
Project Scheduling in the Presence of Productivity Functions

Daniel W. Steeneck

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Industrial and Systems Engineering

Subhash C. Sarin, Chair
Robert H. Sturges

Doug R. Bish

July 24, 2009
Blacksburg, Virginia

Keywords: Project Scheduling, Operations Research, Management Science
Copyright 2009, Daniel W. Steeneck

Project Scheduling in the Presence of Productivity Functions

Daniel W. Steeneck

(ABSTRACT)

A project scheduling problem is frequently encountered in real-life. Typical examples of its
occurrence arise in construction, manufacturing, and military-related operations. In this
thesis, we develop a solution methodology to determine the sequence in which to perform
and the amount of resource to allocate to each activity of a project so as to minimize the
project duration (makespan). We assume availability of only one resource type, which can
be allocated to activities in varying amounts. We consider projects whose activities have
durations which are defined by convex, non-increasing time-resource trade-off functions and
whose activities are not pre-emptable (i.e., once some amount of resource has been allocated
to an activity, this amount cannot be varied while the activity is processed). Also, we
assume various forms of productivity (amounts of units produced per unit time) functions
with respect to the amount of the resource allocated to an activity. Our solution methodology
enables the determination of all potentially optimal sequences for a given project. However,
rather than enumerating all possible sequences, we develop special relationships between
certain pairs of activities to determine a priori how these pairs will be sequenced in relation
to each other in an optimal solution. Then, the optimal resource allocations are determined
for each sequence using a nonlinear program and the solution with the smallest makespan is
selected. The use of this methodology is illustrated through experimentation.

Contents

1 Introduction and Problem Statement 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Motivation for Addressing the Problem . 3

1.4 Outline of Solution Approach . 4

1.5 Outline of Remaining Chapters . 4

2 Literature Review 6

2.1 Project Planning . 6

2.2 Representation of the Activities of a Project 7

2.3 The Critical Path Method and Precedence Relationships 10

2.4 Resource Constraints . 14

2.5 Time-Resource Trade-offs and Activity Modes 17

2.6 Resource-Constrained Project Planning with Time-Resource Trade-offs . . . 25

3 Model Formulation and Solution Approach 32

3.1 Accessibility and Sequences . 32

3.2 Overview . 35

3.3 Mathematical Model . 35

3.4 Solution Approach . 38

4 Discussion of Productivity Functions 39

iii

4.1 Characteristics of an Activity Duration Function 39

4.2 Estimation of Production Functions . 43

5 Independent Activities and Their Properties 46

5.1 Characterization of Independent Activities 46

5.2 Scheduling Properties of Independent Activities 47

5.3 Exploitation of Scheduling Properties of Independent Activities 56

6 Solution Algorithm 60

6.1 Determination of Minimum Makespan of a Sequence 67

6.2 Solution Algorithm . 69

6.3 Some Illustrative Examples . 70

7 Results and Conclusions 73

7.1 Testing Methodology . 73

7.2 Rationale For Choice of Test Cases . 73

7.3 Effects of Parallelism . 75

7.4 Effects of Productivity Function Distribution 78

7.5 Effects of Project Size . 80

7.6 Conclusions . 83

8 Future Work 86

8.1 Theoretical Work . 86

8.2 Heuristic Development . 87

8.3 Software Development . 89

Bibliography 90

A Precedence Digraphs Used in Testing 95

B Pseudo and Mathematica Code for Enumeration Algorithm 103

iv

B.1 Pseudo Code . 103

B.1.1 Precedence Path Algorithm . 103

B.1.2 Search Tree . 104

v

List of Figures

2.1 An activity-on-arc activity network . 8

2.2 An activity-on-node activity network . 9

2.3 Example activity network . 11

2.4 Example of a critical path . 12

2.5 Example GPR activity network . 14

2.6 A convex time-resource trade-off curve . 18

3.1 A precedence digraph . 33

3.2 The accessibility digraph of the network in Figure 3.1 33

3.3 A sequence digraph . 35

4.1 Marginal productivity function . 40

4.2 Productivity function . 40

4.3 Time/unit function . 41

4.4 Marginal productivity functions . 42

4.5 Productivity functions . 43

4.6 Time/unit functions . 44

5.1 A precedence digraph (activity-on-node) . 47

5.2 Both production functions are concave with pre-emptable activities 49

5.3 Both production functions are convex with pre-emptable activities 49

5.4 Mixed convex and concave production functions with pre-emptable activities 50

vi

5.5 Mixed convex and concave production functions with non-pre-emptable ac-
tivities . 51

5.6 Non-decreasing, convex function, h(x) . 53

5.7 Transformation of the non-decreasing convex function, h(x) 53

5.8 Hypograph of s2 . 54

5.9 Non-decreasing, concave function, h(x) . 54

5.10 Transformation of the non-decreasing concave function, h(x) 55

5.11 Hypograph of s2 . 56

5.12 A project digraph with different forms of productivity functions 57

5.13 A possible sequence in which activities 1 and 2 are processed in series 57

5.14 A sequence equivalent to Figure 5.13 where activities 1 and 2 are processed
in series but not consecutively . 58

5.15 Possible sequence in which activities 1 and 2 are processed in parallel 58

5.16 A sequence that is equivalent to that in Figure 5.15 59

6.1 An example node . 61

6.2 Possible branching from the initial partial sequence {0} 62

6.3 Node modification for partial sequence {0, 1} 63

6.4 Nodes {0}, {1, 3} and {0}, {1, 3}, {2} . 64

6.5 Search tree . 65

6.6 Search tree . 66

6.7 A precedence digraph . 67

6.8 A sequence of the network in Figure 6.7 . 68

6.9 Solution to the problem . 69

6.10 Precedence digraph for Example 1 . 70

6.11 Project solution for Example 1 . 71

6.12 Project solution for Example 2 . 72

7.1 Computational complexity for projects with six activities and various levels
of parallelism . 76

vii

7.2 Computational complexity for projects with 2 rungs and various numbers of
sub-rungs within the top rung. 77

7.3 Computational complexity for projects with six activities and various levels
of parallelism . 78

7.4 Computational complexity for projects with six independent activities and
various productivity function distributions 80

7.5 Computational complexity for projects with six activities and various produc-
tivity function distributions . 82

7.6 Computational complexity for projects with various number of activities . . 83

7.7 Precedence digraph 6A4 . 84

7.8 Precedence digraph 8B . 85

7.9 Precedence digraph 10C . 85

8.1 A project digraph with different forms of productivity functions 88

8.2 Transformed project digraph . 88

A.1 4A . 95

A.2 5A . 96

A.3 5B . 96

A.4 5C . 96

A.5 6A . 97

A.6 6B . 97

A.7 6B2 . 98

A.8 6A2 . 98

A.9 6A3 . 99

A.10 6A4 . 99

A.11 7A . 100

A.12 7B . 100

A.13 7B2 . 101

A.14 8B . 101

A.15 9B . 102

viii

A.16 10B . 102

ix

List of Tables

6.1 Table of Duration Functions . 68

6.2 Table of productivity functions for the project in Figure 6.10 70

6.3 Table of productivity functions for the project with 6 independent activities 72

7.1 Projects with six activities and varying parallelism 75

7.2 Projects with six activities and varying numbers of sub-rungs within rungs . 76

7.3 Projects with six independent activities and varying productivity function
distributions . 79

7.4 Project with varying six activities and various productivity function distribu-
tions . 81

7.5 Projects with various number of activities 81

x

Chapter 1

Introduction and Problem Statement

1.1 Background

A project comprises inter-related activities that are required to accomplish an end goal/product.

The process of determining when to perform which activity by using what amount of which

type of resource is termed project planning. The objective of project planning is to schedule

the activities so as to optimize a performance measure, which is, typically, the minimization

of project duration, given the resource levels at hand. Many a time, a project is performed

to produce a profit, in which case the objective would be to minimize the cost encountered

in performing its activities while still completing the project on time. Project planning is

an important step of management decision making in the construction industry. But, it is

equally important in other industrial settings as well.

A project usually consists of a large number of activities, and thus, the determination of a

schedule may involve intensive computations. Therefore, it is essential to develop efficient

algorithms for the solution of project planning problems. It is for these reasons that project

1

Daniel W. Steeneck Chapter 1. Introduction

scheduling is a popular topic of investigation for management scientists and operations re-

searchers. Probably, the most famous early work on this topic is that of Kelly and Walker[31]

on the Critical Path Method in which the desired project completion time is determined by

minimizing the longest (or critical) path, which starts at the first node and terminates at

the last node of the project. An extensive amount of work has been reported since then

on a variety of project planning problems. This includes, among others, consideration of a

variety of features such as resource constraints, multiple resources and the cost incurred in

performing an activity of a project as a function of the amount of resources allocated to it.

Even though many project planning problems can be addressed by the models and solution

methodologies presented in the literature, there are still opportunities available to develop

more effective models and to capture additional features that are encountered in real-world

project planning problems. It is the goal of this thesis to present a novel model and solution

approach for a commonly encountered project planning problem.

1.2 Problem Statement

We consider a directed network, P . It consists of a set of nodes and a set of arcs among

the nodes. We represent the former as R(P) and the latter as A(P). A limited amount

of a resource type is available to perform the activities of this network. Without loss of

generality, we may assume this resource type to be workers. There is a known time-resource

trade-off for each activity; in particular, the time required to perform an activity is a non-

increasing function of the amount of resource allocated to it. We assume this function to be

2

Daniel W. Steeneck Chapter 1. Introduction

continuous, i.e., a fractional amount of the resource can be allocated to an activity. However,

the amount of the resource allocated to an activity cannot be altered once the activity has

begun processing, and, moreover, the activities are not pre-emptable.

The problem that we address in this thesis can formally be stated as follows: Given a directed

network representing the precedence relationship among activities, the available amount of

a resource type, and the time-resource trade-off function for each activity, determine the

amount of the resource for allocation to each activity of the project so that the time required

to perform all the activities of the project (i.e., project duration) is minimized. We consider

a variety of time-resource trade-off functions for the activities of the project.

1.3 Motivation for Addressing the Problem

A project scheduling problem is frequently encountered in real-life. A typical example of its

occurrence arises in the construction industry. However, many military-related applications

can be viewed as project scheduling problems as well. Invariably, such problems involve

a bottleneck resource, which can be the workers required to perform the activities of the

project or a particular equipment. A procedure to determine the optimal resource allocation

to the activities of a project has been presented in the literature in case the forms of inverse

of the time-resource trade-off functions, or productivity functions, for all the activities are

identical being either convex, concave or linear [51]. However, this procedure cannot address

the situation when their productivity functions are mixed. Our work is motivated by the

desire to develop an optimum-seeking method of this more general situation in which each

3

Daniel W. Steeneck Chapter 1. Introduction

activity could possess a convex, a concave, or a non-convex/concave time-resource trade-off

function form.

1.4 Outline of Solution Approach

Our solution approach relies on three main ideas. First, we consider pairs of independent

activities and develop conditions under which they can be performed in series or in parallel.

Once such a relationship is determined among pairs of activities, sub-optimal sequences are

avoided. This reduction in the solution search space can be quite significant depending upon

the number of pairs of activities for which such relationships are known. Second, all possible

potentially optimal sequences are enumerated using a search tree. As these sequences are

enumerated, relationships among the remaining nodes are once again determined to further

reduce the solution search space. Third, a network flow-based optimization method is used

to determine an optimal allocation of the resource to the activities of each sequence, and the

best solution is selected.

1.5 Outline of Remaining Chapters

In the remaining part of this thesis, we present a literature review of the previous work

reported in the area of project planning in Chapter 2. A mathematical model of the problem

addressed in this thesis is given in Chapter 3. A characterization of productivity functions

and a method to estimate the productivity function for a given activity are presented in

Chapter 4. In Chapter 5, we present the concept of independent activities and develop

4

Daniel W. Steeneck Chapter 1. Introduction

conditions for which it is known a priori that pairs of independent activities are sequenced

in parallel or in series in an optimal solution. A search tree for finding all possible sequences

of the activities in the project is presented in Chapter 6, which also contains our solution

methodology. This search tree exploits the special relationships among certain pairs of

activities to avoid consideration of many sub-optimal solutions. The solution methodology

is illustrated using an example problem. Results and conclusions from some test cases are

presented in Chapter 7. Finally, some suggestions for future work are given in Chapter 8.

5

Chapter 2

Literature Review

2.1 Project Planning

Project planning is the process of scheduling the activities of a project on one or more

resources so as to optimize a performance measure. Typically, the performance measure has

been the project duration, i.e., the total time required to process all the activities of the

project. However, there can be other measures as well, like for instance, variation in the

use of resources from one period to the next, and those pertaining to due date (meeting

the due date, earliness/tardiness penalty, etc.). The critical path method [31] has been the

cornerstone of many approaches proposed for the solution of project planning problems. The

critical path of a project is the longest path from the starting to the terminal activities of the

project. Building on this concept, many researchers have added to the body of knowledge

on project scheduling by developing and solving project scheduling models that incorporate

many features encountered in practice.

It is only realistic to assume a limited amount of one or more resources to be available to

6

Daniel W. Steeneck Chapter 2. Literature Review

perform the activities of a project. The resources can either be renewable or non-renewable.

Renewable resources continually replenish themselves, and therefore, their usage cannot

exceed a given amount at any given time. The consumption of non-renewable resources can

be limited over the duration of the project.

Another important feature of an activity of a project is its time-resource trade-off relation-

ship. For many activities, an increase in the allocation of a resource for their performance

will reduce their durations. Such a relationship will be nonlinear since an activity cannot

have a negative processing time as the amount of resources goes to infinity. The reduction

of project duration with increment in the amount of a resource for its processing is termed

project crashing.

Another important feature of a project’s activity is its ability to be or not to be pre-empted.

A pre-emptable activity may be paused and resumed at any point in its processing with no

effect on its duration. For a non-pre-emptable activity, if it is paused, it must be re-started

from the beginning.

2.2 Representation of the Activities of a Project

Activity-on-Arc

Typically, the activities of a project and the relationships among them are represented by

an activity network using an activity-on-arc representation. An activity-on-arc network is a

directed graph, or a digraph with vertices representing events and arcs representing activities.

7

Daniel W. Steeneck Chapter 2. Literature Review

Consider a directed graph P with event set R(P) and arc set A(P). An individual arc, aij

has tail i and arrowhead j, where i and j are the starting and ending events for aij. The

direction of an arc represents the progression of time between events, and hence, it also

represents the precedence relationships between activities. An activity, aki is an immediate

predecessor of activity, aij. In other words, aki must finish before aij can begin. Likewise,

aij is an immediate successor of aki. Consider the activity network shown in Figure 2.1.

Activities a12 and a02 are immediate predecessors of a23, and likewise, a23 is an immediate

successor to both of these activities. There is an event time, ti, associated with vertex i and

a duration dij associated with activity aij. This duration may be a function of the amount

of a resource allocated to the activity.

Figure 2.1: An activity-on-arc activity network

Activity-on-node

Another method of modeling activity networks is by using an activity-on-node representa-

tion. An activity-on-node network is a digraph with its vertices representing activities and

8

Daniel W. Steeneck Chapter 2. Literature Review

its arcs representing precedence relationships. Consider a graph P ′ with vertex set R(P ′)

and arc set A(P ′). An arc, aij, of this digraph indicates that activity i is an immediate prede-

cessor of activity j. Likewise, activity j is an immediate successor of activity i. Consider the

activity-on-node activity network shown in Figure 2.2. Note that activity 2 is a predecessor

of activity 4. There is a time duration associated with each node. However, arcs represent

precedence relationships among the activities, and they have no time duration associated

with them.

Figure 2.2: An activity-on-node activity network

9

Daniel W. Steeneck Chapter 2. Literature Review

2.3 The Critical Path Method and Precedence Rela-

tionships

The Critical Path Method

The critical path method (CPM) of Kelly and Walker[31] was the first attempt at mathemat-

ically modeling precedence relationships and costs associated with project activities. They

split project planning into two parts, namely planning and scheduling. The planning aspect

involves developing the activity network for the project and identifying the resource/time re-

lationship for each activity. The scheduling aspect involves determining the optimal schedule

and allocating resources to the activities of the project in order to minimize the cost incurred

in view of a given due date.

