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Abstract:  Grass carp Ctenopharyngodon idella have been stocked throughout the world due to 

their utility as a biological control.  In the United States, the species has been used to 

successfully control invasive, aquatic weeds such as hydrilla Hydrilla verticillata.  Despite the 

large body of research surrounding the use of grass carp, few studies have demonstrated widely 

applicable methods for evaluating the success of weed control based on grass carp behavior and 

population dynamics.  Classic methods of biological control using grass carp often rely on a 

single, large stocking of fish.  Few of these studies have demonstrated success in achieving 

intermediate levels of weed control.  Managers would be better equipped to make decisions 

regarding stocking and maintenance grass carp populations with better information about 

behavior, survival, and population structure.  Improved decision making could result in reduced 

cost and increased effectiveness of stocking.  In order to examine current knowledge gaps for 

management, I investigated the movements and habitat use of grass carp, post-stocking survival, 

age-specific survival rates, and population dynamics of grass carp in Lake Gaston, North 

Carolina and Virginia.   

I characterized relationships between grass carp behavior and environmental factors using 

radio-telemetry.  The average rate of movement for grass carp in Lake Gaston was about 137 

m/d.  Rapid dispersal after stocking was followed by long periods of no movement.  However, 

when time after stocking was held constant in models of behavior, fish moved about 200 m/d 
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more in the second year after stocking than in the first year, and were found closer to shore.  On 

average, grass carp were found about 40 m from shore in about 2.5-3.5 m of water, although 

mean depth of water at grass carp locations varied seasonally, being shallowest in summer and 

deepest in winter.  Although depth of water at grass carp locations did not vary by stocking 

location, Grass carp were found closer to shorelines in the upper reservoir than in the lower 

reservoir.  I found significant relationships between grass carp behavior and hydrological 

processes such as lake elevation and dam releases in the reservoir, as well as with other 

environmental factors such as water temperature, photoperiod, and weather conditions.  The 

results of this study should be useful in better understanding how behavior can affect 

management decisions.  Specifically, grass carp behavior appears to change with age and 

environmental conditions within large reservoir systems.  Future research should focus more 

closely on the effects of large-scale flow dynamics on grass carp behavior. 

I estimated age-1 survival of grass carp from mark-recapture models designed for radio-

tagged animals, and characterized relationships between age-1 survival and factors under the 

control of management, such as stocking locations and size at stocking.  According to the most-

plausible model developed in this study, survival of age-1 grass carp in Lake Gaston varied 

throughout the year, and the probability of an individual grass carp surviving to the end of its 

first year (±SE) was 0.57(±0.10).  According to the second-most-plausible model developed in 

this study, grass carp survival varied between stocking locations, and was twice as high in the 

upper reservoir (0.87±0.09) than in the lower reservoir (0.43±0.11).   The differences in survival 

between stocking locations suggest that the cost-effectiveness of grass carp stocking could be 

improved by focusing stocking efforts in specific regions of Lake Gaston.  Furthermore, none of 

the models developed in this study that incorporated the effects of size (length and weight) or 
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condition factor accounted for a meaningful amount of the total model weights.  These results 

suggest that costs of grass carp stocking could be reduced in Lake Gaston by using a smaller 

minimum size (352 mm, TL) than is commonly referred to in the literature (450 mm, TL). 

I used grass carp collected by bowfishers in Lake Gaston to characterize the age, growth, and 

survival of grass carp in the system.  From these data, I characterized relationships between fish 

population dynamics and annual hydrilla coverage.  Grass carp collected from Lake Gaston 

ranged in age 1-16 years.  Growth of grass carp in Gaston was described by the von Bertalanffy 

growth function as Lt = 1297(1-e 
-0.1352 (t+1.52)).  I estimated mortality from the von Bertalanffy 

growth parameters using methods based on growth, temperature, and age; and with each 

mortality estimate I estimated population size and standing biomass of grass carp.  Use of age-

specific mortality rates produced lower estimates of grass carp numbers and standing biomass in 

Lake Gaston than did the use of a single, instantaneous mortality rate for all ages.  I determined 

that growth of grass carp slowed considerably after the fourth year and that slowed growth, in 

combination with changes in mortality, resulted in a decrease in the amount of hydrilla 

controlled by a given cohort after four years in Lake Gaston.  This phenomenon resulted in an 

approximately linear relationship between the biomass of grass carp at year i and hectares of 

hydrilla at year i+3.  Based on this relationship, I predicted that the biomass of grass carp 

necessary to reduce hydrilla coverage to the target level of 120 ha in Lake Gaston is about 

91,184 kg (±38,146 kg) and that the current biomass of grass carp in Lake Gaston is about 

108,073 kg (±3,609 kg).  I conclude that grass carp biomass is at or near levels that should 

reduce hydrilla coverage to 120 ha between 2013 and 2018.  This research provides an effective 

means for synthesis of information that is critical to understanding sterile, triploid grass carp 

populations when assumptions of other methods cannot be met.  The results of this study should 
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be of immediate utility to hydrilla management efforts in Lake Gaston and other systems.  

Furthermore, the age-specific mortality rates developed in this study should be useful as starting 

values for grass carp management in similar systems. 
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Chapter 1:  Introduction 

 

Introduction 

Hydrilla: a global problem 

Hydrilla Hydrilla verticillata is a highly invasive aquatic weed that belongs to the family 

Hydrocharitaceae.  Hydrilla is a rooted macrophyte (Pons 2005), occurring in water as deep as 

15 m (Yeo et al. 1984).  It grows long, thin shoots that form thick mats when they reach the 

surface during summer and autumn (Haller and Sutton 1975; Colle and Shireman 1980; Pons 

2005; MacDonald et al. 2008). Hydrilla is native to Australia (Swarbick et al. 1981), Asia, and 

Central Africa (Cook and Luond 1982; Madiera et al. 2007).   The plant now occurs on every 

continent but Antarctica (Shabana et al. 2003) in both saltwater and freshwater (Evans et al. 

2007).  These introductions are largely viewed as human-induced phenomena (Mitchell and 

Kelly 2006; Binimelis et al. 2007).   

Hydrilla is a highly adaptable plant (Madiera et al. 2007), and it has tremendous 

reproductive potential (Langeland 1990; Pons 2005; Puri et al. 2007).  Low water levels and high 

summer temperatures favor rapid hydrilla growth (Haller et al. 1980).  Hydrilla produces 

propagules in the form of tubers that can persist in sediment for up to seven years and turions 

(perennial buds) that lay dormant from fall to spring (Hofstra et al. 1999).  A single turion can 

form up to 16 shoot tips (Langeland and Sutton 1980; MacDonald et al. 2008).  If unchecked, the 

result of a hydrilla infestation is most often a dense monoculture (Olsen et al. 1998). 

Problems created by hydrilla infestation include obstruction of waterways and pipelines, 

interference with recreational uses of water, and adverse ecological impacts.   As the economic 

costs of environmental damage caused by invasive species nears USD$120 billion per year in the 

United States, it is less expensive to control the weed than to let it spread (Pimentel et al. 2005).  
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For example, angler effort decreased 90% following hydrilla infestation in Orange Lake, Florida 

which supported a sport fishery valued at $1 million (Colle et al. 1987). 

 

Proposed controls for hydrilla 

Three broad classes of weed management techniques exist:  mechanical, chemical, and 

biological controls (Schramm and Brice 1998).   Mechanical control requires the greatest amount 

of investment and engineering (Hanlon et al. 2000).  Examples of mechanical control include 

biomass harvesting, dredging, drawdown, and bottom sealing.  Biomass harvesting is expensive 

and time consuming, but is the most common method of mechanical control.  The cost of 

biomass harvesting can easily exceed $1,000 per hectare (McGehee 1979).  It often results in the 

removal of non-target flora and fauna (Wile 1978; Mikol 1985; Engel 1990; Booms 1999).  

Mechanical harvest resulted in the physical removal of 32% of fish by number and 18% of fish 

biomass from harvested areas in a 5,000-ha lake in Florida (Haller et al. 1980).  The estimated 

cost to replace the lost biomass was $6,000 per hectare.   

Herbicide applications can effectively control hydrilla infestations for at least twice as 

long as mechanical harvesting (Fox and Haller 1992).  However, chemical control can also be 

expensive (Shireman 1982; Hanlon et al. 2000), costing more than $875 per hectare (Maceina et 

al. 1999; Kirk and Henderson 2006).  Fluridone (SONAR) is the only USEPA-approved 

herbicide that effectively controls hydrilla in whole-lake applications (Puri et al. 2007).  One 

limitation of fluridone is that plant death often requires long contact times or high temperatures 

(Hofstra and Clayton 1999).  Long herbicide-contact times or high levels of herbicide application 

exert strong selection pressure that can expose herbicide resistance in weeds in just a few 
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generations (Michel et al. 2004; Pons 2005; Zajicek 2008).  Reliance on one herbicide has 

recently led to instances of resistance in hydrilla populations within the U.S. (Richardson 2008).   

Biological controls are an alternative to chemical and mechanical methods of weed 

control in aquatic systems (Mitchell and Kelly 2006).  The most frequently used biological 

controls are insects, pathogens, and vertebrate animals.  However, most management plans that 

use host-specific insects and pathogens have been limited in long-term success (Byrne et al. 

2003).  One potential solution to problems associated with various control measures is the 

combination of chemical and biological controls.  For example, a fungal pathogen 

Mycoleptodiscus terrestris facilitates greater efficiency of herbicide treatments due to short-term 

stresses on the plant such as tissue damage (Netherland and Shearer 1996; Shearer 1998; 

Shabana et al. 2003).   While the combined use of invertebrates and chemicals to control noxious 

weeds is gaining popularity, this technique faces many of the same challenges posed to 

individual use of either method, such as inadequate contact and long required retention times 

(Forno and Confrancesco 1993).  A more-effective alternative might be to combine herbicide 

applications with an herbivorous fish. 

 

Grass carp as a biological control 

 Grass carp Ctenopharyngodon idella are native to the Amur River, which flows from 

latitude 50°N to 23°N through Siberia, Manchuria, and China into the Pacific Ocean (Bailey and 

Boyd 1972).  They are one of the largest cyprinid fishes, with recorded weights up to 181 kg 

(Chilton and Muoneke 1992), though they more typically reach weights of 30-36 kg in their 

native range.  Growth rates in excess of 2.5 mm (and 14.9 g) per day have been recorded for the 

species (Mitzner 1978).    Equipped with ridged, pharyngeal teeth, grass carp are well suited for 



4 
 

aquatic plant consumption (Prowse 1971), and may eat more than their weight in a day 

depending on fish age (Chilton and Muoneke 1992).   

Grass carp feeding behaviors are well documented in the literature, and the fish appear to 

have hierarchical preferences for aquatic plants (Pine and Anderson 1991).  Hydrilla is well 

documented as a preferred food of grass carp (Chilton and Muoneke 1992), and is one of the 

principal plant species that grass carp successfully control (Allen and Wattendorf 1987).  

However, grass carp feeding preferences can be affected by factors other than plant species, such 

as fish size (Edwards 1974; Stott 1977; Sutton 1974; Van Dyke et al. 1984), temperature 

(Edwards 1974; Colle et al. 1978; Pine and Anderson 1989; Cai and Curtis 1990), plant texture 

(Kracko and Noble 1993), and accessibility of food (Pine and Anderson 1989; Pine et al. 1990). 

Energy content of plants does not necessarily determine food preference (Pine and Anderson 

1991).   

The results of reported efforts that use grass carp for hydrilla control have varied.  Grass 

carp may completely eradicate vegetation in a water body through a single stocking (Stott and 

Robson 1970; Bettoli et al. 1993; Killgore et al. 1998; Schramm and Brice 1998).  Conversely, 

they may not provide adequate control of vegetation with multiple stockings (Baker et al 1974; 

Kirk 1992; Killgore et al. 1998).  Variability in potential impact has resulted in the use of 

stocking rates for grass carp that range from 2 to 500 fish per vegetated hectare (Kilgen and 

Smitherman 1971; Allen and Wattendorf 1987; Kirk et al. 2000; Bonar et al. 1993a, 2002).   

An incremental approach to grass carp stocking may help managers to achieve an 

intermediate level of control, where vegetation is controlled at target levels and is not eradicated 

in a system (Chilton and Magnelia 2008).  In incremental approaches, grass carp are stocked at 

low levels on a semi-annual basis.  Stocking decisions are usually based on achieving a desired 
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number of fish per vegetated hectare.  Target densities of grass carp may be adjusted through 

time based on the response of weed coverage to stocking efforts.  Few studies have used this 

strategy when stocking grass carp for biological control of hydrilla (Chilton and Magnelia 2008).  

There are several factors influencing how many fish should be stocked, and how often.  These 

factors have received relatively little attention in published studies, since most weed-control 

plans in the past have used a single, large stocking of grass carp.  

 

Movement and habitat use of grass carp 

One of the primary factors affecting the efficiency of noxious-weed control by grass carp 

is movement of fish to and from infested areas (Chilton and Poarch 1997).  The most-effective 

control is achieved when grass carp remain in the system they are stocked in, and occupy target 

areas within that system (Nixon and Miller 1978). In their native range, grass carp have the 

potential to travel up to 500 km in their first two years of life (Gorbach and Krykhtin 1988).  Due 

to the species’ inclination to make long-distance migrations, emigration from target areas should 

be a primary consideration for stocking grass carp (Bain 1993; Maceina et al. 1999). 

Life stage of the fish can be important in determining the effects of environmental factors 

on the movements and habitat use of grass carp.  Temperature and growth rate also appear to be 

important in determining the size and age at which the fish become sexually mature (Kahn et al. 

2004).   These factors also may influence the behaviors of adult grass carp.  However, few 

studies have sufficiently investigated the behavior of older grass carp.  A minimum weight of 4.0 

kg has been used to define adult grass carp for telemetry studies (Bain et al. 1990).  Sexually 

mature grass carp moved greater distances than juveniles, and were not found in target areas as 

often (Bain et al. 1990).  This behavior is similar to that described by Gorbach and Krykhtin 
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(1988), where juveniles remained downstream in the Amur River before migrating upstream as 

adults.  Nixon and Miller (1978) observed movements of 12 grass carp for a period of only a few 

weeks.  These are the only published accounts of adult grass carp movements, and the accounts 

of Bain et al. (1990) and Nixon and Miller (1978 are based on only 12 fish.   Chilton and Poarch 

(1997) studied the movements of 69 grass carp of various sizes and indicated that core-use area 

and movement were both significantly and positively affected by stocking weight of grass carp.  

None of the above studies has followed individual fish for more than one year to determine 

relationships between movements and fish age.  Technological advances in biotelemetry since 

the time of these studies allow for individual animals to be monitored for multiple years.    By 

following a large number of fish for multiple years, researchers may be able to better 

characterize relationships between grass carp behavior and age.  

 

Age-1 survival of triploid grass carp  

The primary factor dictating triploid grass carp stocking numbers and frequency in an 

incremental stocking approach is the survival of fish in the infested system (Kirk and Socha 

2003).  Little is known about grass carp survival in most systems.  Catch-curve analysis 

(Chapman and Robson 1960) has been used to analyze bowfishing-catch data (Morrow et al. 

1997; Kirk et al. 2000), but only produces a single, point-estimate of average, annual mortality.  

While catch-curve analysis can be useful for characterizing trends in mortality over time, it does 

not reveal any information on how survival changes between ages.  Classical mark-recapture 

methods could solve this problem, but grass carp are notoriously difficult to capture.  Due to the 

many difficulties surrounding the capture of grass carp from large systems (Colle et al. 1978; 

Schramm and Jirka 1986; Chilton and Muoneke 1992; Bonar et al. 1993b), conventional mark-
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recapture studies largely underestimate grass carp population size (Stott and Russell 1979).  

Since non-lethal methods for aging grass carp do not exist, the only live grass carp from which 

age can be reliably estimated are those marked at stocking or sterile fish that were stocked in a 

single event.   

Methods have been developed to estimate survival of radio-tagged animals using mark-

recapture models (Pollock et al. 1989; Pollock et al. 1995; Pine et al. 2003).  These models have 

gained attention as useful tools in fisheries management (Hightower et al. 2001; Heupel and 

Simpendorfer 2002; Pollock et al. 2004; Waters et al. 2005; Thompson et al. 2007).  These 

techniques have not been applied to estimate survival of grass carp.  Furthermore, mark-

recapture models can be useful for identifying factors that influence survival rates.  Factors such 

as size of fish at stocking and stocking locations could potentially impact age-1 survival of grass 

carp.  There are many factors controlled by management teams that could contribute to 

differences in grass carp survival.  Information about changes in mortality due to such factors 

could be used to decrease cost or increase effectiveness of stocking grass carp. 

 

Growth and mortality of grass carp 

Knowledge of growth and mortality of grass carp can improve planning and assessment 

of weed-management plans that use the fish (Kirk and Socha 2003).  Maximum ages and the 

growth rates of grass carp vary by geography, climate, availability of food resources, and age 

(Chilton and Muoneke 1992).  Little research has been focused on defining growth rates of grass 

carp in natural systems.  Most research on the growth of the species has occurred in aquaculture 

production systems (e.g., Kahn et al. 2004).  Growth rates of grass carp, like many fish, are 

believed to be dependent on age (Sutton and Vandiver 1986; Chilton and Muoneke 1992).  At 



8 
 

small sizes, growth rate is density dependent (Shelton et al. 1981).  In grow-out operations, grass 

carp commonly reach lengths of 200 mm by 4 months (Thompson et al. 1987).  Four years after 

stocking in Lake Wales FL, grass carp reached average lengths of 962 mm (Shireman et al. 

1980).  Average growth rates (mm) of fish were observed to decrease with age (Morrow et al. 

1997), but that study only sampled fish up to 6 years of age and 15.6 kg.  My preliminary 

findings indicate that the maximum age of grass carp in Lake Gaston is currently 16 years, and 

the maximum recorded weight is 34 kg.  More research is needed to characterize age and growth 

of the older fish in this system.  

In Lake Gaston volunteer bowfishers collect fish using methods similar to those used by 

Morrow et al. (1997). The catch of grass carp in Lake Gaston varies between sizes and ages of 

fish.  Grass carp are collected throughout the year, and collection effort has never been measured 

or standardized.  Because of the nature of grass carp collection, bowfishing data from Lake 

Gaston do not meet assumptions of equal catchability or constant effort required for catch-curve 

analysis.  One alternative to estimating fish mortality with catch-based models is to model the 

mortality of grass carp using growth parameters.  Growth parameters of grass carp can be 

estimated from length and age data (e.g., Rafail 1973), and they can be used to estimate average 

annual mortality of fish populations (Pauly 1980; Jensen 1996).   Additionally, growth 

parameters can also be used to estimate age-specific mortality rates (Chen and Watanabe 1989).  

By approaching the question of grass carp mortality in Lake Gaston with several methods, 

overall understanding of mortality can be improved.   
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Study site 

Lake Gaston (Figure 1.1) was formed in 1963 as a result of the construction of the Lake 

Gaston Dam by Virginia Electric and Power Company (VEPC) to control water level and 

generate electricity for Dominion Power (Pearsall et al. 2005).   It is an impoundment of the 

Roanoke River, which flows from Southwest Virginia, through North Carolina into the Atlantic 

Ocean.  The reservoir is 55 km long with over 560 km of shoreline, of which about 50% is 

undeveloped (Dominion Power 2005).  The total surface area of Lake Gaston is 8,100 ha, with a 

total volume of about 5.6x10
11 

L flowing at 1,245 m
3
/s, and a retention time of 29 days at full-

pond elevation of 61 m (Dominion Power 2005; Richardson 2008).   

 Lake Gaston is bordered by the John H. Kerr Dam and Reservoir upstream, on the west 

end.  Construction was completed on the Kerr Dam in 1953 by the US Army Corps of Engineers 

(USACE) as the primary flood-control station for the lower Roanoke River (Richter 1996; 

Pearsall et al. 2005).  Kerr Reservoir is the primary input of water into Lake Gaston, and by 

comparison boasts a surface area of 19,500 ha. Roanoke Rapids Lake borders Gaston at the east 

(downstream) end, after which the Roanoke River flows unimpeded for 221 km to the Atlantic 

Ocean at Albemarle Sound (Carmichael et al. 1998).   Some uses for water in Lake Gaston 

include recreational boating, fishing, and drinking water for residents of the city of Virginia 

Beach and the local Lake Gaston area (Cox 2007).  
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Figure 1.1.-  Map of Lake Gaston with grass carp stocking locations used 2007-2009:  (a) US-1 

Boat Launch, (b) Pea Hill Creek, and (c) Big Stonehouse Creek.  Stocking site (a) was the only 

site located in the upper reservoir.  Stocked grass carp were divided between stocking sites (a) 

and (c) 2007-2008, and were divided between (a) and (b) in 2009.  

