x — x* # 0,
(x = x*)THp(x*)(x - x*) >0

for all x # x*. Hence, F(x) > F(x*) for all x — x* # 0. Therefore, F(x) has a unique
global minimum at x*.

Next, it will be shown that the unique minimum x* is such that z* > 0 and y* > 0.

Since F has a unique global uiinimum (z*,y*),
VF(:C., y‘) = (Fz(zti y‘)s Fy(z‘$ y*)) = (0! 0)'

The above necessary condition VF(z*,y*) = (0, 0) together with the previously mentioned
inequalities on the coefficients of f yield

z* = (2bd — ce)/(4ab — c’) > (2bc — ce)/(4ab — cz) > (c(2b—e))/(4ab — c2) >0.
and
y* = (2ae — cd)/(4ab — ?) > (2ac — cd)/(4ab — &) > (c(2a — d))/(4ab— ¢*) > 0

Therefore, the minimum of equation (2.1) will always lie in the first quadrant of the zy-

plane.



Chapter 3
THE LINE-STEP ALGORITHM

3.1 Geometry of the Line-Step Algorithm

The solution to the problem of approximating the minimum of a quadratic function
has long since been known. In fact, there are numerous software packages to handle this
situation. In many applications a real-valued approximation is quite appropriate, however
there are instances that benefit from an integer-valued solution. If one requires an integer
approximation, the difficulty of the problem increases.

The Optimal Power Flow problem is one application in which discrete approximation
techniques which can minimize the cost function are desired. Such techniques should have
the ability to efficiently handle inequality constraints that may be placed on a power system.
Also, such routines should be easy to implement and quick to converge to a solution. This
is the motivation for the development of the Line-Step Algorithm.

The Line-Step Algorithm is an iterative technique for finding an integer-valued approx-
imation to the true minimum of the quadratic function F as given by equation (2.2). The
algorithm begins by defining the line L in the zy-plane by

L = {(z,y) : Fz(z,y) = Fy(z,9)}.

It follows that (z*,y*) lies on L. The slope-intercept form of the equation for the line L is
given by y = mz+b, with slope m = (2a—c)/(2b—c) > 0 and y-intercept b, = (e—d)/(2b—c).
Notice that the y-intercept will be nonnegative if e > d and nonpositive if d > e. Figure 3.1
shows a contour plot for the function F. The line L divides the zy-plane into two half-
planes. The lower half plane contains all points (z,y) satisfying y < mz + b,. It follows
that y < mz + b, if and only if Fy(z,y) < Fz(z,y). This equivalence can be established
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yA
Region i Fy(x,y) > Fy(x,y)

L= { (X,y):Fx(X,Y)=Fy(x’y)}

Region | Fy(x,y) <Fx(x,y)
>

X

A

Figure 3.1: Contour Plot for Equation (2.2)

from the inequalities on the coefficients of equation (2.1). That is,
y<({(2a—c)z+(e—d))/(2b—c) & (2b-c)y<(2a—c)z+ (e—d)
& 2by+er—e<2ar+cy—d
& Fy(z,y) < Fx(z,y).
On the other hand, y > mz + b, if and only if Fy(z,y) > F;(z,y). Consequently, the
zy-plane may be divided into two regions defined as follows:
Region I={(z,y) : Fy(z,y) < Fz(z,9)}
and
Region II={(z,y) : Fy(z,y) > Fz(z,y)}.
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The Line-Step Algorithm begins at the point (0,0). If (0,0) is in Region I, that is if
F,(0,0) < F;(0,0), then the descent direction is (0,1) since —Fy(0,0) > —F;(0,0). The
number of steps taken in this direction (each one unit in length) is determined by the
smallest integer k which results in (zx,yx) = (0,0) + k(0, 1) being in Region II. Since the
point now lies in Region II, F;,(z, yx) > Fz(zk, yx). Therefore, the descent direction is (1, 0)
since —Fy(zx, k) < —Fz(zk,yx). As before, the number of steps taken is determined by
the smallest integer required to cross L and return to Region I. This procedure is repeated
until the “stopping criteria” is satisfied. In Region I steps are always taken in the direction
of (0,1), with a few exceptions, and in Region II steps are always taken in the direction of
(1,0), again with a few exceptions.

Each time the line L is crossed, a check is made to be sure that at the previous point the
selected direction to proceed is in the direction that results in being as “close” as possible
to the line L. Also at each point (z;,3;), & comparison is made between F(z;,y;) and
F(zi41,¥i+1) to determine if the scheme should stop at this point or continue to the next.
The stopping criteria is satisfied if F(z;,y:;) < F(Zi+1,¥i+1). If this is the case, the point
(zi, ¥:) is used as the integer approximation to the minimum; otherwise, the scheme chooses
the next point.

As noted before, if (z;,y:) is in Region II, then the scheme would, on most occasions,
choose to proceed in the (1, 0) direction. However, consider the case illustrated in Figure 3.2.
Here, L has a large positive slope and the scheme is at the point denoted (z;,¥;). If a step
is taken in the (1,0) direction then the distance between (z; + 1, ;) and the line L is larger
than the distance between (z;,y; + 1) and L. In this case, an exception would be made
and the scheme would choose (z;,y; + 1) as the next point in the sequence since this choice
yields a smaller distance to the line L.

If a non-stopping point (z;,y;) falls on the line L, then it makes no difference in which
direction the next step is taken. If the stopping criteria is not satisfied by either of the
points (z; + 1,y;) or (zj,y; + 1), then, after one more step, both choices yield the same
point (z; + 1,y; + 1). This can be seen in Figure 3.3.



L

(xi:Yi‘”l
(XiYi) 4 o (xj+1,yj)
Y S

Figure 3.2: Line L with Large Positive Slope

Figure 3.3: Non-Stopping Point (z;,y;) on L
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3.2 Discussion of the Algorithm

The Line-Step Algorithm is now presented in full detail. It is a step method that takes
unit steps in the positive z or positive y direction, crossing back and forth across the line L.
It should be noted that a point could lie on the line L, yielding two choices for the selection
of the next point. However, the desired end result, being within one unit of each component
of the true minimum (z*, y*), will be satisfied without including this option in the scheme
(see Figure 3.3). In the event that (z;, ;) does lie on L, the scheme automatically takes the
next step in the same direction as the previous step.

The Line-Step Algorithm

Step 0. Let m = (2a — c)/(2b—c), by = (e — d)/(2b - c).

Step 1. Check the point (z1,y1) = (0,0) to see if it is in Region I, Region II, or
lies on L.
Leti=1.
If (z1,11) = (0,0) is in Region I, go to Step 2.
If (z1,11) = (0,0) is in Region II, go to Step 3.
If (z1, 1) = (0,0) lies on L, go to Step 4.