The concepts that are central to CPM are critical activities and the critical-path, which is

defined by the critical activities. If we let t
(0)
i be the earliest possible realization time of

node i, and t
(1)
i be the latest possible realization time of node i, then the maximum time

available for activity aij is t
(1)
j − t

(0)
i . If yij, the duration of (i, j), is equal to the maximum

time available for aij, then aij is considered critical. If the completion time of a project with

n jobs is λ, then λ is also the earliest possible time for the realization of the last event, t
(0)
n+1,

and there exists a corresponding critical-path (or a critical sub-network) that consists of all

the critical activities of the project. It also consists of the longest path(s) of the network.

If an activity is not on the critical path, then the duration of the activity may be lengthened

by an amount called its free float before it becomes a critical activity. The idea of free float

10

Daniel W. Steeneck Chapter 2. Literature Review

is important in reducing the resource consumption requirements for the project. Typically,

a reduction in the allocation of resources to the activities will increase their durations.

Therefore, a decrement in the allocation of a resource to a non-critical activity, in order to

lengthen its duration, is advantageous if the objective is to minimize cost. Ideally, all the

paths of the network will be critical in order to achieve minimum resource consumption.

To illustrate the idea of a critical activity and a critical path, consider the activity network

shown in Figure 2.3. If the project completion time of the project represented in Figure 2.3

is 17, then the critical path of the project is as shown (by bold lines) in Figure 2.4.

Figure 2.3: Example activity network

To illustrate the mathematical modeling of the precedence relationships of an activity net-

work, consider the case of minimizing the cost incurred for completing the corresponding

project by a given due date. Let n be the number of jobs, and dij be the duration of activity

(i, j), aij be the $/time cost of decreasing dij, and D be the project due date. Then, we have

11

Daniel W. Steeneck Chapter 2. Literature Review

Figure 2.4: Example of a critical path

the following mathematical model:

Minimize
∑

∀(i,j)∈A(P)

−aijdi,j (2.1)

subject to:

dij ≤ tj − ti, (i, j) ∈ A(P) (2.2)

t0 = 0 (2.3)

tn = D. (2.4)

The constraint set (2.2) defines the precedence relationships among the activities of the

project. The constraint sets (2.3) and (2.4) capture the start and completion times of the

project. The object is to achieve maximum cost reduction as depicted by (2.1).

Generalized Precedence Relationships

The precedence relationships used in the CPM are strict precedence relationships. However,

there is another type of precedence relationship called generalized precedence relationships

(GPRs) that is discussed in the literature (Elmaghraby and Kamburowski [24]). In the strict

12

Daniel W. Steeneck Chapter 2. Literature Review

precedence model, the finish time of one activity is constrained to be equal to start time of

its successor. However, there are other forms of “precedence” relationships between the start

and finish times of two activities. They are: start-to-start (SS), start-to-finish (SF), finish-

to-start (FS), and finish-to-finish (FF). For example, for a positive finish to start relationship

of two activities, there will be some overlap and the second activity’s start time will have

a lead on the first activity’s finish time. If the finish to start relationship is negative, then

there will be some lag time between the activities.

GPRs can be represented on an activity-on-arc activity network, however, some more nota-

tion needs to be defined. Activity i, where 1 ≤ i ≤ n, has a start-event node labeled 2i− 1

and a finish-event node labeled 2i. The start-event node will be called sk and the finish-

event node will be called fi. Then, the activity network representing the GPRs will have

2n+ 2 nodes. The duration of job i, di, has upper and lower bounds ui and li, respectively.

Evidently

si + li ≤ fi ≤ si + ui (2.5)

An arc pointing from node 2i − 1 to 2i will have a length of li and an arc pointing in the

opposite direction will have a length of −ui. This representation is essential to satisfy the

constraint that tj − ti ≥ dij. An example GPR activity network is shown in Figure 2.5.

Projects with GPRs will not be considered for all the features covered in this literature

review; however, projects planning problems with features such as time/cost trade-offs and

resource constraints, which have been modeled using strict precedences can easily be modeled

13

Daniel W. Steeneck Chapter 2. Literature Review

Figure 2.5: Example GPR activity network

for GPRs with small modifications.

2.4 Resource Constraints

An essential feature of almost all projects is that they must be performed using a limited

amount of one or more resources. One obvious type of limited resource encountered in

any project is money; however, in reality, this is usually a resource whose consumption is

minimized rather than constrained. Resources that are constrained include: man-hours,

machinery, raw materials, etc. Resources fall into the following categories: renewable, or

non-renewable.

Renewable resources are those that are either replenished during each time period (fiscal

year, quarter, etc.) or whose usage is available at some constant rate (workers/time, power,

trees (provided they are replanted), etc.). In the Resource Constrained Project Schedul-

ing Problems or RCPSP, time is broken down into periods. All classical formulations of

the RCPSP have the same basic structure that Christofides et. al. [10] use to deal with

consumption-constrained resources. This includes the objective of minimizing the project

14

Daniel W. Steeneck Chapter 2. Literature Review

duration, cost incurred, and the like, given the precedence constraints among the activities,

and the following resource constraints:

∑
i∈γ(t)

rik ≤ Ru, t = 1, · · · , T, k = 1, · · · , K (2.6)

where γ(t) represents the activities in operation during time period t, rik is amount of

resource k required by activity i, and Ru is the total amount of resource type k available

for the project in any time period. Typically, this formulation is solved using a branch-and-

bound method, which is the most studied technique for solving the RCSPS (Balas [2], Davis

and Heidorn [12], Hastings [27], Stinson et al. [48], Talbot and Patterson [50], Radermacher

[43], Christofides et al. [10], Bell and Park [4], Carlier and Latapie [7], Mingozzi et al. [35],

and Demeulemeester and Herroelen [21]).

Patterson and Huber [40] use a discrete-time-based scheme as well based on the work of

Pritsker and Watters [41], and therefore, their resource usage constraint is slightly different:

n∑
j=1

t+dj−1∑
q=t

rjkxjq ≤ Ru
k , t = 1, · · · , T, k = 1, 2, · · · , K (2.7)

In this case, t refers to a particular time period, dj represents the duration of activity j in

number of time periods, rjk is the amount of resource k required by activity j, xjq is a binary

variable and indicates whether or not activity j is to be processed in period q, and Ru
k is the

amount of resource k available for the project. Usually, if the problem is formulated in this

manner, a zero-one programming technique (Bowman [6], Pritsker et al. [42], and Patterson

and Huber [40]) is used to solve the model.

Dynamic programming can also be used for solving the RCSPS as shown by Carruthers and

15

Daniel W. Steeneck Chapter 2. Literature Review

Battersby[8].

We may also call the above the usage-constrained resources following the example of Weglarz

[52] for continuous-time-based models. If a resource is usage-constrained, we have

n∑
i=1

ri(t) ≤ Ru ∀t ≥ 0 (2.8)

where ri(t) is the resource usage of job i at time t and N is the maximum resource usage at

any given time. Leachman et. al. [32] model resource usage in a similar manner except that

they call the resource usage of an activity as its intensity.

Resources that are available in limited amounts over the course of the project, are called

consumption- constrained or non-renewable resources. Examples of consumption-constrained

resources are money, man-hours, raw materials, among others. Weglarz [52] defines consumption-

constrained resources as those possessing the following relationship:

n∑
i=1

∫ T

0

ri(t)dt ≤ M (2.9)

Essentially, the resource usage for each activity integrated over the duration of the project

is summed to obtain the total resource consumption. M is the maximum resource consump-

tion. Slowinski [47] also uses a method similar to that of Weglarz [52] for the modeling of re-

sources. The model by Patterson and Huber [40] does not consider consumption-constrained

resources. However, it can be adapted for a consumption-constrained resource as follows:

T∑
t=1

n∑
j=1

t+dj−1∑
q=t

rjkxjq ≤ Mk, k = 1, 2, · · · ,K. (2.10)

Doubly-constrained resources include both usage and consumption constraints. Doubly-

16

Daniel W. Steeneck Chapter 2. Literature Review

constrained resources include money, power, manpower, among others. To model a resource

as doubly constrained, one would simply use both the usage constraints and consumption

constraints of the resource in the model. Both Weglarz [52] and Slowinsky [47] feature

doubly-constrained resources in their treatment of project planning.

2.5 Time-Resource Trade-offs and Activity Modes

The durations of the activities of a project are, invariably, a function of one or more types

of resources. These functional relationships are known as the time-resource trade-offs. Their

functional forms are typically linear or convex; however, they may, theoretically, take on any

shape. Here, we only consider the linear and convex function forms since the linear case

is a good base-case, and modeling diminishing returns requires only convex curves. The

time-resource trade-off can also be modeled using discrete activity modes. These discrete

activity modes may require different amounts of resources to achieve a particular duration.

Allocating additional resources to an activity to reduce its duration is called project crashing.

Project crashing is a realistic and, therefore, a popular feature to incorporate into project

scheduling models. Various strategies can be used to model the time-resource trade-offs.

Continuous Time-Resource Functions

The linear time-resource trade-off curve is the simplest to handle; however, it is the most

unrealistic. Elmaghraby [22], provides the following model for the project planning problem

with linear cost-time trade-offs. Consider the following notation.

17

Daniel W. Steeneck Chapter 2. Literature Review

bij = y intercept of cost curve for activity (i, j)
uij = upper bound on duration for activity (i, j)
qij = lower bound on duration for activity (i, j)

Minimize
∑

(i,j)∈A(P)

cij =
∑

(i,j)∈A

(bij − aijdij) (2.11)

subject to:

tj − ti ≥ dij, ∀(i, j) ∈ A(P) (2.12)

dij ≤ uij, ∀(i, j) ∈ A(P) (2.13)

dij ≥ qij, ∀(i, j) ∈ A(P). (2.14)

The above model is a linear program and is, therefore, easy to solve. Elmaghraby [22] also

presents methods for solving problems involving strictly convex cost-time trade-off curves

based on the methods of Berman [5]. These methods assume unlimited availability of re-

sources with activities following convex time-resource trade-off curves (see Figure 2.6).

Figure 2.6: A convex time-resource trade-off curve

18

Daniel W. Steeneck Chapter 2. Literature Review

To complete a series of activities by a given due date, D, Berman [5] has shown that enough

resources should be allocated to each activity to ensure that: (1) the project completion time

is D, (2) the derivatives of the time-resource curves are less than or equal to zero, and (3)

the derivatives of the time-resource curves for all the activities are equal to each other. It is

clear that these are the optimal conditions since, at these optimal time-resource points, if we

increase the time of one activity and reduce that of another, the total cost would increase. At

“complex junctions”(events associated with more than two activities), we must regard the

incoming activities at the junction as one job by summing their time-resource functions, and

do the same for the outgoing activities. Consequently, the situation reduces to two activities

in series and can be addressed by setting D as the time of the next event. The algorithm

proposed by Berman [5] is as follows:

1. Set each activity at a fairly steep slope of the time-resource function, leaving enough
slack for use at the latter part of the network. Introduce additional slack as required.
This step provides an initial feasible solution.

2. Balance the junctions in succession, moving backwards through the network.

3. Iterate Step 2, until an acceptable degree of balance is obtained.

Note that Berman [5] does, in fact, handle functions that exhibit diminishing marginal

productivities (i.e., each unit of addition resource leads to less productivity after a certain

point).

Deckro and Hebert [18] have also investigated modeling of diminishing returns in project

resource planning. They assume no resource constraints, and the objective is to either: (1)

19

Daniel W. Steeneck Chapter 2. Literature Review

find the minimal time for a given cost, or conversely, (2) find the minimal cost given a due

date. Deckro and Hebert [18] call their model a base diminishing return model or BDRM.

It can be expressed as follows. Consider the following notation.

LBij = the minimum number of resource bundles required by activity
(i, j), ∀(i, j) ∈ A(P)

UBij = the maximum number of resource bundles that may be allocated
to activity(i, j), ∀(i, j) ∈ A(P)

Fij = the fixed cost associated with activity(i, j), ∀(i, j) ∈ A(P)
OH = the project overhead cost per period

Model BDRM:

Minimize OH +
∑

ij∈A(P)

(cijrij) +
∑
ij∈A

Fij (2.15)

Subject to:

− ti + tj ≥ dij(rij), ∀(i, j) ∈ A(P) (2.16)

LBij ≤ rij ≤ UBij, ∀(i, j) ∈ A(P) (2.17)

ti ≥ 0, i = 1, 2, · · · , n. (2.18)

The constraint set (2.16) ensures that the precedence relationships hold. Constraint set

(2.17) captures the upper and lower bounds on the amount of resource allocated to different

activities. However, note that the duration functions of the activities are not linear. Deckro

and Hebert [18] propose to solve a linear approximation model (LADRM) of the above

problem. For the linear approximation model, they suggest to interpolate between the

upper bound and lower bound points of the nonlinear duration functions to obtain the

corresponding linear approximation values. Consequently, if d+
ij is the value of dij(LBij), one

20

Daniel W. Steeneck Chapter 2. Literature Review

may replace the second constraint of the BDRM with

− ti + tj ≥ d+
ij + aij(rij − LBij), ∀(i, j) ∈ A(P). (2.19)

A drawback of the linear approximation method is that it is not very accurate in most cases

even though the underlying model is very efficient to solve. Also, for certain types of produc-

tivity functions, the nonlinear problem may be solved relatively easily with a commercially

available solver. Even though the problem is not linear, it is still possible to decompose it

using Benders partitioning or Lagrangian relaxation to reduce the size of the nonlinear part

of the problem.

In a previous paper, Deckro et. al. [19] consider the durations of activities as decision

variables. The cost of the project varies with the square of the difference between an ac-

tivity’s duration and its “normal” duration. This model is easily solvable using a quadratic

programming solver.

Weglarz [52] handled the time-resource trade-off relationship for an activity a bit differently

by working with the production rate as a function of the amount of resource allocated rather

than directly working with time as a function of resource. The production rate function is

defined as:

dXi(t)

dt
=

{
f1(ri(t)) t ∈ (ti, Ti)

0 otherwise
, i = 1, 2, · · · , n, (2.20)

where Xi is a measure of work related to the performance of activity, i. For example, if Xi

is the number of acres to be plowed for activity i, then Xi(t) is the number of acres that are

plowed at time t. Then, Equation (2.20) represents the rate at which activity i is performed

21

Daniel W. Steeneck Chapter 2. Literature Review

at time t with resource level ri(t) allocated to it. This is called the productivity function.

Interestingly, if the productivity functions of all the activities are of the same form (either

linear, concave or convex), then there is a fairly straight-forward algorithm to determine the

optimal resource allocation to each activity. Since this section pertains only to time-resource

trade-offs, this method will be discussed in a later section of the literature review.

Activity Modes

An activity may only be performed in a limited number of ways. These are called the

modes of an activity. For example, if waiting for concrete to dry is an activity of a project

network, then that activity has two modes: use of fast drying concrete or normal concrete.

Each option has a different cost and/or resource requirement and duration. When there is a

time-resource trade-off in the presence of activity modes, the problem is called the Discrete

Time-Cost Trade-off Problem or DTCTP.

Model DTCTP (De et al. [14]):

Minimize
∑

1≤i≤n

∑
1≤j≤m(i)

cijgij (2.21)

subject to: ∑
1≤j≤m(i)

gij = 1, i = 1, · · · , n (2.22)

∑
1≤j≤a(i)

dijgij + ti ≤ tk, ∀k ∈ S(i) (2.23)

i = 1, · · · , n
tn+1 ≤ d, (2.24)

where cij is the cost of activity i in mode j, gi,j is 0 or 1 depending on whether or not

22

Daniel W. Steeneck Chapter 2. Literature Review

activity i is performed in mode j, m(i) is the set of modes for activity i, di,j is the duration

of job i in mode j, S(i) are the successors of activity i, and ti is the start time of activity i.

A few methods have been developed to solve this problem. Panagiotakopoulos [39] and

Harvey and Patterson [26] have developed special solution algorithms; however, Elmaghraby

[23] and Demeulemeenster et al. [21] have developed hybrid branch-and-bound/dynamic

programming methods to solve the problem. De et al. [13] has proven the problem to be

NP hard.