 

Hydrilla was first identified in Lake Gaston in 1992 (Ryan et al 1995; Williams et al. 

2008).  Initial coverage in the lake was less than 10 ha (Williams et al. 2008).  In Lake Gaston, 

incremental grass carp stocking is combined with low-level fluridone applications to control 

hydrilla (Williams et al. 2008).  The Lake Gaston Weed Control Council (LGWCC) began 

stocking grass carp incrementally for hydrilla control in 1995.  Low-level grass carp stockings 

(<20 fish/ha) have been combined with semi-annual herbicide applications to control hydrilla.  

Since 1995, about 80,000 triploid grass carp have been stocked into Lake Gaston (Table 1.1).   

Hydrilla coverage peaked at 1,364 ha in 2004 (Williams et al. 2008).  In fall of 2010 hydrilla 

b 

c 

a 
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coverage was about 666 ha (ReMetrix 2011).  Important population parameters such as 

movement and distribution; post-stocking survival of grass carp; and the growth and mortality of 

grass carp are virtually unknown.   

 

Table 1.1.-  Stocking history of grass carp in Lake Gaston, Virginia 

and North Carolina, 1995-2010. 

Year # Stocked 

1995 20,000 

1997 680 

1999 5,000 

2003 25,392 

2006 7,000 

2007 7,720 

2008 100 

2009 6,520 

2010 7,347 

 

Study objectives 

 The goal of this study was to characterize the population ecology of grass carp used in an 

integrated weed management plan.  The specific objectives of this study were to 1) determine 

movements and habitat use by grass carp in Lake Gaston, 2) estimate survival rates for age-1 

grass carp in Lake Gaston, and 3) characterize growth, mortality, and population dynamics of 

grass carp in Lake Gaston.  In order to achieve the above objectives I 1) used radio telemetry to 

monitor grass carp behavior, 2) estimated age-1 survival of grass carp in Lake Gaston, and 3) 

used age-and-growth data to estimate mortality and associated population parameters of grass 

carp. 
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Chapter 2:  Movements and habitat use of grass carp in a large reservoir 

 

Abstract:  Grass carp Ctenopharyngodon idella have been stocked throughout the world and 

widely studied in the United States because of their potential as a biological control.  In 

particular, grass carp have gained much attention due to their use in hydrilla Hydrilla verticillata 

control plans.  In order to be an effective biological control, grass carp must remain in the system 

they were stocked in, and occupy areas targeted for weed control within those systems.  One 

widely applied technique for understanding the behavior of grass carp is telemetry.  While 

telemetry studies of grass carp are prominent in the literature, few studies have successfully 

identified mechanisms underlying behavioral changes.  I used radio telemetry to monitor the 

movements and habitat use of 104 grass carp from 2007 to 2010 in a large, southeastern 

reservoir.  Grass carp were followed for two years in Lake Gaston, North Carolina and Virginia, 

after release dates in 2007, 2008, and 2009.  I characterized relationships between environmental 

factors and the movements and habitat use of grass carp.  I found that grass carp occupied areas 

in the reservoir suitable for hydrilla growth through the first two years after tagging, and that 

emigration from Lake Gaston was unlikely.    The average rate of movement for grass carp in 

Lake Gaston was about 137 m/d.  Rapid dispersal after stocking was followed by long periods of 

no movement.  However, when time after stocking was held constant in models of behavior, fish 

moved about 200 m/d more in the second year after stocking than in the first year, and were 

found closer to shore.  On average, grass carp were found about 40 m from shore in about 2.5-3.5 

m of water, although mean depth of water at grass carp locations varied seasonally, being 

shallowest in summer and deepest in winter.  I found significant relationships between grass carp 

behavior and hydrological processes such as lake elevation and dam releases in the reservoir, as 

well as with other environmental factors such as water temperature, photoperiod, and weather.  
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For example, grass carp movement was positively correlated with changes in lake elevation.  The 

results of this study provide useful information on the behavior of grass carp in a large, 

hydropower reservoir.   I recommend that the primary use of reservoirs and the flow regimes of 

reservoirs be considered in grass carp-stocking risk assessments when the species is being 

considered for use in hydrilla-control plans.  I also recommend that the relationships between 

grass carp behavior and flow dynamics should be studied further in future research. Finally, grass 

carp behavior appeared to differ between different ends of the reservoir with regard to how far 

they were located from shore. Since aspects grass carp behavior appears to differ between ends 

of Lake Gaston, I recommend that future research investigate other differences in grass carp 

ecology between the upper and lower reservoir. This knowledge could be useful for improving 

management decisions such as stocking locations in Lake Gaston and elsewhere. 
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Introduction 

The grass carp Ctenopharyngodon idella has been studied throughout the world due to its 

utility as a biological control (Allen and Wattendorf 1987).  When integrated with other weed-

control methods, grass carp can provide a relatively inexpensive, long-term approach to aquatic 

weed control (Maceina et al. 1999; Chilton and Magnelia 2008).  In systems with conflicting 

stakeholder opinions, an intermediate level of weed control can be a compromise between 

opposing viewpoints (Richardson 2008).  Intermediate weed control is easiest to achieve in small 

water bodies (Cassani et al. 1995; Maceina et al 1999).  As the size of a system increases, the 

effects of grass carp stocking rates become less predictable (Maceina et al. 1999).  As a result 

stocking grass carp in large systems often results in complete eradication of all aquatic 

vegetation, or insufficient control of nuisance weeds (Stott and Robson 1970; Baker et al. 1974; 

Shireman and Maceina 1981; Kirk 1992; Bettoli et al. 1993; Schramm and Brice 1998).   

One of the primary factors affecting the efficiency of noxious-weed control by grass carp 

in reservoir systems is movement to and from infested areas (Chilton and Poarch 1997).  The 

most-effective control is achieved when grass carp remain in the system they are stocked in, and 

occupy areas targeted for weed control within that system (Nixon and Miller 1978). In their 

native range, grass carp can travel up to 500 km in their first two years of life (Gorbach and 

Krykhtin 1988).  Prentice et al. (1998) observed one-way migrations of up to 325 km between 

several impoundments on the Guadalupe River in Texas.  In the Mississippi River, movements 

by grass carp as great as 1,700 km have been documented (Guillory and Gasaway 1978).  By 

1986, diploid fish were found greater than 2,700 km from the initial stocking site in the 

Mississippi River after about 16 years in the river (Cudmore and Mandrak 2004).  Due to its 

potential to make long-distance migrations, escapement from target areas is a major concern 
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related to stocking grass carp (Bain 1993; Maceina et al. 1999).  If grass carp emigrate from a 

system or target areas within that system, there could be undesirable effects where the fish are 

unwanted (Clapp et al. 1993; Prentice et al. 1998).   

 There are several factors thought to affect grass carp movements and habitat use.  One of 

the most important determinants in the magnitude of grass carp movements is believed to be life 

stage of the fish. The primary drivers of size or age at sexual maturity appear to be temperature 

and growth rate (Kahn et al. 2004).  Long growing seasons and plentiful food supplies favor 

early maturation.  In the Amur River, grass carp reach sexual maturity between 4 and 9 years at 

an average weight of 4.5 kg and lengths of 63-67 cm depending on latitude (Chilton and 

Muoneke 1993; Michewicz et al. 1972a).  Bain et al. (1990) found that sexually mature grass 

carp (4.0-6.0 kg) moved greater distances than juveniles, and were not found in target areas as 

often. This behavior is similar to that described by Gorbach and Krykhtin (1988), where 

juveniles remained in downstream areas of rivers before migrating upstream as adults.   

 Studies on the effect of environmental factors on grass carp movements and distribution 

have yielded mixed results (Chilton and Muoneke 1993).    Nixon and Miller (1978) found that 

grass carp activity was most limited by water temperature, but that day length and weather 

patterns had little effect on activity.  Bain et al. (1990) showed that temperature and season had 

significant effects on the behavior of juvenile grass carp, but not adults.  Cassani and Maloney 

(1991) found that neither water temperature nor day length had significant effects on grass carp 

movements; however, the range of temperatures available to grass carp was narrow (22.2-

30.3ºC), suggesting little seasonal fluctuation.  The above range of temperatures is higher than 

the minimum temperature of 3-6 ºC required for active grass carp feeding (Michewicz et al. 

1972b), and less than the upper-lethal temperature of 38-39ºC reported in the literature 
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(Opuszynski 1972; Bettoli et al. 1985).  Grass carp movements might be affected more by a 

wider range of temperatures.   

 Water depth and column velocity occupied by grass carp are believed to be strongly 

associated with the presences of weed beds (Clapp et al. 1993).  Grass carp usually are associated 

with shallow, near-shore environments (Mitzner 1978; Nixon and Miller 1978; Chilton and 

Muoneke 1993) where submersed vegetation is common.  It is thought that high spring seasonal 

flows, in combination with temperature increases, may trigger spawning behavior in grass carp 

(Stanley et al. 1978).  Studies have shown that grass carp generally occupy areas of relatively 

low flow rates (Beyers and Carlson 1993) but may avoid confined areas (Cassani and Maloney 

1991).  The effects of flow manipulation in hydro-power reservoirs on grass carp behavior are 

relatively unknown.  It is possible that daily or seasonal fluctuations in flow regimes could 

impact grass carp movements and habitat use, and therefore the efficiency of noxious-weed 

control. 

Despite the prominence of literature regarding grass carp movements and habitat use, few 

studies have successfully identified mechanisms behind changes in grass carp behavior.  By 

understanding the mechanisms that affect movement and habitat use, researchers may be able to 

better understand factors that drive effective weed control by grass carp in large reservoirs.  The 

objective of this study was to investigate relationships between environmental factors and 

movements and habitat use of grass carp used as a biological control for hydrilla Hydrilla 

verticillata in a large reservoir. 
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Methods 

Study site 

Lake Gaston (Figure 2.1) was formed in 1963 as a result of the construction of the Lake 

Gaston Dam to control water level and generate electricity for Dominion Power (Pearsall et al. 

2005).   Gaston is an impoundment of the Roanoke River, which flows from Southwest Virginia, 

through North Carolina into the Atlantic Ocean.  The reservoir is 55-km long with over 563 km 

of shoreline, of which 50% is undeveloped (Dominion Power 2005). Gaston has a total surface 

area of 8,100 ha, a total volume of about 5.6x10
11 

L  flowing at 1,245 m
3
/s, and a retention time 

of 29 days at  a full-pond elevation of 61 m (Dominion Power 2005; Richardson 2008).   

 

Figure 2.1.- Lake Gaston, North Carolina and Virginia.  Grass carp stocking locations are shown 

as A) US Highway 1 public boat launch, B) Pea Hill Creek, and C) Big Stonehouse Creek.  

Stocking locations were grouped within the upper reservoir (A) and the lower reservoir (B and 

C) for behavioral analyses. 

 

 

 

A 

B 

C 
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Radio-tagging methods and timeline 

Grass carp have been stocked as part of a hydrilla-control plan in Lake Gaston since 

1995.  A total of about 80,000 fish were stocked from 1995-2010 (Table 2.1).  From 2007 to 

2009 grass carp were radio tagged at annual stocking events.   

 

Table 2.1.-  Stocking history of grass carp in Lake Gaston, VA and NC, 1995-2010. 

Year # Stocked 

1995 20,000 

1997 680 

1999 5,000 

2003 25,392 

2006 7,000 

2007 7,720 

2008 100 

2009 6,520 

2010 7,347 

 

Grass carp were tagged using conventional, internal-implant procedures and an 

experimental procedure for external attachment.  Radio tags were surgically implanted in 61 fish 

in 2007 and 2008, and 15 fish in 2009.  In 2009, some additional radio tags were externally 

attached (another 25 fish).  In order to attach transmitters externally, attachment anchors (loops) 

were formed using 25-lb-test, monofilament line.  The loops were attached to radio tags in a 

rectangle about a single plane of the tag with epoxy.  The epoxy was allowed to set for 24 hours.   

A total of 101 radio-tagged grass carp were stocked into Lake Gaston from 2007 to 2009 

(Table 2.2).   Model F1820 radio tags with trailing-whip antennae from Advanced Telemetry 

Systems (ATS, Inc., Isanti, MN) were used for all radio-tagged grass carp from 2007 through 

spring 2009.  Radio tags weighed 8-25 g, and had an expected battery life of 536 d.  Tag 

frequencies ranged from 150.000 to 151.999 MHz.   
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Table 2.2.- Tagging information for radio-tagged grass carp released in Lake Gaston 2007-2009. 

Release date 

No. tagged 

internally 

No. tagged 

externally  

Mean fish weight (g) 

Mean fish length  

(mm, TL) 

16 May 2007 29 0  -  333 

26 May 2008 32 0 535 368 

20 April 2009 15 25 1111 467 

 

Internal implant surgery.- Fish were anesthetized with MS-222 in a holding tank prior to 

all surgeries.  Surgical tools were disinfected in a 10-ppt iodine solution.  After anesthetizing, 

fish were placed ventral side up in a v-shaped saddle.  Water pumps were used to circulate 

anesthetic through the fish’s gills throughout the procedure.  A small (2-cm) incision was made, 

offset slightly from the ventral line of the fish.  A transmitter was gently inserted through the 

incision.  The incision was closed with three to four knots using non-absorbable, monofilament 

sutures.  Fish were observed to recover before being released into the lake.  Maximum time for 

implant surgery (including anesthetization and recovery) was about 15 minutes. 

 

 External attachment procedure.- Grass carp were prepared for transmitter attachment 

following methods described above, but were placed ventral-side down in the surgery saddle.  A 

rear-attachment wire (16-guage sterilized surgical steel) was passed through the dorsal 

musculature, below the spine, using a curved taxidermy needle, and was then passed through two 

loops on either side of the radio tag.  The radio tag was then tightened by twisting the attachment 

wire 7 to 8 times above the tag.  The same procedure was repeated about 3-cm anterior to the 

initial insertion.  After the forward-attachment wire was tightened, the forward- and rear-

attachment wires were twisted together 8 to 10 times. The wires were trimmed and folded flat 
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against the dorsal surface of the radio tag pointing backward.  Fish recovered before being 

released into the lake.  Maximum time for attachment (including anesthetization and recovery) 

was 10 minutes.   

  

Collection and analysis of telemetry data 

Radio-tagged grass carp were divided and released at public boat launches at US 1 in 

Virginia and Salmon’s landing in North Carolina (see Figure 1) during 2007 and 2008.  In 2009, 

fish were divided and released at US 1 and Pea Hill Creek in Virginia.  Grass carp were radio 

tracked using boat-mounted Yagi antennae from 2007 through 2010.  In 2007, an aerial survey 

was conducted to assess escapement of grass carp from Lake Gaston.  The aerial survey did not 

show any evidence that radio-tagged grass carp had escaped from Lake Gaston.  Over 800 

individual locations of live fish were logged by manually tracking from a boat.  Once a fish was 

located, its position (UTM, NAD83) was recorded using a hand-held Garmin GPSmap76CSx 

(Garmin International Inc., Olathe, Kansas).  The unit was a recreational-grade GPS with an 

accuracy of ±5 m.  Date, time, secchi depth, water depth, surface temperature, and distance to the 

nearest shoreline were measured at each fish location.  Average daily wind speed was noted for 

each tracking day.  I used hydrology data (inflow to the lake, outflow from the lake, lake 

elevation, and rainfall) from the United States Army Corps of Engineers (USACE) hydrologic 

monitoring station at the John H. Kerr Dam.  I estimated daily hours of daylight using sunrise 

and sunset times in Raleigh, NC (~120 km SE of Gaston) for each sample day.   

I calculated average daily movement (ADM) of grass carp as the Euclidean distance 

traveled (UTM, m) between consecutive fish locations, divided by the number of days elapsed 

between sampling events.  Average daily movement is an index of activity that allows for 
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movement rate to be standardized by a common unit of time.  Movement indices such as ADM 

are often used to investigate seasonal and annual trends in movement (e.g., Chilton and Poarch 

1997; Frost et al. 2009).   

 

Univariate analyses.- Due to constraints of data structure, I used univariate methods to 

test the effects of categorical variables on movements and habitat use of grass carp. To account 

for random variation between fish, ADM, depth, and distance to shore were averaged across 

individual fish prior to analysis.  The grand mean for each response variable in univariate tests 

was a weighted mean based on the number of times each fish was located.  I tested the effects of 

season on the depth of water occupied by grass carp (m) and the distance of grass carp to the 

nearest shoreline (m) using one-way analysis of variance (ANOVA) (Zar 1999).  I did not test 

the effects of season on movement because of known relationships between movement of grass 

carp and the amount of time elapsed after stocking (Chilton and Poarch 1997).  I used Tukey-

Kramer pair-wise comparisons of means to determine differences in habitat use (water depth and 

distance to shore) between seasons (spring, summer, fall, winter) (Zar 1999).  I used two-sample 

t-tests to determine differences in ADM, depth, and distance to shore due to stocking location 

and to test for differences between movements due to tagging method (Zar 1999).   Statistical 

significance was inferred at p≤0.05 for all tests. 

 

Multiple-regression analyses.- I used multiple-linear regression (MLR) to characterize 

the relations between several abiotic factors and grass carp movements (ADM) and habitat use 

(depth and distance to shore).  I fit all possible regression models of each response variable using 

several predictor variables, including:  age (yr), water temperature (°C), secchi depth (m), days 
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post-tag (d), days elapsed (d), elevation (m), inflow (m
3
/s), outflow (m

3
/s), rain (mm), wind 

speed (km/h), and hours of daylight (h).  For analysis of movements (ADM), response data were 

transformed as loge(ADM+1) to normalize distribution (Rogers and White 2007).  The distance 

of grass carp from the nearest shoreline was also loge-transformed to achieve a normal 

distribution in the response.  Water depth at grass carp locations was not transformed for 

analysis.   

I used global F-tests to determine whether any of the response variables were related to 

any of the predictors in each multiple linear regression model (Montgomery et al. 2006).  I used 

individual t-tests to determine the significance of relationships between each response variable 

and each predictor (Montgomery et al. 2006).  Since a considerable amount of colinearity was 

present in the fully parameterized models of ADM, depth, and distance to shore, I selected the 5 

best models of each response from all possible subsets to discuss.  For construction of ADM 

models, age, temperature, days post-tag, days elapsed after tagging, lake elevation, rain, and 

wind speed were included in all models due to correlations between these predictors and ADM.  

Similarly, fish age, water temperature, and wind speed were all included in each model of depth.  

Water temperature, secchi depth, lake elevation, wind speed, and hours of daylight were each 

included in all models of grass carp distance from the nearest shoreline. I characterized 

relationships between predictors using simple linear regression.  I determined the presence of 

colinearity between predictors in all models using variance inflation factors (VIFs), using VIFs 

of 10 or more as indicators of substantial colinearity (Montgomery et al. 2006).  I ranked the 

five-best models of each response variable based on R
2
-adjusted, the PRESS statistic, and 

Mallow’s Cp model-fit statistics (Montgomery et al. 2006).   
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Results  

 A total of 11, 9, and 9 predictors were used to model ADM, depth, and distance to shore, 

respectively (Table 2.3).  Preliminary analyses indicated a high degree of correlation between 

predictors used in this study (Table 2.4).  Therefore, I report partial coefficients of determination, 

and VIFs for each predictor used in the five best models of each response. 

 

Table 2.3.- Mean values and standard deviations (SD) of predictors used in multiple regression 

analyses.  Predictors used in modeling each response are indicated by y. 

       Used in models (y/n) 

Predictor  Mean SD ADM (m) Depth (m) Shore (m) 

Age (yr) 1.3 0.35 y y y 

Water Temperature (°C) 20 8.0 y y y 

Secchi Depth (m) 1.0 4.4 y y y 

Days Post-tag (d) 174 149 y n  n 

Days Elapsed (d) 43 59 y n  n 

Elevation (m) 61 0.08 y y y 

Inflow (m
3
/s) 223 194 y y y 

Outflow (m
3
/s) 194 188 y y y 

Rain (mm) 2 5 y y y 

Wind speed (km/h) 5 4 y y y 

Hours of Daylight (h) 13 1.8 y y y 
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Table 2.4.- Correlation matrix showing Pearson correlation coefficients (r) for relationships 

between predictors used in multiple regression analyses.   *Indicates statistically significant 

relationships. 