Step 2. Find the intersection point of z = z; and L. Denote this point by (z;, ).
Let n* =[n]+ 1. Let j = 1.
Let (Titj» ¥i+s) = (zi, %) + 5(0,1).
While F(zi4j-1,%+45-1) > F(Zi4;,¥i+5) and j <n*=1,let j=j+ 1.
If F(ziyj—1,¥i+j-1) < F(Zitj, ¥i+j), let ¢ =i+ j and go to Step 5.
If j =n* let H = yiyj — (mziyj +by) and W = m(zipj + 1) + by — yiyj—1.
If H<W,leti=1+ j and go to Step 3.
If H > W, then let (Zi4j, ¥i+j) = (Zit+j-1,Yi+j-1), 1 =1+ J, and
start Step 2 again.

11



Step 3. Find the intersection point of y = g; and L. Denote this point by (8, 1;).
Let 6* = [6] + 1. Let j = 1.
Let (Ziyj, %i+5) = (zi,4:) +35(1,0).
While F(Zi4j-1,¥i+i-1) > F(Zivj Vi+j) and 5 < 6* — 1, let j = j + 1.
If F(Zi4j-1,¥Yi+i-1) < F(Zitj, Yi+j), let i =i+ j and go to Step 5.
If j = 6, let Y = iyj — (giej — by)/m) and X = ((yiss + 1 — by)/m) — zigjr.
IfY < X, let i =i+ j and go to Step 2.
IfY > X, then let (zitj, ¥i+j) = (Titj—1,Yitj-1), t =i+ j, and
start Step 3 again.

Step 4. Choose (Zi+1,¥i+1) = (zi, %) + (1,0) or (Ti41, ¥i+1) = (zi, %) + (0,1)
(the scheme will arrive at the same point in two steps unless the
stopping criteria is satisfied prior to making two steps).

If F(z;,9) < F(zi+1,%i41), let i =i+ 1 and go to Step 5.
If F(z;, %) > F(zit+1,%i+1), let i =i+ 1 and go to Step 2 if
(Ti+1, ¥iv1) = (2i, %) + (1,0) or go to Step 3 if

(Tit1, vi41) = (zi, ) + (0, 1).

Step 5. Let (I,J) = (-1, ¥i—1) be the integer approximate for (z*, y*).

3.3 Convergence of the Line-Step Algorithm

It is now proven that the Line-Step Algorithm converges to a point (I, J) with [I-z*| < 1
and |J — y*| < 1. It is further shown that the scheme reaches its stopping point in a finite
number of steps.

Theorem. In k steps with [z*] + [y*] < k < [z*] + [¥*] + 2, the Line-Step Algorithm will
stop at (I,J) = (zk,yx) with |z —2*| < 1, |y — ¥*| < 1.

12



Proof. Let k = [z*] + [y*] + 2 (i.e., the scheme ran for [z*] + [y*] + 2 steps).
The scheme chooses points (z;, ;) in such a manner that (z;, ¥;) is always within
one unit to the right or one unit above the line L. Since (z*,y*) lies on L and
the scheme can only step to the right or up, (z;,y:;) must stay inside or on the
boundary of the rectangle Q2 having coordinates (0,0), (0, [y*] + 1), ([z*] + 1,0),
and ([z*] +1, [y*] + 1). Since one step is taken at each iteration, after k iterations
zx = [z*] + 1 and ¥ = [y*] + 1. Without loss of generality, suppose that the next
step attempted was in the z-direction (a similar argument considers an attempt
to step in the y-direction). Thus, zx4+; = [z*] + 2 and yr+1 = [y*] + 1. Let
e=z*-[z*), 7=9y" - [y*]. It follows that 0 < e < 1,0 < 7 <1 and

F(zks1,y641) — F(zroue) = 2a[z*]+3a+c([y*] +1) —d
= 2az*+cy*—d+3a+c—2a—cr
= Fy(z*,y*)+a(3—2¢)+c(l—-7)
= a(3—2¢)+c(l-7)>0.

Thus, the scheme would stop in [z*]+[y*]+2 steps with (I, J) = (zk, y&) = ([z*]+
1,[y*] + 1). In this case, the desired inequalities 0 < I —z* <1,0<J—-y* <1
are clearly satisfied.

Now, a claim is made that if the scheme is stopped prior to making [z*] +
[y*] +2 steps, then it stops at one of the corners of the unit box I" having corners
(") D, (2], ")+ 1), ("] + L, ")), ([2*] + 1,[5*] + 1). It should be clear
that I" contains the point (z*,y*).

First consider the cases in which the scheme produces a point of the form
([z*] + 1, [¥*] — ) or of the form ([z*] — j, [y*] + 1) for some j > 1. In either of
these cases, the point is on the boundary of §). Since L has a positive slope, the
scheme would only stop if

F(z']+ L, -+ 1) - F(z*] + L, "] =) =b—2b(7 + j) + (1 +€) 2 0

13



or
F(z*] -7+ 1,[¥*1+1) - F([z*] -4, [¥*']+1) =a—-2a(e+j)+c(1+7) 2 0.

Without loss of generality, consider the first inequality given above. That is,
consider the case where the point lies on the right boundary of Q. Recall that
once the line L is crossed, the scheme produces points within one unit of L. Since
the point lies on the right boundary of €2, L has been crossed at least one time.
Therefore, L lies between ([z*], [y*] — j) and ([z*] + 1, [¥*] — j). Notice that in
order to reach a point in the iterative procedure having z coordinate [z*] + 1, the
last crossing of L, not necessarily at the previous step, must have occurred by
moving in the z direction from ([x*], ) to ([z*]+1, {) for some nonnegative integer
i, with ¢ < [y*] — j. In addition, at the point of the crossing, the = coordinate is
(G = by)/m) which yields

2] +1 = (G - by)/m) < (G — by)/m) - [2"]
or
142(s* = (i = by)/m)) < 2.

The slope of L is positive, hence z* must lie to the right of (i — b,)/m. It
should be noted that z* — (i — b,)/m > 0 since i < [y*] (recall that j > 1).
This observation, together with the above inequality, implies that € > 1/2. This
estimate for ¢ combined with the stopping criteria gives

b-2b(r+j)2—c(l—€) > —c+c/2=-c/2> b

or
2(1—1—4)>0

which holds only if 1 > (74 j). However, this cannot hold since j > 1. Therefore,

the stopping criteria will not be satisfied at any point ([z*] + 1,[y*] — j) or

([z*] — 4, [¥*] + 1) for some integer j > 1.

14



Now, consider the possibility of stopping the scheme at some point ([z*] —
i, [y*]—J) where i and j are nonnegative integers satisfying (%, j) # (0,0). Without
loss of generality, assume that the scheme was stopped by attempting to take a
step in the z-direction. The stopping criteria yields

F(z*] —i+1,[y"] - 4) - F([z*] - 4, [v"] - 5)
= 2a[z*] — 2ai +a+c([y*] —j) —d
=2a(z*—€)—2ai+a+cy*—T7-5)—-d
= Fp(z*,y*) —a(2e + 2i — 1) — (7 + j)
=—a(2e+2—1)—c(r+7) >0

Notice that if 1 > 1, then the above inequality cannot hold. Consequently, the
stopping criteria is not satisfied and the scheme is not stopped at ([z*]—1i, [y*]—7).
If : = 0 then j is an integer satisfying j > 1 and thus

F(le*] - i+1,[y*] - §) - F(z*] - 4, [y") - 5)
= F([z*] + 1,[¢*] - 5) - F([=*], [¥*) - 7)
=—-a(2¢—-1)—c(t+35) >0

with 7 + j > 1. If the point ([z*], [y*] — j) is above the line L, and the next
attempted step is to go to ([z*] +1, [y*] — 7), then, as shown above, € must satisfy
€ > 1/2. This inequality together with (74 5) > 0 implies that the inequality that
is necessary to satisfy the stopping criteria cannot hold. Therefore, the scheme
does not stop at ([z*], [y*] — j) with 7 > 1.