Deckro and Hebert [18] have considered a modification of the DTCTP in the presence of

strict precedence relations, which features modes but not resource constraints. Let

L(P) = the set of all activities (i, j) whose dij(rij) is a linear function
N(P) = the set of all activities (i, j) whose dij(rij) is a non-linear function
zij = the number of options available for activity (i, j) ∈ N(P)

Model DDRM:

Minimize OHxn +
∑

(ij)∈N(P)

zij∑
k=1

(yijkcikrij(k)) (2.25)

+
∑

(ij)∈L

(rijcij)

subject to:

− xi + xj −
zij∑
k=1

dijkyijk ≥ 0, ∀(i, j) ∈ N(P) (2.26)

zij∑
k=1

yijk = 1, ∀(i, j) ∈ N(P) (2.27)

− xi + xj − Sijrij ≥ D+
ij − SijLBij, ∀(i, j) ∈ L(P) (2.28)

LBij ≤ rij ≤ UBij, ∀(i, j) ∈ A(P) (2.29)

rij(k) ∈ I, ∀(i, j),∈ N(P) (2.30)

23

Daniel W. Steeneck Chapter 2. Literature Review

yij(k) ∈ {0, 1}, ∀(i, j),∈ N(P) (2.31)

xi ≥ 0, i = 1, 2, · · · , n, (2.32)

where yijk = 1 if rij(k) bundles of resource (i, k) are allocated to activity (i, k), and 0,

otherwise. Note that this model is similar to model BDRM. For this model, there are

different modes in which each activity can be performed. These modes are set by changing

the value of yijk to one or zero. The model is an integer program and may be solved by a

number of commercial solvers.

Sakellaropoulos and Chassiakos [46] present a model that is similar to the DDRM of Deckro

and Hebert’s [18]. It is based on an activity-on-node model representation:

ε a very small number designed to drive f0 to 0
f0 project finish time
fi finish time of activity i i, · · · , n
s0 project start time i, · · · , n
si start time activity i

Minimize
∑
i∈R(P)

∑
k∈M(i)

cikmik +OHf0 + εf0 (2.33)

Subject to:

fi − si =
∑

k∈M(i)

dikmik, ∀i ∈ R(P) (2.34)

∑
k∈M(i)

mik = 1, ∀i ∈ R(P) (2.35)

f0 ≥ fi, ∀i ∈ R(P) (2.36)

s0 ≤ si, ∀i ∈ R(P) (2.37)

s0 = 0, (2.38)

si ≥ 0, ∀i ∈ R(P) (2.39)

fi ≥ 0, ∀i ∈ R(P) (2.40)

mik = {0, 1}, i = 1, 2, · · · , n (2.41)

24

Daniel W. Steeneck Chapter 2. Literature Review

The model is a strict precedence model. Constraint set (2.34) maintains the precedence

constraints. Constraint set (2.35) ensures that some mode of performance is chosen for each

activity. Constraint sets (2.36) to (2.41) ensure that feasible start and finish times for the

activities are found in the solution. This model may be modified easily to handle GPRSs by

adding the appropriate constraints as follows:

Start no earlier than time D: si ≥ D
Start no later than time D: si ≤ D

Start on time D: si = D
Finish no earlier than time D: fi ≥ D
Finish no later than time D: fi ≤ D

Finish on time D: fi = D

Many other researchers have used activity modes when modeling project planning problems.

These include Nudtasomboom and Randhawa [37], Erenguc, Ahn, and Conway [25], Deckro

and Hebert again [17], and De Reyck and Herroelen [16]. These models consider the resource

constraint problem, and we will present them in the next section.

2.6 Resource-Constrained Project Planning with Time-

Resource Trade-offs

The most general case of project planning problem includes resource constraints along with

time-resource trade-offs. The most common versions of these are the Discrete Time-Resource

Trade-off Problem (DTRTP), and the Multi-Mode Resource-Constrained Project Scheduling

Problem (MRCPSP). Also, the DTCTP can be a resource constrained problem if the objec-

tive is to minimize project duration subject to a budget constraint. These involve modes

and discrete times rather than a smooth time-cost or time-resource function. The DTRTP

25

Daniel W. Steeneck Chapter 2. Literature Review

features discrete time-resource trade-offs as well as a constraint for the usage of a renewable

resource. This last feature lends itself to a model using time-periods rather than continuous

time in its formulation. The DTRTP model as presented by De Reyck et al. [15] is as follows:

Minimize
ln∑
t=en

t× xnlt (2.42)

Subject to:

Mi∑
m=1

li∑
t=ei

ximt = 1, i = 1, · · · , n (2.43)

(−
Mj∑
m=1

jj∑
t=ej

t× xjmt)+ (2.44)

Mi∑
m=1

li∑
t=ei

(t+ dim)ximt ≤ 0, i = 1, 2, · · · , n

xik ≥ 0,Mk ≥ 0 ∀(i, j) ∈ A(P) (2.45)

n∑
i=1

Mi∑
m=1

rim

min(t−l,li)∑
s=max(t−dim,ei)

xims ≤ R, t = 1, · · · , T (2.46)

ximt ∈ {0, 1} i = 1, · · · , n m = 1, · · · ,M (2.47)

t = 0, · · · , T.

Here, ximt indicates if activity i is performed in mode m and started at time t, and ei(li)

is the earliest (latest) start time of activity i based on the modes with the smallest dura-

tion. Since the problem is NP-hard, there is no polynomial-time algorithm available for its

solution. The various methods that have been used for its solution are: branch-and-bound

(Demeulemeester et al [20]), tabu search (De Reyck et al. [15]), genetic algorithm (Ranjibar

and Kianfar [45]), hybrid scatter search (Ranjibar et al. [44]). Ranjibar et al. [44] have

shown that, for many modes, the scatter search method performed the best; however, for

26

Daniel W. Steeneck Chapter 2. Literature Review

very few modes the branch-and-bound method of Demeulemeester et al.’s [20] performs bet-

ter. Notice that this formulation is similar to Talbot’s [49] MRCPSP model presented next.

This follows because the DTRTP is a special case of the MRCPSP with no non-renewable

resources.

Talbot[49] presents a resource-constrained time-resource trade-off, model which is mode-

based, treats time discretely, and models both multiple renewable and nonrenewable re-

sources.

Minimize
Mn∑
m=1

LN∑
t=EN

t× xNtm (2.48)

subject to
Mn∑
m=1

LN∑
t=EN

xjtm = 1, j = 1, · · · , N (2.49)

−
Ma∑
m=1

La∑
t=Ea

t× xatm+ (2.50)

Mb∑
m=1

Lb∑
t=Eb

(t− dbm)xjtm ≥ 0, i = 1, 2, · · · , n

N∑
j=1

Mj∑
m=1

t+djm−1∑
q=t

rjkmxjqm ≤ Ru
kt, k = 1, · · · , K, t = 1, · · · , H (2.51)

N∑
j=1

Mj∑
m=1

Lj∑
t=Ej

rjimdjmxjtm ≤ Rc
i , i = 1, · · · , I (2.52)

where ei(li) is the earliest finish time for activity i. For this formulation, Ej and Lj maybe

determined by using a method presented by Levy and Weist [33]. In order to solve this

model, Talbot [49] develops an algorithm that uses integer programming with network cuts,

which is a more efficient method than solving it as a straightforward integer program. This

problem has also been addressed by Chang et al. [9] (ant colony optimization), Wei-cun

27

Daniel W. Steeneck Chapter 2. Literature Review

and Kai [53] (ant colony and particle swarm optimization), Liu et al. [34] (particle swarm

optimization), Yu [54] (hybrid genetic algorithms) and Pan et al. [38] (clonal selection

optimization), Mori and Tseng [36] and later Alcaraz et al. [1](genetic algorithms), Jarboui

et al. [28] (particle swarm algorithm), and Jozeforwka et al. [30] (simulated annealing).

Most recently, Ranjbar et al. [44] have developed a hybrid search procedure, which performs

better than the algorithms by Alcaraz et al.[1] and Jozeforwka et al.[30].

Erenguc, Ahn and Conway [25] present a formulation and a solution method for the resource-

constrained project planning problem with activity modes and time periods. The formulation

is as follows:

Minimize
n−1∑
j=2

∑
mj∈M(j)

xjmj× (2.53)

{NCjmj +MCjmj × (NDjmj − dj)}
+ P̄ ×Dover

subject to: ∑
mj∈M(j)

xjmj = 1, j = 2, · · · , n− 1,mj ∈M(j) (2.54)

si + di ≤ sj, ∀(i, j) ∈ A(P) (2.55)∑
j∈At

∑
mj∈M(j)

rjmjk, ∀k and t (2.56)

xjmj ≤ Rk, ∀k and t (2.57)

CDjmjxjmj ≤ djxjmjDjmjxjmj , j = 2, · · · , n− 1,mj ∈M(j) (2.58)

xjmj ∈ {0, 1}, j = 2, · · · , n− 1,mj ∈M(j) (2.59)

s1 = 0, d1 = 0, dn = 0 (2.60)

z ≥ 0 (2.61)

z ≥ sj −D (2.62)

dj is integer, j = 1, 2, · · · , n. (2.63)

Here, NDjmj(CDjmj) represents the longest(shortest) duration of mj, P̄ is the per unit

28

Daniel W. Steeneck Chapter 2. Literature Review

time cost of tardiness, and Dover is the tardiness of project. This formulation is similar to

the MRCPSP except that in addition to considering different activity modes, one can also

crash an activity by increasing cost; however, there is no non-renewable resource constraint.

The time-cost trade-off is considered to be linear. The authors solve the problem by a

branch-and-bound procedure.

Nudtasomboom and Randhawa [37] develop a formulation very similar to MRCPSP as well

except that they allow all types of constrained resources (renewable, non-renewable, and

doubly constrained). Their solution algorithms are based on the methods presented by

Talbot [49] and Davis [11], and Johnson [29].

Weglarz’s [52] treatment of the time-resource trade-off problem with resource constraints

problem uses a doubly constrained, continuously divisible resource and continuous time-

resource trade-off curves. For sake of completion, Equations (2.20), (2.8), and (2.9) are

presented again below along with some others.

dXi(t)

dt
=

{
f1[ri(t)] if t ∈ (ti, Ti), i = 1, 2, · · · , n
0 otherwise

(2.64)

n∑
i=1

ri(t) ≤ N,∀t ≥ 0 (2.65)

n∑
i=1

∫ T

0

ri(t)dt ≤M (2.66)

C(T) =
n∑
i=1

∫ T

0

ri(t)dt. (2.67)

C(T) represents the total resource consumption over the duration of the project. Weglarz

[52] assumes that all the activities in the project will either have concave, convex or linear

29

Daniel W. Steeneck Chapter 2. Literature Review

productivity functions. If the productivity functions are concave, and all the activities

are independent (i.e., there are no precedence relations among them), then they should be

performed in parallel. If, in finding the minimum project duration T ∗, the positive root

of the equation, T ∗
∑n

i=1 fi(xi/T
∗) = M , does not violate the resource usage constraint∑n

i=1 f
−1
i (xi/T

∗) ≤ N , then one can allocate ri∗ = f−1(xi/T
∗) for i = 1, 2, · · · , n. If the

usage constraint does not hold, then instead of T ∗, we must find T ∗∞, which is the positive

root of
∑n

i=1 fi(xi/T
∗) = N . This will ensure that the usage constraints are not violated. On

the other hand, if the productivity functions are all convex, then we perform the activities

in series in an optimal solution.

Weglarz [52] also presents a procedure to allocate resources to dependent activities (i.e.,

activity networks with precedence relationships). Weglarz [52] asserts that it is possible to

label the nodes of an activity-on-arc activity network such that the occurrence of node i is

before the occurrence of node j if i < j and that, the activity network should be labeled

as such. Then, denote the indices of the activities, which may be performed between nodes

k and k + 1 as Ik, k = 1, 2, · · · , s − 1, where s is the number of nodes in the network.

Additionally, denote xij the part of xi performed in Ik. Also let ∆k({xik}i∈Ik ,Mk) be the

duration of Ik. The idea here is that the parts of activities performed in any given Ik are

independent, and so, we can use previous results. If the production function for all the

activities are convex, we simply perform all of them in series. However, to find the optimal

solution for the concave case, we can solve the following nonlinear program (note that ∆k

can be calculated as if all xik are independent):

30

Daniel W. Steeneck Chapter 2. Literature Review

Minimize T =
s−1∑
k=1

∆k({xik}i∈Ik ,Mk) (2.68)

subject to:
s−1∑
k=1

Mk ≤M (2.69)∑
k∈Ki

xik = xi, i = 1, 2, · · · , n (2.70)

xik ≥ 0,Mk ≥ 0, i = 1, 2, · · · , n; k ∈ Ki. (2.71)

Then, the resource allocations, r∗i , i = 1, · · · , n, are determined from the optimal values of

the decision variables.

31

Chapter 3

Model Formulation and Solution
Approach

3.1 Accessibility and Sequences

As stated in Chapter 1, the problem that we address in this thesis is to determine an

appropriate amount of resource to allocate to each activity of a project so as to minimize the

project duration (makespan). The resource is usage-constrained (renewable), and a time-

resource function is associated with each activity. Once an activity begins its operation, it

cannot be pre-empted and resource levels cannot change.

In addition to the precedence digraph, there are two other important networks associated

with projects: the accessibility digraph and the sequence digraph. Clearly, the precedence

structure of the project is a factor that restricts how different amounts of resources may

“flow” through the project. The precedence relationships specify which activities are possible

successors of a given activity. If an activity j is a possible successor to activity i, then

activity j is accessible from i. An accessibility digraph can be developed to explicitly identify

32

Daniel W. Steeneck Chapter 3. Model Formulation and Solution Approach

which activities are accessible from other activities by adding disjunctive arcs. Consider the

precedence digraph shown in Figure 3.1. Its corresponding accessibility digraph is depicted

in Figure 3.2.

Figure 3.1: A precedence digraph

Figure 3.2: The accessibility digraph of the network in Figure 3.1

33

Daniel W. Steeneck Chapter 3. Model Formulation and Solution Approach

Since the accessibility digraph has too many arcs to be viewed easily, the accessibility matrix

(an adjacency matrix corresponding to the accessibility digraph) is a better way to represent

the accessibility relationships in the project. The accessibility matrix for Figure 3.2 is as

follows.

Q =

1 2 3 4 5 6
0 1 1 1 1 0 0
1 0 1 1 1 1 0
2 1 0 1 1 1 0
3 1 1 0 1 1 1
4 1 1 1 0 1 1
5 0 0 1 1 0 1

(3.1)

If Qij = 1, then activity j is accessible from activity i. Note that there is no column

associated with the 0th activity since it will not be accessible from any activity. Likewise,

there is no row associated with the last activity since no activities are accessible from the

sink. It is important to note that simply because Qij = 1, does not imply that resources

from i can flow to j. Activity j’s predecessor must be completed first before this is possible.

A sequence digraph for a project, or simply a sequence of the project, shows a possible or-

dering of the activities. An arc (i, j) of a sequence diagraph represents a flow-carrying arc

from activity i to activity j. For example, one possible sequence for the project shown in

Figure 3.1 is depicted in Figure 3.3.

34

Daniel W. Steeneck Chapter 3. Model Formulation and Solution Approach

Figure 3.3: A sequence digraph

3.2 Overview

A flow-based network representation is used to model the problem in which the resource

“flows” through the project network from one activity to another. The decision variables are

(1) the selection of flow-carrying disjunctive arcs from the accessibility matrix, and (2) the

determination of the amount of flow on each of the conjunctive and selected disjunctive arcs.

These will give rise to each activity’s completion, and hence, the project completion time. In

order to satisfy the resource usage constraint, the amount of resource flow into the project

is equal to the maximum resource level, and the flow-in should be equal to flow-out for

each activity. Additionally, no two-way flows may exist among activities. The accessibility

matrix will ensure the desired precedence relationships among the activities as well as the

assignment of the resource to each activity. Additional resources may not be added to an

activity once its operation has begun.