 

Age 

(yr) 

Water 

Temp. 

(ºC) 

Secchi 

Depth 

(m) 

Days 

Post-

tag 

Days 

Elapsed 

Elevation 

(m) 

Inflow 

(m3/s) 

Outflow 

(m3/s) 

Rain 

(mm) 

Wind 

speed 

(km/h) 

Hours of 

Daylight 

Age (yr) 1 -0.05 -0.02 0.79* 0.55* -0.06 -0.20* -0.14* 0.16* 0.06 0.08* 

Water Temp. (°C) 

 

1 0.04 -0.54* -0.25* -0.33* -0.53* -0.53* -0.01 -0.32* 0.78* 

Secchi Depth (m) 
  

1 -0.04 -0.02 0.01 -0.02 -0.04 0.05 -0.01 0.05 

Days Post-tag (d) 

   

1 0.58* 0.03 -0.03 0.08* 0.14* 0.27* -0.42* 

Days Elapsed (d) 

    

1 -0.10* -0.09* -0.04 0.00 0.06 -0.08* 

Elevation (m) 

     

1 0.29* 0.24* -0.05 0.12* -0.20* 

Inflow (m3/s) 
      

1 0.92* -0.12* 0.15* -0.34* 

Outflow (m3/s) 

       

1 -0.08* 0.17* -0.47* 

Rain (mm) 

        

1 0.13* 0.07* 

Wind speed (km/h) 
         

1 -0.32* 

Hours of Daylight 

          

1 

 

Movements of grass carp 

 Univariate analyses.- Mean ADM of grass carp (±SE) was about 137 m/d (±26 m/d).  

Grass carp ADM did not differ significantly between fish tagged internally or externally (df=1, 

t=-1.32, p=0.206) or between fish stocked at different locations (df= 1, t=1.09, p=0.2752).   

 

 Multiple regression analyses.- Relationships between ADM and predictors used in 

regression analysis are shown in Figure 2.2.  The five best regression models of grass carp ADM 

all included water temperature, fish age, number of days post-tag, number of days elapsed 

between consecutive telemetry locations, lake elevation, rainfall, and wind speed (Table 2.5).   A 

moderate degree of colinearity (VIF> 5) existed only in Model M4.  Colinearity, as indicated by 
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VIFs, was lowest in models M1 and M2.  These models were similar to one another, and both 

provided reasonable fits to the data.  The primary difference between models M1 and M2 was 

that model M1 included inflow and M2 included outflow.  Movement appeared to best 

represented within this model set by models that contained all variables that were significantly 

related to ADM in addition to a single index of flow.  Such models were nearly indistinguishable 

in terms of performance as measured by model-fit statistics, suggesting that either model M1 or 

M2 provide a reasonable representation of fish movement. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.- Graphical correlation matrix describing relationships between predictors and ADM.  

Mean values for each variable are given in red.  Standard error of the response (ln-transformed) 

is given in blue.  *indicates statistically significant correlations. 

 

P=0.0001* P=0.0001* P=0.0596 P=0.0001* P=0.0254* P=0.0008* 

P=0.7136 P=0.5927 P=0.0015* P=0.0008* P=0.4656 
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Table 2.5.- Predictors used and model-fit statistics for the five-best candidate models of ADM.  P 

is the number of parameters estimated, Cp is the value of Mallow’s Cp statistic for each model, 

R
2

ADJ is the R
2
-adjusted value for each model, and PRESS is the value of the PRESS statistic.  

Partial coefficients of determination (r
2
) and variance inflation factors (VIFs) are given for all 

predictors used in each model. 

  M1   M2   M3   M4   M5 

Predictor r
2
 VIF   r

2
 VIF   r

2
 VIF   r

2
 VIF   r

2
 VIF 

Age (yr) 0.12 1.81   0.11 1.83   0.11 2.04   0.07 3.14   0.11 2.04 

Water Temperature (ºC) 0.12 2.18   0.19 2.04   0.10 1.57   0.18 3.05   0.10 1.76 

Secchi Depth (m)             0.02 1.01         0.03 1.01 

Days Post-tag (d) 0.34 3.04   0.32 3.04   0.27 3.2   0.14 6.83   0.28 3.22 

Days Elapsed (d) 0.00 1.42   0.00 1.41   0.01 1.46   0.00 1.41   0.00 1.48 

Elevation (m) 0.00 1.2   0.00 1.18   0.01 1.07   0.00 1.19   0.01 1.07 

Inflow (m
3
/s) 0.01 1.47                         

Outflow (m
3
/s)       0.01 1.46         0.01 1.46   0.00 1.26 

Rain (mm) 0.01 1.13   0.00 1.13   0.01 1.11   0.01 1.22   0.01 1.12 

Wind speed (km/h) 0.01 1.27   0.01 1.27   0.01 1.29   0.01 1.27   0.00 1.32 

Hours of Daylight (h)                   0.00 6.73       

P 8   8   9   9   9 

Cp 2.3   3.5   2.5   3.7   3.9 

R2-Adj 47.3   47.4   44.6   47.4   44.5 

PRESS 1671   1665   1672   1672   1463 

 

Of the predictors measured in this study, water temperature, the age of fish, number of 

days post-tag, and wind speed were most strongly related to grass carp movement (Table 2.6).  

Movement decreased with increased time after stocking, but when all other factors were held 
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constant, a 1-year increase in grass carp age corresponded to an increase in ADM of about 200 

m/d in ADM.  Lake elevation was also correlated with grass carp ADM.  A 1-meter increase in 

lake elevation corresponded to an increase of about 7 m/d in grass carp ADM when other factors 

were held constant.  Grass carp moved more when rain or wind speed increased and other factors 

were held constant. Grass carp ADM was less when water temperature, number of days between 

telemetry locations, or inflow were increased, given all other factors held constant. 

 

Table 2.6.- Standardized coefficients (βi) and individual statistics for parameters estimated in one 

of the best models of grass carp ADM in Lake Gaston (model M1). 

Predictor βi t p 

Fish age (yr) -0.44043 12.44 0.000 

Water Temperature (°C) -1.39203 -10.71 0.000 

Days post-tag (d) -0.10053 -20.74 0.000 

Days elapsed (d) 0.06962 -1.37 0.172 

Lake elevation (m) -0.00009 2.26 0.024 

Inflow (m
3
/s) 0.13229 -3.33 0.001 

Rain (mm) 0.11779 3.51 0.000 

Wind speed (km/h) 0.73379 3.54 0.000 

 

Depth of water at grass carp locations 

 Univariate analyses.- Grass carp were found in shallow water in Lake Gaston at a mean 

depth (±SE) of about 2.9 m (±0.08 m).  Depth of water at grass carp locations varied 

significantly by season (Figure 2.3) (df=3, F=4.495, p=0.0042).   Grass carp were found in the 
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deepest water during winter and the shallowest water during summer.  Water depth at grass carp 

locations was not significantly different between the upper and lower reservoirs (df=1, t=0.239, 

p=0.8117).   

 

Figure 2.3.- Average seasonal water depth at grass carp locations (±SE) in Lake Gaston. 

 

Multiple regression analyses.- Significant relationships were observed between water 

depth at grass carp locations and predictors (Figure 2.4).  All five of the best regression models 

of water depth at grass carp locations included fish age, water temperature, and wind speed 

(Table 2.7).  None of the best models included secchi depth.  Model D1 provided the best 

representation of water depth at grass carp locations because it had the smallest value for 

Mallow’s Cp, the smallest PRESS statistic, and the smallest VIFs of any model.    
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Figure 2.4.- Graphical correlation matrix of water depth at grass carp locations [D(M)] and 

individual predictors used in multiple regression analysis. Mean values for each variable are 

given in red.  Standard error of the response is given in blue.   *Indicates statistically significant 

correlations. 

 

 

 

 

 

 

P=0.0012* P=0.0385* P=0.0001* P=0.0279* P=0.8830 

P=0.1305 P=0.0555 P=0.0132* P=0.4284 
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Table 2.7.- Predictors used and model-fit statistics for the five-best candidate models of water 

depth at fish location.  P is the number of parameters estimated, Cp is the value of Mallow’s Cp 

statistic for each model, R
2

ADJ is the R
2
-adjusted value for each model, and PRESS is the value of 

the PRESS statistic.  Partial coefficients of determination (r
2
) and variance inflation factors 

(VIFs) are given for all predictors used in each model. 

  D1   D2   D3   D4   D5 

Predictor r2 VIF   r2 VIF   r2 VIF   r2 VIF   r2 VIF 

Age (yr) 0.02 1.01 

 

0.02 1.01 

 

0.02 1.01 

 

0.02 1.01 

 

0.02 1.01 

Water Temp. (ºC) 0.04 1.47 

 

0.04 1.12 

 

0.04 1.47 

 

0.04 1.54 

 

0.04 1.46 

Secchi Depth (m) 

              Elevation (m) 

         

0.00 1.14 

   Inflow (m
3
/s) 

            

0.01 1.43 

Outflow (m
3
/s) 0.01 1.409 

    

0.01 1.1 

 

0.01 1.42 

   Rain (mm) 

   

0.01 1.08 

 

0.00 1.21 

 

 

 

 0.00 1.11 

Wind speed (km/h) 0.01 1.122 

 

0.01 1.19 

 

0.01 1.43 

 

0.01 1.13  0.01 1.21 

Hours of Daylight (h)                             

P 4   4   5   5   5 

Cp 2.3   3.5   2.5   3.7   3.9 

R
2

ADJ 8.8   8.6   9   8.9   9 

PRESS 2721   2722   2724   2730   2725 

 

 

Water temperature was the strongest predictor of water depth at grass carp locations 

(Table 2.8).  Grass carp generally were found in shallower water when water temperatures were 

high.  A 1-year increase in age corresponded to a 1.6-m decrease in the average depth occupied 
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by grass carp when all other factors were held constant.  Water depth occupied by grass carp 

increased with outflow when other factors were held constant and on windy days if other factors 

were held constant.   

 

Table 2.8.- Standardized coefficients (βi) and individual statistics for parameters estimated in the 

best model of water depth at grass carp locations in Lake Gaston (model D1). 

Predictor βi T p 

Fish Age (yrs) -0.22323 -3.920 0.000 

Water Temperature (ºC) -3.08498 -3.790 0.000 

Outflow (m
3
/s) 0.00007 2.140 0.033 

Wind Speed (km/h) 0.07295 1.800 0.073 

 

Distance of grass carp from the nearest shoreline 

 Univariate analyses.- Grass carp were located a mean distance of 40 m from the nearest 

shore (±1.9 m) throughout the year in Lake Gaston.  The distance of grass carp to the nearest 

shoreline did not appear to vary by season (df=3, F=2.22, p=0.0861), however  grass carp 

stocked in the upper reservoir were located closer to shore than grass carp stocked in the lower 

reservoir (df=1, t=-2.028, p=0.0456) (Figure 2.5). 
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Figure 2.5.- Mean distance of grass carp to the nearest shoreline (±SE) in Lake Gaston by 

stocking location. 

 

Multiple regression analyses.- All five of the best models of grass carp distance from  the 

nearest shoreline included water temperature, secchi depth, lake elevation, wind speed, and hours 

of daylight (Table 2.9).  Significant correlations were observed between grass carp distance to 

shore and predictors (Figure 2.6).  Model S1 was the best model developed to explain the 

distance of grass carp to the nearest shoreline according to model-fit statistics.  Model S1 had the 

largest R
2

ADJ value and the smallest values for Mallow’s Cp and PRESS statistics.   
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Figure 2.6.- Graphical correlation matrix of relations between distance of grass carp to the 

nearest shoreline [LN(SHO)] and predictors.  Mean values for each variable are given in red.  

Standard error of the response (ln-transformed) is given in blue.  *indicates statistically 

significant correlations. 
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p=0.0001* 
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Table 2.9.- Predictors used for modeling distance of grass carp from the nearest shoreline.  P is 

the number of parameters estimated, Cp is the value of Mallow’s Cp statistic for each model, 

R
2

ADJ is the R
2
-adjusted value for each model, and PRESS is the value of the PRESS statistic.  

The partial coefficient of determination (r
2
) and variance inflation factors (VIFs) are given for all 

predictors used in each model. 

  S1   S2   S3   S4   S5 

Predictor r2 VIF   r2 VIF   r2 VIF   r2 VIF   r2 VIF 

Age (yr)             0.01 1.02             

Water Temperature (ºC) 0.01 2.31   0.01 2.52   0.00 2.33   0.01 2.74   0.01 2.36 

Secchi Depth (m) 0.02 1.00   0.04 1.00   0.01 1.00   0.00 1.00   0.02 1.01 

Elevation (m) 0.01 1.06   0.03 1.06   0.00 1.06   0.01 1.06   0.01 1.06 

Inflow (m
3
/s)                   0.00 1.31       

Outflow (m
3
/s)       0.02 1.19                   

Rain (mm)                         0.00 1.14 

Wind speed (km/h) 0.01 1.16   0.03 2.21   0.01 1.16   0.01 1.17   0.01 1.26 

Hours of Daylight (h) 0.04 2.21   0.06 1.27   0.03 2.21   0.03 2.27   0.03 2.33 

P 5 

  

6 

  

6 

  

6 

  

6 

 Cp 3.2 

  

4.6 

  

4.7 

  

4.7 

  

5.2 

 R
2
 ADJ 6 

  

5.9 

  

5.9 

  

5.9 

  

5.8 

 PRESS 360 

  

361 

  

362 

  

361 

  

362 

  

 Water temperature was most strongly related to grass carp distance from shore when all 

other factors were held constant (Table 2.10).  Grass carp were found significantly further from 

shore when water temperature was high if all other factors were held constant.  Increases in 

water transparency (secchi depth) and average daily wind speed also corresponded to increases 
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in the distance of grass carp to the nearest shoreline when other factors were constant.  When 

pool elevation was high, grass carp were found closer to shore.  Grass carp were found closer to 

shore when there were fewer hours of daylight and other factors were held constant.   

 

Table 2.10.- Standardized coefficients (βi) and individual statistics for the best model of grass 

carp distance from the nearest shoreline (model S1). 

Predictor βi T p 

Water Temperature (℃) 0.042 2.030 0.043 

Secchi Depth (m) 0.001 2.010 0.045 

Elevation (m) -0.002 -2.370 0.018 

Wind speed (km/h) 0.002 2.230 0.026 

Hours of Daylight (hr) -0.011 -4.560 0.000 

 

Discussion 

 Grass carp behavior in Lake Gaston appeared to be most strongly associated with age and 

the amount of time a fish was in the lake. Grass carp movement rates decreased rapidly after 

release as observed by Bain et al. (1990) and Chilton and Poarch (1997).  After an initial 

dispersal period, grass carp were found most often in small creeks and backwaters near stocking 

areas, and moved little until their second spring season.  However, when the number of days 

post-tag was held constant, grass carp movement increased with age.  At age 2, all fish moved 

out of small creeks and were frequently found throughout the main lake.  This behavior is similar 

to that described by Gorbach and Krykhtin (1988) who suggested that juvenile grass carp may 

spend several years in rearing habitats before adapting behavioral characteristics of adults, and 
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Cassani and Maloney (1991) who suggested that juvenile, post-stocking home ranges of grass 

carp may last from three months to one year.  Age-2 fish were found in shallower water depths 

than age-1 fish, and grass carp were not found any further from shore than at age one.    My 

findings are contrary to those of Bain et al. (1990) who speculated that as grass carp aged, they 

would move away from areas suitable for hydrilla growth.  One possible reason for this is that I 

followed the same fish for multiple years in Lake Gaston.  Bain et al. (1990) followed different 

fish in each year.  Thus, it is possible that the results of their study indicate differences in post-

stocking behaviors between juvenile and adult grass carp rather than differences in life-history 

strategies at different ages.  The behaviors exhibited by grass carp in Lake Gaston suggest that 

movements and habitat use of the fish may change with age, but fish continue to occupy areas 

within the range of depth occupied by hydrilla. 

   By holding constant the relationship between days post-tag and ADM, I was able to 

examine relationships between movement and seasonal factors individually.  Chilton and Poarch 

(1997) reported that the interpretation of trends in seasonal movements was confounded by a 

rapid decrease in movement after stocking.  Results reported by Bain et al. (1990) also suggested 

that seasonal trends in movement may have been related to time after stocking, but time after 

stocking was not accounted for in that study.  While my methods do not provide a direct means 

of testing the effect of season on movement, I was able to determine the influences of individual 

factors that might be included in delineation of seasons.  Such factors included water temperature 

and hours of daylight.  The results of my study indicate the interactions between seasonal factors 

and grass carp behavior may be more complex than has previously been assumed.  For example, 

previous studies have found that grass carp activity was lowest in winter (Nixon and Miller 

1978; Bain et al. 1990; Chilton and Poarch 1997).  However, grass carp may feed in water 
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temperatures as low as 3-6°C (Michewicz et al. 1972b).  My results suggest that grass carp move 

the least when water temperature is high and all other factors are held constant.  One possible 

explanation for this phenomenon is that the high summer temperatures in Lake Gaston may 

cause the fish to move less.  Researchers have speculated that grass carp are adapted to conserve 

energy at high temperatures (Huisman and Valentijn 1981).  Furthermore, dissolved oxygen (O2) 

may be more limiting to juvenile grass carp survival in summer months than in winter months 

(Opuzynski 1967).  If O2 is limiting to survival, then minimizing movement during warm months 

may be a useful strategy for maintaining low metabolism and, therefore, O2 consumption rates.  

However, Nixon and Miller (1978) found no effect of O2 on movement.  As an alternative 

explanation, grass carp may move less when temperatures are high because that is when hydrilla 

growth peaks.  Previous research suggests that grass carp graze most efficiently when they move 

the least (Hockin et al. 1989) and that grass carp move little after locating vegetation (Chilton 

and Muoneke 1992; Chilton and Poarch 1997).  It is possible that the lack of movement observed 

at high temperatures in Lake Gaston indicates periods of heaviest grazing by grass carp on 

hydrilla.  This speculation is supported by the observation that grass carp were found in the 

shallowest water during summer, where food is presumably more plentiful (Chilton and 

Muoneke 1992).  Although I observed no effect of season on the distance of grass carp to the 

nearest shoreline, I did find that grass carp were located closer to shore during periods of 

extended daylight. 

Another possible explanation for my observation that ADM increased with decreasing 

temperature is that temperature may not be the most-important seasonal influence on grass carp 

ADM.  If temperature was a reliable predictor of seasonality in grass carp movements, I also 

would expect that photoperiod (hours of daylight) would be a significant predictor of fish 
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activity.  However, photoperiod was only included in the worst model of grass carp ADM, 

suggesting that water temperature may be a statistically more-useful index of season than 

photoperiod for ADM; possibly because cues based on photoperiod are less relevant in this 

sterile population, temperature was quantified more accurately, or because temperature varied 

more in this study.  A similar result was observed in the distance of grass carp to the nearest 

shoreline.  The relationship between shoreline orientation and temperature suggested opposite 

behavioral patterns than did the relationship between shoreline orientation and photoperiod.  

These results suggest that seasonal conditions may not be as important in influencing grass carp 

movements as conditions that change day to day, such as weather patterns and flow dynamics.   

The only response variable measured in this study that appeared to be clearly dependent upon 

temperature (according to both univariate and MLR analyses) was depth of water at fish 

locations, and photoperiod was not included in any of the best models of depth.  As described in 

other studies (Nixon and Miller 1978; Bain et al. 1990), I found that grass carp were found in 

deeper water during winter months.  Similarly, the multiple-regression analysis showed that 

grass carp were found in deeper water when temperature was low and other factors were held 

constant.  My results indicate that while ADM and distance of grass carp from the nearest 

shoreline may not vary seasonally, the depth of water occupied by grass carp does. 