It now follows that the sequence of iterates will contain at least one of the
corners of T'. If ([z*], [¥*]) is obtained, then the scheme will either stop or continue
on to one of the points ([z*] + 1,[y*]) or ([z*],[¥*] + 1). If ([z*] + 1,[y*]) or
([=*],[¥*] + 1) is in the sequence, then either the stopping criteria is satisfied or
the scheme moves on to ([z*] + 1, [y*] + 1). As shown above, the scheme stops if
([z*] + 1, [y*] + 1) is obtained.
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Clearly, all corner points of I' satisfy the desired inequalities. That is, each
component is within one unit of the corresponding component of (z*,y*). The
point ([z*], [¥*]) could be obtained in [z*] + [y*] steps while [z*] + [y*] + 2 steps
guarantees that the scheme will be at the point ([z*] + 1, [y*] + 1). Thus the
scheme will stop in k steps with [z*] + [y*] < k < [z*] + [y*] + 2.

More evidence of the fact that the Line-Step Algorithm converges to an appropriate
integer-valued approximation to the true minimum of equation (2.2) can be found by con-
sidering the same problem where, now, the scheme takes steps of size h in the positive z
and positive y directions. Then, by a similar argument to the one presented in the theorem,
it can be concluded that the scheme will stop at a point (I, J) = (zk, yx) with |z, —z*| < h,
lyx — ¥*| < h. Clearly, if h approaches 0, that is, if the step size diminishes to 0, then
the sequence of iterates, (zx,yx), are exactly those points on the line L. Also the limiting
inequalities |zx — z*| < 0, |ykx — ¥*| < 0 hold. Therefore, I = zx = z* and J = yx = y*, so
the scheme has converged to the true minimum.

It should be evident now that the Line-Step Algorithm is more than a means of finding
integer-valued approximations to quadratic functions. For instance, if the step size were
chosen to be one-half, then the algorithm would converge to a point (I, J) where |[[—z*| <
and |J —y*| < % Therefore, given any tolerance, 7, the Line-Step Algorithm can converge

to a solution (I, J) with |I — z*| < 7 and |J — y*| < 7 by taking steps of size h = 7.

Example 3.1 This example will illustrate the convergence of the Line-Step Algorithm.
Consider the system depicted in Figure 3.4. For this configuration, the cost function is
given by

Cost=F(z,y,2) =22+ (z - 2>+ (y — 42 + > + 22

with the constraint

z+y+z=12

16



Figure 3.4: System for Example 3.1
Using this constraint, the cost function is reduced to
f(z,y) = 4z% + 3y? + 2zy — 28z — 32y + 164. (3.1)

Using the FMINS function of MATLAB, the actual minimum of equation (3.1) is found to
be (z*,y*) = (2.3636,4.5454). The Line-Step Algorithm is applied to equation (3.1) using
astep sizeof h=1.

Figure 3.5 shows the path of the scheme and the approximation point (I, J) = (2,5).
Notice that |I — z*| = |2 — 2.3636] = 0.3636 < 1 and |J — y*| = |5 — 4.5454| = 0.4546 <
1. Next, the step size is reduced to h = % Now, the algorithm converges to the point
(I,J) = (2.5,4.5), as shown in Figure 3.6. Again, the difference (I,J) — (z*,y*) yields
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[I — z*| = |2.5 — 2.3636] = 0.1364 < .5 and |J — y*| = [4.5 — 4.5454| = 0.0454 < .5.
Figure 3.7 depicts the results of applying the Line-Step Algorithm with a step size of h = i—
This step size yields the point (I, J) = (2.25,4.5). Now the difference (I, J)—(z*, y*) reveals
|I — z*| = |2.25 — 2.3636| = 0.1136 < .25 and |J — y*| = |[4.5 — 4.5454| = 0.0454 < .25. The
scheme is applied once more with a step size of h = % Figure 3.8 shows the path of the
scheme and the approximation (I, J) = (2.375,4.5). Notice that |I—z*| = |2.375—2.3636| =
0.114 < .125 = k and |J — y*| = |4.5 — 4.5454] = 0.0454 < .125 = h. It should now be clear

that the scheme is converging to the actual minimum as smaller step sizes are chosen.
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Figure 3.5: Solution for Equation (3.1) with Step Size of h =1

19




(1,J)=(2.5,4.5)
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Figure 3.6: Solution for Equation (3.1) with Step Size of h =
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Figure 3.7: Solution for Equation (3.1) with Step Size of h = %
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(1,J)=(2.375,4.5)

Figure 3.8: Solution for Equation (3.1) with Step Size of h = }
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Chapter 4
ALTERNATE MINIMIZATION TECHNIQUES

4.1 The Lagrange Multiplier Method

The original problem considered was that of minimizing the cost function of a general

three-source system with a linear equality constraint. Recall that the cost function for such

a system is
Cost = F(z,y,2) = Riz? + Ry(z - 01)2 + R3(y — 03)2 + Rqy? + Rs22.

subject to
zt+y+z=a1 +az+as3.

However, this constraint may be rewritten as
c(z,y,2) =z+y+z— (a1 +a2+a3)=0.

A classical approach to this constrained problem is to apply the Lagrange Multiplier
method. This method involves introducing the Lagrangian function

L(x, ) = F(x) — Ae(x)

where x = (z,, z). Then the minimization problem reduces to one of finding x* and A\*

which satisfy
VL(x*,A*) =0.

This is equivalent to solving
VF(x) = AV¢(x). (4.1)

The Lagrange multiplier of any constraint is a measure of the rate of change of F' subject

to changes in the constraint function [5).
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4.2 The Equal Incremental Loss Algorithm

A new algorithm for Optimal Power Flow, called the Equal Incremental Loss (EIL)
Algorithm, has been developed for minimizing constrained cost functions associated with
power systems. The EIL method, a variation of the traditional Lagrange Multiplier method,
yields an integer-valued solution for such problems.

The EIL Algorithm, a repetitive scheuie which employs a discrete step size, converges
to a solution that is within the step size of the optimal. Given the discrete step size and the
total system load, the number of iterations required to reach the solution can be estimated
by dividing the total load by the step size. The exact optimal solution may be obtained by
varying the step size during the algorithm.

At the start of the algorithm, all system loads are assumed to be unsupplied, and as
the EIL Algorithm progresses toward the solution, the loads are supplied in discrete step
sizes. The initial loads to be evaluated for supply are those closest to the sources. With
each step, line losses are calculated including only the previously supplied load currents and
the line current due to the new load increment. The resulting function is referred to as a
sub-cost function. The line losses due to supplying the load increment from every source is
evaluated separately.