3.3 Mathematical Model

We use activity-on-node representation. Consider the following notation:

35

Daniel W. Steeneck Chapter 3. Model Formulation and Solution Approach

Parameters

R(P) = Set of activities in the project P
F = Set of potential resource flows among the activities in the project

i.e., arcs of the accessibility digraph
S(i) = Set of activities accessible from activity i, i ∈ R(P)
ρ(i) = Set of activities for which i is accessible for, i ∈ R(P)
0, n = Indices of first (source) and last (sink) activity in R(P), respectively
W = Maximum number of workers available
di(w) = Duration of activity i if the number of workers assigned for its processing is w

Decision Variables

ti = completion time of activity i, ∀i ∈ R(P)
wij = amount of resource that flows from activity i to activity j, ∀(i, j) ∈ F

xij =

{
1, if flow occurs on (i, j)

0, otherwise
, (i, j) ∈ F

Model PSPPF:

minimize tn (3.2)

subject to:

tj − ti ≥ d(
∑
k∈ρ(j)

wkj) ∀i ∈ ρ(j),∀j ∈ R(P)\{0} (3.3)

∑
j∈S(0)

w0j = W (3.4)

∑
i∈ρ(n)

win = W (3.5)

∑
i∈ρ(j)

wij =
∑
k∈S(i)

wjk ∀j ∈ R(P)\{0, n} (3.6)

wij ≤ Wxij ∀(i, j) ∈ F (3.7)

xij ≤ (1− xji) ∀(i, j) ∈ F (3.8)

t0 = 0 (3.9)

wij ≥ 0 ∀(i, j) ∈ F (3.10)

The constraints sets (3.4) to (3.6) are the flow-based constraints that maintain conservation

of flow through the network. The constraint set (3.3) ensures that the completion time of an

36

Daniel W. Steeneck Chapter 3. Model Formulation and Solution Approach

activity j, j ∈ R(P)\{0}, is greater than or equal to its processing time plus the completion

times of all of its predecessors. The constraint set (3.7) ensures that if no flow is to occur

between activities i, j, the wij does, in fact, equal 0. Constraint set (3.8) disallows two-way

flows between activities. The constraint set (3.9) arbitrarily assigns the completion time of

the source node to zero, while the constraint set (3.10) enforces non-negative flows on each

pair of activities, (i, j) ∈ A.

The values of the variables xij, (i, j) ∈ F determine the sequence in which to perform the

project. In particular arcs (i, j) ∈ F with xij = 1 are the flow carrying arcs from the

disjunctive arcs that determine the sequence. If the sequence for a project is known before

hand, i.e, values variables xij, (i, j) ∈ F are known a priori, the model PSPPF reduces to

only a flow determination problem (model PSPPF’).

Model PSPPF’:

minimize tn (3.11)

subject to:

tj − ti ≥ d(
∑
k∈ρ(j)

wkj), ∀i ∈ ρ(j), ∀j ∈ R(P)\{0} (3.12)

∑
j∈S(0)

w0j = W (3.13)

∑
i∈ρ(n)

win = W (3.14)

∑
i∈ρ(j)

wij =
∑
k∈S(i)

wjk, ∀j ∈ R(P)\{0, n} (3.15)

t0 = 0 (3.16)

wij ≥ 0, (i, j) ∈ SEQ (3.17)

37

Daniel W. Steeneck Chapter 3. Model Formulation and Solution Approach

where SEQ is the set of flow-carrying arcs (for which xij = 1). In this case, ρ(i) is now

the set of activities that immediately precede i and S(i) is the activities that immediately

succeed i.

3.4 Solution Approach

Our approach for the solution of model PSPPF (Project Scheduling in the Presence of

Production Functions) involves finding certain, potentially optimal sequences in which the

project may be performed, and then, selecting the sequence whose optimal resource allocation

gives the smallest makespan for the project. These sequences are found using a search

tree. The differentiating feature of our approach is the use of some special properties of

the independent activities (defined in section 5.1) of a project that reduces the size of the

search tree, and consequently, enumeration of a fewer number of sequences. We discuss this

in Chapters 4 and 5 where we study different forms of productivity functions and identify

some special properties of independent activities. In Chapter 6, we present an algorithm

for enumerating all possible sequences. The optimal resource allocation for each sequence

is determined using a standard nonlinear programming algorithm (Augmented Lagrangian

Penalty Function method).

38

Chapter 4

Discussion of Productivity Functions

4.1 Characteristics of an Activity Duration Function

The duration of an activity, generally, decreases as an additional amount of a resource is

allocated to it. However, it is well-known that, after a certain point, an additional amount

of the resource no longer remains as productive. In other words, each activity has a resource

level at which the maximum marginal productivity rate is attained. An increment of re-

source beyond that level will produce a diminishing return of marginal productivity rates.

This phenomena is called the Law of Diminishing Returns. For example, if the activity

is to saw 2x4 boards in half and stack them, then the greatest marginal productivity rate

might be attained by 2 workers: one cutting the boards, and the other stacking them. The

inclusion of another worker without adding a saw and a saw-horse, will not impact the pro-

ductivity rate significantly. On the other hand, one man working alone may take more than

twice as long as with having a partner. A hypothetical marginal productivity function, a

productivity function, and a time/unit function associated with sawing the 2x4’s are shown

39

Daniel W. Steeneck Chapter 4. Discussion of Productivity Functions

in Figures 4.1, 4.2, and 4.3, respectively. Note that the time/unit function is inverse of

Figure 4.1: Marginal productivity function

Figure 4.2: Productivity function

the productivity function, and that, it is convex. If an activity exhibits diminishing returns,

then the productivity function may actually start decreasing as resources are added because

the resources may interfere with each other. Consider, for instance, a group of 10 students

trying to work together on a homework. They would all be chatting together and not get-

ting any work done! Clearly, it is not advantageous to allocate resources in this manner.

40

Daniel W. Steeneck Chapter 4. Discussion of Productivity Functions

Figure 4.3: Time/unit function

The resource allocation that gives the minimum task time will constitute an upperbound

on resource allocation for that task. Figure 4.4 depicts a variety of marginal productivity

functions.

Figure 4.4(a) displays a flat marginal productivity function with a marginal productivity

rate of 1 unit/ (time workers) which indicates that each additional worker will add the

same amount of productivity. The function in Figure 4.4(b) exhibits diminishing returns

starting from the initial stage of resource allocation. For the function in Figure 4.4(c), the

point of diminishing returns is too large to be shown on the graph (within the range of the

number workers shown in the figure). Consequently, for this range of workers, there is no

point of diminishing returns. In Figure 4.4(d), the function peaks at 5 workers. Therefore,

an additional worker beyond 5 will cause a drop in the average productivity of a worker. The

corresponding productivity and time/unit functions for the marginal productivity functions

in Figure 4.4 are shown in Figures 4.5 and 4.6, respectively.

41

Daniel W. Steeneck Chapter 4. Discussion of Productivity Functions

Figure 4.4: Marginal productivity functions

Notice that the unit of the functional value for the functions in Figure 4.6 is time/unit. The

time required per unit is the ratio of the time required by a specified number of workers

to that required by one worker to accomplish the task. In the sequel, we will call the

time/unit function simply as the time function. Note that, with the above definition, the

time function can be transformed into a true activity duration function by multiplying the

value obtained from the function by the time required by one person to accomplish the task.

Also, note that, the activity duration functions are convex and decreasing. The activity

duration functions will be decreasing if the marginal productivity functions are greater than

zero for all worker allocation levels. For some activities, their marginal productivity function

may become negative after some particular resource allocation level, indicating a decreasing

42

Daniel W. Steeneck Chapter 4. Discussion of Productivity Functions

Figure 4.5: Productivity functions

productivity function and an increasing activity duration function after this point. Clearly, it

is not advantageous to consider resource allocations beyond these points. Therefore, resource

allocation levels, beyond the point at which the marginal productivity function equals zero,

be artificially forced to not increase the activity duration. In other words, if workers are added

at levels where the marginal productivity function goes negative, then the extra workers sit

idle for the duration of the activity.

4.2 Estimation of Production Functions

A productivity function may take on a variety of forms. As seen above, this function may

be convex, concave, or it may consist of an inflection point. Therefore, the class of functions

43

Daniel W. Steeneck Chapter 4. Discussion of Productivity Functions

Figure 4.6: Time/unit functions

that we intend to use to estimate a productivity function must be able to take these three

shapes, at least at non-extreme values of resource levels. Also, the class of functions must

be able to capture the following three important features of the production rate function.

Firstly, the productivity for one worker must be equal to 1 unit/time. Secondly the second

derivative of the productivity function at the resource level corresponding to the inflection

point, winflection, must equal 0. Thirdly, the desired productivity at the maximum number of

workers must be captured. Since there are 3 characteristics of the production function that

must be modeled, the class of functions used must have 3 parameters. A modified Weibull

Cumulative Distribution Function is capable of capturing all the required features. This

44

Daniel W. Steeneck Chapter 4. Discussion of Productivity Functions

function is as follows:

θ(w) = λ(1− e−(w/β)α), (4.1)

where λ and β are scaling parameters, and α is a shape parameter.

Now, it is possible to estimate each of the parameters of P (w) by numerically solving the

following system of equations:

θ(1) = 1,
θ′′(winflection) = 0,
θ(wmax) = MaxProd,

(4.2)

where winflection is the value of w corresponding to the inflection point, wmax is the maximum

number of workers, and MaxProd is the productivity at the maximum number of workers.

Note that

P ′′(w) = λ(
e−(w/β)αα(α− 1)(w

β
)α−2

β2
−
−e−(w/β)αα2(w

β
)2α−2

β2
) (4.3)

.

45

Chapter 5

Independent Activities and Their
Properties

5.1 Characterization of Independent Activities

Consider a set of activities, β, which are the possible successors to the already scheduled

set of activities, γ. Let p be the set of activities in β that have common set of successors,

Sp. Then, a pair of activities in p is independent if none of these or other activities in p

have predecessors in β. In other words, such a pair is a bottleneck of sorts in that if they

and their successors are not completed, no progress can be made after the completion of

non-independent activities in β. If no precedence relationships exist in a project then all the

activities are independent.

For example, consider the precedence digraph (activity-on-node representation) shown in

Figure 5.1 for a project with activities 0, 1, 2, 3, 4, 5, and 6. Note that, initially, the only

sequenced activity is the source, 0 and therefore β = (1, 2, 3, 4, 5, 6). Consider p = (1, 2),

which share a common successor, 5. Clearly, 1 and 2 are independent since they have no

46

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

predecessors. Note that activities 3 and 5 share a common successor, 6, but they are not

independent since activity 5, has predecessors 1 and 2, which are also in β. However, as a

sequence of activities is developed, the relationships among them may change. For instance,

if activities 1 and 2 have been sequenced after 0, then activities 3, 4, 5 and 6 become inde-

pendent.

Figure 5.1: A precedence digraph (activity-on-node)

5.2 Scheduling Properties of Independent Activities

Consider a project consisting of n activities all of which are independent and pre-emptable,

and a tuple s = (s1, s2, · · · , sn), where si is the production rate at which activity i is

processed. Let S be the set of all feasible points, s. This set of points may or may not

47

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

be convex. For example, for a project consisting of two independent activities with concave

productivity rates, the set S will form a convex set as shown in Figure 5.2. For a project

consisting of two independent activities with concave productivity rates, the set S will form

a non-convex set as shown in Figure 5.3. However, if both productivity functions are not

concave, then their set of possible productivities will form a non-convex set like the one

shown in Figure 5.4. Note that any point on the boundary of S may be achieved through

allocating all available resources. All other points in S can be generated by the partial

allocation of resources. For the non-convex set of points in Figures 5.3 and 5.4, let conv(S)

be the convex hull of S. It is important to note that any point on these convex hulls may

be obtained by a convex combination of points on the boundary of S.

Recall that xi is the amount of work to be done for activity i, di is the duration of activity i

and tn is the realization time of the project’s sink node. The quantity xi/di is a production

rate of activity i. If all the activities in a project are independent and they are performed in

parallel, it would be best to allocate the available resources such that all the activities start

and finish at the same time, because otherwise, the resource can be reallocated to reduce

the time at which these activities are completed. Therefore, the productivity for a given

activity processed in parallel to all others will be given as xi/tn. The set of production rates

T = {x1/t, x2/t, · · · , xn/t} for different values of t produces a line, through the set S, and

it comprising all the points for which each activity starts and finishes at the same time, t.

This is shown in Figures 5.2, 5.3, and 5.4.

Note that the smallest feasible project duration for the given quantity of the available re-

48

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

source, when all the independent activities have concave productivity functions and are

performed in parallel, is obtained at the intersection of T and the boundary of S as shown

in Figure 5.2.

However, when S is not a convex set, then the boundary of S may have points both inside

and on the boundary of conv(S). If the line T passes through a point that is both on the

boundary of S and conv(S), then activities will be performed in parallel. However, if T

passes through a point that is on the boundary of the conv(S), but outside the boundary of

S, then in order to generate that point, a convex combination of points on the boundary of

S is used. Note that a convex combination of points, in reality, corresponds to a reallocation

of resources at certain times in the project. For example, for the first 40% of the project

duration, one worker maybe working on activity 1 and three workers may be working on

activity 2. Then, for the remaining 60% of the project duration, all 4 workers may be

working on activity 2. This may be how s∗ is achieved in Figure 5.4.

Figure 5.2: Both production functions are con-
cave with pre-emptable activities

Figure 5.3: Both production functions are con-
vex with pre-emptable activities

49

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

Figure 5.4: Mixed convex and concave production functions with pre-emptable activities

For the non-pre-emptable case, reallocation of resources between activities while they are

being processed is forbidden. Consequently, achieving s∗ in Figure 5.4 is impossible. Since

the activities may only be processed in series or in parallel at invariable resource levels,

the production rate points in S and the convex combinations of points on the boundary

of S correspond to serial relationships between activities. For example, in a project with

3 independent events, if 1 and 2 are to be processed in series and 3 is to be processed in

parallel to 1 and 2, the production rate point achieved would be some convex combination

of the points (s1, 0, s3) and (0, s2, s3) where s3 is constant. With these restrictions imposed

by the non-pre-emptability constraint, the set of possible combinations of production rates,

including those achieved using convex combinations of points, is reduced. For example,

Figure 5.5 depicts the non-pre-emptable case of Figure 5.4. Area 1 represents the points

found in the set S. Area 2 is the unshaded area beneath the thick dotted line and not in

S, and can be found by using a convex combination of points corresponding to processing

activities 1 and 2 in series. Area 3 is the unshaded area between the dotted lines and

50

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

represents the points that may be achieved in the pre-emptable case, but not in the non-pre-

emptable case.

Figure 5.5: Mixed convex and concave production functions with non-pre-emptable activities

Note that for certain sets of independent activities, the set of possible production rate com-

binations that may be achieved are identical. This is the case in Figure 5.2 and in Figure

5.3.

We may now state the following remarks. Consider the following notation.

θi(wi) = Production rate of activity i with wi workers
I = Setofindependentactivities

S(W) = Set of feasible production rates for activities in A for a given W (=
{(s1, s2, · · · , sn) : s1 = θ1(w1), s2 = θ2(w2), · · · , sn = θn(wn);∑

∀iwi = W} where|I| = n)
T = “Equal time line”, line whose intersection with the boundary of

conv(S) is the optimal production rate point, s∗

= {x1/t, x2/t, · · · , xn/t}
xi = amount of work in activity i

Remark 1. If an activity requires no work, this activity can be eliminated from consideration.

Remark 2. Let wother be the resources available to allocate to activities 1 and 2 with W
as the maximum resources available for all the activities. Thus, 0 ≤ wother ≤ W . The

51

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

boundary of the of the projection of S onto the s1, s2 plane is defined such that for a given
s1, s2 = θ2(wother − θ−1

1 (s1)), where θ−1(s1) is the number of workers required to process
activity 1 at production rate s1.

Remark 3. If the point sparallel is in S, then sparallel is achieved by processing all the activities
in parallel. If sparallel does not fall in S, but is generated by a convex combination of points
on the boundary of S, then a pair of activities whose production rates are not 0 in any of
the points in the convex combination are processed in parallel.

Remark 4. If the point sseries is generated by using the convex combination sseries = λs1 +
(1 − λ)s2, where s1 = (s1, 0, s3, · · · , sn) and s2 = (0, s2, s3, · · · , sn), then sseries is achieved
by processing activities 1 and 2 in series (activity 1 will be processed for λ × 100% of the
duration and activity 2 will take the rest of the time). Note that additional activities may
be processed in series with activities 1 and 2 and so additional terms maybe needed in the
convex combination which generates sseries.

Remark 5. By Weglarz [52] we know that s∗ is found at the intersection of T and conv(S).

Weglarz [51] has shown that if all the activities in a network of independent activities

have convex(concave) productivity functions, then all the activities will be performed in

series(parallel) in an optimum solution. We extend this result and show that in a network of

independent activities, if a pair of activities has convex(concave) productivity curves, then

that pair of activities will be performed in series(parallel) irrespective of the other activities.

Proposition 1. Let h : R → R be convex and non-decreasing, g : R → R be convex and
non-increasing, and C be a constant scalar. Then, f(x) = g(C − h−1(x)) is convex.

Proof. A graph of h is shown in Figure 5.6. Note that by rotating it 90◦ clockwise, and then,
flipping it vertically so that the axis labels are switched, we get the inverse of h, h−1, which
is concave. Therefore, −h−1 is convex. Since C is constant, and hence, has no effect on the
shape of the function, f(x) = g(C − h−1(x)) must be convex since f(x) is a convex function
of a convex function (Bazaraa et al. [3]).