 Hydrodynamic processes were related to all aspects of fish behavior measured in Lake 

Gaston.  These results suggest that grass carp behavior is closely tied to flow dynamics in 

reservoirs used for hydropower.  Lake elevation was an important factor for predicting both the 

distance of grass carp to the nearest shoreline, and ADM of grass carp.  Outflow was important 

in predicting the water depth in which grass carp were located.  Fish generally moved more and 

were located closer to shore when lake elevation was high.  This behavior suggests that as the 
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total surface area of the lake is increased through water retention, grass carp move with rising 

water.  These results make intuitive sense because a greater surface area of water results in 

increased availability of near-shore habitat where food resources are most abundant.  The fact 

that lake elevation was not an important predictor in most of the best models of depth indicates 

that fish must have been moving inward toward shore in order to maintain their position in the 

water column during periods of increased lake elevation.  This behavior may be beneficial for 

weed control in the lake because it allows grass carp to access areas that would otherwise be too 

shallow for them to enter (but not too shallow for hydrilla to grow in) during periods of lower 

water level. 

The primary purpose of Lake Gaston is production of hydropower, and as such water 

release from the reservoir is governed by primarily by energy demand.  However, Kerr 

Reservoir, the primary input of water for Lake Gaston, is a flood control reservoir.  Thus, water 

release from the Kerr Dam into Lake Gaston is regulated primarily by rainfall and secondarily by 

the need to maintain water levels in Lake Gaston.  As a result of the different purposes of the 

Kerr and Gaston Dams, flow dynamics differ in the upstream and downstream ends of Lake 

Gaston.  The differences in flow dynamics between the upstream and downstream ends of Lake 

Gaston may affect fish behavior differentially at opposite ends of the reservoir.  When outflow 

from the Gaston Dam was high and all other factors were held constant, fish moved less and 

were found in deeper water, suggesting that fish moved away from areas that hydrilla could 

occupy.  Conversely, when lake elevation was high, grass carp appeared to be restricted in 

movement and distribution (depths and shoreline orientation) to areas suitable for hydrilla 

growth.  These contrary results may be due to differences in flow regimes between ends of the 

reservoir, as regime is determined by inflow from the Kerr Dam in the upper reservoir and 



40 
 

release from the Gaston Dam in the lower reservoir. As an example, grass carp were found 

further from shore in the downstream end of Lake Gaston throughout this study and higher 

outflow also corresponded to greater depths occupied by grass carp.  Based on the results of my 

study, it seems that outflow may be more important in determining fish behavior in the lower 

reservoir than hydrodynamic processes upstream.  This speculation is further supported by the 

fact that the only difference in the two best models of ADM was the inclusion of either inflow or 

outflow.  According to model-fit statistics, the two models provided virtually the same fit to the 

data.   

  As this study relies heavily on correlation, I have no way of prescribing cause and effect 

to the relationships between flow dynamics (or other predictors) and grass carp behavior.  

However, as an exploratory study, I have been able to identify specific interactions between 

grass carp behavior and their environment that warrant further investigation.  One of the aspects 

of grass carp behavior illustrated in this study that warrants further investigation is behavioral 

relations to flow dynamics.  The limited flow dynamics of hydropower reservoirs may make 

them more suitable for grass carp use than the more-variable flow dynamics of flood control 

reservoirs.  In general, the elevation of Lake Gaston varies little over any period, fluctuating only 

±15 cm in a given day (Pearsall et al. 2005).  The constant demand for energy and drinking water 

from Lake Gaston generally balance input from Kerr Dam, and flow in Gaston is regulated to 

pass water from Kerr reservoir with minimal elevation change (Pearsall et al. 2005).  While 

Gaston varies little in lake elevation, Kerr Reservoir may vary by as much as 3-6 m in a given 

day (Pearsall et al. 2005).  More-variable flow regimes in flood-control reservoirs could result in 

more-extreme changes in grass carp behavior.  Research regarding these changes is lacking in 

the literature, and should be a focus of future grass carp telemetry research.  Knowledge of these 
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relationships could be useful in risk assessments concerning the use of grass carp in hydrilla-

control plans (e.g. Zajicek 2008).   

I was able to identify relationships between grass carp behavior and several 

environmental factors in Lake Gaston using radio telemetry that provide areas of focus for future 

researchers.  Because of the number of fish studied, and the span of this study, these 

relationships should be useful in understanding how fish behavior might affect management of 

grass carp in Lake Gaston.  Grass carp were found in areas of the lake suitable for hydrilla 

growth the vast majority of the time I followed them.  Within these areas, grass carp occupied 

near-shore areas with water depths suitable for hydrilla growth.  As grass carp moved out of 

stocking areas in their second year, they continued to use habitats in which hydrilla could grow.  

These behaviors suggest that grass carp should be a useful tool for hydrilla control at Lake 

Gaston.  There may be differences in grass carp behavior between the upstream and downstream 

ends of Lake Gaston that could be used to improve management decisions, such as locations and 

timing for grass carp stocking.  In general, grass carp stocked in the upper reservoir appeared to 

occupy areas suitable for hydrilla growth more often in this study.  Furthermore, grass carp 

behavior appeared to be affected more by hydrodynamic processes in the downstream end of the 

reservoir.  Due to the differences observed in fish behavior between different ends of the 

reservoir, I recommend that future research in Lake Gaston evaluate changes in other aspects of 

grass carp ecology between the upper and lower reservoir. 
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Chapter 3:  Variation in age-1 survival of triploid grass carp in a large reservoir 

 

Abstract:  Grass carp Ctenopharyngodon idella have been introduced throughout the world due 

to their utility as a biological control of noxious weeds.  Where intermediate control is the 

objective of weed-management plans, successful management is dependent upon knowledge of 

grass carp population dynamics.  While methods of estimating grass carp survival have been 

developed, they do not account for variation in survival between ages of grass carp.  Better 

knowledge of age-specific survival at young ages may improve stocking models of grass carp 

survival.  Furthermore, by understanding factors that affect survival at early ages, the cost of 

weed management might be decreased, and the effectiveness of stocking grass carp increased.  I 

used known-fate models to estimate age-1 survival of radio-tagged grass carp in a large 

reservoir, Lake Gaston, based on encounter histories from telemetry data.  Survival of age-1 

grass carp in the reservoir varied over time and by stocking location.  According to the best 

model developed in this study, survival of age-1 grass carp in Lake Gaston varied throughout the 

year, and the probability of an individual grass carp surviving to the end of its first year (±SE) 

was 0.57(±0.10).  According to the second-best model developed in this study, grass carp 

survival varied between stocking locations, and was twice as high in the upper reservoir 

(0.87±0.09) than in the lower reservoir (0.43±0.11).   The differences in survival between 

stocking locations suggest that the cost-effectiveness of grass carp stocking could be improved 

by focusing stocking efforts in specific regions of Lake Gaston.  Furthermore, none of the 

models developed in this study that incorporated the effects of size (length and weight) or 

condition factor accounted for a meaningful amount of the total model weights.  These results 

suggest that costs of grass carp stocking could be reduced in Lake Gaston by using a smaller 

minimum size (352 mm, TL) than is commonly referred to in the literature (450 mm, TL).  My 
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results also suggest that factors that could potentially influence grass carp survival should be 

considered before stocking.  As fish stocking occurs, the type of information gathered and 

presented in this study can be used to better focus weed management efforts.   
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Introduction 

 Sterile, triploid grass carp Ctenopharyngodon idella have proven an effective biological 

control of invasive weeds such as hydrilla Hydrilla verticillata in many systems (Chilton and 

Muoneke 1992; Bonar et al. 1993a; Schramm and Brice 1998; Kirk and Henderson 2006; 

Pipalova 2006; Chilton and Magnelia 2008).  Successful management of grass carp is based on 

thorough understanding of population parameters such as fish growth and survival (Clapp et al. 

1993; Morrow et al. 1997; Kirk et al. 2000; Kirk and Socha 2003), particularly when the goal of 

weed control is some target level of infestation intermediate between complete eradication and 

no control (Chilton and Magnelia 2008).  In the case of triploid grass carp, survival rates alone 

determine the rate of change in population size since natural reproduction is unlikely (Chilton 

and Muoneke 1992; Pipalova 2006) and immigration or emigration are also unlikely (Hightower 

et al. 2001).  When survival is known, in combination with growth, managers can estimate the 

number and biomass of fish in a system (e.g., Morrow et al 1997) as well as the number of years 

that grass carp might persist after stocking (Kirk et al. 2000). 

Reliable, non-lethal methods for aging grass carp have not been developed, so the only 

fish from which age-specific survival can be directly estimated are those fish marked at or prior 

to stocking.  Indirect methods of mortality estimation, such as catch-curve analysis (Chapman 

and Robson 1960), have been used to estimate average annual survival of grass carp from catch 

data (Morrow et al. 1997; Kirk et al. 2000).  However, grass carp collection does not always 

meet assumptions of catch-curve analysis such as equal vulnerability to gears between age 

classes. Where the assumptions of catch-curve analysis are not met, average annual survival can 

be estimated from other indirect methods if von Bertalanffy growth parameters are known (Pauly 
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1980; Jensen 1996).  While the above techniques provide reasonable estimates of average, 

annual survival, none accounts for variation in survival between ages.   

Due to difficulties capturing grass carp (Colle et al. 1978; Schramm and Jirka 1986; 

Chilton and Muoneke 1992; Bonar et al. 1993b), classical mark-recapture methods for estimating 

grass carp survival often result in biased or incorrect estimates of population size, even in small 

systems (Colle et al. 1978; Stott and Russell 1979).  Recent advances in biotelemetry and 

computing technology have resulted in reliable means for estimating survival from capture-

mark-recapture studies of radio-tagged animals (Pollock et al. 1989; Pollock et al. 1995; Pine et 

al. 2003).  While these methods have been widely applied to wildlife populations (Pine et al. 

2003), they have only recently been applied in fisheries management (Hightower et al. 2001; 

Heupel and Simpendorfer 2002; Pollock et al. 2004; Waters et al. 2005; Thompson et al. 2007).  

These methods have not been applied to estimate survival of grass carp.   

Using radio-telemetry methods to estimate survival of age-1 grass carp stocked in a large 

reservoir could provide information useful for guiding management decisions.  The primary 

objective of this study was to estimate the annual survival of age-1 grass carp stocked in a large, 

southeastern reservoir.  As a secondary objective, I characterized relationships between age-1 

survival and factors that may affect survival.   The results of this study will be useful for 

validating or refining age-1 survival of grass carp estimated with other methods.  Information 

from this study will be useful in identifying key factors affecting the cost and effectiveness of 

grass carp stocking plans. 
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Methods 

Study site 

Lake Gaston, located on the border of North Carolina and Virginia, is a large (8,500 ha), 

impoundment on the Roanoke River (Figure 3.1).  The lake was constructed by Virginia Power 

and Electric Company (Dominion Power in NC) for the primary purpose of generating hydro-

electric power in 1963.  It is bordered upstream by Kerr Reservoir, and downstream by Roanoke 

Rapids Lake.  Lake Gaston supports a popular fishery that includes species such as largemouth 

bass, Micropterus salmoides, walleye, Sander vitreus, striped bass, Morone saxatilis, and several 

species of ictalurid catfishes.  In addition, the lake provides opportunities for non-consumptive 

recreation and is a center of residential and economic development in the region (Richardson 

2008).  Finally, Lake Gaston is a major supply of drinking water for Virginia Beach residents 

(Cox 2007).  

 

Figure 3.1.-  Lake Gaston, North Carolina and Virginia showing grass carp stocking locations in 

the upper reservoir (A) and the lower reservoir (B and C). 

 

A 

B 

C 
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Triploid grass carp were introduced into Lake Gaston in 1995 to control invasive hydrilla.  

Since then, about 75,000 triploids have been stocked incrementally to maintain a target density 

of <37 fish/ha (Table 3.1).  

 

Table 3.1.-  Stocking history of triploid grass carp in Lake Gaston. 

Cohort # Stocked 

1995 20000 

1997 680 

1999 5000 

2003 25392 

2006 7000 

2007 7720 

2008 100 

2009 6520 

2010 7347 

  

Current management of grass carp in the lake is precautionary, as complete eradication of 

submersed vegetation would be undesirable to some stakeholders (Richardson 2008).  Grass carp 

are maintained at low levels, and are integrated with annual herbicide applications to control 

hydrilla.  As grass carp biomass approaches target levels, small changes in estimates of fish 

survival could have drastic effects on the number of fish recommended for stocking.  These 

effects could result in overshooting the target level of hydrilla in the lake, or in reverting to a 

situation where the appropriate level of control is not achieved.  Because of the need to balance 

stakeholder values in Lake Gaston, precise information on the survival of grass carp at young 

ages is needed to guide future stocking decisions.  Survival at age-1 may be affected by factors 

such as the size of fish at stocking or the stocking locations, which are under the control of the 

weed-management team at Gaston.  
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Radio tagging and telemetry 

I used 40 fish radio tagged in April 2009 to estimate age-1 survival of grass carp.  I 

tagged grass carp using two different procedures and depending on the size of fish being tagged, 

I used radio tags weighing 8 grams for 30 fish.  Ten fish >1 kg each were fitted with 25-g tags.  

In no instance did the weight of radio tags exceed 2% of grass carp body weight, as 

recommended by Winter (1996).  Fifteen grass carp were internally implanted with Model F1820 

“grass carp” radio tags with trailing-whip antennae from Advanced Telemetry Systems (ATS 

Inc., Isanti, MN).  In addition to a microprocessor-controlled, 14-d duty cycle and slow pulse rate 

of 30 ppm for extended battery life, the tags were equipped with mortality sensors.  The 

mortality sensors were controlled with a mercury switch that activated after 12 hours of 

inactivity by quickening the pulse rate to 60 ppm.  Fish were anesthetized with MS-222 in a 

holding tank prior to implant.  Surgical tools were sterilized in a 10-ppt iodine solution.  After 

they were anesthetized, fish were placed ventral side up in a v-shaped saddle.  Water pumps were 

used to circulate anesthetic through the fish’s gills throughout the procedure.  A small (2-cm) 

incision was made, offset slightly from the ventral line of the fish.  Radio transmitters were 

tested for malfunctions before insertion.  After testing, a transmitter was gently inserted through 

the incision.  The incision was closed with three or four knots using non-absorbable, 

monofilament sutures.  Fish were observed to recover before being released into the lake.  

Maximum time for implant surgery (including recovery) was about 15 minutes. 

The remaining radio transmitters were modified for external attachment and attached to 

25 fish. To modify radio transmitters for external attachment, four loops were secured to radio 

tags with epoxy in a rectangle about a single plane of the tag.  Loops were formed by tying 8 

knots around a sewing needle with 25-lb-test, monofilament line.  Once the loops were secured 
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to the transmitter, epoxy was allowed to set for at least 24 hours prior to attaching the tags to 

grass carp.  Fish were prepared for surgery as described above, except that they were placed 

ventral-side down in the v-shaped saddle.  A rear-attachment wire (16-guage sterilized surgical 

steel) was passed through the dorsal musculature, and then through two loops on either side of 

the radio tag.  The radio tag was then secured by twisting the ends of the attachment wire 7 to 8 

times above the tag.  The same procedure was repeated about 5 cm anterior to the rear-

attachment location.  After the forward-attachment wire was tightened, the two wires were 

twisted together 8-10 times. The wires were cut and folded flat against the top of the radio tag, 

pointing backward.   

Seven fish with internal transmitters and 13 fish with external transmitters were released 

in the lower reservoir.  Eight fish with internal transmitters and 12 fish with external transmitters 

were released in the upper reservoir.  Stocking locations for grass carp coincided with annual 

stocking locations used for non-radio-tagged fish (Figure 2.1).   

After stocking, I attempted to locate all fish at least once per month for one year.  Grass 

carp were radio tracked using boat-mounted Yagi antennae and a model R410 receiver from 

ATS.  Monthly capture histories were constructed for each fish using binary coding.  Since all 

radio-tagged grass carp survived the initial three months of this study, we used all fish to 

estimate survival.  Binary capture histories were used in program MARK (White and Burnham 

1999) to perform known-fate analyses using several candidate models.  Known-fate survival 

models in program MARK are based on the Kaplan-Meier product limit estimator (Kaplan and 

Meier 1958- Equation 1) and are modified to estimate survival as a maximum likelihood estimate 

based on the product of individual likelihoods (Equation 2) where  ̂  is survival to through t 

intervals (in equation 1), Si is the maximum-likelihood estimate of survival in each interval, i, ϴ 
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is the survival model for the t intervals (in Equation 2), ni is the number of individuals alive and 

at risk of death at the start of the i
th

 interval  and yi is the number of surviving i
th

 interval 

                                                 ̂  ∏ (
  

  
) 

                                                                   (1)     

                                    ( |    )   ∏   
   

   (    )
(     )                                        (2)                    

Animals that were not found in a given survey were censored (removed from likelihood 

estimation) for that time period, and if an animal died during the study, they were censored for 

the duration.  A full description of this model and its assumptions is presented in Pollock et al. 

(1989).  For my study, the primary assumptions of the known-fate models were: 

 

1) Survival is equal between genders of fish; 

2) Survival is independent for all fish; 

3) Radio tags do not affect fish behavior or survival; 

4) Censoring of individual fish is random; and 

5) Fish movement patterns and mortality sensors can be used to determine if 

animals are alive or dead. 

 

Model development and covariates 

I developed multiple hypotheses a priori to determine which variables were most likely to 

influence age-1 survival of grass carp.   The hypotheses fell into four general categories 

including spatial and temporal effects (variation in survival between months and stocking 

locations), effects of size (length, and weight), the effect of condition, and transmitter effects (tag 

weight and tagging method, and tag-weight-to-fish-weight ratio).  I then developed known-fate 

survival models that corresponded to hypotheses to be tested.  Survival models were structured 
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as generalized linear models using the logit link function in program MARK. Parameters in each 

model and their variances were estimated using maximum likelihood estimation.   Likelihoods 

were based on the probability of observing individual encounter histories given the data.  The 

likelihood of a fish surviving the duration of the study was determined as a product of individual 

likelihoods.  The binomial variance for survival was calculated from the 2
nd

 partial derivative of 

the likelihood with respect to survival using Equation 3, where n is sample size and  ̂ is the 

maximum-likelihood estimate of survival.  I performed model selection using information-

theoretic methods based on Akaike’s information criterion corrected for bias due to small sample 

sizes (AICc) and AICc weights (Burnham and Anderson 2002). 

                                                     ̂(   ̂)                                                                      (3) 

   Grass carp growth and survival have been shown to be influenced by the density of fish 

per area of aquatic weeds (Colle et al. 1978; Catarino 1997; Kirk et al. 2000).  To incorporate 

this dependence in my models, I tested variation in survival between months, since hydrilla 

coverage in temperate systems varies throughout the year and is characterized by periods of 

growth, senescence, and re-growth.  I hypothesized that survival would be time-dependent due to 

the seasonal nature of the hydrilla growth and other environmental variables that may affect 

grass carp survival.  To test this hypothesis, I developed models that assumed survival either 

varied by month (S time-dependent) or was constant throughout the year (S constant).  The time-

dependent model used 10 intervals through 12 months.  All intervals were 1 month long except 

the final interval, which was 2 months in length.  Differences between the lengths of each 

interval were incorporated into program MARK. 

Possible differences in survival between stocking locations may occur due to a host of 

factors.  Some differences between stocking locations for grass carp in Lake Gaston that may 
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affect survival include mean channel width and depth, hydrilla growth, flow regimes, 

temperatures, and human impacts such as nutrient loading, spot treatment with herbicides, and 

recreational activities such as boating.  The upstream end of the reservoir is generally more river-

like than the downstream end.  Throughout the upper reservoir, small creeks and backwaters 

make up a large portion of the physical habitat, while the lower reservoir mainly comprises large, 

open coves and main-channel habitat.  In addition, the upstream end of the reservoir is less 

developed than the downstream end, and sees less recreational use than downstream sites.  To 

test the effects of stocking location on survival I developed a known-fate model that allowed 

survival to vary between stocking locations (S stocking location). 

 Previous research has shown a significant effect of grass carp length at stocking on fish 

survival (Shireman et al. 1978).  The minimum size recommended for stocking in systems with 

Florida-strain largemouth bass is 450 mm (Shireman et al. 1978).  The minimum length of grass 

carp radio tagged in our study was 352 mm. While Florida-strain largemouth bass are not present 

in Lake Gaston, there are a variety of potential predators that could consume grass carp larger 

than the minimum size recommended by Shireman et al. (1978).  Potential predators of juvenile 

grass carp in Lake Gaston include striped bass, blue catfish, Ictalurus furcatus, and flathead 

catfish, Pylodictis olivaris.  To determine if the size of grass carp stocked in Lake Gaston 

exposed fish to differential mortality, I included two measures of size in my models.  As 

measures of size, I used total length (TL, mm) and weight (g) of radio-tagged grass carp. I 

developed models that allowed survival to vary by length (S length) or by weight (S weight).   