At each step, the algorithm answers the following question: Which combination of
source and load will result in the next increment of load being supplied at minimum line
loss? The source and load combination producing the minimum increase is selected. In the
event that two or more sources produce the same minimum increase, an arbitrary choice
of which source to increment is made. Only one source is incremented at each iteration.
The algorithm continues in like manner until all loads are satisfied. When the algorithm
is finished, the sources which should supply each load have been identified along with the
power delivered by each source [2].

The basic steps followed by the EIL Algorithm are summarized below.

Step 1: Evaluate the sub-cost function associated with supplying the next increment
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of load at each ending load in the system.

Step 2: From the results of Step 1, choose the combination of the source and
ending load which produces the minimum increase in loss.

Step 3: If all loads are fully supplied, the EIL Algorithm has converged;

otherwise, return to Step 1.

4.3 Technique Comparisons

The comparison between the Equal Incremental Loss Algorithm and the Lagrange Mul-
tiplier method is best seen through a simple example.

Example 4.1 Consider the system in Figure 3.4. Using a load increment of one, the first
step of the EIL Algorithm is to calculate the line loss associated with supplying one unit of
power at each of the three sources. So there are three combinations to consider:

A - 1 unit at source z, 0 units at sources y and 2
B - 1 unit at source y, 0 units at sources z and 2

C - 1 unit at source z, 0 units at sources z and y

The associated cost function is given by f(z,y, z) = 2r2+y2+22. For case A, the constraint
functions are z = 1, y = 0, z = 0. The resulting cost due to these constraints is 2. For case
B, the constraint functions are x = 0, y = 1, 2 = 0. The cost subject to these constraints
is 1. Lastly, for case C, the constraints z = 0, y = 0, z = 1 and the resulting cost is 1.

The EIL Algorithm now chooses the combination which produces the minimum increase
in loss. For this example, both cases B and C yield the minimum increase, so without loss
of generality, case B is chosen. Based on this choice, the next step of the algorithm yields

three combinations to consider:

A - 1 unit at source z, 1 unit at source gy, and 0 units at source 2
B - 0 units at source z, 2 units at source y, and 0 units at source z

C - 0 units at source z, 1 unit at source y, and 1 unit at source 2
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Table 4.1 summarizes the twelve steps involved using the EIL Algorithm. The solution
obtained using this technique indicates that, to satisfy the total load of 12, 2 units should
be supplied by source z, 5 units by source y, and 5 units by source z.

Now, apply the Lagrange Multiplier method to each of the combinations from the EIL
Algorithm. For the first step of the EIL Algorithm, there are again three combinations to

consider:

A - 1 unit at source z, 0 units at sources y and 2
B - 1 unit at source y, 0 units at sources z and 2

C - 1 unit at source 2, 0 units at sources z and y

The associated cost function is given by f(z,y,2) = 2z2 + y2 + 22 and, for case A, the
corresponding constraint functions are z = 1, y = 0, z = 0. So, the first Lagrange Multiplier

problem is to solve
(4z,0,0) = X

where X = (M, A2, A3) and A; is the multiplier corresponding to the constraint z = 1, Ag is
the multiplier corresponding to the constraint y = 0, and A3 is the multiplier corresponding
to the constraint 2 = 0. It should be noted that, for any combination of constraint functions,
the right hand side of equation (4.1), modified to the case of three constraint functions, will
be A1(1,0,0) + A2(0,1,0) + A3(0,0,1) because the constraint functions are always linear.
So, for this combination, the solution is X = (4,0,0). Similarly, for case B, the solution of
the multiplier problem is XA = (0,2,0), and for case C, the solution is X = (0,0,2). Now,
for each of the three combinations, sum the values for A;, the values for A, and the values
for A3. The combination which will yield the smallest increase is the one in which the new
load increment is in the direction of z if the sum of the values for A; is less than those for
A2 and Az. If the sum of the values for )y is less than those for A\; and Az, then choose
the combination in which the new load increment is in the direction of y. Similarly, choose
the combination in which the new load increment is in the direction of z if the sum of the

values for A; and those for A, are greater than the sum of the values for A3. In the event
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Table 4.1. The EIL Algorithm

EIL | Source | Source | Source Cost Function Cost | EIL
Step T y z flz,y,2) = Choice

1 0 0 2

1 ] 1 0 222 4 42 + 22 1 —
0 0 1 1
1 1 0 3

2 0 2 0 222 4 2 + 22 4
0 1 1 2 —
1 1 1 4 —

3 0 2 1 222 + y? + 22 5
0 1 2 5
2 1 1 10

4 1 2 1 272 + y? + 22 6 —
1 1 2 6
2 2 1 13

5 1 3 1 222 + % + 22 12
1 2 2 10 -
2 2 2 16

6 1 3 2 2x2 4 2 4 22 15 —
1 2 3 15
2 3 2 21

7 1 4 2 222 + y2 + 22 22
1 3 3 20 —
2 3 3 26 —

8 1 4 3 222 + y2 + 22 27
1 3 4 27
3 3 3 37

9 2 4 3 322 — 4z + 2y —8y+22+20| 33 —
2 3 4 33
3 4 3 44

10 2 5 3 322 -4z +2y> —8y+22+20| 43
2 4 4 40 —
3 4 4 51

11 2 5 4 322 -4z +2y> -8y +22+20| 50
2 4 5 49 —
3 4 5 60

12 2 5 5 3r2 -4z 4+ 22 —8y+22+20 | 59 —
2 4 6 60
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that the minimum sum occurs more than once at any step, then one could arbitrarily choose
any combination with this value. So, for this step, the sum of the values for )\; is 4, the
sum of the values for As is 2, and the sum of the values for A3 is 2. Therefore, one could
choose either combination B or combination C. The relationship between the values for
the sums of A\; and the sub-cost functional values has not been fully explored. Therefore,
this information is offered as an observation only. A summary of the Lagrange Multiplier
method is given in Table 4.2. The end result is exactly the same as the result found by

doing the EIL Algorithm.

In the next example, the correspondence between the Equal Incremental Loss Algorithm
and the Line-Step Algorithm is established.