Proposition 2. If a set of independent activities, I = {1, 2, · · · , n}, contains two activities,
1 and 2, whose productivity functions, θ1(w1) and θ2(w2), are convex, then there exists a
makespan minimizing resource allocation in which activities 1 and 2 are performed in series.

Proof. (1) By Remark 1, an optimum production rate combination, s∗, will have all produc-
tion rates greater than zero. (2) By Remark 2, the boundary of the of the projection of S

52

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

Figure 5.6: Non-decreasing, convex function, h(x)

Figure 5.7: Transformation of the non-decreasing convex function, h(x)

onto the s1, s2 plane is defined such that for a given s1, s2 = θ2(wother − θ−1
1 (s1)). If θ1 and

θ2 are convex, then θ2(wother − θ−1
1 (s1)) is convex by Proposition 1. This implies that the

hypograph of θ2(wother − θ−1
1 (s1)), H, is not convex and, moreover, no subset of H, which

includes the boundary points of H, is convex. Consequently, the convex hull of H (conv(H))
must be created from a convex combination of its extreme points. Theses points will be
(θ1(wother), 0) and (0, θ2(wother)). (3) Consequently, since H is the projection of S onto the
s1, s2 plane, the conv(S) must be created by using a convex combination of points including
(θ1(wother), 0, s3, ..., sn) and (0, θ2(wother), s3, ..., sn). (4) By Remark 5, we know that s∗ is
found at the intersection of T and conv(S), and so s∗ must be generated by the points given
in (3). By Remark 4, a convex combination including these points corresponds to processing
activities 1 and 2 in series.

53

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

Figure 5.8: Hypograph of s2

Likewise, if a pair of activities have concave productivity functions, they will be processed

in parallel. We formally state and prove the result. But first, we show the following result.

Proposition 3. Let h : R → R be concave and non-decreasing, g : R → R be concave and
non-increasing, and C be a constant scalar. Then, f(x) = g(C − h−1(x)) is concave.

Proof. A graph of h is shown in Figure 5.9. Note that by rotating it 90◦ clockwise, and
then, flipping it vertically so that the axis labels are switched we get the inverse of h, h−1,
which is convex. Therefore, −h−1 is concave. Since C is constant, and hence, has no effect
on the shape of the function, f(x) = g(C − h−1(x)) must be concave since f(x) is a concave
function of a concave function (Bazaraa et al. [3]).

Figure 5.9: Non-decreasing, concave function, h(x)

54

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

Figure 5.10: Transformation of the non-decreasing concave function, h(x)

Proposition 4. If a set of independent activities, I = {1, 2, · · · , n}, contains two activities,
1 and 2, whose productivity functions, θ1(w1) and θ2(w2), are concave, then there exists a
makespan minimizing resource allocation in which activities 1 and 2 are performed in parallel.

Proof. (1) By Remark 1, an optimum production rate combination, s∗, will have all pro-
duction rates greater than zero. (2) By Remark 2, the boundary of the of the projection
of S onto the s1, s2 plane is defined such that for a given s1, s2 = θ2(wother − θ−1

1 (s1)). If
θ1 and θ2 are concave, then θ2(wother − θ−1

1 (s1)) is concave by Proposition 3. This implies
that the hypograph of θ2(wother − θ−1

1 (s1)), H, is convex. (3) Consequently, conv(H) is in
the boundary of H, which is defined by the points (θ1(w1), θ2(w2)), where w1 +w2 = wother.
Since H is the projection of S onto the s1, s2 plane, the conv(S) includes points of the form
(θ1(w1), θ2(w2), s3, ..., sn). (4) By Remark 5, we know that s∗ is found at the intersection of
T and conv(S), and so s∗ must be generated by the points given in (3). By Remark 3, these
points correspond to processing activities 1 and 2 in parallel.

55

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

Figure 5.11: Hypograph of s2

5.3 Exploitation of Scheduling Properties of Indepen-

dent Activities

For some partial sequence of the activities, γ, of a project, consider the set of activities,

β, that have not been sequenced. Based on the above results, the optimal sequence among

certain pairs of activities in β may be known a priori. Consequently, this information limits

how activities may be sequenced after γ. Consider the precedence digraph shown in Figure

5.12. The activities which are circled (activities 1 and 2) are independent activities. Based

on the results presented in the previous section, suppose activities 1 and 2 will be performed

in series in the optimal sequence. This may be accomplished by allowing only activity 1 or

activity 2 to be sequenced after activity 0, and then, forcing a serial relationship between

them in which the activities are performed back-to-back. An example sequence illustrating

this is shown in Figure 5.13.

It may be noted that in order for activities 1 and 2 to have a serial relationship, they do

56

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

Figure 5.12: A project digraph with different forms of productivity functions

Figure 5.13: A possible sequence in which activities 1 and 2 are processed in series

not need to be processed consecutively. If activities 1 and 2 are processed in series, but

not consecutively, then they have serial relationships with the activities processed between

them. Since the duration of a project is not affected by the order of activities with serial

relationships, then there exists an equivalent sequence in which activities 1 and 2 are pro-

cessed non-consecutively to that in which they are processed consecutively. Note that the

sequence depicted in Figure 5.13 is equivalent to the sequence depicted in 5.14.

Consider again the precedence digraph shown in Figure 5.12, however, activities 1 and 2

have concave productivity functions. In this case, if we process activities 1 and 2 in parallel

immediately after activity 0, we get a sequence that is shown in Figure 5.15.

57

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

Figure 5.14: A sequence equivalent to Figure 5.13 where activities 1 and 2 are processed in
series but not consecutively

Figure 5.15: Possible sequence in which activities 1 and 2 are processed in parallel

It may be noted that in order for activities 1 and 2 to have a parallel relationship, they do not

both need to be processed immediately after activity 0. Such a sequence only differs from the

sequence in which activities 1 and 2 are processed immediately after 0 by the order in which

activities 1 and 2 are processed with respect to the activities they have serial relationships

with. Since the duration of a project is not affected by their relative order with activities

having serial relationships, the two types of sequences are equivalent. Note that the sequence

depicted in Figure 5.15 is equivalent to the sequence depicted in 5.16.

58

Daniel W. Steeneck Chapter 5. Independent Activities and Their Properties

Figure 5.16: A sequence that is equivalent to that in Figure 5.15

59

Chapter 6

Solution Algorithm

In general, there are many possible sequences in which the activities of a project may be

executed. The following method can be used to find these possible sequences.

Enumeration of Sequences

In order to determine an optimal sequence in which to process the activities of a project,

it is essential to enumerate explicitly or implicitly all possible sequences. We present a tree

search procedure to do that. Our aim is to exploit the properties developed in Chapter 5,

and other properties, so that the size of the search tree is as small as possible.

Search Tree

This search tree will generate all possible sequences if the procedure is fully executed and

to completion. A node of this tree consists of a partial sequence, that is, an updated acces-

sibility matrix, Acurrent, in which a set of activities, γ, has been sequenced, and the set of

activities, ξ, from which flow assignments are to be made. For instance, a node is shown

60

Daniel W. Steeneck Chapter 6. Solution Algorithm

below in which the activity that is already scheduled (but not yet completed) is 0, and the

arrow points to the activity in ξ. The node depicted in Figure 6.1 is associated with an

project consisting of three independent activities.

Figure 6.1: An example node

If this node does not represent a full sequence (for a full sequence, the only possible next

activity in the sequence is the last activity), then one or more branches, as the case may

be, are created from the node. These branches create new nodes based on the next possible

activities that are accessible from the current node. These next possible activities are all

the activities which may be performed now that their predecessors have been completed.

For example, from the current node shown in Figure 6.2, the possible branches are: 0→ 1,

0→ 2, 0→ 3, 0→ {1, 2}, 0→ {1, 3}, 0→ {2, 3}, 0→ {1,2, 3} as depicted in Figure 6.2.

However, if the set of the next possible activities contains pairs of independent activities

whose productivity functions are all either convex or concave, we can reduce the number of

possible branches. In case that activities 1 and 2 are independent with convex productivity

functions, a flow must not go to both 1 and 2 and, consequently, branches 0 → {1, 2} and

61

Daniel W. Steeneck Chapter 6. Solution Algorithm

Figure 6.2: Possible branching from the initial partial sequence {0}

0→ {1,2, 3} are fathomed.

It is important to pass to the next node a list of the old independent activities with a serial

relationship to enable enforcement of serial relationships between the independent activities

having convex productivity functions.

Likewise, if the independent activities, 1 and 2, have concave productivity functions, then we

eliminate any branches that do not contain flows to both activities 1 and 2 and, consequently,

all branches except 0→ {1, 2} and 0→ {1,2, 3} are fathomed. No information about these

activities needs to be passed to the next node in this case.

Suppose we pick the 0 → 1 branch. We must modify Acurrent to reflect two facts. First,

activity 1 is no longer accessible from any other activity than activity 0. Second, activity

0 may not access any other activities other than activity 1. In general, we must modify

Acurrent to reflect that the newly assigned activities are only accessible from the activities

they follow, and that, the newly assigned activities are the only activities accessible to the

activities they follow. Figure 6.3 shows how Acurrent is modified.

62

Daniel W. Steeneck Chapter 6. Solution Algorithm

Figure 6.3: Node modification for partial sequence {0, 1}

Each branch of each node is traversed in this manner, and the branching process is repeated

for each new node. If the only branching possible from a node is the last activity, then the

node is a full sequence and is recorded as such.

Note that in the tree search procedure, many partial sequences may be generated that are

identical. For instance, a partial sequence 3→ 1 is the same as 1→ 3. Therefore, if partial

sequence 1 → 3 exists in a previously found sequence, then any sequence containing 3 → 1

is equivalent to that sequence, and hence, should be avoided.

Also, if there is more than one activity in ξ, not all the activities in ξ must have an activity

sequenced after them for each branch. For a branch, the activities in ξ which do not have

resource flows out of them will be included in the ξ of the next node associated with that

branch. For example, as depicted in Figure 6.4, if we choose the branching 0→ {1, 3} at the

initial node, {0}, then our new ξ would contain activities {1, 3}. It is feasible to sequence 2

after activity 1, while no activities are sequenced after 3 for this node. In this newest node,

not only is activity 2 in ξ, but, activity 3 continues to be in ξ.

63

Daniel W. Steeneck Chapter 6. Solution Algorithm

Figure 6.4: Nodes {0}, {1, 3} and {0}, {1, 3}, {2}

All the features of the search tree are illustrated in Figures 6.5 and 6.6 using a simple

example. The matrix at each node is the modified accessibility matrix. The arrows pointing

to particular rows of the accessibility matrix at each node represent ξ. The bold 1’s in the

accessibility matrix at each node indicate the accessible flows. The label, in the middle to

end of the arc, shows the resource flow. The tree should be read from left to right following

each branch to its leaf.

64

Daniel W. Steeneck Chapter 6. Solution Algorithm

F
ig

u
re

6.
5:

S
ea

rc
h

tr
ee

65

Daniel W. Steeneck Chapter 6. Solution Algorithm

F
ig

u
re

6.
6:

S
ea

rc
h

tr
ee

66

Daniel W. Steeneck Chapter 6. Solution Algorithm

6.1 Determination of Minimum Makespan of a Sequence

Once a feasible sequence is determined, it is necessary to determine the allocation of available

resources to its activities so that the makespan is minimized. We do this by solving model

PSPPF’. Note that this is a nonlinear program since the constraint set (3.3) is nonlinear, and

we use an available software for its solution. The mathematical model for the reduced PSPPF

is presented in Section 3.3. We use an Augmented Lagrangian Penalty Function method

developed by M. Asghar Bhatti using Mathematica for the solution of model PSPPF’.

An Illustrative Example

Consider the precedence digraph depicted in Figure 6.7 and a possible sequence for this

precedence shown in Figure 6.8.

Figure 6.7: A precedence digraph

Table 6.1 gives the duration functions for each activity of the project.

Model PSPPF’ is developed for the sequence in consideration. For instance, for one of the

67

Daniel W. Steeneck Chapter 6. Solution Algorithm

Figure 6.8: A sequence of the network in Figure 6.7

Table 6.1: Table of Duration Functions

Activity Function

1 0

2 67.2229
(

1− e−0.0149876w1.47539
1

)
3 13.0783

(
1− e−0.0795438w1.80227

2

)
4 3208.92

(
1− e−0.000791346w0.858637

3

)
5 0

sequences, we have the following constraints:

w0,1 = 5
−w0,1 + w1,2 + w2,3 = 0
−w1,2 + w2,4 = 0
−w1,3 + w3,4 = 0
w2,4 + w3,4 = 5
−t0 + t3 ≥ 0.0148759

1−e−0.0149876w1.47539
1,2

−t1 + t2 ≥ 0.0764625

1−e−0.0795438w1.80227
2,3

−t1 + t3 ≥ 0.000311631

1−e−0.000791346w0.858637
2,4

−t2 + t4 ≥ 0
−t3 + t4 ≥ 0
t0 = 0
wi,j ≥ 0 ∀(i, j) ∈ SEQ

(6.1)

For this project, there are 4 possible sequences. After solving model PSPPF’ for all four se-

quences, the objective values are as follows: (1):0.299937, (2):0.29931,(3):0.343879 ,(4):0.344739.

The sequence corresponding to constraints (6.1) gives the least makespan value, and, is

68

Daniel W. Steeneck Chapter 6. Solution Algorithm

therefore, the optimal sequence. The flow of resource for this sequence is as follows: {w0,1 =

4.99999, w1,2 = 2.76479, w1,3 = 2.2352, w2,4 = 2.7648, and w3,4 = 2.2352}. The optimal

sequence and the flows are depicted in Figure 6.9.

Figure 6.9: Solution to the problem

6.2 Solution Algorithm

We can now summarize the proposed method for solving the problem defined and modeled

in Chapter 3. It consists of the following main steps:

1. Enumerate all possible activity sequences. The tree search algorithm for finding

all possible activity sequences was described in section 6. This uses as input the reduced

project network developed above.

2. Find optimal resource allocations. We use the reduced model PSPPF to determine

optimal allocation of resources to activities for each sequence developed in step 1. The

model is soved using a nonlinear program.

3. Use the solution with the smallest project duration. There may be one or

69

Daniel W. Steeneck Chapter 6. Solution Algorithm

more sequences that give the best solution, and several near-optimal solutions. Based

on expert knowledge of the underlying process, the “best” sequence is selected.

6.3 Some Illustrative Examples

Example 1. Consider a project with the precedence digraph as shown in Figure 6.10 and
productivity functions as shown in Table 6.2.

Figure 6.10: Precedence digraph for Example 1

Table 6.2: Table of productivity functions for the project in Figure 6.10

Activity Function

0 0

1 13
(

1− e−0.08w1.8
1

)
2 67

(
1− e−0.015w1.5

1

)
3 3209

(
1− e−0.0008w0.89

3

)
4 68

(
1− e−0.015w1.5

1

)
6 0

70

Daniel W. Steeneck Chapter 6. Solution Algorithm

After implementing the sequence enumeration algorithm without using the results developed
in Chapter 5, we find 16 different sequences. In this implementation, some partial sequences
that result in identical solutions are not deleted from these sequences.

After solving for the minimum makespan for each sequence, it is found that the optimal
solution is as follows: w0,1 = 2.7504, w0,3 = 2.2496, w1,4 = 2.7504, w2,5 = 5, w3,4 = 2.2496,
w4,2 = 5, t0 = 0 ,t1 = 0.196609, t2 = 0.395302, t3 = 0.196557, t4 = 0.295179, t5 = 0.395425
with a project duration of 0.395425. Figure 6.11 presents the optimal solution obtained.

Figure 6.11: Project solution for Example 1

Note that activities 2 and 4 are processed in series. However, using the search tree exploiting
properties developed in Chapter 5, it could be determined a priori that activities 1 and 2 are
independent and they have convex production functions, and therefore, should be processed
in series in an optimal solution. If this were applied, the number of sequences would be 8,
which amounts to a reduction of 50%. However, as expected, the optimal solution obtained
for this digraph would be the same as before.

Example 2. Consider a project with 4 independent activities and their productivity func-
tions as shown in Table 6.3.

By implementing the sequence enumeration algorithm with out using the results developed
in Chapter 5, we find 208 different sequences. In this implementation, some partial sequences
that result in identical solutions are not deleted from these sequences.