I based the condition of fish on the Fulton condition factor (C) calculated from length and 

weight measurements (Anderson and Neumann 1996).  The basis for including condition was 

that fish in better condition might have higher survival  if a substantial amount of time passed 
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between stocking and annual hydrilla re-growth.  To test this hypothesis, I developed a known-

fate model that allowed survival to vary with fish condition (S condition). 

The general “rule of thumb” for tags used in fish telemetry studies is that tag weight 

should not exceed 2% of fish body weight (Winter 1996).  In the past, fisheries professionals 

have recommended that such generalizations not be used to guide tagging decisions (Brown et al. 

1999; Jepsen et al. 2002).  Recent research has shown that the maximum ratio of tag weight to 

fish size should be based on study objectives, tagging methods, and life history of study 

organisms (Jepsen 2005).  However, few studies actually evaluate the effects of tagging on fish 

behavior or survival (Jepsen 2005).  In order to evaluate differences in fish survival due to 

tagging methods or tag weight, I developed known fate models that allowed survival to vary by 

tagging method (S tag type) and by tag weight (S tag weight).  In order to incorporate the effects of tag 

burden on fish survival, I developed a known-fate model that allowed survival to vary by the 

ratio of tag weight to fish weight (S tag:fish). 

 

Results 

 The majority (87%) of the AICc model weights from this study were attributed to two 

models (Table 3.2).  The two models showing the most support were the model that allowed 

survival to vary throughout the year (S time-dependent), and the model that allowed survival to vary 

by stocking location (S stocking location).  A small amount of support was given to the models that 

incorporated weight and the tag-weight-to-fish-weight ratio, but support was less than 4% of the 

total AICc model weights for either model.  None of the remaining of the models tested in this 

study showed a meaningful amount of support.  
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About 58% of the cumulative AICc model weight was attributed to the time-dependent 

model of survival, suggesting that grass carp survival varied significantly with time.  

Furthermore, support for the model that assumed constant survival was only 2% of the 

cumulative AICc weight.  According to the time-dependent model, the probability of grass carp 

surviving the first year in Lake Gaston (±SE) was about 0.57 (±0.10). 

 

Table 3.2.- Results of known-fate model selection based on Akaike’s information criterion 

corrected for bias from small sample sizes (AICc) for age-1 grass carp in Lake Gaston. Models 

are ranked based on AICc;  and wi is the model AICc weight. 

Model AICc ∆AICc wi K  

S time-dependent 97.39 0.00 0.58 11 

S stocking location 98.75 1.37 0.29 2 

S tag:fish 102.76 5.37 0.04 2 

S weight 103.26 5.87 0.03 2 

S constant 104.21 6.82 0.02 1 

S condition 104.76 7.38 0.01 2 

S tag type 105.24 7.85 0.01 2 

S tag weight 105.40 8.01 0.01 2 

S length 105.69 8.31 0.01 2 

 

Survival of grass carp in Lake Gaston appeared to vary between stocking locations 

(Figure 3.1).  The second-best model of age-1 grass carp survival in Lake Gaston allowed 

survival to vary between stocking locations (S stocking location).  This model comprised about 29% 

percent of the total AICc model weights.  In the upper reservoir the probability of a grass carp 

surviving the first year was approximately 0.87 (±0.09), while age-1 survival of grass carp 

stocked in the lower reservoir was about 0.43 (±0.11).   

Grass carp survival did not appear to be related to the tagging method or the weight of the 

tag used.  None of the survival models that included effects of tagging accounted for more than 
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1% of the cumulative AICc model weights.  All three models that incorporated tagging effects 

showed less support than the model that assumed no variability in survival (S constant).     

 

Figure 3.2.- Cumulative survival probabilities of grass carp in Lake Gaston according to the 

time-dependent model, and in separate ends of the reservoir as determined using the model that 

incorporated the effect of stocking location. 

 

Discussion 

 I observed a substantial difference in grass carp survival between stocking locations in 

Lake Gaston.  Survival of grass carp in the upper reservoir was more than double survival of fish 

stocked in the lower reservoir.  One potential reason for the low survival of grass carp stocked in 

the lower reservoir is the amount of time fish spent in hauling trucks and holding tanks.  

However, because all grass carp survived the first three months of the study, it seems unlikely 

that survival was affected by hauling stress.  A more-reasonable explanation is that 

environmental differences exist between the upper and lower reservoir that contribute to better 
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survival of grass carp in the upper end.  The most-obvious factor that might affect survival 

between stocking locations is food availability.  Direct estimates of hydrilla coverage in Lake 

Gaston do not separate the reservoir into upper and lower ends.  Though, in general, the largest 

and most-dense stands of hydrilla are found in the shallows of the upper reservoir (Remetrix 

2009, 2010, 2011).  Due to strong environmental gradients in reservoirs, upstream and 

downstream areas differ substantially with regard to physical and chemical habitat and 

distributions of established fish populations tend to be predictable (Gido et al. 2002).  In Lake 

Gaston, like many large reservoirs, habitat in the upper reservoir is more riverine than in the 

lower reservoir, and is characterized by numerous small creeks and expansive, shallow, back-

water areas.  The lower end of Lake Gaston is more lentic than the upper reservoir, and is 

predominantly made up of large, open coves and main-channel habitat.  Because grass carp are 

native to large river systems (Chilton and Muoneke 1992), it is conceivable that differences in 

habitat between stocking areas could impact grass carp survival.  This is especially true if age-1 

survival of grass carp is tied to availability of specific habitats such as small creeks and shallow 

flats.     

Shoreline development and human population density generally are much higher in the 

lower end of the reservoir.  One major difference in anthropogenic influence between stocking 

areas is that the lower reservoir sees higher levels of boat and jet-ski traffic than the upper 

reservoir.  Studies of grass carp movement and habitat use in Lake Gaston have shown that grass 

carp were located further from shore in the lower reservoir than in the upper reservoir (chapter 

1).  It is possible that factors such as boat traffic and shoreline development may influence grass 

carp behavior and survival in Lake Gaston.  Based on my results, it seems likely that the 
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differences in habitat and human use can also lead to differences in grass carp survival between 

stocking locations. 

 Survival of age-1 grass carp in Lake Gaston was not related to the size of fish stocked.  

My results imply that grass carp either are currently stocked at sizes sufficient to minimize 

predation, or that grass carp of all sizes stocked in Lake Gaston are equally vulnerable to 

predation.  Since some grass carp used in this study were >500 mm and weighed nearly 2 kg, I 

suspect that if there is no difference in survival due to size, it is because predation risk is 

minimized by sufficiently large stocking sizes in Lake Gaston.  A minimum stocking size of 450 

mm for grass carp was recommended to eliminate predation in lakes with Florida-strain 

largemouth bass (Shireman et al. 1978).  The minimum size of grass carp used in my study was 

352 mm.  Since stocking size had no detectable effect on grass carp survival in Lake Gaston, I 

speculate that a stocking size of 352 mm is sufficient to minimize losses to predation in this 

system.  Stocking smaller grass carp is more economical than stocking large fish due to 

decreased costs of growing fish to smaller sizes (Chilton and Muoneke 1992).  By using a 

smaller minimum size for grass carp at stocking, the cost of stocking grass carp in Lake can be 

reduced.   

 Neither the weight of tags, tag burden, nor the type of surgery had significant effects on 

grass carp survival.  These results indicate that the assumptions of known-fate models regarding 

the effects of radio tags on the survival of individuals were satisfied.  Furthermore, the results of 

the tagging study serve as a form of verification that neither tagging methods nor tag weights 

affected the interpretation of other results (Jepsen 2005).  In general, I conclude that tags 

weighing less than 2% of grass carp body weight do not appear to affect fish survival.  Because 

the effects of tags on fish behavior and survival cannot be determined a priori in any telemetry 
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study, I suggest that the 2% rule (Winter 1996) is a reasonable starting point for telemetry studies 

of grass carp 352-573 mm TL.  However, I support the recommendations of Jepsen (2005) that in 

the future, effects of tagging should be taken into account during analysis. 

In Lake Gaston (and many other management scenarios), stocking locations are often 

decided based on political rather than biologically meaningful considerations.  Based on the 

results of this study, the cost of stocking grass carp in Lake Gaston could be substantially 

reduced.  In general, the stocking size of grass carp needed to reduce losses to predation in Lake 

Gaston (352 mm, TL) is smaller than the size of 450 mm recommended in the literature 

(Shireman et al. 1978) so the cost of stocking in Lake Gaston could be reduced by using smaller 

fish at stocking.  In the future, differences in habitat should be taken into account when stocking 

locations are decided.  Grass carp stocked in the upper reservoir have significantly higher 

survival rates than grass carp stocked in the lower reservoir.  Grass carp appear to associate with 

target areas more closely than fish stocked in the lower reservoir (chapter 1).   Based on the 

results of behavioral studies of grass carp in Lake Gaston, it appears that during the second year 

in Lake Gaston, stocked grass carp move to and from target areas throughout the lake and may 

move the entire distance of the lake (chapter 1) thus reducing the need to spread stocking 

locations throughout the lake.  These results suggest that managers may be able to further reduce 

the cost of weed control by stocking grass carp only in the upper reservoir.  Conversely, the cost 

of continuing to stock in the lower reservoir could increase due to decreased survival and the 

need for more fish at stocking to maintain target densities.   
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Chapter 4:  Growth and population dynamics of grass carp incrementally stocked for 

biological control of hydrilla 

 

Abstract:  In many aquatic weed-control plans that use grass carp, the goal of weed control is 

some level intermediate between eradication and no control.  To effectively manage biological 

controls such as grass carp for intermediate weed control, managers must have an understanding 

of population dynamics and processes over the long term.  The purpose of this study was to 

characterize growth, mortality, and associated population parameters of long-lived, triploid grass 

carp that were incrementally stocked for biological control of hydrilla in a large reservoir.  Grass 

carp were collected 2006-2010 from Lake Gaston (VA/NC) by specially permitted bowfishers.  

Grass carp collected from Lake Gaston ranged in age 1-16 years.  Growth of grass carp in Gaston 

was described by the von Bertalanffy growth function as Lt = 1297(1-e 
-0.1352 (t+1.52)).  I estimated 

mortality from the von Bertalanffy growth parameters using methods based on growth, 

temperature, and age; and with each mortality estimate I estimated population size and standing 

biomass of grass carp.  Estimates of instantaneous mortality ranged from 0.20 to 0.25 depending 

on the method used.  Use of age-specific mortality rates produced lower estimates of grass carp 

numbers and standing biomass in Lake Gaston than did the use of a single, instantaneous 

mortality rate for all ages.  I determined that growth of grass carp slowed considerably after the 

fourth year and that slowed growth, in combination with changes in mortality, resulted in a 

decrease in the amount of hydrilla controlled by a given cohort after four years in Lake Gaston.  

This phenomenon resulted in an approximately linear relationship between the biomass of grass 

carp at year i and hectares of hydrilla at year i+3.  Based on this relationship, I predicted that the 

biomass of grass carp necessary to reduce hydrilla coverage to the target level of 120 ha in Lake 
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Gaston is about 91,184 kg (±38,146 kg) and that the current biomass of grass carp in Lake 

Gaston is about 108,073 kg (±3,609 kg).  I conclude that grass carp biomass is at or near levels 

that should reduce hydrilla coverage to 120 ha between 2013 and 2018.  I recommend that future 

grass carp stocking rates used to maintain target fish density in Lake Gaston be based on 

standing biomass estimated from and age structure and growth of grass carp, instead of numbers 

of fish. 
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Introduction 

Grass carp Ctenopharyngodon idella have been widely stocked for biological control of 

aquatic vegetation in the United States since introduction in 1963 (Mitchell and Kelly 2006).   

The species has been proven an effective control agent for invasive aquatic weeds such as 

hydrilla Hydrilla verticillata which is a highly preferred food source for grass carp (Allen and 

Wattendorf 1987; Chilton and Muoneke 1992; Kirk et al. 2000).  Classical approaches to 

biological control of hydrilla with grass carp often involve a single, large, stocking event.  In 

many situations, grass carp either provide inadequate control of vegetation (Baker et al. 1974; 

Kirk 1992; Killgore et al. 1998), or completely eradicate vegetation from systems (Stott and 

Robson 1970; Bettoli et al. 1993; Killgore et al. 1998; Schramm and Brice 1998).  Variability in 

potential outcome has resulted in stocking rates for grass carp that range from 2 to 500 fish per 

vegetated hectare (Kilgen and Smitherman1971; Allen and Wattendorf 1987; Kirk et al. 2000; 

Bonar et al. 1993, 2002).  In most cases, weed-management goals target some level of 

intermediate control of noxious weeds (Bonar et al. 2002).  To this end, a more-effective means 

of intermediate hydrilla control by grass carp might be achieved through incremental stocking in 

combination with low-level herbicide application (Chilton and Magnelia 2008).  This approach 

allows fisheries managers to make intermediate adjustments to stocking rates so that fish density 

can be maintained at a desired level (Chilton and Magnelia 2008).  Knowledge of growth, 

mortality, and longevity of grass carp is an essential component of any long-term, hydrilla-

control plan that utilizes the species (Kirk et al. 2000; Kirk and Socha 2003).   

Research has shown that mortality and growth rates of grass carp vary by geography, 

climate, availability of food, and age (Chilton and Muoneke 1992).  State and federal agencies 

have developed software programs that predict the potential impacts of grass carp for up to 10 
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years based on a host of factors (e.g., Stewart and Boyd 1999).  Previous studies documented 

methods for collecting and aging grass carp in the Santee-Cooper system, and estimated 

mortality of grass carp using catch-curve analysis (Morrow et al. 1997; Kirk et al. 2000).  The 

Santee-Cooper population of grass carp had an estimated life expectancy of approximately 11 

years and eradicated all submersed vegetation in the first five years of stocking (Kirk and Socha 

2003).  However, studies have shown that grass carp may live up to 21 years in native rivers 

where food is plentiful (Gorbach 1961), and one individual was found in the United States that 

was 33 years old (Cudmore and Mandrak 2004).  While some life-history studies have been 

conducted on sterile, triploid grass carp (e.g., Morrow et al. 1997; Kirk et al. 2000), little 

information exists regarding population characteristics from established, long-lived populations 

that have not eradicated all vegetation.   

Hydrilla was first identified in Lake Gaston, North Carolina and Virginia, in 1992 (Ryan 

et al. 1995).  Initial coverage was about 10 ha, and coverage peaked at 1,364 ha in 2003 

(Williams et al. 2008).  Incremental grass carp stocking has been integrated with annual 

fluridone applications to control hydrilla in Lake Gaston since 1995 (Rob Richardson, North 

Carolina State University, Raleigh, NC, personal communication).  By 2010 hydrilla coverage 

was reduced to approximately 428 ha (Remetrix 2011).  The management goal for hydrilla 

control in Lake Gaston is, “to develop and maintain a healthy lake ecosystem based on a diverse 

plant community dominated by native species” (Mike Smart, US Army Corps of Engineers 

Research Division, personal communication).  In order to achieve this goal, one objective of 

management is to reduce hydrilla coverage to 120 ha by 2012.  This 120 ha is designed to serve 

as a buffer for expected grass carp grazing, and allow native aquatic vegetation to re-establish 

(Mike Smart, US Army Corps of Engineers Research Division, personal communication).  The 



63 
 

target density for grass carp standing stock currently is 37 fish/vegetated ha (Rob Richardson, 

North Carolina State University, personal communication).   

The objectives of this study were to characterize the growth and mortality of a long-lived 

grass carp population from fish collected from Lake Gaston and to estimate the current standing 

stock of grass carp in Lake Gaston.  In order to assess the usefulness of standing-stock estimates, 

a further objective was to compare predicted population characteristics resulting from several 

different mortality estimates.  I used the standing-stock estimates to characterize the relationship 

between grass carp density and hydrilla coverage in Lake Gaston.  

 

Methods 

Fish collection and aging 

 Specially permitted, volunteer bowfishers collected 243 grass carp from Lake Gaston 

2006-2010.  I measured total length (TL) of individual grass carp to the nearest millimeter, and 

weight to the nearest gram.  Whole fish were stored in deep freezers, and allowed to thaw for 1-2 

days before otolith removal.  I exposed lapilli otoliths by removing a section of the supraoccipital 

bone (Morrow et al. 19Gra7).  Otoliths were removed with tweezers, cleaned, and stored dry in 

coin envelopes.  Otoliths were mounted to microscope slides with Crystal Bond 509 mounting 

adhesive (T-E-Klebetechnik, Hannover, Germany) such that the anterior end of the otolith 

protruded perpendicular to the long plane of the slide when the slide lay flat.  I sanded otoliths 

using high-grit sandpaper on a grinding wheel or by hand, holding the slide and sanding from the 

anterior end toward the posterior end of the lapillus.  As annuli became apparent under a 

stereomicroscope, I took pictures of the otoliths at short intervals to minimize the likelihood that 

annuli were not observed due to otolith preparation.  I used an Olympus Q Color3 digital camera 
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(Model no. 01-QCOLOR3-RTV-CLR-10) mounted atop an Olympus stereomicroscope (model 

no. SZ61) to photograph otoliths (Olympus America, Inc., Center Valley, PA).  From the images, 

I estimated ages of individual grass carp based on annular ring formation.    

Two to three individuals from the Virginia Department of Game and Inland Fisheries 

(VDGIF) read otoliths of grass carp collected 2006-2008, and came to a consensus on the 

estimated age of individual fish.  I read all otoliths independently twice, except those collected in 

2008, with at least one month between aging events.  Otoliths collected in 2008 were not aged by 

me.  Otoliths collected 2009-2010 were not aged by VDGIF personnel.   

I tested the effects of personnel (reader) and aging event on the age assigned to each fish 

using a general linear model (Zar 1999).  Individual fish were included in the model as random 

effects.  I used variance components to determine the proportion of variance in assigned ages due 

to different personnel and aging events.  I tested for differences in the ages assigned to each fish 

between reader and event using two-sample t-tests (Zar 1999).  The general linear model used to 

describe variation in the age assigned to each fish suggested that less than 1% of the variation in 

the age assigned to each fish was due to reader or aging event.  No differences were found in the 

age assigned to fish between readers or aging event.  Therefore, final ages of individual grass 

carp were assigned by using the first age estimated for each fish so that age assignment was 

systematic. 

 

Growth of grass carp 

After ages were assigned, I measured the radius (mm) of each otolith using Image Pro 

Plus software (Media Cybernernetics, Inc., Bethesda, MD).  I made measurements from the core 

to each increment and to the margin for back calculation using imaging software.  I used the 
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Fraser-Lee method to back-calculate lengths at each age (Devries and Frie 1996).    I 

characterized the relationship between otolith radius (Sc) and fish length at capture (Lc) using 

simple linear regression.  The intercept parameter of the regression equation was used as an 

estimate of the correction factor (a) in Equation 1, and was estimated using the entire size-range 

of grass carp collected from the lake (Devries and Frie 1996).   

                                                                
    

  
                                          (1) 

I back-calculated length at each age (Li) for nearly all of the grass carp collected from 

Lake Gaston.  Some otoliths were not used for back calculation because they were malformed, or 

annuli grew irregularly.  In such instances, I used the other paired lapillus or excluded the fish 

from back-calculation analyses.  I used analysis of variance (ANOVA) to determine the effect of 

age on growth rate (Zar 1999).  I tested for differences in growth between ages using Tukey-

Kramer pair-wise comparisons of means (Zar 1999) to determine at what age grass carp growth 

became asymptotic.   

I estimated von Bertalanffy growth parameters (von Bertalanffy 1938) iteratively from 

raw, age-length data and plotted a von Bertalanffy growth curve using R software (R 

Development Core Team 2008).  I used preliminary values of parameter estimates obtained using 

mean length at age in program FAST as starting values for the final fit (Slipke and Maceina 

2001). Parameter estimates for the growth curve were reported in the form of Equation 2, such 

that 

                                                                          (   
  (    ))                                                       (2) 

where Lt is the mean length of fish at age t, L∞ is the theoretical maximum length of fish in the 

population, K is a growth parameter, and t0 is the arbitrary origin of the equation (von 

Bertalanffy 1938).  I estimated 95% confidence intervals (CI) for the parameter estimates using 
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bootstrap methods iterated 20,000 times.  I predicted mean length at age, and constructed 95%  

CI using the bootstrapped results in program R. 