Example 4.2 Recall that the EIL Algorithm considers sub-cost functions for each step.
Though this seems contrary to the action of the Line-Step Algorithm, the EIL Algorithm
actually parallels the Line-Step Algorithm. At the k-th step, the EIL Algorithm is in fact
minimizing the sub-cost function subject to the constraint z + y + z = kl where [ is the
amount of load being incremented per step. This is easily seen by applying the Line-Step
Algorithm to each of these sub-problems. Refer to Example 4.1 and the results of the EIL
Algorithm in Table 4.1. The claim is that for Step 1, the EIL Algorithm is minimizing
the sub-cost function given by f(z,y,z) = 222 + y® + 22 subject to z+ y + 2 = 1. The
algorithm chooses the point (0,1,0). When this subproblem is minimized using the Line-Step
Algorithm, the result is (0,0). Since z = 1—z—y, the Line-Step Algorithm chooses the point
(0,0,1). This point differs from that found by the EIL Algorithm, however, that scheme
would also allow the choice of the point (0,0,1). Therefore, the two methods coincide at
this step. Now, for Step 2, the EIL Algorithm is again minimizing f(z,y, z) = 222 +y2 + z?
subject to £ + y + z = 2. The point (0,1,1) is chosen. The result of applying the Line-Step
Algorithm to this sub-problem is (1,0). Now, z = 2—z—y, so the scheme actually converges
to the point (1,0,1). At first glance, it may appear that the two methods are stepping in

different directions, however, this is not the case. In fact, the two methods again coincide
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Table 4.2. The Lagrange Multiplier Method

Step [z |y ]| 2 Vi(z,y,z) A XA Choice
1[{0]0 (40,0) | =x =4

1 |of1]o (4z, 2y, 22) (020) | Txg=2 | «
0|01 (0,0,2) | TAxz=2
I[1]0 (420) [ =h=4

2 [0]2]0 (4z, 2y, 22) (0,4,0) | =X =8
0|11 022 | Zx=2| «~
I[1[1 (422 [ Zn=4| <

3 [of2]1 (4z, 2y, 2z) (04,2) | Tr=8
012 (02,4) | Txz3=8
211 (82,2) | A =16

4 [1(2]1 (4z,2y, 2z) (44,2) | Th=8| «~
1|12 (424) | Tx3=8
221 (84,2) |[ZA =16

5 [1(3]1 (4z,2y, 22) (46,2) | Txy =14
1122 (444) | T =8|
222 (84,4) |ZA =16

6 [1(3]2 (4z, 2y, 22) (464) [Tr=14|
1|23 (4,4,6) | Zx3=14
232 (8,6,4) | Th =16

7 [1]4]2 (4z, 2y, 2z) (4,84) [Tr =22
133 (466) [Sxs=14|
233 (866) [Zh =16 «

8 |1(4]3 (4z, 2y, 22) (4,8,6) | Zr=20
1|34 (4,6,8) | Zas=20
3(3[3 (14,6,6) | =A; = 30

9 |2]4[3|(6z—4,4y—8,22)| (886) |TA=20| «
2(3|4 (8,6,8) | Th3=20
3143 (14,8,6) | TA =30

10 |2|5(3|(6x—4,4y—8,22) | (8,126) | Tha =28
214/4 (888) |Tas=22| ~
3[4(4 (14,88) | &A1 =30

11 [2]|5(4|(6z—4,4y—8,22) | (8,12,8) | Zry =28
245 (88,10) |TA3=26|
3[4][5 (14,8,10) [ TX; = 30

12 | 2|55 (6z—4,4y—8,22) [ (8,12,10) | TAp =28 | «
2|46 (8,8,12) | TAg = 32




after Step 3. For Step 3, the EIL Algorithm minimizes f(z,y,z) = 222 + y? + 22 subject
to £ 4+ y + 2 = 3, and chooses the point (1,1,1). The Line-Step Algorithm also converges
to the point (1,1) when applied to this sub-problem. This is actually the point (1,1,1)
since z = 3 — z — y. So, when the EIL Algorithm has the option of choosing two paths to
follow, the point chosen may differ from that chosen by the Line-Step Algorithm, but after
two steps, the two schemes arrive at the same point. See Table 4.3 for the results of the

remaining nine steps.



Table 4.3. A Comparison between the EIL Algorithm
and the Line-Step Algorithm

Step Cost Function Constraint EIL | Line-Step

f(z,y,2) = z+y+ 2= | Choice | Choice
1 222 + o2 + 22 1 (0,1,0) [ (0,0,1)
2 222 + 42 + 22 2 (0,1,1) | (1,0,1)
3 272 4+ 3% + 22 3 (1,1, | (1,1,1)
4 222 4 2 + 22 4 (1,2,1) | (1,1,2)
5 222 4 y2 + 22 5 1,2,2) | (1,2,2)
6 222 4 92 + 22 6 (1,3,2) | (1,2,3)
7 2r2 + 2 + 22 7 1,3,3) | (1,3,3)
8 222 4 4% + 22 8 (2,3,3) | (2,33)
9 |[322-4r+2y°-8y+22+20 9 (24,3) | (2,4,3)
10 (3z2 -4z +2y2 -8y+22+20 10 (244) | (2,4,4)
11 {322 -4z +2y2 -8y +22+20 11 (24,5) | (2/4,5)
12 | 322 -4z +2y2 -8y + 22420 12 (2,55) | (2,5,5)
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Chapter 5

REAL MODELS AND INEQUALITY
CONSTRAINTS

Now, several examples are presented in which the Line-Step Algorithm is applied to

minimize quadratic functions.

Example 5.1 Suppose that quadratic function
f(z,y) = 2522 — 50z + 4y° — 32y + 89 (5.1)

is to be minimized. One advantage of the Line-Step Algorithm is that it can minimize some
functions with fewer iterations than other methods. In this example, the Line-Step Algo-
rithm is compared to the method of Steepest Descent. Recall that the method of Steepest
Descent is an iterative process that begins with an initial value X, and each successive
iterative is given by

Xi+1 =X+ Qi 41Tk

where
Ty = =V F(Xz)
and
hrs = Thy Tk)
M7 (AT )

Now the method of Steepest Descent is applied to equation (5.1). The results after 20
iterations are given in Table 5.1. Figure 5.1 shows the path of the Steepest Descent iterates
and a contour plot of the function given in equation (5.1). Clearly, the true minimum of
equation (5.1) is given by (z*,y*) = (1,4). The Steepest Descent iterates are oscillating

about the minimum; that is, they are changing direction at each iteration.
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Table 5.1. Steepest Descent
k X k X k Xk
0 . _[o s | g, [1034887] | . | _ [0004452]
=19 7= | 3.65944 | 14= 1 3 977783
1| g o[ 1323 g | % — [ 0.948550 | || [ _ [ 1.001791 ]
1= 0.84672 X8 = | 3794274 | 15 = | 3082485
[ 0.5239 ] _ [ 1016615 ] [ 0.997357 ]
2 | X2=| 90040 | 9 | %= 3837800 | [ 16 | %16 = 3.989420
g | g [ 11888 [0 (g | 09755 17 | 50, = [ 1:000853 |
X3 = | 9.4082 | X10= | 3902031 | 17= | 3.091659
_ [o77322] [ 1.0079 _ [ 0.998741 ]
4 | %= 309279 | 11 [ %11 = 3 999769 | 18 | %18 = | 3 994961
s | g [10m825] || |, _[ooss3si]f of_ _ [ 1.000406 |
X5 = | 3.28483 | 12= | 3953346 19= | 3906028
6 |z o[ 089190 ]|l o f [ 1.003762 | 00 | %o = [ 0.999400 |
X6 = | 3.567992 187 | 3.963222 | 20 = | 3997600

Now, the Line-Step Algorithm is applied to equation (5.1). As seen in Figure 5.1, the
Line-Step Algorithm has stopped at the point (I, J) = (1, 4) in five steps. So, the Line-Step

iterates converge to the exact minimum much faster than the method of Steepest Descent.
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Figure 5.1: Steepest Descent Method vs. Line-Step Algorithm
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Figure 5.2: System for Example 5.2

Next, several systems are examined and the Line-Step Algorithm is applied to find the

minimum of the cost function.