After solving for the minimum makespan for each sequence, it is found that the optimal
solution is as follows: w0,1 = 4, w0,3 = 1, w1,4 = 4, w2,5 = 4, w3,5 = 1, w4,2 = 4, t0 = 0,

71

Daniel W. Steeneck Chapter 6. Solution Algorithm

Table 6.3: Table of productivity functions for the project with 6 independent activities

Activity Function

0 0

1 68
(

1− e−0.015w1.5
1

)
2 67

(
1− e−0.015w1.5

1

)
3 3209

(
1− e−0.0008w0.89

3

)
4 13

(
1− e−0.08w1.8

1

)
6 0

t1 = 0.134121, t2 = 0.393779, t3 = 0.393779, t4 = 0.257631, t5 = 0.393953 with a project
duration of 0.393953. Figure 6.12 presents the optimal solution obtained.

Figure 6.12: Project solution for Example 2

Note that activities 2 and 4 are processed in series. However, using the search tree exploiting
properties developed in Chapter 5, it could be determined a priori that activities 1 and 2 are
independent and they have convex production functions, and therefore, should be processed
in series in an optimal solution. If this were applied the number of sequences is 128, which
amounts to a reduction of 48.5%. However, as expected, the optimal solution obtained for
this digraph is the same as before.

72

Chapter 7

Results and Conclusions

7.1 Testing Methodology

The solution methodology is developed using Mathematica and the test runs were made on

a computer (Dell Precision 690) with 3 GHz Pentium Xeon processors and 3 GB of RAM

running Windows XP. All possible sequences are generated for each problem; however, the

resource allocations to each of the sequences is not found. Since finding the optimal resource

allocation requires the solution of a nonlinear linear program, and solving each nonlinear

program requires about the same amount of time for a given number of activities, the overall

computational time can be easily estimated from the number of sequences developed by the

search tree.

7.2 Rationale For Choice of Test Cases

There are three important characteristics of a project that determine the computational

effort required to determine the optimal solution. The first characteristic is the number of

73

Daniel W. Steeneck Chapter 7. Results and Conclusions

activities in the project or the project size. The second is the project structure or how much

“parallelism” the precedence structure exhibits. The third characteristic is the distribution

of the various types of productivity functions for the activities of the project.

The number of activities chosen for the test cases range between 3 and 8. Except for very

special project structures, the number of possible sequences becomes large enough to make

it difficult to calculate all of them in a reasonable amount of time. This maybe due to the

fact that the algorithm is developed in Mathematica, which is an interpretive programming

language, rather than using a language like C, which would make it more efficient.

The “parallelism” of a project is a soft concept, but the idea is that the parallelism of a

project increases with the number of activities which may be performed in parallel. The two

extreme cases of parallelism are a project with a serial precedence digraph and a project

with no precedence relationship whatsoever. Projects with precedence digraphs with low

parallelism are easy to handle, even for projects with large numbers of activities. Therefore,

test cases with “medium” and “high” amounts of parallelism are chosen.

For each combination of project size and project structure, a number of different activity

duration function distributions are possible. The distributions for the test cases are chosen

so that they impact the number of sequences found. This is important since there are some

activity duration functions that will not impact the number of sequences found by the search

tree. In general, these productivity functions can be thought of as being mapped to activities

located somewhere between the front and the back of the project. If an activity is located

at the front of the project, its immediate precedence requirement is that project is started.

74

Daniel W. Steeneck Chapter 7. Results and Conclusions

If an activity is located at the back of the project, it is an immediate predecessor to the sink

of the project

7.3 Effects of Parallelism

To illustrate the effect of the amount of parallelism in a project’s precedence digraph, consider

the projects in Table 7.1. All of these project have 6 activities, and no special productivity

function distributions. Their respective number of sequences generated, and time required to

enumerate the search tree are also shown. Please refer to Appendix A to find the precedence

digraphs corresponding to the projects listed in Table7.1. A plot of the number of sequences

generated and computational time required to search the tree are presented in Figure 7.1.

We can make the following observations about the precedence digraphs of 6A, 6B2, and

Table 7.1: Projects with six activities and varying parallelism

Project Num of Parallelism Prod Func Num of Search Tree
Activities Dist Sequences Time

6A 6 Low None 188 0.375
6B2 6 Medium None 1685 3.171
6B 6 High None 24095 45.687
6D 6 Ind None 159524 1175.81

6B and 6D, respectively. They each have a different number of “rungs”. Activities with

predecessors and successors to each other, excluding the source and sink, are a part of the

same rung. For instance, project 6B has 4 rungs: {1, 2, 6}, {3}, {4}, and {5}. Since all

of these rungs have, roughly, the same amount of parallelism within themselves, they each

contribute fairly evenly to the parallelism of overall project. So, the parallelism of a project

75

Daniel W. Steeneck Chapter 7. Results and Conclusions

Figure 7.1: Computational complexity for projects with six activities and various levels of
parallelism

depends, in a large part, on the number of rungs between the source and sink of a project’s

precedence digraph and, less so, on the number of rungs within a rung, and so forth. For

example, consider the projects in Table 7.2 in which all projects have 2 rungs, but the

parallelism in one of the rungs is increasing. A plot of the number of sequences generated

and the computational time required to search the tree as a function of the number of rungs

within rungs is shown in Figure 7.2. Please refer to Appendix A for the precedence digraphs

of the projects in Table 7.2. Note that computational complexity does not increase as

Table 7.2: Projects with six activities and varying numbers of sub-rungs within rungs

Project Num of Rungs within Prod Func Num of Search Tree
Activities a Rung Dist Sequences Time

6C 6 1 None 24095 45.687
6B3 6 2 None 188 0.375
6B4 6 3 None 1685 3.171
6B5 6 4 None 24095 45.687

quickly in this case.

76

Daniel W. Steeneck Chapter 7. Results and Conclusions

Figure 7.2: Computational complexity for projects with 2 rungs and various numbers of
sub-rungs within the top rung.

However, in many cases, with more parallelism, the opportunities for creating independent

events increases giving rise to an opportunity for reducing the problem’s computational

complexity. Consider the projects presented in Table 7.1 with all activities having concave

productivity functions. A plot of the number of sequences generated and the computational

time required to search the tree is shown in Figure 7.3.

Note that as the parallelism increases, the computational complexity of the problem does not

increase quite as quickly as in the previous case. In fact, at very high levels of parallelism,

the computational complexity decreases.

77

Daniel W. Steeneck Chapter 7. Results and Conclusions

Figure 7.3: Computational complexity for projects with six activities and various levels of
parallelism

7.4 Effects of Productivity Function Distribution

Consider a project with six independent events. Variations on this project may include

productivity function distributions in which either 0 or 1 activities have convex or concave

productivity functions (i.e., no exploitable relationships) or between 2 and 6 activities have

concave or convex productivity functions. The projects are given in Table 7.3 Another vari-

ation on this project is that there are 2 activities with concave and 2 activities with convex

productivity functions. A plot of the number of sequences generated and the computational

time required to search the tree as a function of the distribution of productivity functions is

shown in Figure 7.4. The computational complexity quickly decreases as the number activ-

ities with concave/convex productivity functions increases for projects with all independent

activities. Note that even indices correspond to concave productivity function distributions,

78

Daniel W. Steeneck Chapter 7. Results and Conclusions

Table 7.3: Projects with six independent activities and varying productivity function distri-
butions

Index Project Num of Prod Func Num of Search Tree
Activities Dist Sequences Time

1 6D 6 None 159524 1175.81
2 6D 6 2 Concave 17529 24.25
3 6D 6 2 Convex 81416 349.063
4 6D 6 3 Concave 3792 4.468
5 6D 6 3 Convex 18709 29.781
6 6D 6 4 Concave 517 0.594
7 6D 6 4 Convex 4420 7.375
8 6D 6 5 Concave 32 0.063
9 6D 6 5 Convex 841 2.453
10 6D 6 6 Concave 1 0.031
11 6D 6 6 Convex 1 0.25
12 6D 6 2 Concave/2 Convex 5368 6.469

except for index 12; the odd indices correspond to convex productivity function distributions,

except for index 1. The projects with concave productivity function distributions are con-

sistently computationally less intensive than for the case with convex productivity function

distributions.

However, for activities with more complicated structures, the position, and not just the

number, of these special productivity functions, is important. Consider a project of type

6B (please see Appendix A). Activities 1 and 2 are in the “front”(F) and activities 3, 4, 5

and 6 are in the “back”(F). The projects are given in Table 7.4. A plot of the number of

sequences generated and the computational time required to search the tree as a function of

the distribution of productivity functions is shown in Figure 7.5.

79

Daniel W. Steeneck Chapter 7. Results and Conclusions

Figure 7.4: Computational complexity for projects with six independent activities and vari-
ous productivity function distributions

Note that the easiest projects to develop solutions for have independent activity pairs with

concave/convex productivity functions in the front of project. The pairs in the back do not

have nearly as strong an effect.

7.5 Effects of Project Size

Consider the projects presented in Table 7.5. The number of activities in each of these

projects varies between 5 and 8, however, they all have 3 rungs and all activities have

concave productivity functions. Figure 7.6 depicts the computational effort required for

these problems. It is clear that the effort required to find a solution increases exponentially

with the number of activities for a given level of parallelism.

80

Daniel W. Steeneck Chapter 7. Results and Conclusions

Table 7.4: Project with varying six activities and various productivity function distributions

Index Project Num of Prod Func Num of Search Tree
Activities Dist Sequences Time

1 6D 6 None 24095 45.687
2 6D 6 2 F Concave 7529 9.891
3 6D 6 2 F Convex 6758 9.453
4 6D 6 2 B Concave 19725 35.438
5 6D 6 2 B Convex 20397 36.296
6 6D 6 3 B Concave 15918 27.438
7 6D 6 3 B Convex 15963 28.203
8 6D 6 3 B &6 Concave 11245 19.187
9 6D 6 3 B& 6 6 Convex 8190 19.14
10 6D 6 2 F Convex and 2 B Concave 1365 1.828
11 6D 6 All Convex 1730 2.5
12 6D 6 All Convex 2231 4.547

Table 7.5: Projects with various number of activities

Project Num of Prod Func Num of Search Tree
Activities Dist Sequences Time

5B 5 All Concave 93 0.11
6B2 6 All Concave
7B 7 All Concave 3690 12.063
8B 8 All Concave 18884 1741.9

81

Daniel W. Steeneck Chapter 7. Results and Conclusions

Figure 7.5: Computational complexity for projects with six activities and various produc-
tivity function distributions

In general, increasing the project size without affecting the other parameters will increase

the computational complexity of the problem exponentially.

82

Daniel W. Steeneck Chapter 7. Results and Conclusions

Figure 7.6: Computational complexity for projects with various number of activities

7.6 Conclusions

Our computational experiments show that the proposed solution methodology is most effec-

tive on projects in which there are many pairs of independent activities with concave/convex

productivity functions towards the front of a project’s precedence digraph. However, even

if there is a small number activities in a project with exploitable properties, the decrease in

computational complexity is substantial. Also, due to the nature of the solution methodol-

ogy, very large-size projects with low parallelism are relatively easy to solve. Examples of

relatively easy to solve for digraphs are depicted in Figures 7.7, 7.8,7.9. All activities have

83

Daniel W. Steeneck Chapter 7. Results and Conclusions

concave productivity functions. However, for many projects, our solution methodology

Figure 7.7: Precedence digraph 6A4

may not be satisfactory due to the size and nature of the activities involved. In this case,

heuristics must be developed so that a good quality solution may be found in a reasonable

amount of time. Potential heuristics are discussed in Chapter 8.

84

Daniel W. Steeneck Chapter 7. Results and Conclusions

Figure 7.8: Precedence digraph 8B

Figure 7.9: Precedence digraph 10C

85

Chapter 8

Future Work

8.1 Theoretical Work

Currently, the method developed can be used for projects in which there is only one infinitely

divisible resource. However, additional resource flows may be added to the model along with

their corresponding multi-dimensional time-resource curves. The challenge will be to develop

similar rules for reducing the solution of to the problem.

Also, many projects have other constraints than those pertaining to resources and prece-

dences. These include spatial constraints (e.g. two activities may not be performed in

parallel since they must be performed in the same physical locate) and tooling constraints

(e.g. two activities may not be performed in parallel since there is only one of a needed type

of tool), among others. In reality, these are similar to resource constraints, and one may

consider modeling them as such.

Another limiting characteristic of this model is that these activities cannot be pre-empted.

Although this is realistic for many projects, it would be a more general model if this constraint

86

Daniel W. Steeneck Chapter 8. Future Work

were relaxed. This may be difficult to do with the flow based nature of the model. However,

as presented in the literature review (see chapter 2), other researchers who have considered

jobs to be pre-emptable have modeled the problem with discrete time by breaking the project

down into time periods. Since the addition of time periods will add another integer variable

to the problem, it may be best to avoid incorporating time period in this model.

Additionally, it would be beneficial to consider the cost minimization problem. Additional

information on activity cost curves and/or resource usage rate cost would be needed to solve

this problem.

8.2 Heuristic Development

A network reduction technique can be used at each node (including the initial node) of the

search tree presented in Section 6, in which independent activities may be grouped into a

“super-activity”. For example, consider the precedence digraph in Figure 8.1. The circled

nodes represent independent activities with both convex production rate functions. The

other activities have productions functions which are neither concave nor convex. Based on

the results presented in the previous section, activities 1 and 2 will be performed in series in

an optimal sequence. As a part of the heuristic, activities 1 and 2 can be replaced by a super

activity, say 1 − 2, which is equivalent to 1 and 2 in series. The transformed precedence

digraph for the project is shown in Figure 8.2.

After implementing this sequence enumeration algorithm (see Chapter 6), we find 390 dif-

ferent sequences for this network shown in Figure 8.1. In this preliminary implementation,

87

Daniel W. Steeneck Chapter 8. Future Work

Figure 8.1: A project digraph with different forms of productivity functions

Figure 8.2: Transformed project digraph

some partial sequences that result in identical solutions are not deleted from these sequences.

The number of sequences for the network in Figure 8.2 is 42, which amounts to a reduction

of 89%. These heuristics can be very effective for the solution of real-life problems as it

would generate a good and feasible solution very quickly.

Another potential heuristic is to consider activities with productivity functions which are

“more convex/concave”, i.e. their inflection point is shifted far to the right/left, to be

convex/concave. This strategy may be used in conjunction with the network reduction

heuristic just presented.

88

Daniel W. Steeneck Chapter 8. Future Work

8.3 Software Development

As noted earlier, Mathematica is not the ideal language for the implementation of this

solution methodology. It would be beneficial to rewrite the algorithm in C, or C++, which

are lower level languages. Additional functions could be written to develop accessibility

matrices from the precedence digraph. For ease of use, a GUI could be developed, which

would enable ease of use, efficient data transfer, and provision of several options for the user.

89

Bibliography

[1] J. Alcaraz, C. Maroto, and R. Ruiz. Solving the multi-mode resource-constrained project
scheduling problem with genetic algorithms. Journal of the Operational Research Soci-
ety, 54(6):614–626, 2003.

[2] E. Balas and Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research
Group. Project scheduling with resource constraints., 1968.

[3] M.S. Bazaraa, H.D. Sherali, and Shetty C.M. Nonlinear Programming Theory and
Algorithms. Wiley, 2 edition, 1993.

[4] C.E. Bell and K. Park. Solving resource-constrained project scheduling problems by A*
search. Naval Research Logistics, 37(1), 1990.

[5] E.B. Berman. Resource allocation in a pert network under continuous activity time-cost
functions. Management Science, 10(4):734–745, July 1964.

[6] E.H. Bowman. The schedule-sequencing problem. Operations Research, pages 621–624,
1959.

[7] J. Carlier and B. Latapie. Un méthode arborescente pour résoudre les problèmes cu-
mulatifs. RAIRO. Recherche opérationnelle, 25(3):311–340, 1991.

[8] J.A. Carruthers and A. Battersby. Advances in critical path methods. OR, pages 359–
380, 1966.

[9] C. Chiang, Y. Huang, and W. Wang. Ant colony optimization with parameter adapta-
tion for multi-mode resource-constrained project scheduling. Journal of Intelligent and
Fuzzy Systems, 19(4-5):345–358, 2008.

[10] N. Christofides, R. Alvarez-Valdes, and J.M. Tamarit. Project scheduling with resource
constraints: A branch and bound approach. European Journal of Operational Research,
29(3):262–273, 1987.