 I estimated the relationship between length and weight by the power function W=aTL
b 

for 

all grass carp collected from Lake Gaston (Ricker 1975). I used the equation to predict the 

weight of grass carp at each age from back-calculated lengths at age (Anderson and Neumann 

1996).  I used the predicted weight at each age, in combination with mortality, to estimate 

biomass of grass carp in Lake Gaston. 

 

Mortality and associated population parameters 

 Based on my preliminary analyses, grass carp collection in Lake Gaston did not meet 

assumptions of equal catchability among age classes or between years required for catch-curve 

analysis, so I used three simple alternatives to estimate mortality of grass carp based on von 

Bertalanffy parameters.  I used multiple methods to comparatively characterize the precision of 

multiple approaches to estimating mortality.  I used a hierarchical approach to estimate 95% 

confidence intervals (CI) for mortality estimates using each method from bootstrapped results of 

von Bertalanffy growth parameter estimation.  Since changes in the size of triploid grass carp 

populations depend entirely on mortality, I predicted population size and biomass of grass carp 

based on each of the three mortality estimates.  I present the models below in order of increasing 

complexity. 

 

Growth-dependent mortality.- Jensen (1996) demonstrated that the relationship between 

natural mortality (M) and the von Bertalanffy growth coefficient (K) could be expressed by 
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Equation 3.  According to this method, mortality is predicted based solely on the growth rate of 

fish. 

      ̂ = 1.50K                                                                   (3) 

I used Equation 3 to estimate average, annual mortality ( ̂) across all ages.  I used the value of 

 ̂ predicted by Equation 3 to estimate the number of grass carp at each age remaining in Lake 

Gaston at the start of each year (Nt,i) using Equation 4, where Ri is the number of fish stocked in 

time i.  I estimated population size at the start of each year ( ̂i) according to Equation 5. 

Equation 6 was used to estimate annual biomass of grass carp in each age class (Bt,i) at the start 

of each year. I estimated standing biomass ( ̂i) of grass carp in Lake Gaston at the start of each 

year using Equation 7.   

                                                                
(  ̂)                                               (4) 

      ̂i =∑Nt,i                                                                    (5) 

                                                    Bt,i =Nt,iWt                                                                  (6) 

     ̂i =∑Bt,i                                                                     (7) 

 

Temperature-dependent mortality.- Pauly (1980) estimated fish mortality based on 

interrelationships between maximum size (L∞), growth rate (K), temperature (T) and natural 

mortality using 175 fish stocks. Temperature used for mortality estimates from this method can 

be based on average annual water temperature or on air temperature.  I used average annual 

water temperature at Lake Gaston as measured in telemetry studies of grass carp.  I estimated 

average mortality of grass carp of all ages ( ̂) in Lake Gaston from Equation 8.  I used the same 

methods to estimate annual population size and biomass from temperature-dependent mortality 

as I did for growth-dependent mortality. 
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      log ̂ = .654logK - .28logL∞ + .463logT                                            (8) 

 

Age-dependent mortality.- I used methods developed by Chen and Watanabe (1989) to 

estimate age-specific natural mortality rates of grass carp in Lake Gaston(Mt) based on 

maximum-observed age (tmax), K, and t0 where a0, a1, and a2 are constants pertaining to 

senescence described mathematically by Chen and Watanabe (1989) (Equation 9).  I used 

Equation 10 to estimate the number of grass carp in Lake Gaston at each age from 1995 to 2010 

(Nt,i), and Equation 5 to estimate the annual population size for grass carp of all ages.  Biomass 

was estimated using Equations 6 and 7.  I estimated  ̂ in the age-dependent model as mean Mt 

across all ages and used the resultant value of  ̂ to comparatively assess the precision of 

mortality estimates from the three models described above. 

 

                         ( )   {

 

     (    )
       

 

     (      )   (      ) 
       

                                            (9) 

 

Nt,i =Nt-1,i-1e
(-Mt)

+Rt,i
                                                                                                                       

(10) 

I used paired-t tests to determine differences between model-estimates of annual 

population size ( ̂i) (Zar 1999).  I tested the relationship between grass carp numbers and 

biomass predicted from each model and hydrilla coverage using simple linear regression 

(Montgomery et al. 2006).  Hydrilla coverage estimates used in this study were contracted by the 

Lake Gaston Weed Control Council on an annual basis 199-2011.  Because there was a time-lag 

expected between grass carp stocking and subsequent effect on hydrilla coverage, I tested the 
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relationship between model-estimated numbers and standing biomass of grass carp in year i and 

hydrilla coverage in years i, i+1, i+2, and i+3.  A maximum time-lag scenario of three years was 

used because preliminary analyses suggested both growth and mortality of grass carp stabilized 

after age four.  I used Mallow’s Cp, PRESS, and r
2
-adjusted to rank the fit of the regression 

equations resulting from each model (Montgomery et al. 2006).  I used the best model, as 

determined by model-fit statistics, to predict the biomass of grass carp needed to reduce hydrilla 

coverage in Lake Gaston to 120 ha. 

 

Results 

Fish collection  

 Grass carp collected by bowfishers represented ages 1-16 in Lake Gaston (Table 4.1).  

All stocking cohorts 1995-2010 were represented in the sample.  Total length (TL) of individual 

grass carp collected ranged from 417 to 1350 mm.  Grass carp collected in this study weighed 

0.95-34.0 kg.   
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Table 4.1.- Stocking years, number of fish stocked, and annual catch of grass carp by bowfishers 

in Lake Gaston 2006-2010. 

    Number caught per year    

Cohort # Stocked 2006 2007 2008 2009 2010 Total 

1995 20,000 12 25 9 17 22 85 

1997 680 2 1 5 2 5 15 

1999 5,000 0 2 1 3 12 18 

2003 25,392 22 14 4 6 7 53 

2006 7,000 1 7 7 16 9 40 

2007 7,720 0 0 0 7 14 21 

2008 100 0 0 0 0 9 9 

2009 6,520 0 0 0 0 2 2 

2010 7,347 0 0 0 0 0 0 

Total 79,759 37 49 26 51 80 243 

 

 

Growth of grass carp 

Grass carp growth rate (mm/yr) in Lake Gaston (Figure 4.1) decreased significantly with 

age (df=15, F=516.8, p<0.001).   Parameters estimates for the von Bertalanffy growth function 

describing grass carp growth in Lake Gaston are listed in Table 4.2.  After age 4, the difference 

in growth rate between one age and the next was not significantly different.  The relationship 

between length (TL) and weight (W) of grass carp was described as W=.0000325387TL
2.8746917

 

(r
2
=0.91, df=242 F=1794, p=0.0001), suggesting that grass carp became less rotund as length 

increased (Anderson and Neumann 1996).  The relationship between weight (W) and age (t) was 

linear and was described as W=1448+1623t (r
2
=.99, df=15 F= 1358.1, p<0.001).  
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Figure 4.1.- Plot of the von Bertalanffy growth curve estimated for grass carp collected from 

Lake Gaston by bowfishers.  The equation for the curve is Lt = 1297(1-e 
-0.1352 (t+1.52)), where Lt 

is length at age t.  The convergence criteria for von Bertalanffy parameter estimation were met 

with four iterations (p<0.0001). 
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Table 4.2.- Estimates, standard error (SE), 95% confidence limits (CL), and test statistics for 

parameterization of the von Bertalanffy growth function describing growth of grass carp 

collected from Lake Gaston.   

Parameter Estimate SE Lower 95% CL Upper 95%CL t p>t 

L  1297 24.160 1253 1348 53.66 <0.0001 

K 0.135 0.007 0.122 0.149 19.67 <0.0001 

tₒ -1.52 0.112 -1.75 -1.31 13.54 <0.0001 

 

Mortality and associated population parameters 

The estimate of  ̂ derived from the age-dependent model (0.22, 95%CI= 0.20-0.23) was 

intermediate between  ̂ predicted by the growth-dependent (0.20, 95%CI= 0.18-0.22) and 

temperature-dependent models (0.25, 95%CI= 0.23-0.28).  I observed substantial differences 

between natural mortality rates ( ̂) estimated with all models and age-specific natural mortality 

rates (Mt) at young ages.  Age-specific mortality (Mt) declined rapidly between ages one and five 

(Table 4.3).  Annual mortality declined by less than 2% between subsequent ages after age five 

and by less than 1% after age eight.   
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Table 4.3.- Age-specific mortality rates (Mt) and 95% confidence limits (CL) for grass carp in 

Lake Gaston estimated using an age-dependent model of mortality.  When mortality was 

averaged across all ages,  ̂= 0.22. 

Age Mt Upper 95% CL Lower 95% CL 

1 0.47 0.43 0.51 

2 0.36 0.33 0.38 

3 0.30 0.28 0.31 

4 0.26 0.24 0.27 

5 0.23 0.22 0.24 

6 0.21 0.20 0.22 

7 0.20 0.19 0.21 

8 0.19 0.18 0.20 

9 0.18 0.17 0.19 

10 0.17 0.16 0.18 

11 0.17 0.15 0.18 

12 0.16 0.15 0.17 

13 0.16 0.15 0.17 

14 0.15 0.14 0.17 

15 0.15 0.14 0.16 

16 0.15 0.14 0.16 

M 0.22 0.20 0.23 

 

 Despite apparent similarities in  ̂ predicted by all three models, I observed a wide range 

of estimated population sizes (Figure 4.2).  Population sizes ( ̂i) estimated by the temperature-

dependent model were intermediate to and significantly different from those estimated with the 

growth-dependent model (df=15, t=-9.05, p<0.001) and the age-dependent model (df=15, t=-

9.03, p<0.001).  Population sizes estimated from the growth-dependent and age-dependent 

models also differed significantly (df=15, t=9.05, p<0.001).  Annual population sizes predicted 

with Mt in the age-dependent model were consistently smaller than those predicted by using  ̂ 

derived with growth- and temperature-dependent models.  There was no significant relationship 

between grass carp population size in year i and hydrilla coverage in any year considered in 

time-lag scenarios (i.e., i, i+1, i+2, i+3). 
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Figure 4.2.-  Estimated grass carp population size (± 95% CI) in Lake Gaston 1995-2010.  

Population size ( ̂i) was predicted using  ̂ for growth-dependent and temperature dependent 

models.  Estimates of  ̂i derived from the age-dependent model used Mt for each age (t). 

 

 Estimates of grass carp biomass 1995-2010 varied considerably depending on the model 

used (Figures 4.3-4.5).  The growth-dependent model consistently predicted the greatest  ̂i, and 

the age-dependent model the least.  In years of greatest disparity between model estimates, 

biomass derived by the growth-dependent model was more than double that derived with the 

age-dependent model. 
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Figure 4.3.-  Annual hydrilla coverage 1995-2010 compared to estimates of standing biomass of 

grass carp (±95% CI) derived using the age-dependent model.  Biomass was estimated using the 

mean and 95% confidence limits (CL) for mortality at each age (Mt), and the 95% CI around 

each biomass estimate is based on the 95% CL for weight at each age. 
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Figure 4.4.-  Annual hydrilla coverage 1995-2010 compared to estimates of standing biomass of 

grass carp (±95% CI) derived using the growth-dependent model.  Biomass was estimated using 

the mean and 95% confidence limits (CL) for mortality at each age (M), and the 95% CI around 

each biomass estimate is based on the 95% CL for weight at each age. 
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Figure 4.5.-  Annual hydrilla coverage 1995-2010 compared to estimates of standing biomass of 

grass carp (±95% CI) derived using the temperature-dependent model.  Biomass was estimated 

using the mean and 95% confidence limits (CL) for mortality (M), and the 95% CI around each 

biomass estimate is based on the 95% CL for weight at each age. 
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example, that the best prediction of hydrilla coverage in 1998 was grass carp biomass in 1995.  

The relationship between grass carp biomass and hydrilla coverage was not significant using any 

0

200

400

600

800

1,000

1,200

1,400

1,600

0

30,000

60,000

90,000

120,000

150,000

180,000

210,000

240,000

270,000

300,000
1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

H
y
d
ri

ll
a 

co
v
er

ag
e 

(h
a)

 

G
ra

ss
 c

ar
p
 s

ta
n

d
in

g
 b

io
m

as
s 

(K
g
) 

Year 

Mean M Upper 95% M

Lower 95% M Hydrilla coverage (ha)



78 
 

other time-lag scenario.  The regression statistics for each model are described in Table 3.  

 

Figure 4.6.-  Regressions describing the relationship between hydrilla coverage estimated at time 

i+3 and grass carp biomass estimated at time i with three methods. 

 

The regression derived from annual biomass estimated with the age-dependent model 

provided the best fit for describing the relationship between grass carp biomass and hydrilla 

coverage.  It had the second-lowest PRESS, lowest Mallow’s Cp, and had the highest r
2
-adjusted 

value (Table 4.4).  According to this model, I predicted that biomass needed to reduce hydrilla to 

120 ha in Lake Gaston (± 95% prediction interval- PI) is about 91,184 kg (±38,146 kg).  The 

biomass of grass carp that would reduce hydrilla coverage to 0 ha (±PI) is 97,199 kg (±40,024 

kg).  In 2010, grass carp biomass in Lake Gaston (±CI) reached 91,000 kg for the first time 

(95,768 ±3203 kg) (Figure 4.7).  Based on age-specific mortality rates I estimate that, in 2011, 

the standing biomass of grass carp in Lake Gaston (±CI) will be about 108,073 kg (±3,609 kg) 
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including the biomass of fish stocked in spring 2011.  After 2011, biomass will decrease without 

further stocking. 

 

Table 4.4.-  Model-discrimination statistics for regressions describing the relationship between 

hydrilla coverage in time i+3 and biomass of grass carp in Lake Gaston in time i.  Biomass was 

estimated by three different models.   

Model Df r
2
-adjusted Mallow's Cp PRESS F p 

Age-dependent 11 58.6 6.1 703497 17.97 0.001 

Temperature-dependent 11 55.8 7.1 766407 16.13 0.002 

Growth-dependent 11 57.6 6.4 697359 17.32 0.002 

 

 

 

 

 



80 
 

 

Figure 4.7.- Projections of grass carp standing biomass (±95% CI) assuming no further stocking 

after 2011and hydrilla coverage through 2020. Biomass predicted after 2011was based on stable 

mortality through age 26 and linear growth in weight with age through age 26.   Hydrilla 

coverage (±PI) was predicted after 2010 based on the relationship between grass carp standing 

biomass at year i and hydrilla coverage at year i+3.  No estimate of error was available for 

hydrilla coverage prior to 2010. 

 

Discussion 

 Previous studies have documented difficulties capturing grass carp for population 

analyses (Stott and Russell 1979; Bonar et al. 1993).  In systems where grass carp are caught 

over a long period of time by volunteer bowfishers, the methods presented by Morrow et al. 

(1997) and expanded herein provide a cost-effective means for estimating important population 
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parameters.  All estimates of natural mortality ( ̂) in this study were within 5% of one another, 

despite differences in the models, suggesting that the three methods provide a reasonable level of 

precision.  My estimates of natural mortality were also similar to the 22% annual mortality 

estimated by Morrow et al. (1997).  Because of the similarities between estimates of natural 

mortality in this study and others, I speculate that my methods present a reliable alternative to 

catch-curve analysis when catch data from bowfishing violate underlying assumptions of equal 

catchability across year classes.  Because von Bertalanffy parameters estimated by Morrow et al. 

(1997) were estimated for fish only through age 6, and Kirk et al. (2000) did not report parameter 

estimates, we have no meaningful way to compare estimates of mortality from their catch-curve 

analyses to indirect methods of estimation.  The accuracy of indirect mortality estimates relies 

heavily on the accuracy of parameter estimation for the von Bertalanffy growth model.  It is 

intuitive that data from long-lived, established populations of grass carp would yield more-

reliable parameter estimates for the growth model.  For such populations, our methods provide a 

useful technique for estimating mortality rates and associated population parameters. 

 The growth of grass carp in Lake Gaston appears to be different than growth of other 

documented populations.  For example, the length-weight relationship described by the power 

function (Ricker 1975) indicates that grass carp in Lake Gaston become less rotund as they grow 

in length.  This is contrary to the findings of Morrow et al. (1997), who indicated that grass carp 

become more rotund as they grow longer.  Both in Lake Gaston and in the Santee-Cooper system 

(Morrow et al. 1997) weight was approximately linear with age.  The results of Morrow et al. 

(1997) were based on a population of grass carp with a maximum age of 6 years and a theoretical 

length of 1,044 mm.  In Lake Gaston, grass carp up to 16 years of age have been collected, and 
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the maximum length observed was 1,350 mm.  These results indicate that grass carp may 

become more rotund with length to a certain point, and decrease in body condition thereafter. 

It seems that using age-specific mortality to estimate population parameters is a more-

cautious and, perhaps, more-realistic approach to grass carp management than using average, 

annual mortality estimates.  Age-1 mortality estimated with the age-dependent model in this 

study was about 0.47.  By comparison, the estimate of age-1 mortality resultant from the time-

dependent telemetry model of age-1 grass carp mortality in Lake Gaston was 0.43(±0.10) 

(chapter 2).  There were clear differences in the estimated population size and biomass that 

resulted from the manner in which each model treated mortality at young ages in the present 

study.    Despite differences between the models used to estimate mortality, the relationship 

between hydrilla coverage and estimated grass carp biomass is similar in all three models. The 

result is that the number of fish recommended for desired hydrilla control would be vastly 

different depending on the model used to estimate mortality.  Use of age-dependent mortality 

resulted in the smallest estimates of standing biomass. Therefore, the difference between 

standing biomass and the biomass needed to reduce hydrilla to target levels is smaller using age-

specific mortality because the scale of biomass is greatly reduced compared to the other two 

models.  Thus, fewer fish are needed at stocking to reach target levels of grass carp biomass in a 

given year. As grass carp biomass nears the predicted weight necessary to reduce hydrilla 

coverage to the target level of 120 ha in Lake Gaston, the risk of not achieving an exact level of 

control is outweighed by the risk of overshooting target control. By stocking fewer fish at a 

given time, managers can decrease the risk of overshooting the target level of hydrilla control.   

I observed a considerable lag period between fish stocking and detectable effects on 

hydrilla coverage.  It appears that fish biomass in the fourth year after a major stocking event 
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may be a limiting factor in a cohort’s capacity to control hydrilla effectively in Lake Gaston.  My 

evaluation of growth rates in Lake Gaston indicated that growth (mm/yr) became asymptotic 

after age four.  Age-specific mortality estimates indicated that mortality stabilized after age four.  

Grass carp biomass decreased in 1998, 2002, and 2006.  These decreases indicate points in time 

when fish growth (kg/yr) was not able to compensate for losses in fish biomass due to mortality.  

As a result, the biomass of grass carp in the lake was not able to compensate for hydrilla growth 

in 1998, 2002, and 2006.  Each of the decreases in estimated biomass occurred four years after a 

stocking event.  These results suggest that the interaction between growth and mortality after age 

three was the most limiting factor to successful hydrilla control.   

In Lake Gaston, there is a significant relationship between the biomass of fish and 

hydrilla coverage, but not the number of fish and hydrilla coverage.  In past years, stocking rates 

of grass carp in Lake Gaston have been decided based on a target-number of fish per vegetated 

hectare.  By using mortality rates and age-weight relationships developed in this study, the 

management team at Lake Gaston could, with reasonable precision, determine the biomass of 

fish required to attain a given level of hydrilla cover within three years of stocking.  More-

refined stocking models are available to produce estimated numbers of grass carp needed to 

control a given acreage of hydrilla over time (e.g. Stewart and Boyd 1999), but these models are 

useful only to about 10 years after stocking.  In Lake Gaston fish older than 10 years may make 

substantial contributions to the total biomass, but not the number, of grass carp in the lake and so 

they must be considered in stocking models.  Since weight gain of grass carp in Lake Gaston is 

approximately linear with age, there is reason to believe that old fish continue to provide control 

of aquatic weeds up to age 16, and should therefore be considered in stocking models.  Based on 
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the results of this study, biomass may be a more-appropriate index of fish density, since no 

relationship was found between fish numbers and hydrilla coverage. 