Example 5.2 For this example, consider the system depicted in Figure 5.2. The cost
function for this system is given by

f(z,y,2) = 22 + (z — 5)* + 2(y — 6)* + 3y + 25 (5-2)

subject to the constraint
z+y+2=14.
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] (1,J)=(4,6)

1 2 3 4

Figure 5.3: Solution of Equation (5.3)

Equation (5.2) may be reduced to a function of two variables by using the substitution
z=14-z—-y.
By doing this reduction, the cost function becomes
f(z,y) = 522 + 5y + 4zy — 66z — 80y + 489. (5.3)

When the Line-Step Algorithm is applied to equation (5.3) the result is (I, J) = (4,6).
Comparing this answer to the true minimum, (z*,y*) = (4.0476, 6.3809), reveals | — z*| =
|4 — 4.0476| = 0.0476 < 1 and |J — y*| = |6 — 6.3809] = 0.3809 < 1. See Figure 5.3 for the
path taken by the algorithm.



Figure 5.4: System for Example 5.3

Example 5.3 Next, the system in Figure 5.4 is considered. For this example, the cost
function is

f(z,v,2) = 22% + (z — 9% + (y — 8)% + 2y% + 2(z — 10)% + 42? (5.4)

and the constraint has the form

c+y+2z2=22
Reducing equation (5.4) to one of two variables results in the following function:
f(z,y) = 922 + 9y + 12xy — 232z — 240y + 2304. (5.5)

Using a step size of h = 2, the Line-Step Algorithm yields a minimum with coordinates
(I,J) = (8, 8) (see Figure 5.5). The true minimum of this function is (z*,y*) = (7.20, 8.53).
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Figure 5.5: Solution for Equation (5.5) with Step Size of h = 2
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Figure 5.6: Solution for Equation (5.5) with Adaptive Step Size
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Now, the algorithm is reapplied using an adaptive step size. The initial step size is h = 4.
The step size is reduced until A = 0.25 which yields an approximation of (I, J) = (7.25, 8.50).
This result can be seen in Figure 5.6. Clearly, it is advantageous to use the adaptive step

size to better approach the minimum.

Thus far, the problem under consideration has been to minimize the cost function subject
to the constraint that the sum of the loads is equal to the sum of the output. However, under
realistic conditions, power systems may be hampered by other constraints, both from within
the system and from outside conditions. Examples of constraints which arise from within
the system are limitations on the amount of power that a line may carry and operational
limits of a plant. Outside factors include environmental constraints such as loading limits
on equipment and plant emissions. When such conditions are taken into consideration, the
complexity of the problem increases because inequality constraints must be introduced.

Now, a problem involving inequality constraints is examined. The constraints for this
problem are on the amounts of power that the lines can carry. The lines are bounded
both above and below. The upper bounds may be due to a constraint on the amount of
generation of the plant. The lower bounds might be present because the system becomes
unstable if generation levels fall below a certain amount.

The problem considered earlier is now revised to include inequality constraints. As
before, a general three-source system is used as the model and the objective is to minimize

the cost function given by
Cost = F(z,y,2z) = Riz? + Ro(x — o1)? + R3(y — a3) + Ray? + Rs22.
subject to the following constraints:

zt+y+z=a1+az2+a3



B3<z< 1.

Using the same substitution as given by equation (1.2) yields

6i<z<m (5.6)
y<y (5.7
h<ait+tataz—(z+y) <s. (5.8)

Further calculations on equation (5.8) yield
(n+az+a3) -3 <z+y< (a1 +az2+a3)— 6.
Also, combining equations (5.6) and (5.7) yields
h+&h<z+ty<m+r.
Therefore, z + y must satisfy two sets of inequalities, namely
h+tbh<z+ty<m+m

and

(a1+az+az)—13<z+y<(a1+az+a3)—8.

To fulfill both of these requirements, take the lower bound of z + y to be the maximum of
61 + 62 and (a; + az + a3) — 63 and take the upper bound to be the minimum of v; + 72

and (a; + ag + a3) — 63. In summary,
maz{6; + 82, (a1 + az + a3) — 13} < z+y < min{y1 + 73, (a1 + a2 + a3) — &3}

Let p = maz{6; + 62, (o1 + a2 + a3) — 73} and g = min{m + 72, (o1 + @z + a3) — 63}. Then,
p < z+y < q. Consider p=z +y. Then y = p — z defines a line in the zy-plane which
serves as a lower bound for values of  + y. Similarly, z + y = ¢ yields the liney = ¢~z
in the zy-plane which serves as an upper bound for values of z + y. This can be seen in
Figure 5.7 where the shaded region defines feasible points (z, y).
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Figure 5.7: Region of Feasible Points for Inequality Constraints

Example 5.4 The system in Figure 5.8 provided by Arkansas Power and Light will be
considered in this example. The cost function for this system is given by

f(z,y, 2) = 1.76722+0.57y% +4.38022 — 672.4882 — 1188.817y — 1764.6852+155739.52 (5.9)

with the constraint
T+ y+ z = 753.066.

Using the substitution z = 753.066 — = — y, equation (5.9) is reduced to

f(z,y) = 6.156z2 + 4.959y? + 8.778xy — 5518.2166z — 4964.5458y + 1315854.3.  (5.10)
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Figure 5.8: Arkansas Power and Light System for Example 5.4
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(1,J)=(250,275)

Figure 5.9: Solution for Equation (5.10) with Step Size of h = 25

The Line-Step Algorithm is applied to equation (5.10) using a step size of h = 25. The
scheme converges to the point (I, J) = (250,275) as seen in Figure 5.9. The true minimum
of equation (I) is (z*,y*, 2*) = (247.4834, 281.5222, 224.0605). The Equal Incremental Loss
Algorithm, when applied to the same system, yields a solution of z = 250, y = 275, z = 225.

Example 5.5 Continuing with the system in Figure 5.8, the Line-Step Algorithm is
now applied using an adaptive step size. Initially, the step size is h = 64. Once the
scheme converges to the point (I, J) = (xx, yx), the process repeats starting from the point
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Figure 5.10: Solution for Equation (5.10) with Adaptive Step Size
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Figure 5.11: Detailed Graph of Figure 5.10
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(zk-2, yx—2) and uses a step size of h = 32. This is repeated until h = 1. Figures 5.10
and 5.11 illustrate the path of the algorithm and its point of convergence, (I, J) = (247, 282).

Example 5.8 The cost function for the system in Figure 5.8 was minimized in Example
5.4. Although the results in that example are correct, they do not reflect the best solution
for the system because in actuality this particular system, provided by Arkansas Power
and Light, has a constraint on the generation levels of the sources. The solution found in
Example 5.4 violates a constraint on this system.

The generation levels for each of the sources are given by:
75 <z <265

60 <y < 250
35 < z < 300.