[11] E.W. Davis. An exact alogorithm for the multiple constrained-resouce project scheduling
problem. PhD thesis, Department of Administrative Sciences, Yale Universtiy, 1968.

90

Daniel W. Steeneck Bibliography

[12] E.W. Davis and G.E. Heidorn. An algorithm for optimal solutions in resource-
constrained project sscheduling with multiple resource constraints. Management Sci-
ence, 17:803–816, 1971.

[13] P. De, E.J. Dunne, J.B. Ghosh, and C.E. Wells. Complexity of the discrete time-cost
tradeoff problem for project networks. Operations Research, pages 302–306, 1997.

[14] P. De, E. James Dunne, J.B. Ghosh, and C.E. Wells. The discrete time-cost tradeoff
problem revisited. European Journal of Operational Research, 81(2):225–238, 1995.

[15] B. De Reyck, E. Demeulemeester, and W. Herroelen. Local search methods for the
discrete time/resource trade-off problem in project networks. Naval Research Logistics,
45(6), 1998.

[16] B. de Reyck and W. Herroelen. Multi-mode resouce-constrained project scheduling
problem with generalized precedence relations. European Journal of Operational Re-
search, 119(2):538–56, December 1999.

[17] R.F. Decrko and J.E. Hebert. Resource constrained project crashing. Omega Interna-
tional Journal of Management Science, 17(1):69–79, 1989.

[18] R.F. Decrko and J.E. Hebert. Modeling diminishing returns in project resource planning.
Computers and Industrial Engineering, 44:19–33, 2002.

[19] R.F. Decrko, J.E. Hebert, W.A. Verdini, and S. Venkateshwar P.H. Grimsrud. Nonlinear
time-cost tradeoff models in project management. Computers and Industrial Engineer-
ing, 28(2):219–229, 1995.

[20] E. Demeulemeester, B. De Reyck, and W. Herroelen. The discrete time/resource trade-
off problem in project networks: a branch-and-bound approach. IIE transactions,
32(11):1059–1069, 2000.

[21] E. Demeulemeester and W. Herroelen. A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem. Management Science, pages 1803–
1818, 1992.

[22] S.E. Elmaghraby. Activity Networks. New York: Wiley, 1977.

[23] S.E. Elmaghraby. Resource allocation via dynamic programming in activity networks.
European Journal of Operational Research, 64(2):199–215, 1993.

[24] S.E. Elmaghraby and J. Kamburowski. The analysis of activity networks under gen-
eralized precedence relations (gprs). Management Science, 38(9):1245–63, September
1992.

91

Daniel W. Steeneck Bibliography

[25] S.S. Erenguc, T. Ahn, and D.G. Conway. The resource constrained project scheduling
problem with multiple crashable modes: An exact solution method. Naval Research
Logistics, 48:107–127, 2001.

[26] R.T. Harvey and J.H. Patterson. An implicit enumeration algorithm for the time/cost
tradeoff problem in project network analysis. Foundations of Control Engineering,
4(2):107–117, 1979.

[27] N.A.J Hastings. On resource allocation in project networks. Operational Research
Quarterly, pages 217–221, 1972.

[28] B. Jarboui, N. Damak, P. Siarry, and A. Rebai. A combinatorial particle swarm opti-
mization for solving multi-mode resource-constrained project scheduling problems. Ap-
plied Mathematics and Computation, 195(1):299–308, 2008.

[29] T.J.R. Johnson. An algorithm for the resource-constrained project scheduling problem.
PhD thesis, School of Management, 1967.

[30] J. Józefowska, M. Mika, R. Różycki, G. Waligóra, and J. Weglarz. Simulated annealing
for multi-mode resource-constrained project scheduling. Annals of Operations Research,
102(1):137–155, 2001.

[31] J.E. Kelley Jr. and M.R. Walker. Critical path planning and scheduling. In Eastern
Joint Computing Conference 16, pages 160–172, 1959.

[32] R.C. Leachman, A. Dincerler, and S. Kim. Resource-constrained scheduling of projects
with variable-intensity activities. IIE Transactions, 22(1), March 1990.

[33] J. Levy and J. Wiest. A Management Guide to PERT/CPM. Prentice-Hall, Cliffs, N.J.,
2 edition, 1977.

[34] M. Liu, X. Cheng, M. Ge, S. An, and H. Li. Study on multi-mode resource-constrained
project scheduling problem based on particle swarm optimization. Nongye Jixie Xue-
bao/Transactions of the Chinese Society of Agricultural Machinery, 39(2):134–138,
February 2008.

[35] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An exact algorithm for the
resource-constrained project scheduling problem based on a new mathematical formu-
lation. Management Science, pages 714–729, 1998.

[36] M. Mori and C.C. Tseng. A genetic algorithm for multi-mode resource constrained
project scheduling problem. European Journal of Operational Research, 100(1):134–
141, 1997.

[37] N. Nudtasomboom and S.U. Randhawa. Resource-constrained project scheduling with
renewable and non-renewable resources and time-resource tradeoffs. Computers and
Industrial Engineering, 32(1):227–242, 1996.

92

Daniel W. Steeneck Bibliography

[38] X. Pan, F. Liu, and L. Jiao. Clonal selection optimization for multi-mode resource
constrained project scheduling problem. Moshi Shibie yu Rengong Zhineng/Pattern
Recognition and Artificial Intelligence, 21(3):303–309, June 2008.

[39] D. Panagiotakopoulos. A CPM time-cost computational algorithm for arbitrary activity
cost functions. INFOR, 15(2):183–195, 1977.

[40] J.H. Patterson and W. Huber. A horizon-varying, zero-one approach to project schedul-
ing. Management Science, 20(6):990, February 1974.

[41] A.B. Pritsker and L.J. Watters. A zero-one programming approach to scheduling with
limited resources. The RAND Corporation, RM-5561, January 1968.

[42] A.B. Pritsker, L.J. Watters, and P.M. Wolfe. Multiproject scheduling with limited re-
sources: A zero-one programming approach. Management Science, 16(1):93, September
1969.

[43] F.J Radermacher. Scheduling of project networks. Annals of Operations Research,
4(1):227–252, 1985.

[44] M. Ranjbar, B. De Reyck, and F. Kianfar. A hybrid scatter search for the discrete
time/resource trade-off problem in project scheduling. European Journal of Operational
Research, 193(1):35–48, 2007.

[45] M.R. Ranjbar and F. Kianfar. Solving the discrete time/resource trade-off problem
in project scheduling with genetic algorithms. Applied Mathematics and Computation,
191(2):451–456, 2007.

[46] S. Sakellaropoulos and A.P. Chassiakos. Project time-cost analysis under generalised
precedence relations. Advances in Engineering Software, 35:715–25, 2004.

[47] R. Slowinski. Two approaches to problems of resource allocation among project activities
- a comparative study. Journal of Operational Research Society, 31:711–23, 1980.

[48] J.P. Stinson, E.W. Davis, and B.M. Khumawala. Multiple resource–constrained schedul-
ing using branch and bound. IIE Transactions, 10(3):252–259, 1978.

[49] F. B. Talbot. Resource-constrained project scheduling with time-resource tradeoffs: the
non-preemptive case. Management Science, 28(10):1197–1210, 1982.

[50] F.B. Talbot and J.H. Patterson. An efficient integer programming algorithm with net-
work cuts for solving resource-constrained scheduling problems. Management Science,
pages 1163–1174, 1978.

[51] J. Weglarz. Time-optimal control of resource allocation in a complex of operations
framework. IEEE Trans. Systems, Man and Cybernetics, 6:783–788, 1976.

93

Daniel W. Steeneck Bibliography

[52] J. Weglarz. Project scheduling with continuously divisible resources. Management
Science, 27(9):1040–53, September 1981.

[53] Z Wei-cun and K Kai. Ant colony and particle swarm optimization algorithm-based
solution to multi-mode resource-constrained project scheduling problem. Computer
Engineering and Applications, 43(34):213–216, December 2008.

[54] Y. Yu. Hybrid genetic algorithm for multi-mode resource-constrained project scheduling
problems. Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University
(Natural Science Edition), 38(4):736–740, July 2008.

94

Appendix A

Precedence Digraphs Used in Testing

3A, 4B, 5D, 6C, and 7C are all precedence digraphs with independent events.

Figure A.1: 4A

95

Daniel W. Steeneck Appendix A. Precedence Digraphs Used in Testing

Figure A.2: 5A

Figure A.3: 5B

Figure A.4: 5C

96

Daniel W. Steeneck Appendix A. Precedence Digraphs Used in Testing

Figure A.5: 6A

Figure A.6: 6B

97

Daniel W. Steeneck Appendix A. Precedence Digraphs Used in Testing

Figure A.7: 6B2

Figure A.8: 6A2

98

Daniel W. Steeneck Appendix A. Precedence Digraphs Used in Testing

Figure A.9: 6A3

Figure A.10: 6A4

99

Daniel W. Steeneck Appendix A. Precedence Digraphs Used in Testing

Figure A.11: 7A

Figure A.12: 7B

100

Daniel W. Steeneck Appendix A. Precedence Digraphs Used in Testing

Figure A.13: 7B2

Figure A.14: 8B

101

Daniel W. Steeneck Appendix A. Precedence Digraphs Used in Testing

Figure A.15: 9B

Figure A.16: 10B

102

Appendix B

Pseudo and Mathematica Code for
Enumeration Algorithm

B.1 Pseudo Code

B.1.1 Precedence Path Algorithm

Inputs:

• A set of partial paths, paths. This is a jagged array containing all partial precedence

paths.

• An array of immediate predecessors for each activity, Precs. This is a jagged array

with the first entry being the predecessors of the sink, 0, which is defined to be −1.

The ith entry corresponds to activity i.

Outputs:

The precedence paths of a project (i.e. the number of paths from the source to the sink)

103

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

Algorithm:

• Find the number of paths in the partial path, l

• Set a counter, c, to be equal to 0. For each path, or element, of l if the last activity of

that path equals 0, then increase c, by 1.

• For each path,j, in paths, find the position of the last activity in the path, lp2, the

index of the activity in that position, Opnum, and the number of precedences of activity

Opnum, numPrec.

• Nested: For each predecessor, i, of path(j, lp), if the predecessor is −1 (indicating we

are at the source), then append this path to the new set of partial paths, s. Else,

append i to path(j, lp) and append this to the new set of partial path s.

• If the c = l then all partial paths are full paths and we return s. Else, we run this

function again inputing s.

B.1.2 Search Tree

Main Function:

Inputs:

• Set of just previously sequenced activities, R

• Current Accessibility Matrix, Acur

104

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

• Set of activities of which no flows were assigned out of, RowHold

• Set of activities which have been sequenced, Done

• 0/1 variable indicating if the previously sequenced are not serial,BigY

• Set of previously found independent activities, oldIndConv

• An array of immediate predecessors for each activity, Precs. This is a jagged array

with the first entry being the predecessors of the sink, 0, which is defined to be −1.

The ith entry corresponds to activity i

• An array of immediate successors for each activity, Successors. The ith entry corre-

sponds to activity i.

• Set of forbidden serial sequences, Serial

• number of activities, n

• Set presently found sequences, Branches

• Precedence paths for the project, FullPrecs

• 0/1 variable indicating the serial case has been found, SerialDone

Outputs:

All possibly optimal sequences for a project)

Algorithm:

105

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

• If Acur = {0} this indicates that the branch previously traversed is not to be traversed

for some reason. Exit this instance of the Main function to go back to the previous

node and choose another branch.

• Append to R, RowHold

• For each activity in R, find the activities accessible to it. Record these potential next

activities in Y , in which the ith element of Y corresponds to the activities accessible to

the activity of the ith element of R. An activity,j, is accessible to another activity,k,

if j’s precedences have been met and Acur(k, j) == 1.

• If the first element of Y equals the index of the sink, then we will append Acur to

branches in most cases. However, if SerialDone is 1 and BigY = 0, then we would be

repeating a serial sequencing of the activities and so we go back up a level. If it is the

first serial sequencing found, then set ”SerialDone” equal to 1.

• Find the concave and convex independent activities by setting IndConvConc equal to

FindIndAct. IndConv equals the sorted first element of IndConvConc and IndConc

equals the sorted second element of IndConvConc.

• Create an array in which each element is an array of the subsets of each element of Y .

Denote this array as Y subsets.

• Find Y tuples, all the tuples of the elements of Y subsets

• If the length of Y subsets is 1 then, drop the null set from the first element Y subsets

106

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

• If, c1, the number of activities in R complement RowHold is greater than 0, for each

element in R complement RowHold find all subsets of its successors, SubsetsSucCur.

For each element in SubsetsSucCur, remove the element from Ytuples which is the

tuple will all positions empty except the position corresponding to the current element

of R and that will be equal to current subset of SubsetsSucCur.

• If there are more than 1 independent activities or more OldIndConv is greater than

1, then set Y tuples equal to FathomNodes

• Run Main again for each element of Y tuples

”Else” Function:

Inputs:

• Set of just previously sequenced activities, R

• Current Accessibility Matrix, Acur

• A possible branchings from a node, Y tuples

• Set of activities which have been sequenced, Done

• 0/1 variable indicating if the previously sequenced are not serial,BigY

• Set of previously found independent activities, oldIndConv

• An array of immediate predecessors for each activity, Precs. This is a jagged array

107

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

with the first entry being the predecessors of the sink, 0, which is defined to be −1.

The ith entry corresponds to activity i

• An array of immediate successors for each activity, Successors. The ith entry corre-

sponds to activity i.

• Set of forbidden serial sequences, Serial

• number of activities, n

• Precedence paths for the project, FullPrecs

• 0/1 variable indicating the serial case has been found, SerialDone

Outputs:

None

Algorithm:

• If the length of Y tuple is 1 or if the length of the Flattened Y tuple is 1 then BigY = 1

• Check to see if any of flows in Y tuple are null. If so, add the corresponding R to

RowHold.

• Check to see if any of the activities to be flowed to have activities that are already in

progress, i.e. if the any of the predecessors of an activity in Y tuple are also in RowHow

108

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

then we cannot flow to that activity yet. Set Anew = 0 and go to the main function

call.

• Check to see Y tuple is of size 1. If it is, then check to see if an equivalent serial sequence

have been done already. If it has, then set Anew to 0 and go to the main function call.

If not, add this sequence to the Serial array.

• Find Y union, a list of the activities which will be flowed to next.

• Eliminate the null positions from Y tuple and the corresponding elements of R. The

new sets will be called Y tuplemod and Rmod

• Call the Amod function. Store the output in B.

• Set Anew equal to the first element of B.

• Set Done equal to the second element of B.

• Call the main fucntion.

Amod Function:

Inputs:

• Set of just previously sequenced activities, R

• Current Accessibility Matrix, Acur

• A possible branchings from a node, Y tuple

109

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

• List of activities to be flowed to next, Y union

• Set of activities which have been sequenced, Done

• An array of immediate predecessors for each activity, Precs. This is a jagged array

with the first entry being the predecessors of the sink, 0, which is defined to be −1.

The ith entry corresponds to activity i

• An array of immediate successors for each activity, Successors. The ith entry corre-

sponds to activity i.

• Set of forbidden serial sequences, Serial

• number of activities, n

• Set presently found sequences, Branches

• Precedence paths for the project, FullPrecs

• 0/1 variable indicating the serial case has been found, SerialDone

Outputs:

Modified A matrix

Algorithm:

• For each activity with an out flow, look at each activity in the network, j. If the

outgoing activity is not flowing to j, zero that position in Acur.

110

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

• For each position in Y tuple, k, and then for each position in Y tuple, j, for each (k, j)

and i, i = 1, ..., n, do not zero Acur(i, Y tuple(k, j) if i is in R. If i is not in R then

add Y tuple(k, j) to Done.