  In 2003, grass carp biomass first reached the lower threshold of the prediction interval 

of biomass needed to reduce hydrilla coverage to 120 ha after fish biomass was increased by 

about 20,000 kg due to maintenance stocking of 25,000 fish.  Grass carp biomass continued to 

increase from 2003-2010 due to more-frequent stocking that caused overlap in the biomass 

production resultant from consecutive age-classes.  Based on the time lag observed in this study, 

I expect that the 2010 biomass of grass carp in Lake Gaston will reduce hydrilla coverage to 120 

ha between 2013 and 2018.  According to biomass estimated with age-specific mortality, it does 

not appear that the biomass of grass carp in Lake Gaston was high enough in 2009 to reduce 

hydrilla coverage to less than 120 ha by 2012.  This estimate of grass carp biomass for 2011 

indicated that no stocking was necessary in 2011 to maintain the target-level of hydrilla control 

through 2014.  However, a total of approximately 13,400 fish were stocked in Lake Gaston in 

2011 based on recommendations from models of fish per vegetated hectare. Given the timing 

and magnitude of the 2011 fish stocking, it is possible that hydrilla coverage in Lake Gaston 

could be reduced to zero ha in 2014.  After this time, the likelihood of hydrilla eradication would 

be greatly reduced without further stocking. 

The results of this study indicate that at current stocking levels, grass carp in Lake Gaston 

successfully control hydrilla without eradicating it, but have only recently reached a high-enough 

biomass to reduce hydrilla to 120 ha.  While grass carp will not likely reduce hydrilla coverage 

to 120 ha by 2012, the target level of coverage should be achieved between 2013 and 2018 with 

no further grass carp stocking.  Stocking more grass carp in 2012 could push hydrilla control 

beyond the target level of 120 ha and begin to affect the success of efforts to replant native 
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vegetation.  The first year that grass carp stocking would be necessary in order to reduce hydrilla 

coverage back to target levels would be in 2019.  A stocking of approximately 21,000 kg (±1980 

kg) would be needed to return the standing biomass of grass carp in Lake Gaston to the biomass 

necessary to reduce hydrilla to 120 ha.   Based on the average weight of age-1 grass carp in Lake 

Gaston (.816 kg), about 25,000 fish would be recommended for stocking in 2019.  In the future, 

stocking decisions at Lake Gaston should be based on maintaining target levels of grass carp 

biomass, rather than the number of fish per vegetated hectare.  
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Chapter 5:  Summary and conclusion 

 

Summary 

Movements and habitat use of grass carp 

 The movements and habitat use of 101 radio-tagged grass carp were monitored for up to 

2 years after tagging in 2007, 2008, 2009, and 2010.  Tagged fish ranged 264-573 (mm,TL) in 

length and 466-9680 g in weight.  Fish were tagged and stocked at three different sites in Lake 

Gaston, VA and NC.  I related the movement rates, depth of water at fish location, and distance 

of grass carp from the nearest shoreline to variation in fish age, climate, reservoir operations, and 

where fish were stocked. 

 Grass carp behavior changed in Lake Gaston based on the age of fish.  Grass carp moved 

more during their second year in the reservoir than in the first year.  Although grass carp moved 

more, they were found closer to shore in their second year.  This suggests that as grass carp age, 

they make more-extensive use of the habitat available in Lake Gaston. 

 Several climate variables were related to grass carp behavior.  Water temperature was 

related to all aspects of grass carp behavior measured in this study.  Grass carp moved the least 

when water temperature was low, and were found in the shallowest water.  This relationship 

suggests that grass carp make more use of areas where hydrilla can grow during summer in Lake 

Gaston.  My results also suggest that weather phenomena were also related to grass carp 

behavior.  For example, when it was windy at Lake Gaston, grass carp moved more and were 

found further from shore. 

 Several measures of flow dynamics in Lake Gaston were related to grass carp behavior.  

For example, fish moved more and were located closer to shore when lake elevation was high.  
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But when outflow from Lake Gaston was high, fish moved more and were located in deeper 

water.  These results illustrate relationships between grass carp behavior and reservoir-flow 

dynamics that warrant further investigation in future studies. 

 Finally, grass carp were found closer to shore in the upstream reaches of Lake Gaston 

than in the downstream reaches.  These results are likely due to differences between ends of the 

reservoir such as habitat availability, flow regime, food availability and human uses.  In Lake 

Gaston, the upper reservoir is dominated by creeks and flats suitable for hydrilla growth, and 

sees comparatively less human use than the lower reservoir, which is dominated by open water 

and main-channel habitat.  The implication of this finding is that grass carp may make better use 

of areas targeted for hydrilla control in the upper reservoir.  Thus, management could benefit 

from knowledge of how other aspects of the grass carp population change from one end of the 

reservoir to the other. 

 

Variation in age-1 survival of grass carp 

 I used location data from 40 grass carp that were radio tagged in 2009 to estimate age-1 

survival of grass carp in Lake Gaston.  I used capture-mark-recapture models developed for use 

in radio-tagged animal populations to characterize variability in age-1 survival due to factors 

under the control of management.  Specifically, I investigated the plausibility that survival might 

be influenced by stocking location, fish size at stocking (length and weight), fish condition at 

stocking, and tagging methods. 

 I found that the most-plausible model of age-1 grass carp survival was that which allowed 

survival to vary throughout the year.  This model suggested that probability of grass carp 

surviving the first year after stocking was 0.57(±0.10).  The second-most-likely model among the 
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set tested in this study was that which allowed survival to vary by stocking location.  This model 

suggested that survival in the upper reservoir 0.87(±0.09) was more than double that in the lower 

reservoir, 0.43(±0.11). 

 None of the models that allowed survival to vary due to grass carp size or condition 

displayed a meaningful level of support among the models tested.  Because grass carp as long as 

573 mm were included in this study, I speculate that fish of any size from this study were large 

enough to minimize increases in predation due to size.  Therefore, I recommend that the 

minimum size used in this study (352 mm, TL) is sufficient as a minimum size for stocking in 

Lake Gaston.  This length is nearly 100 mm shorter than the minimum size of 450 mm 

recommended elsewhere in literature. 

 The results of this study, in conjunction with knowledge of grass carp behavior in Lake 

Gaston, imply that the cost-effectiveness of grass carp stocking could be improved upon over 

current practices.    For example, grass carp appear to be more closely associated with shoreline 

habitat in the upper reservoir, and grass carp survival through the first year after stocking is 

nearly twice as high in the upper reservoir than in the lower reservoir.  Furthermore, grass carp 

that were stocked in the upper reservoir were found to move throughout the lake in their second 

year.  These results suggest that the cost of grass carp stocking could be reduced by stocking 

grass carp in the upper reservoir, and that effectiveness of stocking would be increased due to 

greater use of target areas by fish during their first year.   The cost of stocking grass carp in Lake 

Gaston could be further reduced by using a minimum size of 352 mm instead of the minimum 

size of 450 mm currently in use.  By using a smaller size, managers would reduce the amount of 

time that grass carp were held at fish culture stations, and therefore the cost of production.  The 

result is that smaller fish cost less to stock. 
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Growth and population dynamics of grass carp  

 A total of 243 grass carp were collected by specially permitted bowfishers for research 

about the growth and population dynamics of grass carp in Lake Gaston.  Fish collected by 

bowfishers were 410-1350 mm (TL) and 450-34019 g.  The ages of individual grass carp were 

determined from lapili otoliths, and a growth history was constructed for each fish by relating the 

size of grass carp to growth increments in the otoliths.  I estimated von Bertalanffy growth 

parameters for the Lake Gaston grass carp population using information on length at age from 

fish measurements at capture, as well as back-calculated growth-histories.  I used the growth 

parameters to estimate instantaneous mortality of grass carp in Lake Gaston with three different 

methods that based mortality on growth, temperature, and age.  Using mortality estimates 

resultant from each method, I estimated the population size and the standing biomass of grass 

carp in Lake Gaston 1995-2011.  I compared these estimates to hydrilla coverage in the lake over 

the same time period to determine relationships between grass carp population dynamics and 

hydrilla coverage. 

 Grass carp collected in this study were1-16 year of age.  I found that grass carp growth 

(mm/yr) slowed with increasing age, and that the difference in growth between consecutive ages 

was not significant after age four.  Grass carp weight (g) was approximately linear with age, 

although fish became less rotund with age.  The results of the growth analysis suggest that grass 

carp continue to grow in both length and weight through older ages. 

 I found that grass carp mortality estimated from the three different methods used in this 

study led to divergent estimates of population size and standing biomass.  Estimates of 

instantaneous mortality ranged from 0.20 to 0.25 depending on the method used.  Age-specific 
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mortality of grass carp decreased from 0.47 at age one to 0.15 at age 16.  Mortality decreased 

less than three percent between consecutive ages and by less than one percent after age eight. 

 There was a significant relationship between the biomass of grass carp in Lake Gaston at 

year i and surface hectares of hydrilla in the lake at year i+3.  These results suggest that there is a 

time lag between grass carp stocking and noticeable effects on hydrilla.  This lag is likely due to 

changes in the size structure of the population after age four, in conjunction with changes in 

survival after age four.  After age four, growth (kg/yr) is not able to compensate for losses in 

standing biomass due to mortality.  I was not able to identify any significant relationships 

between grass carp numbers and hydrilla coverage in any time after stocking, suggesting that 

interactions between growth and mortality at young ages are more important to determining 

subsequent effects on hydrilla than changes in mortality alone. 

 This study provides information regarding long-lived grass carp incrementally stocked 

for hydrilla control.  Most studies of grass carp are of populations that eradicate submerged 

vegetation in only a few years and senesce due to lack of food resources.  The information 

generated in this study is of immediate utility to the weed-management team at Lake Gaston.  

Using this information, I was able to predict the biomass of grass carp necessary to reduce 

hydrilla coverage to target levels, in what time frame control should be achieved, and what the 

potential effects of stocking might be. 

 

Conclusion 

 The research conducted in this study should be useful for informing management of long-

lived grass carp populations used in weed control.  I was able to illustrate relationships between 

grass carp behavior and factors such as age, stocking location, climate, and hydrodynamic 
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processes.  I identified needs for future research regarding the effects of flow on behavior and 

other environmental conditions.  The post-stocking survival estimates from chapter two will be 

useful for guiding management decisions such as the minimum size for grass carp at stocking, 

and where to stock them.  Finally, information developed in this study regarding growth and 

population dynamics of grass carp will be useful for guiding stocking decisions at Gaston and 

similar systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 
 

Literature Cited 

 

Allen, Jr., S.K., and R.J. Wattendorf.  1987.  Triploid grass carp: status and management 

implications.  Fisheries 12(4):20-24. 

 

Anderson, R.O., and R.M. Neumann. 1996. Length, weight, and associated structural indices.  

Pages 447-482 in B.R. Murphy and D.W. Willis editors, Fisheries techniques.  Second 

edition.  American Fisheries Society, Bethesda MD.  

 

Bailey, W.M., and R.L. Boyd.  1972.  Some observations on the white amur in Arkansas.  

Hyacinth Control Journal 10:20-22. 

 

Bain, M.B. 1993. Assessing impacts of introduced aquatic species: grass carp in large systems. 

Environmental Management 17:211-224. 

 

Bain, M.B., D.H. Webb, M.D. Tangedal, and L.N. Mangum. 1990. Movements and habitat use 

by grass carp in a large mainstream reservoir. Transactions of the American Fisheries 

Society 119:553-561. 

 

Baker, G.E., D.L. Sutton, and R.D. Blackburn. 1974. Feeding habits of the white amur on water 

hyacinth. Hyacinth Control Journal 12:58-62. 

 



93 
 

Bettoli, P.W., M.J. Maceina, R.L. Noble, and R.K. Betsill. 1993. Response of a reservoir fish 

community to aquatic vegetation removal. North American Journal of Fisheries 

Management 13:110-124. 

 

Bettoli, P.W., W.H. Neill, and W.L. Kelsch. 1985. Temperature preferences and heat resistance 

of grass carp, Ctenopharyngodon idella (Valenciennes), bighead carp, 

Hypophthalmichthys nobilis (Gray), and their F1 hybrid. Journal of Fish Biology 27:239-

247. 

 

Beyers, D.W., and C.A. Carlson. 1993. Movement and habitat use of triploid grass carp in a 

Colorado irrigation canal. North American Journal of Fisheries Management 13:141-150. 

 

Binimelis, R., I. Monterroso, and B. Rodriguez-Labajos.  2007.  A social analysis of the 

bioinvasions of Dreissena polymorpha in Spain and Hydrilla verticillata in Guatemala.  

Environmental Management 40:555-556. 

 

Bonar, S.A., B. Bolding, and M. Divens.  2002.  Effects of triploid grass carp on aquatic plants, 

water quality, and public satisfaction in Washington State.  North American Journal of 

Fisheries Management 22:96-105. 

 

Bonar, S.A., G.L. Thomas, S.L. Thiesfeld, G.A. Pauley, and T.B. Stables. 1993a. Effect of 

triploid grass carp on the aquatic macrophyte community of Devils Lake, Oregon. North 

American Journal of Fisheries Management 13:757-765. 



94 
 

 

Bonar, S.A., S.A. Vecht, C.R. Bennett, G.B. Pauley, and G.L. Thomas. 1993b. Capture of grass 

carp from vegetated lakes. Journal of Aquatic Plant Management 31:168-174. 

 

Booms, T.L.  1999.  Vertebrates removed by mechanical weed harvesting in Lake Keesus, 

Wisconsin.  Journal of Aquatic Plant Management 37:34-36. 

 

Brown, R.S., S.J. Cooke, W.G. Anderson, and R.S. McKinley. 1999. Evidence to challenge the 

“2% rule” for biotelemetry.  North American Journal of Fisheries Management 19:867-

871. 

 

Burnham, K.P., and D.R. Anderson. 2002. Model selection and multimodel inference: a practical 

information-theoretic approach, second edition. Springer, New York, NY. 

 

Bynre, M.J., J. Coetzee, A.J. McConnachie, W. Parasram, and M.P. Hill. 2003. Predicting 

climate compatibility of biological control agents in their region of introduction. Pages 

28-35 in Cullen, J.M., D.T. Briese, D.J. Kriticos, W.M. Lonsdale, L. Morin, and J.K. 

Scott editors. Proceedings of the XI International Symposium on Biological Control of 

Weeds. CSIRO Entomology, Canberra, Australia.  

 

Cai, Z., and L.R. Curtis. 1990.  Effect of diet and temperature on food consumption, growth, and 

fatty acid composition of triploid grass carp. Aquaculture 88:313-327. 

 



95 
 

Carmichael, J.T., S.L. Haeseker, and J.E. Hightower. 1998. Spawning migrations of telemetered 

striped bass in the Roanoke River, North Carolina. Transactions of the American 

Fisheries Society 127:286-297. 

 

Cassani, J.R., and D. Maloney. 1991. Grass carp movement in two morphologically diverse 

reservoirs. Journal of Aquatic Plant Management 29:83-88. 

 

Cassani, J.R., E.L. De La Vega, and H. Allaire. 1995. An assessment of triploid grass carp 

stocking rates in small warmwater impoundments. North American Journal of Fisheries 

Management 15:400-407. 

 

Catarino, L.F., M.T. Ferreira, and I.S. Moreira. 1997. Preferences of grass carp for macrophytes 

in Iberian drainage canals. Journal of Aquatic Plant Management 36:79-83. 

 

Chapman, D. G. and D. S. Robson. 1960. The analysis of a catch curve. Biometrics 16:354-368. 

Chen, S., and S. Watanabe. 1989. Age dependence of natural mortality coefficient in fish 

population dynamics.  Nippon Suisan Gakkaishi 55:205-208. 

 

Chilton II, E.W., and M. Muoneke. 1992.  Biology and management of grass carp 

(Ctenopharyngodon idella, Cyprinidae) for vegetation control: a North American 

perspective. Reviews in Fish Biology and Fisheries 2:283-320. 

 



96 
 

Chilton II, E.W., and S.J. Magnelia.  2008.  Use of an incremental triploid grass carp stocking 

strategy for maintaining vegetation coverage in a riverine Texas reservoir.  American 

Fisheries Society Symposium 62:543-555. 

 

Chilton II, E.W., and S.M. Poarch. 1997. Distribution and movement behavior of radio-tagged 

grass carp in two Texas reservoirs. Transactions of the American Fisheries Society 

126:467-476. 

 

Clapp, D.F., R.S. Hestand III, and B.Z. Thompson. 1993. Movement of triploid grass carp in 

large Florida lakes. North American Journal of Fisheries Management 13:746-756. 

 

Colle, D.E, J.V. Shireman, R.D. Gasaway, R.L. Stetler, and W.T. Haller. 1978. Utilization of 

selected removal of grass carp (Ctenopharyngodon idella) from an 80-hectare Florida 

lake to obtain a population estimate. Transactions of the American Fisheries 

Society107:724-729. 

 

Colle, D.E., and J.V. Shireman.  1980.  Coefficients of condition for largemouth bass, bluegill, 

and red ear sunfish in hydrilla-infested lakes.  Transactions of the American Fisheries 

Society 109:521-531. 

 

Colle, D.E., J.V. Shireman, and R.W. Rottman.  1978.  Food selection by grass carp fingerlings 

in a vegetated pond.  Transactions of the American Fisheries Society 107:149-152. 

 



97 
 

Colle, D.E., J.V. Shireman, W.T. Haller, J.C. Joyce, and D.E. Canfield Jr. 1987. Influence of 

hydrilla on harvestable sport-fish populations, angler use, and angler expenditures at 

Orange Lake, Florida.  North American Journal of Fisheries Management 7:410-417. 

 

Cook, C.D.K., and R. Luond.  1982.  A revision of the genus Hydrilla (Hydrocharitaceae).  

Aquatic Botany 13:485-504. 

 

Cox, W.E. 2007. North Carolina-Virginia conflict:  the Lake Gaston water transfer. Journal of 

Water Resources Planning and Management 133:456-461. 

 

Cudmore, B., and N.E. Mandrak. 2004.  Biological synopsis of a grass carp (Ctenopharyngodon 

idella).  Canadian Manuscript Report of Fisheries and Aquatic Sciences 2705, Fisheries 

and Oceans Canada, Burlington, Ontario. 

 

Devries, D.R., and R.V. Frie. 1996. Determination of age and growth.  Pages 483-512 in B.R. 

Murphy and D.W. Willis editors, Fisheries techniques 2nd edition.  American Fisheries 

Society, Bethesda MD.  

 

Dominion Power. 2005.  Shoreline Management Plan for the Roanoke Rapids and Gaston 

Hydropower Project. FERC Project Number 2009. 

 

Edwards, D.J. 1974.  Weed preference and growth of young grass carp in New Zealand.  New 

Zealand Journal of Marine and Freshwater Research 8:341-350. 



98 
 

 

Engel, S.  1990.  Ecological impacts of harvesting macrophytes in Halverson Lake, Wisconsin.  

Journal of Aquatic Plant Management 28:41-45. 

 

Evans, J.M., A.C. Wilkie, J. Burkhardt, and R.P. Haynes. 2007.  Rethinking exotic plants: using 

citizen observations in a restoration proposal for Kings Bay, Florida.  Ecological 

Restoration 25:199-210. 

 

Forno, I.W., and A.F. Confrancesco.  1993.  New frontiers in biocontrol.  Journal of Aquatic 

Plant Management 31:221-224. 

 

Fox, A.M., and W.T. Haller.  1992.  Improving herbicide efficacy in spring-fed tidal canals by 

timing and application methods.  Journal of Aquatic Plant Management 30:58-62. 

 

Frost, C.J., S.E. Hyngstrom, A.J. Tyre, K.M. Eskridge, D.M. Baasch, J.R. Boner, G.M. 

Clements, J.M. Gilsdorf, T.C. Kinsell, and K.C. Vercauteren. 2009. Probabilistic 

movement model with emigration simulates movements of deer in Nebraska 1990-2006. 

Ecological Modeling 220:2481-2490. 

 

Gasaway, R. D. 1978. Growth, survival and harvest of grass carp in Florida lakes. Pages 167-188 

in R. O. Smitherman, W. L. Shelton, and J. H. Grover, editors. Symposium on Culture of 

Exotic Fishes. American Fisheries Society, Bethesda, MD.  

 



99 
 

Gorbach, E.I. 1961. Age composition, growth, and age of onset of sexual maturity of the white 

Ctenopharyngodon idella (Val.) and the black Mylophryngodon piceus (Rich.) in the 

Amur River basin. Voprosy Ikhtiologii 1:119-126. 