Clearly, the solution from Example 5.4, (z,y, z) = (250,275, 225), violates the constraint
on source y since that source cannot output more than 250 units of power. So, the Line-
Step Algorithm is now reapplied to this system taking these inequality constraints into
consideration. The step size used is h = 25. The results are (z,y,2) = (250,250, 250).
Figure 5.12 shows the path taken by the algorithm as well as the region of feasible points
(z,y). Notice that the algorithm now begins at the minimum values for = and y, namely,
(zo, %) = (75,60). By beginning here instead of the origin, the number of steps required
to reach the region of feasible points is reduced.
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Appendix A

MATLAB CODES FOR LINE-STEP
ALGORITHM

File Name: Smthesis.m

% Input a vector of the form DATA=[a b c d €]

% a = the coefficient of the z2 term in the cost function

% b = the coefficient of the 2 term in the cost function

% ¢ = the coefficient of the zy term in the cost function

% d = the coefficient of the z term in the cost function

% e = the coefficient of the y term in the cost function

% m = the slope of the line F; = F,

% by = the y-intercept of the line F; = F;

% f = the cost function

% x = the £ component of the approximation

% y = the y component of the approximation

% Fx = the partial of f with respect to «

% Fy = the partial of f with respect to y

% n = the intersection point of z(i) and F; = F,

% gin = the greatest integer of n

% nstar = the maximum number of steps that may be taken in the y direction
per iteration

% H = the distance in z between the point y(i + j) and the line

% W = the distance in y between the point z(i + j) and the line

% D = the intersection point of y(i) and F, = F,

% gid = the greatest integer of D

% dstar = the maximum number of steps that may be taken in the z direction
per iteration

% Y = the distance in y between the point z(i + j) and the line

% X = the distance in z between the point y(i + j) and the line

% I = the integer approximation to the z coordinate of the true minimum

% J = the integer approximation to the y coordinate of the true minimum

a = DATA(1); b = DATA(2); c = DATA(3); d = DATA(4); e = DATA(5);
DATA



% Step 0
% Calculate the slope and the y-intercept of the line F; = F;

m = (2*a-c)/(2*b-c); by = (e-d)/(2*b-c);
% Step 1

i=1;x(1) =6y@1) =0
f(i) = a*x(iy 2 + b*y(iy 2 + c*x(i)*y(i) - d*x(i) - e*y(i);

% Check to see which region (z(1),y(1)) is in

Fx(i) = 2*a*x(i) + c*y(i) - d;
Fy(i) = 2*b*y(i) + c*x(i) - €;

if Fx(i)<Fy(i),
smstep3
break

return
end

if Fx(i)>Fy(i),
smstep2
break
return

end

if Fx(i)==Fy(i),
smstep4
break
return

end

end

File Name: Smstep2.m

% Find the intesection point of z(i) and L
n = (m*x(i) + by) - y(i);
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% Find the greatest integer of n

for k=0:n,
if (n-k)<1,
if (n-k)>=0,
gin = k;
end
end
end

nstar = gin + 1;
% Compare f(i+j-1) to f(i+j)

i=0
cond = 1;

while cond==1,
i=i+1
x(i+j) = x(i);
y(i+i) = y(@) + j;
p = x(i+j) + 1;
f(i+j) = a*x(i+j) 2 + b*y(i+j)y 2 + c*x(i+j)*y(i+j) - d*x(i+j) - e*y(i+j);

r = 0:1:p;

q = m*r + by;
pIOt(r7q1x7Y)
pause

Fx(i+j) = 2*a*x(i+j) + c*y(i+j) - d;
Fy(i+j) = 2*b*y(i+j) + c*x(i+j) - €;
if Fx==FYy,

smstep4
end

if f(i+j-1)>f(i+j),
if j<=(nstar-1),

cond = 1;
else
cond = 0;



end
else
cond = 0;
end
end

if f(i+j-1)<=f(i+j),
i=i+j;
smstepb
break
return

end

% Handle the case of (z(i), y(i)) being on the line F; = F,

Fx(i) = 2*a*x(i) + c*y(i) - d;
Fy(i) = 2*b*y(i) + c*x(i) - ¢
if Fx(i)==Fy(i),

smstep4

break

return
end

if j==nstar,
H = (y(i+j) - (m*x(i+j) + by));
W = m*(x(i+j) + 1) + by - y(i+j-1);
if H<=W,
i=1i4j;
smstep3
end
if H>W,
x(i+j) = x(i+j) + 1;
y(i+j) = y(i-+i-1);

i=i+j;
smstep2
end
end
end

File Name: Smstep3.m
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% Find the intesection point of y(i) and L

D=((y(i) - by)/m) - x(i);
% Find the greatest integer of D

for k=0:D,
if (D-k)<1,
if (D-k)>=0,
gid = k;
end
end
end

dstar = gid + 1;
% Compare f(i+j-1) to f(i+j)

i=0
cond = 1;

while cond==1,
i=i+ 1
x(i+j) = x@i) + j;
y(i+j) = y(i);
p = x(i+j) + 1;
f(i+j) = a*x(i+j) 2 + b*y(i+iY 2 + c*x(i+j)*y(i+j) - d*x(i+j) - e*y(i+j);
r = 0:1:p;
q = m*r + by;
plot(r,q,x,y)

pause

Fx(i+j) = 2*a*x(i+j) + c*y(i+j) - d;
Fy(i+]j) = 2*b*y(i+j) + c*x(i+]) - €;

if Fx==FYy,
smstep4
end
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if £(i-+j-1) >(i+j),
if j<=(dstar-1),

cond = 1;
else
cond = 0;
end
else
cond = 0;
end
end

if f(i+j-1)<=£(i+j),
i=1i+j;
smstepd
break
return

end

% Handle the case of (z(z),y(?)) being on the line F, = F,

Fx(i) = 2*a*x(i) + c*y(i) - d;
Fy(i) = 2*b*y(i) + c*x(i) - ;
if Fx(i)==Fy(i),

smstep4

break

return

end

if j==dstar,
Y = x(i+j) - ((v(i+]) - by)/m);
X = ((y(i+j) + 1 - by)/m) - x(i-+j-1);
if Y<=X,
i=1+4j;
smstep2
end
if Y>X,
x(i+]) = x(i+-1);
y(i+j) = y(i+j) + 1;
i=i+j;
smstep3
end
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end
end

File Name: Smstep4.m

x(i+1) = x(i) + 1;
y(i+1) = y(i);

if f(i)<=£f(i+1),
i=i+4+1;
smstepb
break
return

end

if f(i)>f(i+1),
i=i+1;
p=x(i+1) + 1;
r = 0:1:p;
q = m*r + by;
plot(r,q,x,y)
pause
smstep2

end

end

File Name: Smstep5.m

% Determine the approximation to the minimum

p=x(i) + 1
r = 0:1:p;
q = m*r + by;

if i==1,
I = x(i);
J = y(i);
else,
I = x(i-1);



J =y(i-1);
end

plot(r,q,x,y,1,J,”*’)
pause

I

J
break
return
end
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File Name: Vsstart.m