• Return (Acur, Done)

findPath[path_,Pre_]:=

Module[{p={},s,c,m,lp1,lp2,Opnum,numPrec,z,l,Precs=Pre},

s={};

l=Length[path];

c=0;

For[m=1,m<=l,

lp1=Length[path[[m]]];

If[path[[m]][[lp1]]==0,c++

];

m++

];

For[j=1,j<=l,

lp2=Length[path[[j]]];

Opnum=path[[j]][[lp2]];

numPrec=Length[Precs[[Opnum+1]]];

For[i=1,i<=numPrec,

z=path[[j]];

If[Precs[[Opnum+1]][[i]]==-1,AppendTo[s,z],

AppendTo[z,Precs[[Opnum+1]][[i]]]; AppendTo[s,z]];

i++];

j++];

If[c==l,p=s,findPath[s,Precs]]

]

Else[FromNode_]:=

Module[{Acur=(*A*) FromNode[[3]],Ytuple=FromNode[[2]],

R=FromNode[[1]], Done=FromNode[[4]],B,Yunion,Anew,

c2,c21,c211,c3,c12, FlatYtuple, UnionFlatYtuple,

Ytuplemod,Ytuplemod1,Rmod1,Rmod,RowHold,RowHold1,

LengthYtuple, LengthUnionFlatYtuple,LengthR,

BigY=FromNode[[5]],OldIndConv=FromNode[[6]]},

RowHold={};

LengthR=Length[R];

(*If the entering Tuple of new assignments is null,

111

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

then signal Branching to go back up a level*)

FlatYtuple=Flatten[Ytuple];

If[FlatYtuple=={},Anew={0};Yunion={};Goto["c"]

];

If[Length[Ytuple]||Length[FlatYtuple]>1,

BigY=1

];

(*If a particlur position of a Tuple is null then that

indicates that we are making no flow this round out

of the corresponding previously assigned activity.

We should hold this activity over and treat it as

if it were assigned this round*)

LengthYtuple=Length[Ytuple];

RowHold=Complement[Table[If[Ytuple[[i]]=={},

R[[i]]],{i,LengthYtuple}],{Null}];

(*Check to see if the Tuple has an in progress activity*)

UnionFlatYtuple=Union[FlatYtuple];

LengthUnionFlatYtuple=Length[UnionFlatYtuple];

c12=1;

While[c12<=Length[UnionFlatYtuple],

If[Intersection[Precedences[[UnionFlatYtuple[[c12]]+1]],

RowHold]!={},

Anew={0};Yunion={};Goto["c"]

];

c12++

];

(*Print["Here?4"];*)

(*Print["ForcedMove=",ForcedMove];*)

(*Check To See if the positions in the tuple are identical*)

If[LengthR==1 && LengthUnionFlatYtuple==1,

If[MemberQ[Serial,{R,Ytuple[[1]]}]==False,

AppendTo[Serial,{Ytuple[[1]],R}],

Yunion={}; Anew={0}; Goto["c"]

]

];

(*Compile a list of all activities to be flowed to next*)

Yunion=Ytuple[[1]];

For[j=2, j<= LengthR,j++,

Yunion=Union[Yunion,Ytuple[[j]]]

];

(*If position c3 is null in the Ytuple the we will elimnate it

112

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

from the Ytuple and carry R[[c3]] over as just assigned*)

c3=1;

Ytuplemod={};

Rmod={};

While[c3<= LengthYtuple,

If[Ytuple[[c3]]!={},

AppendTo[Ytuplemod,Ytuple[[c3]]];AppendTo[Rmod,R[[c3]]]

];

c3++

];

(*Print["Here?8"];*)

(*Pause[2];*)

B=Amod[Rmod,Ytuplemod,Yunion, Acur, Done];

(*Print["Here?9"];*)

Anew = B[[1]];

Done=B[[2]];

Label["c"];

Branching[Yunion, Anew,Done, RowHold,

BigY,OldIndConv]

]

Amod[Row_,Combo_,Uni_,A_,Assigned_]:=

Module[{Acur = A,Ytuple=Combo, Yunion=Uni,

R=Row,Done=Assigned,k,Unidentical,LengthYunion,LengthYtuple},

LengthYunion=Length[Yunion];

LengthYtuple=Length[Ytuple];

(*For each activity with an out flow, look at each activity

in the network, j. If the outgoing activity is not following

to j, zero that position in the accessibility matrix*)

For[i=1, i<= Length[R],i++,

For[j = 1, j <= n,j++,

If [Intersection[{j}, Ytuple[[i]]]=={},

Acur[[R[[i]]+1,j]]=0

]

]

];

(*Look at each position in the incoming Ytuple*)

For[k=1,k<= LengthYtuple,k++,

(*Look at each activity in the kth position in

the Ytuple*)

For[j=1,j<= Length[Ytuple[[k]]],j++,

113

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

(*Look at each activity in the project*)

For[i =1,i<= n, i++,

(*If activity i is not in NoKill, then zero that

position out in the accessibility matrix*)

If[Intersection[{i-1},R(*NoKill*)]=={},

Acur[[i,Ytuple[[k,j]]]]=0]];

AppendTo[Done,Ytuple[[k,j]

]

]

]

];

{Acur,Done}

]

FindIndAct[NextAct_,Finished_]:=

Module[{Y=NextAct,Yflat,IndEv,count1,count2,IsInd,count3,IndAct,count4,

Done=Finished,IndConv,IndConc,count5,count6,count21,count211,z,y,

LengthYflat,LengthIndEv,LengthIndAct},

Yflat =Union[Flatten[Y]];

LengthYflat=Length[Yflat];

(*Find the Potential Independent Activities*)

IndEv={};

count1 =1;

(*We need to loop through all the potential next activities*)

While[count1<=LengthYflat,

count2=1;

IsInd=1;

(*We need to loop through them again so pairwise

comparisons can be made*)

While[count2<=LengthYflat,

count21=1;

(*Loop through the successors of the current next

possible activity

for the first loop*)

While[count21<=Length[Successors[[Yflat[[count1]]+1]]],

count211=1;

(*Inspect a successor of the current next possible

activity for the first loop*)

z=Successors[[Yflat[[count1]]+1,count21]];

(*Loop throught the successors of the current next

possible activity for the second loop*)

While[count211<=Length[Successors[[

114

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

Yflat[[count2]]+1]]],

(*Inspect a successor of the current next

possible activity for the second loop*)

y=Successors[[Yflat[[count2]]+1,count211]];

(*If the successor to the current next possible

activity from the first loop is a Successor to

one of the successors of the next possible

activities in the second loop, then the next

possible activity from the first loop is not

independent*)

If[MemberQ[FullPrec[[z]], y(*Successors[[y+1]],z*)]

==True && count1!=count2,

(*if y+1 is on z’s precedence path!!!*)

IsInd=0

];

(*Look at the next successor of the current next

activity in the second loop*)

count211++;

]

(*Look at the next successor of the current next

activity in the first loop*)

count21++

];

(*Look at the next next activity in this second loop*)

count2++

];

(*If the this next activity for the first loop is independent,

record it as such*)

If[IsInd==1,

AppendTo[IndEv, Yflat[[count1]]]

];

(*Look at the next next activty for this first loop*)

count1++;

];

(*Find Actual Independent Activities*)

(*Can’t figure out why this is here.

Seems like it should work with out it but

I don’t want to mess up something that

is working*)

count3=1;

IndAct={};

115

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

LengthIndEv=Length[IndEv];

While[count3<=LengthIndEv,

count4=count3+1;

While[count4<=LengthIndEv,

If[Complement[Successors[[IndEv[[count3]]+1]],Done]==

Complement[Successors[[IndEv[[count4]]+1]],Done],

AppendTo[IndAct,IndEv[[count3]]];

AppendTo[IndAct,IndEv[[count4]]]

];

count4++

];

count3++

];

(*Check each pair independent activities for a reducable

relationship*)

IndConv={};

IndConc={};

count5=1;

IndAct=Flatten[IndAct];

LengthIndAct=Length[IndAct];

If[LengthIndAct>1,

While[count5<=LengthIndAct,

count6=1;

While[count6<=LengthIndAct,

If[Curve[[IndAct[[count5]]+1]]==

Curve[[IndAct[[count6]]+1]]&&count5!=count6,

If[Curve[[IndAct[[count5]]+1]]==1,

AppendTo[IndConv,

{IndAct[[count5]],IndAct[[count6]]}],

If[Curve[[IndAct[[count5]]+1]]==2,

AppendTo[IndConc,

{IndAct[[count5]],

IndAct[[count6]]}]

]

]

];

count6++

];

count5++

]

];

116

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

IndConv=Union[Flatten[IndConv]];

IndConc=Union[Flatten[IndConc]];

{IndConv,IndConc}

]

FathomNodes[Conv_,Conc_,Tuple_,Row_,oldIndConv_]:=

Module[{IndConv=Sort[Conv],IndConc=Sort[Conc],Ytuples=Tuple,YtuplesNew,

T,P,Fathom,PFathom,count10,count11,count12,

LengthIndConv, LengthIndConc, LengthYtuples, R=Row,

OldIndConv=oldIndConv,pos,

LengthOutYtuples},

LengthIndConv=Length[IndConv];

LengthIndConc=Length[IndConc];

LengthYtuples=Length[Ytuples];

(*Print["R=",R];

Print["Ytuples=",MatrixForm[Ytuples]];

Print["IndCov=",IndConv];

Print["OldIndConv=",OldIndConv];*)

If[IndConv=={},IndConv=OldIndConv];

(*Print["IndCov=",IndConv];*)

If[Length[OldIndConv>1]||Length[IndConv]>1,

If[OldIndConv == {},

Ytuples=Select[Ytuples,If[Length[Union[Flatten[#]]\

[Intersection]IndConv]==1,True,False]&],

pos=Flatten[Position[R,(R\[Intersection]OldIndConv)[[1]]]];

Ytuples=Select[Ytuples, If[And[Length[Union[Flatten[#]]

\[Intersection]IndConv]==1,

#[[pos[[1]]]]\[Intersection]IndConv==Union[Flatten[#]]\

[Intersection]IndConv],True,False]&]

]

];

If[LengthIndConc>1,

Ytuples=Select[Ytuples, Flatten[#]\

[Intersection]IndConc==IndConc &]

];

(*If[LengthIndConc>1,

count10 =1;

While[count10<=LengthYtuples,

Fathom=0;

T=Ytuples[[count10]];

117

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

count11=1;

While[count11<=Length[T],

P=T[[count11]];

PFathom=1;

If[Intersection[IndConc,P]!=Sort[IndConc],

PFathom=0;

];

If[PFathom==1,

Fathom=1

];

count11++;

];

If[Fathom==1,

AppendTo[YtuplesNew,T]

];

count10++;

];

Ytuples=YtuplesNew

];*)

{Ytuples}

]

Branching[Row_,A_,Assigned_,AddToRow_(*,MustMove_*),bigY_,oldIndConv_]:=

Module[{R=Join[Row,AddToRow],RowHold=AddToRow,Acur=A,Done=Assigned,

(*Limb=Branch,*)RSubsets,p,Y,Ysubsets,Ytuples,

aZeroRow, Yflat,count1,count2,

count3,count4, count5, count6,count7,count8,

count9,count10,count11,count12,IsInd,IndEv,

IndAct,IndConv,IndConc,YtuplesNew,Act,Act1,

P,T,Fathom,IndConvConc,

LengthR,LengthYtuples,LengthRowHold,SucCurR, CurR,pos,

SubsetsSucCurR, ForbiddenMoves,c1,c2,BigY=bigY,

ElseTable,Ytuples2,OldIndConv=oldIndConv},

count++;

If[Mod[count,100000]==0,Print[count]];

LengthR=Length[R];

LengthRowHold=Length[RowHold];

(*If the Acur == {0} then it is a sign to go back up a level*)

If[Acur=={0}, Return[1]

];

(*Find all the possible successors of previously assigned

118

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

activities*)

Y={}; (*Variable which will hold possible successors of

previously assigned activities*)

(*For each previously assigned activity, search through

it’s respective row in the accessibility matrix for

accessible jobs make sure the precedence requirments

have been met*)

For[i=1, i<= LengthR, i++,

AppendTo[Y,{}];

For[j =1, j<= n,j++,

h=R[[i]]+1;

If[And[Acur[[h,j]] ==1,And[Intersection[{j}, Done]!={j},

Sort[Intersection[Precedences[[j+1]],Done]]

==Sort[Precedences[[j+1]]]]],

AppendTo[Y[[i]],j]

]

]

];

Do[If[Flatten[Y[[i]]]==0,Return[1]],{i,1,Length[Y]}];

If[Y[[1]]=={n},

If[BigY==0 && SerialDone==1,

Return[1]

];

If[BigY==0 && SerialDone==0,

SerialDone=1

];

AppendTo[Branches,Acur];

Return[1]

];

IndConvConc=FindIndAct[Y,Done];

IndConv=Sort[IndConvConc[[1]]];

IndConc=Sort[IndConvConc[[2]]];

(*ForcedMove1={};*)

(*If[IndConv!={},

ForcedMove1 = {IndConv[[1]],IndConv[[2]]};

];*)

(*Variable to hold all subsets for each Y

Form:{ { {},{something},...,{something}},...

,{ {},{something},...,{something}} }*)

Ysubsets=Table[Subsets[Y[[i]]],{i,LengthR}];

(*We do not want to include the null set in our subset

of Y if there is only one previously assigned activity

119

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

which only has one possible flow*)

(*Print["LengthYsubsets=",Length[Ysubsets]];*)

If[Length[Ysubsets]==1, Ysubsets[[1]]=Complement[Ysubsets[[1]],{{}}]];

(*Print["Ysubsets=",Ysubsets];*)

Ytuples=Tuples[Ysubsets];

If[LengthR-LengthRowHold>0,

c1=LengthR-LengthRowHold+1;

While[c1<=LengthR,

CurR = R[[c1]];

c2=1;

SucCurR=Successors[[CurR+1]];

SubsetsSucCurR = Complement[Subsets[SucCurR],{}];

While[c2<=Length[SubsetsSucCurR],

Ytuples=Complement[Ytuples,

{Table[If[i==c1,SubsetsSucCurR[[c2]],{}],

{i,1,LengthR}]}];

c2++

];

c1++

]

];

(*Reduce Network*)

If[Length[IndConv]>1 || Length[IndConc]>1||Length[OldIndConv]>1,

Ytuples=FathomNodes[IndConv,IndConc,Ytuples,R,OldIndConv][[1]]

];

LengthYtuples=Length[Ytuples];

ElseTable=Table[{R,Ytuples[[i]],Acur,Done

,BigY,IndConv},{i,1,LengthYtuples,1}];

Map[Else,ElseTable];

]

SearchTree[A_,Precs_,AllPrec_,Sucs_,CC_,NumJobs_]:=

Module[{Acur=A},

Curve=CC;

Precedences=Precs;

FullPrec=AllPrec;

Successors=Sucs;

n=NumJobs;

Serial={};

SerialDone=0;

count=0;

Branches={};

120

Daniel W. Steeneck Appendix B. Code for Enumeration Algorithm

(*SetSharedVariable[Precedences,Successors,n, Serial];*)

(*SetSharedFunction[Else,Amod,FathomNodes,FindIndAct];*)

T=Timing[Branching[{0},Acur,{0},(*{1,0},*){}(*,{}*),0,{}]];

(*Print[Curve,Length[Branches],T];*)

{Branches,T}

];

121

	1 Introduction and Problem Statement
	1.1 Background
	1.2 Problem Statement
	1.3 Motivation for Addressing the Problem
	1.4 Outline of Solution Approach
	1.5 Outline of Remaining Chapters

	2 Literature Review
	2.1 Project Planning
	2.2 Representation of the Activities of a Project
	2.3 The Critical Path Method and Precedence Relationships
	2.4 Resource Constraints
	2.5 Time-Resource Trade-offs and Activity Modes
	2.6 Resource-Constrained Project Planning with Time-Resource Trade-offs

	3 Model Formulation and Solution Approach
	3.1 Accessibility and Sequences
	3.2 Overview
	3.3 Mathematical Model
	3.4 Solution Approach

	4 Discussion of Productivity Functions
	4.1 Characteristics of an Activity Duration Function
	4.2 Estimation of Production Functions

	5 Independent Activities and Their Properties
	5.1 Characterization of Independent Activities
	5.2 Scheduling Properties of Independent Activities
	5.3 Exploitation of Scheduling Properties of Independent Activities

	6 Solution Algorithm
	6.1 Determination of Minimum Makespan of a Sequence
	6.2 Solution Algorithm
	6.3 Some Illustrative Examples

	7 Results and Conclusions
	7.1 Testing Methodology
	7.2 Rationale For Choice of Test Cases
	7.3 Effects of Parallelism
	7.4 Effects of Productivity Function Distribution
	7.5 Effects of Project Size
	7.6 Conclusions

	8 Future Work
	8.1 Theoretical Work
	8.2 Heuristic Development
	8.3 Software Development

	Bibliography
	A Precedence Digraphs Used in Testing
	B Pseudo and Mathematica Code for Enumeration Algorithm
	B.1 Pseudo Code
	B.1.1 Precedence Path Algorithm
	B.1.2 Search Tree