 

Gorbach, E.I., and M.L. Krykhtin. 1988. Migration of the white amur, Ctenopharyngodon idella, 

and silver carp, Hypophthalmichthys molitrix, in the Amur River Basin. Journal of 

Ichthyology 28(5): 47-53. 

 

Guillory, V., and R.D. Gasaway. 1978. Zoogeography of the grass carp in the United States. 

Transactions of the American Fisheries Society 107:105-112. 

 

Haller, W.T., and D.L. Sutton.  1975.  Community structure and competition between hydrilla 

and vallisneria.  Journal of Aquatic Plant Management 13:48-50. 

 

Haller, W.T., J.V. Shireman, and D.F. DuRant.  1980.  Fish harvest resulting from mechanical 

control of hydrilla.  Transactions of the American Fisheries Society 109:517-520. 

 

Hanlon, S.G., M.V. Hoyer, C.E. Cichra, and D.E. Canfield, Jr. 2000.  Evaluation of macrophyte 

control in 38 Florida lakes using triploid grass carp.  Journal of Aquatic Plant 

Management 38:48-54. 

 



100 
 

Heupel, M. R., and C. A. Simpfendorfer. 2002. Estimation of mortality of juvenile blacktip 

sharks, Carcharhinus limbatus, within a nursery area using telemetry data. Canadian 

Journal of Fisheries and Aquatic Sciences 59:624–632. 

 

Hightower, J. E., J. R. Jackson, and K. H. Pollock. 2001. Use of telemetry methods to estimate 

natural and fishing mortality of striped bass in Lake Gaston, North Carolina. Transactions 

of the American Fisheries Society 130:557–567. 

 

Hockin, D.C., K. O’Hara, and J.W. Eaton. 1989. A radiotelemetric study of the movements fo 

grass carp in a British canal.  Fisheries Research 7:73-84. 

 

Hofstra, D.E., and J.S. Clayton.  2001.  Control of dioecious New Zealand hydrilla using 

fluridone in mesocosms.  Journal of Aquatic Plant Management 39:125-128. 

 

Hofstra, D.E., J. Clayton, J.D. Green, and M. Auger.  1999.  Competitive performance of 

Hydrilla verticillata in New Zealand.  Aquatic Botany 63:305-324. 

 

Huisman, E.A. and P. Valentijn. 1981. Conversion efficiencies in grass carp (Ctenopharyngodon 

idella, Val.) using a feed for commercial production. Aquaculture 22:279-288. 

 

Jensen, A.L. 1996.  Beverton and Holt life history invariants result in optimal trade-off of 

reproduction and survival.  Canadian Journal of Fisheries and Aquatic Sciences 53:820-

822. 



101 
 

 

Jepsen, N., A. Koed, E.B. Thorstad, and E. Baras. 2002.  Surgical implanting of telemetry 

transmitters in fish. How much have we learned? Hydrobiologia 483:239-248. 

 

Jepsen, N., C. Schreck, S. Clements, and E.B. Thorstad. 2005. A brief discussion on the 2% 

tag/bodymass rule of thumb.  Pages 255-259 in M.T. Spedicato, G. Lembo, and G. 

Marmulla editors, Aquatic telemetry:  advances and applications. COISPA/ FAO, Rome, 

Italy.   

 

Kahn, M.A., A.K. Jafri, and N.K. Chadha. 2004. Growth, reproductive performance, muscle and 

egg composition in grass carp, Ctenopharyngodon idella (Valenciennes), fed hydrilla or 

formulated diets with varying protein levels. Aquaculture Research 35:1277-1285. 

 

Kaplan, E.L., and P. Meier 1958. Nonparametric estimation from incomplete observations. 

Journal of the American Statistics Association 53:457-481. 

 

Kilgen, R.H., and R.O. Smitherman. 1971. Food habits of the white amur (Ctenopharyngodon 

idella) stocked in ponds alone and in combination with other species. Progressive Fish-

Culturist 33:123-127. 

 

Killgore, K.J., J.P. Kirk, and J.W. Foltz. 1998. Response of littoral fishes in Upper Lake Marion, 

South Carolina following hydrilla control by triploid grass carp. Journal of Aquatic Plant 

Management 36:82-87. 



102 
 

 

Kirk, J.P. 1992. Efficacy of triploid grass carp in controlling nuisance aquatic vegetation in 

South Carolina farm ponds. North American Journal of Fisheries Management 12:581-

584. 

 

Kirk, J.P, and J.E. Henderson. 2006. Management of hydrilla in the Santee Cooper Reservoirs, 

South Carolina: experiences from 1982 to 2004.  Journal of Aquatic Plant Management 

44: 98-103. 

 

Kirk, J.P., J.V. Morrow Jr., K.J. Killgore, S.J. De Kozlowski, and J.W. Preacher. 2000. 

Population response of triploid grass carp to declining levels of hydrilla in the Santee 

Cooper Reservoirs, South Carolina. Journal of Aquatic Plant Management 38:14-17. 

 

Kirk, J.P., and R.C. Socha. 2003. Longevity and persistence of triploid grass carp stocked into 

the Santee Cooper Reservoirs of South Carolina. Journal of Aquatic Plant Management 

41:90-92. 

Kracko, K.M., and R.L. Noble.  1993.  Herbicide inhibition of grass carp feeding on hydrilla.  

Journal of Aquatic Plant Management 31:273-275. 

 

Langeland, K.A. 1990. Karyotypes of hydrilla (Hydrocharitaceae) populations in the United 

States. Journal of Aquatic Plant Management 27:111-115. 

 



103 
 

Langeland, K.A. and D.L Sutton.  1980.  Regrowth of hydrilla from axillary buds.  Journal of 

Aquatic Plant Management 18:27-29. 

 

MacDonald, G.E., A. Puri, and D.G. Schilling.  2008.  Interactive effect of photoperiod and 

Fluridone on growth, reproduction, and biochemistry of dioecious hydrilla (Hydrilla 

verticillata).  Weed Science 56:189-195. 

 

Maceina, M.J., J.W. Slipke, and J.M. Grizzle. 1999.  Effectiveness of three barrier types for 

containing grass carp in embayments of Lake Seminole, Florida.  North American 

Journal of Fisheries Management 19:968-976. 

 

Madiera, P.T., J.A. Coetzee, T.D. Center, E.E. White, and P.W. Tipping.  2007.  The origin of 

Hydrilla verticillata recently discovered at a South African dam.  Aquatic Botany 87:176-

180. 

 

McGehee, J.T. 1979. Mechanical hydrilla control in Orange Lake, Florida.  Journal of Aquatic 

Plant Management 17:58-61. 

 

Michel, A., R.S. Arias, B.E. Scheffler, S.O. Duke, M. Netherland, and F.E. Dayan.  2004.  

Somatic mutation-mediated evolution of herbicide resistance in the nonindigenous 

invasive plant hydrilla (Hydrilla verticillata).  Molecular Ecology 23:3229-3237. 

 



104 
 

Michewicz, J.E., D.L. Sutton, and R.D. Blackburn. 1972a. Water quality of small enclosures 

stocked with white amur. Hyacinth Control Journal 10:22-25. 

 

Michewicz, J.E., D.L. Sutton, and R.D. Blackburn. 1972b. The white amur for aquatic weed 

control. Weed Science 20:106-110. 

 

Mikol, G.F. 1985. Effects of harvesting on aquatic vegetation and juvenile fish populations at 

Saratoga Lake, New York.  Journal of Aquatic Plant Management 23:59-63. 

 

Mitchell, A.J., and A.M. Kelly.  2006.  The public sector role in the establishment of grass carp 

in the United States.  Fisheries 31:113-121. 

 

Mitzner, L. 1978. Evaluation of biological control of nuisance aquatic vegetation by grass carp. 

Transactions of the American Fisheries Society 107:135-145. 

 

Montgomery, D.C., E.A. Peck, and G.G. Vining. 2006. Introduction to linear regression analysis, 

fourth edition. John Wiley and Sons Inc., Hoboken, New Jersey. 

 

Morrow Jr., J.V. J.P. Kirk, and K.J. Killgore. 1997. Collection, age, growth and population 

attributes of triploid grass carp stocked into the Santee-Cooper Reservoirs, South 

Carolina.  North American Journal of Fisheries Management 17:38-43. 

 



105 
 

Netherland, M.D., and J.F. Shearer. 1996. Integrated use of Fluridone and a fungal pathogen for 

control of hydrilla. Journal of Aquatic Plant Management 34:4-8. 

 

Nixon, D.E., and R.L. Miller. 1978. Movements of grass carp, Ctenopharyngodon idella, in an 

open reservoir system as determined by underwater telemetry. Transactions of the 

American Fisheries Society 107:146-148. 

 

Olsen, M.H., S.R. Carpenter, P. Cunningham, S. Gafny, B.R. Herwig, N.P. Nibbelink, T. Pellett, 

C. Storlie, A.S. Trebitz, and K.A. Wilson.  1998.  Managing macrophytes to improve fish 

growth: a multi-lake experiment.  Fisheries 23(2):6-12. 

 

Opuszynski, K. 1967. Comparison of temperature and oxygen tolerance in grass carp 

(Ctenopharyngodon idella Val.), silver carp (Hypophthalmichthys molitrix Val.), and 

mirror carp (Cyprinus carpio L.) Ekologia Polska Seria A 15:385-400. 

 

Opuszynski, K. 1972. Use of phytophagous fish to control aquatic plants. Aquaculture 1:61-74. 

 

Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters, and 

mean environmental temperature in 175 fish stocks. Journal du Conseil permanent 

International pour l' Exploration de la Mer 39(2):175-192. 

 

Pearsall, S.H., B.J. McCrodden, and P.A. Townsend. 2005. Adaptive management of flows in the 

Lower Roanoke River, North Carolina, USA. Environmental Management 35:353-367. 



106 
 

 

Pimentel, D., R. Zungia, and D. Morrison. 2005. Update on the environmental and economic 

costs associated with alien-invasive species in the United States. Ecological Economics 

52:273-288.  

 

Pine, R.T., and L.W.J. Anderson.  1989.  Effects of static versus flowing water on aquatic plant 

preferences of triploid grass carp.  Transactions of the American Fisheries Society 

118:336-344. 

 

Pine, R.T., and L.W.J. Anderson.  1991.  Plant preferences of triploid grass carp.  Journal of 

Aquatic Plant Management 29:80-82. 

 

Pine, R.T., L.W.J. Anderson, and S.S.O. Hung.  1990.  Control of aquatic plants in static and 

flowing water by yearling triploid grass carp.  Journal of Aquatic Plant Management 

28:36-40. 

 

Pine, W.E., K.H. Pollock, J.E. Hightower, T.J. Kwak, and J.A. Rice. 2003. A review of tagging 

methods for estimating fish population size and components of mortality. Fisheries 

28(10):10-23.  

 

Pipalova, I. 2006. A review of grass carp use for aquatic weed control and its impact on water 

bodies. Journal of Aquatic Plant Management 44:1-12. 

 



107 
 

Pollock, K. H., C. M. Bunck, S. R. Winterstein, and C. L. Chen. 1995. A capture-recapture 

survival analysis model for radio-tagged animals. Journal of Applied Statistics 22:661–

672. 

 

Pollock, K. H., H. Jiang, and J. E. Hightower. 2004. Combining telemetry and fisheries tagging 

models to estimate fishing and natural mortality rates. Transactions of the American 

Fisheries Society 133:639–648. 

 

Pollock, K. H., S. R. Winterstein, and M. J. Conroy. 1989. Estimation and analysis of survival 

distributions for radio-tagged animals. Biometrics 45:99–109. 

 

Pons, L.  2005.  Pegging a trouble-some change in hydrilla.  Agricultural Research 53(11):14-16. 

 

Prentice, J.A., W.J. Dean, Jr., M.S. Reed, and E.W. Chilton II. 1998. Movement of triploid grass 

carp among small hydropower impoundments of the Guadalupe River, Texas.  

Proceedings of the Annual Conference of Southeastern Association of Fish and Wildlife 

Agencies 52:49-61. 

 

Prowse, G.A. 1971. Experimental criteria for studying grass carp feeding in relation to weed 

control. The Progressive Fish Culturist 33:128-131. 

 



108 
 

Puri, A., G.E. MacDonald, W.T. Haller, and M. Singh.  2007.  Growth and reproductive 

physiology of Fluridone-susceptible and –resistant hydrilla (Hydrilla verticillata) 

biotypes.  Weed Science 55:441-445. 

 

R Development Core Team. 2008. R: a language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. Available: http://www.R-

project.org. (June 2011). 

 

Rafail, S.Z. 1973. A simple and precise method for fitting a Von Bertalanffy growth curve. 

Marine Biology 19:354-358. 

 

ReMetrix, LLC. 2009. Lake Gaston 2008 submerged vegetation mapping summary report: 

hydroacoustic sampling with species point sampling. 

 

ReMetrix, LLC. 2010. Lake Gaston 2009 submerged vegetation mapping summary report: 

hydroacoustic sampling with species point sampling. 

 

ReMetrix, LLC. 2011. Lake Gaston 2010 submerged vegetation mapping summary report: 

hydroacoustic sampling with species point sampling. 

 

Richardson, R.J. 2008. Aquatic plant management and the impact of emerging herbicide 

resistance issues. Weed Technology 22:8-15. 

 

http://www.r-project.org./
http://www.r-project.org./


109 
 

Richter, B.D., J.V. Baumgartner, J. Powell, and D.P. Braun. 1996. A method for assessing 

hydrologic alteration within ecosystems. Conservation Biology 10:1163-1174. 

 

Ricker, W. E. 1975. Computations and interpretation of biological statistics of fish populations. 

Fisheries Research Board of Canada Bulletin 191. 

 

Rogers, K.B., and G.C. White. 2007. Analysis of movement and habitat use from telemetry data.  

Pages 625–676 in C. S. Guy and M. L. Brown, editors. Analysis and interpretation of 

freshwater fisheries data. American Fisheries Society, Bethesda, Maryland. 

 

Ryan, F.J., C.R. Coley, and S.H. Kay.  1995.  Coexistence of monoecious and dioecious hydrilla 

in Lake Gaston, North Carolina and Virginia.  Journal of Aquatic Plant Management 

33:8-12. 

 

Schramm Jr., H.L., and K.J. Jirka. 1986. Evaluation of methods for capturing grass carp in 

agricultural canals. Journal of Aquatic Plant Management 24:57-59. 

 

Schramm Jr., H.L., and M.W. Brice. 1998. Use of triploid grass carp to reduce aquatic 

macrophyte abundance in recreational fishing ponds. Proceedings of the Annual 

Conference of the Southeast Association of Fish and Wildlife Agencies 52:93-103. 

 

Shabana, Y.M., J.P. Cuda, and R. Charudattan.  2003.  Evaluation of pathogens as potential 

biological control agents of hydrilla.  Journal of Phytopathology 151:607-613. 



110 
 

 

Shearer, J.F. 1998. Biological control of hydrilla using an endemic fungal pathogen. Journal of 

Aquatic Plant Management 36:54-56. 

 

Shelton, W.L., R.O. Smitherman, and G.L. Jensen. 1981. Density related growth of grass carp, 

Ctenopharyngodon idella (Val.) in managed small impoundments in Alabama. Journal of 

Fish Biology 18:45-51. 

 

Shireman, J.V. 1982. Cost analysis of aquatic weed control: fish versus chemicals in a Florida 

Lake. Progressive Fish Culturist 44:199-200. 

 

Shireman, J.V., and M.J. Maceina. 1981. The utilization of grass carp, Ctenopharyngodon idella 

Val., for hydrilla control in Lake Baldwin Florida. Journal of Fish Biology 19:629-636. 

 

Shireman, J.V., D.E. Colle, and M.J. Maceina. 1980.  Grass carp growth rates in Lake Wales, 

Florida. Aquaculture 19:379-382. 

 

Slipke, J.W., and M.J. Maceina. 2001. Fisheries analysis and simulation tools (FAST) version 

2.0.  Auburn University, Auburn, Alabama. 

 

Stanley, J.G., W.W. Miley II, and D.L. Sutton.  1978.  Reproductive requirements and likelihood 

for naturalization of escaped grass carp in the United States.  Transactions of the 

American Fisheries Society 107: 119-128. 



111 
 

 

Stewart, R.M., and W.A. Boyd. 1999. The grass carp stocking rate model (AMUR/STOCK), 

U.S. Army Corps of Engineers (USACE) Aquatic Plant Control Technical Note MI-03, 

Vicksburg, MS.  Available:  http://www.wes.army.mil/el/aqua (04/01/2010). 

 

Stott, B.  1977.  On the question of the introduction of the grass carp (Ctenopharyngodon idella 

Val.) into the United Kingdom.  Fisheries Management 8(3):63-71. 

 

Stott, B., and I.C. Russell. 1979. An estimate of a fish population which proved to be wrong. 

Fisheries Management 10:169-171. 

 

Stott, B., and T.O. Robson. 1970. Efficiency of grass carp (Ctenopharyngodon idella Val) in 

controlling submerged water weeds. Nature 266:870. 

 

Sutton, D.L. 1974. Utilization of hydrilla by the white amur. Hyacinth Control Journal 12:66-70. 

 

Sutton, D.L., and V.V. Vandiver, Jr. 1986. Grass carp: a fish for biological management of 

hydrilla and other aquatic weeds in Florida.  University of Florida, Agricultural 

Experiment Station Bulletin 867, Gainesville, FL. 

 

Swarbick, J.T.C., C.M. Finlayson, and A.J. Caldwell.  1981.  The biology of Australian weeds, 

Chapter 7: Hydrilla verticillata (L.f.) Royle.  Journal of the Australian Institute of 

Agricultural Science 7:183-190. 



112 
 

 

Thompson, B.Z., R.J. Wattendorf, R.S. Hestand, and J.L. Underwood. 1987. Triploid grass carp 

production. The Progressive Fish Culturist 49:213-217. 

 

Thompson, J.S., D.S. Waters, J.A. Rice, and J.E. Hightower. 2007. Seasonal natural and fishing 

mortality of striped bass in a southeastern reservoir. North American Journal of Fisheries 

Management 27:681-694. 

 

Van Dyke, J.M, A.J. Leslie, and L.E. Nall.  1984.  The effects of grass carp on the aquatic 

macrophytes of four Florida lakes.  Journal of Aquatic Plant Management 22:87-95. 

 

von Bertalanffy, L. 1938. A quantitative theory of organic growth. Human Biology 10:181-213. 

 

Waters, D.S., R. L. Noble, and J. E. Hightower. 2005. Fishing and natural mortality of adult 

largemouth bass in a tropical reservoir. Transactions of the American Fisheries Society 

134:563–571. 

 

White G.C., and K.P. Burnham. 1999. Program MARK: survival estimation from populations of 

marked animals. Bird Study 46:120–139. 

 

Wile, I. 1978.  Environmental effects of mechanical harvesting.  Journal of Aquatic Plant 

Management 16:14-20. 

 



113 
 

Williams, L.D., G.O. Dick, R.M. Smart, and C.S. Owens. 2008. Point intercept and surface 

observation GPS (SOG):  a comparison of survey methods-Lake Gaston, NC/VA. 

ERDC/TN APCRP-EA-19. United States Army Engineer Research and Development 

Center, Vicksburg, MS. Available: http://el.erdc.usace.army.mil/elpubs/pdf/apcea-19.pdf  

(July 2009). 

 

Willis, D.J., M.V. Hoyer, D.E. Canfield, Jr., and W.J. Lindberg. 2002. Training grass carp to 

respond to sound for potential lake management uses. North American Journal of 

Fisheries Management 22:208-212. 

 

Winter, J.D. 1996. Advances in underwater biotelemetry. Pages 555-585 in B.R. Murphy and 

D.W. Willis editors, Fisheries techniques.  Second edition.  American Fisheries Society, 

Bethesda MD. 

 

Yeo, R.R., R.H. Falk, and J.R. Thurston.  The morphology of hydrilla (Hydrilla verticillata (L.f. 

Royle). Journal of Aquatic Plant Management 22:1-17. 

 

Zajicek, P.  2008.  Triploid grass carp risk analysis complete.  Aquaculture magazine 34(2):23-

26. 

 

Zar, J.H. 1999. Biostatistical analysis, fourth edition. Prentice Hall, Inc., Upper Saddle River, 

New Jersey. 

 

 