% Input: a vector of the form DATA=[abc d €]
an initial step size of the form h = step
i=1
z(i) = O;y(i) = 0
a tolerance of the form tol = tolerance
% a = the coefficient of the 22 term in the cost function
% b = the coefficient of the 2 term in the cost function
% c = the coefficient of the zy term in the cost function
% d = the coefficient of the z term in the cost function
% e = the coefficient of the y term in the cost function
% h = the variable step size
% m = the slope of the line F; = F,
% by = the y-intercept of the line F; = F,
% f = the cost function
% x = the £ component of the approximation
% y = the y component of the approximation
% Fx = the partial of f with respect to x
% Fy = the partial of f with respect to y
% n = the intersection point of z(i) and F, = F,
% 8 = the number of step size intervals between z(i) and the line
% gis = the greatest integer of s
% sstar = the maximum number of steps that may be taken in the y direction per iteration
% H = the distance in = between the point y(i + j) and the line
% W = the distance in y between the point z(i + j) and the line
% D = the intersection point of (i) and F; = F,,
% t = the number of step size intervals between y(i) and the line
% git = the greatest integer of t
% tstar = the maximum number of steps that may be taken in the z direction per iteration
% Y = the distance in y between the point z(i + j) and the line
% X = the distance in z between the point y(i + j) and the line
% diff = the difference in functional values between the approximation and the previous iteration
% tol = a tolerance for the difference between two function values
% 1 = the integer approximation to the z coordinate of the true minimum
% J = the integer approximation to the y coordinate of the true minimum
a = DATA(1); b = DATA(2); ¢ = DATA(3); d = DATA(4); e = DATA(5);
DATA

% Step 0
% Calculate the slope and the y-intercept of the line F; = F,
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m = (2*a-c)/(2*b-c); by = (e-d)/(2*b-c);

% Step 1
% Designate the step size

h
f(i) = a*x(if 2 + b*y(iy 2 + c*x(i)*y(i) - d*x(i) - e*y(i);

% Check to see which region (z(1),y(1)) is in

Fx(i) = 2*a*x(i) + c*y(i) - d;
Fy(i) = 2*b*y(i) + c*x(i) - ¢;

if Fx(i)<Fy(i),
vsstep3
break
return

end

if Fx(i)>Fy(i),
vsstep2
break
return

end

if Fx(i)==Fy(i),
vsstep4
break
return

end

end

File Name: Vsstep2.m
% Find the intesection point of z(i) and L

n = (m*x(i) + by) - y(i);
s = n/h;

% Find the greatest integer of n
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for k=0:s,
if (s-k)<1,
if (s-k)>=0,
gis = k;
end
end
end

sstar = gis + 1;
% Compare f(i+j-1) to f(i+j)

i=0
cond = 1;

while cond==1,
=i+ 1
x(i+j) = x(i);
y(i+j) = y(i) + j*h;

£(i+]) = 8*x(+) 2 + b*Y(I+5) 2 + *x(i+)*y(i+]) - d*x(i+i) - e*y(i+i);

r = 0:1:p;

q = m*r + by;
plot(r,q,x,y)
pause

Fx(i+j) = 2*a*x(i+]j) + c*y(i+j) - d;
Fy(i+j) = 2*b*y(i+j) + c*x(i+]) - e;
if Fx==FYy,

vsstepd
end

if £(i4+j-1)>f(i+j),
if j<=(t&!‘-1),

cond = 1;
else

cond = 0;
end



else
cond = 0;
end
end

if f(i+j-1)<=£(i+j),
i=1i4j;
vsstepd
break
return

end

% Handle the case of (z(i), y(?)) being on the line F; = F,

Fx(i) = 2*a*x(i) + c*y(i) - d;
Fy(i) = 2*b*y(i) + c*x(i) - e;
if Fx(i)==Fy(i),

vsstep4

break

return
end

if j==sstar,
H = (y(i+j) - (m*x(i+j) + by));
W = m*(x(i+j) + h) + by - y(i+j-1);
if H<=W,
i=1i+4j;
vsstep3
end
if H>W,
x(i+j) = x(i+j) + b;
y(i+j) = y(i+i-1);

i=1i+4+j;
vsstep2
end
end
end

File Name: Vsstep3.m

% Find the intesection point of y(i) and L
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D = ((y(i) - by)/m) - x(i);
t= D/h,

% Find the greatest integer of D

for k=0:t,
if (t-k)<1,
if (t-k)>=0,
git = k;
end
end
end

tstar = git + 1;
% Compare f(i+j-1) to f(i+j)

i=0
cond = 1;

while cond==1,
i=ji+1
x(i+j) = x(i) + j*h;
y(i+j) = y(i);
p = x(i+j) + 1;
f(i+j) = a*x(i+j) 2 + b*y(i+j) 2 + c*x(i+j)*y(i+j) - d*x(i+j) - e*y(i+j);
r = 0:1:p;
q = m*r + by;
plot(r,q,x,y)

pause

Fx(i+j) = 2*a*x(i+j) + c*y(i+j) - d;
Fy(i+j) = 2*b*y(i+j) + c*x(i+]j) - €;

if Fx==FYy,
vsstep4
end



if £(i+j-1)>£(i+j),
if j<=(tstar-1),

cond = 1;
else
cond = 0;
end
else
cond = 0;
end
end

if £(i+j-1)<=1(i+j),
i=i+j;
vsstepS
break
return

end

% Handle the case of (z(i),y(f)) being on the line F; = F,

Fx(i) = 2*a*x(i) + c*y(i) - d;
Fy(i) = 2*b*y(i) + c*x(i) - €;
if Fx(i)==Fy(i),

vsstepd

break

return
end

if j==tstar,
Y = x(i+j) - ((v(i+j) - by)/m);
X = ((v(i+j) + h - by)/m) - x(i+j-1);
if Y<=X,
i=i+j;
vsstep2
end
if Y>X,
x(i+j) = x(i+j-1);
y(i+i) = y(i+j) + b;

i=i+};
vsstepd
end
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end
end

File Name: Vsstep4.m

x(i+1) = x(i) + h;
y(i+1) = y(i);

if f(i)<=f(i+1),
i=i4+1;
vsstepd
break
return

end

if f(i)>f(i+1),
i=i+1;
p=x(i+1) + 1;
r = 0:1:p;
q = m*r + by;
plot(r,q,x,y)
pause

vsstep2

end
end

File Name: Vsstep5.m

% Determine the approximation to the minimum

% If the difference between the functional values of the approximation
% and the previous iteration is too large, decrease the step size by a
% half and begin the process again from the previous iteration.

d&iff = £(i-2) - £(i-1);

if diff>=tol,
ii=i-2
i=ii
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for jj=1:i,
tempx(jj) = x(ij); tempy(ij) = y(ii);

end
clear x;
clear y;
for jj=1:i,

dX(jJ') = tempx(jj); y(ij) = tempy(jj);
en

temph = h;
h = temph/2;
vsstart

end

p=x() + 1;
r = 0:1:p;
q = m*r + by;

if i==1,

I = x(i);

J = y(i);
else,

I = x(i-1);

J = y(i-1);
end

plot(r,q,x,y,I,J,”*")
pause

I

J
break
return
end
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